From 0d928bffc014cab798c8109bf393fd759565e192 Mon Sep 17 00:00:00 2001 From: kronbichler Date: Tue, 4 Jun 2013 06:17:47 +0000 Subject: [PATCH] Adjust formula. git-svn-id: https://svn.dealii.org/trunk@29746 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-31/doc/results.dox | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/deal.II/examples/step-31/doc/results.dox b/deal.II/examples/step-31/doc/results.dox index e933bb368f..55b0db1520 100644 --- a/deal.II/examples/step-31/doc/results.dox +++ b/deal.II/examples/step-31/doc/results.dox @@ -552,17 +552,17 @@ As a consequence, a formula that reconciles 2d, 3d, and variable polynomial degree and takes all factors in account reads as follows: @f{eqnarray*} k = - \frac 1{2 \cdot 1.6} \frac 1{\sqrt{d}} + \frac 1{2 \cdot 1.7} \frac 1{\sqrt{d}} \frac 2d \frac 1{q_T} \frac{h_K}{\|\mathbf{u}\|_{L^\infty(K)}} = - \frac 1{1.6 d\sqrt{d}} + \frac 1{1.7 d\sqrt{d}} \frac 1{q_T} \frac{h_K}{\|\mathbf{u}\|_{L^\infty(K)}}. @f} In the first form (in the center of the equation), $\frac -1{2 \cdot 1.6}$ is a universal constant, $\frac 1{\sqrt{d}}$ +1{2 \cdot 1.7}$ is a universal constant, $\frac 1{\sqrt{d}}$ is the factor that accounts for the difference between cell diameter and grid point separation, $\frac 2d$ accounts for the increase in $\beta$ with space dimension, -- 2.39.5