From 0bab9b15642d482bf15d1b4bc8618004480a3ede Mon Sep 17 00:00:00 2001 From: guido Date: Fri, 28 Nov 2003 09:59:55 +0000 Subject: [PATCH] formulas fixed git-svn-id: https://svn.dealii.org/trunk@8199 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/deal.II/include/numerics/error_estimator.h | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/deal.II/deal.II/include/numerics/error_estimator.h b/deal.II/deal.II/include/numerics/error_estimator.h index 667482ae7a..dd2a4febef 100644 --- a/deal.II/deal.II/include/numerics/error_estimator.h +++ b/deal.II/deal.II/include/numerics/error_estimator.h @@ -58,9 +58,9 @@ template class FESubfaceValues; * @sect3{Implementation} * * In principle, the implementation of the error estimation is simple: let - * $$ \eta_K^2 = - * \frac h{24} \int_{\partial K} \left[a \frac{\partial u_h}{\partial n}\right]^2 do - * $$ + * \f[ + * \eta_K^2 = \frac h{24} \int_{\partial K} \left[a \frac{\partial u_h}{\partial n}\right]^2 do + * \f] * be the error estimator for cell $K$. $[\cdot]$ denotes the jump of the * argument at the face. In the paper of Ainsworth, $h$ is divided by $24$, * but this factor is a bit esoteric, stemming from interpolation estimates @@ -143,7 +143,7 @@ template class FESubfaceValues; * * @item The face belongs to a Neumann boundary. In this case, the * contribution of the face $F\in\partial K$ looks like - * $$ \int_F \left|g-a\frac{\partial u_h}{\partial n}\right|^2 ds $$ + * \f[ \int_F \left|g-a\frac{\partial u_h}{\partial n}\right|^2 ds \f] * where $g$ is the Neumann boundary function. If the finite element is * vector-valued, then obviously the function denoting the Neumann boundary * conditions needs to be vector-valued as well. -- 2.39.5