From 101c7d8bf6c4e255094cf1848fc6931ca6b1378f Mon Sep 17 00:00:00 2001 From: wolf Date: Mon, 27 Apr 1998 18:01:26 +0000 Subject: [PATCH] Add doc. git-svn-id: https://svn.dealii.org/trunk@204 0785d39b-7218-0410-832d-ea1e28bc413d --- .../include/numerics/error_estimator.h | 100 ++++++++++++++++-- 1 file changed, 90 insertions(+), 10 deletions(-) diff --git a/deal.II/deal.II/include/numerics/error_estimator.h b/deal.II/deal.II/include/numerics/error_estimator.h index 81d01eb9dd..75ebd6cf88 100644 --- a/deal.II/deal.II/include/numerics/error_estimator.h +++ b/deal.II/deal.II/include/numerics/error_estimator.h @@ -1,36 +1,116 @@ -/*---------------------------- error-estimator.h ---------------------------*/ +/*---------------------------- error_estimator.h ---------------------------*/ /* $Id$ */ -#ifndef __error-estimator_H -#define __error-estimator_H -/*---------------------------- error-estimator.h ---------------------------*/ +#ifndef __error_estimator_H +#define __error_estimator_H +/*---------------------------- error_estimator.h ---------------------------*/ #include +#include +#include // forward declarations template class DoFHandler; +template class Quadrature; +template class FiniteElement; +template class Boundary; +template class Function; class dVector; +/** + This error estimator tries to approximate the error per cell by integration + of the jump of the gradient of the solution along the faces of each cell. + It can be understood as a gradient recovery estimator; see the survey + of Ainsworth for a complete discussion. + + It seem as if this error estimator should only be valid for linear ansatz + spaces, but no definite answer is given to this question at present. + + + {\bf Implementation} + + In principle, the implementation of the error estimation is simple: let + $$ \eta_K^2 = + \frac{h}{24} \int_{\partial K} \left[\frac{\partial u_h}{\partial n}\right]^2 do + $$ + be the error estimator for cell $K$. $[\cdot]$ denotes the jump of the + argument at the face. + + To perform the integration, use is made of the #FEFaceValues# class and the + integration is performed for each cell, i.e. no use is made of the fact, that + the integration along a face need in principle be done only once for both + adjacent cells. Clearly there is room for optimization here. + + If the face is at the boundary, i.e. there is no neighboring cell to which + the jump in the gradiend could be computed, there are two possibilities: + \begin{itemize} + \item The face belongs to a Dirichlet boundary. Then the face is not + considered, which can be justified looking at a dual problem technique and + should hold exactly if the boundary can be approximated exactly by the + finite element used (i.e. it is a linear boundary for linear finite elements, + quadratic for isoparametric quadratic elements, etc). For boundaries which + can not be exactly approximated, one should consider the difference + $z-z_h$ on the face, $z$ being a dual problem's solution which is zero at + the true boundary and $z_h$ being an approximation, which in most cases + will be zero on the numerical boundary. Since on the numerical boundary + $z$ will not be zero in general, we would get another term here, but this + one is neglected for practical reasons, in the hope that the error made + here will tend to zero faster than the energy error we wish to estimate. + + \item The face belongs to a Neumann boundary. In this case, the + contribution of the face $F\in\partial K$ looks like + $$ \int_F \left|g-\frac{\partial u_h}{\partial n}\right| ds $$ + where $g$ is the Neumann boundary function. + + \item No other boundary conditions are considered. + \end{itemize} + + @author Wolfgang Bangerth, 1998; thanks to Franz-Theo Suttmeier for + clarifications about boundary conditions. +*/ template class KellyErrorEstimator { public: - void estimate_error (const DoFHandler &dof, - const dVector &solution, - const dVector &error) const; + /** + * Declare a data type which denotes a + * mapping between a boundary indicator + * and the function denoting the boundary + * values on this part of the boundary. + * Only one boundary function may be given + * for each boundary indicator, which is + * guaranteed by the #map# data type. + */ + typedef map*> FunctionMap; + + void estimate_error (const DoFHandler &dof, + const Quadrature &quadrature, + const FiniteElement &fe, + const Boundary &boundary, + const FunctionMap &neumann_bc, + const dVector &solution, + dVector &error) const; /** * Exception */ DeclException0 (ExcNotImplemented); + /** + * Exception + */ + DeclException0 (ExcInternalError); + /** + * Exception + */ + DeclException0 (ExcInvalidBoundaryIndicator); }; -/*---------------------------- error-estimator.h ---------------------------*/ -/* end of #ifndef __error-estimator_H */ +/*---------------------------- error_estimator.h ---------------------------*/ +/* end of #ifndef __error_estimator_H */ #endif -/*---------------------------- error-estimator.h ---------------------------*/ +/*---------------------------- error_estimator.h ---------------------------*/ -- 2.39.5