From 0f2994bf0d56af0d1c70b0428081480c4137fb0d Mon Sep 17 00:00:00 2001 From: Marco Feder Date: Tue, 2 Nov 2021 18:40:07 +0100 Subject: [PATCH] Fixed latex typo in step-38 doc --- examples/step-38/doc/intro.dox | 12 +++--------- 1 file changed, 3 insertions(+), 9 deletions(-) diff --git a/examples/step-38/doc/intro.dox b/examples/step-38/doc/intro.dox index dc4915bd33..ecbf3ab1b9 100644 --- a/examples/step-38/doc/intro.dox +++ b/examples/step-38/doc/intro.dox @@ -114,15 +114,9 @@ expressions. In fact, they barely differ from the ways in which we solve the usual Laplacian, only requiring the surface coordinate mapping to be provided in the constructor of the FEValues class. -This surface description given, in the codimension one surface case, the two -routines FEValues::shape_grad and FEValues::JxW -return -@f{align*} -\text{FEValues::shape\_grad}(i,l)&=D \mathbf x_K(p_l) G^{-1}(p_l)D(\varphi_i \circ \mathbf x_K) - (p_l) -\\ -\text{FEValues::JxW}(l) &= \sqrt{\det (G(p_l))} \ w_l. -@f} +The surface description given, in the codimension one case, the two routines we need are the following: +- FEValues::shape_grad(i,l), which returns $D \mathbf x_K(p_l) G^{-1}(p_l)D(\varphi_i \circ \mathbf x_K)$ +- FEValues::JxW(l), which returns $\sqrt{\det (G(p_l))} \ w_l$. This provides exactly the terms we need for our computations. On a more general note, details for the finite element approximation on -- 2.39.5