From: Zhuoran Wang Date: Mon, 4 Nov 2019 17:51:47 +0000 (-0700) Subject: Use FE_DGRT instead of FE_RT X-Git-Tag: v9.2.0-rc1~852^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=refs%2Fpull%2F8999%2Fhead;p=dealii.git Use FE_DGRT instead of FE_RT --- diff --git a/examples/step-61/step-61.cc b/examples/step-61/step-61.cc index a488cad572..5c77011b15 100644 --- a/examples/step-61/step-61.cc +++ b/examples/step-61/step-61.cc @@ -261,9 +261,7 @@ namespace Step61 WGDarcyEquation::WGDarcyEquation(const unsigned int degree) : fe(FE_DGQ(degree), 1, FE_FaceQ(degree), 1) , dof_handler(triangulation) - , - - fe_dgrt(0) + , fe_dgrt(degree) , dof_handler_dgrt(triangulation) {} @@ -311,7 +309,6 @@ namespace Step61 solution.reinit(dof_handler.n_dofs()); system_rhs.reinit(dof_handler.n_dofs()); - darcy_velocity.reinit(dof_handler_dgrt.n_dofs()); { constraints.clear(); @@ -386,10 +383,8 @@ namespace Step61 template void WGDarcyEquation::assemble_system() { - const FE_RaviartThomas fe_rt(fe.base_element(0).degree); - - const QGauss quadrature_formula(fe_rt.degree + 1); - const QGauss face_quadrature_formula(fe_rt.degree + 1); + const QGauss quadrature_formula(fe_dgrt.degree + 1); + const QGauss face_quadrature_formula(fe_dgrt.degree + 1); FEValues fe_values(fe, quadrature_formula, @@ -401,21 +396,23 @@ namespace Step61 update_quadrature_points | update_JxW_values); - FEValues fe_values_rt(fe_rt, - quadrature_formula, - update_values | update_gradients | - update_quadrature_points | update_JxW_values); - FEFaceValues fe_face_values_rt(fe_rt, - face_quadrature_formula, - update_values | update_normal_vectors | - update_quadrature_points | - update_JxW_values); + FEValues fe_values_dgrt(fe_dgrt, + quadrature_formula, + update_values | update_gradients | + update_quadrature_points | + update_JxW_values); + FEFaceValues fe_face_values_dgrt(fe_dgrt, + face_quadrature_formula, + update_values | + update_normal_vectors | + update_quadrature_points | + update_JxW_values); - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const unsigned int dofs_per_cell_rt = fe_rt.dofs_per_cell; + const unsigned int dofs_per_cell = fe.dofs_per_cell; + const unsigned int dofs_per_cell_dgrt = fe_dgrt.dofs_per_cell; - const unsigned int n_q_points = fe_values.get_quadrature().size(); - const unsigned int n_q_points_rt = fe_values_rt.get_quadrature().size(); + const unsigned int n_q_points = fe_values.get_quadrature().size(); + const unsigned int n_q_points_dgrt = fe_values_dgrt.get_quadrature().size(); const unsigned int n_face_q_points = fe_face_values.get_quadrature().size(); @@ -430,9 +427,9 @@ namespace Step61 // Next, let us declare the various cell matrices discussed in the // introduction: - FullMatrix cell_matrix_M(dofs_per_cell_rt, dofs_per_cell_rt); - FullMatrix cell_matrix_G(dofs_per_cell_rt, dofs_per_cell); - FullMatrix cell_matrix_C(dofs_per_cell, dofs_per_cell_rt); + FullMatrix cell_matrix_M(dofs_per_cell_dgrt, dofs_per_cell_dgrt); + FullMatrix cell_matrix_G(dofs_per_cell_dgrt, dofs_per_cell); + FullMatrix cell_matrix_C(dofs_per_cell, dofs_per_cell_dgrt); FullMatrix local_matrix(dofs_per_cell, dofs_per_cell); Vector cell_rhs(dofs_per_cell); Vector cell_solution(dofs_per_cell); @@ -440,8 +437,8 @@ namespace Step61 // We need FEValuesExtractors to access the @p interior and // @p face component of the shape functions. const FEValuesExtractors::Vector velocities(0); - const FEValuesExtractors::Scalar pressure_interior(0); - const FEValuesExtractors::Scalar pressure_face(1); + const FEValuesExtractors::Scalar interior(0); + const FEValuesExtractors::Scalar face(1); // This finally gets us in position to loop over all cells. On // each cell, we will first calculate the various cell matrices @@ -455,8 +452,9 @@ namespace Step61 { fe_values.reinit(cell); - const typename Triangulation::active_cell_iterator cell_rt = cell; - fe_values_rt.reinit(cell_rt); + const typename Triangulation::active_cell_iterator cell_dgrt = + cell; + fe_values_dgrt.reinit(cell_dgrt); right_hand_side.value_list(fe_values.get_quadrature_points(), right_hand_side_values); @@ -467,15 +465,15 @@ namespace Step61 // for the Raviart-Thomas space. Hence, we need to loop over // all the quadrature points for the velocity FEValues object. cell_matrix_M = 0; - for (unsigned int q = 0; q < n_q_points_rt; ++q) - for (unsigned int i = 0; i < dofs_per_cell_rt; ++i) + for (unsigned int q = 0; q < n_q_points_dgrt; ++q) + for (unsigned int i = 0; i < dofs_per_cell_dgrt; ++i) { - const Tensor<1, dim> v_i = fe_values_rt[velocities].value(i, q); - for (unsigned int k = 0; k < dofs_per_cell_rt; ++k) + const Tensor<1, dim> v_i = fe_values_dgrt[velocities].value(i, q); + for (unsigned int k = 0; k < dofs_per_cell_dgrt; ++k) { const Tensor<1, dim> v_k = - fe_values_rt[velocities].value(k, q); - cell_matrix_M(i, k) += (v_i * v_k * fe_values_rt.JxW(q)); + fe_values_dgrt[velocities].value(k, q); + cell_matrix_M(i, k) += (v_i * v_k * fe_values_dgrt.JxW(q)); } } // Next we take the inverse of this matrix by using @@ -496,13 +494,13 @@ namespace Step61 // the interior. cell_matrix_G = 0; for (unsigned int q = 0; q < n_q_points; ++q) - for (unsigned int i = 0; i < dofs_per_cell_rt; ++i) + for (unsigned int i = 0; i < dofs_per_cell_dgrt; ++i) { - const double div_v_i = fe_values_rt[velocities].divergence(i, q); + const double div_v_i = + fe_values_dgrt[velocities].divergence(i, q); for (unsigned int j = 0; j < dofs_per_cell; ++j) { - const double phi_j_interior = - fe_values[pressure_interior].value(j, q); + const double phi_j_interior = fe_values[interior].value(j, q); cell_matrix_G(i, j) -= (div_v_i * phi_j_interior * fe_values.JxW(q)); @@ -515,23 +513,25 @@ namespace Step61 // of the polynomial space and the dot product of a basis function of // the Raviart-Thomas space and the normal vector. So we loop over all // the faces of the element and obtain the normal vector. - for (const auto &face : cell->face_iterators()) + for (unsigned int face_n = 0; + face_n < GeometryInfo::faces_per_cell; + ++face_n) { - fe_face_values.reinit(cell, face); - fe_face_values_rt.reinit(cell_rt, face); + fe_face_values.reinit(cell, face_n); + fe_face_values_dgrt.reinit(cell_dgrt, face_n); for (unsigned int q = 0; q < n_face_q_points; ++q) { const Tensor<1, dim> normal = fe_face_values.normal_vector(q); - for (unsigned int i = 0; i < dofs_per_cell_rt; ++i) + for (unsigned int i = 0; i < dofs_per_cell_dgrt; ++i) { const Tensor<1, dim> v_i = - fe_face_values_rt[velocities].value(i, q); + fe_face_values_dgrt[velocities].value(i, q); for (unsigned int j = 0; j < dofs_per_cell; ++j) { const double phi_j_face = - fe_face_values[pressure_face].value(j, q); + fe_face_values[face].value(j, q); cell_matrix_G(i, j) += ((v_i * normal) * phi_j_face * fe_face_values.JxW(q)); @@ -552,21 +552,22 @@ namespace Step61 // the previous step, and so obtain the following after // suitably re-arranging the loops: local_matrix = 0; - for (unsigned int q = 0; q < n_q_points_rt; ++q) + for (unsigned int q = 0; q < n_q_points_dgrt; ++q) { - for (unsigned int k = 0; k < dofs_per_cell_rt; ++k) + for (unsigned int k = 0; k < dofs_per_cell_dgrt; ++k) { - const Tensor<1, dim> v_k = fe_values_rt[velocities].value(k, q); - for (unsigned int l = 0; l < dofs_per_cell_rt; ++l) + const Tensor<1, dim> v_k = + fe_values_dgrt[velocities].value(k, q); + for (unsigned int l = 0; l < dofs_per_cell_dgrt; ++l) { const Tensor<1, dim> v_l = - fe_values_rt[velocities].value(l, q); + fe_values_dgrt[velocities].value(l, q); for (unsigned int i = 0; i < dofs_per_cell; ++i) for (unsigned int j = 0; j < dofs_per_cell; ++j) local_matrix(i, j) += (coefficient_values[q] * cell_matrix_C[i][k] * v_k) * - cell_matrix_C[j][l] * v_l * fe_values_rt.JxW(q); + cell_matrix_C[j][l] * v_l * fe_values_dgrt.JxW(q); } } } @@ -576,7 +577,7 @@ namespace Step61 for (unsigned int q = 0; q < n_q_points; ++q) for (unsigned int i = 0; i < dofs_per_cell; ++i) { - cell_rhs(i) += (fe_values[pressure_interior].value(i, q) * + cell_rhs(i) += (fe_values[interior].value(i, q) * right_hand_side_values[q] * fe_values.JxW(q)); } @@ -671,10 +672,10 @@ namespace Step61 template void WGDarcyEquation::compute_velocity_errors() { - const FE_RaviartThomas fe_rt(fe.base_element(0).degree); + darcy_velocity.reinit(dof_handler_dgrt.n_dofs()); - const QGauss quadrature_formula(fe_rt.degree + 1); - const QGauss face_quadrature_formula(fe_rt.degree + 1); + const QGauss quadrature_formula(fe_dgrt.degree + 1); + const QGauss face_quadrature_formula(fe_dgrt.degree + 1); FEValues fe_values(fe, quadrature_formula, @@ -687,17 +688,6 @@ namespace Step61 update_quadrature_points | update_JxW_values); - FEValues fe_values_rt(fe_rt, - quadrature_formula, - update_values | update_gradients | - update_quadrature_points | update_JxW_values); - - FEFaceValues fe_face_values_rt(fe_rt, - face_quadrature_formula, - update_values | update_normal_vectors | - update_quadrature_points | - update_JxW_values); - FEValues fe_values_dgrt(fe_dgrt, quadrature_formula, update_values | update_gradients | @@ -712,42 +702,40 @@ namespace Step61 update_JxW_values); const unsigned int dofs_per_cell = fe.dofs_per_cell; - const unsigned int dofs_per_cell_rt = fe_rt.dofs_per_cell; const unsigned int dofs_per_cell_dgrt = fe_dgrt.dofs_per_cell; - const unsigned int n_q_points = fe_values.get_quadrature().size(); - const unsigned int n_q_points_rt = fe_values_rt.get_quadrature().size(); + const unsigned int n_q_points = fe_values.get_quadrature().size(); + const unsigned int n_q_points_dgrt = fe_values_dgrt.get_quadrature().size(); const unsigned int n_face_q_points = fe_face_values.get_quadrature().size(); - const unsigned int n_face_q_points_rt = - fe_face_values_rt.get_quadrature().size(); + const unsigned int n_face_q_points_dgrt = + fe_face_values_dgrt.get_quadrature().size(); std::vector local_dof_indices(dofs_per_cell); std::vector local_dof_indices_dgrt( dofs_per_cell_dgrt); - FullMatrix cell_matrix_M(dofs_per_cell_rt, dofs_per_cell_rt); - FullMatrix cell_matrix_G(dofs_per_cell_rt, dofs_per_cell); - FullMatrix cell_matrix_C(dofs_per_cell, dofs_per_cell_rt); + FullMatrix cell_matrix_M(dofs_per_cell_dgrt, dofs_per_cell_dgrt); + FullMatrix cell_matrix_G(dofs_per_cell_dgrt, dofs_per_cell); + FullMatrix cell_matrix_C(dofs_per_cell, dofs_per_cell_dgrt); - FullMatrix cell_matrix_D(dofs_per_cell_rt, dofs_per_cell_rt); - FullMatrix cell_matrix_E(dofs_per_cell_rt, dofs_per_cell_rt); + FullMatrix cell_matrix_D(dofs_per_cell_dgrt, dofs_per_cell_dgrt); + FullMatrix cell_matrix_E(dofs_per_cell_dgrt, dofs_per_cell_dgrt); Vector cell_solution(dofs_per_cell); - Vector cell_velocity(dofs_per_cell_rt); + Vector cell_velocity(dofs_per_cell_dgrt); double L2_err_velocity_cell_sqr_global = 0; double L2_err_flux_sqr = 0; const Coefficient coefficient; - std::vector> coefficient_values(n_q_points_rt); + std::vector> coefficient_values(n_q_points_dgrt); const FEValuesExtractors::Vector velocities(0); const FEValuesExtractors::Scalar pressure(dim); - const FEValuesExtractors::Scalar pressure_interior(0); - const FEValuesExtractors::Scalar pressure_face(1); - const FEValuesExtractors::Vector velocities_dgrt(0); + const FEValuesExtractors::Scalar interior(0); + const FEValuesExtractors::Scalar face(1); const ExactVelocity exact_velocity; @@ -775,10 +763,7 @@ namespace Step61 fe_values.reinit(cell); fe_values_dgrt.reinit(cell_dgrt); - const typename Triangulation::active_cell_iterator cell_rt = cell; - fe_values_rt.reinit(cell_rt); - - coefficient.value_list(fe_values_rt.get_quadrature_points(), + coefficient.value_list(fe_values_dgrt.get_quadrature_points(), coefficient_values); // The component of this cell_matrix_E is the integral of @@ -786,19 +771,19 @@ namespace Step61 // the Gram matrix. cell_matrix_M = 0; cell_matrix_E = 0; - for (unsigned int q = 0; q < n_q_points_rt; ++q) - for (unsigned int i = 0; i < dofs_per_cell_rt; ++i) + for (unsigned int q = 0; q < n_q_points_dgrt; ++q) + for (unsigned int i = 0; i < dofs_per_cell_dgrt; ++i) { - const Tensor<1, dim> v_i = fe_values_rt[velocities].value(i, q); - for (unsigned int k = 0; k < dofs_per_cell_rt; ++k) + const Tensor<1, dim> v_i = fe_values_dgrt[velocities].value(i, q); + for (unsigned int k = 0; k < dofs_per_cell_dgrt; ++k) { const Tensor<1, dim> v_k = - fe_values_rt[velocities].value(k, q); + fe_values_dgrt[velocities].value(k, q); cell_matrix_E(i, k) += - (coefficient_values[q] * v_i * v_k * fe_values_rt.JxW(q)); + (coefficient_values[q] * v_i * v_k * fe_values_dgrt.JxW(q)); - cell_matrix_M(i, k) += (v_i * v_k * fe_values_rt.JxW(q)); + cell_matrix_M(i, k) += (v_i * v_k * fe_values_dgrt.JxW(q)); } } @@ -814,36 +799,38 @@ namespace Step61 // matrix, so we just copy it from there: cell_matrix_G = 0; for (unsigned int q = 0; q < n_q_points; ++q) - for (unsigned int i = 0; i < dofs_per_cell_rt; ++i) + for (unsigned int i = 0; i < dofs_per_cell_dgrt; ++i) { - const double div_v_i = fe_values_rt[velocities].divergence(i, q); + const double div_v_i = + fe_values_dgrt[velocities].divergence(i, q); for (unsigned int j = 0; j < dofs_per_cell; ++j) { - const double phi_j_interior = - fe_values[pressure_interior].value(j, q); + const double phi_j_interior = fe_values[interior].value(j, q); cell_matrix_G(i, j) -= (div_v_i * phi_j_interior * fe_values.JxW(q)); } } - for (const auto &face : cell->face_iterators()) + for (unsigned int face_n = 0; + face_n < GeometryInfo::faces_per_cell; + ++face_n) { - fe_face_values.reinit(cell, face); - fe_face_values_rt.reinit(cell_rt, face); + fe_face_values.reinit(cell, face_n); + fe_face_values_dgrt.reinit(cell_dgrt, face_n); for (unsigned int q = 0; q < n_face_q_points; ++q) { const Tensor<1, dim> normal = fe_face_values.normal_vector(q); - for (unsigned int i = 0; i < dofs_per_cell_rt; ++i) + for (unsigned int i = 0; i < dofs_per_cell_dgrt; ++i) { const Tensor<1, dim> v_i = - fe_face_values_rt[velocities].value(i, q); + fe_face_values_dgrt[velocities].value(i, q); for (unsigned int j = 0; j < dofs_per_cell; ++j) { const double phi_j_face = - fe_face_values[pressure_face].value(j, q); + fe_face_values[face].value(j, q); cell_matrix_G(i, j) += ((v_i * normal) * phi_j_face * fe_face_values.JxW(q)); @@ -861,8 +848,8 @@ namespace Step61 // unknowns (with respect to the Raviart-Thomas space we are // projecting the term $-\mathbf K \nabla_{w,d} p_h$ into): cell_velocity = 0; - for (unsigned int k = 0; k < dofs_per_cell_rt; ++k) - for (unsigned int j = 0; j < dofs_per_cell_rt; ++j) + for (unsigned int k = 0; k < dofs_per_cell_dgrt; ++k) + for (unsigned int j = 0; j < dofs_per_cell_dgrt; ++j) for (unsigned int i = 0; i < dofs_per_cell; ++i) cell_velocity(k) += -(cell_solution(i) * cell_matrix_C(i, j) * cell_matrix_D(k, j)); @@ -879,22 +866,22 @@ namespace Step61 // Now, we can calculate the numerical velocity at each quadrature point // and compute the $L_2$ error on each cell. double L2_err_velocity_cell_sqr_local = 0; - for (unsigned int q = 0; q < n_q_points_rt; ++q) + for (unsigned int q = 0; q < n_q_points_dgrt; ++q) { Tensor<1, dim> velocity; - for (unsigned int k = 0; k < dofs_per_cell_rt; ++k) + for (unsigned int k = 0; k < dofs_per_cell_dgrt; ++k) { const Tensor<1, dim> phi_k_u = - fe_values_rt[velocities].value(k, q); + fe_values_dgrt[velocities].value(k, q); velocity += cell_velocity(k) * phi_k_u; } const Tensor<1, dim> true_velocity = - exact_velocity.value(fe_values_rt.quadrature_point(q)); + exact_velocity.value(fe_values_dgrt.quadrature_point(q)); L2_err_velocity_cell_sqr_local += ((velocity - true_velocity) * (velocity - true_velocity) * - fe_values_rt.JxW(q)); + fe_values_dgrt.JxW(q)); } L2_err_velocity_cell_sqr_global += L2_err_velocity_cell_sqr_local; @@ -907,31 +894,33 @@ namespace Step61 // the $L_2$ flux error on the cell and add it to the global // error. const double cell_area = cell->measure(); - for (const auto &face : cell->face_iterators()) + for (unsigned int face_n = 0; + face_n < GeometryInfo::faces_per_cell; + ++face_n) { - const double face_length = face->measure(); - fe_face_values.reinit(cell, face); - fe_face_values_rt.reinit(cell_rt, face); + const double face_length = cell->face(face_n)->measure(); + fe_face_values.reinit(cell, face_n); + fe_face_values_dgrt.reinit(cell_dgrt, face_n); double L2_err_flux_face_sqr_local = 0; - for (unsigned int q = 0; q < n_face_q_points_rt; ++q) + for (unsigned int q = 0; q < n_face_q_points_dgrt; ++q) { Tensor<1, dim> velocity; - for (unsigned int k = 0; k < dofs_per_cell_rt; ++k) + for (unsigned int k = 0; k < dofs_per_cell_dgrt; ++k) { const Tensor<1, dim> phi_k_u = - fe_face_values_rt[velocities].value(k, q); + fe_face_values_dgrt[velocities].value(k, q); velocity += cell_velocity(k) * phi_k_u; } const Tensor<1, dim> true_velocity = - exact_velocity.value(fe_face_values_rt.quadrature_point(q)); + exact_velocity.value(fe_face_values_dgrt.quadrature_point(q)); const Tensor<1, dim> normal = fe_face_values.normal_vector(q); L2_err_flux_face_sqr_local += ((velocity * normal - true_velocity * normal) * (velocity * normal - true_velocity * normal) * - fe_face_values_rt.JxW(q)); + fe_face_values_dgrt.JxW(q)); } const double err_flux_each_face = L2_err_flux_face_sqr_local / (face_length) * (cell_area);