From 165496e1321ef7830824f607b85bf65cd3b2f55f Mon Sep 17 00:00:00 2001 From: Luca Heltai Date: Sat, 18 Apr 2009 11:02:27 +0000 Subject: [PATCH] Added desingularization of singular integral also for 2d git-svn-id: https://svn.dealii.org/trunk@18647 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/base/include/base/quadrature_lib.h | 41 +++++++++++++++++----- deal.II/base/source/quadrature_lib.cc | 15 +++++--- 2 files changed, 43 insertions(+), 13 deletions(-) diff --git a/deal.II/base/include/base/quadrature_lib.h b/deal.II/base/include/base/quadrature_lib.h index b109cd2de4..7bc51dce66 100644 --- a/deal.II/base/include/base/quadrature_lib.h +++ b/deal.II/base/include/base/quadrature_lib.h @@ -363,6 +363,10 @@ class QGaussLog : public Quadrature * singularity x0 and an arbitrary scaling factor in the * singularity. * + * You have to make sure that the point x0 is not one of the Gauss + * quadrature points of order $N$, otherwise an exception is thrown, + * since the quadrature weights cannot be computed correctly. + * * This quadrature formula is rather expensive, since it uses * internally two Gauss quadrature formulas of order n to integrate * the nonsingular part of the factor, and two GaussLog quadrature @@ -370,9 +374,25 @@ class QGaussLog : public Quadrature * [x0,1]. If the singularity is one of the extremes and the factor * alpha is 1, then this quadrature is the same as QGaussLog. * - * Notice again that only the function f(x) should be - * provided, i.e., $\int_0^1 f(x) ln(|x-x0|/alpha) dx = \sum_{i=0}^N - * w_i f(q_i)$. + * The last argument from the constructor allows you to use this + * quadrature rule in one of two possible ways: + * \f[ + * \int_0^1 g(x) dx = + * int_0^1 f(x) \ln\left(\frac{|x-x_0|}{\alpha}\right) dx + * = \sum_{i=0}^N w_i g(q_i) = \sum_{i=0}^N \bar{w}_i f(q_i) + * \f] + * + * Which one of the two sets of weights is provided, can be selected + * by the @p factor_out_singular_weight parameter. If it is false (the + * default), then the $\bar{w}_i$ weigths are computed, and you should + * provide only the smooth function $f(x)$, since the singularity is + * included inside the quadrature. If the parameter is set to true, + * then the singularity is factored out of the quadrature formula, and + * you should provide a function $g(x)$, which should at least be + * similar to $\ln(|x-x_0|/\alpha)$. + * + * Notice that this quadrature rule is worthless if you try to use it + * for regular functions once you factored out the singularity. * * The weights and functions have been tabulated up to order 12. * @@ -380,13 +400,16 @@ class QGaussLog : public Quadrature template class QGaussLogR : public Quadrature { public: - /** The constructor takes three arguments arguments: the order of - * the gauss formula on each of the segments [0,x0] and [x0,1], - * the actual location of the singularity and the scale factor for - * the logarithmic function. */ + /** The constructor takes four arguments: the order of the gauss + * formula on each of the segments [0,x0] and [x0,1], the actual + * location of the singularity, the scale factor inside the + * logarithmic function and a flag that decides wether the + * singularity is left inside the quadrature formula or it is + * factored out, to be included in the integrand. */ QGaussLogR(const unsigned int n, const Point x0 = Point(), - const double alpha = 1); + const double alpha = 1, + const bool factor_out_singular_weight=false); protected: /** This is the length of interval (0,origin), or 1 if either of @@ -498,7 +521,7 @@ template <> QSimpson<1>::QSimpson (); template <> QMilne<1>::QMilne (); template <> QWeddle<1>::QWeddle (); template <> QGaussLog<1>::QGaussLog (const unsigned int n, const bool revert); -template <> QGaussLogR<1>::QGaussLogR (const unsigned int n, const Point<1> x0, const double alpha); +template <> QGaussLogR<1>::QGaussLogR (const unsigned int n, const Point<1> x0, const double alpha, const bool flag); template <> QGaussOneOverR<2>::QGaussOneOverR (const unsigned int n, const unsigned int index, const bool flag); diff --git a/deal.II/base/source/quadrature_lib.cc b/deal.II/base/source/quadrature_lib.cc index 973ba0d457..a92ff3ec79 100644 --- a/deal.II/base/source/quadrature_lib.cc +++ b/deal.II/base/source/quadrature_lib.cc @@ -929,7 +929,8 @@ QGaussLog<1>::set_quadrature_weights(const unsigned int n) const template<> QGaussLogR<1>::QGaussLogR(const unsigned int n, const Point<1> origin, - const double alpha) : + const double alpha, + const bool factor_out_singularity) : Quadrature<1>( ( (origin[0] == 0) || (origin[0] == 1) ) ? (alpha == 1 ? n : 2*n ) : 4*n ), fraction( ( (origin[0] == 0) || (origin[0] == 1.) ) ? 1. : origin[0] ) @@ -968,19 +969,25 @@ QGaussLogR<1>::QGaussLogR(const unsigned int n, // We need to scale with -log|fraction*alpha| if( (alpha != 1) || (fraction != 1) ) { this->quadrature_points[j] = quad.point(i)*fraction; - this->weights[j] = -log(alpha/fraction)*quad.weight(i)*fraction; + this->weights[j] = -std::log(alpha/fraction)*quad.weight(i)*fraction; } // In case we need the second quadrature as well, do it now. if(fraction != 1) { this->quadrature_points[i+n] = quad2.point(i)*(1-fraction)+Point<1>(fraction); - this->weights[i+n] = quad2.weight(i)*(1-fraction); + this->weights[i+n] = quad2.weight(i)*(1-fraction); // We need to scale with -log|fraction*alpha| this->quadrature_points[j+n] = quad.point(i)*(1-fraction)+Point<1>(fraction); - this->weights[j+n] = -log(alpha/(1-fraction))*quad.weight(i)*(1-fraction); + this->weights[j+n] = -std::log(alpha/(1-fraction))*quad.weight(i)*(1-fraction); } } + if(factor_out_singularity == true) + for(unsigned int i=0; iquadrature_points[i] != origin, + ExcMessage("The singularity cannot be on a Gauss point of the same order!") ); + this->weights[i] /= std::log(std::abs( (this->quadrature_points[i]-origin)[0] )/alpha ); + } } -- 2.39.5