From 12af7182a90acf806be58a2bc0623226cc52d069 Mon Sep 17 00:00:00 2001 From: bangerth Date: Thu, 8 Oct 2009 13:15:32 +0000 Subject: [PATCH] Add xref. git-svn-id: https://svn.dealii.org/trunk@19763 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/doc/doxygen/headers/multithreading.h | 69 +++++++++++--------- 1 file changed, 39 insertions(+), 30 deletions(-) diff --git a/deal.II/doc/doxygen/headers/multithreading.h b/deal.II/doc/doxygen/headers/multithreading.h index 9d223f2b0f..a12dfc49af 100644 --- a/deal.II/doc/doxygen/headers/multithreading.h +++ b/deal.II/doc/doxygen/headers/multithreading.h @@ -28,12 +28,17 @@ * this frequently leads to significant savings in compute time on * multiprocessor machines. * - * deal.II supports operations running in %parallel on shared-memory (SMP) - * machines through the functions and classes in the Threads namespace. The - * MultithreadInfo class allows to query certain properties of the system, - * such as the number of CPUs. These facilities for %parallel computing are - * described in the following. The step-9, step-13 and step-14 tutorial - * programs also show their use in practice. + * deal.II supports operations running in %parallel on shared-memory + * (SMP) machines through the functions and classes in the Threads + * namespace. The MultithreadInfo class allows to query certain + * properties of the system, such as the number of CPUs. These + * facilities for %parallel computing are described in the + * following. The step-9, step-13, step-14, step-32, step-35 and + * step-37 tutorial programs also show their use in practice, with the + * ones starting with step-32 using a more modern style of doing + * things in which essentially we describe what can be done in + * %parallel, while the older tutorial programs describe how + * things have to be done in %parallel. * * On the other hand, programs running on distributed memory machines * (i.e. clusters) need a different programming model built on top of MPI and @@ -74,7 +79,7 @@ * first. By way of example, consider the typical layout of a part of the * setup_dofs function that most of the tutorial programs have: * @code -1 dof_handler.distribute_dofs (fe); +1 dof_handler.distribute_dofs (fe); 2 DoFTools::make_hanging_node_constraints (dof_handler, hanging_node_constraints); 3 DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); 4 hanging_node_constraints.condense (sparsity_pattern); @@ -144,7 +149,7 @@ * many different systems. * * - * + * * @anchor MTUsing *

Using tasks from within deal.II

* @@ -239,7 +244,7 @@ Threads::Task t2 = Threads::new_task (&C::f2, *this, i); return t1.return_value() + t2.return_value(); } - + int main () { C c; @@ -462,7 +467,7 @@ Vector::iterator &dst_row) const { const unsigned int row = (dst_row - dst.begin()); - + const double *val_ptr = &values[rowstart[row]]; const unsigned int *colnum_ptr = &colnums[rowstart[row]]; @@ -539,7 +544,7 @@ boost::cref(src), boost::ref(dst)), 200); - } + } * @endcode * Here, we call the vmult_on_subrange function on sub-ranges * of at least 200 elements each, so that the initial setup cost can amortize. @@ -557,7 +562,7 @@ const unsigned int *colnum_ptr = &colnums[0]; double norm_sqr = 0; - + for (unsigned int row=0; row void MyClass::assemble_on_one_cell (const typename DoFHandler::active_cell_iterator &cell) { ... } - + template void MyClass::assemble_system () { @@ -674,7 +679,7 @@ template void MyClass::assemble_on_one_cell (const typename DoFHandler::active_cell_iterator &cell) { ... } - + template void MyClass::assemble_system () { @@ -716,7 +721,7 @@ ...same for rhs... } * @endcode - + * The problem here is that several tasks, each running * MyClass::assemble_on_one_cell, could potentially try * to write into the object MyClass::system_matrix at @@ -737,7 +742,7 @@ mutex.release (); } * @endcode - + * By making the mutex a static variable, it exists only once globally * (i.e. once for all tasks that may be running in %parallel) and only one of * the tasks can enter the region protected by the acquire/release calls on @@ -774,7 +779,7 @@ * order is still as if we computed things sequentially. In other words, it * may happen that we add the contributions of cell 1 before those of cell * 0. That may seem harmless because addition is commutative and - * associative, but in fact it + * associative, but in fact it * is not if done in floating point arithmetic: $a+b+c \neq a+c+b$ -- take * for example $a=1, b=-1, c=10^{-20}$ (because $1+10^{-20}=1$ in floating * point arithmetic, using double precision). @@ -808,7 +813,7 @@ Vector cell_rhs; std::vector dof_indices; } - + template void MyClass::assemble_on_one_cell (const typename DoFHandler::active_cell_iterator &cell, PerTaskData &data) @@ -817,7 +822,7 @@ data.cell_matrix = 0; data.cell_rhs = 0; - + // assemble local contributions fe_values.reinit (cell); for (unsigned int i=0; i void MyClass::assemble_system () { PerTaskData per_task_data; ...initialize members of per_task_data to the correct sizes... - + WorkStream work_stream; work_stream.run (dof_handler.begin_active(), dof_handler.end(), @@ -853,7 +858,7 @@ &MyClass::copy_local_to_global, per_task_data); } - * @endcode + * @endcode * * The way this works is that we create a sample per_task_data * object that the work stream object will replicate once per task that runs @@ -885,7 +890,7 @@ * * The way to avoid this is to put the FEValues object into a second * structure that will hold scratch data, and initialize it in the - * constructor: + * constructor: * @code struct PerTaskData { FullMatrix cell_matrix; @@ -983,7 +988,7 @@ &MyClass::assemble_on_one_cell, &MyClass::copy_local_to_global, per_task_data); - // ...is the same as: + // ...is the same as: work_stream.run (dof_handler.begin_active(), dof_handler.end(), boost::bind(&MyClass::assemble_on_one_cell, *this, _1, _2, _3), @@ -1037,6 +1042,10 @@ * function with the cell and scratch and per task objects which will be filled * in at the positions indicated by _1, _2 and _3. * + * To see the WorkStream class used in practice on tasks like the ones + * outlined above, take a look at the step-32, step-35 or step-37 + * tutorial programs. + * * * @anchor MTThreads *

Thread-based parallelism

@@ -1044,8 +1053,8 @@ * Even though tasks are a higher-level way to describe things, there are * cases where they are poorly suited to a task. The main reason for not * using tasks even for computations that are independent are listed in the - * section on - * @ref MTHow "How scheduling tasks works and when task-based programming is not efficient" + * section on + * @ref MTHow "How scheduling tasks works and when task-based programming is not efficient" * above. Primarily, jobs that are not able to fully utilize the CPU are bad * fits for tasks. * @@ -1064,7 +1073,7 @@ data_out.build_patches (); std::ofstream output ("solution.vtk"); - + Threads::Thread thread = Threads::new_thread (&DataOut::write_vtk, data_out, output); @@ -1074,7 +1083,7 @@ typename FunctionMap::type(), solution, estimated_error_per_cell); - thread.join (); + thread.join (); * @endcode * * Here, Threads::new_thread starts the given function that writes to the -- 2.39.5