From 0c834fae27091a4ce306740bbf4aa6d58a41817a Mon Sep 17 00:00:00 2001 From: kayser-herold Date: Sat, 29 Jul 2006 23:24:35 +0000 Subject: [PATCH] Created a comment, which sketches the basic principle for creating the hp-hanging node constraints in a case, where the lowest order element is on the refined side of the face. Furthermore a little logical error was fixed. In the previous version, it could happen that the procedure for building the constraints runs into the second part which is only suited for interfaces with equal h but different p in a case, where h and p differ. git-svn-id: https://svn.dealii.org/trunk@13512 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/deal.II/source/dofs/dof_tools.cc | 96 +++++++++++++++++++++--- 1 file changed, 87 insertions(+), 9 deletions(-) diff --git a/deal.II/deal.II/source/dofs/dof_tools.cc b/deal.II/deal.II/source/dofs/dof_tools.cc index c603fd779d..9db9770f10 100644 --- a/deal.II/deal.II/source/dofs/dof_tools.cc +++ b/deal.II/deal.II/source/dofs/dof_tools.cc @@ -1878,6 +1878,7 @@ namespace internal // For FE_Q it is the one with the // lowest number of DoFs on the face. unsigned int min_dofs_per_face = cell->get_fe ().dofs_per_face; + unsigned int min_degree_subface = 0; bool mother_face_is_master = true; for (unsigned int c=0; c::subfaces_per_face; ++c) @@ -1893,6 +1894,7 @@ namespace internal if (neighbor_child->get_fe ().dofs_per_face < min_dofs_per_face) { min_dofs_per_face = neighbor_child->get_fe ().dofs_per_face; + min_degree_subface = c; mother_face_is_master = false; } } @@ -1907,7 +1909,7 @@ namespace internal dofs_on_mother.resize (n_dofs_on_mother); cell->face(face)->get_dof_indices (dofs_on_mother, cell->active_fe_index ()); - + // Now create constraint matrix for // the subfaces and assemble it. for (unsigned int c=0; c::subfaces_per_face; ++c) @@ -1958,12 +1960,84 @@ namespace internal { Assert (false, ExcNotImplemented ()); -// TODO: That's the difficult one. -// Sketch of how this has to be done: -// The coarse element is constrained to a lower order element with -// the degree of the lowest order element. -// Afterwards the two finer elements are constrained to the this -// constrained element. + typename DH::active_cell_iterator neighbor_child + = cell->neighbor_child_on_subface (face, min_degree_subface); + const unsigned int n_dofs_on_children = neighbor_child->get_fe().dofs_per_face; + dofs_on_children.resize (n_dofs_on_children); + + // The idea is to introduce + // a "virtual" intermediate coarse + // level face with the lowest + // polynomial degree. Then it is + // easy to constrain each of the + // connected faces to this intermediate + // coarse level face. As the DoFs on + // this intermediate coarse level face + // do not exist, they have to determined + // through the inverse of the constraint matrix + // from the lowest order subface to + // this intermediate coarse level face. + // + // Considering the following case: + // +---+----+ + // | | Q3 | + // |Q3 +----+ + // | | Q2 | + // +---+----+ + // + // The intermediate layer would be + // of order 2: + // +------+ * +---------+ + // + | | | F_1, Q3 | + // +Q3, C | * +---------+ + // + | | | F_2, Q2 | + // +------+ * +---------+ + // + // In this case, there are 3 DoFs on the + // intermediate layer. Assuming for the + // moment that these do exist, all DoFs + // on the connected faces can be + // expressed in terms of these DoFs. We + // have: + // C = A_1 * I + // F_1 = A_2 * I + // F_2 = A_3 * I + // where C, F_1, F_2 denote the DoFs + // on the faces of the elements and + // I denotes the DoFs on the intermediate + // face. A_1 to A_3 denote the corresponding + // face or subface interpolation matrices, + // describing the DoFs on one of the faces + // in terms of the DoFs on the intermediate + // layer. + // + // As the DoFs in I are only "virtual" + // they have to be expressed in terms + // of existing DoFs. In this case only + // A_3 is invertible. Therefore all + // other DoFs have to be constrained + // to the DoFs in F_2. + // This leads to + // I = A_3^-1 F_2 + // and + // C = A_1 * A_3^-1 F_2 + // F_1 = A_2 * A_3^-1 F_2 + // + // Therefore the constraint matrices + // in this case are: + // A_1 * A_3^-1 + // A_2 * A_3^-1 + // In 3D and for other configurations, + // the basic scheme is completely identical. + + // Now create the element + // constraint for this subface. + FullMatrix face_constraints_m (n_dofs_on_children, + n_dofs_on_children); + neighbor_child->get_fe().get_subface_interpolation_matrix (neighbor_child->get_fe (), + min_degree_subface, + face_constraints_m); +//TODO: Continue ... } } else @@ -1981,13 +2055,17 @@ namespace internal // Only if there is // a neighbor with // a different - // active_fe_index, + // active_fe_index + // and the same h-level, // some action has // to be taken. if (!cell->face(face)->at_boundary () && (cell->neighbor(face)->active_fe_index () != - cell->active_fe_index ())) + cell->active_fe_index ()) + && + (cell->neighbor(face)->level () == + cell->level ())) { typename DH::cell_iterator neighbor = cell->neighbor (face); -- 2.39.5