From 21ad3dc94c84e1ce58e01a65ecbe2d4c7d6ef1e6 Mon Sep 17 00:00:00 2001 From: "(no author)" <(no author)@0785d39b-7218-0410-832d-ea1e28bc413d> Date: Tue, 19 Dec 2000 16:24:22 +0000 Subject: [PATCH] This commit was manufactured by cvs2svn to create branch 'Branch-3-1'. git-svn-id: https://svn.dealii.org/branches/Branch-3-1@3580 0785d39b-7218-0410-832d-ea1e28bc413d --- CVSROOT/checkoutlist | 13 - CVSROOT/commitinfo | 15 - CVSROOT/cvswrappers | 22 - CVSROOT/editinfo | 21 - CVSROOT/loginfo | 35 - CVSROOT/modules | 27 - CVSROOT/notify | 12 - CVSROOT/rcsinfo | 13 - CVSROOT/taginfo | 20 - deal.II/base/Attic/doc/Makefile | 27 - deal.II/base/Attic/doc/cvslog/.cvsignore | 1 - deal.II/base/Attic/doc/doc.kdoc/.cvsignore | 2 - .../base/Attic/doc/doc.kdoc/base/.cvsignore | 1 - deal.II/deal.II/Attic/examples/Makefile | 31 - deal.II/deal.II/Attic/examples/README | 11 - .../Attic/examples/convergence/.cvsignore | 4 - .../Attic/examples/convergence/Makefile | 169 - .../Attic/examples/convergence/convergence.cc | 548 - .../Attic/examples/convergence/make_ps | 52 - deal.II/deal.II/Attic/examples/dof/.cvsignore | 5 - deal.II/deal.II/Attic/examples/dof/Makefile | 172 - .../deal.II/Attic/examples/dof/dof_test.cc | 451 - .../deal.II/Attic/examples/dof/dof_test.prm | 4 - deal.II/deal.II/Attic/examples/dof/make_ps | 122 - .../Attic/examples/dof/results/.cvsignore | 1 - .../examples/error-estimation/.cvsignore | 4 - .../Attic/examples/error-estimation/Makefile | 172 - .../examples/error-estimation/ee.gauss.prm | 8 - .../examples/error-estimation/ee.kink.prm | 8 - .../examples/error-estimation/ee.singular.prm | 8 - .../error-estimation/error-estimation.cc | 755 - .../Attic/examples/error-estimation/make_ps | 94 - .../examples/error-estimation/strip_comments | 1 - .../deal.II/Attic/examples/grid/.cvsignore | 4 - deal.II/deal.II/Attic/examples/grid/Makefile | 178 - .../deal.II/Attic/examples/grid/grid_test.cc | 329 - deal.II/deal.II/Attic/examples/grid/make_ps | 43 - .../Attic/examples/grid/results/.cvsignore | 1 - .../Attic/examples/multigrid/.cvsignore | 4 - .../deal.II/Attic/examples/multigrid/Makefile | 169 - .../deal.II/Attic/examples/multigrid/make_ps | 52 - .../Attic/examples/multigrid/multigrid.cc | 515 - .../nonlinear/fixed-point-iteration/Makefile | 133 - .../fixed-point-iteration/nonlinear.cc | 253 - .../deal.II/Attic/examples/poisson/.cvsignore | 6 - .../deal.II/Attic/examples/poisson/Makefile | 134 - .../Attic/examples/poisson/equation.cc | 86 - .../deal.II/Attic/examples/poisson/poisson.cc | 29 - .../deal.II/Attic/examples/poisson/poisson.h | 101 - .../Attic/examples/poisson/poisson.prm | 5 - .../deal.II/Attic/examples/poisson/problem.cc | 622 - .../Attic/examples/poisson/results/.cvsignore | 2 - .../Attic/examples/poisson/results/make_ps | 38 - .../Attic/examples/step-by-step/Makefile | 36 - .../examples/step-by-step/step-1/.cvsignore | 2 - .../examples/step-by-step/step-1/Makefile | 167 - .../examples/step-by-step/step-1/step-1.cc | 228 - .../examples/step-by-step/step-2/.cvsignore | 2 - .../examples/step-by-step/step-2/Makefile | 167 - .../examples/step-by-step/step-2/step-2.cc | 361 - .../examples/step-by-step/step-3/.cvsignore | 2 - .../examples/step-by-step/step-3/Makefile | 167 - .../examples/step-by-step/step-3/step-3.cc | 829 - .../examples/step-by-step/step-4/.cvsignore | 2 - .../examples/step-by-step/step-4/Makefile | 169 - .../examples/step-by-step/step-4/step-4.cc | 607 - .../examples/step-by-step/step-5/.cvsignore | 2 - .../examples/step-by-step/step-5/Makefile | 167 - .../step-by-step/step-5/circle-grid.inp | 46 - .../examples/step-by-step/step-5/step-5.cc | 940 - .../examples/step-by-step/step-6/.cvsignore | 2 - .../examples/step-by-step/step-6/Makefile | 167 - .../examples/step-by-step/step-6/step-6.cc | 1035 - .../examples/step-by-step/step-7/.cvsignore | 2 - .../examples/step-by-step/step-7/Makefile | 167 - .../examples/step-by-step/step-7/step-7.cc | 1242 - .../examples/step-by-step/step-8/.cvsignore | 2 - .../examples/step-by-step/step-8/Makefile | 167 - .../examples/step-by-step/step-8/step-8.cc | 1077 - deal.II/lac/Attic/doc/Makefile | 27 - deal.II/lac/Attic/doc/cvslog/.cvsignore | 1 - deal.II/lac/Attic/doc/doc.kdoc/.cvsignore | 2 - tests/.cvsignore | 1 - tests/Makefile.in | 39 - tests/README | 24 - tests/base/.cvsignore | 5 - tests/base/Makefile.in | 208 - tests/base/logtest.cc | 37 - tests/base/logtest.checked | 7 - tests/base/quadrature_test.cc | 76 - tests/base/quadrature_test.checked | 12 - tests/base/reference.cc | 84 - tests/base/reference.checked | 25 - tests/base/tensor.cc | 74 - tests/base/tensor.checked | 13 - tests/base/timer.cc | 77 - tests/base/timer.checked | 5 - tests/big-tests/.cvsignore | 1 - tests/big-tests/Makefile.in | 43 - tests/big-tests/convergence/.cvsignore | 6 - tests/big-tests/convergence/Makefile | 165 - tests/big-tests/convergence/convergence.cc | 548 - tests/big-tests/convergence/make_ps | 52 - tests/big-tests/dof/.cvsignore | 5 - tests/big-tests/dof/Makefile | 168 - tests/big-tests/dof/dof_test.cc | 451 - tests/big-tests/dof/dof_test.prm | 4 - tests/big-tests/dof/make_ps | 122 - tests/big-tests/dof/results/.cvsignore | 1 - tests/big-tests/error-estimation/.cvsignore | 4 - tests/big-tests/error-estimation/Makefile | 168 - tests/big-tests/error-estimation/ee.gauss.prm | 8 - tests/big-tests/error-estimation/ee.kink.prm | 8 - .../error-estimation/ee.singular.prm | 8 - .../error-estimation/error-estimation.cc | 760 - tests/big-tests/error-estimation/make_ps | 94 - .../big-tests/error-estimation/strip_comments | 1 - tests/big-tests/grid/.cvsignore | 4 - tests/big-tests/grid/Makefile | 175 - tests/big-tests/grid/grid_test.cc | 329 - tests/big-tests/grid/make_ps | 43 - tests/big-tests/grid/results/.cvsignore | 1 - tests/big-tests/multigrid/.cvsignore | 4 - tests/big-tests/multigrid/Makefile | 165 - tests/big-tests/multigrid/make_ps | 52 - tests/big-tests/multigrid/multigrid.cc | 515 - .../fixed-point-iteration/.cvsignore | 3 - .../nonlinear/fixed-point-iteration/Makefile | 138 - .../fixed-point-iteration/nonlinear.cc | 259 - tests/big-tests/poisson/.cvsignore | 6 - tests/big-tests/poisson/Makefile | 136 - tests/big-tests/poisson/equation.cc | 86 - tests/big-tests/poisson/poisson.cc | 29 - tests/big-tests/poisson/poisson.h | 101 - tests/big-tests/poisson/poisson.prm | 5 - tests/big-tests/poisson/problem.cc | 622 - tests/big-tests/poisson/results/.cvsignore | 2 - tests/big-tests/poisson/results/make_ps | 38 - tests/configure | 743 - tests/configure.in | 26 - tests/deal.II/.cvsignore | 5 - tests/deal.II/Conventions | 24 - tests/deal.II/Makefile.in | 383 - tests/deal.II/block_matrices.cc | 415 - tests/deal.II/block_matrices.checked | 338 - tests/deal.II/constraints.cc | 278 - tests/deal.II/constraints.checked | 6086 - tests/deal.II/data_out.cc | 264 - tests/deal.II/data_out.checked | 45372 ------- tests/deal.II/dof_test.cc | 363 - tests/deal.II/dof_test.checked | 101139 --------------- tests/deal.II/fe_tables.cc | 171 - tests/deal.II/fe_tables.checked | 408 - tests/deal.II/gradients.cc | 109 - tests/deal.II/gradients.checked | 6 - tests/deal.II/grid_test.cc | 280 - tests/deal.II/grid_test.checked | 3083 - tests/deal.II/helmholtz.h | 26 - tests/deal.II/helmholtz1.th | 70 - tests/deal.II/helmholtz1mg.th | 66 - tests/deal.II/intergrid_map.cc | 113 - tests/deal.II/intergrid_map.checked | 2157 - tests/deal.II/mg.cc | 187 - tests/deal.II/mg.checked | 37 - tests/deal.II/mglocal.cc | 219 - tests/deal.II/mglocal.checked | 25 - tests/deal.II/second_derivatives.cc | 82 - tests/deal.II/second_derivatives.checked | 84 - tests/deal.II/tmp/.cvsignore | 1 - tests/deal.II/wave-test-3.cc | 7867 -- tests/deal.II/wave-test-3.checked | 3313 - tests/deal.II/wave-test-3.prm | 81 - tests/fe/.cvsignore | 5 - tests/fe/Makefile.in | 146 - tests/fe/Q1.check | 462 - tests/fe/Q2.check | 462 - tests/fe/Q3.check | 462 - tests/fe/Q4.check | 462 - tests/fe/Transform-Q1.check | 462 - tests/fe/show_shapes.cc | 67 - tests/fe/show_transfer.cc | 108 - tests/fe/show_transform.cc | 73 - tests/fe/transfer.check | 402 - tests/lac/.cvsignore | 6 - tests/lac/Makefile.in | 261 - tests/lac/benchmark.cc | 66 - tests/lac/block_matrices.cc | 230 - tests/lac/block_matrices.checked | 61 - tests/lac/block_vector.cc | 155 - tests/lac/block_vector.checked | 59 - tests/lac/full_matrix.cc | 155 - tests/lac/full_matrix.checked | 86 - tests/lac/mg.cc | 237 - tests/lac/mg.checked | 19 - tests/lac/mgbase.cc | 152 - tests/lac/mgbase.checked | 32 - tests/lac/quickmatrix.h | 89 - tests/lac/solver.cc | 123 - tests/lac/solver.checked | 93 - tests/lac/testmatrix.cc | 253 - tests/lac/testmatrix.h | 105 - tests/lac/vector-vector.cc | 169 - tests/lac/vector-vector.checked | 91 - 203 files changed, 198709 deletions(-) delete mode 100644 CVSROOT/checkoutlist delete mode 100644 CVSROOT/commitinfo delete mode 100644 CVSROOT/cvswrappers delete mode 100644 CVSROOT/editinfo delete mode 100644 CVSROOT/loginfo delete mode 100644 CVSROOT/modules delete mode 100644 CVSROOT/notify delete mode 100644 CVSROOT/rcsinfo delete mode 100644 CVSROOT/taginfo delete mode 100644 deal.II/base/Attic/doc/Makefile delete mode 100644 deal.II/base/Attic/doc/cvslog/.cvsignore delete mode 100644 deal.II/base/Attic/doc/doc.kdoc/.cvsignore delete mode 100644 deal.II/base/Attic/doc/doc.kdoc/base/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/README delete mode 100644 deal.II/deal.II/Attic/examples/convergence/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/convergence/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/convergence/convergence.cc delete mode 100644 deal.II/deal.II/Attic/examples/convergence/make_ps delete mode 100644 deal.II/deal.II/Attic/examples/dof/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/dof/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/dof/dof_test.cc delete mode 100644 deal.II/deal.II/Attic/examples/dof/dof_test.prm delete mode 100644 deal.II/deal.II/Attic/examples/dof/make_ps delete mode 100644 deal.II/deal.II/Attic/examples/dof/results/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/error-estimation/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/error-estimation/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/error-estimation/ee.gauss.prm delete mode 100644 deal.II/deal.II/Attic/examples/error-estimation/ee.kink.prm delete mode 100644 deal.II/deal.II/Attic/examples/error-estimation/ee.singular.prm delete mode 100644 deal.II/deal.II/Attic/examples/error-estimation/error-estimation.cc delete mode 100644 deal.II/deal.II/Attic/examples/error-estimation/make_ps delete mode 100755 deal.II/deal.II/Attic/examples/error-estimation/strip_comments delete mode 100644 deal.II/deal.II/Attic/examples/grid/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/grid/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/grid/grid_test.cc delete mode 100644 deal.II/deal.II/Attic/examples/grid/make_ps delete mode 100644 deal.II/deal.II/Attic/examples/grid/results/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/multigrid/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/multigrid/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/multigrid/make_ps delete mode 100644 deal.II/deal.II/Attic/examples/multigrid/multigrid.cc delete mode 100644 deal.II/deal.II/Attic/examples/nonlinear/fixed-point-iteration/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/nonlinear/fixed-point-iteration/nonlinear.cc delete mode 100644 deal.II/deal.II/Attic/examples/poisson/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/poisson/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/poisson/equation.cc delete mode 100644 deal.II/deal.II/Attic/examples/poisson/poisson.cc delete mode 100644 deal.II/deal.II/Attic/examples/poisson/poisson.h delete mode 100644 deal.II/deal.II/Attic/examples/poisson/poisson.prm delete mode 100644 deal.II/deal.II/Attic/examples/poisson/problem.cc delete mode 100644 deal.II/deal.II/Attic/examples/poisson/results/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/poisson/results/make_ps delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-1/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-1/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-1/step-1.cc delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-2/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-2/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-2/step-2.cc delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-3/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-3/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-3/step-3.cc delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-4/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-4/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-4/step-4.cc delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-5/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-5/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-5/circle-grid.inp delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-5/step-5.cc delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-6/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-6/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-6/step-6.cc delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-7/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-7/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-7/step-7.cc delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-8/.cvsignore delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-8/Makefile delete mode 100644 deal.II/deal.II/Attic/examples/step-by-step/step-8/step-8.cc delete mode 100644 deal.II/lac/Attic/doc/Makefile delete mode 100644 deal.II/lac/Attic/doc/cvslog/.cvsignore delete mode 100644 deal.II/lac/Attic/doc/doc.kdoc/.cvsignore delete mode 100644 tests/.cvsignore delete mode 100644 tests/Makefile.in delete mode 100644 tests/README delete mode 100644 tests/base/.cvsignore delete mode 100644 tests/base/Makefile.in delete mode 100644 tests/base/logtest.cc delete mode 100644 tests/base/logtest.checked delete mode 100644 tests/base/quadrature_test.cc delete mode 100644 tests/base/quadrature_test.checked delete mode 100644 tests/base/reference.cc delete mode 100644 tests/base/reference.checked delete mode 100644 tests/base/tensor.cc delete mode 100644 tests/base/tensor.checked delete mode 100644 tests/base/timer.cc delete mode 100644 tests/base/timer.checked delete mode 100644 tests/big-tests/.cvsignore delete mode 100644 tests/big-tests/Makefile.in delete mode 100644 tests/big-tests/convergence/.cvsignore delete mode 100644 tests/big-tests/convergence/Makefile delete mode 100644 tests/big-tests/convergence/convergence.cc delete mode 100644 tests/big-tests/convergence/make_ps delete mode 100644 tests/big-tests/dof/.cvsignore delete mode 100644 tests/big-tests/dof/Makefile delete mode 100644 tests/big-tests/dof/dof_test.cc delete mode 100644 tests/big-tests/dof/dof_test.prm delete mode 100644 tests/big-tests/dof/make_ps delete mode 100644 tests/big-tests/dof/results/.cvsignore delete mode 100644 tests/big-tests/error-estimation/.cvsignore delete mode 100644 tests/big-tests/error-estimation/Makefile delete mode 100644 tests/big-tests/error-estimation/ee.gauss.prm delete mode 100644 tests/big-tests/error-estimation/ee.kink.prm delete mode 100644 tests/big-tests/error-estimation/ee.singular.prm delete mode 100644 tests/big-tests/error-estimation/error-estimation.cc delete mode 100644 tests/big-tests/error-estimation/make_ps delete mode 100755 tests/big-tests/error-estimation/strip_comments delete mode 100644 tests/big-tests/grid/.cvsignore delete mode 100644 tests/big-tests/grid/Makefile delete mode 100644 tests/big-tests/grid/grid_test.cc delete mode 100644 tests/big-tests/grid/make_ps delete mode 100644 tests/big-tests/grid/results/.cvsignore delete mode 100644 tests/big-tests/multigrid/.cvsignore delete mode 100644 tests/big-tests/multigrid/Makefile delete mode 100644 tests/big-tests/multigrid/make_ps delete mode 100644 tests/big-tests/multigrid/multigrid.cc delete mode 100644 tests/big-tests/nonlinear/fixed-point-iteration/.cvsignore delete mode 100644 tests/big-tests/nonlinear/fixed-point-iteration/Makefile delete mode 100644 tests/big-tests/nonlinear/fixed-point-iteration/nonlinear.cc delete mode 100644 tests/big-tests/poisson/.cvsignore delete mode 100644 tests/big-tests/poisson/Makefile delete mode 100644 tests/big-tests/poisson/equation.cc delete mode 100644 tests/big-tests/poisson/poisson.cc delete mode 100644 tests/big-tests/poisson/poisson.h delete mode 100644 tests/big-tests/poisson/poisson.prm delete mode 100644 tests/big-tests/poisson/problem.cc delete mode 100644 tests/big-tests/poisson/results/.cvsignore delete mode 100644 tests/big-tests/poisson/results/make_ps delete mode 100755 tests/configure delete mode 100644 tests/configure.in delete mode 100644 tests/deal.II/.cvsignore delete mode 100644 tests/deal.II/Conventions delete mode 100644 tests/deal.II/Makefile.in delete mode 100644 tests/deal.II/block_matrices.cc delete mode 100644 tests/deal.II/block_matrices.checked delete mode 100644 tests/deal.II/constraints.cc delete mode 100644 tests/deal.II/constraints.checked delete mode 100644 tests/deal.II/data_out.cc delete mode 100644 tests/deal.II/data_out.checked delete mode 100644 tests/deal.II/dof_test.cc delete mode 100644 tests/deal.II/dof_test.checked delete mode 100644 tests/deal.II/fe_tables.cc delete mode 100644 tests/deal.II/fe_tables.checked delete mode 100644 tests/deal.II/gradients.cc delete mode 100644 tests/deal.II/gradients.checked delete mode 100644 tests/deal.II/grid_test.cc delete mode 100644 tests/deal.II/grid_test.checked delete mode 100644 tests/deal.II/helmholtz.h delete mode 100644 tests/deal.II/helmholtz1.th delete mode 100644 tests/deal.II/helmholtz1mg.th delete mode 100644 tests/deal.II/intergrid_map.cc delete mode 100644 tests/deal.II/intergrid_map.checked delete mode 100644 tests/deal.II/mg.cc delete mode 100644 tests/deal.II/mg.checked delete mode 100644 tests/deal.II/mglocal.cc delete mode 100644 tests/deal.II/mglocal.checked delete mode 100644 tests/deal.II/second_derivatives.cc delete mode 100644 tests/deal.II/second_derivatives.checked delete mode 100644 tests/deal.II/tmp/.cvsignore delete mode 100644 tests/deal.II/wave-test-3.cc delete mode 100644 tests/deal.II/wave-test-3.checked delete mode 100644 tests/deal.II/wave-test-3.prm delete mode 100644 tests/fe/.cvsignore delete mode 100644 tests/fe/Makefile.in delete mode 100644 tests/fe/Q1.check delete mode 100644 tests/fe/Q2.check delete mode 100644 tests/fe/Q3.check delete mode 100644 tests/fe/Q4.check delete mode 100644 tests/fe/Transform-Q1.check delete mode 100644 tests/fe/show_shapes.cc delete mode 100644 tests/fe/show_transfer.cc delete mode 100644 tests/fe/show_transform.cc delete mode 100644 tests/fe/transfer.check delete mode 100644 tests/lac/.cvsignore delete mode 100644 tests/lac/Makefile.in delete mode 100644 tests/lac/benchmark.cc delete mode 100644 tests/lac/block_matrices.cc delete mode 100644 tests/lac/block_matrices.checked delete mode 100644 tests/lac/block_vector.cc delete mode 100644 tests/lac/block_vector.checked delete mode 100644 tests/lac/full_matrix.cc delete mode 100644 tests/lac/full_matrix.checked delete mode 100644 tests/lac/mg.cc delete mode 100644 tests/lac/mg.checked delete mode 100644 tests/lac/mgbase.cc delete mode 100644 tests/lac/mgbase.checked delete mode 100644 tests/lac/quickmatrix.h delete mode 100644 tests/lac/solver.cc delete mode 100644 tests/lac/solver.checked delete mode 100644 tests/lac/testmatrix.cc delete mode 100644 tests/lac/testmatrix.h delete mode 100644 tests/lac/vector-vector.cc delete mode 100644 tests/lac/vector-vector.checked diff --git a/CVSROOT/checkoutlist b/CVSROOT/checkoutlist deleted file mode 100644 index b04b3501f5..0000000000 --- a/CVSROOT/checkoutlist +++ /dev/null @@ -1,13 +0,0 @@ -# The "checkoutlist" file is used to support additional version controlled -# administrative files in $CVSROOT/CVSROOT, such as template files. -# -# The first entry on a line is a filename which will be checked out from -# the corresponding RCS file in the $CVSROOT/CVSROOT directory. -# The remainder of the line is an error message to use if the file cannot -# be checked out. -# -# File format: -# -# [] -# -# comment lines begin with '#' diff --git a/CVSROOT/commitinfo b/CVSROOT/commitinfo deleted file mode 100644 index b19e7b7a63..0000000000 --- a/CVSROOT/commitinfo +++ /dev/null @@ -1,15 +0,0 @@ -# The "commitinfo" file is used to control pre-commit checks. -# The filter on the right is invoked with the repository and a list -# of files to check. A non-zero exit of the filter program will -# cause the commit to be aborted. -# -# The first entry on a line is a regular expression which is tested -# against the directory that the change is being committed to, relative -# to the $CVSROOT. For the first match that is found, then the remainder -# of the line is the name of the filter to run. -# -# If the repository name does not match any of the regular expressions in this -# file, the "DEFAULT" line is used, if it is specified. -# -# If the name "ALL" appears as a regular expression it is always used -# in addition to the first matching regex or "DEFAULT". diff --git a/CVSROOT/cvswrappers b/CVSROOT/cvswrappers deleted file mode 100644 index 5047bf1c5a..0000000000 --- a/CVSROOT/cvswrappers +++ /dev/null @@ -1,22 +0,0 @@ -# This file describes wrappers and other binary files to CVS. -# -# Wrappers are the concept where directories of files are to be -# treated as a single file. The intended use is to wrap up a wrapper -# into a single tar such that the tar archive can be treated as a -# single binary file in CVS. -# -# To solve the problem effectively, it was also necessary to be able to -# prevent rcsmerge from merging these files. -# -# Format of wrapper file ($CVSROOT/CVSROOT/cvswrappers or .cvswrappers) -# -# wildcard [option value][option value]... -# -# where option is one of -# -f from cvs filter value: path to filter -# -t to cvs filter value: path to filter -# -m update methodology value: MERGE or COPY -# -# and value is a single-quote delimited value. -# -# For example: diff --git a/CVSROOT/editinfo b/CVSROOT/editinfo deleted file mode 100644 index d78886c152..0000000000 --- a/CVSROOT/editinfo +++ /dev/null @@ -1,21 +0,0 @@ -# The "editinfo" file is used to allow verification of logging -# information. It works best when a template (as specified in the -# rcsinfo file) is provided for the logging procedure. Given a -# template with locations for, a bug-id number, a list of people who -# reviewed the code before it can be checked in, and an external -# process to catalog the differences that were code reviewed, the -# following test can be applied to the code: -# -# Making sure that the entered bug-id number is correct. -# Validating that the code that was reviewed is indeed the code being -# checked in (using the bug-id number or a seperate review -# number to identify this particular code set.). -# -# If any of the above test failed, then the commit would be aborted. -# -# Actions such as mailing a copy of the report to each reviewer are -# better handled by an entry in the loginfo file. -# -# One thing that should be noted is the the ALL keyword is not -# supported. There can be only one entry that matches a given -# repository. diff --git a/CVSROOT/loginfo b/CVSROOT/loginfo deleted file mode 100644 index 52d484cff3..0000000000 --- a/CVSROOT/loginfo +++ /dev/null @@ -1,35 +0,0 @@ -# The "loginfo" file is used to control where "cvs commit" log information is -# sent. The first entry on a line is a regular expression which is tested -# against the directory that the change is being made to, relative to the -# $CVSROOT. For the first match that is found, the remainder of the line is a -# filter program that should expect log information on its standard input -# -# If the repository name does not match any of the regular expressions in the -# first field of this file, the "DEFAULT" line is used, if it is specified. -# -# If the name "ALL" appears as a regular expression it is always used -# in addition to the first matching regex or "DEFAULT". -# -# The filter program may use one and only one "%s" modifier (ala printf). If -# such a "%s" is specified in the filter program, a brief title is included -# (as one argument, enclosed in single quotes) showing the relative directory -# name and listing the modified file names. -# -# -DEFAULT (echo $USER %s; date; cat) | /home/people/cvs/script/log.pl | cat - $CVSROOT/LOG/default-`date '+%Y'`.html > /tmp/Tdefault; mv /tmp/Tdefault $CVSROOT/LOG/default-`date '+%Y'`.html; chmod a+r $CVSROOT/LOG/default-`date '+%Y'`.html -# -# The various DEAL libraries -# -^deal.II/base.* (echo $USER %s; date; cat) | /home/people/cvs/script/log.pl | cat - $CVSROOT/LOG/base-`date '+%Y'`.html > /tmp/Tbase; mv /tmp/Tbase $CVSROOT/LOG/base-`date '+%Y'`.html; chmod a+r $CVSROOT/LOG/base-`date '+%Y'`.html -# -^reports.* (echo $USER %s; date; cat) | /home/people/cvs/script/log.pl | cat - $CVSROOT/LOG/reports-`date '+%Y'`.html > /tmp/Treports; mv /tmp/Treports $CVSROOT/LOG/reports-`date '+%Y'`.html; chmod a+r $CVSROOT/LOG/reports-`date '+%Y'`.html -# -^tests.* (echo $USER %s; date; cat) | /home/people/cvs/script/log.pl | cat - $CVSROOT/LOG/tests-`date '+%Y'`.html > /tmp/Ttests; mv /tmp/Ttests $CVSROOT/LOG/tests-`date '+%Y'`.html; chmod a+r $CVSROOT/LOG/tests-`date '+%Y'`.html -# -^deal.II/lac.* (echo $USER %s; date; cat) | /home/people/cvs/script/log.pl | cat - $CVSROOT/LOG/lac-`date '+%Y'`.html > /tmp/Tlac; mv /tmp/Tlac $CVSROOT/LOG/lac-`date '+%Y'`.html; chmod a+r $CVSROOT/LOG/lac-`date '+%Y'`.html -# -^deal.II/deal.* (echo $USER %s; date; cat) | /home/people/cvs/script/log.pl | cat - $CVSROOT/LOG/deal-`date '+%Y'`.html > /tmp/Tdeal; mv /tmp/Tdeal $CVSROOT/LOG/deal-`date '+%Y'`.html; chmod a+r $CVSROOT/LOG/deal-`date '+%Y'`.html -# -^deal.II/doc.* (echo $USER %s; date; cat) | /home/people/cvs/script/log.pl | cat - $CVSROOT/LOG/doc-`date '+%Y'`.html > /tmp/Tdoc; mv /tmp/Tdoc $CVSROOT/LOG/doc-`date '+%Y'`.html; chmod a+r $CVSROOT/LOG/doc-`date '+%Y'`.html - - diff --git a/CVSROOT/modules b/CVSROOT/modules deleted file mode 100644 index 6998127495..0000000000 --- a/CVSROOT/modules +++ /dev/null @@ -1,27 +0,0 @@ -# Three different line formats are valid: -# key -a aliases... -# key [options] directory -# key [options] directory files... -# -# Where "options" are composed of: -# -i prog Run "prog" on "cvs commit" from top-level of module. -# -o prog Run "prog" on "cvs checkout" of module. -# -e prog Run "prog" on "cvs export" of module. -# -t prog Run "prog" on "cvs rtag" of module. -# -u prog Run "prog" on "cvs update" of module. -# -d dir Place module in directory "dir" instead of module name. -# -l Top-level directory only -- do not recurse. -# -# NOTE: If you change any of the "Run" options above, you'll have to -# release and re-checkout any working directories of these modules. -# -# And "directory" is a path to a directory relative to $CVSROOT. -# -# The "-a" option specifies an alias. An alias is interpreted as if -# everything on the right of the "-a" had been typed on the command line. -# -# You can encode a module within a module by using the special '&' -# character to interpose another module into the current module. This -# can be useful for creating a module that consists of many directories -# spread out over the entire source repository. -wholedeal &deal.II &tests diff --git a/CVSROOT/notify b/CVSROOT/notify deleted file mode 100644 index 34f0bc2888..0000000000 --- a/CVSROOT/notify +++ /dev/null @@ -1,12 +0,0 @@ -# The "notify" file controls where notifications from watches set by -# "cvs watch add" or "cvs edit" are sent. The first entry on a line is -# a regular expression which is tested against the directory that the -# change is being made to, relative to the $CVSROOT. If it matches, -# then the remainder of the line is a filter program that should contain -# one occurrence of %s for the user to notify, and information on its -# standard input. -# -# "ALL" or "DEFAULT" can be used in place of the regular expression. -# -# For example: -#ALL mail %s -s "CVS notification" diff --git a/CVSROOT/rcsinfo b/CVSROOT/rcsinfo deleted file mode 100644 index 49e59f4d0d..0000000000 --- a/CVSROOT/rcsinfo +++ /dev/null @@ -1,13 +0,0 @@ -# The "rcsinfo" file is used to control templates with which the editor -# is invoked on commit and import. -# -# The first entry on a line is a regular expression which is tested -# against the directory that the change is being made to, relative to the -# $CVSROOT. For the first match that is found, then the remainder of the -# line is the name of the file that contains the template. -# -# If the repository name does not match any of the regular expressions in this -# file, the "DEFAULT" line is used, if it is specified. -# -# If the name "ALL" appears as a regular expression it is always used -# in addition to the first matching regex or "DEFAULT". diff --git a/CVSROOT/taginfo b/CVSROOT/taginfo deleted file mode 100644 index 274a46dd5b..0000000000 --- a/CVSROOT/taginfo +++ /dev/null @@ -1,20 +0,0 @@ -# The "taginfo" file is used to control pre-tag checks. -# The filter on the right is invoked with the following arguments: -# -# $1 -- tagname -# $2 -- operation "add" for tag, "mov" for tag -F, and "del" for tag -d -# $3 -- repository -# $4-> file revision [file revision ...] -# -# A non-zero exit of the filter program will cause the tag to be aborted. -# -# The first entry on a line is a regular expression which is tested -# against the directory that the change is being committed to, relative -# to the $CVSROOT. For the first match that is found, then the remainder -# of the line is the name of the filter to run. -# -# If the repository name does not match any of the regular expressions in this -# file, the "DEFAULT" line is used, if it is specified. -# -# If the name "ALL" appears as a regular expression it is always used -# in addition to the first matching regex or "DEFAULT". diff --git a/deal.II/base/Attic/doc/Makefile b/deal.II/base/Attic/doc/Makefile deleted file mode 100644 index 36fbd4e8a7..0000000000 --- a/deal.II/base/Attic/doc/Makefile +++ /dev/null @@ -1,27 +0,0 @@ -# $Id$ - - -KDOCFLAGS = -I../../../deal.II/doc/kdoc ../../../deal.II/doc/kdoc/kdoc -a -p -kdoc.inc = $(wildcard ../include/base/*.h) - - - -doc-html: kdoc - - -# make kdoc doc; make sure that the *.kdoc files exist by -# using the dependancies and the following rules. -kdoc: $(kdoc.inc) - cd doc.kdoc ; perl $(KDOCFLAGS) -ubase -dbase \ - base $(kdoc.inc:..%=../..%) - -cvslog: - @cd .. ; ../deal.II/doc/cvslog/cvs2html -o doc/cvslog/base #-a -k - -clean: - rm -f doc.kdoc/base/* \ - cvslog/* \ - *~ - - -.PHONY: doc-html kdoc cvslog clean diff --git a/deal.II/base/Attic/doc/cvslog/.cvsignore b/deal.II/base/Attic/doc/cvslog/.cvsignore deleted file mode 100644 index 2d19fc766d..0000000000 --- a/deal.II/base/Attic/doc/cvslog/.cvsignore +++ /dev/null @@ -1 +0,0 @@ -*.html diff --git a/deal.II/base/Attic/doc/doc.kdoc/.cvsignore b/deal.II/base/Attic/doc/doc.kdoc/.cvsignore deleted file mode 100644 index fc2f83228f..0000000000 --- a/deal.II/base/Attic/doc/doc.kdoc/.cvsignore +++ /dev/null @@ -1,2 +0,0 @@ -*.kdoc -base diff --git a/deal.II/base/Attic/doc/doc.kdoc/base/.cvsignore b/deal.II/base/Attic/doc/doc.kdoc/base/.cvsignore deleted file mode 100644 index 2d19fc766d..0000000000 --- a/deal.II/base/Attic/doc/doc.kdoc/base/.cvsignore +++ /dev/null @@ -1 +0,0 @@ -*.html diff --git a/deal.II/deal.II/Attic/examples/Makefile b/deal.II/deal.II/Attic/examples/Makefile deleted file mode 100644 index 2be5604543..0000000000 --- a/deal.II/deal.II/Attic/examples/Makefile +++ /dev/null @@ -1,31 +0,0 @@ -# $Id$ -# Copyright W. Bangerth, University of Heidelberg, 1998 - - -# list the directories we want to visit -subdirs = grid/ dof/ poisson/ convergence/ error-estimation/ multigrid/ step-by-step/ - -# define lists of targets: for each directory we produce a target name -# for compilation, running and cleaning by appending the action to -# the directory name (replacing the slash by ".action") -compile = $(subdirs:/=.compile) -run = $(subdirs:/=.run) -clean = $(subdirs:/=.clean) - -# define global targets which are to be excuted in every subdirectory -compile: $(compile) -run : $(run) -# for cleaning up: do this also for the present directory -clean : $(clean) - -rm -f *~ - - -# define the action of the targets for the specific subdirectories -$(compile) : - cd $(@:.compile=) ; $(MAKE) - -$(run) : - cd $(@:.run=) ; $(MAKE) run - -$(clean) : - -cd $(@:.clean=) ; $(MAKE) clean diff --git a/deal.II/deal.II/Attic/examples/README b/deal.II/deal.II/Attic/examples/README deleted file mode 100644 index a4c518425b..0000000000 --- a/deal.II/deal.II/Attic/examples/README +++ /dev/null @@ -1,11 +0,0 @@ -The example applications in the subdirectories (apart from the -'step-by-step' directory) were written in the early stages of the -library and served more the task of verification than as proper -examples. For this reason, they are not very well documented and are -probably no good examples anyway. - -One, the multigrid example, does not even what its name may suggest. - -We excuse for the fact that they might not serve as good -examples. Better ones are planned and in parts written, but not yet -available at present. Sorry. diff --git a/deal.II/deal.II/Attic/examples/convergence/.cvsignore b/deal.II/deal.II/Attic/examples/convergence/.cvsignore deleted file mode 100644 index 61fca49931..0000000000 --- a/deal.II/deal.II/Attic/examples/convergence/.cvsignore +++ /dev/null @@ -1,4 +0,0 @@ -convergence -Makefile.dep -*.go -*.o diff --git a/deal.II/deal.II/Attic/examples/convergence/Makefile b/deal.II/deal.II/Attic/examples/convergence/Makefile deleted file mode 100644 index 3b00259d3f..0000000000 --- a/deal.II/deal.II/Attic/examples/convergence/Makefile +++ /dev/null @@ -1,169 +0,0 @@ -# $Id$ -# Copyright W. Bangerth, University of Heidelberg, 1998, 1999, 2000 - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = convergence - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# As third field, we need to give the path to the top-level deal.II -# directory. You need to adjust this to your needs. Since this path is -# probably the most often needed one in the Makefile internals, it is -# designated by a single-character variable, since that can be -# reference using $D only, i.e. without the parentheses that are -# required for most other parameters, as e.g. in $(target). -D = ../../.. - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(flags) -o $@ $^ - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - @./$(target) - gnuplot make_ps - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/deal.II/deal.II/Attic/examples/convergence/convergence.cc b/deal.II/deal.II/Attic/examples/convergence/convergence.cc deleted file mode 100644 index 38bffd824e..0000000000 --- a/deal.II/deal.II/Attic/examples/convergence/convergence.cc +++ /dev/null @@ -1,548 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include - - - - - -template -class PoissonEquation : public Equation { - public: - PoissonEquation (const Function &rhs) : - Equation(1), - right_hand_side (rhs) {}; - - virtual void assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (FullMatrix &cell_matrix, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - protected: - const Function &right_hand_side; -}; - - - - - - -template -class PoissonProblem : public ProblemBase { - public: - PoissonProblem (unsigned int order); - ~PoissonProblem (); - - void clear (); - void create_new (); - int run (unsigned int level); - void print_history (string filename) const; - - protected: - Triangulation *tria; - DoFHandler *dof; - - Function *rhs; - Function *boundary_values; - - vector l1_error, l2_error, linfty_error, h1_seminorm_error, h1_error; - vector n_dofs; - - unsigned int order; -}; - - - - - -/** - Right hand side constructed such that the exact solution is - $sin(2 pi x) + sin(2 pi y)$ - */ -template -class RHSPoly : public Function { - public: - /** - * Return the value of the function - * at the given point. - */ - virtual double value (const Point &p, - const unsigned int component) const; -}; - - - -template -class Solution : public Function { - public: - /** - * Return the value of the function - * at the given point. - */ - virtual double value (const Point &p, - const unsigned int component) const; - /** - * Return the gradient of the function - * at the given point. - */ - virtual Tensor<1,dim> gradient (const Point &p, - const unsigned int component) const; -}; - - - - -template <> -double RHSPoly<2>::value (const Point<2> &p, - const unsigned int) const { - const double x = p(0), - y = p(1); - const double pi= 3.1415926536; - return 4*pi*pi*(sin(2*pi*x)+sin(2*pi*y)); -}; - - - -template <> -double Solution<2>::value (const Point<2> &p, - const unsigned int) const { - const double x = p(0), - y = p(1); - const double pi= 3.1415926536; - return sin(2*pi*x)+sin(2*pi*y); -}; - - -template <> -Tensor<1,2> Solution<2>::gradient (const Point<2> &p, - const unsigned int) const { - const double x = p(0), - y = p(1); - const double pi= 3.1415926536; - return Point<2> (2*pi*cos(2*pi*x), - 2*pi*cos(2*pi*y)); -}; - - - - - -template <> -void PoissonEquation<2>::assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues<2> &fe_values, - const DoFHandler<2>::cell_iterator &) const { - for (unsigned int point=0; point -void PoissonEquation::assemble (FullMatrix &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, ExcPureVirtualFunctionCalled()); -}; - - - -template -void PoissonEquation::assemble (Vector &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, ExcPureVirtualFunctionCalled()); -}; - - - - - - - - - -template -PoissonProblem::PoissonProblem (unsigned int order) : - tria(0), dof(0), rhs(0), - boundary_values(0), order(order) {}; - - -template -PoissonProblem::~PoissonProblem () -{ - clear (); -}; - - - -template -void PoissonProblem::clear () { - if (dof != 0) { - delete dof; - dof = 0; - }; - - if (tria != 0) { - delete tria; - tria = 0; - }; - - - // make it known to the underlying - // ProblemBase that tria and dof - // are already deleted - set_tria_and_dof (tria, dof); - - if (rhs != 0) - { - delete rhs; - rhs = 0; - }; - - if (boundary_values != 0) - { - delete boundary_values; - boundary_values = 0; - }; - - ProblemBase::clear (); -}; - - - - -template -void PoissonProblem::create_new () { - clear (); - - tria = new Triangulation(); - dof = new DoFHandler (*tria); - set_tria_and_dof (tria, dof); -}; - - - - -template -int PoissonProblem::run (const unsigned int level) { - create_new (); - - cout << "Refinement level = " << level - << ", using elements of type <"; - switch (order) - { - case 0: - cout << "criss-cross"; - break; - default: - cout << "Lagrange-" << order; - break; - }; - cout << ">" << endl; - - cout << " Making grid... "; - GridGenerator::hyper_ball (*tria); - HyperBallBoundary boundary_description; - tria->set_boundary (0, boundary_description); - tria->begin_active()->set_refine_flag(); - (++(++(tria->begin_active())))->set_refine_flag(); - tria->execute_coarsening_and_refinement (); - tria->refine_global (level); - cout << tria->n_active_cells() << " active cells." << endl; - - rhs = new RHSPoly(); - boundary_values = new Solution (); - - - FiniteElement *fe; - PoissonEquation equation (*rhs); - Quadrature *quadrature; - Quadrature *boundary_quadrature; - switch (order) { - case 0: - fe = new FECrissCross(); - quadrature = new QCrissCross1(); - boundary_quadrature = new QGauss2(); - break; - case 1: - fe = new FEQ1(); - quadrature = new QGauss3(); - boundary_quadrature = new QGauss2(); - break; - case 2: - fe = new FEQ2(); - quadrature = new QGauss4(); - boundary_quadrature = new QGauss3(); - break; - case 3: - fe = new FEQ3(); - quadrature = new QGauss5(); - boundary_quadrature = new QGauss4(); - break; - case 4: - fe = new FEQ4(); - quadrature = new QGauss6(); - boundary_quadrature = new QGauss5(); - break; - default: - return 100000; - }; - - cout << " Distributing dofs... "; - dof->distribute_dofs (*fe); - cout << dof->n_dofs() << " degrees of freedom." << endl; - n_dofs.push_back (dof->n_dofs()); - - cout << " Assembling matrices..." << endl; - UpdateFlags update_flags = UpdateFlags(update_values | update_q_points | - update_gradients | update_JxW_values); - - ProblemBase::FunctionMap dirichlet_bc; - dirichlet_bc[0] = boundary_values; - assemble (equation, *quadrature, update_flags, dirichlet_bc); - - cout << " Solving..." << endl; - solve (); - - Solution sol; - Vector l1_error_per_cell, l2_error_per_cell, linfty_error_per_cell; - Vector h1_seminorm_error_per_cell, h1_error_per_cell; - - cout << " Calculating L1 error... "; - VectorTools::integrate_difference (*dof_handler, - solution, sol, - l1_error_per_cell, - *quadrature, L1_norm); - cout << l1_error_per_cell.l1_norm() << endl; - l1_error.push_back (l1_error_per_cell.l1_norm()); - - cout << " Calculating L2 error... "; - VectorTools::integrate_difference (*dof_handler, - solution, sol, - l2_error_per_cell, - *quadrature, L2_norm); - cout << l2_error_per_cell.l2_norm() << endl; - l2_error.push_back (l2_error_per_cell.l2_norm()); - - cout << " Calculating L-infinity error... "; - VectorTools::integrate_difference (*dof_handler, - solution, sol, - linfty_error_per_cell, - *quadrature, Linfty_norm); - cout << linfty_error_per_cell.linfty_norm() << endl; - linfty_error.push_back (linfty_error_per_cell.linfty_norm()); - - cout << " Calculating H1-seminorm error... "; - VectorTools::integrate_difference (*dof_handler, - solution, sol, - h1_seminorm_error_per_cell, - *quadrature, H1_seminorm); - cout << h1_seminorm_error_per_cell.l2_norm() << endl; - h1_seminorm_error.push_back (h1_seminorm_error_per_cell.l2_norm()); - - cout << " Calculating H1 error... "; - VectorTools::integrate_difference (*dof_handler, - solution, sol, - h1_error_per_cell, - *quadrature, H1_norm); - cout << h1_error_per_cell.l2_norm() << endl; - h1_error.push_back (h1_error_per_cell.l2_norm()); - - if (dof->n_dofs()<=5000) - { - Vector l1_error_per_dof(dof->n_dofs()); - Vector l2_error_per_dof(dof->n_dofs()); - Vector linfty_error_per_dof(dof->n_dofs()); - Vector h1_seminorm_error_per_dof(dof->n_dofs()); - Vector h1_error_per_dof(dof->n_dofs()); - DoFTools::distribute_cell_to_dof_vector (*dof, l1_error_per_cell, l1_error_per_dof); - DoFTools::distribute_cell_to_dof_vector (*dof, l2_error_per_cell, l2_error_per_dof); - DoFTools::distribute_cell_to_dof_vector (*dof, linfty_error_per_cell, - linfty_error_per_dof); - DoFTools::distribute_cell_to_dof_vector (*dof, h1_seminorm_error_per_cell, - h1_seminorm_error_per_dof); - DoFTools::distribute_cell_to_dof_vector (*dof, h1_error_per_cell, h1_error_per_dof); - -// Vector projected_solution; -// ConstraintMatrix constraints; -// constraints.close (); -// VectorTools::project (*dof, constraints, *fe, -// StraightBoundary(), *quadrature, -// sol, projected_solution, false, -// *boundary_quadrature); -// cout << " Calculating L2 error of projected solution... "; -// VectorTools::integrate_difference (*dof_handler, -// projected_solution, sol, -// l2_error_per_cell, -// *quadrature, *fe, L2_norm); -// cout << l2_error_per_cell.l2_norm() << endl; - - - string filename; - filename = ('0'+order); - filename += "."; - filename += ('0'+level); - filename += ".ucd"; - cout << " Writing error plots to <" << filename << ">..." << endl; - - DataOut out; - ofstream o(filename.c_str()); - fill_data (out); - out.add_data_vector (l1_error_per_dof, "L1_Error"); - out.add_data_vector (l2_error_per_dof, "L2_Error"); - out.add_data_vector (linfty_error_per_dof, "Linfty_Error"); - out.add_data_vector (h1_seminorm_error_per_dof, "H1_seminorm_Error"); - out.add_data_vector (h1_error_per_dof, "H1_Error"); - out.build_patches (); - out.write_ucd (o); - o.close (); - } - else - cout << " Not writing error as grid." << endl; - - cout << endl; - - const unsigned int n_dofs = dof->n_dofs(); - // release the lock that the dof object - // has to the finite element object - dof->clear (); - tria->set_boundary (0); - - delete fe; - delete quadrature; - delete boundary_quadrature; - - return n_dofs; -}; - - -template -void PoissonProblem::print_history (string filename) const { - ofstream out(filename.c_str()); - out << "# n_dofs l1_error l2_error linfty_error h1_seminorm_error h1_error" - << endl; - for (unsigned int i=0; ih/2:" << endl; - cout << " L1 error : " << 1./average_l1 << endl - << " L2 error : " << 1./average_l2 << endl - << " Linfty error : " << 1./average_linfty << endl - << " H1 seminorm error: " << 1./average_h1_semi << endl - << " H1 error : " << 1./average_h1 << endl; - cout << "==========================================================\n"; - cout << "==========================================================\n"; -}; - - - - -int main () { - deallog.depth_console (0); - for (unsigned int order=0; order<5; ++order) - { - PoissonProblem<2> problem (order); - - unsigned int level=0; - unsigned int n_dofs; - do - n_dofs = problem.run (level++); - while (n_dofs<25000); - - string filename; - switch (order) - { - case 0: - filename = "criss_cross"; - break; - case 1: - filename = "linear"; - break; - case 2: - filename = "quadratic"; - break; - case 3: - filename = "cubic"; - break; - case 4: - filename = "quartic"; - break; - }; - filename += ".history"; - - cout << endl << "Printing convergence history to <" - << filename << ">..." << endl; - problem.print_history (filename); - cout << endl << endl << endl; - }; - - return 0; -}; diff --git a/deal.II/deal.II/Attic/examples/convergence/make_ps b/deal.II/deal.II/Attic/examples/convergence/make_ps deleted file mode 100644 index 76c13a8624..0000000000 --- a/deal.II/deal.II/Attic/examples/convergence/make_ps +++ /dev/null @@ -1,52 +0,0 @@ -set term postscript eps -set xlabel "Number of degrees of freedom" -set data style linespoints -set logscale xy - - - -set ylabel "Error" - -set output "criss-cross.eps" - -plot "criss_cross.history" using 1:2 title "L1 error","criss_cross.history" using 1:3 title "L2 error","criss_cross.history" using 1:4 title "Linfty error","criss_cross.history" using 1:5 title "H1 seminorm error","criss_cross.history" using 1:6 title "H1 error" - - - -set output "linear.eps" - -plot "linear.history" using 1:2 title "L1 error","linear.history" using 1:3 title "L2 error","linear.history" using 1:4 title "Linfty error","linear.history" using 1:5 title "H1 seminorm error","linear.history" using 1:6 title "H1 error" - - - -set output "quadratic.eps" - -plot "quadratic.history" using 1:2 title "L1 error","quadratic.history" using 1:3 title "L2 error","quadratic.history" using 1:4 title "Linfty error","quadratic.history" using 1:5 title "H1 seminorm error","quadratic.history" using 1:6 title "H1 error" - - - -set output "cubic.eps" - -plot "cubic.history" using 1:2 title "L1 error","cubic.history" using 1:3 title "L2 error","cubic.history" using 1:4 title "Linfty error","cubic.history" using 1:5 title "H1 seminorm error","cubic.history" using 1:6 title "H1 error" - - - -set output "quartic.eps" - -plot "quartic.history" using 1:2 title "L1 error","quartic.history" using 1:3 title "L2 error","quartic.history" using 1:4 title "Linfty error","quartic.history" using 1:5 title "H1 seminorm error","quartic.history" using 1:6 title "H1 error" - - - -set output "l2error.eps" -set ylabel "L2-error" - -plot "criss_cross.history" using 1:3 title "Criss-cross elements", "linear.history" using 1:3 title "Linear elements", "quadratic.history" using 1:3 title "Quadratic elements", "cubic.history" using 1:3 title "Cubic elements", "quartic.history" using 1:3 title "Quartic elements" - - - -set output "h1error.eps" -set ylabel "H1-error" - -plot "criss_cross.history" using 1:6 title "Criss-cross elements", "linear.history" using 1:6 title "Linear elements", "quadratic.history" using 1:6 title "Quadratic elements", "cubic.history" using 1:6 title "Cubic elements", "quartic.history" using 1:6 title "Quartic elements" - - diff --git a/deal.II/deal.II/Attic/examples/dof/.cvsignore b/deal.II/deal.II/Attic/examples/dof/.cvsignore deleted file mode 100644 index 6105d89a5b..0000000000 --- a/deal.II/deal.II/Attic/examples/dof/.cvsignore +++ /dev/null @@ -1,5 +0,0 @@ -dof_test -Makefile.dep -Makefile.dep -*.go -*.o diff --git a/deal.II/deal.II/Attic/examples/dof/Makefile b/deal.II/deal.II/Attic/examples/dof/Makefile deleted file mode 100644 index ee93d64e40..0000000000 --- a/deal.II/deal.II/Attic/examples/dof/Makefile +++ /dev/null @@ -1,172 +0,0 @@ -# $Id$ -# Copyright W. Bangerth, University of Heidelberg, 1998, 1999, 2000 - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = dof_test - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# As third field, we need to give the path to the top-level deal.II -# directory. You need to adjust this to your needs. Since this path is -# probably the most often needed one in the Makefile internals, it is -# designated by a single-character variable, since that can be -# reference using $D only, i.e. without the parentheses that are -# required for most other parameters, as e.g. in $(target). -D = ../../.. - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-deal2-3d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-deal2-3d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(flags) -o $@ $^ - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - ./$(target) 2 $(target).prm - ./$(target) 3 $(target).prm - gnuplot make_ps - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/deal.II/deal.II/Attic/examples/dof/dof_test.cc b/deal.II/deal.II/Attic/examples/dof/dof_test.cc deleted file mode 100644 index a9513d4b60..0000000000 --- a/deal.II/deal.II/Attic/examples/dof/dof_test.cc +++ /dev/null @@ -1,451 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include - - - -// 1: continuous refinement of the unit square always in the middle -// 2: refinement of the circle at the boundary -// 2: refinement of a wiggled area at the boundary -// 4: random refinement - - - - - - -template -class Ball : - public StraightBoundary { - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const { - Point middle = StraightBoundary::get_new_point_on_line(line); - - for (int i=0; i - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const { - Point middle = StraightBoundary::get_new_point_on_quad(quad); - - for (int i=0; i -class CurvedLine : - public StraightBoundary { - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const; - - virtual Point - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const; -}; - - - -template -Point -CurvedLine::get_new_point_on_line (const typename Triangulation::line_iterator &line) const -{ - Point middle = StraightBoundary::get_new_point_on_line (line); - - // if the line is at the top of bottom - // face: do a special treatment on - // this line. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the line is like that - if (dim>=3) - if (((middle(2) == 0) || (middle(2) == 1)) - // find out, if the line is in the - // interior of the top or bottom face - // of the domain, or at the edge. - // lines at the edge need to undergo - // the usual treatment, while for - // interior lines taking the midpoint - // is sufficient - // - // note: the trick with the boundary - // id was invented after the above was - // written, so we are not very strict - // here with using these flags - && (line->boundary_indicator() == 1)) - return middle; - - - double x=middle(0), - y=middle(1); - - if (y -Point -CurvedLine::get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const -{ - Point middle = StraightBoundary::get_new_point_on_quad (quad); - - // if the face is at the top of bottom - // face: do not move the midpoint in - // x/y direction. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the quad is like that - if ((middle(2) == 0) || (middle(2) == 1)) - return middle; - - double x=middle(0), - y=middle(1); - - if (y -class TestCases : public MultipleParameterLoop::UserClass{ - public: - TestCases (); - virtual ~TestCases (); - - virtual void create_new (const unsigned int run_no); - virtual void declare_parameters (ParameterHandler &prm); - virtual void run (ParameterHandler &prm); - - private: - Triangulation *tria; - DoFHandler *dof; -}; - - - -template -TestCases::TestCases () : - tria(0), dof(0) {}; - - -template -TestCases::~TestCases () -{ - if (dof) delete dof; - if (tria) delete tria; -}; - - - -template -void TestCases::create_new (const unsigned int) { - if (dof != 0) delete dof; - if (tria != 0) delete tria; - - tria = new Triangulation(); - GridGenerator::hyper_cube(*tria); - - dof = new DoFHandler (*tria); -}; - - - -template -void TestCases::declare_parameters (ParameterHandler &prm) { - if (dim>=2) - prm.declare_entry ("Test run", "zoom in", - Patterns::Selection("zoom in|ball|curved line|random")); - else - prm.declare_entry ("Test run", "zoom in", - Patterns::Selection("zoom in|random")); - prm.declare_entry ("Grid file", "grid.1"); - prm.declare_entry ("Sparsity file", "sparsity.1"); - prm.declare_entry ("Condensed sparsity file", "sparsity.c.1"); -}; - - - -template -void TestCases::run (ParameterHandler &prm) { - cout << "Dimension = " << dim - << ", Test case = " << prm.get ("Test run") << endl - << endl; - - string test = prm.get ("Test run"); - unsigned int test_case = 1; - if (test=="zoom in") test_case = 1; - else - if (test=="ball") test_case = 2; - else - if (test=="curved line") test_case = 3; - else - if (test=="random") test_case = 4; - else - cerr << "This test seems not to be implemented!" << endl; - - - cout << " Making grid..." << endl; - Boundary *boundary = 0; - - switch (test_case) - { - case 1: - { - // refine first cell - tria->begin_active()->set_refine_flag(); - tria->execute_coarsening_and_refinement (); - // refine first active cell - // on coarsest level - tria->begin_active()->set_refine_flag (); - tria->execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell; - for (int i=0; i<17; ++i) - { - // refine the presently - // second last cell 17 - // times - cell = tria->last_active(tria->n_levels()-1); - --cell; - cell->set_refine_flag (); - tria->execute_coarsening_and_refinement (); - }; - - break; - } - - case 2: - case 3: - { - if (dim==3) - { - tria->begin_active()->face(2)->set_boundary_indicator(1); - tria->begin_active()->face(4)->set_boundary_indicator(1); - }; - - // set the boundary function - boundary = (test_case==2 ? - static_cast*>(new Ball()) : - static_cast*>(new CurvedLine())); - tria->set_boundary (0, *boundary); - tria->set_boundary (1, *boundary); - - // refine once - tria->begin_active()->set_refine_flag(); - tria->execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell, endc; - for (int i=0; i<6-dim; ++i) - { - cell = tria->begin_active(); - endc = tria->end(); - - // refine all - // boundary cells - for (; cell!=endc; ++cell) - if (cell->at_boundary()) - cell->set_refine_flag(); - - tria->execute_coarsening_and_refinement(); - }; - - break; - } - - case 4: - { - // refine once - tria->begin_active()->set_refine_flag(); - tria->execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell, endc; - for (int i=0; i<(dim==2 ? 12 : (dim==3 ? 7 : 20)); ++i) - { - int n_levels = tria->n_levels(); - cell = tria->begin_active(); - endc = tria->end(); - - for (; cell!=endc; ++cell) - { - double r = rand()*1.0/RAND_MAX, - weight = 1.* - (cell->level()*cell->level()) / - (n_levels*n_levels); - - if (r <= 0.5*weight) - cell->set_refine_flag (); - }; - - tria->execute_coarsening_and_refinement (); - }; - break; - } - }; - - // output the grid - string file_prefix ("results/"); - file_prefix += ('0'+dim); - file_prefix += "d."; - - cout << " Writing grid..." << endl; - ofstream out((file_prefix + prm.get("Grid file")).c_str()); - GridOut().write_gnuplot (*tria, out); - - - - - cout << " Distributing degrees of freedom..." << endl; - FEQ1 fe; - dof->distribute_dofs (fe); - - cout << " Renumbering degrees of freedom..." << endl; - DoFRenumbering::Cuthill_McKee (*dof); - - SparsityPattern sparsity (dof->n_dofs(), - dof->max_couplings_between_dofs()); - - - DoFTools::make_sparsity_pattern (*dof, sparsity); - int unconstrained_bandwidth = sparsity.bandwidth(); - - cout << " Writing sparsity pattern..." << endl; - ofstream sparsity_out ((file_prefix + prm.get("Sparsity file")).c_str()); - sparsity.print_gnuplot (sparsity_out); - - - - // computing constraints - cout << " Computing constraints..." << endl; - ConstraintMatrix constraints; - DoFTools::make_hanging_node_constraints (*dof, constraints); - constraints.close (); - constraints.condense (sparsity); - - cout << " Writing condensed sparsity pattern..." << endl; - ofstream c_sparsity_out ((file_prefix + - prm.get("Condensed sparsity file")).c_str()); - sparsity.print_gnuplot (c_sparsity_out); - - - cout << endl - << " Total number of cells = " << tria->n_cells() << endl - << " Total number of active cells = " << tria->n_active_cells() << endl - << " Number of DoFs = " << dof->n_dofs() << endl - << " Number of constraints = " << constraints.n_constraints() << endl - << " Unconstrained matrix bandwidth= " << unconstrained_bandwidth << endl - << " Constrained matrix bandwidth = " << sparsity.bandwidth() - << endl << endl; - - // release the lock that dof has to the - // finite element object - dof->clear (); - tria->set_boundary (0); - tria->set_boundary (1); - if (boundary) - delete boundary; -}; - - - -int main (int argc, char **argv) { - if (argc!=3) - { - cerr << "Usage: dof_test dimension parameterfile" << endl << endl; - return 1; - }; - - unsigned int dim; - if (argv[1][0] == '2') - dim = 2; - else - dim = 3; - - switch (dim) - { - case 2: - { - TestCases<2> tests; - MultipleParameterLoop input_data; - - tests.declare_parameters(input_data); - input_data.read_input (argv[2]); - input_data.loop (tests); - - break; - }; - - case 3: - { - TestCases<3> tests; - MultipleParameterLoop input_data; - - tests.declare_parameters(input_data); - input_data.read_input (argv[2]); - input_data.loop (tests); - - break; - }; - }; - - return 0; -}; - diff --git a/deal.II/deal.II/Attic/examples/dof/dof_test.prm b/deal.II/deal.II/Attic/examples/dof/dof_test.prm deleted file mode 100644 index 84697993f4..0000000000 --- a/deal.II/deal.II/Attic/examples/dof/dof_test.prm +++ /dev/null @@ -1,4 +0,0 @@ -set Test run = { zoom in | ball | curved line | random } -set Grid file = {{ zoom_in | ball | curved_line | random }}.grid -set Sparsity file = {{ zoom_in | ball | curved_line | random }}.sparsity -set Condensed sparsity file = {{ zoom_in | ball | curved_line | random }}.sparsity.c \ No newline at end of file diff --git a/deal.II/deal.II/Attic/examples/dof/make_ps b/deal.II/deal.II/Attic/examples/dof/make_ps deleted file mode 100644 index 281a20bc8b..0000000000 --- a/deal.II/deal.II/Attic/examples/dof/make_ps +++ /dev/null @@ -1,122 +0,0 @@ -set size 0.721,1 -set data style lines -set noxtics -set noytics -set noztics -set noxzeroaxis -set noyzeroaxis -set nokey -set term postscript eps - -!echo " Making <2d.zoom_in.grid.eps>" -set output "results/2d.zoom_in.grid.eps" -plot "results/2d.zoom_in.grid" - -!echo " Making <2d.ball.grid.eps>" -set output "results/2d.ball.grid.eps" -plot "results/2d.ball.grid" - -!echo " Making <2d.curved_line.grid.eps>" -set output "results/2d.curved_line.grid.eps" -plot "results/2d.curved_line.grid" - -!echo " Making <2d.random.grid.eps>" -set output "results/2d.random.grid.eps" -plot "results/2d.random.grid" - - - - -!echo " Making <3d.zoom_in.grid.eps>" -set output "results/3d.zoom_in.grid.eps" -splot "results/3d.zoom_in.grid" - -!echo " Making <3d.ball.grid.eps>" -set output "results/3d.ball.grid.eps" -splot "results/3d.ball.grid" - -!echo " Making <3d.curved_line.grid.eps>" -set output "results/3d.curved_line.grid.eps" -splot "results/3d.curved_line.grid" - -!echo " Making <3d.random.grid.eps>" -set output "results/3d.random.grid.eps" -splot "results/3d.random.grid" - - - - -set data style dots - -!echo " Making <2d.zoom_in.sparsity.eps>" -set output "results/2d.zoom_in.sparsity.eps" -plot "results/2d.zoom_in.sparsity" - -!echo " Making <2d.zoom_in.sparsity.c.eps>" -set output "results/2d.zoom_in.sparsity.c.eps" -plot "results/2d.zoom_in.sparsity.c" - - -!echo " Making <2d.ball.sparsity.eps>" -set output "results/2d.ball.sparsity.eps" -plot "results/2d.ball.sparsity" - -!echo " Making <2d.ball.sparsity.c.eps>" -set output "results/2d.ball.sparsity.c.eps" -plot "results/2d.ball.sparsity.c" - - -!echo " Making <2d.curved_line.sparsity.eps>" -set output "results/2d.curved_line.sparsity.eps" -plot "results/2d.curved_line.sparsity" - -!echo " Making <2d.curved_line.sparsity.c.eps>" -set output "results/2d.curved_line.sparsity.c.eps" -plot "results/2d.curved_line.sparsity.c" - - -!echo " Making <2d.random.sparsity.eps>" -set output "results/2d.random.sparsity.eps" -plot "results/2d.random.sparsity" - -!echo " Making <2d.random.sparsity.c.eps>" -set output "results/2d.random.sparsity.c.eps" -plot "results/2d.random.sparsity.c" - - - -!echo " Making <3d.zoom_in.sparsity.eps>" -set output "results/3d.zoom_in.sparsity.eps" -plot "results/3d.zoom_in.sparsity" - -!echo " Making <3d.zoom_in.sparsity.c.eps>" -set output "results/3d.zoom_in.sparsity.c.eps" -plot "results/3d.zoom_in.sparsity.c" - - -!echo " Making <3d.ball.sparsity.eps>" -set output "results/3d.ball.sparsity.eps" -plot "results/3d.ball.sparsity" - -!echo " Making <3d.ball.sparsity.c.eps>" -set output "results/3d.ball.sparsity.c.eps" -plot "results/3d.ball.sparsity.c" - - -!echo " Making <3d.curved_line.sparsity.eps>" -set output "results/3d.curved_line.sparsity.eps" -plot "results/3d.curved_line.sparsity" - -!echo " Making <3d.curved_line.sparsity.c.eps>" -set output "results/3d.curved_line.sparsity.c.eps" -plot "results/3d.curved_line.sparsity.c" - - -!echo " Making <3d.random.sparsity.eps>" -set output "results/3d.random.sparsity.eps" -plot "results/3d.random.sparsity" - -!echo " Making <3d.random.sparsity.c.eps>" -set output "results/3d.random.sparsity.c.eps" -plot "results/3d.random.sparsity.c" - diff --git a/deal.II/deal.II/Attic/examples/dof/results/.cvsignore b/deal.II/deal.II/Attic/examples/dof/results/.cvsignore deleted file mode 100644 index 480cb8565d..0000000000 --- a/deal.II/deal.II/Attic/examples/dof/results/.cvsignore +++ /dev/null @@ -1 +0,0 @@ -?d.* diff --git a/deal.II/deal.II/Attic/examples/error-estimation/.cvsignore b/deal.II/deal.II/Attic/examples/error-estimation/.cvsignore deleted file mode 100644 index e3db7764a9..0000000000 --- a/deal.II/deal.II/Attic/examples/error-estimation/.cvsignore +++ /dev/null @@ -1,4 +0,0 @@ -error-estimation -Makefile.dep -*.go -*.o diff --git a/deal.II/deal.II/Attic/examples/error-estimation/Makefile b/deal.II/deal.II/Attic/examples/error-estimation/Makefile deleted file mode 100644 index ed89446ecc..0000000000 --- a/deal.II/deal.II/Attic/examples/error-estimation/Makefile +++ /dev/null @@ -1,172 +0,0 @@ -# $Id$ -# Copyright W. Bangerth, University of Heidelberg, 1998, 1999, 2000 - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = error-estimation - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# As third field, we need to give the path to the top-level deal.II -# directory. You need to adjust this to your needs. Since this path is -# probably the most often needed one in the Makefile internals, it is -# designated by a single-character variable, since that can be -# reference using $D only, i.e. without the parentheses that are -# required for most other parameters, as e.g. in $(target). -D = ../../.. - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(flags) -o $@ $^ - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - ./$(target) ee.gauss.prm - ./$(target) ee.singular.prm - ./$(target) ee.kink.prm - gnuplot make_ps - - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/deal.II/deal.II/Attic/examples/error-estimation/ee.gauss.prm b/deal.II/deal.II/Attic/examples/error-estimation/ee.gauss.prm deleted file mode 100644 index 560bd59cf3..0000000000 --- a/deal.II/deal.II/Attic/examples/error-estimation/ee.gauss.prm +++ /dev/null @@ -1,8 +0,0 @@ -set Test case = Gauss shape -set Initial refinement = 2 -set Refinement criterion = { global | true error | estimated error } -set Refinement fraction = 0.3 -set Coarsening fraction = 0.03 -set Maximum cells = 10000 -set Output base filename = data-gauss/ -set Output format = ucd diff --git a/deal.II/deal.II/Attic/examples/error-estimation/ee.kink.prm b/deal.II/deal.II/Attic/examples/error-estimation/ee.kink.prm deleted file mode 100644 index 6bf0b8e88c..0000000000 --- a/deal.II/deal.II/Attic/examples/error-estimation/ee.kink.prm +++ /dev/null @@ -1,8 +0,0 @@ -set Test case = Kink -set Initial refinement = 1 -set Refinement criterion = { global | estimated error } -set Refinement fraction = 0.1 -set Coarsening fraction = 0.02 -set Maximum cells = 100000 -set Output base filename = data-kink/ -set Output format = ucd diff --git a/deal.II/deal.II/Attic/examples/error-estimation/ee.singular.prm b/deal.II/deal.II/Attic/examples/error-estimation/ee.singular.prm deleted file mode 100644 index eb6988553a..0000000000 --- a/deal.II/deal.II/Attic/examples/error-estimation/ee.singular.prm +++ /dev/null @@ -1,8 +0,0 @@ -set Test case = Singular -set Initial refinement = 1 -set Refinement criterion = { global | estimated error } -set Refinement fraction = 0.1 -set Coarsening fraction = 0.02 -set Maximum cells = 100000 -set Output base filename = data-singular/ -set Output format = ucd diff --git a/deal.II/deal.II/Attic/examples/error-estimation/error-estimation.cc b/deal.II/deal.II/Attic/examples/error-estimation/error-estimation.cc deleted file mode 100644 index cd11fc8630..0000000000 --- a/deal.II/deal.II/Attic/examples/error-estimation/error-estimation.cc +++ /dev/null @@ -1,755 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include - - - - -template -class PoissonEquation : public Equation { - public: - PoissonEquation (const Function &rhs) : - Equation(1), - use_coefficient(false), - right_hand_side (rhs), - coefficient (default_coefficient) {}; - - PoissonEquation (const Function &rhs, - const Function &coefficient ) : - Equation(1), - use_coefficient(true), - right_hand_side (rhs), - coefficient (coefficient) {}; - - virtual void assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (FullMatrix &cell_matrix, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - protected: - const bool use_coefficient; - const Function &right_hand_side; - const Function &coefficient; - - static const ConstantFunction default_coefficient; -}; - - -const ConstantFunction<2> PoissonEquation<2>::default_coefficient(1); - - - - - -template -class PoissonProblem : public ProblemBase, public MultipleParameterLoop::UserClass { - public: - enum RefineMode { - global, true_error, error_estimator - }; - - PoissonProblem (); - ~PoissonProblem (); - - void clear (); - void create_new (const unsigned int); - void declare_parameters (ParameterHandler &prm); - void run (ParameterHandler &prm); - void print_history (const ParameterHandler &prm, - const RefineMode refine_mode) const; - - protected: - Triangulation *tria; - DoFHandler *dof; - - Function *rhs; - Function *solution_function; - Function *coefficient; - - Boundary *boundary; - - vector l2_error, linfty_error; - vector h1_error, estimated_error; - vector n_dofs; -}; - - - - - -template -class Solution { - public: - - class GaussShape : public Function { - public: - virtual double value (const Point &p, - const unsigned int component) const; - virtual Tensor<1,dim> gradient (const Point &p, - const unsigned int component) const; - }; - - class Singular : public Function { - public: - virtual double value (const Point &p, - const unsigned int component) const; - virtual Tensor<1,dim> gradient (const Point &p, - const unsigned int component) const; - }; - - class Kink : public Function { - public: - class Coefficient : public Function { - public: - virtual double value (const Point &p, - const unsigned int component) const; - }; - - virtual double value (const Point &p, - const unsigned int component) const; - virtual Tensor<1,dim> gradient (const Point &p, - const unsigned int component) const; - }; -}; - - - - -template -class RHS { - public: - - /** - * Right hand side constructed such that - * the exact solution is - * $x*y*exp(-(x**2+y**2)*40)$. - */ - class GaussShape : public Function { - public: - virtual double value (const Point &p, - const unsigned int component) const; - }; - - /** - * Right hand side constructed such that - * the exact solution is - * $r^{2/3}$. - */ - class Singular : public Function { - public: - virtual double value (const Point &p, - const unsigned int component) const; - }; - - /** - * Right hand side constructed such that - * the exact solution is - * $(1+4\theta(f))*f$ with - * $f=y-x**2$. - */ - class Kink : public Function { - public: - virtual double value (const Point &p, - const unsigned int component) const; - }; -}; - - - - -template <> -double Solution<2>::GaussShape::value (const Point<2> &p, - const unsigned int) const { - return p(0)*p(1)*exp(-40*p.square()); -}; - - -template <> -Tensor<1,2> Solution<2>::GaussShape::gradient (const Point<2> &p, - const unsigned int) const { - return Point<2> ((1-80.*p(0)*p(0))*p(1)*exp(-40*p.square()), - (1-80.*p(1)*p(1))*p(0)*exp(-40*p.square())); -}; - - - -template <> -double Solution<2>::Singular::value (const Point<2> &p, - const unsigned int) const { - return pow(p.square(), 1./3.); -}; - - -template <> -Tensor<1,2> Solution<2>::Singular::gradient (const Point<2> &p, - const unsigned int) const { - return 2./3.*pow(p.square(), -2./3.) * p; -}; - - - - -inline double theta(const double x) { - return (x>0 ? 1 : 0); -}; - - - -template <> -double Solution<2>::Kink::value (const Point<2> &p, - const unsigned int) const { - const double s = p(1)-p(0)*p(0); - return (1+4*theta(s))*s; -}; - - -template <> -Tensor<1,2> Solution<2>::Kink::gradient (const Point<2> &p, - const unsigned int) const { - const double s = p(1)-p(0)*p(0); - return (1+4*theta(s))*Point<2>(-2*p(0),1); -}; - - -template <> -double Solution<2>::Kink::Coefficient::value (const Point<2> &p, - const unsigned int) const { - const double s = p(1)-p(0)*p(0); - return 1./(1.+4.*theta(s)); -}; - - - -template <> -double RHS<2>::GaussShape::value (const Point<2> &p, - const unsigned int) const { - return (480.-6400.*p.square())*p(0)*p(1)*exp(-40.*p.square()); -}; - - -template <> -double RHS<2>::Singular::value (const Point<2> &p, - const unsigned int) const { - return -4./9. * pow(p.square(), -2./3.); -}; - - -template <> -double RHS<2>::Kink::value (const Point<2> &, - const unsigned int) const { - return 2; -}; - - - - - - - - -template <> -void PoissonEquation<2>::assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues<2> &fe_values, - const DoFHandler<2>::cell_iterator &) const { - for (unsigned int point=0; point -void PoissonEquation::assemble (FullMatrix &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, ExcPureVirtualFunctionCalled()); -}; - - - -template -void PoissonEquation::assemble (Vector &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, ExcPureVirtualFunctionCalled()); -}; - - - - - - - - - -template -PoissonProblem::PoissonProblem () : - tria(0), dof(0), rhs(0), - solution_function(0), coefficient(0), - boundary(0) {}; - - - -template -PoissonProblem::~PoissonProblem () -{ - clear (); -}; - - - -template -void PoissonProblem::clear () { - if (dof != 0) { delete dof; dof = 0; }; - if (tria != 0) { delete tria; tria = 0; }; - if (rhs != 0) { delete rhs; rhs = 0; }; - if (solution_function != 0) { delete solution_function; solution_function = 0; }; - if (coefficient != 0) { delete coefficient; coefficient = 0; }; - if (boundary != 0) { delete boundary; boundary = 0; }; - - // make it known to the underlying - // ProblemBase that tria and dof - // are already deleted - set_tria_and_dof (tria, dof); - - l2_error.clear (); - linfty_error.clear (); - h1_error.clear (); - estimated_error.clear(); - n_dofs.clear (); - - ProblemBase::clear (); -}; - - - - -template -void PoissonProblem::create_new (const unsigned int) { - clear (); - - tria = new Triangulation(); - dof = new DoFHandler (*tria); - set_tria_and_dof (tria, dof); - boundary = new HyperBallBoundary (); -}; - - - -template -void PoissonProblem::declare_parameters (ParameterHandler &prm) { - prm.declare_entry ("Test case", "Gauss shape", - Patterns::Selection("Gauss shape|Singular|Kink")); - prm.declare_entry ("Initial refinement", "2", - Patterns::Integer()); - prm.declare_entry ("Refinement criterion", "estimated error", - Patterns::Selection("global|true error|estimated error")); - prm.declare_entry ("Refinement fraction", "0.3", - Patterns::Double()); - prm.declare_entry ("Coarsening fraction", "0.1", - Patterns::Double()); - prm.declare_entry ("Maximum cells", "3000", - Patterns::Integer()); - prm.declare_entry ("Output base filename", ""); - prm.declare_entry ("Output format", "ucd", - Patterns::Selection("ucd|gnuplot")); -}; - - - - -template -void PoissonProblem::run (ParameterHandler &prm) { - cout << "=======================================" - << "=======================================" << endl - << "===== Test case: " << prm.get ("Test case") << endl - << "===== Doing computation with refinement criterion: "; - RefineMode refine_mode; - if (prm.get("Refinement criterion")=="global") - refine_mode = global; - else - if (prm.get("Refinement criterion")=="true error") - refine_mode = true_error; - else - if (prm.get("Refinement criterion")=="estimated error") - refine_mode = error_estimator; - else - return; - - switch (refine_mode) - { - case global: - cout << "global"; - break; - case true_error: - cout << "true error"; - break; - case error_estimator: - cout << "error estimator"; - break; - }; - - cout << endl - << "=======================================" - << "=======================================" << endl; - cout << "Making initial grid... " << endl; - const unsigned int start_level(prm.get_integer("Initial refinement")); - tria->set_boundary (0, *boundary); - GridGenerator::hyper_ball (*tria); - tria->refine_global (start_level); - - if (prm.get("Test case")=="Gauss shape") - rhs = new RHS::GaussShape(); - else - if (prm.get("Test case")=="Singular") - rhs = new RHS::Singular(); - else - if (prm.get("Test case")=="Kink") - rhs = new RHS::Kink(); - - if (prm.get("Test case")=="Gauss shape") - solution_function = new Solution::GaussShape (); - else - if (prm.get("Test case")=="Singular") - solution_function = new Solution::Singular (); - else - if (prm.get("Test case")=="Kink") - solution_function = new Solution::Kink (); - - - FEQ1 fe; - QGauss3 quadrature; - PoissonEquation *equation; - - static Solution::Kink::Coefficient kink_coefficient; - if (prm.get("Test case")=="Kink") - equation = new PoissonEquation(*rhs, kink_coefficient); - else - equation = new PoissonEquation(*rhs); - - SolutionTransfer solution_transfer (*dof_handler); - - unsigned int refine_step = 0; - const unsigned int max_cells = prm.get_integer("Maximum cells"); - while (tria->n_active_cells() < max_cells) - { - Vector old_solution = solution; - cout << "Refinement step " << refine_step - << ", using " << tria->n_active_cells() << " active cells on " - << tria->n_levels() << " levels." - << endl; - cout << " Distributing dofs... "; - dof->distribute_dofs (fe); - cout << dof->n_dofs() << " degrees of freedom." << endl; - n_dofs.push_back (dof->n_dofs()); - - cout << " Assembling matrices..." << endl; - UpdateFlags update_flags = UpdateFlags(update_values | update_q_points | - update_gradients | update_JxW_values); - - ProblemBase::FunctionMap dirichlet_bc; - dirichlet_bc[0] = solution_function; - assemble (*equation, quadrature, update_flags, dirichlet_bc); - - // if we have an old solution lying - // around, use it to preset the solution - // vector. this reduced the quired - // number of iterations by about - // 10 per cent - if (refine_step != 0) - { - solution.reinit (dof_handler->n_dofs()); - solution_transfer.interpolate (old_solution, solution); - - // if you don't want to preset - // the solution vector, - // uncomment the following - // line and comment out the - // preceding one -// solution.reinit (dof_handler->n_dofs()); - - solution_transfer.clear (); - }; - - cout << " Solving..." << endl; - - solve (); - - - Vector l2_error_per_cell, linfty_error_per_cell, h1_error_per_cell; - Vector estimated_error_per_cell; - QGauss3 q; - - cout << " Calculating L2 error... "; - VectorTools::integrate_difference (*dof_handler, - solution, *solution_function, - l2_error_per_cell, q, - L2_norm); - cout << l2_error_per_cell.l2_norm() << endl; - l2_error.push_back (l2_error_per_cell.l2_norm()); - - cout << " Calculating L-infinity error... "; - VectorTools::integrate_difference (*dof_handler, - solution, *solution_function, - linfty_error_per_cell, q, - Linfty_norm); - cout << linfty_error_per_cell.linfty_norm() << endl; - linfty_error.push_back (linfty_error_per_cell.linfty_norm()); - - cout << " Calculating H1 error... "; - VectorTools::integrate_difference (*dof_handler, - solution, *solution_function, - h1_error_per_cell, q, - H1_norm); - cout << h1_error_per_cell.l2_norm() << endl; - h1_error.push_back (h1_error_per_cell.l2_norm()); - - cout << " Estimating H1 error... "; - - QSimpson eq; - KellyErrorEstimator::estimate (*dof, eq, - KellyErrorEstimator::FunctionMap(), - solution, - estimated_error_per_cell, - vector(), // all components - ((prm.get("Test case")=="Kink") ? - &kink_coefficient : 0 )); - cout << estimated_error_per_cell.l2_norm() << endl; - estimated_error.push_back (estimated_error_per_cell.l2_norm()); - - Vector l2_error_per_dof(dof->n_dofs()), linfty_error_per_dof(dof->n_dofs()); - Vector h1_error_per_dof(dof->n_dofs()), estimated_error_per_dof(dof->n_dofs()); - Vector error_ratio (dof->n_dofs()); - DoFTools::distribute_cell_to_dof_vector (*dof, l2_error_per_cell, l2_error_per_dof); - DoFTools::distribute_cell_to_dof_vector (*dof, linfty_error_per_cell, - linfty_error_per_dof); - DoFTools::distribute_cell_to_dof_vector (*dof, h1_error_per_cell, h1_error_per_dof); - DoFTools::distribute_cell_to_dof_vector (*dof, estimated_error_per_cell, - estimated_error_per_dof); - error_ratio.ratio (h1_error_per_dof, estimated_error_per_dof); - - DataOut out; - fill_data (out); - out.add_data_vector (l2_error_per_dof, "L2_Error"); - out.add_data_vector (linfty_error_per_dof, "Linfty_Error"); - out.add_data_vector (h1_error_per_dof, "H1_Error"); - out.add_data_vector (estimated_error_per_dof, "Estimated_Error"); - out.add_data_vector (error_ratio, "Ratio_True_to_Estimated_Error"); - out.build_patches (); - string filename = prm.get ("Output base filename"); - switch (refine_mode) - { - case global: - filename += "global."; - break; - case true_error: - filename += "true_error."; - break; - case error_estimator: - filename += "estimated_error."; - break; - }; - filename += ('0'+(start_level+refine_step)/10); - filename += ('0'+(start_level+refine_step)%10); - - if (prm.get("Output format")=="ucd") - filename += ".inp"; - else - if (prm.get("Output format")=="gnuplot") - filename += ".gnuplot"; - - cout << " Writing error plots to <" << filename << ">..." << endl; - ofstream outfile(filename.c_str()); - if (prm.get("Output format")=="ucd") - out.write_ucd (outfile); - else - if (prm.get("Output format")=="gnuplot") - out.write_gnuplot (outfile); - - outfile.close(); - - cout << " Refining triangulation..."; - switch (refine_mode) - { - case global: - tria->set_all_refine_flags (); - break; - case true_error: - tria->refine_and_coarsen_fixed_number (h1_error_per_cell, - prm.get_double("Refinement fraction"), - prm.get_double("Coarsening fraction")); - break; - case error_estimator: - tria->refine_and_coarsen_fixed_number (estimated_error_per_cell, - prm.get_double("Refinement fraction"), - prm.get_double("Coarsening fraction")); - break; - }; - - tria->prepare_coarsening_and_refinement (); - solution_transfer.prepare_for_coarsening_and_refinement (solution); - tria->execute_coarsening_and_refinement (); - - cout << endl << endl; - ++refine_step; - }; - - string filename = prm.get ("Output base filename"); - switch (refine_mode) - { - case global: - filename += "global."; - break; - case true_error: - filename += "true_error."; - break; - case error_estimator: - filename += "estimated_error."; - break; - }; - - cout << endl; - - filename += "finest_mesh.gnuplot"; - cout << " Writing finest grid to <" << filename << ">... " << endl; - ofstream finest_mesh (filename.c_str()); - GridOut().write_gnuplot (*tria, finest_mesh); - finest_mesh.close(); - - print_history (prm, refine_mode); - cout << endl << endl << endl; - - dof->clear (); - delete equation; -}; - - -template -void PoissonProblem::print_history (const ParameterHandler &prm, - const RefineMode refine_mode) const { - string filename(prm.get("Output base filename")); - filename += "history."; - switch (refine_mode) - { - case global: - filename += "global."; - break; - case true_error: - filename += "true_error."; - break; - case error_estimator: - filename += "estimated_error."; - break; - }; - filename += "gnuplot"; - - cout << endl << "Printing convergence history to <" << filename << ">..." - << endl; - ofstream out(filename.c_str()); - out << "# n_dofs l2_error linfty_error " - << "h1_error estimated_error" - << endl; - for (unsigned int i=0; ih/2:" << endl; - cout << " L2 error : " << 1./average_l2 << endl - << " Linfty error : " << 1./average_linfty << endl - << " H1 error : " << 1./average_h1 << endl - << " Estimated error : " << 1./average_est << endl; -}; - - - - -int main (int argc, char **argv) { - if (argc!=2) - { - cout << "Usage: error-estimation parameterfile" << endl << endl; - return 1; - }; - - PoissonProblem<2> poisson; - MultipleParameterLoop input_data; - - poisson.declare_parameters(input_data); - input_data.read_input (argv[1]); - input_data.loop (poisson); - - return 0; -}; - - - diff --git a/deal.II/deal.II/Attic/examples/error-estimation/make_ps b/deal.II/deal.II/Attic/examples/error-estimation/make_ps deleted file mode 100644 index 5c06b6c8f2..0000000000 --- a/deal.II/deal.II/Attic/examples/error-estimation/make_ps +++ /dev/null @@ -1,94 +0,0 @@ -set xlabel "Number of degrees of freedom" -set ylabel "Error" -set data style linespoints -set logscale xy - -set term postscript eps - - -set output "data-gauss/history.global.eps" - -plot "data-gauss/history.global.gnuplot" using 1:2 title "L2 error","data-gauss/history.global.gnuplot" using 1:3 title "Linfty error","data-gauss/history.global.gnuplot" using 1:4 title "H1 error","data-gauss/history.global.gnuplot" using 1:5 title "Estimated H1 error" - - -set output "data-gauss/history.true_error.eps" - -plot "data-gauss/history.true_error.gnuplot" using 1:2 title "L2 error","data-gauss/history.true_error.gnuplot" using 1:3 title "Linfty error","data-gauss/history.true_error.gnuplot" using 1:4 title "H1 error","data-gauss/history.true_error.gnuplot" using 1:5 title "Estimated H1 error" - - -set output "data-gauss/history.estimated_error.eps" - -plot "data-gauss/history.estimated_error.gnuplot" using 1:2 title "L2 error","data-gauss/history.estimated_error.gnuplot" using 1:3 title "Linfty error","data-gauss/history.estimated_error.gnuplot" using 1:4 title "H1 error","data-gauss/history.estimated_error.gnuplot" using 1:5 title "Estimated H1 error" - - -set output "data-gauss/history.compare.eps" -plot "data-gauss/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-gauss/history.true_error.gnuplot" using 1:2 title "ref. by true error -- L2 error", "data-gauss/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", 0.1/sqrt(x) title "O(h)", "data-gauss/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-gauss/history.true_error.gnuplot" using 1:4 title "ref. by true error -- H1 error", "data-gauss/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error", 0.04/x title "O(h^2)" - - - - - -set output "data-singular/history.global.eps" - -plot "data-singular/history.global.gnuplot" using 1:2 title "L2 error","data-singular/history.global.gnuplot" using 1:3 title "Linfty error","data-singular/history.global.gnuplot" using 1:4 title "H1 error","data-singular/history.global.gnuplot" using 1:5 title "Estimated H1 error" - - -set output "data-singular/history.estimated_error.eps" - -plot "data-singular/history.estimated_error.gnuplot" using 1:2 title "L2 error","data-singular/history.estimated_error.gnuplot" using 1:3 title "Linfty error","data-singular/history.estimated_error.gnuplot" using 1:4 title "H1 error","data-singular/history.estimated_error.gnuplot" using 1:5 title "Estimated H1 error" - - -set output "data-singular/history.compare.eps" -plot "data-singular/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-singular/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", 1.1/x**0.33 title "O(h^2/3)", 2./sqrt(x) title "O(h)", "data-singular/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-singular/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error", 0.2/x**0.4 title "O(h^0.8)", 4./x title "O(h^2)" - - - - - - - -set output "data-kink/history.global.eps" - -plot "data-kink/history.global.gnuplot" using 1:2 title "L2 error","data-kink/history.global.gnuplot" using 1:3 title "Linfty error","data-kink/history.global.gnuplot" using 1:4 title "H1 error","data-kink/history.global.gnuplot" using 1:5 title "Estimated H1 error" - - -set output "data-kink/history.estimated_error.eps" - -plot "data-kink/history.estimated_error.gnuplot" using 1:2 title "L2 error","data-kink/history.estimated_error.gnuplot" using 1:3 title "Linfty error","data-kink/history.estimated_error.gnuplot" using 1:4 title "H1 error","data-kink/history.estimated_error.gnuplot" using 1:5 title "Estimated H1 error" - - -set output "data-kink/history.compare.eps" -plot "data-kink/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-kink/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", 5/x**0.25 title "O(h^1/2)", 20/x**0.5 title "O(h)", "data-kink/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-kink/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error", 1.5/sqrt(x) title "O(h)", 20/x**0.95 title "O(h^1.8)" - - - - -set parametric -set data style lines -set nologscale xy -set size 0.7,1 - -set output "data-gauss/finest_mesh.global.eps" -plot "data-gauss/global.finest_mesh.gnuplot" title "Finest mesh" - -set output "data-gauss/finest_mesh.true_error.eps" -plot "data-gauss/true_error.finest_mesh.gnuplot" title "Finest mesh" - -set output "data-gauss/finest_mesh.estimated_error.eps" -plot "data-gauss/estimated_error.finest_mesh.gnuplot" title "Finest mesh" - - - -set output "data-singular/finest_mesh.global.eps" -plot "data-singular/global.finest_mesh.gnuplot" title "Finest mesh" - -set output "data-singular/finest_mesh.estimated_error.eps" -plot "data-singular/estimated_error.finest_mesh.gnuplot" title "Finest mesh" - - - -set output "data-kink/finest_mesh.global.eps" -plot "data-kink/global.finest_mesh.gnuplot" title "Finest mesh" - -set output "data-kink/finest_mesh.estimated_error.eps" -plot "data-kink/estimated_error.finest_mesh.gnuplot" title "Finest mesh" diff --git a/deal.II/deal.II/Attic/examples/error-estimation/strip_comments b/deal.II/deal.II/Attic/examples/error-estimation/strip_comments deleted file mode 100755 index 779b6b16c7..0000000000 --- a/deal.II/deal.II/Attic/examples/error-estimation/strip_comments +++ /dev/null @@ -1 +0,0 @@ -perl -pi -e 's/^#.*$\\n//g' data-*/*.inp diff --git a/deal.II/deal.II/Attic/examples/grid/.cvsignore b/deal.II/deal.II/Attic/examples/grid/.cvsignore deleted file mode 100644 index d91582a08e..0000000000 --- a/deal.II/deal.II/Attic/examples/grid/.cvsignore +++ /dev/null @@ -1,4 +0,0 @@ -grid_test -Makefile.dep -*.go -*.o diff --git a/deal.II/deal.II/Attic/examples/grid/Makefile b/deal.II/deal.II/Attic/examples/grid/Makefile deleted file mode 100644 index 455e443c64..0000000000 --- a/deal.II/deal.II/Attic/examples/grid/Makefile +++ /dev/null @@ -1,178 +0,0 @@ -# $Id$ -# Copyright W. Bangerth, University of Heidelberg, 1998, 1999, 2000 - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = grid_test - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# As third field, we need to give the path to the top-level deal.II -# directory. You need to adjust this to your needs. Since this path is -# probably the most often needed one in the Makefile internals, it is -# designated by a single-character variable, since that can be -# reference using $D only, i.e. without the parentheses that are -# required for most other parameters, as e.g. in $(target). -D = ../../.. - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-deal2-3d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-deal2-3d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(flags) -o $@ $^ - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - ./$(target) 2 1 - ./$(target) 2 2 - ./$(target) 2 3 - ./$(target) 2 4 - ./$(target) 3 1 - ./$(target) 3 2 - ./$(target) 3 3 - ./$(target) 3 4 - - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/deal.II/deal.II/Attic/examples/grid/grid_test.cc b/deal.II/deal.II/Attic/examples/grid/grid_test.cc deleted file mode 100644 index c5d4c0800a..0000000000 --- a/deal.II/deal.II/Attic/examples/grid/grid_test.cc +++ /dev/null @@ -1,329 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - - -// 1: continuous refinement of the unit square always in the middle -// 2: refinement of the circle at the boundary -// 2: refinement of a wiggled area at the boundary -// 4: random refinement - - - - - -template -class Ball : - public StraightBoundary { - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const { - Point middle = StraightBoundary::get_new_point_on_line(line); - - for (int i=0; i - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const { - Point middle = StraightBoundary::get_new_point_on_quad(quad); - - for (int i=0; i -class CurvedLine : - public StraightBoundary { - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const; - - virtual Point - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const; -}; - - - -template -Point -CurvedLine::get_new_point_on_line (const typename Triangulation::line_iterator &line) const -{ - Point middle = StraightBoundary::get_new_point_on_line (line); - - // if the line is at the top of bottom - // face: do a special treatment on - // this line. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the line is like that - if (dim>=3) - if (((middle(2) == 0) || (middle(2) == 1)) - // find out, if the line is in the - // interior of the top or bottom face - // of the domain, or at the edge. - // lines at the edge need to undergo - // the usual treatment, while for - // interior lines taking the midpoint - // is sufficient - // - // note: the trick with the boundary - // id was invented after the above was - // written, so we are not very strict - // here with using these flags - && (line->boundary_indicator() == 1)) - return middle; - - - double x=middle(0), - y=middle(1); - - if (y -Point -CurvedLine::get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const -{ - Point middle = StraightBoundary::get_new_point_on_quad (quad); - - // if the face is at the top of bottom - // face: do not move the midpoint in - // x/y direction. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the quad is like that - if ((middle(2) == 0) || (middle(2) == 1)) - return middle; - - double x=middle(0), - y=middle(1); - - if (y -void test (const int test_case) { - cout << "Running testcase " << test_case - << " in " << dim << " dimensions." << endl; - Triangulation tria; - GridGenerator::hyper_cube(tria); - - if ((dim==1) && ((test_case==2) || (test_case==3))) - { - cout << "Impossible for this dimension." << endl; - return; - }; - - - switch (test_case) - { - case 1: - { - // we want to log the - // refinement history -// ofstream history ("mesh.history"); - - // refine first cell - tria.begin_active()->set_refine_flag(); -// tria.save_refine_flags (history); - tria.execute_coarsening_and_refinement (); - - // refine first active cell - // on coarsest level - tria.begin_active()->set_refine_flag (); -// tria.save_refine_flags (history); - tria.execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell; - for (int i=0; i<17; ++i) - { - // refine the presently - // second last cell 17 - // times - cell = tria.last_active(tria.n_levels()-1); - --cell; - cell->set_refine_flag (); -// tria.save_refine_flags (history); - tria.execute_coarsening_and_refinement (); - }; - -// tria.refine_global (5); - - break; - } - - case 2: - case 3: - { - if (dim==3) - { - tria.begin_active()->face(2)->set_boundary_indicator(1); - tria.begin_active()->face(4)->set_boundary_indicator(1); - }; - - - // set the boundary function - Ball ball; - CurvedLine curved_line; - if (test_case==2) - { - tria.set_boundary (0, ball); - tria.set_boundary (1, ball); - } else { - tria.set_boundary (0, curved_line); - tria.set_boundary (1, curved_line); - }; - - // refine once - tria.begin_active()->set_refine_flag(); - tria.execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell, endc; - const unsigned int steps[4] = { 0, 10, 7, 2 }; - for (unsigned int i=0; iat_boundary()) - cell->set_refine_flag(); - - tria.execute_coarsening_and_refinement(); - }; - - tria.set_boundary (0); - tria.set_boundary (1); - - break; - } - - case 4: - { - // refine once - tria.begin_active()->set_refine_flag(); - tria.execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell, endc; - for (int i=0; i<(dim==2 ? 13 : (dim==3 ? 7 : 30)); ++i) - { - int n_levels = tria.n_levels(); - cell = tria.begin_active(); - endc = tria.end(); - - for (; cell!=endc; ++cell) - { - double r = rand()*1.0/RAND_MAX, - weight = 1.* - (cell->level()*cell->level()) / - (n_levels*n_levels); - - if (r <= 0.5*weight) - cell->set_refine_flag (); - }; - - tria.execute_coarsening_and_refinement (); - }; - break; - } - }; - - - - // output the grid - string filename("results/"); - filename += ('0'+dim); - filename += "d."; - filename += ('0'+test_case); - filename += ".eps"; - - ofstream out(filename.c_str()); - GridOut grid_out; - GridOut::EpsFlags<3> eps_flags; - eps_flags.azimut_angle += 20; - eps_flags.turn_angle += 20; - grid_out.set_flags (eps_flags); - grid_out.write_eps (tria, out); - - cout << " Total number of cells = " << tria.n_cells() << endl - << " Total number of active cells = " << tria.n_active_cells() << endl; -}; - - - -int main (int argc, char **argv) { - if (argc!=3) - { - cout << "Usage: grid_test dimension testcase" << endl << endl - << "Dimension: 2 or 3" << endl << endl - << "Testcases:" << endl - << " 1: continuous refinement of the unit square/cube always in the middle" << endl - << " 2: refinement of the circle/sphere at the boundary" << endl - << " 3: refinement of a wiggled area at the boundary" << endl - << " 4: random refinement" << endl << endl; - return 1; - }; - - if (argv[1][0] == '2') - test<2> (argv[2][0]-'0'); - else - test<3> (argv[2][0]-'0'); - - return 0; -}; diff --git a/deal.II/deal.II/Attic/examples/grid/make_ps b/deal.II/deal.II/Attic/examples/grid/make_ps deleted file mode 100644 index 21782a3337..0000000000 --- a/deal.II/deal.II/Attic/examples/grid/make_ps +++ /dev/null @@ -1,43 +0,0 @@ -set size 0.721,1 -set data style lines -set noxtics -set noytics -set noztics -set noxzeroaxis -set noyzeroaxis -#set nozzeroaxis -set nokey -set term postscript eps - -!echo " Making " -set output "results/2d.1.eps" -plot "results/2d.1" - -!echo " Making " -set output "results/2d.2.eps" -plot "results/2d.2" - -!echo " Making " -set output "results/2d.3.eps" -plot "results/2d.3" - -!echo " Making " -set output "results/2d.4.eps" -plot "results/2d.4" - - -!echo " Making " -set output "results/3d.1.eps" -splot "results/3d.1" - -!echo " Making " -set output "results/3d.2.eps" -splot "results/3d.2" - -!echo " Making " -set output "results/3d.3.eps" -splot "results/3d.3" - -!echo " Making " -set output "results/3d.4.eps" -splot "results/3d.4" diff --git a/deal.II/deal.II/Attic/examples/grid/results/.cvsignore b/deal.II/deal.II/Attic/examples/grid/results/.cvsignore deleted file mode 100644 index 480cb8565d..0000000000 --- a/deal.II/deal.II/Attic/examples/grid/results/.cvsignore +++ /dev/null @@ -1 +0,0 @@ -?d.* diff --git a/deal.II/deal.II/Attic/examples/multigrid/.cvsignore b/deal.II/deal.II/Attic/examples/multigrid/.cvsignore deleted file mode 100644 index ab98be5ee1..0000000000 --- a/deal.II/deal.II/Attic/examples/multigrid/.cvsignore +++ /dev/null @@ -1,4 +0,0 @@ -multigrid -Makefile.dep -*.go -*.o diff --git a/deal.II/deal.II/Attic/examples/multigrid/Makefile b/deal.II/deal.II/Attic/examples/multigrid/Makefile deleted file mode 100644 index c0b78a5d49..0000000000 --- a/deal.II/deal.II/Attic/examples/multigrid/Makefile +++ /dev/null @@ -1,169 +0,0 @@ -# $Id$ -# Copyright W. Bangerth, University of Heidelberg, 1998, 1999, 2000 - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = multigrid - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# As third field, we need to give the path to the top-level deal.II -# directory. You need to adjust this to your needs. Since this path is -# probably the most often needed one in the Makefile internals, it is -# designated by a single-character variable, since that can be -# reference using $D only, i.e. without the parentheses that are -# required for most other parameters, as e.g. in $(target). -D = ../../.. - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(flags) -o $@ $^ - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - @./$(target) - gnuplot make_ps - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/deal.II/deal.II/Attic/examples/multigrid/make_ps b/deal.II/deal.II/Attic/examples/multigrid/make_ps deleted file mode 100644 index 76c13a8624..0000000000 --- a/deal.II/deal.II/Attic/examples/multigrid/make_ps +++ /dev/null @@ -1,52 +0,0 @@ -set term postscript eps -set xlabel "Number of degrees of freedom" -set data style linespoints -set logscale xy - - - -set ylabel "Error" - -set output "criss-cross.eps" - -plot "criss_cross.history" using 1:2 title "L1 error","criss_cross.history" using 1:3 title "L2 error","criss_cross.history" using 1:4 title "Linfty error","criss_cross.history" using 1:5 title "H1 seminorm error","criss_cross.history" using 1:6 title "H1 error" - - - -set output "linear.eps" - -plot "linear.history" using 1:2 title "L1 error","linear.history" using 1:3 title "L2 error","linear.history" using 1:4 title "Linfty error","linear.history" using 1:5 title "H1 seminorm error","linear.history" using 1:6 title "H1 error" - - - -set output "quadratic.eps" - -plot "quadratic.history" using 1:2 title "L1 error","quadratic.history" using 1:3 title "L2 error","quadratic.history" using 1:4 title "Linfty error","quadratic.history" using 1:5 title "H1 seminorm error","quadratic.history" using 1:6 title "H1 error" - - - -set output "cubic.eps" - -plot "cubic.history" using 1:2 title "L1 error","cubic.history" using 1:3 title "L2 error","cubic.history" using 1:4 title "Linfty error","cubic.history" using 1:5 title "H1 seminorm error","cubic.history" using 1:6 title "H1 error" - - - -set output "quartic.eps" - -plot "quartic.history" using 1:2 title "L1 error","quartic.history" using 1:3 title "L2 error","quartic.history" using 1:4 title "Linfty error","quartic.history" using 1:5 title "H1 seminorm error","quartic.history" using 1:6 title "H1 error" - - - -set output "l2error.eps" -set ylabel "L2-error" - -plot "criss_cross.history" using 1:3 title "Criss-cross elements", "linear.history" using 1:3 title "Linear elements", "quadratic.history" using 1:3 title "Quadratic elements", "cubic.history" using 1:3 title "Cubic elements", "quartic.history" using 1:3 title "Quartic elements" - - - -set output "h1error.eps" -set ylabel "H1-error" - -plot "criss_cross.history" using 1:6 title "Criss-cross elements", "linear.history" using 1:6 title "Linear elements", "quadratic.history" using 1:6 title "Quadratic elements", "cubic.history" using 1:6 title "Cubic elements", "quartic.history" using 1:6 title "Quartic elements" - - diff --git a/deal.II/deal.II/Attic/examples/multigrid/multigrid.cc b/deal.II/deal.II/Attic/examples/multigrid/multigrid.cc deleted file mode 100644 index efe706d682..0000000000 --- a/deal.II/deal.II/Attic/examples/multigrid/multigrid.cc +++ /dev/null @@ -1,515 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include -#include - -#include - -#include - - - -template -class LaplaceProblem -{ - public: - LaplaceProblem (); - ~LaplaceProblem (); - void run (); - - private: - void setup_system (); - void assemble_system (); - void solve (); - void refine_grid (); - void output_results (const unsigned int cycle) const; - - Triangulation triangulation; - MGDoFHandler mg_dof_handler; - - FEQ1 fe; - - ConstraintMatrix hanging_node_constraints; - - SparsityPattern global_sparsity_pattern; - SparseMatrix global_system_matrix; - - MGLevelObject level_sparsity_patterns; - MGLevelObject > level_system_matrices; - - Vector solution; - Vector system_rhs; -}; - - - -template -class Coefficient : public Function -{ - public: - virtual double value (const Point &p, - const unsigned int component = 0) const; - - virtual void value_list (const vector > &points, - vector &values, - const unsigned int component = 0) const; -}; - - - -template -double Coefficient::value (const Point &p, - const unsigned int) const -{ - if (p.square() < 0.5*0.5) - return 20; - else - return 1; -}; - - - -template -void Coefficient::value_list (const vector > &points, - vector &values, - const unsigned int component) const -{ - const unsigned int n_points = points.size(); - - Assert (values.size() == n_points, - ExcVectorHasWrongSize (values.size(), n_points)); - - Assert (component == 0, - ExcWrongComponent (component, 1)); - - for (unsigned int i=0; i > >matrices; - public: - MGSmootherLAC(MGLevelObject >&); - - virtual void smooth (const unsigned int level, - Vector &u, - const Vector &rhs) const; -}; - - -MGSmootherLAC::MGSmootherLAC(MGLevelObject >& matrix) - : - matrices(&matrix) -{} - - -void -MGSmootherLAC::smooth (const unsigned int level, - Vector &u, - const Vector &rhs) const -{ - SolverControl control(2,1.e-300,false,false); - PrimitiveVectorMemory<> mem; - SolverRichardson<> rich(control, mem); - PreconditionRelaxation<> - prec((*matrices)[level], &SparseMatrix ::template precondition_SSOR, 1.); - - rich.solve((*matrices)[level], u, rhs, prec); -} - - - -template -LaplaceProblem::LaplaceProblem () : - mg_dof_handler (triangulation) -{}; - - - -template -LaplaceProblem::~LaplaceProblem () -{ - mg_dof_handler.clear (); -}; - - - -template -void LaplaceProblem::setup_system () -{ - mg_dof_handler.distribute_dofs (fe); - - hanging_node_constraints.clear (); - DoFTools::make_hanging_node_constraints (mg_dof_handler, - hanging_node_constraints); - hanging_node_constraints.close (); - global_sparsity_pattern.reinit (mg_dof_handler.DoFHandler::n_dofs(), - mg_dof_handler.DoFHandler::n_dofs(), - mg_dof_handler.max_couplings_between_dofs()); - DoFTools::make_sparsity_pattern (mg_dof_handler, global_sparsity_pattern); - hanging_node_constraints.condense (global_sparsity_pattern); - global_sparsity_pattern.compress(); - - global_system_matrix.reinit (global_sparsity_pattern); - - solution.reinit (mg_dof_handler.DoFHandler::n_dofs()); - system_rhs.reinit (mg_dof_handler.DoFHandler::n_dofs()); - - - const unsigned int n_levels = triangulation.n_levels(); - level_system_matrices.resize (0, n_levels); - level_sparsity_patterns.resize (0, n_levels); - - for (unsigned int level=0; level -void LaplaceProblem::assemble_system () -{ - const Coefficient coefficient; - - QGauss2 quadrature_formula; - - FEValues fe_values (fe, quadrature_formula, - UpdateFlags(update_values | - update_gradients | - update_q_points | - update_JxW_values)); - - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const unsigned int n_q_points = quadrature_formula.n_quadrature_points; - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - Vector cell_rhs (dofs_per_cell); - - vector local_dof_indices (dofs_per_cell); - - // FIX - vector coefficient_values (n_q_points, 1.0); - - // not only active cells - MGDoFHandler::cell_iterator cell = mg_dof_handler.begin(), - endc = mg_dof_handler.end(); - for (; cell!=endc; ++cell) - { - cell_matrix.clear (); - cell_rhs.clear (); - - fe_values.reinit (cell); - const FullMatrix - & shape_values = fe_values.get_shape_values(); - const vector > > - & shape_grads = fe_values.get_shape_grads(); - const vector - & JxW_values = fe_values.get_JxW_values(); - const vector > - & q_points = fe_values.get_quadrature_points(); - - // FIX -// coefficient.value_list (q_points, coefficient_values); - - for (unsigned int q_point=0; q_pointget_mg_dof_indices (local_dof_indices); - const unsigned int level = cell->level(); - for (unsigned int i=0; iactive()) - { - cell->get_dof_indices (local_dof_indices); - for (unsigned int i=0; i boundary_values; -// VectorTools::interpolate_boundary_values (mg_dof_handler, -// 0, -// ZeroFunction(), -// boundary_values); -// MatrixTools::apply_boundary_values (boundary_values, -// global_system_matrix, -// solution, -// system_rhs); -}; - - - -template -void LaplaceProblem::solve () -{ - - { - SolverControl solver_control (1000, 1e-12); - PrimitiveVectorMemory<> vector_memory; - SolverCG<> cg (solver_control, vector_memory); - - SolverControl coarse_grid_solver_control (1000, 1e-12); - PrimitiveVectorMemory<> coarse_grid_vector_memory; - - SolverCG<> coarse_grid_cg (coarse_grid_solver_control, - coarse_grid_vector_memory); - -// PreconditionRelaxation<> -// coarse_grid_solver_preconditioner(level_system_matrices[level_system_matrices.get_minlevel()], -// &SparseMatrix::template precondition_SSOR, -// 1.2); - PreconditionIdentity coarse_grid_solver_preconditioner; - - MGCoarseGridLACIteration, SparseMatrix, PreconditionIdentity> - coarse_grid_solver (coarse_grid_cg, - level_system_matrices[level_system_matrices.get_minlevel()], - coarse_grid_solver_preconditioner); - - MGSmootherLAC smoother (level_system_matrices); - MGTransferPrebuilt grid_transfer; - grid_transfer.build_matrices (mg_dof_handler); - - Multigrid<2> multigrid (mg_dof_handler, - hanging_node_constraints, - level_sparsity_patterns, - level_system_matrices, - grid_transfer); - - PreconditionMG > - mg_precondition (multigrid, smoother, smoother, coarse_grid_solver); - - solution.clear (); - cg.solve (global_system_matrix, solution, system_rhs, - mg_precondition); - - cout << " MG Outer iterations: " << solver_control.last_step() - << endl; - - cout << " MG Total inner iterations: " << coarse_grid_solver_control.last_step() - << endl; - }; - - { - SolverControl solver_control (1000, 1e-12); - PrimitiveVectorMemory<> vector_memory; - SolverCG<> cg (solver_control, vector_memory); - - PreconditionRelaxation<> - preconditioner(global_system_matrix, - &SparseMatrix::template precondition_SSOR, - 1.2); - - solution.clear (); - cg.solve (global_system_matrix, solution, system_rhs, - preconditioner); - - cout << " CG Outer iterations: " << solver_control.last_step() - << endl; - }; - - hanging_node_constraints.distribute (solution); -}; - - -template -void LaplaceProblem::refine_grid () -{ - Vector estimated_error_per_cell (triangulation.n_active_cells()); - - KellyErrorEstimator::FunctionMap neumann_boundary; - KellyErrorEstimator::estimate (mg_dof_handler, - QGauss3(), - neumann_boundary, - solution, - estimated_error_per_cell); - - triangulation.refine_and_coarsen_fixed_number (estimated_error_per_cell, - 0.3, 0.03); - triangulation.execute_coarsening_and_refinement (); -}; - - - -template -void LaplaceProblem::output_results (const unsigned int cycle) const -{ - string filename = "grid-"; - filename += ('0' + cycle); - Assert (cycle < 10, ExcInternalError()); - - filename += ".eps"; - ofstream output (filename.c_str()); - - GridOut grid_out; - grid_out.write_eps (triangulation, output); -}; - - - -template -void LaplaceProblem::run () -{ - for (unsigned int cycle=0; cycle<8; ++cycle) - { - cout << "Cycle " << cycle << ':' << endl; - - if (cycle == 0) - { - GridGenerator::hyper_cube (triangulation); - triangulation.refine_global (1); - } - else - { - refine_grid (); - }; - - - cout << " Number of active cells: " - << triangulation.n_active_cells() - << endl; - - setup_system (); - - cout << " Number of degrees of freedom: " - << mg_dof_handler.DoFHandler::n_dofs() - << endl; - - assemble_system (); - solve (); - output_results (cycle); - - DataOut::EpsFlags eps_flags; - eps_flags.z_scaling = 4; - - DataOut data_out; - data_out.set_flags (eps_flags); - - data_out.attach_dof_handler (mg_dof_handler); - data_out.add_data_vector (solution, "solution"); - data_out.build_patches (); - - ofstream output ("final-solution.eps"); - data_out.write_eps (output); - }; -}; - - - -int main () -{ - try - { - deallog.depth_console (0); - - LaplaceProblem<2> laplace_problem_2d; - laplace_problem_2d.run (); - } - catch (exception &exc) - { - cerr << endl << endl - << "----------------------------------------------------" - << endl; - cerr << "Exception on processing: " << endl - << exc.what() << endl - << "Aborting!" << endl - << "----------------------------------------------------" - << endl; - return 1; - } - catch (...) - { - cerr << endl << endl - << "----------------------------------------------------" - << endl; - cerr << "Unknown exception!" << endl - << "Aborting!" << endl - << "----------------------------------------------------" - << endl; - return 1; - }; - - return 0; -}; diff --git a/deal.II/deal.II/Attic/examples/nonlinear/fixed-point-iteration/Makefile b/deal.II/deal.II/Attic/examples/nonlinear/fixed-point-iteration/Makefile deleted file mode 100644 index 0010ae461f..0000000000 --- a/deal.II/deal.II/Attic/examples/nonlinear/fixed-point-iteration/Makefile +++ /dev/null @@ -1,133 +0,0 @@ -# $Id$ -# Copyright W. Bangerth, University of Heidelberg, 1998 - -# Template for makefiles for the examples subdirectory. In principle, -# everything should be done automatically if you set the target file -# here correctly: -target = nonlinear - -# All dependencies between files should be updated by the included -# file Makefile.dep if necessary. Object files are compiled into -# the archives ./Obj.a and ./Obj.g.a. By default, the debug version -# is used to link. It you don't like that, change the following -# variable to "off" -debug-mode = off - -# If you want your program to be linked with extra object or library -# files, specify them here: -user-libs = - -# To run the program, use "make run"; to give parameters to the program, -# give the parameters to the following variable: -run-parameters = $(target).prm - -# To execute additional action apart from running the program, fill -# in this list: -additional-run-action = gnuplot make_ps - -# To specify which files are to be deleted by "make clean" (apart from -# the usual ones: object files, executables, backups, etc), fill in the -# following list -delete-files = gnuplot* *.eps - - - - -############################################################################### -# Internals - -#deal include base path -D = ../../../.. - -include ../../../Make.global_options - - - -# get lists of files we need -cc-files = $(filter-out *%, $(shell echo *.cc)) -o-files = $(cc-files:.cc=.o) -go-files = $(cc-files:.cc=.go) -h-files = $(filter-out *%, $(shell echo *.h)) -lib-h-files = $(filter-out *%, $(shell echo ../../include/*.h)) - -# list of libraries needed to link with -libs.g = ./Obj.g.a \ - $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs = ./Obj.a \ - $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# check whether we use debug mode or not -ifeq ($(debug-mode),on) -libraries = $(libs.g) -flags = $(CXXFLAGS.g) -endif - -ifeq ($(debug-mode),off) -libraries = $(libs) -flags = $(CXXFLAGS) -endif - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - -# make rule for the target -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(flags) -o $@ $^ $(user-libs) - -# rule how to run the program -run: $(target) - $(target) $(run-parameters) - $(additional-run-action) - - -# rule to make object files -%.go : %.cc - @echo ============================ Compiling with debugging information: $< - @echo $(CXX) ... -c $< -o $@ - @$(CXX) $(CXXFLAGS.g) -c $< -o $@ -%.o : %.cc - @echo ============================ Compiling with optimization: $< - @echo $(CXX) ... -c $< -o $@ - @$(CXX) $(CXXFLAGS) -c $< -o $@ - - -# rules which files the libraries depend upon -Obj.a: ./Obj.a($(o-files)) -Obj.g.a: ./Obj.g.a($(go-files)) - - -clean: - -rm -f *.o *.go *~ Makefile.dep Obj.a Obj.g.a $(target) $(delete-files) - - - -.PHONY: clean - - -#Rule to generate the dependency file. This file is -#automagically remade whenever needed, i.e. whenever -#one of the cc-/h-files changed. Make detects whether -#to remake this file upon inclusion at the bottom -#of this file. -# -#use perl to generate rules for the .go files as well -#as to make rules not for tria.o and the like, but -#rather for libnumerics.a(tria.o) -Makefile.dep: $(cc-files) $(h-files) $(lib-h-files) - @echo ============================ Remaking Makefile - @perl ../../../Make_dep.pl ./Obj $(INCLUDE) $(cc-files) \ - > Makefile.dep - - -include Makefile.dep - diff --git a/deal.II/deal.II/Attic/examples/nonlinear/fixed-point-iteration/nonlinear.cc b/deal.II/deal.II/Attic/examples/nonlinear/fixed-point-iteration/nonlinear.cc deleted file mode 100644 index 30155302fa..0000000000 --- a/deal.II/deal.II/Attic/examples/nonlinear/fixed-point-iteration/nonlinear.cc +++ /dev/null @@ -1,253 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include - - - - - -template -class RightHandSide : public Function -{ - public: - double value (const Point &p) const - { - double x = 80; - for (unsigned int d=0; d -class PoissonEquation : public Equation { - public: - PoissonEquation (const Function &rhs, - const Vector &last_solution) : - Equation(1), - right_hand_side (rhs), - last_solution(last_solution) {}; - - virtual void assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (FullMatrix &cell_matrix, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - protected: - const Function &right_hand_side; - const Vector &last_solution; -}; - - - - - - -template -class NonlinearProblem : public ProblemBase { - public: - NonlinearProblem (); - void run (); - - protected: - Triangulation *tria; - DoFHandler *dof; - - Vector last_solution; -}; - - - - -template -void PoissonEquation::assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &) const { - const vector > >&gradients = fe_values.get_shape_grads (); - const FullMatrix &values = fe_values.get_shape_values (); - vector rhs_values (fe_values.n_quadrature_points); - const vector &weights = fe_values.get_JxW_values (); - - vector > last_solution_grads(fe_values.n_quadrature_points); - fe_values.get_function_grads (last_solution, last_solution_grads); - - - right_hand_side.value_list (fe_values.get_quadrature_points(), rhs_values); - - for (unsigned int point=0; point -void PoissonEquation::assemble (FullMatrix &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, ExcPureVirtualFunctionCalled()); -}; - - - -template -void PoissonEquation::assemble (Vector &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, ExcPureVirtualFunctionCalled()); -}; - - - - -template -NonlinearProblem::NonlinearProblem () : - tria(0), dof(0) {}; - - - -template -void NonlinearProblem::run () { - - // first reset everything to a virgin state - clear (); - - tria = new Triangulation(); - dof = new DoFHandler (tria); - set_tria_and_dof (tria, dof); - - - RightHandSide rhs; - ZeroFunction boundary_values; - StraightBoundary boundary; - - FELinear fe; - PoissonEquation equation (rhs, last_solution); - QGauss2 quadrature; - - ProblemBase::FunctionMap dirichlet_bc; - dirichlet_bc[0] = &boundary_values; - - - GridGenerator::hypercube (*tria); - tria->refine_global (4); - - for (unsigned int refinement_step=0; refinement_step<10; ++refinement_step) - { - cout << "Refinement step " << refinement_step << endl - << " Grid has " << tria->n_active_cells() << " active cells." << endl; - - cout << " Distributing dofs... "; - dof->distribute_dofs (fe); - cout << dof->n_dofs() << " degrees of freedom." << endl; - - // set the starting values for the iteration - // to a constant value of 1 - last_solution.reinit (dof->n_dofs()); - for (unsigned int i=0; in_dofs(); ++i) - last_solution(i) = 1; - - - // here comes the fixed point iteration - for (unsigned int nonlinear_step=0; nonlinear_step<10; ++nonlinear_step) - { - cout << " Nonlinear step " << nonlinear_step << endl; - cout << " Assembling matrices..." << endl; - assemble (equation, quadrature, fe, - UpdateFlags(update_values | update_gradients | - update_JxW_values | update_q_points), - dirichlet_bc); - - cout << " Solving..." << endl; - solve (); - - if (nonlinear_step % 2 == 0) - { - string filename = "nonlinear."; - filename += ('0' + refinement_step); - filename += '.'; - filename += ('0' + (nonlinear_step/2)); - filename += ".gnuplot"; - cout << " Writing to file <" << filename << ">..." << endl; - - DataOut out; - ofstream gnuplot(filename.c_str()); - fill_data (out); - out.write_gnuplot (gnuplot); - gnuplot.close (); - }; - - last_solution = solution; - }; - - Vector error_indicator; - KellyErrorEstimator ee; - QSimpson eq; - ee.estimate_error (*dof, eq, fe, - KellyErrorEstimator::FunctionMap(), - solution, - error_indicator); - tria->refine_and_coarsen_fixed_number (error_indicator, 0.3, 0); - tria->execute_coarsening_and_refinement (); - }; - - - delete dof; - delete tria; - - cout << endl; -}; - - - - -int main () -{ - NonlinearProblem<2> problem; - problem.run (); -}; diff --git a/deal.II/deal.II/Attic/examples/poisson/.cvsignore b/deal.II/deal.II/Attic/examples/poisson/.cvsignore deleted file mode 100644 index 572d49119c..0000000000 --- a/deal.II/deal.II/Attic/examples/poisson/.cvsignore +++ /dev/null @@ -1,6 +0,0 @@ -poisson -Makefile.dep -*.go -Makefile.dep -*.go -*.o diff --git a/deal.II/deal.II/Attic/examples/poisson/Makefile b/deal.II/deal.II/Attic/examples/poisson/Makefile deleted file mode 100644 index 2c1e787bc5..0000000000 --- a/deal.II/deal.II/Attic/examples/poisson/Makefile +++ /dev/null @@ -1,134 +0,0 @@ -# $Id$ -# Copyright W. Bangerth, University of Heidelberg, 1998 - -# Template for makefiles for the examples subdirectory. In principle, -# everything should be done automatically if you set the target file -# here correctly: -target = poisson - -# All dependencies between files should be updated by the included -# file Makefile.dep if necessary. Object files are compiled into -# the archives ./Obj.a and ./Obj.g.a. By default, the debug version -# is used to link. It you don't like that, change the following -# variable to "off" -debug-mode = on - -# If you want your program to be linked with extra object or library -# files, specify them here: -user-libs = - -# To run the program, use "make run"; to give parameters to the program, -# give the parameters to the following variable: -run-parameters = $(target).prm - -# To execute additional action apart from running the program, fill -# in this list: -additional-run-action = cd results ; gnuplot make_ps - -# To specify which files are to be deleted by "make clean" (apart from -# the usual ones: object files, executables, backups, etc), fill in the -# following list -delete-files = results/*gnuplot results/*.eps - - - - -############################################################################### -# Internals - -#deal include base path -D = ../../.. - -include $D/common/Make.global_options - - - -# get lists of files we need -cc-files = $(filter-out *%, $(shell echo *.cc)) -o-files = $(cc-files:.cc=.o) -go-files = $(cc-files:.cc=.go) -h-files = $(filter-out *%, $(shell echo *.h)) -lib-h-files = $(filter-out *%, $(shell echo ../../include/*/*.h)) - -# list of libraries needed to link with -libs.g = ./Obj.g.a \ - $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs = ./Obj.a \ - $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - - -# check whether we use debug mode or not -ifeq ($(debug-mode),on) -libraries = $(libs.g) -flags = $(CXXFLAGS.g) -endif - -ifeq ($(debug-mode),off) -libraries = $(libs) -flags = $(CXXFLAGS) -endif - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - -# make rule for the target -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(flags) -o $@ $^ $(user-libs) - -# rule how to run the program -run: $(target) - ./$(target) $(run-parameters) - $(additional-run-action) - - -# rule to make object files -%.go : %.cc - @echo ============================ Compiling with debugging information: $< - @echo $(CXX) ... -c $< -o $@ - @$(CXX) $(CXXFLAGS.g) -c $< -o $@ -%.o : %.cc - @echo ============================ Compiling with optimization: $< - @echo $(CXX) ... -c $< -o $@ - @$(CXX) $(CXXFLAGS.o) -c $< -o $@ - - -# rules which files the libraries depend upon -Obj.a: ./Obj.a($(o-files)) -Obj.g.a: ./Obj.g.a($(go-files)) - - -clean: - -rm -f *.o *.go *~ Makefile.dep Obj.a Obj.g.a $(target) $(delete-files) - - - -.PHONY: clean - - -#Rule to generate the dependency file. This file is -#automagically remade whenever needed, i.e. whenever -#one of the cc-/h-files changed. Make detects whether -#to remake this file upon inclusion at the bottom -#of this file. -# -#use perl to generate rules for the .go files as well -#as to make rules not for tria.o and the like, but -#rather for libnumerics.a(tria.o) -Makefile.dep: $(cc-files) $(h-files) $(lib-h-files) - @echo ============================ Remaking Makefile - @perl $D/common/scripts/Make_dep.pl ./Obj $(INCLUDE) $(cc-files) \ - > Makefile.dep - - -include Makefile.dep - diff --git a/deal.II/deal.II/Attic/examples/poisson/equation.cc b/deal.II/deal.II/Attic/examples/poisson/equation.cc deleted file mode 100644 index 9610c7e888..0000000000 --- a/deal.II/deal.II/Attic/examples/poisson/equation.cc +++ /dev/null @@ -1,86 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - -#include "poisson.h" -#include - - - -#if deal_II_dimension == 1 - -template <> -void PoissonEquation<1>::assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues<1> &fe_values, - const DoFHandler<1>::cell_iterator &) const { - for (unsigned int point=0; point= 2 - -template -void PoissonEquation::assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &) const { - const vector > >&gradients = fe_values.get_shape_grads (); - const FullMatrix &values = fe_values.get_shape_values (); - vector rhs_values (fe_values.n_quadrature_points); - const vector &weights = fe_values.get_JxW_values (); - - right_hand_side.value_list (fe_values.get_quadrature_points(), rhs_values); - - for (unsigned int point=0; point -void PoissonEquation::assemble (FullMatrix &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, ExcPureVirtualFunctionCalled()); -}; - - - -template -void PoissonEquation::assemble (Vector &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, ExcPureVirtualFunctionCalled()); -}; - - - - - - -template class PoissonEquation<2>; diff --git a/deal.II/deal.II/Attic/examples/poisson/poisson.cc b/deal.II/deal.II/Attic/examples/poisson/poisson.cc deleted file mode 100644 index bbfa7841ea..0000000000 --- a/deal.II/deal.II/Attic/examples/poisson/poisson.cc +++ /dev/null @@ -1,29 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - - -#include "poisson.h" -#include -#include - - -int main (int argc, char **argv) { - if (argc!=2) - { - cout << "Usage: poisson parameterfile" << endl << endl; - return 1; - }; - - // no additional output to console - deallog.depth_console (0); - - PoissonProblem<2> poisson; - MultipleParameterLoop input_data; - - poisson.declare_parameters(input_data); - input_data.read_input (argv[1]); - input_data.loop (poisson); - - return 0; -}; diff --git a/deal.II/deal.II/Attic/examples/poisson/poisson.h b/deal.II/deal.II/Attic/examples/poisson/poisson.h deleted file mode 100644 index ece30b3451..0000000000 --- a/deal.II/deal.II/Attic/examples/poisson/poisson.h +++ /dev/null @@ -1,101 +0,0 @@ -/*---------------------------- poisson.h ---------------------------*/ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ -#ifndef __poisson_H -#define __poisson_H -/*---------------------------- poisson.h ---------------------------*/ - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - -#include -#include -#include -#include - - - - - - - -template -class PoissonEquation : public Equation { - public: - PoissonEquation (const Function &rhs) : - Equation(1), - right_hand_side (rhs) {}; - - virtual void assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (FullMatrix &cell_matrix, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - protected: - const Function &right_hand_side; -}; - - - - - - -template -class PoissonProblem : public ProblemBase, - public MultipleParameterLoop::UserClass { - public: - PoissonProblem (); - virtual ~PoissonProblem(); - - void clear (); - - virtual void create_new (const unsigned int run_no); - virtual void declare_parameters (ParameterHandler &prm); - virtual void run (ParameterHandler &prm); - - - bool make_grid (ParameterHandler &prm); - void make_zoom_in_grid (); - void make_random_grid (); - - bool set_right_hand_side (ParameterHandler &prm); - bool set_boundary_values (ParameterHandler &prm); - - protected: - Triangulation *tria; - DoFHandler *dof; - - Function *rhs; - Function *boundary_values; - - Boundary *boundary; -}; - - - - - -/*---------------------------- poisson.h ---------------------------*/ -/* end of #ifndef __poisson_H */ -#endif -/*---------------------------- poisson.h ---------------------------*/ diff --git a/deal.II/deal.II/Attic/examples/poisson/poisson.prm b/deal.II/deal.II/Attic/examples/poisson/poisson.prm deleted file mode 100644 index 434c6ff65f..0000000000 --- a/deal.II/deal.II/Attic/examples/poisson/poisson.prm +++ /dev/null @@ -1,5 +0,0 @@ -set Test run = { zoom in | ball | curved line | random | jump | L-region | slit domain} -set Global refinement = {{ 2 | 5 | 6 | 0 | 3 | 5 | 5 }} -set Right hand side = {{ zero | zero | trigpoly | constant | zero | zero | poly }} -set Boundary values = {{ sine | sine | zero | zero | jump | sine | sine }} -set Output file = results/{{ zoom_in | ball | curved_line | random | jump | L-region | slit_domain }}.gnuplot diff --git a/deal.II/deal.II/Attic/examples/poisson/problem.cc b/deal.II/deal.II/Attic/examples/poisson/problem.cc deleted file mode 100644 index b5de827b16..0000000000 --- a/deal.II/deal.II/Attic/examples/poisson/problem.cc +++ /dev/null @@ -1,622 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - - -#include "poisson.h" -#include -#include -#include -#include - - -template -class BoundaryValuesSine : public Function { - public: - /** - * Return the value of the function - * at the given point. - */ - virtual double value (const Point &p, - const unsigned int component) const { - Assert (component==0, ExcIndexRange (component, 0, 1)); - - double x = 1; - - for (unsigned int i=0; i &p, - Vector &values) const { - Assert (values.size()==1, ExcVectorHasWrongSize (values.size(), 1)); - - double x = 1; - - for (unsigned int i=0; i > &points, - vector &values, - const unsigned int component) const { - Assert (values.size() == points.size(), - ExcVectorHasWrongSize(values.size(), points.size())); - for (unsigned int i=0; i::value (points[i], component); - }; -}; - - - -template -class BoundaryValuesJump : public Function { - public: - /** - * Return the value of the function - * at the given point. - */ - virtual double value (const Point &p, - const unsigned int component) const { - Assert (component==0, ExcIndexRange (component, 0, 1)); - switch (dim) - { - case 1: - return 0; - default: - if (p(0) == p(1)) - return 0.5; - else - return (p(0)>p(1) ? 0. : 1.); - }; - }; -}; - - - - -template -class RHSTrigPoly : public Function { - public: - /** - * Return the value of the function - * at the given point. - */ - virtual double value (const Point &p, - const unsigned int) const; -}; - - - -/** - Right hand side constructed such that the exact solution is - $x(1-x)$ in 1d, $x(1-x)*y(1-y)$ in 2d, etc. - */ -template -class RHSPoly : public Function { - public: - /** - * Return the value of the function - * at the given point. - */ - virtual double value (const Point &p, - const unsigned int) const; -}; - - - - - - - - - -template -class CurvedLine : - public StraightBoundary { - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const; - - virtual Point - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const; -}; - - - -template -Point -CurvedLine::get_new_point_on_line (const typename Triangulation::line_iterator &line) const -{ - Point middle = StraightBoundary::get_new_point_on_line (line); - - // if the line is at the top of bottom - // face: do a special treatment on - // this line. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the line is like that - if (dim>=3) - if (((middle(2) == 0) || (middle(2) == 1)) - // find out, if the line is in the - // interior of the top or bottom face - // of the domain, or at the edge. - // lines at the edge need to undergo - // the usual treatment, while for - // interior lines taking the midpoint - // is sufficient - // - // note: the trick with the boundary - // id was invented after the above was - // written, so we are not very strict - // here with using these flags - && (line->boundary_indicator() == 1)) - return middle; - - - double x=middle(0), - y=middle(1); - - if (y -Point -CurvedLine::get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const -{ - Point middle = StraightBoundary::get_new_point_on_quad (quad); - - // if the face is at the top of bottom - // face: do not move the midpoint in - // x/y direction. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the quad is like that - if ((middle(2) == 0) || (middle(2) == 1)) - return middle; - - double x=middle(0), - y=middle(1); - - if (y -double RHSTrigPoly::value (const Point &p, - const unsigned int component) const { - Assert (component==0, ExcIndexRange (component, 0, 1)); - - const double pi = 3.1415926536; - switch (dim) - { - case 1: - return p(0)*p(0)*cos(2*pi*p(0)); - case 2: - return (-2.0*cos(pi*p(0)/2)*p(1)*sin(pi*p(1)) + - 2.0*p(0)*sin(pi*p(0)/2)*pi*p(1)*sin(pi*p(1)) + - 5.0/4.0*p(0)*p(0)*cos(pi*p(0)/2)*pi*pi*p(1)*sin(pi*p(1)) - - 2.0*p(0)*p(0)*cos(pi*p(0)/2)*cos(pi*p(1))*pi); - default: - return 0; - }; -}; - - - -template -double RHSPoly::value (const Point &p, - const unsigned int component) const { - Assert (component==0, ExcIndexRange (component, 0, 1)); - - double ret_val = 0; - for (unsigned int i=0; i -PoissonProblem::PoissonProblem () : - tria(0), dof(0), rhs(0), boundary_values(0), boundary(0) {}; - - - -template -PoissonProblem::~PoissonProblem () -{ - clear (); -}; - - - -template -void PoissonProblem::clear () { - if (dof != 0) { - delete dof; - dof = 0; - }; - - if (boundary != 0) - { - tria->set_boundary (0); - delete boundary; - boundary = 0; - }; - - if (tria != 0) { - delete tria; - tria = 0; - }; - - // make it known to the underlying - // ProblemBase that tria and dof - // are already deleted - set_tria_and_dof (tria, dof); - - - if (rhs != 0) - { - delete rhs; - rhs = 0; - }; - - if (boundary_values != 0) - { - delete boundary_values; - boundary_values = 0; - }; - - ProblemBase::clear (); -}; - - - - -template -void PoissonProblem::create_new (const unsigned int) { - clear (); - - tria = new Triangulation(); - dof = new DoFHandler (*tria); - set_tria_and_dof (tria, dof); -}; - - - - -template -void PoissonProblem::declare_parameters (ParameterHandler &prm) { - if (dim>=2) - prm.declare_entry ("Test run", "zoom in", - Patterns::Selection("tensor|zoom in|ball|curved line|" - "random|jump|L-region|slit domain")); - else - prm.declare_entry ("Test run", "zoom in", - Patterns::Selection("tensor|zoom in|random")); - - prm.declare_entry ("Global refinement", "0", - Patterns::Integer()); - prm.declare_entry ("Right hand side", "zero", - Patterns::Selection("zero|constant|trigpoly|poly")); - prm.declare_entry ("Boundary values", "zero", - Patterns::Selection("zero|sine|jump")); - prm.declare_entry ("Output file", "gnuplot.1"); -}; - - - - -template -bool PoissonProblem::make_grid (ParameterHandler &prm) { - string test = prm.get ("Test run"); - unsigned int test_case; - if (test=="zoom in") test_case = 1; - else - if (test=="ball") test_case = 2; - else - if (test=="curved line") test_case = 3; - else - if (test=="random") test_case = 4; - else - if (test=="tensor") test_case = 5; - else - if (test=="jump") test_case = 6; - else - if (test=="L-region") test_case = 7; - else - if (test=="slit domain") test_case = 8; - else - { - cerr << "This test seems not to be implemented!" << endl; - return false; - }; - - switch (test_case) - { - case 1: - boundary = new StraightBoundary(); - tria->set_boundary (0, *boundary); - make_zoom_in_grid (); - break; - case 2: - // make ball grid around origin with - // unit radius - { - static const Point origin; - boundary = new HyperBallBoundary(origin, 1.); - GridGenerator::hyper_ball (*tria, origin, 1.); - tria->set_boundary (0, *boundary); - break; - }; - case 3: - // set the boundary function - { - boundary = new CurvedLine(); - GridGenerator::hyper_cube (*tria); - tria->set_boundary (0, *boundary); - break; - }; - case 4: - boundary = new StraightBoundary(); - tria->set_boundary (0, *boundary); - make_random_grid (); - break; - case 5: - boundary = new StraightBoundary(); - tria->set_boundary (0, *boundary); - GridGenerator::hyper_cube (*tria); - break; - case 6: - boundary = new StraightBoundary(); - tria->set_boundary (0, *boundary); - GridGenerator::hyper_cube (*tria); - tria->refine_global (1); - for (unsigned int i=0; i<5; ++i) - { - tria->begin_active(tria->n_levels()-1)->set_refine_flag(); - (--(tria->last_active()))->set_refine_flag(); - tria->execute_coarsening_and_refinement (); - }; - break; - case 7: - boundary = new StraightBoundary(); - tria->set_boundary (0, *boundary); - GridGenerator::hyper_L (*tria); - break; - case 8: - boundary = new StraightBoundary(); - tria->set_boundary (0, *boundary); - GridGenerator::hyper_cube_slit (*tria); - break; - default: - return false; - }; - - int refine_global = prm.get_integer ("Global refinement"); - if ((refine_global < 0) || (refine_global>10)) - return false; - else - tria->refine_global (refine_global); - - return true; -}; - - - - -template -void PoissonProblem::make_zoom_in_grid () { - GridGenerator::hyper_cube (*tria); - - // refine first cell - tria->begin_active()->set_refine_flag(); - tria->execute_coarsening_and_refinement (); - // refine first active cell - // on coarsest level - tria->begin_active()->set_refine_flag (); - tria->execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell; - for (int i=0; i<(dim==3 ? 5 : 17); ++i) - { - // refine the presently - // second last cell several - // times - cell = tria->last_active(tria->n_levels()-1); - --cell; - cell->set_refine_flag (); - tria->execute_coarsening_and_refinement (); - }; -}; - - - - -template -void PoissonProblem::make_random_grid () { - GridGenerator::hyper_cube (*tria); - tria->refine_global (1); - - Triangulation::active_cell_iterator cell, endc; - for (int i=0; i<(dim==3 ? 7 : 12); ++i) - { - int n_levels = tria->n_levels(); - cell = tria->begin_active(); - endc = tria->end(); - - for (; cell!=endc; ++cell) - { - double r = rand()*1.0/RAND_MAX, - weight = 1.* - (cell->level()*cell->level()) / - (n_levels*n_levels); - - if (r <= 0.5*weight) - cell->set_refine_flag (); - }; - - tria->execute_coarsening_and_refinement (); - }; -}; - - - - -template -bool PoissonProblem::set_right_hand_side (ParameterHandler &prm) { - string rhs_name = prm.get ("Right hand side"); - - if (rhs_name == "zero") - rhs = new ZeroFunction(); - else - if (rhs_name == "constant") - rhs = new ConstantFunction(1.); - else - if (rhs_name == "trigpoly") - rhs = new RHSTrigPoly(); - else - if (rhs_name == "poly") - rhs = new RHSPoly (); - else - return false; - - if (rhs != 0) - return true; - else - return false; -}; - - - -template -bool PoissonProblem::set_boundary_values (ParameterHandler &prm) { - string bv_name = prm.get ("Boundary values"); - - if (bv_name == "zero") - boundary_values = new ZeroFunction (); - else - if (bv_name == "sine") - boundary_values = new BoundaryValuesSine (); - else - if (bv_name == "jump") - boundary_values = new BoundaryValuesJump (); - else - { - cout << "Unknown boundary value function " << bv_name << endl; - return false; - }; - - if (boundary_values != 0) - return true; - else - return false; -}; - - - - -template -void PoissonProblem::run (ParameterHandler &prm) { - cout << "Test case = " << prm.get ("Test run") - << endl; - - cout << " Making grid... "; - if (!make_grid (prm)) - return; - cout << tria->n_active_cells() << " active cells." << endl; - - if (!set_right_hand_side (prm)) - return; - - if (!set_boundary_values (prm)) - return; - - FEQ1 fe; - PoissonEquation equation (*rhs); - QGauss2 quadrature; - - cout << " Distributing dofs... "; - dof->distribute_dofs (fe); - cout << dof->n_dofs() << " degrees of freedom." << endl; - - cout << " Assembling matrices..." << endl; - ProblemBase::FunctionMap dirichlet_bc; - dirichlet_bc[0] = boundary_values; - assemble (equation, quadrature, - UpdateFlags(update_values | update_gradients | - update_JxW_values | update_q_points), - dirichlet_bc); - - cout << " Solving..." << endl; - solve (); - - cout << " Writing to file <" << prm.get("Output file") << ">..." - << endl; - - DataOut out; - string o_filename = prm.get ("Output file"); - ofstream gnuplot(o_filename.c_str()); - out.attach_dof_handler (*dof_handler); - out.add_data_vector (solution, "solution"); - out.build_patches (); - out.write_gnuplot (gnuplot); - gnuplot.close (); - - // release the lock of the DoF object to - // the FE object - dof->clear (); - - cout << endl; -}; - - - - - -template class PoissonProblem<2>; diff --git a/deal.II/deal.II/Attic/examples/poisson/results/.cvsignore b/deal.II/deal.II/Attic/examples/poisson/results/.cvsignore deleted file mode 100644 index acabd78095..0000000000 --- a/deal.II/deal.II/Attic/examples/poisson/results/.cvsignore +++ /dev/null @@ -1,2 +0,0 @@ -*.gnuplot -*.eps diff --git a/deal.II/deal.II/Attic/examples/poisson/results/make_ps b/deal.II/deal.II/Attic/examples/poisson/results/make_ps deleted file mode 100644 index df05475d6b..0000000000 --- a/deal.II/deal.II/Attic/examples/poisson/results/make_ps +++ /dev/null @@ -1,38 +0,0 @@ -set data style lines -set noxtics -set noytics -set noztics -set nokey -set para -set hidden3d -set term postscript eps - -!echo " Making " -set output "zoom_in.eps" -splot "zoom_in.gnuplot" - -!echo " Making " -set output "ball.eps" -splot "ball.gnuplot" - -!echo " Making " -set output "curved_line.eps" -splot "curved_line.gnuplot" - -!echo " Making " -set output "random.eps" -splot "random.gnuplot" - -!echo " Making " -set output "jump.eps" -splot "jump.gnuplot" - -!echo " Making " -set view 52,115 -set output "L-region.eps" -splot "L-region.gnuplot" - -!echo " Making " -set view 52,115 -set output "slit_domain.eps" -splot "slit_domain.gnuplot" diff --git a/deal.II/deal.II/Attic/examples/step-by-step/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/Makefile deleted file mode 100644 index 6cf1272375..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/Makefile +++ /dev/null @@ -1,36 +0,0 @@ -# $Id$ -# -# This Makefile only recurses into the subdirs - - -# existing examples. take dirnames and strip 'step' -steps = $(shell echo step-*) - - -# default is: build all examples. for each example, there is a target -# build-step-N, where N in [1...] -default: $(addprefix build-,$(steps)) - -# run example programs; make a target run-step-N for each N -run: $(addprefix run-,$(steps)) - -# clean subdirs; make a target clean-step-N for each N -clean: $(addprefix clean-,$(steps)) - - - -# for each build/run/clean target: strip the build- prefix of the -# target and build in that directory -build-step-%: - cd $(@:build-%=%) ; $(MAKE) -run-step-%: - cd $(@:run-%=%) ; $(MAKE) run -clean-step-%: - cd $(@:clean-%=%) ; $(MAKE) clean - - -# all targets in this directory do not produce files, so they are -# .PHONY: -.PHONY: $(addprefix build-step-,$(steps)) \ - $(addprefix run-step-,$(steps)) \ - $(addprefix clean-step-,$(steps)) diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-1/.cvsignore b/deal.II/deal.II/Attic/examples/step-by-step/step-1/.cvsignore deleted file mode 100644 index ca83da2788..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-1/.cvsignore +++ /dev/null @@ -1,2 +0,0 @@ -*.o *.go Makefile.dep *.gnuplot *.gmv *.eps -step-1 diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-1/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-1/Makefile deleted file mode 100644 index 445913746c..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-1/Makefile +++ /dev/null @@ -1,167 +0,0 @@ -# $Id$ - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = $(basename $(shell echo step-*.cc)) - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# As third field, we need to give the path to the top-level deal.II -# directory. You need to adjust this to your needs. Since this path is -# probably the most often needed one in the Makefile internals, it is -# designated by a single-character variable, since that can be -# reference using $D only, i.e. without the parentheses that are -# required for most other parameters, as e.g. in $(target). -D = ../../../../ - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(flags) -o $@ $^ - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - @./$(target) - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-1/step-1.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-1/step-1.cc deleted file mode 100644 index f2487effbe..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-1/step-1.cc +++ /dev/null @@ -1,228 +0,0 @@ -/* $Id$ */ -/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */ - - // The most fundamental class in the - // library is the ``Triangulation'' - // class, which is declared here: -#include - // We need the following two includes - // for loops over cells and/or faces: -#include -#include - // Here are some functions to - // generate standard grids: -#include - // We would like to use boundaries - // which are not straight lines, so - // we import some classes which - // predefine some boundary - // descriptions: -#include - // Output of grids in various - // graphics formats: -#include - - // This is needed for C++ output: -#include - - - - // In the following function, we - // simply use the unit square as - // domain and produce a globally - // refined grid from it. -void first_grid () -{ - // Define an object for a - // triangulation of a - // two-dimensional domain. Here and - // in many following cases, the - // string "<2>" after a class name - // indicates that this is an object - // that shall work in two space - // dimensions. Likewise, there are - // version working in one ("<1>") - // and three ("<3>") space - // dimensions, or for all - // dimensions. We will see such - // constructs in later examples, - // where we show how to program - // dimension independently. - // (At present, only one through - // three space dimensions are - // supported, but that is not a - // restriction. In case someone - // would like to implement four - // dimensional finite elements, for - // example for general relativity, - // this would be a straightforward - // thing.) - Triangulation<2> triangulation; - - // Fill it with a square - GridGenerator::hyper_cube (triangulation); - - // Refine all cells four times, to - // yield 4^4=256 cells in total - triangulation.refine_global (4); - - // Now we want to write it to some - // output, here in postscript - // format - ofstream out ("grid-1.eps"); - GridOut grid_out; - grid_out.write_eps (triangulation, out); -}; - - - - // The grid in the following function - // is slightly more complicated in - // that we use a ring domain and - // refine the result once globally -void second_grid () -{ - // Define an object for a - // triangulation of a - // two-dimensional domain - Triangulation<2> triangulation; - - // Fill it with a ring domain. The - // center of the ring shall be the - // point (1,0), and inner and outer - // radius shall be 0.5 and 1. The - // number of circumferentical cells - // will be adjusted automatically - // by this function (in this case, - // there will be 10) - const Point<2> center (1,0); - const double inner_radius = 0.5, - outer_radius = 1.0; - GridGenerator::hyper_shell (triangulation, - center, inner_radius, outer_radius); - // By default, the triangulation - // assumes that all boundaries are - // straight and given by the cells - // of the coarse grid (which we - // just created). Here, however, we - // would like to have a curved - // boundary. Furtunately, some good - // soul implemented an object which - // describes the boundary of a ring - // domain; it only needs the center - // of the ring and automatically - // figures out the inner and outer - // radius when needed. Note that we - // associate this boundary object - // with that part of the boundary - // that has the "boundary number" - // zero. By default, all boundary - // parts have this number, but you - // might want to change this number - // for some parts, and then the - // curved boundary thus associated - // with number zero will not apply - // there. - const HyperShellBoundary<2> boundary_description(center); - triangulation.set_boundary (0, boundary_description); - - // Now, just for the purpose of - // demonstration and for no - // particular reason, we will - // refine the grid in five steps - // towards the inner circle of the - // domain: - for (unsigned int step=0; step<5; ++step) - { - // Get an iterator which points - // to a cell and which we will - // move over all active cells - // one by one. Active cells are - // those that are not further - // refined - Triangulation<2>::active_cell_iterator cell, endc; - cell = triangulation.begin_active(); - endc = triangulation.end(); - - // Now loop over all cells... - for (; cell!=endc; ++cell) - // ...and over all vertices - // of the cells. Note the - // dimension-independent way - // by which we find out about - // the number of faces of a - // cell - for (unsigned int vertex=0; - vertex < GeometryInfo<2>::vertices_per_cell; - ++vertex) - { - // If this cell is at the - // inner boundary, then - // at least one of its vertices - // must have a radial - // distance from the center - // of 0.5 - const Point<2> vector_to_center - = (cell->vertex(vertex) - center); - const double distance_from_center - = sqrt(vector_to_center.square()); - - if (fabs(distance_from_center - inner_radius) < 1e-10) - { - // Ok, this is one of - // the cells we were - // looking for. Flag - // it for refinement - // and go to the next - // cell by breaking - // the loop over all - // vertices - cell->set_refine_flag (); - break; - }; - }; - - // Refine the cells which we - // have marked - triangulation.execute_coarsening_and_refinement (); - }; - - - // Now we want to write it to some - // output, here in postscript - // format - ofstream out ("grid-2.eps"); - GridOut grid_out; - grid_out.write_eps (triangulation, out); - - - // At this point, all objects - // created in this function will be - // destroyed in reverse - // order. Unfortunately, we defined - // the boundary object after the - // triangulation, which still has a - // pointer to it and the library - // will produce an error if the - // boundary object is destroyed - // before the triangulation. We - // therefore have to release it, - // which can be done as - // follows. Note that this sets the - // boundary object used for part - // "0" of the boundary back to a - // default object, over which the - // triangulation has full control. - triangulation.set_boundary (0); -}; - - - - // Main function. Only call the two - // subfunctions, which produce the - // two grids. -int main () -{ - first_grid (); - second_grid (); -}; diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-2/.cvsignore b/deal.II/deal.II/Attic/examples/step-by-step/step-2/.cvsignore deleted file mode 100644 index 07b5e7b099..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-2/.cvsignore +++ /dev/null @@ -1,2 +0,0 @@ -*.o *.go Makefile.dep *.gnuplot *.gmv *.eps -step-2 diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-2/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-2/Makefile deleted file mode 100644 index 445913746c..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-2/Makefile +++ /dev/null @@ -1,167 +0,0 @@ -# $Id$ - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = $(basename $(shell echo step-*.cc)) - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# As third field, we need to give the path to the top-level deal.II -# directory. You need to adjust this to your needs. Since this path is -# probably the most often needed one in the Makefile internals, it is -# designated by a single-character variable, since that can be -# reference using $D only, i.e. without the parentheses that are -# required for most other parameters, as e.g. in $(target). -D = ../../../../ - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(flags) -o $@ $^ - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - @./$(target) - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-2/step-2.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-2/step-2.cc deleted file mode 100644 index 181571a7bc..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-2/step-2.cc +++ /dev/null @@ -1,361 +0,0 @@ -/* $Id$ */ -/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */ - - // The following includes are just - // like for the previous program, so - // will not be commented further -#include -#include -#include -#include -#include - - // We need this include file for the - // association of degrees of freedom - // ("DoF"s) to vertices, lines, and - // cells. -#include - // The following include contains the - // description of the bilinear finite - // element, including the facts that - // it has one degree of freedom on - // each vertex of the triangulation, - // but none on faces and none in the - // interior of the cells. - // - // In fact, the file contains the - // description of several more finite - // elements as well, such as - // biquadratic, bicubic and biquartic - // elements, but not only for two - // space dimensions, but also for one - // and three dimensions. -#include - // In the following file, several - // tools for manipulating degrees of - // freedom can be found: -#include - // We will use a sparse matrix to - // visualize the pattern of nonzero - // entries resulting from the - // distribution of degrees of freedom - // on the grid. That class can be - // found here: -#include - // We will want to use a special - // algorithm to renumber degrees of - // freedom. It is declared here: -#include - - // This is needed for C++ output: -#include - - - - // This is the function that produced - // the circular grid in the previous - // example. The sole difference is - // that it returns the grid it - // produces via its argument. - // - // We won't comment on the internals - // of this function, since this has - // been done in the previous - // example. If you don't understand - // what is happening here, look - // there. -void make_grid (Triangulation<2> &triangulation) -{ - const Point<2> center (1,0); - const double inner_radius = 0.5, - outer_radius = 1.0; - GridGenerator::hyper_shell (triangulation, - center, inner_radius, outer_radius); - - // This is the single difference to - // the respetive function in the - // previous program: since we want - // to export the triangulation - // through this function's - // parameter, we need to make sure - // that the boundary object lives - // at least as long as the - // triangulation does. However, - // since the boundary object is a - // local variable, it would be - // deleted at the end of this - // function, which is too early; by - // declaring it 'static', we can - // assure that it lives until the - // end of the program. - static const HyperShellBoundary<2> boundary_description(center); - triangulation.set_boundary (0, boundary_description); - - for (unsigned int step=0; step<5; ++step) - { - Triangulation<2>::active_cell_iterator cell, endc; - cell = triangulation.begin_active(); - endc = triangulation.end(); - - for (; cell!=endc; ++cell) - for (unsigned int vertex=0; - vertex < GeometryInfo<2>::vertices_per_cell; - ++vertex) - { - const Point<2> vector_to_center - = (cell->vertex(vertex) - center); - const double distance_from_center - = sqrt(vector_to_center.square()); - - if (fabs(distance_from_center - inner_radius) < 1e-10) - { - cell->set_refine_flag (); - break; - }; - }; - - triangulation.execute_coarsening_and_refinement (); - }; -}; - - - // Up to now, we only have a grid, - // i.e. some geometrical (the - // position of the vertices and which - // vertices make up which cell) and - // some topological information - // (neighborhoods of cells). To use - // numerical algorithms, one needs - // some logic information in addition - // to that: we would like to - // associate degree of freedom - // numbers to each vertex (or line, - // or cell, in case we were using - // higher order elements) to later - // generate matrices and vectors - // which describe a finite element - // field on the triangulation. -void distribute_dofs (DoFHandler<2> &dof_handler) -{ - // In order to associate degrees of - // freedom with features of a - // triangulation (vertices, lines, - // quadrilaterals), we need an - // object which describes how many - // degrees of freedom are to be - // associated to each of these - // objects. For (bi-, tri-)linear - // finite elements, this is done - // using the FEQ1 class, which - // states that one degree of - // freedom is to be assigned to - // each vertex, while there are - // none on lines and inside the - // quadrilateral. We first need to - // create an object of this class - // and use it to distribute the - // degrees of freedom. Note that - // the DoFHandler object will store - // a reference to this object, so - // we need to make it static as - // well, in order to prevent its - // preemptive - // destruction. (However, the - // library would warn us about this - // and exit the program if that - // occured. You can check this, if - // you want, by removing the - // 'static' declaration.) - static const FEQ1<2> finite_element; - dof_handler.distribute_dofs (finite_element); - - // Now we have associated a number - // to each vertex, but how can we - // visualize this? Unfortunately, - // presently there is no way - // implemented to directly show the - // DoF number associated with each - // vertex. However, such - // information would hardly ever be - // truly important, since the - // numbering itself is more or less - // arbitrary. There are more - // important factors, of which we - // will visualize one in the - // following. - // - // Associated with each vertex of - // the triangulation is a shape - // function. Assume we want to - // solve something like Laplace's - // equation, then the different - // matrix entries will be the - // integrals over the gradient of - // each two such shape - // functions. Obviously, since the - // shape functions are not equal to - // zero only on the cells adjacent - // to the vertex they are - // associated to, matrix entries - // will be nonzero only of the - // supports of the shape functions - // associated to the column and row - // numbers intersect. This is only - // the case for adjacent shape - // functions, and therefore only - // for adjacent vertices. Now, - // since the vertices are numbered - // more or less randomly be the - // above function - // (distribute_dofs), the pattern - // of nonzero entries in the matrix - // will be somewhat ragged, and we - // will take a look at it now. - // - // First we have to create a - // structure which we use to store - // the places of nonzero - // elements. We have to give it the - // size of the matrix, which in our - // case will be square with that - // many rows and columns as there - // are degrees of freedom on the - // grid: - SparsityPattern sparsity_pattern (dof_handler.n_dofs(), - dof_handler.n_dofs()); - // We fill it with the places where - // nonzero elements will be located - // given the present numbering of - // degrees of freedom: - DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); - // Before further work can be done - // on the object, we have to allow - // for some internal - // reorganization: - sparsity_pattern.compress (); - - // Now write the results to a file - ofstream out ("sparsity_pattern.1"); - sparsity_pattern.print_gnuplot (out); - // The result is in GNUPLOT format, - // where in each line of the output - // file, the coordinates of one - // nonzero entry are listed. The - // output will be shown below. - // - // If you look at it, you will note - // that the sparsity pattern is - // symmetric, which is quite often - // so, unless you have a rather - // special equation you want to - // solve. You will also note that - // it has several distinct region, - // which stem from the fact that - // the numbering starts from the - // coarsest cells and moves on to - // the finer ones; since they are - // all distributed symmetrically - // around the origin, this shows up - // again in the sparsity pattern. -}; - - - - // In the sparsity pattern produced - // above, the nonzero entries - // extended quite far off from the - // diagonal. For some algorithms, - // this is unfavorable, and we will - // show a simple way how to improve - // this situation. - // - // Remember that for an entry (i,j) - // in the matrix to be nonzero, the - // supports of the shape functions i - // and j needed to intersect - // (otherwise in the integral, the - // integrand would be zero everywhere - // since either the one or the other - // shape function is zero at some - // point). However, the supports of - // shape functions intersected only - // of they were adjacent to each - // other, so in order to have the - // nonzero entries clustered around - // the diagonal (where i equals j), - // we would like to have adjacent - // shape functions to be numbered - // with indices (DoF numbers) that - // differ not too much. - // - // This can be accomplished by a - // simple front marching algorithm, - // where one starts at a given vertex - // and gives it the index zero. Then, - // its neighbors are numbered - // successively, making their indices - // close to the original one. Then, - // their neighbors, if not yet - // numbered, are numbered, and so - // on. One such algorithm is the one - // by Cuthill and McKee, which is a - // little more complicated, but works - // along the same lines. We will use - // it to renumber the degrees of - // freedom such that the resulting - // sparsity pattern is more localized - // around the diagonal. -void renumber_dofs (DoFHandler<2> &dof_handler) -{ - // Renumber the degrees of freedom... - DoFRenumbering::Cuthill_McKee (dof_handler); - // ...regenerate the sparsity pattern... - SparsityPattern sparsity_pattern (dof_handler.n_dofs(), - dof_handler.n_dofs()); - DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); - sparsity_pattern.compress (); - // ...and output the result: - ofstream out ("sparsity_pattern.2"); - sparsity_pattern.print_gnuplot (out); - // Again, the output is shown - // below. Note that the nonzero - // entries are clustered far better - // around the diagonal than - // before. This effect is even more - // distinguished for larger - // matrices (the present one has - // 1260 rows and columns, but large - // matrices often have several - // 100,000s). -}; - - - - - // This is the main program, which - // only calls the other functions in - // their respective order. -int main () -{ - // Allocate space for a triangulation... - Triangulation<2> triangulation; - // ...and create it - make_grid (triangulation); - - // A variable that will hold the - // information which vertex has - // which number. The geometric - // information is passed as - // parameter and a pointer to the - // triangulation will be stored - // inside the DoFHandler object. - DoFHandler<2> dof_handler (triangulation); - // Associate vertices and degrees - // of freedom. - distribute_dofs (dof_handler); - - // Show the effect of renumbering - // of degrees of freedom to the - // sparsity pattern of the matrix. - renumber_dofs (dof_handler); -}; diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-3/.cvsignore b/deal.II/deal.II/Attic/examples/step-by-step/step-3/.cvsignore deleted file mode 100644 index 03e276f8de..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-3/.cvsignore +++ /dev/null @@ -1,2 +0,0 @@ -*.o *.go Makefile.dep *.gnuplot *.gmv *.eps -step-3 diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-3/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-3/Makefile deleted file mode 100644 index 445913746c..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-3/Makefile +++ /dev/null @@ -1,167 +0,0 @@ -# $Id$ - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = $(basename $(shell echo step-*.cc)) - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# As third field, we need to give the path to the top-level deal.II -# directory. You need to adjust this to your needs. Since this path is -# probably the most often needed one in the Makefile internals, it is -# designated by a single-character variable, since that can be -# reference using $D only, i.e. without the parentheses that are -# required for most other parameters, as e.g. in $(target). -D = ../../../../ - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(flags) -o $@ $^ - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - @./$(target) - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-3/step-3.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-3/step-3.cc deleted file mode 100644 index 990d8e46a4..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-3/step-3.cc +++ /dev/null @@ -1,829 +0,0 @@ -/* $Id$ */ -/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */ - - // These include files are already - // known to you. They declare the - // classes which handle - // triangulations and enumerate the - // degrees of freedom. -#include -#include - // And this is the file in which the - // functions are declared which - // create grids. -#include - - // The next three files contain - // classes which are needed for loops - // over all cells and to get the - // information from the cell objects. -#include -#include -#include - - // In this file are the finite - // element descriptions. -#include - - // And this file is needed for the - // creation of sparsity patterns of - // sparse matrices, as shown in - // previous examples: -#include - - // The next two file are needed for - // assembling the matrix using - // quadrature on each cell. The - // classes declared in them will be - // explained below. -#include -#include - - // The following three include files - // we need for the treatment of - // boundary values: -#include -#include -#include - - // These include files are for the - // linear algebra which we employ to - // solve the system of equations - // arising from the finite element - // discretization of the Laplace - // equation. We will use vectors and - // full matrices for assembling the - // system of equations locally on - // each cell, and transfer the - // results into a sparse matrix. We - // will then use a Conjugate Gradient - // solver to solve the problem, for - // which we need a preconditioner (in - // this program, we use the identity - // preconditioner which does nothing, - // but we need to include the file - // anyway), and a class which - // provides the solver with some - // memory for temporary vectors. -#include -#include -#include -#include -#include -#include - - // Finally, this is for output to a - // file. -#include -#include - - - // Instead of the procedural - // programming of previous examples, - // we encapsulate everything into a - // class for this program. The class - // consists of functions which do - // certain aspects of a finite - // element program, a `main' function - // which controls what is done first - // and what is done next, and a list - // of member variables. -class LaplaceProblem -{ - public: - // This is the constructor: - LaplaceProblem (); - - // And the top-level function, - // which is called from the - // outside to start the whole - // program (see the `main' - // function at the bottom of this - // file): - void run (); - - // Then there are some member - // functions that mostly do what - // their names suggest. Since - // they do not need to be called - // from outside, they are made - // private to this class. - private: - void make_grid_and_dofs (); - void assemble_system (); - void solve (); - void output_results () const; - - // And then we have the member - // variables. There are variables - // describing the triangulation - // and the numbering of the - // degrees of freedom... - Triangulation<2> triangulation; - FEQ1<2> fe; - DoFHandler<2> dof_handler; - - // ...variables for the sparsity - // pattern and values of the - // system matrix resulting from - // the discretization of the - // Laplace equation... - SparsityPattern sparsity_pattern; - SparseMatrix system_matrix; - - // ...and variables which will - // hold the right hand side and - // solution vectors. - Vector solution; - Vector system_rhs; -}; - - - // Here comes the constructor. It - // does not much more than associate - // the dof_handler variable to the - // triangulation we use. All the - // other member variables of the - // LaplaceProblem class have a - // default constructor which does all - // we want. -LaplaceProblem::LaplaceProblem () : - dof_handler (triangulation) -{}; - - - // Now, the first thing we've got to - // do is to generate the - // triangulation on which we would - // like to do our computation and - // number each vertex with a degree - // of freedom. We have seen this in - // the previous examples before. Then - // we have to set up space for the - // system matrix and right hand side - // of the discretized problem. This - // is what this function does: -void LaplaceProblem::make_grid_and_dofs () -{ - // First create the grid and refine - // all cells five times. Since the - // initial grid (which is the - // square [-1,1]x[-1,1]) consists - // of only one cell, the final grid - // has 32 times 32 cells, for a - // total of 1024. - GridGenerator::hyper_cube (triangulation, -1, 1); - triangulation.refine_global (5); - // Unsure that 1024 is the correct - // number? Let's see: - // n_active_cells return the number - // of terminal cells. By terminal - // we mean the cells on the finest - // grid. - cout << "Number of active cells: " - << triangulation.n_active_cells() - << endl; - // We stress the adjective - // `terminal' or `active', since - // there are more cells, namely the - // parent cells of the finest - // cells, their parents, etc, up to - // the one cell which made up the - // initial grid. Of course, on the - // next coarser level, the number - // of cells is one quarter that of - // the cells on the finest level, - // i.e. 256, then 64, 16, 4, and - // 1. We can get the total number - // of cells like this: - cout << "Total number of cells: " - << triangulation.n_cells() - << endl; - // Note the distinction between - // n_active_cells() and n_cells(). - - // Next we enumerate all the - // degrees of freedom. This is done - // by using the distribute_dofs - // function, as we have seen in - // previous examples. Since we use - // the FEQ1 class, i.e. bilinear - // elements, this associates one - // degree of freedom with each - // vertex. - dof_handler.distribute_dofs (fe); - - // Now that we have the degrees of - // freedom, we can take a look at - // how many there are: - cout << "Number of degrees of freedom: " - << dof_handler.n_dofs() - << endl; - // There should be one DoF for each - // vertex. Since we have a 32 times - // 32 grid, the number of DoFs - // should be 33 times 33, or 1089. - - // As we have seen in the previous - // example, we set up a sparse - // matrix for the system matrix and - // tag those entries that might be - // nonzero. Since that has already - // been done, we won't discuss the - // next few lines: - sparsity_pattern.reinit (dof_handler.n_dofs(), - dof_handler.n_dofs(), - dof_handler.max_couplings_between_dofs()); - DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); - sparsity_pattern.compress(); - - // Now the sparsity pattern is - // built and fixed (after - // `compress' has been called, you - // can't add nonzero entries - // anymore; the sparsity pattern is - // `sealed', so to say), and we can - // initialize the matrix itself - // with it. Note that the - // SparsityPattern object does - // not hold the values of the - // matrix, it only stores the - // places where entries are. The - // entries are themselves stored in - // objects of type SparseMatrix, of - // which our variable system_matrix - // is one. - // - // The distinction between sparsity - // pattern and matrix was made to - // allow several matrices to use - // the same sparsity pattern. This - // may not seem relevant, but when - // you consider the size which - // matrices can have, and that it - // may take some time to build the - // sparsity pattern, this becomes - // important in large-scale - // problems. - system_matrix.reinit (sparsity_pattern); - - // The last thing to do in this - // function is to set the sizes of - // the right hand side vector and - // the solution vector to the right - // values: - solution.reinit (dof_handler.n_dofs()); - system_rhs.reinit (dof_handler.n_dofs()); -}; - - - // Now comes the difficult part: - // assembling matrices and - // vectors. In fact, this is not - // overly difficult, but it is - // something that the library can't - // do for you as for most of the - // other things in the functions - // above and below. - // - // The general way to assemble - // matrices and vectors is to loop - // over all cells, and on each cell - // compute the contribution of that - // cell to the global matrix and - // right hand side by quadrature. The - // idea now is that since we only - // need the finite element shape - // functions on the quadrature points - // of each cell, we don't need the - // shape functions of the finite - // element themselves any - // more. Therefore, we won't deal - // with the finite element object - // `fe' (which was of type FEQ1), but - // with another object which only - // provides us with the values, - // gradients, etc of the shape - // functions at the quadrature - // points. The objects which do this - // are of type FEValues. -void LaplaceProblem::assemble_system () -{ - // Ok, let's start: we need a - // quadrature formula for the - // evaluation of the integrals on - // each cell. Let's take a Gauss - // formula with two quadrature - // points in each direction, i.e. a - // total of four points since we - // are in 2D. This quadrature - // formula integrates polynomials - // of degrees up to three exactly - // (in 1D). Since the integrands in - // the matrix entries are quadratic - // (in 1D), this is sufficient. The - // same holds for 2D. - QGauss2<2> quadrature_formula; - // And we initialize the object - // which we have briefly talked - // about above. It needs to be told - // which the finite element is that - // we want to use, the quadrature - // points and their - // weights. Finally, we have to - // tell it what we want it to - // compute on each cell: we need - // the values of the shape - // functions at the quadrature - // points, their gradients, and - // also the weights of the - // quadrature points and the - // determinants of the Jacobian - // transformations from the unit - // cell to the real cells. The - // values of the shape functions - // computed by specifying - // update_values; the gradients are - // done alike, using - // update_gradients. The - // determinants of the Jacobians - // and the weights are always used - // together, so only the products - // (Jacobians times weights, or - // short JxW) are computed; since - // we also need them, we have to - // list them as well: - FEValues<2> fe_values (fe, quadrature_formula, - UpdateFlags(update_values | - update_gradients | - update_JxW_values)); - - // For use further down below, we - // define two short cuts for the - // number of degrees of freedom on - // each cell (since we are in 2D - // and degrees of freedom are - // associated with vertices only, - // this number is four). We also - // define an abbreviation for the - // number of quadrature points - // (here that should be nine). In - // general, it is a good idea to - // use their symbolic names instead - // of hard-coding these number even - // if you know them, since you may - // want to change the quadrature - // formula and/or finite element at - // some time; the program will just - // work with these changes, without - // the need to change the matrix - // assemblage. - // - // The shortcuts, finally, are only - // defined to make the following - // loops a bit more readable. You - // will see them in many places in - // larger programs, and - // `dofs_per_cell' and `n_q_points' - // are more or less standard names - // for these purposes. - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const unsigned int n_q_points = quadrature_formula.n_quadrature_points; - - // Now, we said that we wanted to - // assemble the global matrix and - // vector cell-by-cell. We could - // write the results directly into - // the global matrix, but this is - // not very efficient since access - // to the elements of a sparse - // matrix is slow. Rather, we first - // compute the contribution of each - // ell in a small matrix with the - // degrees of freedom on the - // present cell, and only transfer - // them to the global matrix when - // the copmutations are finished - // for this cell. We do the same - // for the right hand side vector, - // although access times are not so - // problematic for them. - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - Vector cell_rhs (dofs_per_cell); - - // When assembling the - // contributions of each cell, we - // do this with the local numbering - // of the degrees of freedom - // (i.e. the number running from - // zero through - // dofs_per_cell-1). However, when - // we transfer the result into the - // global matrix, we have to know - // the global numbers of the - // degrees of freedom. When we get - // them, we need a scratch array - // for these numbers: - vector local_dof_indices (dofs_per_cell); - - // Now for th loop over all - // cells. You have seen before how - // this works, so this should be - // familiar to you: - DoFHandler<2>::active_cell_iterator cell = dof_handler.begin_active(), - endc = dof_handler.end(); - for (; cell!=endc; ++cell) - { - // We are on one cell, and we - // would like the values and - // gradients of the shape - // functions be computed, as - // well as the determinants of - // the Jacobian matrices of the - // mapping between unit cell - // and true cell, at the - // quadrature points. Since all - // these values depend on the - // geometry of the cell, we - // have to have the FEValues - // object re-compute them on - // each cell: - fe_values.reinit (cell); - - // Reset the values of the - // contributions of this cell - // to global matrix and global - // right hand side to zero, - // before we fill them. - cell_matrix.clear (); - cell_rhs.clear (); - - // Assemble the matrix: For the - // Laplace problem, the matrix - // on each cell is the integral - // over the gradients of shape - // function i and j. Since we - // do not integrate, but rather - // use quadrature, this is the - // sum over all quadrature - // points of the integrands - // times the determinant of the - // Jacobian matrix at the - // quadrature point times the - // weight of this quadrature - // point. You can get the - // gradient of shape function i - // at quadrature point q_point - // by using - // fe_values.shape_grad(i,q_point); - // this gradient is a - // 2-dimensional vector (in - // fact it is of type - // Tensor<1,dim>, with here - // dim=2) and the product of - // two such vectors is the - // scalar product, i.e. the - // product of the two - // shape_grad function calls is - // the dot product. - for (unsigned int i=0; iget_dof_indices (local_dof_indices); - - // Then again loop over all - // shape functions i and j and - // transfer the local elements - // to the global matrix. The - // global numbers can be - // obtained using - // local_dof_indices[i]: - for (unsigned int i=0; i boundary_values; - VectorTools::interpolate_boundary_values (dof_handler, - 0, - ZeroFunction<2>(), - boundary_values); - // Now that we got the list of - // boundary DoFs and their - // respective boundary values, - // let's use them to modify the - // system of equations - // accordingly. This is done by the - // following function call: - MatrixTools<2>::apply_boundary_values (boundary_values, - system_matrix, - solution, - system_rhs); -}; - - - // The following function simply - // solves the discretized - // equation. As the system is quite a - // large one for direct solvers such - // as Gauss elimination or LU - // decomposition, we use a Conjugate - // Gradient algorithm. You should - // remember that the number of - // variables here (only 1089) is a - // very small number for finite - // element computations, where - // 100.000 is a more usual number; - // for this number of variables, - // direct methods are no longer - // usable and you are forced to use - // methods like CG. -void LaplaceProblem::solve () -{ - // We need to tell the algorithm - // where to stop. This is done by - // using a SolverControl object, - // and as stopping criterion we - // say: maximally 1000 iterations - // (which is far more than is - // needed for 1089 variables; see - // the results section to find out - // how many were really used), and - // stop if the norm of the residual - // is below 1e-12. In practice, the - // latter criterion will be the one - // which stops the iteration. - SolverControl solver_control (1000, 1e-12); - // Furthermore, the CG algorithm - // needs some space for temporary - // vectors. Rather than allocating - // it on the stack or heap itself, - // it relies on helper objects, - // which can sometimes do a better - // job at this. The - // PrimitiveVectorMemory class is - // such a helper class which the - // solver can ask for memory. The - // angle brackets indicate that - // this class really takes a - // template parameter (here the - // data type of the vectors we - // use), which however has a - // default value, which is - // appropriate here. - PrimitiveVectorMemory<> vector_memory; - // Then we need the solver - // itself. The template parameters - // here are the matrix type and the - // type of the vectors. They - // default to the ones we use here. - SolverCG<> cg (solver_control, vector_memory); - - // Now solve the system of - // equations. The CG solver takes a - // preconditioner, but we don't - // want to use one, so we tell it - // to use the identity operation as - // preconditioner. - cg.solve (system_matrix, solution, system_rhs, - PreconditionIdentity()); - // Now that the solver has done its - // job, the solution variable - // contains the nodal values of the - // solution function. -}; - - - // The last part of a typical finite - // element program is to output the - // results and maybe do some - // postprocessing (for example - // compute the maximal stress values - // at the boundary, or the average - // flux across the outflow, etc). We - // have no such postprocessing here, - // but we would like to write the - // solution to a file. -void LaplaceProblem::output_results () const -{ - // To write the output to a file, - // we need an object which knows - // about output formats and the - // like. This is the DataOut class, - // and we need an object of that - // type: - DataOut<2> data_out; - // Now we have to tell it where to - // take the values from which it - // shall write. We tell it which - // DoFHandler object to use, and we - // add the solution vector (and the - // name by which it shall be - // written to disk) to the list of - // data that is to be written. If - // we had more than one vector - // which we would like to look at - // in the output (for example right - // hand sides, errors per cell, - // etc) we would add them as well: - data_out.attach_dof_handler (dof_handler); - data_out.add_data_vector (solution, "solution"); - // After the DataOut object knows - // which data it is to work on, we - // have to tell it to process them - // into something the backends can - // handle. The reason is that we - // have separated the frontend - // (which knows about how to treat - // DoFHandler objects and data - // vectors) from the backend (which - // knows several output formats) - // and use an intermediate data - // format to transfer data from the - // front- to the backend. The data - // is transformed into this - // intermediate format by the - // following function: - data_out.build_patches (); - - // Now we have everything in place - // for the actual output. Just open - // a file and write the data into - // it, using GNUPLOT format (there - // are other functions which write - // their data in postscript, AVS, - // GMV, or some other format): - ofstream output ("solution.gpl"); - data_out.write_gnuplot (output); -}; - - - // The following function is the main - // function which calls all the other - // functions of the LaplaceProblem - // class. The order in which this is - // done resembles the order in which - // most finite element programs - // work. Since the names are mostly - // self-explanatory, there is not - // much to comment about: -void LaplaceProblem::run () -{ - make_grid_and_dofs (); - assemble_system (); - solve (); - output_results (); -}; - - - - // This is the main function of the - // program. Since the concept of a - // main function is mostly a remnant - // from the pre-object era in C/C++ - // programming, it often does not - // much more than creating an object - // of the top-level class and calling - // it principle function. This is - // what is done here as well. -int main () -{ - LaplaceProblem laplace_problem; - laplace_problem.run (); - return 0; -}; diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-4/.cvsignore b/deal.II/deal.II/Attic/examples/step-by-step/step-4/.cvsignore deleted file mode 100644 index 617a14613a..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-4/.cvsignore +++ /dev/null @@ -1,2 +0,0 @@ -*.o *.go Makefile.dep *.gnuplot *.gmv *.eps -step-4 diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-4/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-4/Makefile deleted file mode 100644 index bd4dad5fbc..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-4/Makefile +++ /dev/null @@ -1,169 +0,0 @@ -# $Id$ - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = $(basename $(shell echo step-*.cc)) - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# As third field, we need to give the path to the top-level deal.II -# directory. You need to adjust this to your needs. Since this path is -# probably the most often needed one in the Makefile internals, it is -# designated by a single-character variable, since that can be -# reference using $D only, i.e. without the parentheses that are -# required for most other parameters, as e.g. in $(target). -D = ../../../../ - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-deal2-3d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-deal2-3d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(flags) -o $@ $^ - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - @./$(target) - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-4/step-4.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-4/step-4.cc deleted file mode 100644 index bac3800554..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-4/step-4.cc +++ /dev/null @@ -1,607 +0,0 @@ -/* $Id$ */ -/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */ - - // The first few (many?) include - // files have already been used in - // the previous example, so we will - // not explain their meaning here - // again. -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include - - // This is new, however: in the - // previous example we got some - // unwanted output from the linear - // solvers. If we want to suppress - // it, we have to include this file - // and add a line somewhere to the - // program; in this program, it was - // added to the main function. -#include - - - - // This is again the same - // LaplaceProblem class as in the - // previous example. The only - // difference is that we have now - // declared it as a class with a - // template parameter, and the - // template parameter is of course - // the spatial dimension in which we - // would like to solve the Laplace - // equation. Of course, several of - // the member variables depend on - // this dimension as well, in - // particular the Triangulation - // class, which has to represent - // quadrilaterals or hexahedra, - // respectively. Apart from this, - // everything is as before. -template -class LaplaceProblem -{ - public: - LaplaceProblem (); - void run (); - - private: - void make_grid_and_dofs (); - void assemble_system (); - void solve (); - void output_results () const; - - Triangulation triangulation; - FEQ1 fe; - DoFHandler dof_handler; - - SparsityPattern sparsity_pattern; - SparseMatrix system_matrix; - - Vector solution; - Vector system_rhs; -}; - - - // In the following, we declare two - // more classes, which will represent - // the functions of the - // dim-dimensional space denoting the - // right hand side and the - // non-homogeneous Dirichlet boundary - // values. - // - // Each of these classes is derived - // from a common, abstract base class - // Function, which declares the - // common interface which all - // functions have to follow. In - // particular, concrete classes have - // to overload the `value' function, - // which takes a point in - // dim-dimensional space as - // parameters and shall return the - // value at that point as a `double' - // variable. - // - // The `value' function takes a - // second argument, which we have - // here named `component': This is - // only meant for vector valued - // functions, where you may want to - // access a certain component of the - // vector at the point `p'. However, - // our functions are scalar, so we - // need not worry about this - // parameter and we will not use it - // in the implementation of the - // functions. Note that in the base - // class (Function), the declaration - // of the `value' function has a - // default value of zero for the - // component, so we will access the - // `value' function of the right hand - // side with only one parameter, - // namely the point where we want to - // evaluate the function. -template -class RightHandSide : public Function -{ - public: - virtual double value (const Point &p, - const unsigned int component = 0) const; -}; - - - -template -class BoundaryValues : public Function -{ - public: - virtual double value (const Point &p, - const unsigned int component = 0) const; -}; - - - - - // We wanted the right hand side - // function to be 4*(x**4+y**4) in - // 2D, or 4*(x**4+y**4+z**4) in - // 3D. Unfortunately, this is not as - // elegantly feasible dimension - // independently as much of the rest - // of this program, so we have to do - // it using a small - // loop. Fortunately, the compiler - // knows the size of the loop at - // compile time, i.e. the number of - // times the body will be executed, - // so it can optimize away the - // overhead needed for the loop and - // the result will be as fast as if - // we had used the formulas above - // right away. - // - // Note that the different - // coordinates (i.e. `x', `y', ...) - // of the point are accessed using - // the () operator. -template -double RightHandSide::value (const Point &p, - const unsigned int) const -{ - double return_value = 0; - for (unsigned int i=0; i -double BoundaryValues::value (const Point &p, - const unsigned int) const -{ - return p.square(); -}; - - - - - // This is the constructor of the - // LaplaceProblem class. It - // associates the DoFHandler to the - // triangulation just as in the - // previous example. -template -LaplaceProblem::LaplaceProblem () : - dof_handler (triangulation) -{}; - - - - // Grid creation is something - // inherently dimension - // dependent. However, as long as the - // domains are sufficiently similar - // in 2D or 3D, the library can - // abstract for you. In our case, we - // would like to again solve on the - // square [-1,1]x[-1,1] in 2D, or on - // the cube [-1,1]x[-1,1]x[-1,1] in - // 3D; both can be termed - // ``hyper_cube'', so we may use the - // same function in whatever - // dimension we are. Of course, the - // functions that create a hypercube - // in two and three dimensions are - // very much different, but that is - // something you need not care - // about. Let the library handle the - // difficult things. - // - // Likewise, associating a degree of - // freedom with each vertex is - // something which certainly looks - // different in 2D and 3D, but that - // does not need to bother you. This - // function therefore looks exactly - // like in the previous example, - // although it performs actions that - // in their details are quite - // different. The only significant - // difference is the number of cells - // resulting, which is much higher in - // three than in two space - // dimensions! -template -void LaplaceProblem::make_grid_and_dofs () -{ - GridGenerator::hyper_cube (triangulation, -1, 1); - triangulation.refine_global (4); - - cout << " Number of active cells: " - << triangulation.n_active_cells() - << endl - << " Total number of cells: " - << triangulation.n_cells() - << endl; - - dof_handler.distribute_dofs (fe); - - cout << " Number of degrees of freedom: " - << dof_handler.n_dofs() - << endl; - - sparsity_pattern.reinit (dof_handler.n_dofs(), - dof_handler.n_dofs(), - dof_handler.max_couplings_between_dofs()); - DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); - sparsity_pattern.compress(); - - system_matrix.reinit (sparsity_pattern); - - solution.reinit (dof_handler.n_dofs()); - system_rhs.reinit (dof_handler.n_dofs()); -}; - - - - // Unlike in the previous example, we - // would now like to use a - // non-constant right hand side - // function and non-zero boundary - // values. Both are tasks that are - // readily achieved with a only a few - // new lines of code in the - // assemblage of the matrix and right - // hand side. - // - // More interesting, though, is they - // way we assemble matrix and right - // hand side vector dimension - // independently: there is simply no - // difference to the pure - // two-dimensional case. Since the - // important objects used in this - // function (quadrature formula, - // FEValues) depend on the dimension - // by way of a template parameter as - // well, they can take care of - // setting up properly everything for - // the dimension for which this - // function is compiled. By declaring - // all classes which might depend on - // the dimension using a template - // parameter, the library can make - // nearly all work for you and you - // don't have to care about most - // things. -template -void LaplaceProblem::assemble_system () -{ - QGauss2 quadrature_formula; - - // We wanted to have a non-constant - // right hand side, so we use an - // object of the class declared - // above to generate the necessary - // data. Since this right hand side - // object is only used in this - // function, we only declare it - // here, rather than as a member - // variable of the LaplaceProblem - // class, or somewhere else. - const RightHandSide right_hand_side; - - // Compared to the previous - // example, in order to evaluate - // the non-constant right hand side - // function we now also need the - // quadrature points on the cell we - // are presently on (previously, - // they were only needed on the - // unit cell, in order to compute - // the values and gradients of the - // shape function, which are - // defined on the unit cell - // however). We can tell the - // FEValues object to do for us by - // giving it the update_q_points - // flag: - FEValues fe_values (fe, quadrature_formula, - UpdateFlags(update_values | - update_gradients | - update_q_points | - update_JxW_values)); - - // Note that the following numbers - // depend on the dimension which we - // are presently using. However, - // the FE and Quadrature classes do - // all the necessary work for you - // and you don't have to care about - // the dimension dependent parts: - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const unsigned int n_q_points = quadrature_formula.n_quadrature_points; - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - Vector cell_rhs (dofs_per_cell); - - vector local_dof_indices (dofs_per_cell); - - // Note here, that a cell is a - // quadrilateral in two space - // dimensions, but a hexahedron in - // 3D. In fact, the - // active_cell_iterator data type - // is something different, - // depending on the dimension we - // are in, but to the outside world - // they look alike and you will - // probably never see a difference - // although they are totally - // unrelated. - DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), - endc = dof_handler.end(); - for (; cell!=endc; ++cell) - { - fe_values.reinit (cell); - cell_matrix.clear (); - cell_rhs.clear (); - - // Now we have to assemble the - // local matrix and right hand - // side. This is done exactly - // like in the previous - // example, but now we revert - // the order of the loops - // (which we can safely do - // since they are independent - // of each other) and merge the - // loops for the local matrix - // and the local vector as far - // as possible; this makes - // things a bit faster. - for (unsigned int q_point=0; q_pointget_dof_indices (local_dof_indices); - for (unsigned int i=0; i boundary_values; - VectorTools::interpolate_boundary_values (dof_handler, - 0, - BoundaryValues(), - boundary_values); - MatrixTools::apply_boundary_values (boundary_values, - system_matrix, - solution, - system_rhs); -}; - - - // Solving the linear system of - // equation is something that looks - // almost identical in most - // programs. In particular, it is - // dimension independent, so this - // function is mostly copied from the - // previous example. -template -void LaplaceProblem::solve () -{ - SolverControl solver_control (1000, 1e-12); - PrimitiveVectorMemory<> vector_memory; - SolverCG<> cg (solver_control, vector_memory); - cg.solve (system_matrix, solution, system_rhs, - PreconditionIdentity()); - - // We have made one addition, - // though: since we suppress output - // from the linear solvers, we have - // to print the number of - // iterations by hand. - cout << " " << solver_control.last_step() - << " CG iterations needed to obtain convergence." - << endl; -}; - - - - // This function also does what the - // respective one did in the previous - // example. No changes here for - // dimension independentce either. -template -void LaplaceProblem::output_results () const -{ - DataOut data_out; - - data_out.attach_dof_handler (dof_handler); - data_out.add_data_vector (solution, "solution"); - - data_out.build_patches (); - - // Only difference to the previous - // example: write output in GMV - // format, rather than for - // gnuplot. We use the dimension in - // the filename to generate - // distinct filenames for each run - // (in a better program, one would - // check whether `dim' can have - // other values than 2 or 3, but we - // neglect this here for the sake - // of brevity). - ofstream output (dim == 2 ? - "solution-2d.gmv" : - "solution-3d.gmv"); - data_out.write_gmv (output); -}; - - - - // This is the function which has the - // top-level control over - // everything. Apart from one line of - // additional output, it is the same - // as for the previous example. -template -void LaplaceProblem::run () -{ - cout << "Solving problem in " << dim << " space dimensions." << endl; - - make_grid_and_dofs(); - assemble_system (); - solve (); - output_results (); -}; - - - - // And this is the main function. It - // also looks mostly like in the - // previous example: -int main () -{ - // In the previous example, we had - // the output from the linear - // solvers about the starting - // residual and the number of the - // iteration where convergence was - // detected. This can be suppressed - // like this: - deallog.depth_console (0); - // The rationale here is the - // following: the deallog - // (i.e. deal-log, not de-allog) - // variable represents a stream to - // which some parts of the library - // write output. It redirects this - // output to the console and if - // required to a file. The output - // is nested in a way that each - // function can use a prefix string - // (separated by colons) for each - // line of output; if it calls - // another function, that may also - // use its prefix which is then - // printed after the one of the - // calling function. Since output - // from functions which are nested - // deep below is usually not as - // important as top-level output, - // you can give the deallog - // variable a maximal depth of - // nested output for output to - // console and file. The depth zero - // which we gave here means that no - // output is written. - - // After having done this - // administrative stuff, we can go - // on just as before: define one of - // these top-level objects and - // transfer control to - // it. Actually, now is the point - // where we have to tell the - // compiler which dimension we - // would like to use; all functions - // up to now including the classes - // were only templates and nothing - // has been compiled by now, but by - // declaring the following objects, - // the compiler will start to - // compile all the functions at the - // top using the template parameter - // replaced with a concrete value. - // - // For demonstration, we will first - // let the whole thing run in 2D - // and then in 3D: - LaplaceProblem<2> laplace_problem_2d; - laplace_problem_2d.run (); - - LaplaceProblem<3> laplace_problem_3d; - laplace_problem_3d.run (); - - return 0; -}; diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-5/.cvsignore b/deal.II/deal.II/Attic/examples/step-by-step/step-5/.cvsignore deleted file mode 100644 index 22ee4e3e3e..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-5/.cvsignore +++ /dev/null @@ -1,2 +0,0 @@ -*.o *.go Makefile.dep *.gnuplot *.gmv *.eps -step-5 diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-5/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-5/Makefile deleted file mode 100644 index 445913746c..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-5/Makefile +++ /dev/null @@ -1,167 +0,0 @@ -# $Id$ - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = $(basename $(shell echo step-*.cc)) - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# As third field, we need to give the path to the top-level deal.II -# directory. You need to adjust this to your needs. Since this path is -# probably the most often needed one in the Makefile internals, it is -# designated by a single-character variable, since that can be -# reference using $D only, i.e. without the parentheses that are -# required for most other parameters, as e.g. in $(target). -D = ../../../../ - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(flags) -o $@ $^ - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - @./$(target) - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-5/circle-grid.inp b/deal.II/deal.II/Attic/examples/step-by-step/step-5/circle-grid.inp deleted file mode 100644 index f28a7a238a..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-5/circle-grid.inp +++ /dev/null @@ -1,46 +0,0 @@ -25 20 0 0 0 -1 -0.7071 -0.7071 0 -2 0.7071 -0.7071 0 -3 -0.2668 -0.2668 0 -4 0.2668 -0.2668 0 -5 -0.2668 0.2668 0 -6 0.2668 0.2668 0 -7 -0.7071 0.7071 0 -8 0.7071 0.7071 0 -9 0 -1 0 -10 0.5 -0.5 0 -11 0 -0.3139 0 -12 -0.5 -0.5 0 -13 0 -0.6621 0 -14 -0.3139 0 0 -15 -0.5 0.5 0 -16 -1 0 0 -17 -0.6621 0 0 -18 0.3139 0 0 -19 0 0.3139 0 -20 0 0 0 -21 1 0 0 -22 0.5 0.5 0 -23 0.6621 0 0 -24 0 1 0 -25 0 0.6621 0 -1 0 quad 1 9 13 12 -2 0 quad 9 2 10 13 -3 0 quad 13 10 4 11 -4 0 quad 12 13 11 3 -5 0 quad 1 12 17 16 -6 0 quad 12 3 14 17 -7 0 quad 17 14 5 15 -8 0 quad 16 17 15 7 -9 0 quad 3 11 20 14 -10 0 quad 11 4 18 20 -11 0 quad 20 18 6 19 -12 0 quad 14 20 19 5 -13 0 quad 2 21 23 10 -14 0 quad 21 8 22 23 -15 0 quad 23 22 6 18 -16 0 quad 10 23 18 4 -17 0 quad 7 15 25 24 -18 0 quad 15 5 19 25 -19 0 quad 25 19 6 22 -20 0 quad 24 25 22 8 diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-5/step-5.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-5/step-5.cc deleted file mode 100644 index a131374b86..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-5/step-5.cc +++ /dev/null @@ -1,940 +0,0 @@ -/* $Id$ */ -/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */ - - // Again, the first few include files - // are already known, so we won't - // comment on them: -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - // This one is new. We want to read a - // triangulation from disk, and the - // class which does this is declared - // in the following file: -#include - - // We will use a circular domain, and - // the object describing the boundary - // of it comes from this file: -#include - - // This is C++ ... -#include - // ... and this is too. We will - // convert integers to strings using - // the classes inside this file: -#include - - - - // The main class is mostly as in the - // previous example. The most visible - // change is that the function - // ``make_grid_and_dofs'' has been - // removed, since making of the grid - // is now done in the ``run'' - // function and the rest of its - // functionality now is in - // ``setup_system''. Apart from this, - // everything is as before. -template -class LaplaceProblem -{ - public: - LaplaceProblem (); - void run (); - - private: - void setup_system (); - void assemble_system (); - void solve (); - void output_results (const unsigned int cycle) const; - - Triangulation triangulation; - FEQ1 fe; - DoFHandler dof_handler; - - SparsityPattern sparsity_pattern; - SparseMatrix system_matrix; - - Vector solution; - Vector system_rhs; -}; - - - - // In this example, we want to use a - // variable coefficient in the - // elliptic operator. Of course, the - // suitable object is a Function, as - // we have used it for the right hand - // side and boundary values in the - // last example. We will use it - // again, but we implement another - // function ``value_list'' which - // takes a list of points and returns - // the values of the function at - // these points as a list. The reason - // why such a function is reasonable - // although we can get all the - // information from the ``value'' - // function as well will be explained - // below when assembling the matrix. -template -class Coefficient : public Function -{ - public: - virtual double value (const Point &p, - const unsigned int component = 0) const; - - virtual void value_list (const vector > &points, - vector &values, - const unsigned int component = 0) const; -}; - - - - // This is the implementation of the - // coefficient function for a single - // point. We let it return 20 if the - // distance to the point of origin is - // less than 0.5, and 1 otherwise: -template -double Coefficient::value (const Point &p, - const unsigned int) const -{ - if (p.square() < 0.5*0.5) - return 20; - else - return 1; -}; - - - - // And this is the function that - // returns the value of the - // coefficient at a whole list of - // points at once. Of course, the - // values are the same as if we would - // ask the ``value'' function. -template -void Coefficient::value_list (const vector > &points, - vector &values, - const unsigned int component) const -{ - // Use n_q_points as an - // abbreviation for the number of - // points for which function values - // are requested: - const unsigned int n_points = points.size(); - - // Now, of course the size of the - // output array (``values'') must - // be the same as that of the input - // array (``points''), and we could - // simply assume that. However, in - // practice more than 90 per cent - // of programming errors are - // invalid function parameters such - // as invalid array sizes, etc, so - // we should try to make sure that - // the parameters are valid. For - // this, the Assert macro is a good - // means, since it asserts that the - // condition which is given as - // first argument is valid, and if - // not throws an exception (its - // second argument) which will - // usually terminate the program - // giving information where the - // error occured and what the - // reason was. This generally - // reduces the time to find - // programming errors dramatically - // and we have found assertions an - // invaluable means to program - // fast. - // - // On the other hand, all these - // checks (there are more than 2000 - // of them in the library) should - // not slow down the program too - // much, which is why the Assert - // macro is only used in debug mode - // and expands to nothing if in - // optimized mode. Therefore, while - // you test your program and debug - // it, the assertions will tell you - // where the problems are, and once - // your program is stable you can - // switch off debugging and the - // program will run without the - // assertions and at maximum speed. - // - // Here, as has been said above, we - // would like to make sure that the - // size of the two arrays is equal, - // and if not throw an - // exception. Since the following - // test is rather frequent for the - // classes derived from - // ``Function'', that class - // declares an exception - // ``ExcVectorHasWrongSize'' which - // takes the sizes of two vectors - // and prints some output in case - // the condition is violated: - Assert (values.size() == n_points, - ExcVectorHasWrongSize (values.size(), n_points)); - // Since examples are not very good - // if they do not demonstrate their - // point, we will show how to - // trigger this exception at the - // end of the main program, and - // what output results from this - // (see the ``Results'' section of - // this example program). You will - // certainly notice that the output - // is quite well suited to quickly - // find what the problem is and - // what parameters are expected. An - // additional plus is that if the - // program is run inside a - // debugger, it will stop at the - // point where the exception is - // triggered, so you can go up the - // call stack to immediately find - // the place where the the array - // with the wrong size was set up. - - // While we're at it, we can do - // another check: the coefficient - // is a scalar, but the Function - // class also represents - // vector-valued function. A scalar - // function must therefore be - // considered as a vector-valued - // function with only one - // component, so the only valid - // component for which a user might - // ask is zero (we always count - // from zero). The following - // assertion checks this. (The - // ``1'' is denotes the number of - // components that this function - // has.) - Assert (component == 0, - ExcWrongComponent (component, 1)); - - for (unsigned int i=0; i -LaplaceProblem::LaplaceProblem () : - dof_handler (triangulation) -{}; - - - - // This is the function - // ``make_grid_and_dofs'' from the - // previous example, minus the - // generation of the grid. Everything - // else is unchanged. -template -void LaplaceProblem::setup_system () -{ - dof_handler.distribute_dofs (fe); - - cout << " Number of degrees of freedom: " - << dof_handler.n_dofs() - << endl; - - sparsity_pattern.reinit (dof_handler.n_dofs(), - dof_handler.n_dofs(), - dof_handler.max_couplings_between_dofs()); - DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); - sparsity_pattern.compress(); - - system_matrix.reinit (sparsity_pattern); - - solution.reinit (dof_handler.n_dofs()); - system_rhs.reinit (dof_handler.n_dofs()); -}; - - - - // As in the previous examples, this - // function is not changed much with - // regard to its functionality, but - // there are still some optimizations - // which we will show. For this, it - // is important to note that if - // efficient solvers are used (such - // as the preconditions CG method), - // assembling the matrix and right - // hand side can take a comparable - // time, and it is worth the effort - // to use one or two optimizations at - // some places. - // - // What we will show here is how we - // can avoid calls to the - // shape_value, shape_grad, and - // quadrature_point functions of the - // FEValues object, and in particular - // optimize away most of the virtual - // function calls of the Function - // object. The way to do so will be - // explained in the following, while - // those parts of this function that - // are not changed with respect to - // the previous example are not - // commented on. -template -void LaplaceProblem::assemble_system () -{ - // This time, we will again use a - // constant right hand side - // function, but a variable - // coefficient. The following - // object will be used for this: - const Coefficient coefficient; - - QGauss2 quadrature_formula; - - FEValues fe_values (fe, quadrature_formula, - UpdateFlags(update_values | - update_gradients | - update_q_points | - update_JxW_values)); - - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const unsigned int n_q_points = quadrature_formula.n_quadrature_points; - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - Vector cell_rhs (dofs_per_cell); - - vector local_dof_indices (dofs_per_cell); - - // Below, we will ask the - // Coefficient class to compute the - // values of the coefficient at all - // quadrature points on one cell at - // once. For this, we need some - // space to store the values in, - // which we use the following - // variable for: - vector coefficient_values (n_q_points); - - DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), - endc = dof_handler.end(); - for (; cell!=endc; ++cell) - { - cell_matrix.clear (); - cell_rhs.clear (); - - // As before, we want the - // FEValues object to compute - // the quantities which we told - // him to compute in the - // constructor using the update - // flags. - fe_values.reinit (cell); - // Now, these quantities are - // stored in arrays in the - // FEValues object. Usually, - // the internals of how and - // where they are stored is not - // something that the outside - // world should know, but since - // this is a time critical - // function we decided to - // publicize these arrays a - // little bit, and provide - // facilities to export the - // address where this data is - // stored. - // - // For example, the values of - // shape function j at - // quadrature point q is stored - // in a matrix, of which we can - // get the address as follows - // (note that this is a - // reference to the matrix, - // symbolized by the ampersand, - // and that it must be a - // constant reference, since - // only read-only access is - // granted): - const FullMatrix - & shape_values = fe_values.get_shape_values(); - // Instead of writing - // fe_values.shape_value(j,q) - // we can now write - // shape_values(j,q), i.e. the - // function call needed - // previously for each access - // has been otimized away. - // - // There are alike functions - // for almost all data elements - // in the FEValues class. The - // gradient are accessed as - // follows: - const vector > > - & shape_grads = fe_values.get_shape_grads(); - // The data type looks a bit - // unwieldy, since each entry - // in the matrix (j,q) now - // needs to be the gradient of - // the shape function, which is - // a vector. - // - // Similarly, access to the - // place where quadrature - // points and the determinants - // of the Jacobian matrices - // times the weights of the - // respective quadrature points - // are stored, can be obtained - // like this: - const vector - & JxW_values = fe_values.get_JxW_values(); - const vector > - & q_points = fe_values.get_quadrature_points(); - // Admittedly, the declarations - // above are not easily - // readable, but they can save - // many function calls in the - // inner loops and can thus - // make assemblage faster. - // - // An additional advantage is - // that the inner loops are - // simpler to read, since the - // fe_values object is no more - // explicitely needed to access - // the different fields (see - // below). Unfortunately, - // things became a bit - // inconsistent, since the - // shape values are accessed - // via the FullMatrix operator - // (), i.e. using parentheses, - // while all the other fields - // are accessed through vector - // operator [], i.e. using - // brackets. This is due to - // historical reasons and - // frequently leads to a bit of - // confusion, but since the - // places where this happens - // are few in well-written - // programs, this is not too - // big a problem. - - // There is one more thing: in - // this example, we want to use - // a non-constant - // coefficient. In the previous - // example, we have called the - // ``value'' function of the - // right hand side object for - // each quadrature - // point. Unfortunately, that - // is a virtual function, so - // calling it is relatively - // expensive. Therefore, we use - // a function of the Function - // class which returns the - // values at all quadrature - // points at once; that - // function is still virtual, - // but it needs to be computed - // once per cell only, not once - // in the inner loop: - coefficient.value_list (q_points, coefficient_values); - // It should be noted that the - // creation of the - // coefficient_values object is - // done outside the loop over - // all cells to avoid memory - // allocation each time we - // visit a new cell. Contrary - // to this, the other variables - // above were created inside - // the loop, but they were only - // references to memory that - // has already been allocated - // (i.e. they are pointers to - // that memory) and therefore, - // no new memory needs to be - // allocated; in particular, by - // declaring the pointers as - // close to their use as - // possible, we give the - // compiler a better choice to - // optimize them away - // altogether, something which - // it definitely can't do with - // the coefficient_values - // object since it is too - // complicated, but mostly - // because it's address is - // passed to a virtual function - // which is not knows at - // compile time. - - // Using the various - // abbreviations, the loops - // then look like this (the - // parentheses around the - // product of the two gradients - // are needed to indicate the - // dot product; we have to - // overrule associativity of - // the operator* here, since - // the compiler would otherwise - // complain about an undefined - // product of double*gradient - // since it parses - // left-to-right): - for (unsigned int q_point=0; q_pointget_dof_indices (local_dof_indices); - for (unsigned int i=0; i boundary_values; - VectorTools::interpolate_boundary_values (dof_handler, - 0, - ZeroFunction(), - boundary_values); - MatrixTools::apply_boundary_values (boundary_values, - system_matrix, - solution, - system_rhs); -}; - - - - // The solution process again looks - // mostly like in the previous - // examples. However, we will now use - // a preconditioned conjugate - // gradient algorithm. It is not very - // difficult to make this change: -template -void LaplaceProblem::solve () -{ - SolverControl solver_control (1000, 1e-12); - PrimitiveVectorMemory<> vector_memory; - SolverCG<> cg (solver_control, vector_memory); - - // The only thing we have to alter - // is that we need an object which - // will act as a preconditioner. We - // will use SSOR (symmetric - // successive overrelaxation), with - // a relaxation factor of 1.2. For - // this purpose, the SparseMatrix - // class has a function which does - // one SSOR step, and we need to - // package the address of this - // function together with the - // matrix on which it should act - // (which is the matrix to be - // inverted) and the relaxation - // factor into one object. This can - // be done like this: - PreconditionRelaxation<> - preconditioner(system_matrix, - &SparseMatrix::template precondition_SSOR, - 1.2); - // The default template parameters - // of the PreconditionRelaxation - // class are the matrix and the - // vector type, which default to - // the types used in this program. - - // Calling the solver now looks - // mostly like in the example - // before, but where there was an - // object of type - // PreconditionIdentity before, - // there now is the newly generated - // preconditioner object. - cg.solve (system_matrix, solution, system_rhs, - preconditioner); - - cout << " " << solver_control.last_step() - << " CG iterations needed to obtain convergence." - << endl; -}; - - - - // Writing output to a file is mostly - // the same as for the previous - // example, but here we will show how - // to modify some output options and - // how to construct a different - // filename for each refinement - // cycle. -template -void LaplaceProblem::output_results (const unsigned int cycle) const -{ - DataOut data_out; - - data_out.attach_dof_handler (dof_handler); - data_out.add_data_vector (solution, "solution"); - - data_out.build_patches (); - - // For this example, we would like - // to write the output directly to - // a file in Encapsulated - // Postscript (EPS) format. The - // library supports this, but - // things may be a bit more - // difficult sometimes, since EPS - // is a printing format, unlike - // most other supported formats - // which serve as input for - // graphical tools. Therefore, you - // can't scale or rotate the image - // after it has been written to - // disk, and you have to decide - // about the viewpoint or the - // scaling in advance. - // - // The defaults in the library are - // usually quite reasonable, and - // regarding viewpoint and scaling - // they coincide with the defaults - // of Gnuplot. However, since this - // is a tutorial, we will - // demonstrate how to change - // them. For this, we first have to - // generate an object describing - // the flags for EPS output: - DataOutBase::EpsFlags eps_flags; - // They are initialized with the - // default values, so we only have - // to change those that we don't - // like. For example, we would like - // to scale the z-axis differently - // (stretch each data point in - // z-direction by a factor of four): - eps_flags.z_scaling = 4; - // Then we would also like to alter - // the viewpoint from which we look - // at the solution surface. The - // default is at an angle of 60 - // degrees down from the vertical - // axis, and 30 degrees rotated - // against it in mathematical - // positive sense. We raise our - // viewpoint a bit and look more - // along the y-axis: - eps_flags.azimut_angle = 40; - eps_flags.turn_angle = 10; - // That shall suffice. There are - // more flags, for example whether - // to draw the mesh lines, which - // data vectors to use for - // colorization of the interior of - // the cells, and so on. You may - // want to take a look at the - // documentation of the EpsFlags - // structure to get an overview of - // what is possible. - // - // The only thing still to be done, - // is to tell the output object to - // use these flags: - data_out.set_flags (eps_flags); - // The above way to modify flags - // requires recompilation each time - // we would like to use different - // flags. This is inconvenient, and - // we will see more advanced ways - // in following examples where the - // output flags are determined at - // run time using an input file. - - // Finally, we need the filename to - // which the results is to be - // written. We would like to have - // it of the form - // ``solution-N.eps'', where N is - // the number of refinement - // cycle. Thus, we have to convert - // an integer to a part of a - // string; this can be done using - // the ``sprintf'' function, but in - // C++ there is a more elegant way: - // write everything into a special - // stream (just like writing into a - // file or to the screen) and - // retrieve that as a string. This - // applies the usual conversions - // from integer to strings, and one - // could as well give stream - // modifiers such as ``setf'', - // ``setprecision'', and so on. - ostrstream filename; - filename << "solution-" - << cycle - << ".eps"; - // In order to append the final - // '\0', we have to put an ``ends'' - // to the end of the string: - filename << ends; - - // We can get whatever we wrote to - // the stream using the ``str()'' - // function. Use that as filename - // for the output stream: - ofstream output (filename.str()); - // And then write the data to the - // file. - data_out.write_eps (output); -}; - - - -template -void LaplaceProblem::run () -{ - for (unsigned int cycle=0; cycle<6; ++cycle) - { - cout << "Cycle " << cycle << ':' << endl; - - // If this is the first round, - // then we have no grid yet, - // and we will create it - // here. In previous examples, - // we have already used some of - // the functions from the - // GridGenerator class. Here we - // would like to read a grid - // from a file where the cells - // are stored and which may - // originate from someone else, - // or may be the product of a - // mesh generator tool. - // - // In order to read a grid from - // a file, we generate an - // object of data type GridIn - // and associate the - // triangulation to it (i.e. we - // tell it to fill our - // triangulation object when we - // ask it to read the - // file). Then we open the - // respective file and fill the - // triangulation with it: - if (cycle == 0) - { - GridIn grid_in; - grid_in.attach_triangulation (triangulation); - - // We would now like to - // read the file. However, - // the input file is only - // for a two-dimensional - // triangulation, while - // this function is a - // template for arbitrary - // dimension. Since this is - // only a demonstration - // program, we will not use - // different input files - // for the different - // dimensions, but rather - // kill the whole program - // if we are not in 2D: - Assert (dim==2, ExcInternalError()); - // ExcInternalError is a - // globally defined - // exception, which may be - // thrown whenever - // something is terribly - // wrong. Usually, one - // would like to use more - // specific exceptions, and - // particular in this case - // one would of course try - // to do something else if - // ``dim'' is not equal to - // two, e.g. create a grid - // using library - // functions. Aborting a - // program is usually not a - // good idea and assertions - // should really only be - // used for exceptional - // cases which should not - // occur, but might due to - // stupidity of the - // programmer, user, or - // someone else. The - // situation above is not a - // very clever use of - // Assert, but again: this - // is a tutorial and it - // might be worth to show - // what not to do, after - // all. - - // We can now actually read - // the grid. It is in UCD - // (unstructured cell data) - // format, as supported by - // AVS Explorer, for - // example: - ifstream input_file("circle-grid.inp"); - grid_in.read_ucd (input_file); - - // The grid in the file - // describes a - // circle. Therefore we - // have to use a boundary - // object which tells the - // triangulation where to - // put new points on the - // boundary when the grid - // is refined. This works - // in the same way as in - // the first example. Note - // that the - // HyperBallBoundary - // constructor takes two - // parameters, the center - // of the ball and the - // radius, but that their - // default (the origin and - // 1.0) are the ones which - // we would like to use - // here. - static const HyperBallBoundary boundary; - triangulation.set_boundary (0, boundary); - } - // If this is not the first - // cycle, then simply refine - // the grid once globally. - else - triangulation.refine_global (1); - - // Write some output and do all - // the things that we have - // already seen in the previous - // examples. - cout << " Number of active cells: " - << triangulation.n_active_cells() - << endl - << " Total number of cells: " - << triangulation.n_cells() - << endl; - - setup_system (); - assemble_system (); - solve (); - output_results (cycle); - }; -}; - - - - // The main function looks mostly - // like the one in the previous - // example, so we won't comment on it - // further. -int main () -{ - deallog.depth_console (0); - - LaplaceProblem<2> laplace_problem_2d; - laplace_problem_2d.run (); - - // Finally, we have promised to - // trigger an exception in the - // Coefficient class. For this, we - // have to call its ``value_list'' - // function with two arrays of - // different size (the number in - // parentheses behind the name of - // the object). We have commented - // out these lines in order to - // allow the program to exit - // gracefully in normal situations - // (we use the program in - // day-to-day testing of changes to - // the library as well), so you - // will only get the exception by - // un-commenting the following - // lines. -/* - Coefficient<2> coefficient; - vector > points (2); - vector coefficient_values (1); - coefficient.value_list (points, coefficient_values); -*/ - - return 0; -}; diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-6/.cvsignore b/deal.II/deal.II/Attic/examples/step-by-step/step-6/.cvsignore deleted file mode 100644 index c5c1cbecff..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-6/.cvsignore +++ /dev/null @@ -1,2 +0,0 @@ -*.o *.go Makefile.dep *.gnuplot *.gmv *.eps -step-6 diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-6/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-6/Makefile deleted file mode 100644 index 445913746c..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-6/Makefile +++ /dev/null @@ -1,167 +0,0 @@ -# $Id$ - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = $(basename $(shell echo step-*.cc)) - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# As third field, we need to give the path to the top-level deal.II -# directory. You need to adjust this to your needs. Since this path is -# probably the most often needed one in the Makefile internals, it is -# designated by a single-character variable, since that can be -# reference using $D only, i.e. without the parentheses that are -# required for most other parameters, as e.g. in $(target). -D = ../../../../ - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(flags) -o $@ $^ - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - @./$(target) - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-6/step-6.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-6/step-6.cc deleted file mode 100644 index 0629bdc820..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-6/step-6.cc +++ /dev/null @@ -1,1035 +0,0 @@ -/* $Id$ */ -/* Author: Wolfgang Bangerth, University of Heidelberg, 2000 */ - - // The first few files have already - // been covered in previous examples - // and will thus not be further - // commented on. -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - // From the following include file we - // will import the declaration of the - // quadratic finite element class, - // which in analogy to ``FEQ1'' for - // the linear element is called - // ``FEQ2''. The Lagrange elements of - // poynomial degrees one through four - // are all declared in this file. -#include - - // We will not read the grid from a - // file as in the previous example, - // but generate it using a function - // of the library. However, we will - // want to write out the locally - // refined grids in each step, so we - // need the following include file - // instead of ``grid_in.h'': -#include - - // When using locally refined grids, - // we will get so-called ``hanging - // nodes''. However, the standard - // finite element methods assumes - // that the discrete solution spaces - // be continuous, so we need to make - // sure that the degrees of freedom - // on hanging nodes conform to some - // constraints such that the global - // solution is continuous. The - // following file contains a class - // which is used to handle these - // constraints: -#include - - // Finally, we would like to use a - // simple way to adaptively refine - // the grid. While in general, - // adaptivity is very - // problem-specific, the error - // indicator in the following file - // often yields quite nicely adapted - // grids for a wide class of - // problems. -#include - -#include - - - // The main class is again almost - // unchanged. Two additions, however, - // are made: we have added the - // ``refine'' function, which is used - // to adaptively refine the grid - // (instead of the global refinement - // in the previous examples), and a - // variable which will hold the - // constraints associated to the - // hanging nodes. -template -class LaplaceProblem -{ - public: - LaplaceProblem (); - // For educational purposes, we - // add a destructor here. The - // reason why we do so will be - // explained in the definition of - // this function. - ~LaplaceProblem (); - void run (); - - private: - void setup_system (); - void assemble_system (); - void solve (); - void refine_grid (); - void output_results (const unsigned int cycle) const; - - Triangulation triangulation; - DoFHandler dof_handler; - - // In order to use the quadratic - // element, we only have to - // replace the declaration of the - // ``fe'' variable like this: - FEQ2 fe; - - // This is the new variable in - // the main class. We need an - // object which holds a list of - // the constraints from the - // hanging nodes: - ConstraintMatrix hanging_node_constraints; - - SparsityPattern sparsity_pattern; - SparseMatrix system_matrix; - - Vector solution; - Vector system_rhs; -}; - - - -template -class Coefficient : public Function -{ - public: - virtual double value (const Point &p, - const unsigned int component = 0) const; - - virtual void value_list (const vector > &points, - vector &values, - const unsigned int component = 0) const; -}; - - - -template -double Coefficient::value (const Point &p, - const unsigned int) const -{ - if (p.square() < 0.5*0.5) - return 20; - else - return 1; -}; - - - -template -void Coefficient::value_list (const vector > &points, - vector &values, - const unsigned int component) const -{ - const unsigned int n_points = points.size(); - - Assert (values.size() == n_points, - ExcVectorHasWrongSize (values.size(), n_points)); - - Assert (component == 0, - ExcWrongComponent (component, 1)); - - for (unsigned int i=0; i -LaplaceProblem::LaplaceProblem () : - dof_handler (triangulation) -{}; - - - // Here comes the added destructor of - // the class. The reason why we - // needed to do so is a subtle change - // in the order of data elements in - // the class as compared to all - // previous examples: the - // ``dof_handler'' object was defined - // before and not after the ``fe'' - // object. Of course we could have - // left this order unchanged, but we - // would like to show what happens if - // the order is reversed since this - // produces a rather nasty effect and - // results in an error which is - // difficult to track down if one - // does not know what happens. - // - // Basically what happens is the - // following: when we distribute the - // degrees of freedom using the - // function call - // ``dof_handler.distribute_dofs()'', - // the ``dof_handler'' also stores a - // pointer to the finite element in - // use. Since this pointer is used - // every now and then until either - // the degrees of freedom are - // re-distributed using another - // finite element object or until the - // ``dof_handler'' object is - // detroyed, it would be unwise if we - // would allow the finite element - // object to be deleted before - // ``dof_handler'' object. To - // disallow this, the DoF handler - // increases a counter inside the - // finite element object which counts - // how many objects use that finite - // element (this is what the - // ``Subscriptor'' class is used for, - // in case you want something like - // this for your own programs). The - // finite element object will refuse - // its destruction if that counter is - // larger than zero, since then some - // other objects might rely on the - // persistence of the finite element - // object. An exception will then be - // thrown and the program will - // usually abort upon the attempt to - // destroy the finite element. - // - // As a sidenote, we remark that - // these exception are not - // particularly popular among - // programmers, since they only tell - // us that some other object is still - // using the object that is presently - // destructed, but not which one. It - // is therefore often rather - // time-consuming to find out where - // the problem exactly is, although - // it is then usually straightforward - // to remedy the situation. However, - // we believe that the effort to find - // invalid references to objects that - // do no longer exist is less if the - // problem is detected once the - // reference becomes invalid, rather - // than when non-existent objects are - // actually accessed again, since - // then usually only invalid data is - // accessed, but no error is - // immediately raised. - // - // Coming back to the present - // situation, if we did not write - // this destructor, the compiler will - // generate code that triggers - // exactly the behavious sketched - // above. The reason is that member - // variables of the - // ``LaplaceProblem'' class are - // destructed bottom-up, as always in - // C++. Thus, the finite element - // object will be destructed before - // the DoF handler object, since its - // declaration is below the one of - // the DoF handler. This triggers the - // situation above, and an exception - // will be raised when the ``fe'' - // object is destructed. What needs - // to be done is to tell the - // ``dof_handler'' object to release - // its lock to the finite element. Of - // course, the ``dof_handler'' will - // only release its lock if it really - // does not need the finite element - // any more, i.e. when all finite - // element related data is deleted - // from it. For this purpose, the - // ``DoFHandler'' class has a - // function ``clear'' which deletes - // all degrees of freedom, releases - // its lock to the finite element and - // sets its internal pointer to a - // null pointer. After this, you can - // safely destruct the finite element - // object since its internal counter - // is then zero. - // - // For completeness, we add the - // output of the exception that would - // be triggered without this - // destructor to the end of the - // results section of this example. -template -LaplaceProblem::~LaplaceProblem () -{ - dof_handler.clear (); -}; - - - -template -void LaplaceProblem::setup_system () -{ - // To distribute degrees of - // freedom, the ``dof_handler'' - // variable takes only the finite - // element object. In this case, it - // will distribute one degree of - // freedom per vertex, one per line - // and one in the interior of the - // cell. You need not specify these - // details since they are encoded - // into the finite element object - // from which the ``dof_handler'' - // gets the necessary information. - dof_handler.distribute_dofs (fe); - - // After setting up all the degrees - // of freedoms, we can make up the - // list of constraints associated - // with the hanging nodes. This is - // done using the following - // function calls (the first clears - // the contents of the object, - // which is still there from the - // previous cycle, i.e. before the - // grid was refined): - hanging_node_constraints.clear (); - DoFTools::make_hanging_node_constraints (dof_handler, - hanging_node_constraints); - // In principle, the - // ConstraintMatrix class can hold - // other constraints as well, - // i.e. constraints that do not - // stem from hanging - // nodes. Sometimes, it is useful - // to use such constraints, in - // which case they may be added to - // the ConstraintMatrix object - // after the hanging node - // constraints were computed. After - // all constraints have been added, - // they need to be sorted and - // rearranged to perform some - // actions more efficiently. This - // postprocessing is done using the - // ``close'' function, after which - // no further constraints may be - // added any more. - hanging_node_constraints.close (); - - // Since we use higher order finite - // elements, the maximum number of - // entries per line of the matrix - // is larger than for the linear - // elements. The - // ``max_couplings_between_dofs()'' - // function takes care of this: - sparsity_pattern.reinit (dof_handler.n_dofs(), - dof_handler.n_dofs(), - dof_handler.max_couplings_between_dofs()); - DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); - - // The constrained hanging nodes - // will later be eliminated from - // the linear system of - // equations. When doing so, some - // additional entries in the global - // matrix will be set to non-zero - // values, so we have to reserve - // some space for them here. Since - // the process of elimination of - // these constrained nodes is - // called ``condensation'', the - // functions that eliminate them - // are called ``condense'' for both - // the system matrix and right hand - // side, as well as for teh - // sparsity pattern. - hanging_node_constraints.condense (sparsity_pattern); - - // Now all non-zero entries of the - // matrix are known (i.e. those - // from regularly assembling the - // matrix and those that were - // introduced by eliminating - // constraints). We can thus close - // the sparsity pattern and remove - // unneeded space: - sparsity_pattern.compress(); - - system_matrix.reinit (sparsity_pattern); - - solution.reinit (dof_handler.n_dofs()); - system_rhs.reinit (dof_handler.n_dofs()); -}; - - - -template -void LaplaceProblem::assemble_system () -{ - const Coefficient coefficient; - // Since we use a higher order - // finite element, we also need to - // adjust the order of the - // quadrature formula in order to - // integrate the matrix entries - // with sufficient accuracy. For - // the quadratic polynomials of - // which the finite element which - // we use consist, a Gauss formula - // with three points in each - // direction is sufficient. - QGauss3 quadrature_formula; - - // The ``FEValues'' object - // automatically adjusts the - // computation of values to the - // finite element. In fact, the - // ``FEValues'' class does not do - // many computations itself, but - // mostly delegates its work to the - // finite element class to which - // its first parameter - // belongs. That class then knows - // how to compute the values of - // shape functions, etc. - FEValues fe_values (fe, quadrature_formula, - UpdateFlags(update_values | - update_gradients | - update_q_points | - update_JxW_values)); - - // Here it comes handy that we have - // introduced an abbreviation for - // the number of degrees of freedom - // per cell before: the following - // value will be set to 9 (in 2D) - // now, where it was 4 before. - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const unsigned int n_q_points = quadrature_formula.n_quadrature_points; - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - Vector cell_rhs (dofs_per_cell); - - vector local_dof_indices (dofs_per_cell); - - vector coefficient_values (n_q_points); - - // We can now go on with assembling - // the matrix and right hand - // side. Note that this code is - // copied without change from the - // previous example, even though we - // are now using another finite - // element. The actual difference - // in what is done is inside the - // call to ``fe_values.reinit - // (cell)'', but you need not care - // about what happens there. For - // the user of the ``fe_values'' - // object, the actual finite - // element type is transparent. - DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), - endc = dof_handler.end(); - for (; cell!=endc; ++cell) - { - cell_matrix.clear (); - cell_rhs.clear (); - - fe_values.reinit (cell); - const FullMatrix - & shape_values = fe_values.get_shape_values(); - const vector > > - & shape_grads = fe_values.get_shape_grads(); - const vector - & JxW_values = fe_values.get_JxW_values(); - const vector > - & q_points = fe_values.get_quadrature_points(); - - coefficient.value_list (q_points, coefficient_values); - - for (unsigned int q_point=0; q_pointget_dof_indices (local_dof_indices); - for (unsigned int i=0; i boundary_values; - VectorTools::interpolate_boundary_values (dof_handler, - 0, - ZeroFunction(), - boundary_values); - MatrixTools::apply_boundary_values (boundary_values, - system_matrix, - solution, - system_rhs); -}; - - - -template -void LaplaceProblem::solve () -{ - SolverControl solver_control (1000, 1e-12); - PrimitiveVectorMemory<> vector_memory; - SolverCG<> cg (solver_control, vector_memory); - - PreconditionRelaxation<> - preconditioner(system_matrix, - &SparseMatrix::template precondition_SSOR, - 1.2); - - cg.solve (system_matrix, solution, system_rhs, - preconditioner); - - // To set the constrained nodes to - // resonable values, you have to - // use the following function. It - // computes the values of these - // nodes from the values of the - // unconstrained nodes, which are - // the solutions of the linear - // system just solved. - hanging_node_constraints.distribute (solution); -}; - - - // Instead of global refinement, we - // now use a slightly more elaborate - // scheme. We will use the - // ``KellyErrorEstimator'' class - // which implements an error - // estimator for the Laplace - // equation; it can in principle - // handle variable coefficients, but - // we will not use these advanced - // features, but rather use its most - // simple form since we are not - // interested in quantitative results - // but only in a quick way to - // generate locally refined grids. - // - // Although the error estimator - // derived by Kelly et al. was - // originally developed for Laplace's - // equation, we have found that it is - // also well suited to quickly - // generate locally refined grids for - // a wide class of - // problems. Basically, it looks at - // the jumps of the gradients of the - // solution over the faces of cells - // (which is a measure for the second - // derivatives) and scales it by the - // size of the cell. It is therefore - // a measure for the local smoothness - // of the solution at the place of - // each cell and it is thus - // understandable that it yields - // reasonable grids also for - // hyperbolic transport problems or - // the wave equation as well, - // although these grids are certainly - // suboptimal compared to approaches - // specially tailored to the - // problem. This error estimator may - // therefore be understood as a quick - // way to test an adaptive program. -template -void LaplaceProblem::refine_grid () -{ - // The output of the error - // estimator class is an error - // indicator for each cell. We - // therefore need a vector with as - // many elements as there are - // active cells. Since accuracy is - // not that important here, the - // data type for the error values - // on each cell is ``float'' - // instead of ``double''. - Vector estimated_error_per_cell (triangulation.n_active_cells()); - - // Next, the error estimator can - // handle Neumann boundary - // conditions. For this, it needs - // to know which parts of the - // boundary have Neumann boundary - // conditions and teh respective - // boundary values there. This - // information is mediated by a map - // in which the keys are the - // boundary part numbers and the - // values are pointers to the - // boundary value functions. We - // create such a map, but since we - // do not use Neumann boundary - // conditions, the map will not - // contain entries. - KellyErrorEstimator::FunctionMap neumann_boundary; - - // Now we call the error - // estimator. The parameters should - // be clear apart from the - // quadrature formula: as said - // above, the jump of the gradients - // of the solution across the faces - // of a cell are considered. They - // are integrated along the face, - // but as usual in finite element - // programs the integration is done - // using quadrature. Since the - // error estimator class can't know - // itself which quadrature formula - // might be appropriate, we have to - // pass one to the function (of - // course, the order of the - // quadrature formula should be - // adapted to the finite element - // under consideration). Note that - // since the quadrature has to take - // place along faces, the dimension - // of the quadrature formula is - // ``dim-1'' rather then ``dim''. - // - // (What constitutes a suitable - // quadrature rule here of course - // depends on knowledge of the way - // the error estimator evaluates - // the solution field. As said - // above, the jump of the gradient - // is integrated over each face, - // which would be a quadratic - // function on each face for the - // quadratic elements in use in - // this example. In fact, however, - // it is the square of the jump of - // the gradient, as explained in - // the documentation of that class, - // and that is a quartic function, - // for which a 3 point Gauss - // formula is sufficient since it - // integrates polynomials up to - // order 5 exactly.) - KellyErrorEstimator::estimate (dof_handler, - QGauss3(), - neumann_boundary, - solution, - estimated_error_per_cell); - - // The above function returned one - // error indicator value for each - // cell in the - // ``estimated_error_per_cell'' - // array. Refinement is now done as - // follows: refine those 30 per - // cent of the cells with the - // highest error values, and - // coarsen the 3 per cent of cells - // with the lowest values. - // - // One can easily verify that if - // the second number were zero, - // this would approximately result - // in a doubling of cells in each - // step in two space dimensions, - // since for each of the 30 per - // cent of cells four new would be - // replaced. In practice, some more - // cells are usually produced since - // it is disallowed that a cell is - // refined twice while the neighbor - // cell is not refined; in that - // case, the neighbor cell would be - // refined as well. - // - // In many applications, the number - // of cells to be coarsened would - // be set to something larger than - // only three per cent. A non-zero - // value is useful especially if - // for some reason the initial - // (coarse) grid is already rather - // refined. In that case, it might - // be necessary to refine it in - // some regions, while coarsening - // in some other regions is - // useful. In our case here, the - // initial grid is very coarse, so - // coarsening is only necessary in - // a few regions where - // over-refinement may have taken - // place. Thus a small, non-zero - // value is appropriate here. - triangulation.refine_and_coarsen_fixed_number (estimated_error_per_cell, - 0.3, 0.03); - - // After the previous function has - // exited, some cells are flagged - // for refinement, and some other - // for coarsening. The refinement - // or coarsening itself is not - // performed by now, however, since - // there are many cases where - // further modifications of these - // flags is useful. Here, we don't - // want to do any such thing, so we - // can tell the triangulation to - // perform the actions for which - // the cells are flagged. - triangulation.execute_coarsening_and_refinement (); -}; - - - -template -void LaplaceProblem::output_results (const unsigned int cycle) const -{ - // We want to write the grid in - // each cycle. Here is another way - // to quickly produce a filename - // based on the cycle number. It - // assumes that the numbers `0' - // through `9' are represented - // consecutively in the character - // set (which is the case in all - // known character sets). However, - // this will only work if the cycle - // number is less than ten, which - // we check by an assertion. - string filename = "grid-"; - filename += ('0' + cycle); - Assert (cycle < 10, ExcInternalError()); - - filename += ".eps"; - ofstream output (filename.c_str()); - - // Using this filename, we write - // each grid as a postscript file. - GridOut grid_out; - grid_out.write_eps (triangulation, output); -}; - - - -template -void LaplaceProblem::run () -{ - for (unsigned int cycle=0; cycle<8; ++cycle) - { - cout << "Cycle " << cycle << ':' << endl; - - if (cycle == 0) - { - // Instead of reading the - // grid from a file on disk - // as in the previous - // example, we now again - // create it using a - // library function. The - // domain is again a - // circle, which is why we - // have to provide a - // suitable boundary object - // as well. - // - // You will notice by - // looking at the coarse - // grid that it is of - // inferior quality than - // the one which we read - // from the file in the - // previous example: the - // cells are less equally - // formed. However, using - // the library function - // this program works in - // any space dimension, - // which was not the case - // before. - GridGenerator::hyper_ball (triangulation); - - static const HyperBallBoundary boundary; - triangulation.set_boundary (0, boundary); - - triangulation.refine_global (1); - } - else - // In case this is not the - // first cycle, we want to - // refine the grid. Unlike - // the global refinement - // employed in the last - // example, we now use the - // adaptive procedure - // described in the function - // which we now call: - { - refine_grid (); - }; - - - cout << " Number of active cells: " - << triangulation.n_active_cells() - << endl; - - setup_system (); - - cout << " Number of degrees of freedom: " - << dof_handler.n_dofs() - << endl; - - assemble_system (); - solve (); - output_results (cycle); - }; - - // The solution on the final grid - // is now written to a file. As - // already done in one of the - // previous examples, we use the - // EPS format for output, and to - // obtain a reasonable view on the - // solution, we rescale the z-axis - // by a factor of four. - DataOut::EpsFlags eps_flags; - eps_flags.z_scaling = 4; - - DataOut data_out; - data_out.set_flags (eps_flags); - - data_out.attach_dof_handler (dof_handler); - data_out.add_data_vector (solution, "solution"); - data_out.build_patches (); - - ofstream output ("final-solution.eps"); - data_out.write_eps (output); -}; - - - // The main function is unaltered in - // its functionality against the - // previous example, but we have - // taken a step of additional - // caution. Sometimes, something goes - // wrong (such as insufficient disk - // space upon writing an output file, - // not enough memory when trying to - // allocate a vector or a matrix, or - // if we can't read from or write to - // a file for whatever reason), and - // in these cases the library will - // throw exceptions. Since they do - // not constitute programming errors, - // these exceptions also are not - // switched off in optimized mode, in - // constrast to the ``Assert'' macro - // which we have used to test against - // programming errors. If uncought, - // these exceptions propagate the - // call tree up to the ``main'' - // function, and if they are not - // caught there either, the program - // is aborted. In many cases, like if - // there is not enough memory or disk - // space, we can't do anything but we - // can at least print some text - // trying to explain the reason why - // the program failed. A way to do so - // is shown in the following. It is - // certainly useful to write any - // larger program in this way, and - // you can do so by more or less - // copying this function apart from - // the ``try'' block which contains - // the code that constitutes the - // actual functionality. -int main () -{ - - // The general idea behind the - // layout of this function is as - // follows: let's try to run the - // program as we did before... - try - { - deallog.depth_console (0); - - LaplaceProblem<2> laplace_problem_2d; - laplace_problem_2d.run (); - } - // ...and if this should fail, try - // to gather as much information as - // possible. Specifically, if the - // exception that was thrown is an - // object of a class that is - // derived from the C++ standard - // class ``exception'', then we can - // use the ``what'' member function - // to get a string which describes - // the reason why the exception was - // thrown. - // - // The deal.II exception classes - // are all derived from the - // standard class, and in - // particular, the ``exc.what()'' - // function will return - // approximately the same string as - // would be generated if the - // exception was thrown using the - // ``Assert'' macro. You have seen - // the output of such an exception - // in the previous example, and you - // then know that it contains the - // file and line number of where - // the exception occured, and some - // other information. This is also - // what would be printed in the - // following. - catch (exception &exc) - { - cerr << endl << endl - << "----------------------------------------------------" - << endl; - cerr << "Exception on processing: " << endl - << exc.what() << endl - << "Aborting!" << endl - << "----------------------------------------------------" - << endl; - // We can't do much more than - // printing as much information - // as we can get to, so abort - // with error: - return 1; - } - // If the exception that was thrown - // somewhere was not an object of a - // class derived from the standard - // ``exception'' class, then we - // can't do anything at all. We - // then simply print an error - // message and exit. - catch (...) - { - cerr << endl << endl - << "----------------------------------------------------" - << endl; - cerr << "Unknown exception!" << endl - << "Aborting!" << endl - << "----------------------------------------------------" - << endl; - return 1; - }; - - // If we got to this point, there - // was no exception which - // propagated up to the main - // functino (maybe there were some, - // but they were caught somewhere - // in the program or the - // library). Therefore, the program - // performed as was expected and we - // can return without error. - return 0; -}; diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-7/.cvsignore b/deal.II/deal.II/Attic/examples/step-by-step/step-7/.cvsignore deleted file mode 100644 index 53721fd585..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-7/.cvsignore +++ /dev/null @@ -1,2 +0,0 @@ -*.o *.go Makefile.dep *.gnuplot *.gmv *.eps -step-7 diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-7/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-7/Makefile deleted file mode 100644 index 445913746c..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-7/Makefile +++ /dev/null @@ -1,167 +0,0 @@ -# $Id$ - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = $(basename $(shell echo step-*.cc)) - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# As third field, we need to give the path to the top-level deal.II -# directory. You need to adjust this to your needs. Since this path is -# probably the most often needed one in the Makefile internals, it is -# designated by a single-character variable, since that can be -# reference using $D only, i.e. without the parentheses that are -# required for most other parameters, as e.g. in $(target). -D = ../../../../ - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(flags) -o $@ $^ - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - @./$(target) - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-7/step-7.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-7/step-7.cc deleted file mode 100644 index db7a49f68a..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-7/step-7.cc +++ /dev/null @@ -1,1242 +0,0 @@ -/* $Id$ */ -/* Author: Wolfgang Bangerth, University of Heidelberg, 2000 */ - - // These first include files have all - // been treated in previous examples, - // so we won't explain what is in - // them again. -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - // In this example, we will not use - // the numeration scheme which is - // used per default by the - // ``DoFHandler'' class, but will - // renumber them using the - // Cuthill-McKee algorithm. The - // necessary functions are declared - // in the following file: -#include - // Then we will show a little trick - // how we can make sure that objects - // are not deleted while they are - // still in use. For this purpose, - // there is the ``SmartPointer'' - // helper class, which is declared in - // this file: -#include - // Then we will want to use the - // ``integrate_difference'' function - // mentioned in the introduction. It - // comes from this file: -#include - // And finally, we need to use the - // ``FEFaceValues'' class, which is - // declare in the same file as the - // ``FEValues'' class: -#include - -#include - - - - // Since we want to compare the - // exactly known continuous solution - // to the computed one, we need a - // function object which represents - // the continuous solution. On the - // other hand, we need the right hand - // side function, and that one of - // course shares some characteristics - // with the solution. In order to - // reduce dependencies which arise if - // we have to change something in - // both classes at the same time, we - // exclude the common characteristics - // of both functions into a base - // class. - // - // The common characteristics for the - // given solution, which as explained - // in the introduction is a sum of - // three exponentials, are here: the - // number of exponentials, their - // centers, and their half width. We - // declare them in the following - // class. Since the number of - // exponentials is a constant scalar - // integral quantity, C++ allows its - // definition (i.e. assigning a - // value) right at the place of - // declaration (i.e. where we declare - // that such a variable exists). -template -class SolutionBase -{ - protected: - static const unsigned int n_source_centers = 3; - static const Point source_centers[n_source_centers]; - static const double width; -}; - - - // The variables which denote the - // centers and the width of the - // exponentials have just been - // declared, now we still need to - // assign values to them. Here, we - // can show another small piece of - // template sourcery, namely how we - // can assign different values to - // these variables depending on the - // dimension. We will only use the 2d - // case in the program, but we show - // the 1d case for exposition of a - // useful technique. - // - // First we assign values to the - // centers for the 1d case, where we - // place the centers equidistanly at - // -1/3, 0, and 1/3: -template <> -const Point<1> -SolutionBase<1>::source_centers[SolutionBase<1>::n_source_centers] -= { Point<1>(-1.0 / 3.0), - Point<1>(0.0), - Point<1>(+1.0 / 3.0) }; - - // Then we place the centers for the - // 2d case as follows: -template <> -const Point<2> -SolutionBase<2>::source_centers[SolutionBase<2>::n_source_centers] -= { Point<2>(-0.5, +0.5), - Point<2>(-0.5, -0.5), - Point<2>(+0.5, -0.5) }; - - // There remains to assign a value to - // the half-width of the - // exponentials. We would like to use - // the same value for all dimensions, - // so here is how that works: -template -const double SolutionBase::width = 1./3.; - - - - // After declaring and defining the - // characteristics of solution and - // right hand side, we can declare - // the classes representing these - // two. They both represent - // continuous functions, so they are - // derived from the ``Function'' - // base class, and they also inherit - // the characteristics defined in the - // ``SolutionBase'' class. - // - // The actual classes are declared in - // the following. Note that in order - // to compute the error of the - // numerical solution against the - // continuous one in the L2 and H1 - // norms, we have to export value and - // gradient of the exact solution, - // which is done by overloading the - // respective virtual member - // functions in the ``Function'' base - // class. -template -class Solution : public Function, - protected SolutionBase -{ - public: - virtual double value (const Point &p, - const unsigned int component = 0) const; - virtual Tensor<1,dim> gradient (const Point &p, - const unsigned int component = 0) const; -}; - - - // The actual definition of the - // values and gradients of the exact - // solution class is according to - // their mathematical definition and - // probably needs not much - // explanation. -template -double Solution::value (const Point &p, - const unsigned int) const -{ - double return_value = 0; - for (unsigned int i=0; i shifted_point = p-source_centers[i]; - - // The ``Point'' class - // offers a member function - // ``square'' that does what - // it's name suggests. - return_value += exp(-shifted_point.square() / (width*width)); - }; - - return return_value; -}; - - - -template -Tensor<1,dim> Solution::gradient (const Point &p, - const unsigned int) const -{ - // In order to accumulate the - // gradient from the contributions - // of the exponentials, we allocate - // an object which denotes the - // mathematical quantity of a - // tensor of rank ``1'' and - // dimension ``dim''. Its default - // constructor sets it to the - // vector containing only zeroes, - // so we need not explicitely care - // for its initialization. - Tensor<1,dim> return_value; - // Note that we could as well have - // taken the type of the object to - // be ``Point''. Tensors of - // rank 1 and points are almost - // exchangeable, and have only very - // slightly different mathematical - // meanings. In fact, the - // ``Point'' class is derived - // from the ``Tensor<1,dim>'' - // class, which makes up for their - // mutual exchangeability. - - for (unsigned int i=0; i shifted_point = p-source_centers[i]; - - // For the gradient, note that - // it's direction is along - // (x-x_i), so we add up - // multiples of this distance - // vector, where the factor is - // given by the exponentials. - return_value += (-2 / (width*width) * - exp(-shifted_point.square() / (width*width)) * - shifted_point); - }; - - return return_value; -}; - - - - // Besides the function that - // represents the exact solution, we - // also need a function which we can - // use as right hand side when - // assembling the linear system of - // discretized equations. This is - // accomplished using the following - // class and the following definition - // of its function. Note that here we - // only need the value of the - // function, not its gradients or - // higher derivatives. -template -class RightHandSide : public Function, - protected SolutionBase -{ - public: - virtual double value (const Point &p, - const unsigned int component = 0) const; -}; - - - // The value of the right hand side - // is given by the negative Laplacian - // of the solution plus the solution - // itself, since we wanted to solve - // Helmholtz's equation: -template -double RightHandSide::value (const Point &p, - const unsigned int) const -{ - double return_value = 0; - for (unsigned int i=0; i shifted_point = p-source_centers[i]; - - // The first contribution is - // the Laplacian: - return_value += ((2*dim - 4*shifted_point.square()/(width*width)) / - (width*width) * - exp(-shifted_point.square() / (width*width))); - // And the second is the - // solution itself: - return_value += exp(-shifted_point.square() / (width*width)); - }; - - return return_value; -}; - - - - // Then we need the class that does - // all the work. -//....................... -template -class LaplaceProblem -{ - public: -//......... - enum RefinementMode { - global_refinement, adaptive_refinement - }; - -//....... - LaplaceProblem (const FiniteElement &fe, - const RefinementMode refinement_mode); - ~LaplaceProblem (); - - void run (); - - private: -//....... - void setup_system (); - void assemble_system (); - void solve (); - void refine_grid (); - void process_solution (const unsigned int cycle) const; - - Triangulation triangulation; - DoFHandler dof_handler; - - // The finite elements which the - // objects of this class operate - // on are passed to the - // constructor of this class. It - // has to store a pointer to the - // finite element for the member - // functions to use. Now, for the - // present class there is no big - // deal in that, but since we - // want to show techniques rather - // than solutions in these - // programs, we will here point - // out a problem that often - // occurs -- and of course the - // right solution as well. - // - // Consider the following - // situation that occurs in all - // the example programs: we have - // a triangulation object, and we - // have a finite element object, - // and we also have an object of - // type ``DoFHandler'' that uses - // both of the first two. These - // three objects all have a - // lifetime that is rather long - // compared to most other - // objects: they are basically - // set at the beginning of the - // program or an outer loop, and - // they are destroyed at the very - // end. The question is: can we - // guarantee that the two objects - // which the ``DoFHandler'' uses, - // live at least as long as they - // are in use? This means that - // the ``DoFHandler'' must have a - // kind of lock on the - // destruction of the other - // objects, and it can only - // release this lock once it has - // cleared all active references - // to these objects. We have seen - // what happens if we violate - // this order of destruction in - // the previous example program: - // an exception is thrown that - // terminates the program in - // order to notify the programmer - // of this potentially dangerous - // state where an object is - // pointed to that no longer - // persists. - // - // We will show here how the - // library managed to find out - // that there are still active - // references to an - // object. Basically, the method - // is along the following line: - // all objects that are subject - // to such potentially dangerous - // pointers are derived from a - // class called - // ``Subscriptor''. For example, - // the ``Triangulation'', - // ``DoFHandler'', and a base - // class of the ``FiniteElement'' - // class are derived from - // ``Subscriptor``. This latter - // class does not offer much - // functionality, but it has a - // built-in counter which we can - // subscribe to, thus the name of - // the class. Whenever we - // initialize a pointer to that - // object, we can increase it use - // counter, and when we move away - // our pointer or do not need it - // any more, we decrease the - // counter again. This way, we - // can always check how many - // objects still use that - // object. If an object of a - // class that is derived from the - // ``Subscriptor'' class is - // destroyed, it also has to call - // the destructor of the - // ``Subscriptor'' class; this - // will then check whether the - // counter is really zero. If - // yes, then there are no active - // references to this object any - // more, and we can safely - // destroy it. If the counter is - // non-zero, however, then the - // destruction would result in - // stale and thus potentially - // dangerous pointers, and we - // rather throw an exception to - // alert the programmer that she - // is doing something dangerous - // and better had her program - // fixed. - // - // While this certainly all - // sounds very well, it has some - // problems in terms of - // usability: what happens if I - // forget to increase the counter - // when I let a pointer point to - // such an object? And what - // happens if I forget to - // decrease it again? Note that - // this may lead to extremely - // difficult to find bugs, since - // the place where we have - // forgotten something may be - // very far away from the place - // where the check for zeroness - // of the counter upon - // destruction actually - // fails. This kind of bug is - // very annoying and usually very - // hard to fix. - // - // The solution to this problem - // is to again use some C++ - // trickery: we create a class - // that acts just like a pointer, - // i.e. can be dereferenced, can - // be assigned to and from other - // pointers, and so on. This can - // be done by overloading the - // several dereferencing - // operators of that - // class. Withing the - // constructors, destructors, and - // assignement operators of that - // class, we can however also - // manage increasing or - // decreasing the use counters of - // the objects we point - // to. Objects of that class - // therefore can be used just - // like ordinary pointers to - // objects, but they also serve - // to change the use counters of - // those objects without the need - // for the programmer to do so - // herself. The class that - // actually does all this is - // called ``SmartPointer'' and - // takes as template parameter - // the data type of the object - // which it shall point to. The - // latter type may be any class, - // as long as it is derived from - // the ``Subscriptor'' class. - // - // In the present example - // program, we protect object - // using the pointer to the - // finite element, i.e. the - // following member variable, - // from the situation that for - // some reason the finite element - // pointed to is destroyed while - // still in use. Note that the - // pointer is assigned at - // construction time of this - // object, and destroyed upon - // destruction of this object, so - // the lock on the destruction of - // the finite element object is - // basically all through the - // lifetime of this object. - SmartPointer > fe; - - // The next few member variables - // are unspectacular, since they - // have already been discussed in - // detail: - ConstraintMatrix hanging_node_constraints; - - SparsityPattern sparsity_pattern; - SparseMatrix system_matrix; - - Vector solution; - Vector system_rhs; -//............. - RefinementMode refinement_mode; -}; - - - -//........ -template -LaplaceProblem::LaplaceProblem (const FiniteElement &fe, - const RefinementMode refinement_mode) : - dof_handler (triangulation), - fe (&fe), - refinement_mode (refinement_mode) -{}; - - - -template -LaplaceProblem::~LaplaceProblem () -{ - dof_handler.clear (); -}; - - - // The following function sets up the - // degrees of freedom, sizes of - // matrices and vectors, etc. Most of - // its functionality has been showed - // in previous examples, the only - // difference being the renumbering - // step. -template -void LaplaceProblem::setup_system () -{ - dof_handler.distribute_dofs (*fe); - // Renumbering the degrees of - // freedom is not overly difficult, - // as long as you use one of the - // algorithms included in the - // library. It requires just one - // line of code, namely the - // following: - DoFRenumbering::Cuthill_McKee (dof_handler); - // Note, however, that when you - // renumber the degrees of freedom, - // you must do so immediately after - // distributing them, since such - // things as hanging nodes, the - // sparsity pattern etc. depend on - // the absolute numbers which are - // altered by renumbering. - // - // Renumbering does not serve any - // specific purpose in this - // example, it is done only for - // exposition of the technique. To - // see the effect of renumbering on - // the sparsity pattern of the - // matrix, refer to the second - // example program. - - // The rest of the function is - // almost identitcally taken over - // from previous examples: - hanging_node_constraints.clear (); - DoFTools::make_hanging_node_constraints (dof_handler, - hanging_node_constraints); - hanging_node_constraints.close (); - - sparsity_pattern.reinit (dof_handler.n_dofs(), - dof_handler.n_dofs(), - dof_handler.max_couplings_between_dofs()); - DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); - hanging_node_constraints.condense (sparsity_pattern); - sparsity_pattern.compress(); - - system_matrix.reinit (sparsity_pattern); - - solution.reinit (dof_handler.n_dofs()); - system_rhs.reinit (dof_handler.n_dofs()); -}; - - - - // Assembling the system of equations - // for the problem at hand is mostly - // as for the example programs - // before. However, some things have - // changed anyway, so we comment on - // this function fairly extensively. -template -void LaplaceProblem::assemble_system () -{ - // First we need to define objects - // which will be used as quadrature - // formula for domain and face - // integrals. - // - // Note the way in which we define - // a quadrature rule for the faces: - // it is simply a quadrature rule - // for one dimension less! - QGauss3 quadrature_formula; - QGauss3 face_quadrature_formula; - // For simpler use later on, we - // alias the number of quadrature - // points to local variables: - const unsigned int n_q_points = quadrature_formula.n_quadrature_points; - const unsigned int n_face_q_points = face_quadrature_formula.n_quadrature_points; - - // Then we need objects which can - // evaluate the values, gradients, - // etc of the shape functions at - // the quadrature points. While it - // seems that it should be feasible - // to do it with one object for - // both domain and face integrals, - // there is a subtle difference - // since the weights in the domain - // integrals include the measure of - // the cell in the domain, while - // the face integral quadrature - // requires the measure of the face - // in a lower-dimensional - // mannifold. Internally these two - // classes are rooted on a common - // base class which does most of - // the work; that, however, is - // something that you need not - // worry about. - // - // For the domain integrals in the - // bilinear form for Helmholtz's - // equation, we need to compute the - // values and gradients, as well as - // the weights at the quadrature - // points. Furthermore, we need the - // quadrature points on the real - // cell (rather than on the unit - // cell) to evaluate the right hand - // side function. - FEValues fe_values (*fe, quadrature_formula, - UpdateFlags(update_values | - update_gradients | - update_q_points | - update_JxW_values)); - - // For the face integrals, we only - // need the values of the shape - // functions, as well as the - // weights. We also need the normal - // vectors and quadrature points on - // the real cell since we want to - // determine the Neumann values - // from the exact solution object - // (see below). - FEFaceValues fe_face_values (*fe, face_quadrature_formula, - UpdateFlags(update_values | - update_q_points | - update_normal_vectors | - update_JxW_values)); - - // In order to make programming - // more readable below, we alias - // the number of degrees of freedom - // per cell to a local variable, as - // already done for the number of - // quadrature points above: - const unsigned int dofs_per_cell = fe->dofs_per_cell; - - // Then we need some objects - // already known from previous - // examples: An object denoting the - // right hand side function, its - // values at the quadrature points - // on a cell, the cell matrix and - // right hand side, and the indices - // of the degrees of freedom on a - // cell. - RightHandSide right_hand_side; - vector rhs_values (n_q_points); - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - Vector cell_rhs (dofs_per_cell); - - vector local_dof_indices (dofs_per_cell); - - // Then we define an object - // denoting the exact solution - // function. We will use it to - // compute the Neumann values at - // the boundary from it. Usually, - // one would of course do so using - // a separate object, in particular - // since the exact solution is not - // known while the Neumann values - // are prescribed. We will, - // however, be a little bit lazy - // and use what we already have in - // information. Real-life programs - // would to go other ways here, of - // course. - Solution exact_solution; - - // Now for the main loop over all - // cells. This is mostly unchanged - // from previous examples, so we - // only comment on the things that - // have changed. - DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), - endc = dof_handler.end(); - for (; cell!=endc; ++cell) - { - cell_matrix.clear (); - cell_rhs.clear (); - - fe_values.reinit (cell); - const FullMatrix - & shape_values = fe_values.get_shape_values(); - const vector > > - & shape_grads = fe_values.get_shape_grads(); - const vector - & JxW_values = fe_values.get_JxW_values(); - const vector > - & q_points = fe_values.get_quadrature_points(); - - right_hand_side.value_list (q_points, rhs_values); - - for (unsigned int q_point=0; q_point::faces_per_cell; ++face) - if (cell->face(face)->boundary_indicator() == 1) - { - // If we came into here, - // then we have found an - // external face - // belonging to - // Gamma2. Next, we have - // to compute the values - // of the shape functions - // and the other - // quantities which we - // will need for the - // computation of the - // contour integral. This - // is done using the - // ``reinit'' function - // which we already know - // from the ``FEValue'' - // class: - fe_face_values.reinit (cell, face); - - // Then, for simpler - // access, we alias the - // various quantities to - // local variables: - const FullMatrix - & face_shape_values = fe_face_values.get_shape_values(); - const vector - & face_JxW_values = fe_face_values.get_JxW_values(); - const vector > - & face_q_points = fe_face_values.get_quadrature_points(); - const vector > - & face_normal_vectors = fe_face_values.get_normal_vectors (); - - // And we can then - // perform the - // integration by using a - // loop over all - // quadrature points. - for (unsigned int q_point=0; q_pointget_dof_indices (local_dof_indices); - for (unsigned int i=0; i boundary_values; - VectorTools::interpolate_boundary_values (dof_handler, - 0, - Solution(), - boundary_values); - MatrixTools::apply_boundary_values (boundary_values, - system_matrix, - solution, - system_rhs); -}; - - - // Solving the system of equations is - // done in the same way as before. -template -void LaplaceProblem::solve () -{ - SolverControl solver_control (1000, 1e-12); - PrimitiveVectorMemory<> vector_memory; - SolverCG<> cg (solver_control, vector_memory); - - PreconditionRelaxation<> - preconditioner(system_matrix, - &SparseMatrix::template precondition_SSOR, - 1.2); - - cg.solve (system_matrix, solution, system_rhs, - preconditioner); - - hanging_node_constraints.distribute (solution); -}; - - -//..................... -template -void LaplaceProblem::refine_grid () -{ - switch (refinement_mode) - { - case global_refinement: - { - triangulation.refine_global (1); - break; - }; - - case adaptive_refinement: - { - Vector estimated_error_per_cell (triangulation.n_active_cells()); - - KellyErrorEstimator::FunctionMap neumann_boundary; - KellyErrorEstimator::estimate (dof_handler, - QGauss3(), - neumann_boundary, - solution, - estimated_error_per_cell); - - triangulation.refine_and_coarsen_fixed_number (estimated_error_per_cell, - 0.3, 0.03); - - triangulation.execute_coarsening_and_refinement (); - - break; - }; - }; -}; - -//............... -template -void LaplaceProblem::process_solution (const unsigned int cycle) const -{ - Vector difference_per_cell (triangulation.n_active_cells()); - - VectorTools::integrate_difference (dof_handler, - solution, - Solution(), - difference_per_cell, - QGauss3(), - L2_norm); - const double L2_error = difference_per_cell.l2_norm(); - - VectorTools::integrate_difference (dof_handler, - solution, - Solution(), - difference_per_cell, - QGauss3(), - H1_seminorm); - const double H1_error = difference_per_cell.l2_norm(); - - VectorTools::integrate_difference (dof_handler, - solution, - Solution(), - difference_per_cell, - QGauss3(), - Linfty_norm); - const double Linfty_error = difference_per_cell.linfty_norm(); - - cout << "Cycle " << cycle << ':' - << endl - << " Number of active cells: " - << triangulation.n_active_cells() - << endl - << " Number of degrees of freedom: " - << dof_handler.n_dofs() - << endl; - - cout << " L2 error: " << L2_error << endl - << " H1 error: " << H1_error << endl - << " Linfty error: " << Linfty_error << endl; -}; - - - - // The following function is the main - // one which controls the flow of - // execution. The basic layout is as - // in previous examples: an outer - // loop over successively refined - // grids, and in this loop first - // problem setup, assemblage of the - // linear system, solution, and - // postprocessing. -template -void LaplaceProblem::run () -{ - for (unsigned int cycle=0; cycle<9; ++cycle) - { - // The first action in each - // iteration of the outer loop - // is setting up the grid on - // which we will solve in this - // iteration. In the first - // iteration, the coarsest grid - // is generated, in later - // iterations it is refined, - // for which we call the - // ``refine_grid'' function. - if (cycle == 0) - { - // Setting up the coarse - // grid is done as in - // previous examples: we - // first create an initial - // grid, which is the unit - // square [-1,1]x[-1,1] in - // the present case. Then - // we refine it globally a - // specific number of - // times. - GridGenerator::hyper_cube (triangulation, -1, 1); - triangulation.refine_global (1); - - // However, here we have to - // do something else in - // addition: mark those - // faces that belong to the - // different components of - // the boundary, Gamma1 and - // Gamma2. We will use the - // following convention: - // Faces belonging to - // Gamma1 will have the - // boundary indicator ``0'' - // (which is the default, - // so we don't have to set - // it explicitely), and - // faces belonging to - // Gamma2 will use ``1'' as - // boundary indicator. - // - // To set these values, we - // loop over all cells, - // then over all faces of a - // given cell, check - // whether it belongs to - // the boundary Gamma2, and - // if so set its boundary - // indicator to ``1''. - // - // It is worth noting that - // we have to loop over all - // cells here, not only the - // active ones. The reason - // is that upon refinement, - // newly created faces - // inherit the boundary - // indicator of their - // parent face. If we now - // only set the boundary - // indicator for active - // faces, coarsen some - // cells and refine them - // later on, they will - // again have the boundary - // indicator of the parent - // cell which we have not - // modified, instead of the - // one we - // intended. Therefore, we - // have to change the - // boundary indicators of - // all faces on Gamma2, - // irrespective whether - // they are active or not. - Triangulation::cell_iterator cell = triangulation.begin (), - endc = triangulation.end(); - for (; cell!=endc; ++cell) - for (unsigned int face=0; face::faces_per_cell; ++face) - if ((cell->face(face)->center()(0) == -1) - || - (cell->face(face)->center()(1) == -1)) - cell->face(face)->set_boundary_indicator (1); - } - else - // If this is not the first - // step, the we call - // ``refine_grid'' to - // actually refine the grid - // according to the - // refinement mode passed to - // the constructor. - refine_grid (); - - // The next steps you already - // know from previous - // examples. This is mostly the - // basic set-up of every finite - // element program: - setup_system (); - - assemble_system (); - solve (); - - // The last step in this chain - // of function calls is usually - // evaluation of the computed - // solution for the quantities - // one is interested in. This - // is done in the following - // function. We pass the number - // of the loop iteration since - // that might be of interest to - // see in the logs which this - // function produces. - process_solution (cycle); - }; - - // After the last iteration we - // output the solution on the - // finest grid. This is done using - // the following sequence of - // statements which you have - // already seen in previous - // examples: - string filename; - switch (refinement_mode) - { - case global_refinement: - filename = "solution-global"; - break; - case adaptive_refinement: - filename = "solution-adaptive"; - break; - default: - Assert (false, ExcInternalError()); - }; - filename += ".gmv"; - - ofstream output (filename.c_str()); - - - DataOut data_out; - data_out.attach_dof_handler (dof_handler); - data_out.add_data_vector (solution, "solution"); - data_out.build_patches (); - data_out.write_gmv (output); -}; - - -//................. -int main () -{ - try - { - deallog.depth_console (0); - - FEQ1<2> fe; - LaplaceProblem<2> laplace_problem_2d (fe, LaplaceProblem<2>::adaptive_refinement); - laplace_problem_2d.run (); - } - catch (exception &exc) - { - cerr << endl << endl - << "----------------------------------------------------" - << endl; - cerr << "Exception on processing: " << endl - << exc.what() << endl - << "Aborting!" << endl - << "----------------------------------------------------" - << endl; - return 1; - } - catch (...) - { - cerr << endl << endl - << "----------------------------------------------------" - << endl; - cerr << "Unknown exception!" << endl - << "Aborting!" << endl - << "----------------------------------------------------" - << endl; - return 1; - }; - - return 0; -}; diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-8/.cvsignore b/deal.II/deal.II/Attic/examples/step-by-step/step-8/.cvsignore deleted file mode 100644 index 6d34e1c8cc..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-8/.cvsignore +++ /dev/null @@ -1,2 +0,0 @@ -*.o *.go Makefile.dep *.gnuplot *.gmv *.eps -step-8 diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-8/Makefile b/deal.II/deal.II/Attic/examples/step-by-step/step-8/Makefile deleted file mode 100644 index 445913746c..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-8/Makefile +++ /dev/null @@ -1,167 +0,0 @@ -# $Id$ - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = $(basename $(shell echo step-*.cc)) - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# As third field, we need to give the path to the top-level deal.II -# directory. You need to adjust this to your needs. Since this path is -# probably the most often needed one in the Makefile internals, it is -# designated by a single-character variable, since that can be -# reference using $D only, i.e. without the parentheses that are -# required for most other parameters, as e.g. in $(target). -D = ../../../../ - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(flags) -o $@ $^ - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - @./$(target) - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-8/step-8.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-8/step-8.cc deleted file mode 100644 index 51f6741f93..0000000000 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-8/step-8.cc +++ /dev/null @@ -1,1077 +0,0 @@ -/* $Id$ */ -/* Author: Wolfgang Bangerth, University of Heidelberg, 2000 */ - - // As usual, the first few include - // files are already known, so we - // will not comment on them further. -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - // In this example, we need - // vector-valued finite elements. The - // support for these can be found in - // the following include file: -#include - // We will compose the vector-valued - // finite elements from regular Q1 - // elements which can be found here, - // as usual: -#include - - // This again is C++: -#include - - - // The main class is, except for its - // name, almost unchanged with - // respect to the step-6 example. The - // only change is the use of a - // different class for the ``fe'' - // variable. -template -class ElasticProblem -{ - public: - ElasticProblem (); - ~ElasticProblem (); - void run (); - - private: - void setup_system (); - void assemble_system (); - void solve (); - void refine_grid (); - void output_results (const unsigned int cycle) const; - - Triangulation triangulation; - DoFHandler dof_handler; - - // Instead of a concrete finite - // element class such as - // ``FEQ1'', we now use a more - // generic one, ``FESystem''. In - // fact, it is not a finite - // element itself, but rather a - // class that can be used to - // stack several usual elements - // together to form one - // vector-valued finite - // element. In our case, we will - // compose the vector-valued - // element of ``FEQ1'' objects, - // as shown below in the - // constructor of this class. - FESystem fe; - - ConstraintMatrix hanging_node_constraints; - - SparsityPattern sparsity_pattern; - SparseMatrix system_matrix; - - Vector solution; - Vector system_rhs; -}; - - - // Before going over to the - // implementation of the main class, - // we declare and define the class - // which describes the right hand - // side. This time, the right hand - // side is vector-valued, as is the - // solution, so we will describe the - // new elements in some more detail. -template -class RightHandSide : public Function -{ - public: - // The first thing is that - // vector-valued functions have a - // constructor, since they need - // to pass down to the base class - // of how many components the - // function consists. The default - // value in the constructor of - // the base class is one, so we - // need not define a constructor - // for the usual scalar function. - RightHandSide (); - - // The next function is a - // replacement for the ``value'' - // function of the previous - // examples. There, a second - // parameter ``component'' was - // given, which denoted which - // component was requested. Here, - // we implement a function that - // returns the whole vector of - // values at the given place at - // once. - virtual void vector_value (const Point &p, - Vector &values) const; - - // Then, in analogy to the - // ``value_list'' function, there - // is a function - // ``vector_value_list'', which - // returns the values of the - // vector-valued function at - // several points at once: - virtual void vector_value_list (const vector > &points, - vector > &value_list) const; -}; - - - // This is the constructor of the - // right hand side class. As said - // above, it only passes down to the - // base class the number of - // components, which is ``dim'' in - // the present case. Note that - // although the implementation is - // very short here, we do not move it - // into the class declaration, since - // our style guides require that - // inside the class declaration only - // declarations have to happen and - // that definitions are always to be - // found outside. -template -RightHandSide::RightHandSide () : - Function (dim) -{}; - - - // This is the function that returns - // the whole vector of values at the - // point ``p'' at once: -template -inline -void RightHandSide::vector_value (const Point &p, - Vector &values) const -{ - // To prevent cases where the - // return value has not previously - // been set to the right size - // (which is kind of a convention - // in the deal.II library), we test - // for this case and otherwise - // throw an exception: - Assert (values.size() == dim, - ExcVectorHasWrongSize (values.size(), dim)); - // Likewise, if by some accident - // someone tried to compile and run - // the program in only one space - // dimension (in which the elastic - // equations do not make much sense - // since they reduce to the - // ordinary Laplace equation), we - // terminate the program if the - // dimension is not as expected. - Assert (dim >= 2, ExcInternalError()); - - // The rest of the function is as - // would probably be expected given - // the form of the right hand side - // function. First we define the - // centers of the two points around - // which are the sources of - // x-displacement, i.e. (0.5,0) and - // (-0.5,0). Note that upon - // construction of the ``Point'' - // objects, all components are set - // to zero. - Point point_1, point_2; - point_1(0) = 0.5; - point_2(0) = -0.5; - - // If now the point ``p'' is in the - // circle of radius 0.2 around one - // of these points, then set the - // force in x-direction to one, - // otherwise to zero: - if (((p-point_1).square() < 0.2*0.2) || - ((p-point_2).square() < 0.2*0.2)) - values(0) = 1; - else - values(0) = 0; - - // Likewise, if ``p'' is in the - // vicinity of the origin, then set - // the y-force to 1, otherwise to - // zero: - if (p.square() < 0.2*0.2) - values(1) = 1; - else - values(1) = 0; -}; - - - - // Now, this is the function of the - // right hand side class that returns - // the values at several points at - // once. -template -void RightHandSide::vector_value_list (const vector > &points, - vector > &value_list) const -{ - // First we define an abbreviation - // for the number of points which - // we shall work on: - const unsigned int n_points = points.size(); - - // Then we check whether the number - // of output slots has been set - // correctly, i.e. to the number of - // input points: - Assert (value_list.size() == n_points, - ExcVectorHasWrongSize (value_list.size(), n_points)); - - // Finally we treat each of the - // points. In one of the previous - // examples, we have explained why - // the - // ``value_list''/``vector_value_list'' - // function had been introduced: to - // prevent us from calling virtual - // functions too frequently. On the - // other hand, we now need to - // implement the same function - // twice, which can lead to - // confusion if one function is - // changed but the other is - // not. However, we can prevent - // this situation using the - // following construct: - for (unsigned int p=0; p::vector_value (points[p], - value_list[p]); - // It calls the ``vector_value'' - // function defined above for each - // point, and thus preempts all - // chances for inconsistency. It is - // important to note how the - // function was called: using the - // full class qualification using - // ``RightHandSide::'', since this - // calls the function directly and - // not using the virtual function - // table. The call is thus as fast - // as a call to any non-virtual - // function. In addition, we have - // declared the ``vector_value'' - // function ``inline'', i.e. the - // compiler can remove the function - // call altogether and the - // resulting code can in principle - // be as fast as if we had - // duplicated the code. -}; - - - - -template -ElasticProblem::ElasticProblem () : - dof_handler (triangulation), - // As said before, we - // would like to - // construct one - // vector-valued - // finite element as - // outer product of - // several scala - // finite - // elements. Of - // course, the number - // of scalar finite - // element we would - // like to stack - // together equals - // the number of - // components the - // solution function - // has, which is - // ``dim'' since we - // consider - // displacement in - // each space - // direction. The - // ``FESystem'' class - // can handle this: - // we pass it the - // finite element of - // which we would - // like to compose - // the system of, and - // how often it shall - // be repeated: - fe (FEQ1(), dim) - // In fact, the ``FESystem'' class - // has several more constructors - // which can perform more complex - // operations that just stacking - // together several scalar finite - // elements of the same type into - // one; we will get to know these - // possibilities in later examples. - // - // It should be noted that the - // ``FESystem'' object thus created - // does not actually use the finite - // element which we have passed to it - // as first parameter. We could thus - // use an anonymous object created - // in-place. The ``FESystem'' - // constructor only needs the - // parameter to deduce the type of - // the finite element from this and - // then creates objects of the - // underlying finite element type - // itself. -{}; - - - -template -ElasticProblem::~ElasticProblem () -{ - dof_handler.clear (); -}; - - - // Setting up the system of equations - // is equal to the function used in - // the step-6 example. The - // ``DoFHandler'' class and all other - // classes used take care of the - // vector-valuedness of the finite - // element themselves (in fact, the - // do not do so, since they only take - // care how many degrees of freedom - // there are per vertex, line and - // cell, and they do not askwhat they - // represent, i.e. whether the finite - // element under consideration is - // vector-valued or whether it is, - // for example, a scalar Hermite - // element with several degrees of - // freedom on each vertex). -template -void ElasticProblem::setup_system () -{ - dof_handler.distribute_dofs (fe); - hanging_node_constraints.clear (); - DoFTools::make_hanging_node_constraints (dof_handler, - hanging_node_constraints); - hanging_node_constraints.close (); - sparsity_pattern.reinit (dof_handler.n_dofs(), - dof_handler.n_dofs(), - dof_handler.max_couplings_between_dofs()); - // When making the sparsity - // pattern, there is some potential - // for optimization if not all - // components couple to all - // others. However, this is not the - // case for the elastic equations, - // so we use the standard call: - DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); - - hanging_node_constraints.condense (sparsity_pattern); - - sparsity_pattern.compress(); - - system_matrix.reinit (sparsity_pattern); - - solution.reinit (dof_handler.n_dofs()); - system_rhs.reinit (dof_handler.n_dofs()); -}; - - - // The big changes in this program - // are in the creation of matrix and - // right hand side, since they are - // problem-dependent. We will go - // through that process step-by-step, - // since it is a bit more complicated - // than in previous examples. -template -void ElasticProblem::assemble_system () -{ - // First thing: the quadrature - // formula does not need - // modification since we still deal - // with bilinear functions. - QGauss2 quadrature_formula; - // Also, the ``FEValues'' objects - // takes care of everything for us - // (or better: it does not really - // so; as in the comment in the - // function setting up the system, - // here as well the ``FEValues'' - // object computes the same data on - // each cell, but it has some - // functionality to access data - // stored inside the finite element - // where they are precomputed upon - // construction). - FEValues fe_values (fe, quadrature_formula, - UpdateFlags(update_values | - update_gradients | - update_q_points | - update_JxW_values)); - - // The number of degrees of freedom - // per cell we now obviously ask - // from the composed finite element - // rather than from the underlying - // scalar Q1 element. Here, it is - // ``dim'' times the number of - // degrees of freedom per cell of - // the Q1 element, but this is not - // something we need to care about. - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const unsigned int n_q_points = quadrature_formula.n_quadrature_points; - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - Vector cell_rhs (dofs_per_cell); - - vector local_dof_indices (dofs_per_cell); - - // As was shown in previous - // examples as well, we need a - // place where to store the values - // of the coefficients at all the - // quadrature points on a cell. In - // the present situation, we have - // two coefficients, lambda and mu. - vector lambda_values (n_q_points); - vector mu_values (n_q_points); - - // Well, we could as well have - // omitted the above two arrays - // since we will use constant - // coefficients for both lambda and - // mu, which can be declared like - // this. They both represent - // functions always returning the - // constant value 1.0. Although we - // could omit the respective - // factors in the assemblage of the - // matrix, we use them here for - // purpose of demonstration. - ConstantFunction lambda(1.), mu(1.); - - // Then again, we need to have the - // same for the right hand - // side. This is exactly as before - // in previous examples. However, - // we now have a vector-valued - // right hand side, which is why - // the data type of the - // ``rhs_values'' array is - // changed. We initialize it by - // ``n_q_points'' elements, each of - // which is a ``Vector'' - // with ``dim'' elements. - RightHandSide right_hand_side; - vector > rhs_values (n_q_points, - Vector(dim)); - - - // Now we can begin with the loop - // over all cells: - DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), - endc = dof_handler.end(); - for (; cell!=endc; ++cell) - { - cell_matrix.clear (); - cell_rhs.clear (); - - fe_values.reinit (cell); - - // As in previous examples, we - // define some abbreviations - // for the various data that - // the ``FEValues'' class - // offers: - const FullMatrix - & shape_values = fe_values.get_shape_values(); - const vector > > - & shape_grads = fe_values.get_shape_grads(); - const vector - & JxW_values = fe_values.get_JxW_values(); - const vector > - & q_points = fe_values.get_quadrature_points(); - - // Next we get the values of - // the coefficients at the - // quadrature points: - lambda.value_list (q_points, lambda_values); - mu.value_list (q_points, mu_values); - - // Then assemble the entries of - // the local stiffness matrix - // and right hand side - // vector. This follows almost - // one-to-one the pattern - // described in the - // introduction of this example - // and will not comment much on - // this. - for (unsigned int i=0; i'', of - // which the first element - // is ``comp(i)'' and the - // second is the value - // ``base(i)'' also noted - // in the text. You will - // rather seldom need to - // access this second - // value, but the first is - // important when using - // vector valued elements. - - for (unsigned int j=0; jget_dof_indices (local_dof_indices); - for (unsigned int i=0; i boundary_values; - VectorTools::interpolate_boundary_values (dof_handler, - 0, - ZeroFunction(dim), - boundary_values); - MatrixTools::apply_boundary_values (boundary_values, - system_matrix, - solution, - system_rhs); -}; - - - - // The solver does not care about - // where the system of equations - // comes, as long as it stays - // positive definite and symmetric - // (which are the requirements for - // the use of the CG solver), which - // the system is. Therefore, we need - // not change anything. -template -void ElasticProblem::solve () -{ - SolverControl solver_control (1000, 1e-12); - PrimitiveVectorMemory<> vector_memory; - SolverCG<> cg (solver_control, vector_memory); - - PreconditionRelaxation<> - preconditioner(system_matrix, - &SparseMatrix::template precondition_SSOR, - 1.2); - - cg.solve (system_matrix, solution, system_rhs, - preconditioner); - - hanging_node_constraints.distribute (solution); -}; - - - - // The function that does the - // refinement of the grid is the same - // as in the step-6 example. The - // quadrature formula is adapted to - // the linear elements again. Note - // that the error estimator by - // default adds up the estimated - // obtained from all components of - // the finite element solution, that - // is it uses the displacement in all - // directions with the same - // weight. If we would like the grid - // to be adapted to the - // x-displacement only, we could pass - // the function an additional - // parameter which tells it to do so - // and do not consider the - // displacements in all other - // directions for the error - // indicators. -template -void ElasticProblem::refine_grid () -{ - Vector estimated_error_per_cell (triangulation.n_active_cells()); - - KellyErrorEstimator::FunctionMap neumann_boundary; - KellyErrorEstimator::estimate (dof_handler, - QGauss2(), - neumann_boundary, - solution, - estimated_error_per_cell); - - triangulation.refine_and_coarsen_fixed_number (estimated_error_per_cell, - 0.3, 0.03); - - triangulation.execute_coarsening_and_refinement (); -}; - - - // The output happens mostly as has - // been shown in previous examples - // already. The only difference is - // not that the solution function is - // vector values. The ``DataOut'' - // class takes care of this - // automatically, but we have to give - // each component of the solution - // vector a different name. -template -void ElasticProblem::output_results (const unsigned int cycle) const -{ - string filename = "solution-"; - filename += ('0' + cycle); - Assert (cycle < 10, ExcInternalError()); - - filename += ".gmv"; - ofstream output (filename.c_str()); - - DataOut data_out; - data_out.attach_dof_handler (dof_handler); - - - - // As said above, we need a - // different name for each - // component of the solution - // function. To pass one name for - // each component, a vector of - // strings is used. Since the - // number of components is the same - // as the number of dimensions we - // are working in, the following - // ``switch'' statement is used. - // - // We note that some graphics - // programs have restriction as to - // what characters are allowed in - // the names of variables. The - // library therefore supports only - // the minimal subset of these - // characters that is supported by - // all programs. Basically, these - // are letters, numbers, - // underscores, and some other - // characters, but in particular no - // whitespace and minus/hyphen. The - // library will throw an exception - // otherwise, at least if in debug - // mode. - vector solution_names; - switch (dim) - { - case 1: - solution_names.push_back ("displacement"); - break; - case 2: - solution_names.push_back ("x_displacement"); - solution_names.push_back ("y_displacement"); - break; - case 3: - solution_names.push_back ("x_displacement"); - solution_names.push_back ("y_displacement"); - solution_names.push_back ("z_displacement"); - break; - // It is good style to - // let the program die if - // we run upon a case - // which we did not - // consider. Remember - // that the ``Assert'' - // macro throws an - // exception if the - // condition in the first - // parameter is not - // satisfied. Of course, - // the condition - // ``false'' can never be - // satisfied, so the - // program will always - // abort whenever it gets - // to this statement: - default: - Assert (false, ExcInternalError()); - }; - - // After setting up the names for - // the different components of the - // solution vector, we can add the - // solution vector to the list of - // data vectors scheduled for - // output. Note that the following - // function takes a vector of - // strings as second argument, - // whereas the one which we have - // used in all previous examples - // accepted a string there. In - // fact, the latter function is - // only a shortcut for the function - // which we call here: it puts the - // single string that is passed to - // it into a vector of strings with - // only one element and forwards - // that to the other function. - data_out.add_data_vector (solution, solution_names); - data_out.build_patches (); - data_out.write_gmv (output); -}; - - - -template -void ElasticProblem::run () -{ - for (unsigned int cycle=0; cycle<8; ++cycle) - { - cout << "Cycle " << cycle << ':' << endl; - - if (cycle == 0) - { - // As in previous examples, - // we use the unit square - // (or cube) as domain. - GridGenerator::hyper_cube (triangulation, -1, 1); - // This time, we have to - // refine the coarse grid - // twice before we first - // solve on it. The reason - // is the following: we use - // the ``Gauss2'' - // quadrature formula for - // integration of the right - // hand side; that means - // that there are four - // quadrature points on - // each cell (in 2D). If we - // only refine the initial - // grid once globally, then - // there will be only four - // quadrature points in - // each direction on the - // domain. However, the - // right hand side function - // was chosen to be rather - // localized and in that - // case all quadrature - // points lie outside the - // support of the right - // hand side function. The - // right hand side vector - // will then contain only - // zeroes and the solution - // of the system of - // equations is the zero - // vector, i.e. a finite - // element function that it - // zero everywhere. We - // should not be surprised - // about such things - // happening, since we have - // chosen an initial grid - // that is totally - // unsuitable for the - // problem at hand. - // - // The unfortunate thing is - // that if the discrete - // solution is constant, - // then the error - // indicators computed by - // the - // ``KellyErrorEstimator'' - // class are zero for each - // cell as well, and the - // call to - // ``refine_and_coarsen_fixed_number'' - // of the ``triangulation'' - // object will not flag any - // cells for refinement - // (why should it if the - // indicated error is zero - // for each cell?). The - // grid in the next - // iteration will therefore - // consist of four cells - // only as well, and the - // same problem occurs - // again. - // - // The conclusion needs to - // be: while of course we - // will not choose the - // initial grid to be - // well-suited for the - // accurate solution of the - // problem, we must at - // least choose it such - // that it has the chance - // to capture the most - // striking features of the - // solution. In this case, - // it needs to be able to - // see the right hand - // side. Thus, we refine - // twice globally. - triangulation.refine_global (2); - } - else - refine_grid (); - - cout << " Number of active cells: " - << triangulation.n_active_cells() - << endl; - - setup_system (); - - cout << " Number of degrees of freedom: " - << dof_handler.n_dofs() - << endl; - - assemble_system (); - solve (); - output_results (cycle); - }; -}; - - - // The main function is again exactly - // like in step-6 (apart from the - // changed class names, of course). -int main () -{ - try - { - deallog.depth_console (0); - - ElasticProblem<2> elastic_problem_2d; - elastic_problem_2d.run (); - } - catch (exception &exc) - { - cerr << endl << endl - << "----------------------------------------------------" - << endl; - cerr << "Exception on processing: " << endl - << exc.what() << endl - << "Aborting!" << endl - << "----------------------------------------------------" - << endl; - - return 1; - } - catch (...) - { - cerr << endl << endl - << "----------------------------------------------------" - << endl; - cerr << "Unknown exception!" << endl - << "Aborting!" << endl - << "----------------------------------------------------" - << endl; - return 1; - }; - - return 0; -}; diff --git a/deal.II/lac/Attic/doc/Makefile b/deal.II/lac/Attic/doc/Makefile deleted file mode 100644 index 974eeec17f..0000000000 --- a/deal.II/lac/Attic/doc/Makefile +++ /dev/null @@ -1,27 +0,0 @@ -# $Id$ - - -KDOCFLAGS = -I../../../deal.II/doc/kdoc ../../../deal.II/doc/kdoc/kdoc -a -p -kdoc.inc = $(wildcard ../include/lac/*.h) - - - -doc-html: kdoc - - -# make kdoc doc; make sure that the *.kdoc files exist by -# using the dependancies and the following rules. -kdoc: $(kdoc.inc) - cd doc.kdoc ; perl $(KDOCFLAGS) -ulac -dlac \ - lac $(kdoc.inc:..%=../..%) - -cvslog: - @cd .. ; ../deal.II/doc/cvslog/cvs2html -o doc/cvslog/lac #-a -k - -clean: - rm -f doc.kdoc/lac/* \ - cvslog/* \ - *~ - - -.PHONY: doc-html kdoc cvslog clean diff --git a/deal.II/lac/Attic/doc/cvslog/.cvsignore b/deal.II/lac/Attic/doc/cvslog/.cvsignore deleted file mode 100644 index 2d19fc766d..0000000000 --- a/deal.II/lac/Attic/doc/cvslog/.cvsignore +++ /dev/null @@ -1 +0,0 @@ -*.html diff --git a/deal.II/lac/Attic/doc/doc.kdoc/.cvsignore b/deal.II/lac/Attic/doc/doc.kdoc/.cvsignore deleted file mode 100644 index 0a824cbf2d..0000000000 --- a/deal.II/lac/Attic/doc/doc.kdoc/.cvsignore +++ /dev/null @@ -1,2 +0,0 @@ -lac.kdoc -lac diff --git a/tests/.cvsignore b/tests/.cvsignore deleted file mode 100644 index 80373606d3..0000000000 --- a/tests/.cvsignore +++ /dev/null @@ -1 +0,0 @@ -config.log config.status Makefile diff --git a/tests/Makefile.in b/tests/Makefile.in deleted file mode 100644 index 3ddd3ffdb7..0000000000 --- a/tests/Makefile.in +++ /dev/null @@ -1,39 +0,0 @@ -# $Id$ -# Common Makefile for all test directories - -all: base lac deal.II big-tests fe - -base: - cd base ; $(MAKE) - -lac: - cd lac ; $(MAKE) - -fe: - cd fe ; $(MAKE) - -deal.II: - cd deal.II ; $(MAKE) - -big-tests: - cd big-tests ; $(MAKE) - - -clean: clean-base clean-lac clean-deal.II clean-fe clean-big - -clean-base: - cd base ; $(MAKE) clean - -clean-lac: - cd lac ; $(MAKE) clean - -clean-fe: - cd fe ; $(MAKE) clean - -clean-deal.II: - cd deal.II ; $(MAKE) clean - -clean-big: - cd big-tests ; $(MAKE) clean - -.PHONY : all base lac fe deal.II big-tests clean clean-base clean-lac clean-fe clean-deal.II clean-big diff --git a/tests/README b/tests/README deleted file mode 100644 index accce48eea..0000000000 --- a/tests/README +++ /dev/null @@ -1,24 +0,0 @@ -DEAL.II TESTSUITE README -======================== - -Subdirectories in this tree contain test programs for various features -of base lac and deal.II libraries. - -All features of deal that should be available in future releases -should be tested here. - -Run make in this directory to do all tests. This is required before -any commit to the CVS repository. - -How to interpret the output? ----------------------------- - -Apart from several messages containing compiling and linking -information, the output of make will contain lines like - -=====Running======== heavy.testcase -=====OK============= - -If the second line is replaced by some diff-output, please check for -consistency. A check-in of the modified results should be considered -carefully. diff --git a/tests/base/.cvsignore b/tests/base/.cvsignore deleted file mode 100644 index 01e200d20a..0000000000 --- a/tests/base/.cvsignore +++ /dev/null @@ -1,5 +0,0 @@ -*.go reference logtest tensor -*.testcase -*.dat -Make.depend Makefile -*.check diff --git a/tests/base/Makefile.in b/tests/base/Makefile.in deleted file mode 100644 index 4de80563b9..0000000000 --- a/tests/base/Makefile.in +++ /dev/null @@ -1,208 +0,0 @@ -############################################################ -# $Id$ -# Copyright (C) 2000 by the deal.II authors -############################################################ - -############################################################ -# Include general settings for including DEAL libraries -############################################################ - -D = @DEAL2_DIR@ - -include $D/common/Make.global_options - - -############################################################ -# Set debug-mode as a default -############################################################ - -debug-mode = on - - -############################################################ -# Define library names -############################################################ - -libs.g = $(lib-lac.g) \ - $(lib-base.g) -libs = $(lib-lac.o) \ - $(lib-base.o) - - -############################################################ -# Select compiler flags according to debug-mode -############################################################ - -ifeq ($(debug-mode),on) -libraries = $(libs.g) -flags = $(CXXFLAGS.g) $(CXXFLAGS) -Wno-missing-noreturn -endif - -ifeq ($(debug-mode),off) -libraries = $(libs) -flags = $(CXXFLAGS.o) $(CXXFLAGS) -Wno-missing-noreturn -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - -%.go : %.cc Makefile - @echo =====debug========= $< - @$(CXX) $(flags) -c $< -o $@ -%.o : %.cc Makefile - @echo =====optimized===== $< - @$(CXX) $(flags) -c $< -o $@ - - -all: logtest.check reference.check tensor.check quadrature_test.check timer.check -exe: $(all:.check=.testcase) -output: $(all:.check=.output) -############################################################ -# Typical block for building a running program -# -# 1. provide a list of source files in ...-cc-files -# -# 2. generate the list of object files according to debug-mode -# -# 3. make executable -# -# 4. Explicit dependencies of object files (will be automatic soon) -# -############################################################ - -logtest-cc-files = logtest.cc - -ifeq ($(debug-mode),on) -logtest-o-files = $(logtest-cc-files:.cc=.go) -else -logtest-o-files = $(logtest-cc-files:.cc=.o) -endif - -logtest.testcase: $(logtest-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(flags) -o $@ $^ - - -############################################################ - - -tensor-cc-files = tensor.cc - -ifeq ($(debug-mode),on) -tensor-o-files = $(tensor-cc-files:.cc=.go) -else -tensor-o-files = $(tensor-cc-files:.cc=.o) -endif - -tensor.testcase: $(tensor-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(flags) -o $@ $^ - - - -############################################################ - - -reference-cc-files = reference.cc - -ifeq ($(debug-mode),on) -reference-o-files = $(reference-cc-files:.cc=.go) -else -reference-o-files = $(reference-cc-files:.cc=.o) -endif - -reference.testcase: $(reference-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(flags) -o $@ $^ - - -############################################################ - - -quadrature_test-cc-files = quadrature_test.cc - -ifeq ($(debug-mode),on) -quadrature_test-o-files = $(quadrature_test-cc-files:.cc=.go) -else -quadrature_test-o-files = $(quadrature_test-cc-files:.cc=.o) -endif - -quadrature_test.testcase: $(quadrature_test-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(flags) -o $@ $^ - - - -timer-cc-files = timer.cc - -ifeq ($(debug-mode),on) -timer-o-files = $(timer-cc-files:.cc=.go) -else -timer-o-files = $(timer-cc-files:.cc=.o) -endif - -timer.testcase: $(timer-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(flags) -o $@ $^ - -############################################################ -# Continue with other targets if needed -############################################################ - - -target1-cc-files = t1.cc t2.cc t3.cc - -ifeq ($(debug-mode),on) -target1-o-files = $(target1-cc-files:.cc=.go) -else -target1-o-files = $(target1-cc-files:.cc=.o) -endif - -target1: $(target1-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(flags) -o $@ $^ - - -############################################################ -# Postprocessing -############################################################ - -%.output:%.testcase - @echo =====Running======= $< - @./$< - @perl -pi.bak -e 's/JobId.*//;s/value.*//;' $@ - @rm $@.bak - -%.check:%.output - @-diff $< $(patsubst %.output,%.checked, $<) && echo '=====OK============' - @touch $@ -############################################################ -# Cleanup targets -############################################################ - -clean: - rm -f Make.depend *.o *.go *.output - -veryclean: clean - rm -f *.testcase *.inp *.gpl *.eps *.gnuplot - -############################################################ -# Automatic generation of dependencies -############################################################ - -all-cc-files = $(shell echo *.cc) - -Make.depend: $(all-cc-files) - @echo =====Dependencies== Make.depend - @$(CXX) $(flags) $^ -M > $@ - @perl -pi -e 's/(^[^.]+)\.o:/\1.o \1.go:/;' $@ - -include Make.depend - - - diff --git a/tests/base/logtest.cc b/tests/base/logtest.cc deleted file mode 100644 index c34c198846..0000000000 --- a/tests/base/logtest.cc +++ /dev/null @@ -1,37 +0,0 @@ -//---------------------------- logtest.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- logtest.cc --------------------------- - - -#include -#include - -int main() -{ - ofstream logfile("logtest.output"); - deallog.attach(logfile); - deallog.depth_console(0); - - deallog << "Test" << endl; - deallog.push("l1"); - deallog << "Test1" << endl; - deallog.push("l2"); - deallog << "Test2" << "Test3" << endl; - deallog.push("l3"); - deallog << "Test4"; - deallog.pop(); - deallog << "Test5" << endl; - deallog.pop(); - deallog << "Test6" << endl; - deallog.pop(); - deallog << "Test7" << endl; -} diff --git a/tests/base/logtest.checked b/tests/base/logtest.checked deleted file mode 100644 index 3e1bc2c930..0000000000 --- a/tests/base/logtest.checked +++ /dev/null @@ -1,7 +0,0 @@ - -DEAL::Test -DEAL:l1::Test1 -DEAL:l1:l2::Test2Test3 -DEAL:l1:l2:l3::Test4Test5 -DEAL:l1::Test6 -DEAL::Test7 diff --git a/tests/base/quadrature_test.cc b/tests/base/quadrature_test.cc deleted file mode 100644 index 71b347cf0c..0000000000 --- a/tests/base/quadrature_test.cc +++ /dev/null @@ -1,76 +0,0 @@ -//---------------------------- quadrature_test.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- quadrature_test.cc --------------------------- - - -#include -#include - -#include -#include -#include - -int main(int,char) -{ - ofstream logfile("quadrature_test.output"); - deallog.attach(logfile); - deallog.depth_console(0); - vector *> quadratures; - quadratures.push_back (new QGauss2<2>()); - quadratures.push_back (new QGauss3<2>()); - quadratures.push_back (new QGauss4<2>()); - quadratures.push_back (new QGauss5<2>()); - quadratures.push_back (new QGauss6<2>()); - quadratures.push_back (new QGauss7<2>()); - quadratures.push_back (new QMidpoint<2>()); - quadratures.push_back (new QTrapez<2>()); - quadratures.push_back (new QSimpson<2>()); - quadratures.push_back (new QMilne<2>()); - quadratures.push_back (new QWeddle<2>()); - - for (unsigned int n=0; n *quadrature=quadratures[n]; - const vector > &points=quadrature->get_points(); - const vector &weights=quadrature->get_weights(); - - deallog << "Quadrature no." << n - << " (" << typeid(*quadrature).name() << ")"; - - unsigned int i=0; - double quadrature_int=0; - double exact_int=0; - double err = 0; - do - { - ++i; - - quadrature_int=0; - - // Check the polynomial x^i*y^i - - for (unsigned int x=0; xn_quadrature_points; ++x) - quadrature_int+=pow(points[x](0), i)*pow(points[x](1), i)*weights[x]; - - // the exact integral is 1/(i+1) - exact_int=1./(i+1)/(i+1); - err = fabs(quadrature_int-exact_int); - } - while (err<1e-15); - - // Uncomment here for testing -// deallog << " (Error " << err << ")"; - deallog << " is exact for polynomials of degree " << i-1 << endl; - } -} - - diff --git a/tests/base/quadrature_test.checked b/tests/base/quadrature_test.checked deleted file mode 100644 index 3e93755ef9..0000000000 --- a/tests/base/quadrature_test.checked +++ /dev/null @@ -1,12 +0,0 @@ - -DEAL::Quadrature no.0 (t7QGauss21i2) is exact for polynomials of degree 3 -DEAL::Quadrature no.1 (t7QGauss31i2) is exact for polynomials of degree 5 -DEAL::Quadrature no.2 (t7QGauss41i2) is exact for polynomials of degree 7 -DEAL::Quadrature no.3 (t7QGauss51i2) is exact for polynomials of degree 9 -DEAL::Quadrature no.4 (t7QGauss61i2) is exact for polynomials of degree 11 -DEAL::Quadrature no.5 (t7QGauss71i2) is exact for polynomials of degree 13 -DEAL::Quadrature no.6 (t9QMidpoint1i2) is exact for polynomials of degree 1 -DEAL::Quadrature no.7 (t7QTrapez1i2) is exact for polynomials of degree 1 -DEAL::Quadrature no.8 (t8QSimpson1i2) is exact for polynomials of degree 3 -DEAL::Quadrature no.9 (t6QMilne1i2) is exact for polynomials of degree 5 -DEAL::Quadrature no.10 (t7QWeddle1i2) is exact for polynomials of degree 7 diff --git a/tests/base/reference.cc b/tests/base/reference.cc deleted file mode 100644 index 6c02a005c7..0000000000 --- a/tests/base/reference.cc +++ /dev/null @@ -1,84 +0,0 @@ -//---------------------------- reference.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- reference.cc --------------------------- - - -#include -#include -#include -#include - -void abort() -{} - -class Test : public Subscriptor -{ - const char* name; -public: - Test(const char* n) : - name(n) - { - deallog << "Construct " << name << endl; - } - ~Test() - { - deallog << "Destruct " << name << endl; - } - void f() - { - deallog << "mutable" << endl; - } - void f() const - { - deallog << "const" << endl; - } -}; - - -int main() -{ - ofstream logfile("reference.output"); - deallog.attach(logfile); - deallog.depth_console(0); - cerr = logfile; - Test a("A"); - const Test b("B"); - SmartPointer r=&a; - SmartPointer s=&a; -// SmartPointer t=&b; // this one should not work - SmartPointer t=const_cast(&b); - SmartPointer u=&b; - - -deallog << "a "; - a.f(); // should print "mutable", since #a# is not const - deallog << "b "; - b.f(); // should print "const", since #b# is const - deallog << "r "; - r->f(); // should print "mutable", since it points to the non-const #a# - deallog << "s "; - s->f(); // should print "const", since it points to the const #b# - // but we made it const - deallog << "t "; - t->f(); // should print "mutable", since #b# is const, but - // we casted the constness away - deallog << "u "; - u->f(); // should print "const" since #b# is const - // Now try if subscriptor works - { - Test c("C"); - r = &c; - Test d("D"); - r = &d; - } -} - diff --git a/tests/base/reference.checked b/tests/base/reference.checked deleted file mode 100644 index a7cebf4a52..0000000000 --- a/tests/base/reference.checked +++ /dev/null @@ -1,25 +0,0 @@ - -DEAL::Construct A -DEAL::Construct B -DEAL::a mutable -DEAL::b const -DEAL::r mutable -DEAL::s const -DEAL::t mutable -DEAL::u const -DEAL::Construct C -DEAL::Construct D -DEAL::Destruct D --------------------------------------------------------- -An error occurred in line <45> of file in function - Subscriptor::~Subscriptor() -The violated condition was: - counter == 0 -The name and call sequence of the exception was: - ExcInUse(counter, object_info->name()) -Additional Information: -Object of class 4Test is still used by 1 other objects. --------------------------------------------------------- -DEAL::Destruct C -DEAL::Destruct B -DEAL::Destruct A diff --git a/tests/base/tensor.cc b/tests/base/tensor.cc deleted file mode 100644 index 45ca07a811..0000000000 --- a/tests/base/tensor.cc +++ /dev/null @@ -1,74 +0,0 @@ -//---------------------------- tensor.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- tensor.cc --------------------------- - - -#include -#include -#include -#include - - -int main () -{ - ofstream logfile("tensor.output"); - logfile.precision(3); - deallog.attach(logfile); - deallog.depth_console(0); - - double a[3][3] = {{1, 2, 3}, {3, 4, 5}, {6, 7, 8}}; - double b[3][3] = {{25,31,37}, {45,57,69}, {75,96,117}}; - - const unsigned int dim=3; - Tensor<2,dim> t(a); - Tensor<2,dim> tt; - Tensor<2,dim> result(b); - - Vector unrolled(9); - - t.unroll(unrolled); - deallog << "unrolled:"; - for (unsigned i=0;i<9;i++) - deallog << ' ' << unrolled(i); - deallog << endl; - - deallog << "t=" << endl; - for (unsigned int i=0; i -#include -#include - -// compute the ratio of two measurements and compare to -// the expected value. - -void compare (double t1, double t2, double ratio) -{ - double r = t2/t1; - double d = fabs(r-ratio) / ratio; - - // relative error < 10%? - if (d <= .1) - { - deallog << "OK" << endl; - } else { - deallog << "Ratio " << r << " should be " << ratio << endl; - } -} - -// burn computer time - -void burn (unsigned int n) -{ - double s = 0.; - for (unsigned int i=0 ; i Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/tests/big-tests/convergence/convergence.cc b/tests/big-tests/convergence/convergence.cc deleted file mode 100644 index 423492109f..0000000000 --- a/tests/big-tests/convergence/convergence.cc +++ /dev/null @@ -1,548 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include - - - - - -template -class PoissonEquation : public Equation { - public: - PoissonEquation (const Function &rhs) : - Equation(1), - right_hand_side (rhs) {}; - - virtual void assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (FullMatrix &cell_matrix, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - protected: - const Function &right_hand_side; -}; - - - - - - -template -class PoissonProblem : public ProblemBase { - public: - PoissonProblem (unsigned int order); - ~PoissonProblem (); - - void clear (); - void create_new (); - int run (unsigned int level); - void print_history (string filename) const; - - protected: - Triangulation *tria; - DoFHandler *dof; - - Function *rhs; - Function *boundary_values; - - vector l1_error, l2_error, linfty_error, h1_seminorm_error, h1_error; - vector n_dofs; - - unsigned int order; -}; - - - - - -/** - Right hand side constructed such that the exact solution is - $sin(2 pi x) + sin(2 pi y)$ - */ -template -class RHSPoly : public Function { - public: - /** - * Return the value of the function - * at the given point. - */ - virtual double value (const Point &p, - const unsigned int component) const; -}; - - - -template -class Solution : public Function { - public: - /** - * Return the value of the function - * at the given point. - */ - virtual double value (const Point &p, - const unsigned int component) const; - /** - * Return the gradient of the function - * at the given point. - */ - virtual Tensor<1,dim> gradient (const Point &p, - const unsigned int component) const; -}; - - - - -template <> -double RHSPoly<2>::value (const Point<2> &p, - const unsigned int) const { - const double x = p(0), - y = p(1); - const double pi= 3.1415926536; - return 4*pi*pi*(sin(2*pi*x)+sin(2*pi*y)); -}; - - - -template <> -double Solution<2>::value (const Point<2> &p, - const unsigned int) const { - const double x = p(0), - y = p(1); - const double pi= 3.1415926536; - return sin(2*pi*x)+sin(2*pi*y); -}; - - -template <> -Tensor<1,2> Solution<2>::gradient (const Point<2> &p, - const unsigned int) const { - const double x = p(0), - y = p(1); - const double pi= 3.1415926536; - return Point<2> (2*pi*cos(2*pi*x), - 2*pi*cos(2*pi*y)); -}; - - - - - -template <> -void PoissonEquation<2>::assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues<2> &fe_values, - const DoFHandler<2>::cell_iterator &) const { - for (unsigned int point=0; point -void PoissonEquation::assemble (FullMatrix &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, typename Equation::ExcPureVirtualFunctionCalled()); -}; - - - -template -void PoissonEquation::assemble (Vector &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, typename Equation::ExcPureVirtualFunctionCalled()); -}; - - - - - - - - - -template -PoissonProblem::PoissonProblem (unsigned int order) : - tria(0), dof(0), rhs(0), - boundary_values(0), order(order) {}; - - -template -PoissonProblem::~PoissonProblem () -{ - clear (); -}; - - - -template -void PoissonProblem::clear () { - if (dof != 0) { - delete dof; - dof = 0; - }; - - if (tria != 0) { - delete tria; - tria = 0; - }; - - - // make it known to the underlying - // ProblemBase that tria and dof - // are already deleted - set_tria_and_dof (tria, dof); - - if (rhs != 0) - { - delete rhs; - rhs = 0; - }; - - if (boundary_values != 0) - { - delete boundary_values; - boundary_values = 0; - }; - - ProblemBase::clear (); -}; - - - - -template -void PoissonProblem::create_new () { - clear (); - - tria = new Triangulation(); - dof = new DoFHandler (*tria); - set_tria_and_dof (tria, dof); -}; - - - - -template -int PoissonProblem::run (const unsigned int level) { - create_new (); - - cout << "Refinement level = " << level - << ", using elements of type <"; - switch (order) - { - case 0: - cout << "criss-cross"; - break; - default: - cout << "Lagrange-" << order; - break; - }; - cout << ">" << endl; - - cout << " Making grid... "; - GridGenerator::hyper_ball (*tria); - HyperBallBoundary boundary_description; - tria->set_boundary (0, boundary_description); - tria->begin_active()->set_refine_flag(); - (++(++(tria->begin_active())))->set_refine_flag(); - tria->execute_coarsening_and_refinement (); - tria->refine_global (level); - cout << tria->n_active_cells() << " active cells." << endl; - - rhs = new RHSPoly(); - boundary_values = new Solution (); - - - FiniteElement *fe; - PoissonEquation equation (*rhs); - Quadrature *quadrature; - Quadrature *boundary_quadrature; - switch (order) { - case 0: - fe = new FECrissCross(); - quadrature = new QCrissCross1(); - boundary_quadrature = new QGauss2(); - break; - case 1: - fe = new FEQ1(); - quadrature = new QGauss3(); - boundary_quadrature = new QGauss2(); - break; - case 2: - fe = new FEQ2(); - quadrature = new QGauss4(); - boundary_quadrature = new QGauss3(); - break; - case 3: - fe = new FEQ3(); - quadrature = new QGauss5(); - boundary_quadrature = new QGauss4(); - break; - case 4: - fe = new FEQ4(); - quadrature = new QGauss6(); - boundary_quadrature = new QGauss5(); - break; - default: - return 100000; - }; - - cout << " Distributing dofs... "; - dof->distribute_dofs (*fe); - cout << dof->n_dofs() << " degrees of freedom." << endl; - n_dofs.push_back (dof->n_dofs()); - - cout << " Assembling matrices..." << endl; - UpdateFlags update_flags = UpdateFlags(update_values | update_q_points | - update_gradients | update_JxW_values); - - ProblemBase::FunctionMap dirichlet_bc; - dirichlet_bc[0] = boundary_values; - assemble (equation, *quadrature, update_flags, dirichlet_bc); - - cout << " Solving..." << endl; - solve (); - - Solution sol; - Vector l1_error_per_cell, l2_error_per_cell, linfty_error_per_cell; - Vector h1_seminorm_error_per_cell, h1_error_per_cell; - - cout << " Calculating L1 error... "; - VectorTools::integrate_difference (*dof_handler, - solution, sol, - l1_error_per_cell, - *quadrature, L1_norm); - cout << l1_error_per_cell.l1_norm() << endl; - l1_error.push_back (l1_error_per_cell.l1_norm()); - - cout << " Calculating L2 error... "; - VectorTools::integrate_difference (*dof_handler, - solution, sol, - l2_error_per_cell, - *quadrature, L2_norm); - cout << l2_error_per_cell.l2_norm() << endl; - l2_error.push_back (l2_error_per_cell.l2_norm()); - - cout << " Calculating L-infinity error... "; - VectorTools::integrate_difference (*dof_handler, - solution, sol, - linfty_error_per_cell, - *quadrature, Linfty_norm); - cout << linfty_error_per_cell.linfty_norm() << endl; - linfty_error.push_back (linfty_error_per_cell.linfty_norm()); - - cout << " Calculating H1-seminorm error... "; - VectorTools::integrate_difference (*dof_handler, - solution, sol, - h1_seminorm_error_per_cell, - *quadrature, H1_seminorm); - cout << h1_seminorm_error_per_cell.l2_norm() << endl; - h1_seminorm_error.push_back (h1_seminorm_error_per_cell.l2_norm()); - - cout << " Calculating H1 error... "; - VectorTools::integrate_difference (*dof_handler, - solution, sol, - h1_error_per_cell, - *quadrature, H1_norm); - cout << h1_error_per_cell.l2_norm() << endl; - h1_error.push_back (h1_error_per_cell.l2_norm()); - - if (dof->n_dofs()<=5000) - { - Vector l1_error_per_dof(dof->n_dofs()); - Vector l2_error_per_dof(dof->n_dofs()); - Vector linfty_error_per_dof(dof->n_dofs()); - Vector h1_seminorm_error_per_dof(dof->n_dofs()); - Vector h1_error_per_dof(dof->n_dofs()); - DoFTools::distribute_cell_to_dof_vector (*dof, l1_error_per_cell, l1_error_per_dof); - DoFTools::distribute_cell_to_dof_vector (*dof, l2_error_per_cell, l2_error_per_dof); - DoFTools::distribute_cell_to_dof_vector (*dof, linfty_error_per_cell, - linfty_error_per_dof); - DoFTools::distribute_cell_to_dof_vector (*dof, h1_seminorm_error_per_cell, - h1_seminorm_error_per_dof); - DoFTools::distribute_cell_to_dof_vector (*dof, h1_error_per_cell, h1_error_per_dof); - -// Vector projected_solution; -// ConstraintMatrix constraints; -// constraints.close (); -// VectorTools::project (*dof, constraints, *fe, -// StraightBoundary(), *quadrature, -// sol, projected_solution, false, -// *boundary_quadrature); -// cout << " Calculating L2 error of projected solution... "; -// VectorTools::integrate_difference (*dof_handler, -// projected_solution, sol, -// l2_error_per_cell, -// *quadrature, *fe, L2_norm); -// cout << l2_error_per_cell.l2_norm() << endl; - - - string filename; - filename = ('0'+order); - filename += "."; - filename += ('0'+level); - filename += ".ucd"; - cout << " Writing error plots to <" << filename << ">..." << endl; - - DataOut out; - ofstream o(filename.c_str()); - fill_data (out); - out.add_data_vector (l1_error_per_dof, "L1_Error"); - out.add_data_vector (l2_error_per_dof, "L2_Error"); - out.add_data_vector (linfty_error_per_dof, "Linfty_Error"); - out.add_data_vector (h1_seminorm_error_per_dof, "H1_seminorm_Error"); - out.add_data_vector (h1_error_per_dof, "H1_Error"); - out.build_patches (); - out.write_ucd (o); - o.close (); - } - else - cout << " Not writing error as grid." << endl; - - cout << endl; - - const unsigned int n_dofs = dof->n_dofs(); - // release the lock that the dof object - // has to the finite element object - dof->clear (); - tria->set_boundary (0); - - delete fe; - delete quadrature; - delete boundary_quadrature; - - return n_dofs; -}; - - -template -void PoissonProblem::print_history (string filename) const { - ofstream out(filename.c_str()); - out << "# n_dofs l1_error l2_error linfty_error h1_seminorm_error h1_error" - << endl; - for (unsigned int i=0; ih/2:" << endl; - cout << " L1 error : " << 1./average_l1 << endl - << " L2 error : " << 1./average_l2 << endl - << " Linfty error : " << 1./average_linfty << endl - << " H1 seminorm error: " << 1./average_h1_semi << endl - << " H1 error : " << 1./average_h1 << endl; - cout << "==========================================================\n"; - cout << "==========================================================\n"; -}; - - - - -int main () { - deallog.depth_console (0); - for (unsigned int order=0; order<5; ++order) - { - PoissonProblem<2> problem (order); - - unsigned int level=0; - unsigned int n_dofs; - do - n_dofs = problem.run (level++); - while (n_dofs<25000); - - string filename; - switch (order) - { - case 0: - filename = "criss_cross"; - break; - case 1: - filename = "linear"; - break; - case 2: - filename = "quadratic"; - break; - case 3: - filename = "cubic"; - break; - case 4: - filename = "quartic"; - break; - }; - filename += ".history"; - - cout << endl << "Printing convergence history to <" - << filename << ">..." << endl; - problem.print_history (filename); - cout << endl << endl << endl; - }; - - return 0; -}; diff --git a/tests/big-tests/convergence/make_ps b/tests/big-tests/convergence/make_ps deleted file mode 100644 index 76c13a8624..0000000000 --- a/tests/big-tests/convergence/make_ps +++ /dev/null @@ -1,52 +0,0 @@ -set term postscript eps -set xlabel "Number of degrees of freedom" -set data style linespoints -set logscale xy - - - -set ylabel "Error" - -set output "criss-cross.eps" - -plot "criss_cross.history" using 1:2 title "L1 error","criss_cross.history" using 1:3 title "L2 error","criss_cross.history" using 1:4 title "Linfty error","criss_cross.history" using 1:5 title "H1 seminorm error","criss_cross.history" using 1:6 title "H1 error" - - - -set output "linear.eps" - -plot "linear.history" using 1:2 title "L1 error","linear.history" using 1:3 title "L2 error","linear.history" using 1:4 title "Linfty error","linear.history" using 1:5 title "H1 seminorm error","linear.history" using 1:6 title "H1 error" - - - -set output "quadratic.eps" - -plot "quadratic.history" using 1:2 title "L1 error","quadratic.history" using 1:3 title "L2 error","quadratic.history" using 1:4 title "Linfty error","quadratic.history" using 1:5 title "H1 seminorm error","quadratic.history" using 1:6 title "H1 error" - - - -set output "cubic.eps" - -plot "cubic.history" using 1:2 title "L1 error","cubic.history" using 1:3 title "L2 error","cubic.history" using 1:4 title "Linfty error","cubic.history" using 1:5 title "H1 seminorm error","cubic.history" using 1:6 title "H1 error" - - - -set output "quartic.eps" - -plot "quartic.history" using 1:2 title "L1 error","quartic.history" using 1:3 title "L2 error","quartic.history" using 1:4 title "Linfty error","quartic.history" using 1:5 title "H1 seminorm error","quartic.history" using 1:6 title "H1 error" - - - -set output "l2error.eps" -set ylabel "L2-error" - -plot "criss_cross.history" using 1:3 title "Criss-cross elements", "linear.history" using 1:3 title "Linear elements", "quadratic.history" using 1:3 title "Quadratic elements", "cubic.history" using 1:3 title "Cubic elements", "quartic.history" using 1:3 title "Quartic elements" - - - -set output "h1error.eps" -set ylabel "H1-error" - -plot "criss_cross.history" using 1:6 title "Criss-cross elements", "linear.history" using 1:6 title "Linear elements", "quadratic.history" using 1:6 title "Quadratic elements", "cubic.history" using 1:6 title "Cubic elements", "quartic.history" using 1:6 title "Quartic elements" - - diff --git a/tests/big-tests/dof/.cvsignore b/tests/big-tests/dof/.cvsignore deleted file mode 100644 index 6105d89a5b..0000000000 --- a/tests/big-tests/dof/.cvsignore +++ /dev/null @@ -1,5 +0,0 @@ -dof_test -Makefile.dep -Makefile.dep -*.go -*.o diff --git a/tests/big-tests/dof/Makefile b/tests/big-tests/dof/Makefile deleted file mode 100644 index 1ddc3b6d21..0000000000 --- a/tests/big-tests/dof/Makefile +++ /dev/null @@ -1,168 +0,0 @@ -# $Id$ -# Copyright by the deal.II authors 1998, 1999, 2000 - -############################################################ -# $D contains the root of the deal distribution and should -# be supplied as a command line argument D=../../... -############################################################ - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = dof_test - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-deal2-3d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-deal2-3d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(LDFLAGS) -o $@ $^ $(LIBS) - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - ./$(target) 2 $(target).prm - ./$(target) 3 $(target).prm - gnuplot make_ps - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/tests/big-tests/dof/dof_test.cc b/tests/big-tests/dof/dof_test.cc deleted file mode 100644 index a9513d4b60..0000000000 --- a/tests/big-tests/dof/dof_test.cc +++ /dev/null @@ -1,451 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include - - - -// 1: continuous refinement of the unit square always in the middle -// 2: refinement of the circle at the boundary -// 2: refinement of a wiggled area at the boundary -// 4: random refinement - - - - - - -template -class Ball : - public StraightBoundary { - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const { - Point middle = StraightBoundary::get_new_point_on_line(line); - - for (int i=0; i - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const { - Point middle = StraightBoundary::get_new_point_on_quad(quad); - - for (int i=0; i -class CurvedLine : - public StraightBoundary { - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const; - - virtual Point - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const; -}; - - - -template -Point -CurvedLine::get_new_point_on_line (const typename Triangulation::line_iterator &line) const -{ - Point middle = StraightBoundary::get_new_point_on_line (line); - - // if the line is at the top of bottom - // face: do a special treatment on - // this line. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the line is like that - if (dim>=3) - if (((middle(2) == 0) || (middle(2) == 1)) - // find out, if the line is in the - // interior of the top or bottom face - // of the domain, or at the edge. - // lines at the edge need to undergo - // the usual treatment, while for - // interior lines taking the midpoint - // is sufficient - // - // note: the trick with the boundary - // id was invented after the above was - // written, so we are not very strict - // here with using these flags - && (line->boundary_indicator() == 1)) - return middle; - - - double x=middle(0), - y=middle(1); - - if (y -Point -CurvedLine::get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const -{ - Point middle = StraightBoundary::get_new_point_on_quad (quad); - - // if the face is at the top of bottom - // face: do not move the midpoint in - // x/y direction. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the quad is like that - if ((middle(2) == 0) || (middle(2) == 1)) - return middle; - - double x=middle(0), - y=middle(1); - - if (y -class TestCases : public MultipleParameterLoop::UserClass{ - public: - TestCases (); - virtual ~TestCases (); - - virtual void create_new (const unsigned int run_no); - virtual void declare_parameters (ParameterHandler &prm); - virtual void run (ParameterHandler &prm); - - private: - Triangulation *tria; - DoFHandler *dof; -}; - - - -template -TestCases::TestCases () : - tria(0), dof(0) {}; - - -template -TestCases::~TestCases () -{ - if (dof) delete dof; - if (tria) delete tria; -}; - - - -template -void TestCases::create_new (const unsigned int) { - if (dof != 0) delete dof; - if (tria != 0) delete tria; - - tria = new Triangulation(); - GridGenerator::hyper_cube(*tria); - - dof = new DoFHandler (*tria); -}; - - - -template -void TestCases::declare_parameters (ParameterHandler &prm) { - if (dim>=2) - prm.declare_entry ("Test run", "zoom in", - Patterns::Selection("zoom in|ball|curved line|random")); - else - prm.declare_entry ("Test run", "zoom in", - Patterns::Selection("zoom in|random")); - prm.declare_entry ("Grid file", "grid.1"); - prm.declare_entry ("Sparsity file", "sparsity.1"); - prm.declare_entry ("Condensed sparsity file", "sparsity.c.1"); -}; - - - -template -void TestCases::run (ParameterHandler &prm) { - cout << "Dimension = " << dim - << ", Test case = " << prm.get ("Test run") << endl - << endl; - - string test = prm.get ("Test run"); - unsigned int test_case = 1; - if (test=="zoom in") test_case = 1; - else - if (test=="ball") test_case = 2; - else - if (test=="curved line") test_case = 3; - else - if (test=="random") test_case = 4; - else - cerr << "This test seems not to be implemented!" << endl; - - - cout << " Making grid..." << endl; - Boundary *boundary = 0; - - switch (test_case) - { - case 1: - { - // refine first cell - tria->begin_active()->set_refine_flag(); - tria->execute_coarsening_and_refinement (); - // refine first active cell - // on coarsest level - tria->begin_active()->set_refine_flag (); - tria->execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell; - for (int i=0; i<17; ++i) - { - // refine the presently - // second last cell 17 - // times - cell = tria->last_active(tria->n_levels()-1); - --cell; - cell->set_refine_flag (); - tria->execute_coarsening_and_refinement (); - }; - - break; - } - - case 2: - case 3: - { - if (dim==3) - { - tria->begin_active()->face(2)->set_boundary_indicator(1); - tria->begin_active()->face(4)->set_boundary_indicator(1); - }; - - // set the boundary function - boundary = (test_case==2 ? - static_cast*>(new Ball()) : - static_cast*>(new CurvedLine())); - tria->set_boundary (0, *boundary); - tria->set_boundary (1, *boundary); - - // refine once - tria->begin_active()->set_refine_flag(); - tria->execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell, endc; - for (int i=0; i<6-dim; ++i) - { - cell = tria->begin_active(); - endc = tria->end(); - - // refine all - // boundary cells - for (; cell!=endc; ++cell) - if (cell->at_boundary()) - cell->set_refine_flag(); - - tria->execute_coarsening_and_refinement(); - }; - - break; - } - - case 4: - { - // refine once - tria->begin_active()->set_refine_flag(); - tria->execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell, endc; - for (int i=0; i<(dim==2 ? 12 : (dim==3 ? 7 : 20)); ++i) - { - int n_levels = tria->n_levels(); - cell = tria->begin_active(); - endc = tria->end(); - - for (; cell!=endc; ++cell) - { - double r = rand()*1.0/RAND_MAX, - weight = 1.* - (cell->level()*cell->level()) / - (n_levels*n_levels); - - if (r <= 0.5*weight) - cell->set_refine_flag (); - }; - - tria->execute_coarsening_and_refinement (); - }; - break; - } - }; - - // output the grid - string file_prefix ("results/"); - file_prefix += ('0'+dim); - file_prefix += "d."; - - cout << " Writing grid..." << endl; - ofstream out((file_prefix + prm.get("Grid file")).c_str()); - GridOut().write_gnuplot (*tria, out); - - - - - cout << " Distributing degrees of freedom..." << endl; - FEQ1 fe; - dof->distribute_dofs (fe); - - cout << " Renumbering degrees of freedom..." << endl; - DoFRenumbering::Cuthill_McKee (*dof); - - SparsityPattern sparsity (dof->n_dofs(), - dof->max_couplings_between_dofs()); - - - DoFTools::make_sparsity_pattern (*dof, sparsity); - int unconstrained_bandwidth = sparsity.bandwidth(); - - cout << " Writing sparsity pattern..." << endl; - ofstream sparsity_out ((file_prefix + prm.get("Sparsity file")).c_str()); - sparsity.print_gnuplot (sparsity_out); - - - - // computing constraints - cout << " Computing constraints..." << endl; - ConstraintMatrix constraints; - DoFTools::make_hanging_node_constraints (*dof, constraints); - constraints.close (); - constraints.condense (sparsity); - - cout << " Writing condensed sparsity pattern..." << endl; - ofstream c_sparsity_out ((file_prefix + - prm.get("Condensed sparsity file")).c_str()); - sparsity.print_gnuplot (c_sparsity_out); - - - cout << endl - << " Total number of cells = " << tria->n_cells() << endl - << " Total number of active cells = " << tria->n_active_cells() << endl - << " Number of DoFs = " << dof->n_dofs() << endl - << " Number of constraints = " << constraints.n_constraints() << endl - << " Unconstrained matrix bandwidth= " << unconstrained_bandwidth << endl - << " Constrained matrix bandwidth = " << sparsity.bandwidth() - << endl << endl; - - // release the lock that dof has to the - // finite element object - dof->clear (); - tria->set_boundary (0); - tria->set_boundary (1); - if (boundary) - delete boundary; -}; - - - -int main (int argc, char **argv) { - if (argc!=3) - { - cerr << "Usage: dof_test dimension parameterfile" << endl << endl; - return 1; - }; - - unsigned int dim; - if (argv[1][0] == '2') - dim = 2; - else - dim = 3; - - switch (dim) - { - case 2: - { - TestCases<2> tests; - MultipleParameterLoop input_data; - - tests.declare_parameters(input_data); - input_data.read_input (argv[2]); - input_data.loop (tests); - - break; - }; - - case 3: - { - TestCases<3> tests; - MultipleParameterLoop input_data; - - tests.declare_parameters(input_data); - input_data.read_input (argv[2]); - input_data.loop (tests); - - break; - }; - }; - - return 0; -}; - diff --git a/tests/big-tests/dof/dof_test.prm b/tests/big-tests/dof/dof_test.prm deleted file mode 100644 index 84697993f4..0000000000 --- a/tests/big-tests/dof/dof_test.prm +++ /dev/null @@ -1,4 +0,0 @@ -set Test run = { zoom in | ball | curved line | random } -set Grid file = {{ zoom_in | ball | curved_line | random }}.grid -set Sparsity file = {{ zoom_in | ball | curved_line | random }}.sparsity -set Condensed sparsity file = {{ zoom_in | ball | curved_line | random }}.sparsity.c \ No newline at end of file diff --git a/tests/big-tests/dof/make_ps b/tests/big-tests/dof/make_ps deleted file mode 100644 index 281a20bc8b..0000000000 --- a/tests/big-tests/dof/make_ps +++ /dev/null @@ -1,122 +0,0 @@ -set size 0.721,1 -set data style lines -set noxtics -set noytics -set noztics -set noxzeroaxis -set noyzeroaxis -set nokey -set term postscript eps - -!echo " Making <2d.zoom_in.grid.eps>" -set output "results/2d.zoom_in.grid.eps" -plot "results/2d.zoom_in.grid" - -!echo " Making <2d.ball.grid.eps>" -set output "results/2d.ball.grid.eps" -plot "results/2d.ball.grid" - -!echo " Making <2d.curved_line.grid.eps>" -set output "results/2d.curved_line.grid.eps" -plot "results/2d.curved_line.grid" - -!echo " Making <2d.random.grid.eps>" -set output "results/2d.random.grid.eps" -plot "results/2d.random.grid" - - - - -!echo " Making <3d.zoom_in.grid.eps>" -set output "results/3d.zoom_in.grid.eps" -splot "results/3d.zoom_in.grid" - -!echo " Making <3d.ball.grid.eps>" -set output "results/3d.ball.grid.eps" -splot "results/3d.ball.grid" - -!echo " Making <3d.curved_line.grid.eps>" -set output "results/3d.curved_line.grid.eps" -splot "results/3d.curved_line.grid" - -!echo " Making <3d.random.grid.eps>" -set output "results/3d.random.grid.eps" -splot "results/3d.random.grid" - - - - -set data style dots - -!echo " Making <2d.zoom_in.sparsity.eps>" -set output "results/2d.zoom_in.sparsity.eps" -plot "results/2d.zoom_in.sparsity" - -!echo " Making <2d.zoom_in.sparsity.c.eps>" -set output "results/2d.zoom_in.sparsity.c.eps" -plot "results/2d.zoom_in.sparsity.c" - - -!echo " Making <2d.ball.sparsity.eps>" -set output "results/2d.ball.sparsity.eps" -plot "results/2d.ball.sparsity" - -!echo " Making <2d.ball.sparsity.c.eps>" -set output "results/2d.ball.sparsity.c.eps" -plot "results/2d.ball.sparsity.c" - - -!echo " Making <2d.curved_line.sparsity.eps>" -set output "results/2d.curved_line.sparsity.eps" -plot "results/2d.curved_line.sparsity" - -!echo " Making <2d.curved_line.sparsity.c.eps>" -set output "results/2d.curved_line.sparsity.c.eps" -plot "results/2d.curved_line.sparsity.c" - - -!echo " Making <2d.random.sparsity.eps>" -set output "results/2d.random.sparsity.eps" -plot "results/2d.random.sparsity" - -!echo " Making <2d.random.sparsity.c.eps>" -set output "results/2d.random.sparsity.c.eps" -plot "results/2d.random.sparsity.c" - - - -!echo " Making <3d.zoom_in.sparsity.eps>" -set output "results/3d.zoom_in.sparsity.eps" -plot "results/3d.zoom_in.sparsity" - -!echo " Making <3d.zoom_in.sparsity.c.eps>" -set output "results/3d.zoom_in.sparsity.c.eps" -plot "results/3d.zoom_in.sparsity.c" - - -!echo " Making <3d.ball.sparsity.eps>" -set output "results/3d.ball.sparsity.eps" -plot "results/3d.ball.sparsity" - -!echo " Making <3d.ball.sparsity.c.eps>" -set output "results/3d.ball.sparsity.c.eps" -plot "results/3d.ball.sparsity.c" - - -!echo " Making <3d.curved_line.sparsity.eps>" -set output "results/3d.curved_line.sparsity.eps" -plot "results/3d.curved_line.sparsity" - -!echo " Making <3d.curved_line.sparsity.c.eps>" -set output "results/3d.curved_line.sparsity.c.eps" -plot "results/3d.curved_line.sparsity.c" - - -!echo " Making <3d.random.sparsity.eps>" -set output "results/3d.random.sparsity.eps" -plot "results/3d.random.sparsity" - -!echo " Making <3d.random.sparsity.c.eps>" -set output "results/3d.random.sparsity.c.eps" -plot "results/3d.random.sparsity.c" - diff --git a/tests/big-tests/dof/results/.cvsignore b/tests/big-tests/dof/results/.cvsignore deleted file mode 100644 index 480cb8565d..0000000000 --- a/tests/big-tests/dof/results/.cvsignore +++ /dev/null @@ -1 +0,0 @@ -?d.* diff --git a/tests/big-tests/error-estimation/.cvsignore b/tests/big-tests/error-estimation/.cvsignore deleted file mode 100644 index e3db7764a9..0000000000 --- a/tests/big-tests/error-estimation/.cvsignore +++ /dev/null @@ -1,4 +0,0 @@ -error-estimation -Makefile.dep -*.go -*.o diff --git a/tests/big-tests/error-estimation/Makefile b/tests/big-tests/error-estimation/Makefile deleted file mode 100644 index a3cf5fb381..0000000000 --- a/tests/big-tests/error-estimation/Makefile +++ /dev/null @@ -1,168 +0,0 @@ -# $Id$ -# Copyright by the deal.II authors 1998, 1999, 2000 - -############################################################ -# $D contains the root of the deal distribution and should -# be supplied as a command line argument D=../../... -############################################################ - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = error-estimation - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov */*inp */*gnuplot */*eps - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(LDFLAGS) -o $@ $^ $(LIBS) - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - ./$(target) ee.gauss.prm - ./$(target) ee.singular.prm - ./$(target) ee.kink.prm - gnuplot make_ps - - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/tests/big-tests/error-estimation/ee.gauss.prm b/tests/big-tests/error-estimation/ee.gauss.prm deleted file mode 100644 index 560bd59cf3..0000000000 --- a/tests/big-tests/error-estimation/ee.gauss.prm +++ /dev/null @@ -1,8 +0,0 @@ -set Test case = Gauss shape -set Initial refinement = 2 -set Refinement criterion = { global | true error | estimated error } -set Refinement fraction = 0.3 -set Coarsening fraction = 0.03 -set Maximum cells = 10000 -set Output base filename = data-gauss/ -set Output format = ucd diff --git a/tests/big-tests/error-estimation/ee.kink.prm b/tests/big-tests/error-estimation/ee.kink.prm deleted file mode 100644 index 6bf0b8e88c..0000000000 --- a/tests/big-tests/error-estimation/ee.kink.prm +++ /dev/null @@ -1,8 +0,0 @@ -set Test case = Kink -set Initial refinement = 1 -set Refinement criterion = { global | estimated error } -set Refinement fraction = 0.1 -set Coarsening fraction = 0.02 -set Maximum cells = 100000 -set Output base filename = data-kink/ -set Output format = ucd diff --git a/tests/big-tests/error-estimation/ee.singular.prm b/tests/big-tests/error-estimation/ee.singular.prm deleted file mode 100644 index eb6988553a..0000000000 --- a/tests/big-tests/error-estimation/ee.singular.prm +++ /dev/null @@ -1,8 +0,0 @@ -set Test case = Singular -set Initial refinement = 1 -set Refinement criterion = { global | estimated error } -set Refinement fraction = 0.1 -set Coarsening fraction = 0.02 -set Maximum cells = 100000 -set Output base filename = data-singular/ -set Output format = ucd diff --git a/tests/big-tests/error-estimation/error-estimation.cc b/tests/big-tests/error-estimation/error-estimation.cc deleted file mode 100644 index 8c8f107312..0000000000 --- a/tests/big-tests/error-estimation/error-estimation.cc +++ /dev/null @@ -1,760 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include - - - - -template -class PoissonEquation : public Equation { - public: - PoissonEquation (const Function &rhs) : - Equation(1), - use_coefficient(false), - right_hand_side (rhs), - coefficient (default_coefficient) {}; - - PoissonEquation (const Function &rhs, - const Function &coefficient ) : - Equation(1), - use_coefficient(true), - right_hand_side (rhs), - coefficient (coefficient) {}; - - virtual void assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (FullMatrix &cell_matrix, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - protected: - const bool use_coefficient; - const Function &right_hand_side; - const Function &coefficient; - - static const ConstantFunction default_coefficient; -}; - - -const ConstantFunction<2> PoissonEquation<2>::default_coefficient(1); - - - - - -template -class PoissonProblem : public ProblemBase, public MultipleParameterLoop::UserClass { - public: - enum RefineMode { - global, true_error, error_estimator - }; - - PoissonProblem (); - ~PoissonProblem (); - - void clear (); - void create_new (const unsigned int); - void declare_parameters (ParameterHandler &prm); - void run (ParameterHandler &prm); - void print_history (const ParameterHandler &prm, - const RefineMode refine_mode) const; - - protected: - Triangulation *tria; - DoFHandler *dof; - - Function *rhs; - Function *solution_function; - Function *coefficient; - - Boundary *boundary; - - vector l2_error, linfty_error; - vector h1_error, estimated_error; - vector n_dofs; -}; - - - - - -template -class Solution { - public: - - class GaussShape : public Function { - public: - virtual double value (const Point &p, - const unsigned int component) const; - virtual Tensor<1,dim> gradient (const Point &p, - const unsigned int component) const; - }; - - class Singular : public Function { - public: - virtual double value (const Point &p, - const unsigned int component) const; - virtual Tensor<1,dim> gradient (const Point &p, - const unsigned int component) const; - }; - - class Kink : public Function { - public: - class Coefficient : public Function { - public: - virtual double value (const Point &p, - const unsigned int component) const; - }; - - virtual double value (const Point &p, - const unsigned int component) const; - virtual Tensor<1,dim> gradient (const Point &p, - const unsigned int component) const; - }; -}; - - - - -template -class RHS { - public: - - /** - * Right hand side constructed such that - * the exact solution is - * $x*y*exp(-(x**2+y**2)*40)$. - */ - class GaussShape : public Function { - public: - virtual double value (const Point &p, - const unsigned int component) const; - }; - - /** - * Right hand side constructed such that - * the exact solution is - * $r^{2/3}$. - */ - class Singular : public Function { - public: - virtual double value (const Point &p, - const unsigned int component) const; - }; - - /** - * Right hand side constructed such that - * the exact solution is - * $(1+4\theta(f))*f$ with - * $f=y-x**2$. - */ - class Kink : public Function { - public: - virtual double value (const Point &p, - const unsigned int component) const; - }; -}; - - - - -template <> -double Solution<2>::GaussShape::value (const Point<2> &p, - const unsigned int) const { - return p(0)*p(1)*exp(-40*p.square()); -}; - - -template <> -Tensor<1,2> Solution<2>::GaussShape::gradient (const Point<2> &p, - const unsigned int) const { - return Point<2> ((1-80.*p(0)*p(0))*p(1)*exp(-40*p.square()), - (1-80.*p(1)*p(1))*p(0)*exp(-40*p.square())); -}; - - - -template <> -double Solution<2>::Singular::value (const Point<2> &p, - const unsigned int) const { - return pow(p.square(), 1./3.); -}; - - -template <> -Tensor<1,2> Solution<2>::Singular::gradient (const Point<2> &p, - const unsigned int) const { - return 2./3.*pow(p.square(), -2./3.) * p; -}; - - - - -inline double theta(const double x) { - return (x>0 ? 1 : 0); -}; - - - -template <> -double Solution<2>::Kink::value (const Point<2> &p, - const unsigned int) const { - const double s = p(1)-p(0)*p(0); - return (1+4*theta(s))*s; -}; - - -template <> -Tensor<1,2> Solution<2>::Kink::gradient (const Point<2> &p, - const unsigned int) const { - const double s = p(1)-p(0)*p(0); - return (1+4*theta(s))*Point<2>(-2*p(0),1); -}; - - -template <> -double Solution<2>::Kink::Coefficient::value (const Point<2> &p, - const unsigned int) const { - const double s = p(1)-p(0)*p(0); - return 1./(1.+4.*theta(s)); -}; - - - -template <> -double RHS<2>::GaussShape::value (const Point<2> &p, - const unsigned int) const { - return (480.-6400.*p.square())*p(0)*p(1)*exp(-40.*p.square()); -}; - - -template <> -double RHS<2>::Singular::value (const Point<2> &p, - const unsigned int) const { - return -4./9. * pow(p.square(), -2./3.); -}; - - -template <> -double RHS<2>::Kink::value (const Point<2> &, - const unsigned int) const { - return 2; -}; - - - - - - - - -template <> -void PoissonEquation<2>::assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues<2> &fe_values, - const DoFHandler<2>::cell_iterator &) const { - for (unsigned int point=0; point -void PoissonEquation::assemble (FullMatrix &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, typename Equation::ExcPureVirtualFunctionCalled()); -}; - - - -template -void PoissonEquation::assemble (Vector &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, typename Equation::ExcPureVirtualFunctionCalled()); -}; - - - - - - - - - -template -PoissonProblem::PoissonProblem () : - tria(0), dof(0), rhs(0), - solution_function(0), coefficient(0), - boundary(0) {}; - - - -template -PoissonProblem::~PoissonProblem () -{ - clear (); -}; - - - -template -void PoissonProblem::clear () { - if (dof != 0) { delete dof; dof = 0; }; - if (tria != 0) { delete tria; tria = 0; }; - if (rhs != 0) { delete rhs; rhs = 0; }; - if (solution_function != 0) { delete solution_function; solution_function = 0; }; - if (coefficient != 0) { delete coefficient; coefficient = 0; }; - if (boundary != 0) { delete boundary; boundary = 0; }; - - // make it known to the underlying - // ProblemBase that tria and dof - // are already deleted - set_tria_and_dof (tria, dof); - - l2_error.clear (); - linfty_error.clear (); - h1_error.clear (); - estimated_error.clear(); - n_dofs.clear (); - - ProblemBase::clear (); -}; - - - - -template -void PoissonProblem::create_new (const unsigned int) { - clear (); - - tria = new Triangulation(); - dof = new DoFHandler (*tria); - set_tria_and_dof (tria, dof); - boundary = new HyperBallBoundary (); -}; - - - -template -void PoissonProblem::declare_parameters (ParameterHandler &prm) { - prm.declare_entry ("Test case", "Gauss shape", - Patterns::Selection("Gauss shape|Singular|Kink")); - prm.declare_entry ("Initial refinement", "2", - Patterns::Integer()); - prm.declare_entry ("Refinement criterion", "estimated error", - Patterns::Selection("global|true error|estimated error")); - prm.declare_entry ("Refinement fraction", "0.3", - Patterns::Double()); - prm.declare_entry ("Coarsening fraction", "0.1", - Patterns::Double()); - prm.declare_entry ("Maximum cells", "3000", - Patterns::Integer()); - prm.declare_entry ("Output base filename", ""); - prm.declare_entry ("Output format", "ucd", - Patterns::Selection("ucd|gnuplot")); -}; - - - - -template -void PoissonProblem::run (ParameterHandler &prm) { - cout << "=======================================" - << "=======================================" << endl - << "===== Test case: " << prm.get ("Test case") << endl - << "===== Doing computation with refinement criterion: "; - RefineMode refine_mode; - if (prm.get("Refinement criterion")=="global") - refine_mode = global; - else - if (prm.get("Refinement criterion")=="true error") - refine_mode = true_error; - else - if (prm.get("Refinement criterion")=="estimated error") - refine_mode = error_estimator; - else - return; - - switch (refine_mode) - { - case global: - cout << "global"; - break; - case true_error: - cout << "true error"; - break; - case error_estimator: - cout << "error estimator"; - break; - }; - - cout << endl - << "=======================================" - << "=======================================" << endl; - cout << "Making initial grid... " << endl; - const unsigned int start_level(prm.get_integer("Initial refinement")); - tria->set_boundary (0, *boundary); - GridGenerator::hyper_ball (*tria); - tria->refine_global (start_level); - - if (prm.get("Test case")=="Gauss shape") - rhs = new RHS::GaussShape(); - else - if (prm.get("Test case")=="Singular") - rhs = new RHS::Singular(); - else - if (prm.get("Test case")=="Kink") - rhs = new RHS::Kink(); - - if (prm.get("Test case")=="Gauss shape") - solution_function = new Solution::GaussShape (); - else - if (prm.get("Test case")=="Singular") - solution_function = new Solution::Singular (); - else - if (prm.get("Test case")=="Kink") - solution_function = new Solution::Kink (); - - - FEQ1 fe; - QGauss3 quadrature; - PoissonEquation *equation; - - static Solution::Kink::Coefficient kink_coefficient; - if (prm.get("Test case")=="Kink") - equation = new PoissonEquation(*rhs, kink_coefficient); - else - equation = new PoissonEquation(*rhs); - - SolutionTransfer solution_transfer (*dof_handler); - - unsigned int refine_step = 0; - const unsigned int max_cells = prm.get_integer("Maximum cells"); - while (tria->n_active_cells() < max_cells) - { - Vector old_solution = solution; - cout << "Refinement step " << refine_step - << ", using " << tria->n_active_cells() << " active cells on " - << tria->n_levels() << " levels." - << endl; - cout << " Distributing dofs... "; - dof->distribute_dofs (fe); - cout << dof->n_dofs() << " degrees of freedom." << endl; - n_dofs.push_back (dof->n_dofs()); - - cout << " Assembling matrices..." << endl; - UpdateFlags update_flags = UpdateFlags(update_values | update_q_points | - update_gradients | update_JxW_values); - - ProblemBase::FunctionMap dirichlet_bc; - dirichlet_bc[0] = solution_function; - assemble (*equation, quadrature, update_flags, dirichlet_bc); - - // if we have an old solution lying - // around, use it to preset the solution - // vector. this reduced the quired - // number of iterations by about - // 10 per cent - if (refine_step != 0) - { - solution.reinit (dof_handler->n_dofs()); - solution_transfer.interpolate (old_solution, solution); - - // if you don't want to preset - // the solution vector, - // uncomment the following - // line and comment out the - // preceding one -// solution.reinit (dof_handler->n_dofs()); - - solution_transfer.clear (); - }; - - cout << " Solving..." << endl; - - solve (); - - - Vector l2_error_per_cell, linfty_error_per_cell, h1_error_per_cell; - Vector estimated_error_per_cell; - QGauss3 q; - - cout << " Calculating L2 error... "; - VectorTools::integrate_difference (*dof_handler, - solution, *solution_function, - l2_error_per_cell, q, - L2_norm); - cout << l2_error_per_cell.l2_norm() << endl; - l2_error.push_back (l2_error_per_cell.l2_norm()); - - cout << " Calculating L-infinity error... "; - VectorTools::integrate_difference (*dof_handler, - solution, *solution_function, - linfty_error_per_cell, q, - Linfty_norm); - cout << linfty_error_per_cell.linfty_norm() << endl; - linfty_error.push_back (linfty_error_per_cell.linfty_norm()); - - cout << " Calculating H1 error... "; - VectorTools::integrate_difference (*dof_handler, - solution, *solution_function, - h1_error_per_cell, q, - H1_norm); - cout << h1_error_per_cell.l2_norm() << endl; - h1_error.push_back (h1_error_per_cell.l2_norm()); - - cout << " Estimating H1 error... "; - - QSimpson eq; - KellyErrorEstimator::estimate (*dof, eq, - KellyErrorEstimator::FunctionMap(), - solution, - estimated_error_per_cell, - vector(), // all components - ((prm.get("Test case")=="Kink") ? - &kink_coefficient : 0 )); - cout << estimated_error_per_cell.l2_norm() << endl; - estimated_error.push_back (estimated_error_per_cell.l2_norm()); - - Vector l2_error_per_dof(dof->n_dofs()), linfty_error_per_dof(dof->n_dofs()); - Vector h1_error_per_dof(dof->n_dofs()), estimated_error_per_dof(dof->n_dofs()); - Vector error_ratio (dof->n_dofs()); - DoFTools::distribute_cell_to_dof_vector (*dof, l2_error_per_cell, l2_error_per_dof); - DoFTools::distribute_cell_to_dof_vector (*dof, linfty_error_per_cell, - linfty_error_per_dof); - DoFTools::distribute_cell_to_dof_vector (*dof, h1_error_per_cell, h1_error_per_dof); - DoFTools::distribute_cell_to_dof_vector (*dof, estimated_error_per_cell, - estimated_error_per_dof); - error_ratio.ratio (h1_error_per_dof, estimated_error_per_dof); - - DataOut out; - fill_data (out); - out.add_data_vector (l2_error_per_dof, "L2_Error"); - out.add_data_vector (linfty_error_per_dof, "Linfty_Error"); - out.add_data_vector (h1_error_per_dof, "H1_Error"); - out.add_data_vector (estimated_error_per_dof, "Estimated_Error"); - out.add_data_vector (error_ratio, "Ratio_True_to_Estimated_Error"); - out.build_patches (); - string filename = prm.get ("Output base filename"); - switch (refine_mode) - { - case global: - filename += "global."; - break; - case true_error: - filename += "true_error."; - break; - case error_estimator: - filename += "estimated_error."; - break; - }; - filename += ('0'+(start_level+refine_step)/10); - filename += ('0'+(start_level+refine_step)%10); - - if (prm.get("Output format")=="ucd") - filename += ".inp"; - else - if (prm.get("Output format")=="gnuplot") - filename += ".gnuplot"; - - cout << " Writing error plots to <" << filename << ">..." << endl; - ofstream outfile(filename.c_str()); - if (prm.get("Output format")=="ucd") - out.write_ucd (outfile); - else - if (prm.get("Output format")=="gnuplot") - out.write_gnuplot (outfile); - - outfile.close(); - - cout << " Refining triangulation..."; - switch (refine_mode) - { - case global: - tria->set_all_refine_flags (); - break; - case true_error: - GridRefinement:: - refine_and_coarsen_fixed_number (*tria, - h1_error_per_cell, - prm.get_double("Refinement fraction"), - prm.get_double("Coarsening fraction")); - break; - case error_estimator: - GridRefinement:: - refine_and_coarsen_fixed_number (*tria, - estimated_error_per_cell, - prm.get_double("Refinement fraction"), - prm.get_double("Coarsening fraction")); - break; - }; - - tria->prepare_coarsening_and_refinement (); - solution_transfer.prepare_for_coarsening_and_refinement (solution); - tria->execute_coarsening_and_refinement (); - - cout << endl << endl; - ++refine_step; - }; - - string filename = prm.get ("Output base filename"); - switch (refine_mode) - { - case global: - filename += "global."; - break; - case true_error: - filename += "true_error."; - break; - case error_estimator: - filename += "estimated_error."; - break; - }; - - cout << endl; - - filename += "finest_mesh.gnuplot"; - cout << " Writing finest grid to <" << filename << ">... " << endl; - ofstream finest_mesh (filename.c_str()); - GridOut().write_gnuplot (*tria, finest_mesh); - finest_mesh.close(); - - print_history (prm, refine_mode); - cout << endl << endl << endl; - - dof->clear (); - delete equation; -}; - - -template -void PoissonProblem::print_history (const ParameterHandler &prm, - const RefineMode refine_mode) const { - string filename(prm.get("Output base filename")); - filename += "history."; - switch (refine_mode) - { - case global: - filename += "global."; - break; - case true_error: - filename += "true_error."; - break; - case error_estimator: - filename += "estimated_error."; - break; - }; - filename += "gnuplot"; - - cout << endl << "Printing convergence history to <" << filename << ">..." - << endl; - ofstream out(filename.c_str()); - out << "# n_dofs l2_error linfty_error " - << "h1_error estimated_error" - << endl; - for (unsigned int i=0; ih/2:" << endl; - cout << " L2 error : " << 1./average_l2 << endl - << " Linfty error : " << 1./average_linfty << endl - << " H1 error : " << 1./average_h1 << endl - << " Estimated error : " << 1./average_est << endl; -}; - - - - -int main (int argc, char **argv) { - if (argc!=2) - { - cout << "Usage: error-estimation parameterfile" << endl << endl; - return 1; - }; - - PoissonProblem<2> poisson; - MultipleParameterLoop input_data; - - poisson.declare_parameters(input_data); - input_data.read_input (argv[1]); - input_data.loop (poisson); - - return 0; -}; - - - diff --git a/tests/big-tests/error-estimation/make_ps b/tests/big-tests/error-estimation/make_ps deleted file mode 100644 index 5c06b6c8f2..0000000000 --- a/tests/big-tests/error-estimation/make_ps +++ /dev/null @@ -1,94 +0,0 @@ -set xlabel "Number of degrees of freedom" -set ylabel "Error" -set data style linespoints -set logscale xy - -set term postscript eps - - -set output "data-gauss/history.global.eps" - -plot "data-gauss/history.global.gnuplot" using 1:2 title "L2 error","data-gauss/history.global.gnuplot" using 1:3 title "Linfty error","data-gauss/history.global.gnuplot" using 1:4 title "H1 error","data-gauss/history.global.gnuplot" using 1:5 title "Estimated H1 error" - - -set output "data-gauss/history.true_error.eps" - -plot "data-gauss/history.true_error.gnuplot" using 1:2 title "L2 error","data-gauss/history.true_error.gnuplot" using 1:3 title "Linfty error","data-gauss/history.true_error.gnuplot" using 1:4 title "H1 error","data-gauss/history.true_error.gnuplot" using 1:5 title "Estimated H1 error" - - -set output "data-gauss/history.estimated_error.eps" - -plot "data-gauss/history.estimated_error.gnuplot" using 1:2 title "L2 error","data-gauss/history.estimated_error.gnuplot" using 1:3 title "Linfty error","data-gauss/history.estimated_error.gnuplot" using 1:4 title "H1 error","data-gauss/history.estimated_error.gnuplot" using 1:5 title "Estimated H1 error" - - -set output "data-gauss/history.compare.eps" -plot "data-gauss/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-gauss/history.true_error.gnuplot" using 1:2 title "ref. by true error -- L2 error", "data-gauss/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", 0.1/sqrt(x) title "O(h)", "data-gauss/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-gauss/history.true_error.gnuplot" using 1:4 title "ref. by true error -- H1 error", "data-gauss/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error", 0.04/x title "O(h^2)" - - - - - -set output "data-singular/history.global.eps" - -plot "data-singular/history.global.gnuplot" using 1:2 title "L2 error","data-singular/history.global.gnuplot" using 1:3 title "Linfty error","data-singular/history.global.gnuplot" using 1:4 title "H1 error","data-singular/history.global.gnuplot" using 1:5 title "Estimated H1 error" - - -set output "data-singular/history.estimated_error.eps" - -plot "data-singular/history.estimated_error.gnuplot" using 1:2 title "L2 error","data-singular/history.estimated_error.gnuplot" using 1:3 title "Linfty error","data-singular/history.estimated_error.gnuplot" using 1:4 title "H1 error","data-singular/history.estimated_error.gnuplot" using 1:5 title "Estimated H1 error" - - -set output "data-singular/history.compare.eps" -plot "data-singular/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-singular/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", 1.1/x**0.33 title "O(h^2/3)", 2./sqrt(x) title "O(h)", "data-singular/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-singular/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error", 0.2/x**0.4 title "O(h^0.8)", 4./x title "O(h^2)" - - - - - - - -set output "data-kink/history.global.eps" - -plot "data-kink/history.global.gnuplot" using 1:2 title "L2 error","data-kink/history.global.gnuplot" using 1:3 title "Linfty error","data-kink/history.global.gnuplot" using 1:4 title "H1 error","data-kink/history.global.gnuplot" using 1:5 title "Estimated H1 error" - - -set output "data-kink/history.estimated_error.eps" - -plot "data-kink/history.estimated_error.gnuplot" using 1:2 title "L2 error","data-kink/history.estimated_error.gnuplot" using 1:3 title "Linfty error","data-kink/history.estimated_error.gnuplot" using 1:4 title "H1 error","data-kink/history.estimated_error.gnuplot" using 1:5 title "Estimated H1 error" - - -set output "data-kink/history.compare.eps" -plot "data-kink/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-kink/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", 5/x**0.25 title "O(h^1/2)", 20/x**0.5 title "O(h)", "data-kink/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-kink/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error", 1.5/sqrt(x) title "O(h)", 20/x**0.95 title "O(h^1.8)" - - - - -set parametric -set data style lines -set nologscale xy -set size 0.7,1 - -set output "data-gauss/finest_mesh.global.eps" -plot "data-gauss/global.finest_mesh.gnuplot" title "Finest mesh" - -set output "data-gauss/finest_mesh.true_error.eps" -plot "data-gauss/true_error.finest_mesh.gnuplot" title "Finest mesh" - -set output "data-gauss/finest_mesh.estimated_error.eps" -plot "data-gauss/estimated_error.finest_mesh.gnuplot" title "Finest mesh" - - - -set output "data-singular/finest_mesh.global.eps" -plot "data-singular/global.finest_mesh.gnuplot" title "Finest mesh" - -set output "data-singular/finest_mesh.estimated_error.eps" -plot "data-singular/estimated_error.finest_mesh.gnuplot" title "Finest mesh" - - - -set output "data-kink/finest_mesh.global.eps" -plot "data-kink/global.finest_mesh.gnuplot" title "Finest mesh" - -set output "data-kink/finest_mesh.estimated_error.eps" -plot "data-kink/estimated_error.finest_mesh.gnuplot" title "Finest mesh" diff --git a/tests/big-tests/error-estimation/strip_comments b/tests/big-tests/error-estimation/strip_comments deleted file mode 100755 index 779b6b16c7..0000000000 --- a/tests/big-tests/error-estimation/strip_comments +++ /dev/null @@ -1 +0,0 @@ -perl -pi -e 's/^#.*$\\n//g' data-*/*.inp diff --git a/tests/big-tests/grid/.cvsignore b/tests/big-tests/grid/.cvsignore deleted file mode 100644 index d91582a08e..0000000000 --- a/tests/big-tests/grid/.cvsignore +++ /dev/null @@ -1,4 +0,0 @@ -grid_test -Makefile.dep -*.go -*.o diff --git a/tests/big-tests/grid/Makefile b/tests/big-tests/grid/Makefile deleted file mode 100644 index eb60e99baa..0000000000 --- a/tests/big-tests/grid/Makefile +++ /dev/null @@ -1,175 +0,0 @@ -# $Id$ -# Copyright by the deal.II authors 1998, 1999, 2000 - -############################################################ -# $D contains the root of the deal distribution and should -# be supplied as a command line argument D=../../... -############################################################ - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = grid_test - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-deal2-3d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-deal2-3d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(LDFLAGS) -o $@ $^ $(LIBS) - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - ./$(target) 2 1 - ./$(target) 2 2 - ./$(target) 2 3 - ./$(target) 2 4 - ./$(target) 3 1 - ./$(target) 3 2 - ./$(target) 3 3 - ./$(target) 3 4 - - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/tests/big-tests/grid/grid_test.cc b/tests/big-tests/grid/grid_test.cc deleted file mode 100644 index c5d4c0800a..0000000000 --- a/tests/big-tests/grid/grid_test.cc +++ /dev/null @@ -1,329 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - - -// 1: continuous refinement of the unit square always in the middle -// 2: refinement of the circle at the boundary -// 2: refinement of a wiggled area at the boundary -// 4: random refinement - - - - - -template -class Ball : - public StraightBoundary { - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const { - Point middle = StraightBoundary::get_new_point_on_line(line); - - for (int i=0; i - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const { - Point middle = StraightBoundary::get_new_point_on_quad(quad); - - for (int i=0; i -class CurvedLine : - public StraightBoundary { - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const; - - virtual Point - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const; -}; - - - -template -Point -CurvedLine::get_new_point_on_line (const typename Triangulation::line_iterator &line) const -{ - Point middle = StraightBoundary::get_new_point_on_line (line); - - // if the line is at the top of bottom - // face: do a special treatment on - // this line. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the line is like that - if (dim>=3) - if (((middle(2) == 0) || (middle(2) == 1)) - // find out, if the line is in the - // interior of the top or bottom face - // of the domain, or at the edge. - // lines at the edge need to undergo - // the usual treatment, while for - // interior lines taking the midpoint - // is sufficient - // - // note: the trick with the boundary - // id was invented after the above was - // written, so we are not very strict - // here with using these flags - && (line->boundary_indicator() == 1)) - return middle; - - - double x=middle(0), - y=middle(1); - - if (y -Point -CurvedLine::get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const -{ - Point middle = StraightBoundary::get_new_point_on_quad (quad); - - // if the face is at the top of bottom - // face: do not move the midpoint in - // x/y direction. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the quad is like that - if ((middle(2) == 0) || (middle(2) == 1)) - return middle; - - double x=middle(0), - y=middle(1); - - if (y -void test (const int test_case) { - cout << "Running testcase " << test_case - << " in " << dim << " dimensions." << endl; - Triangulation tria; - GridGenerator::hyper_cube(tria); - - if ((dim==1) && ((test_case==2) || (test_case==3))) - { - cout << "Impossible for this dimension." << endl; - return; - }; - - - switch (test_case) - { - case 1: - { - // we want to log the - // refinement history -// ofstream history ("mesh.history"); - - // refine first cell - tria.begin_active()->set_refine_flag(); -// tria.save_refine_flags (history); - tria.execute_coarsening_and_refinement (); - - // refine first active cell - // on coarsest level - tria.begin_active()->set_refine_flag (); -// tria.save_refine_flags (history); - tria.execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell; - for (int i=0; i<17; ++i) - { - // refine the presently - // second last cell 17 - // times - cell = tria.last_active(tria.n_levels()-1); - --cell; - cell->set_refine_flag (); -// tria.save_refine_flags (history); - tria.execute_coarsening_and_refinement (); - }; - -// tria.refine_global (5); - - break; - } - - case 2: - case 3: - { - if (dim==3) - { - tria.begin_active()->face(2)->set_boundary_indicator(1); - tria.begin_active()->face(4)->set_boundary_indicator(1); - }; - - - // set the boundary function - Ball ball; - CurvedLine curved_line; - if (test_case==2) - { - tria.set_boundary (0, ball); - tria.set_boundary (1, ball); - } else { - tria.set_boundary (0, curved_line); - tria.set_boundary (1, curved_line); - }; - - // refine once - tria.begin_active()->set_refine_flag(); - tria.execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell, endc; - const unsigned int steps[4] = { 0, 10, 7, 2 }; - for (unsigned int i=0; iat_boundary()) - cell->set_refine_flag(); - - tria.execute_coarsening_and_refinement(); - }; - - tria.set_boundary (0); - tria.set_boundary (1); - - break; - } - - case 4: - { - // refine once - tria.begin_active()->set_refine_flag(); - tria.execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell, endc; - for (int i=0; i<(dim==2 ? 13 : (dim==3 ? 7 : 30)); ++i) - { - int n_levels = tria.n_levels(); - cell = tria.begin_active(); - endc = tria.end(); - - for (; cell!=endc; ++cell) - { - double r = rand()*1.0/RAND_MAX, - weight = 1.* - (cell->level()*cell->level()) / - (n_levels*n_levels); - - if (r <= 0.5*weight) - cell->set_refine_flag (); - }; - - tria.execute_coarsening_and_refinement (); - }; - break; - } - }; - - - - // output the grid - string filename("results/"); - filename += ('0'+dim); - filename += "d."; - filename += ('0'+test_case); - filename += ".eps"; - - ofstream out(filename.c_str()); - GridOut grid_out; - GridOut::EpsFlags<3> eps_flags; - eps_flags.azimut_angle += 20; - eps_flags.turn_angle += 20; - grid_out.set_flags (eps_flags); - grid_out.write_eps (tria, out); - - cout << " Total number of cells = " << tria.n_cells() << endl - << " Total number of active cells = " << tria.n_active_cells() << endl; -}; - - - -int main (int argc, char **argv) { - if (argc!=3) - { - cout << "Usage: grid_test dimension testcase" << endl << endl - << "Dimension: 2 or 3" << endl << endl - << "Testcases:" << endl - << " 1: continuous refinement of the unit square/cube always in the middle" << endl - << " 2: refinement of the circle/sphere at the boundary" << endl - << " 3: refinement of a wiggled area at the boundary" << endl - << " 4: random refinement" << endl << endl; - return 1; - }; - - if (argv[1][0] == '2') - test<2> (argv[2][0]-'0'); - else - test<3> (argv[2][0]-'0'); - - return 0; -}; diff --git a/tests/big-tests/grid/make_ps b/tests/big-tests/grid/make_ps deleted file mode 100644 index 21782a3337..0000000000 --- a/tests/big-tests/grid/make_ps +++ /dev/null @@ -1,43 +0,0 @@ -set size 0.721,1 -set data style lines -set noxtics -set noytics -set noztics -set noxzeroaxis -set noyzeroaxis -#set nozzeroaxis -set nokey -set term postscript eps - -!echo " Making " -set output "results/2d.1.eps" -plot "results/2d.1" - -!echo " Making " -set output "results/2d.2.eps" -plot "results/2d.2" - -!echo " Making " -set output "results/2d.3.eps" -plot "results/2d.3" - -!echo " Making " -set output "results/2d.4.eps" -plot "results/2d.4" - - -!echo " Making " -set output "results/3d.1.eps" -splot "results/3d.1" - -!echo " Making " -set output "results/3d.2.eps" -splot "results/3d.2" - -!echo " Making " -set output "results/3d.3.eps" -splot "results/3d.3" - -!echo " Making " -set output "results/3d.4.eps" -splot "results/3d.4" diff --git a/tests/big-tests/grid/results/.cvsignore b/tests/big-tests/grid/results/.cvsignore deleted file mode 100644 index 480cb8565d..0000000000 --- a/tests/big-tests/grid/results/.cvsignore +++ /dev/null @@ -1 +0,0 @@ -?d.* diff --git a/tests/big-tests/multigrid/.cvsignore b/tests/big-tests/multigrid/.cvsignore deleted file mode 100644 index ab98be5ee1..0000000000 --- a/tests/big-tests/multigrid/.cvsignore +++ /dev/null @@ -1,4 +0,0 @@ -multigrid -Makefile.dep -*.go -*.o diff --git a/tests/big-tests/multigrid/Makefile b/tests/big-tests/multigrid/Makefile deleted file mode 100644 index d7a6c9c035..0000000000 --- a/tests/big-tests/multigrid/Makefile +++ /dev/null @@ -1,165 +0,0 @@ -# $Id$ -# Copyright by the deal.II authors 1998, 1999, 2000 - -############################################################ -# $D contains the root of the deal distribution and should -# be supplied as a command line argument D=../../... -############################################################ - - -# For the small projects Makefile, you basically need to fill in only -# four fields. -# -# The first is the name of the application. It is assumed that the -# application name is the same as the base file name of the single C++ -# file from which the application is generated. -target = multigrid - -# The second field determines whether you want to run your program in -# debug or optimized mode. The latter is significantly faster, but no -# run-time checking of parameters and internal states is performed, so -# you should set this value to `on' while you develop your program, -# and to `off' when running production computations. -debug-mode = on - - -# The last field specifies the names of data and other files that -# shall be deleted when calling `make clean'. Object and backup files, -# executables and the like are removed anyway. Here, we give a list of -# files in the various output formats that deal.II supports. -clean-up-files = *gmv *gnuplot *gpl *eps *pov - - - - -# -# -# Usually, you will not need to change something beyond this point. -# -# -# The next statement tell the `make' program where to find the -# deal.II top level directory and to include the file with the global -# settings -include $D/common/Make.global_options - - -# Since the whole project consists of only one file, we need not -# consider difficult dependencies. We only have to declare the -# libraries which we want to link to the object file, and there need -# to be two sets of libraries: one for the debug mode version of the -# application and one for the optimized mode. Here we have selected -# the versions for 2d. Note that the order in which the libraries are -# given here is important and that your applications won't link -# properly if they are given in another order. -# -# You may need to augment the lists of libraries when compiling your -# program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# We now use the variable defined above which switch between debug and -# optimized mode to select the correct compiler flags and the set of -# libraries to link with. Included in the list of libraries is the -# name of the object file which we will produce from the single C++ -# file. Note that by default we use the extension .go for object files -# compiled in debug mode and .o for object files in optimized mode. -ifeq ($(debug-mode),on) - libraries = $(target).go $(libs.g) - flags = $(CXXFLAGS.g) -else - libraries = $(target).go $(libs.o) - flags = $(CXXFLAGS.o) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -# Now comes the first production rule: how to link the single object -# file produced from the single C++ file into the executable. Since -# this is the first rule in the Makefile, it is the one `make' selects -# if you call it without arguments. -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(LDFLAGS) -o $@ $^ $(LIBS) - - -# To make running the application somewhat independent of the actual -# program name, we usually declare a rule `run' which simply runs the -# program. You can then run it by typing `make run'. This is also -# useful if you want to call the executable with arguments which do -# not change frequently. You may then want to add them to the -# following rule: -run: $(target) - @echo ============================ Running $< - @./$(target) - gnuplot make_ps - - -# As a last rule to the `make' program, we define what to do when -# cleaning up a directory. This usually involves deleting object files -# and other automatically created files such as the executable itself, -# backup files, and data files. Since the latter are not usually quite -# diverse, you needed to declare them at the top of this file. -clean: - -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) - - -# Since we have not yet stated how to make an object file from a C++ -# file, we should do so now. Since the many flags passed to the -# compiler are usually not of much interest, we suppress the actual -# command line using the `at' sign in the first column of the rules -# and write the string indicating what we do instead. -%.go : %.cc - @echo ==============debug========= $( Makefile.dep - -# To make the dependencies known to `make', we finally have to include -# them: -include Makefile.dep - - diff --git a/tests/big-tests/multigrid/make_ps b/tests/big-tests/multigrid/make_ps deleted file mode 100644 index 76c13a8624..0000000000 --- a/tests/big-tests/multigrid/make_ps +++ /dev/null @@ -1,52 +0,0 @@ -set term postscript eps -set xlabel "Number of degrees of freedom" -set data style linespoints -set logscale xy - - - -set ylabel "Error" - -set output "criss-cross.eps" - -plot "criss_cross.history" using 1:2 title "L1 error","criss_cross.history" using 1:3 title "L2 error","criss_cross.history" using 1:4 title "Linfty error","criss_cross.history" using 1:5 title "H1 seminorm error","criss_cross.history" using 1:6 title "H1 error" - - - -set output "linear.eps" - -plot "linear.history" using 1:2 title "L1 error","linear.history" using 1:3 title "L2 error","linear.history" using 1:4 title "Linfty error","linear.history" using 1:5 title "H1 seminorm error","linear.history" using 1:6 title "H1 error" - - - -set output "quadratic.eps" - -plot "quadratic.history" using 1:2 title "L1 error","quadratic.history" using 1:3 title "L2 error","quadratic.history" using 1:4 title "Linfty error","quadratic.history" using 1:5 title "H1 seminorm error","quadratic.history" using 1:6 title "H1 error" - - - -set output "cubic.eps" - -plot "cubic.history" using 1:2 title "L1 error","cubic.history" using 1:3 title "L2 error","cubic.history" using 1:4 title "Linfty error","cubic.history" using 1:5 title "H1 seminorm error","cubic.history" using 1:6 title "H1 error" - - - -set output "quartic.eps" - -plot "quartic.history" using 1:2 title "L1 error","quartic.history" using 1:3 title "L2 error","quartic.history" using 1:4 title "Linfty error","quartic.history" using 1:5 title "H1 seminorm error","quartic.history" using 1:6 title "H1 error" - - - -set output "l2error.eps" -set ylabel "L2-error" - -plot "criss_cross.history" using 1:3 title "Criss-cross elements", "linear.history" using 1:3 title "Linear elements", "quadratic.history" using 1:3 title "Quadratic elements", "cubic.history" using 1:3 title "Cubic elements", "quartic.history" using 1:3 title "Quartic elements" - - - -set output "h1error.eps" -set ylabel "H1-error" - -plot "criss_cross.history" using 1:6 title "Criss-cross elements", "linear.history" using 1:6 title "Linear elements", "quadratic.history" using 1:6 title "Quadratic elements", "cubic.history" using 1:6 title "Cubic elements", "quartic.history" using 1:6 title "Quartic elements" - - diff --git a/tests/big-tests/multigrid/multigrid.cc b/tests/big-tests/multigrid/multigrid.cc deleted file mode 100644 index 477465cab8..0000000000 --- a/tests/big-tests/multigrid/multigrid.cc +++ /dev/null @@ -1,515 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include -#include - -#include - -#include - - - -template -class LaplaceProblem -{ - public: - LaplaceProblem (); - ~LaplaceProblem (); - void run (); - - private: - void setup_system (); - void assemble_system (); - void solve (); - void refine_grid (); - void output_results (const unsigned int cycle) const; - - Triangulation triangulation; - MGDoFHandler mg_dof_handler; - - FEQ1 fe; - - ConstraintMatrix hanging_node_constraints; - - SparsityPattern global_sparsity_pattern; - SparseMatrix global_system_matrix; - - MGLevelObject level_sparsity_patterns; - MGLevelObject > level_system_matrices; - - Vector solution; - Vector system_rhs; -}; - - - -template -class Coefficient : public Function -{ - public: - virtual double value (const Point &p, - const unsigned int component = 0) const; - - virtual void value_list (const vector > &points, - vector &values, - const unsigned int component = 0) const; -}; - - - -template -double Coefficient::value (const Point &p, - const unsigned int) const -{ - if (p.square() < 0.5*0.5) - return 20; - else - return 1; -}; - - - -template -void Coefficient::value_list (const vector > &points, - vector &values, - const unsigned int component) const -{ - const unsigned int n_points = points.size(); - - Assert (values.size() == n_points, - ExcDimensionMismatch (values.size(), n_points)); - - Assert (component == 0, - ExcIndexRange (component, 0, 1)); - - for (unsigned int i=0; i > >matrices; - public: - MGSmootherLAC(MGLevelObject >&); - - virtual void smooth (const unsigned int level, - Vector &u, - const Vector &rhs) const; -}; - - -MGSmootherLAC::MGSmootherLAC(MGLevelObject >& matrix) - : - matrices(&matrix) -{} - - -void -MGSmootherLAC::smooth (const unsigned int level, - Vector &u, - const Vector &rhs) const -{ - SolverControl control(2,1.e-300,false,false); - PrimitiveVectorMemory<> mem; - SolverRichardson<> rich(control, mem); - PreconditionSSOR<> prec; - prec.initialize((*matrices)[level], 1.); - - rich.solve((*matrices)[level], u, rhs, prec); -} - - - -template -LaplaceProblem::LaplaceProblem () : - mg_dof_handler (triangulation) -{}; - - - -template -LaplaceProblem::~LaplaceProblem () -{ - mg_dof_handler.clear (); -}; - - - -template -void LaplaceProblem::setup_system () -{ - mg_dof_handler.distribute_dofs (fe); - - hanging_node_constraints.clear (); - DoFTools::make_hanging_node_constraints (mg_dof_handler, - hanging_node_constraints); - hanging_node_constraints.close (); - global_sparsity_pattern.reinit (mg_dof_handler.DoFHandler::n_dofs(), - mg_dof_handler.DoFHandler::n_dofs(), - mg_dof_handler.max_couplings_between_dofs()); - DoFTools::make_sparsity_pattern (mg_dof_handler, global_sparsity_pattern); - hanging_node_constraints.condense (global_sparsity_pattern); - global_sparsity_pattern.compress(); - - global_system_matrix.reinit (global_sparsity_pattern); - - solution.reinit (mg_dof_handler.DoFHandler::n_dofs()); - system_rhs.reinit (mg_dof_handler.DoFHandler::n_dofs()); - - - const unsigned int n_levels = triangulation.n_levels(); - level_system_matrices.resize (0, n_levels); - level_sparsity_patterns.resize (0, n_levels); - - for (unsigned int level=0; level -void LaplaceProblem::assemble_system () -{ - const Coefficient coefficient; - - QGauss2 quadrature_formula; - - FEValues fe_values (fe, quadrature_formula, - UpdateFlags(update_values | - update_gradients | - update_q_points | - update_JxW_values)); - - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const unsigned int n_q_points = quadrature_formula.n_quadrature_points; - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - Vector cell_rhs (dofs_per_cell); - - vector local_dof_indices (dofs_per_cell); - - // FIX - vector coefficient_values (n_q_points, 1.0); - - // not only active cells - MGDoFHandler::cell_iterator cell = mg_dof_handler.begin(), - endc = mg_dof_handler.end(); - for (; cell!=endc; ++cell) - { - cell_matrix.clear (); - cell_rhs.clear (); - - fe_values.reinit (cell); - const FullMatrix - & shape_values = fe_values.get_shape_values(); - const vector > > - & shape_grads = fe_values.get_shape_grads(); - const vector - & JxW_values = fe_values.get_JxW_values(); - const vector > - & q_points = fe_values.get_quadrature_points(); - - // FIX -// coefficient.value_list (q_points, coefficient_values); - - for (unsigned int q_point=0; q_pointget_mg_dof_indices (local_dof_indices); - const unsigned int level = cell->level(); - for (unsigned int i=0; iactive()) - { - cell->get_dof_indices (local_dof_indices); - for (unsigned int i=0; i boundary_values; -// VectorTools::interpolate_boundary_values (mg_dof_handler, -// 0, -// ZeroFunction(), -// boundary_values); -// MatrixTools::apply_boundary_values (boundary_values, -// global_system_matrix, -// solution, -// system_rhs); -}; - - - -template -void LaplaceProblem::solve () -{ - - { - SolverControl solver_control (1000, 1e-12); - PrimitiveVectorMemory<> vector_memory; - SolverCG<> cg (solver_control, vector_memory); - - SolverControl coarse_grid_solver_control (1000, 1e-12); - PrimitiveVectorMemory<> coarse_grid_vector_memory; - - SolverCG<> coarse_grid_cg (coarse_grid_solver_control, - coarse_grid_vector_memory); - -// PreconditionRelaxation<> -// coarse_grid_solver_preconditioner(level_system_matrices[level_system_matrices.get_minlevel()], -// &SparseMatrix::template precondition_SSOR, -// 1.2); - PreconditionIdentity coarse_grid_solver_preconditioner; - - MGCoarseGridLACIteration, SparseMatrix, PreconditionIdentity> - coarse_grid_solver (coarse_grid_cg, - level_system_matrices[level_system_matrices.get_minlevel()], - coarse_grid_solver_preconditioner); - - MGSmootherLAC smoother (level_system_matrices); - MGTransferPrebuilt grid_transfer; - grid_transfer.build_matrices (mg_dof_handler); - - Multigrid<2> multigrid (mg_dof_handler, - hanging_node_constraints, - level_sparsity_patterns, - level_system_matrices, - grid_transfer); - - PreconditionMG > - mg_precondition (multigrid, smoother, smoother, coarse_grid_solver); - - solution.clear (); - cg.solve (global_system_matrix, solution, system_rhs, - mg_precondition); - - cout << " MG Outer iterations: " << solver_control.last_step() - << endl; - - cout << " MG Total inner iterations: " << coarse_grid_solver_control.last_step() - << endl; - }; - - { - SolverControl solver_control (1000, 1e-12); - PrimitiveVectorMemory<> vector_memory; - SolverCG<> cg (solver_control, vector_memory); - - PreconditionSSOR<> preconditioner; - preconditioner.initialize(global_system_matrix, 1.2); - - solution.clear (); - cg.solve (global_system_matrix, solution, system_rhs, - preconditioner); - - cout << " CG Outer iterations: " << solver_control.last_step() - << endl; - }; - - hanging_node_constraints.distribute (solution); -}; - - -template -void LaplaceProblem::refine_grid () -{ - Vector estimated_error_per_cell (triangulation.n_active_cells()); - - KellyErrorEstimator::FunctionMap neumann_boundary; - KellyErrorEstimator::estimate (mg_dof_handler, - QGauss3(), - neumann_boundary, - solution, - estimated_error_per_cell); - - GridRefinement::refine_and_coarsen_fixed_number (triangulation, - estimated_error_per_cell, - 0.3, 0.03); - triangulation.execute_coarsening_and_refinement (); -}; - - - -template -void LaplaceProblem::output_results (const unsigned int cycle) const -{ - string filename = "grid-"; - filename += ('0' + cycle); - Assert (cycle < 10, ExcInternalError()); - - filename += ".eps"; - ofstream output (filename.c_str()); - - GridOut grid_out; - grid_out.write_eps (triangulation, output); -}; - - - -template -void LaplaceProblem::run () -{ - for (unsigned int cycle=0; cycle<8; ++cycle) - { - cout << "Cycle " << cycle << ':' << endl; - - if (cycle == 0) - { - GridGenerator::hyper_cube (triangulation); - triangulation.refine_global (1); - } - else - { - refine_grid (); - }; - - - cout << " Number of active cells: " - << triangulation.n_active_cells() - << endl; - - setup_system (); - - cout << " Number of degrees of freedom: " - << mg_dof_handler.DoFHandler::n_dofs() - << endl; - - assemble_system (); - solve (); - output_results (cycle); - - typename DataOut::EpsFlags eps_flags; - eps_flags.z_scaling = 4; - - DataOut data_out; - data_out.set_flags (eps_flags); - - data_out.attach_dof_handler (mg_dof_handler); - data_out.add_data_vector (solution, "solution"); - data_out.build_patches (); - - ofstream output ("final-solution.eps"); - data_out.write_eps (output); - }; -}; - - - -int main () -{ - try - { - deallog.depth_console (0); - - LaplaceProblem<2> laplace_problem_2d; - laplace_problem_2d.run (); - } - catch (exception &exc) - { - cerr << endl << endl - << "----------------------------------------------------" - << endl; - cerr << "Exception on processing: " << endl - << exc.what() << endl - << "Aborting!" << endl - << "----------------------------------------------------" - << endl; - return 1; - } - catch (...) - { - cerr << endl << endl - << "----------------------------------------------------" - << endl; - cerr << "Unknown exception!" << endl - << "Aborting!" << endl - << "----------------------------------------------------" - << endl; - return 1; - }; - - return 0; -}; diff --git a/tests/big-tests/nonlinear/fixed-point-iteration/.cvsignore b/tests/big-tests/nonlinear/fixed-point-iteration/.cvsignore deleted file mode 100644 index 68fd34ed36..0000000000 --- a/tests/big-tests/nonlinear/fixed-point-iteration/.cvsignore +++ /dev/null @@ -1,3 +0,0 @@ -Makefile.dep -nonlinear -Obj.g.a diff --git a/tests/big-tests/nonlinear/fixed-point-iteration/Makefile b/tests/big-tests/nonlinear/fixed-point-iteration/Makefile deleted file mode 100644 index 5322c80ace..0000000000 --- a/tests/big-tests/nonlinear/fixed-point-iteration/Makefile +++ /dev/null @@ -1,138 +0,0 @@ -# $Id$ -# Copyright by the deal.II authors 1998, 1999, 2000 - -############################################################ -# $D contains the root of the deal distribution and should -# be supplied as a command line argument D=../../... -############################################################ - - -# Template for makefiles for the examples subdirectory. In principle, -# everything should be done automatically if you set the target file -# here correctly: -target = nonlinear - -# All dependencies between files should be updated by the included -# file Makefile.dep if necessary. Object files are compiled into -# the archives ./Obj.a and ./Obj.g.a. By default, the debug version -# is used to link. It you don't like that, change the following -# variable to "off" -debug-mode = on - -# If you want your program to be linked with extra object or library -# files, specify them here: -user-libs = - -# To run the program, use "make run"; to give parameters to the program, -# give the parameters to the following variable: -run-parameters = $(target).prm - -# To execute additional action apart from running the program, fill -# in this list: -additional-run-action = - -# To specify which files are to be deleted by "make clean" (apart from -# the usual ones: object files, executables, backups, etc), fill in the -# following list -delete-files = *gnuplot *.eps - - - - -############################################################################### -# Internals - - -include $D/common/Make.global_options - - - -# get lists of files we need -cc-files = $(filter-out *%, $(shell echo *.cc)) -o-files = $(cc-files:.cc=.o) -go-files = $(cc-files:.cc=.go) -h-files = $(filter-out *%, $(shell echo *.h)) -lib-h-files = $(filter-out *%, $(shell echo $D/base/include/base/*.h \ - $D/lac/include/lac/*.h \ - $D/deal.II/include/*/*.h)) - -# list of libraries needed to link with -libs.g = ./Obj.g.a \ - $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs = ./Obj.a \ - $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -# check whether we use debug mode or not -ifeq ($(debug-mode),on) -libraries = $(libs.g) -flags = $(CXXFLAGS.g) -endif - -ifeq ($(debug-mode),off) -libraries = $(libs) -flags = $(CXXFLAGS) -endif - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - -# make rule for the target -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(LDFLAGS) -o $@ $^ $(LIBS) $(user-libs) - -# rule how to run the program -run: $(target) - ./$(target) $(run-parameters) - - -# rule to make object files -%.go : %.cc - @echo ============================ Compiling with debugging information: $< - @echo $(CXX) ... -c $< -o $@ - @$(CXX) $(CXXFLAGS.g) -c $< -o $@ -%.o : %.cc - @echo ============================ Compiling with optimization: $< - @echo $(CXX) ... -c $< -o $@ - @$(CXX) $(CXXFLAGS.o) -c $< -o $@ - - -# rules which files the libraries depend upon -Obj.a: ./Obj.a($(o-files)) -Obj.g.a: ./Obj.g.a($(go-files)) - - -clean: - -rm -f *.o *.go *~ Makefile.dep Obj.a Obj.g.a $(target) $(delete-files) - - - -.PHONY: clean - - -#Rule to generate the dependency file. This file is -#automagically remade whenever needed, i.e. whenever -#one of the cc-/h-files changed. Make detects whether -#to remake this file upon inclusion at the bottom -#of this file. -# -#use perl to generate rules for the .go files as well -#as to make rules not for tria.o and the like, but -#rather for libnumerics.a(tria.o) -Makefile.dep: $(cc-files) $(h-files) $(lib-h-files) - @echo ============================ Remaking Makefile - @$(PERL) $D/common/scripts/make_dependencies.pl ./Obj $(INCLUDE) $(cc-files) \ - > Makefile.dep - - -include Makefile.dep - diff --git a/tests/big-tests/nonlinear/fixed-point-iteration/nonlinear.cc b/tests/big-tests/nonlinear/fixed-point-iteration/nonlinear.cc deleted file mode 100644 index aaf36230c8..0000000000 --- a/tests/big-tests/nonlinear/fixed-point-iteration/nonlinear.cc +++ /dev/null @@ -1,259 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include - - - - - -template -class RightHandSide : public Function -{ - public: - virtual double value (const Point &p, - const unsigned int) const - { - double x = 80; - for (unsigned int d=0; d -class PoissonEquation : public Equation { - public: - PoissonEquation (const Function &rhs, - const Vector &last_solution) : - Equation(1), - right_hand_side (rhs), - last_solution(last_solution) {}; - - virtual void assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (FullMatrix &cell_matrix, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - protected: - const Function &right_hand_side; - const Vector &last_solution; -}; - - - - - - -template -class NonlinearProblem : public ProblemBase { - public: - NonlinearProblem (); - void run (); - - protected: - Triangulation *tria; - DoFHandler *dof; - - Vector last_solution; -}; - - - - -template -void PoissonEquation::assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &) const { - const vector > >&gradients = fe_values.get_shape_grads (); - const FullMatrix &values = fe_values.get_shape_values (); - vector rhs_values (fe_values.n_quadrature_points); - const vector &weights = fe_values.get_JxW_values (); - - vector > last_solution_grads(fe_values.n_quadrature_points); - fe_values.get_function_grads (last_solution, last_solution_grads); - - - right_hand_side.value_list (fe_values.get_quadrature_points(), rhs_values); - - for (unsigned int point=0; point -void PoissonEquation::assemble (FullMatrix &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, typename Equation::ExcPureVirtualFunctionCalled()); -}; - - - -template -void PoissonEquation::assemble (Vector &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, typename Equation::ExcPureVirtualFunctionCalled()); -}; - - - - -template -NonlinearProblem::NonlinearProblem () : - tria(0), dof(0) {}; - - - -template -void NonlinearProblem::run () { - - // first reset everything to a virgin state - clear (); - - tria = new Triangulation(); - dof = new DoFHandler (*tria); - set_tria_and_dof (tria, dof); - - - RightHandSide rhs; - ZeroFunction boundary_values; - StraightBoundary boundary; - - FEQ1 fe; - PoissonEquation equation (rhs, last_solution); - QGauss2 quadrature; - - ProblemBase::FunctionMap dirichlet_bc; - dirichlet_bc[0] = &boundary_values; - - - GridGenerator::hyper_cube (*tria); - tria->refine_global (4); - - for (unsigned int refinement_step=0; refinement_step<5; ++refinement_step) - { - cout << "Refinement step " << refinement_step << endl - << " Grid has " << tria->n_active_cells() << " active cells." << endl; - - cout << " Distributing dofs... "; - dof->distribute_dofs (fe); - cout << dof->n_dofs() << " degrees of freedom." << endl; - - // set the starting values for the iteration - // to a constant value of 1 - last_solution.reinit (dof->n_dofs()); - for (unsigned int i=0; in_dofs(); ++i) - last_solution(i) = 1; - - - // here comes the fixed point iteration - for (unsigned int nonlinear_step=0; nonlinear_step<10; ++nonlinear_step) - { - cout << " Nonlinear step " << nonlinear_step << endl; - cout << " Assembling matrices..." << endl; - assemble (equation, quadrature, - UpdateFlags(update_values | update_gradients | - update_JxW_values | update_q_points), - dirichlet_bc); - - cout << " Solving..." << endl; - solve (); - - if (nonlinear_step % 2 == 0) - { - string filename = "nonlinear."; - filename += ('0' + refinement_step); - filename += '.'; - filename += ('0' + (nonlinear_step/2)); - filename += ".gnuplot"; - cout << " Writing to file <" << filename << ">..." << endl; - - DataOut out; - ofstream gnuplot(filename.c_str()); - fill_data (out); - out.build_patches (); - out.write_gnuplot (gnuplot); - gnuplot.close (); - }; - - last_solution = solution; - }; - - Vector error_indicator; - KellyErrorEstimator ee; - QSimpson eq; - ee.estimate (*dof, eq, - KellyErrorEstimator::FunctionMap(), - solution, - error_indicator); - GridRefinement::refine_and_coarsen_fixed_number (*tria, error_indicator, 0.3, 0); - tria->execute_coarsening_and_refinement (); - }; - - - delete dof; - delete tria; - - cout << endl; -}; - - - - -int main () -{ - deallog.depth_console (0); - - NonlinearProblem<2> problem; - problem.run (); -}; diff --git a/tests/big-tests/poisson/.cvsignore b/tests/big-tests/poisson/.cvsignore deleted file mode 100644 index 572d49119c..0000000000 --- a/tests/big-tests/poisson/.cvsignore +++ /dev/null @@ -1,6 +0,0 @@ -poisson -Makefile.dep -*.go -Makefile.dep -*.go -*.o diff --git a/tests/big-tests/poisson/Makefile b/tests/big-tests/poisson/Makefile deleted file mode 100644 index 4613ca74f7..0000000000 --- a/tests/big-tests/poisson/Makefile +++ /dev/null @@ -1,136 +0,0 @@ -# $Id$ -# Copyright by the deal.II authors 1998, 1999, 2000 - -############################################################ -# $D contains the root of the deal distribution and should -# be supplied as a command line argument D=../../... -############################################################ - -# Template for makefiles for the examples subdirectory. In principle, -# everything should be done automatically if you set the target file -# here correctly: -target = poisson - -# All dependencies between files should be updated by the included -# file Makefile.dep if necessary. Object files are compiled into -# the archives ./Obj.a and ./Obj.g.a. By default, the debug version -# is used to link. It you don't like that, change the following -# variable to "off" -debug-mode = on - -# If you want your program to be linked with extra object or library -# files, specify them here: -user-libs = - -# To run the program, use "make run"; to give parameters to the program, -# give the parameters to the following variable: -run-parameters = $(target).prm - -# To execute additional action apart from running the program, fill -# in this list: -additional-run-action = cd results ; gnuplot make_ps - -# To specify which files are to be deleted by "make clean" (apart from -# the usual ones: object files, executables, backups, etc), fill in the -# following list -delete-files = results/*gnuplot results/*.eps - - - - -############################################################################### -# Internals - -include $D/common/Make.global_options - - - -# get lists of files we need -cc-files = $(filter-out *%, $(shell echo *.cc)) -o-files = $(cc-files:.cc=.o) -go-files = $(cc-files:.cc=.go) -h-files = $(filter-out *%, $(shell echo *.h)) -lib-h-files = $(filter-out *%, $(shell echo $D/include/*/*.h)) - -# list of libraries needed to link with -libs.g = ./Obj.g.a \ - $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs = ./Obj.a \ - $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - - -# check whether we use debug mode or not -ifeq ($(debug-mode),on) -libraries = $(libs.g) -flags = $(CXXFLAGS.g) -endif - -ifeq ($(debug-mode),off) -libraries = $(libs) -flags = $(CXXFLAGS) -endif - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - -# make rule for the target -$(target) : $(libraries) - @echo ============================ Linking $@ - @$(CXX) $(LDFLAGS) -o $@ $^ $(LIBS) $(user-libs) - -# rule how to run the program -run: $(target) - ./$(target) $(run-parameters) - $(additional-run-action) - - -# rule to make object files -%.go : %.cc - @echo ============================ Compiling with debugging information: $< - @echo $(CXX) ... -c $< -o $@ - @$(CXX) $(CXXFLAGS.g) -c $< -o $@ -%.o : %.cc - @echo ============================ Compiling with optimization: $< - @echo $(CXX) ... -c $< -o $@ - @$(CXX) $(CXXFLAGS.o) -c $< -o $@ - - -# rules which files the libraries depend upon -Obj.a: ./Obj.a($(o-files)) -Obj.g.a: ./Obj.g.a($(go-files)) - - -clean: - -rm -f *.o *.go *~ Makefile.dep Obj.a Obj.g.a $(target) $(delete-files) - - - -.PHONY: clean - - -#Rule to generate the dependency file. This file is -#automagically remade whenever needed, i.e. whenever -#one of the cc-/h-files changed. Make detects whether -#to remake this file upon inclusion at the bottom -#of this file. -# -#use perl to generate rules for the .go files as well -#as to make rules not for tria.o and the like, but -#rather for libnumerics.a(tria.o) -Makefile.dep: $(cc-files) $(h-files) $(lib-h-files) - @echo ============================ Remaking Makefile - @perl $D/common/scripts/make_dependencies.pl ./Obj $(INCLUDE) $(cc-files) \ - > Makefile.dep - - -include Makefile.dep - diff --git a/tests/big-tests/poisson/equation.cc b/tests/big-tests/poisson/equation.cc deleted file mode 100644 index 08eda93399..0000000000 --- a/tests/big-tests/poisson/equation.cc +++ /dev/null @@ -1,86 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - -#include "poisson.h" -#include - - - -#if deal_II_dimension == 1 - -template <> -void PoissonEquation<1>::assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues<1> &fe_values, - const DoFHandler<1>::cell_iterator &) const { - for (unsigned int point=0; point= 2 - -template -void PoissonEquation::assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &) const { - const vector > >&gradients = fe_values.get_shape_grads (); - const FullMatrix &values = fe_values.get_shape_values (); - vector rhs_values (fe_values.n_quadrature_points); - const vector &weights = fe_values.get_JxW_values (); - - right_hand_side.value_list (fe_values.get_quadrature_points(), rhs_values); - - for (unsigned int point=0; point -void PoissonEquation::assemble (FullMatrix &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, typename Equation::ExcPureVirtualFunctionCalled()); -}; - - - -template -void PoissonEquation::assemble (Vector &, - const FEValues &, - const DoFHandler::cell_iterator &) const { - Assert (false, typename Equation::ExcPureVirtualFunctionCalled()); -}; - - - - - - -template class PoissonEquation<2>; diff --git a/tests/big-tests/poisson/poisson.cc b/tests/big-tests/poisson/poisson.cc deleted file mode 100644 index bbfa7841ea..0000000000 --- a/tests/big-tests/poisson/poisson.cc +++ /dev/null @@ -1,29 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - - -#include "poisson.h" -#include -#include - - -int main (int argc, char **argv) { - if (argc!=2) - { - cout << "Usage: poisson parameterfile" << endl << endl; - return 1; - }; - - // no additional output to console - deallog.depth_console (0); - - PoissonProblem<2> poisson; - MultipleParameterLoop input_data; - - poisson.declare_parameters(input_data); - input_data.read_input (argv[1]); - input_data.loop (poisson); - - return 0; -}; diff --git a/tests/big-tests/poisson/poisson.h b/tests/big-tests/poisson/poisson.h deleted file mode 100644 index 9fff2c0617..0000000000 --- a/tests/big-tests/poisson/poisson.h +++ /dev/null @@ -1,101 +0,0 @@ -/*---------------------------- poisson.h ---------------------------*/ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ -#ifndef __poisson_H -#define __poisson_H -/*---------------------------- poisson.h ---------------------------*/ - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - -#include -#include -#include -#include - - - - - - - -template -class PoissonEquation : public Equation { - public: - PoissonEquation (const Function &rhs) : - Equation(1), - right_hand_side (rhs) {}; - - virtual void assemble (FullMatrix &cell_matrix, - Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (FullMatrix &cell_matrix, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - virtual void assemble (Vector &rhs, - const FEValues &fe_values, - const DoFHandler::cell_iterator &cell) const; - protected: - const Function &right_hand_side; -}; - - - - - - -template -class PoissonProblem : public ProblemBase, - public MultipleParameterLoop::UserClass { - public: - PoissonProblem (); - virtual ~PoissonProblem(); - - void clear (); - - virtual void create_new (const unsigned int run_no); - virtual void declare_parameters (ParameterHandler &prm); - virtual void run (ParameterHandler &prm); - - - bool make_grid (ParameterHandler &prm); - void make_zoom_in_grid (); - void make_random_grid (); - - bool set_right_hand_side (ParameterHandler &prm); - bool set_boundary_values (ParameterHandler &prm); - - protected: - Triangulation *tria; - DoFHandler *dof; - - Function *rhs; - Function *boundary_values; - - Boundary *boundary; -}; - - - - - -/*---------------------------- poisson.h ---------------------------*/ -/* end of #ifndef __poisson_H */ -#endif -/*---------------------------- poisson.h ---------------------------*/ diff --git a/tests/big-tests/poisson/poisson.prm b/tests/big-tests/poisson/poisson.prm deleted file mode 100644 index 434c6ff65f..0000000000 --- a/tests/big-tests/poisson/poisson.prm +++ /dev/null @@ -1,5 +0,0 @@ -set Test run = { zoom in | ball | curved line | random | jump | L-region | slit domain} -set Global refinement = {{ 2 | 5 | 6 | 0 | 3 | 5 | 5 }} -set Right hand side = {{ zero | zero | trigpoly | constant | zero | zero | poly }} -set Boundary values = {{ sine | sine | zero | zero | jump | sine | sine }} -set Output file = results/{{ zoom_in | ball | curved_line | random | jump | L-region | slit_domain }}.gnuplot diff --git a/tests/big-tests/poisson/problem.cc b/tests/big-tests/poisson/problem.cc deleted file mode 100644 index 5135bb111b..0000000000 --- a/tests/big-tests/poisson/problem.cc +++ /dev/null @@ -1,622 +0,0 @@ -/* $Id$ */ -/* Copyright W. Bangerth, University of Heidelberg, 1998 */ - - - -#include "poisson.h" -#include -#include -#include -#include - - -template -class BoundaryValuesSine : public Function { - public: - /** - * Return the value of the function - * at the given point. - */ - virtual double value (const Point &p, - const unsigned int component) const { - Assert (component==0, ExcIndexRange (component, 0, 1)); - - double x = 1; - - for (unsigned int i=0; i &p, - Vector &values) const { - Assert (values.size()==1, ExcDimensionMismatch (values.size(), 1)); - - double x = 1; - - for (unsigned int i=0; i > &points, - vector &values, - const unsigned int component) const { - Assert (values.size() == points.size(), - ExcDimensionMismatch(values.size(), points.size())); - for (unsigned int i=0; i::value (points[i], component); - }; -}; - - - -template -class BoundaryValuesJump : public Function { - public: - /** - * Return the value of the function - * at the given point. - */ - virtual double value (const Point &p, - const unsigned int component) const { - Assert (component==0, ExcIndexRange (component, 0, 1)); - switch (dim) - { - case 1: - return 0; - default: - if (p(0) == p(1)) - return 0.5; - else - return (p(0)>p(1) ? 0. : 1.); - }; - }; -}; - - - - -template -class RHSTrigPoly : public Function { - public: - /** - * Return the value of the function - * at the given point. - */ - virtual double value (const Point &p, - const unsigned int) const; -}; - - - -/** - Right hand side constructed such that the exact solution is - $x(1-x)$ in 1d, $x(1-x)*y(1-y)$ in 2d, etc. - */ -template -class RHSPoly : public Function { - public: - /** - * Return the value of the function - * at the given point. - */ - virtual double value (const Point &p, - const unsigned int) const; -}; - - - - - - - - - -template -class CurvedLine : - public StraightBoundary { - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const; - - virtual Point - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const; -}; - - - -template -Point -CurvedLine::get_new_point_on_line (const typename Triangulation::line_iterator &line) const -{ - Point middle = StraightBoundary::get_new_point_on_line (line); - - // if the line is at the top of bottom - // face: do a special treatment on - // this line. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the line is like that - if (dim>=3) - if (((middle(2) == 0) || (middle(2) == 1)) - // find out, if the line is in the - // interior of the top or bottom face - // of the domain, or at the edge. - // lines at the edge need to undergo - // the usual treatment, while for - // interior lines taking the midpoint - // is sufficient - // - // note: the trick with the boundary - // id was invented after the above was - // written, so we are not very strict - // here with using these flags - && (line->boundary_indicator() == 1)) - return middle; - - - double x=middle(0), - y=middle(1); - - if (y -Point -CurvedLine::get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const -{ - Point middle = StraightBoundary::get_new_point_on_quad (quad); - - // if the face is at the top of bottom - // face: do not move the midpoint in - // x/y direction. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the quad is like that - if ((middle(2) == 0) || (middle(2) == 1)) - return middle; - - double x=middle(0), - y=middle(1); - - if (y -double RHSTrigPoly::value (const Point &p, - const unsigned int component) const { - Assert (component==0, ExcIndexRange (component, 0, 1)); - - const double pi = 3.1415926536; - switch (dim) - { - case 1: - return p(0)*p(0)*cos(2*pi*p(0)); - case 2: - return (-2.0*cos(pi*p(0)/2)*p(1)*sin(pi*p(1)) + - 2.0*p(0)*sin(pi*p(0)/2)*pi*p(1)*sin(pi*p(1)) + - 5.0/4.0*p(0)*p(0)*cos(pi*p(0)/2)*pi*pi*p(1)*sin(pi*p(1)) - - 2.0*p(0)*p(0)*cos(pi*p(0)/2)*cos(pi*p(1))*pi); - default: - return 0; - }; -}; - - - -template -double RHSPoly::value (const Point &p, - const unsigned int component) const { - Assert (component==0, ExcIndexRange (component, 0, 1)); - - double ret_val = 0; - for (unsigned int i=0; i -PoissonProblem::PoissonProblem () : - tria(0), dof(0), rhs(0), boundary_values(0), boundary(0) {}; - - - -template -PoissonProblem::~PoissonProblem () -{ - clear (); -}; - - - -template -void PoissonProblem::clear () { - if (dof != 0) { - delete dof; - dof = 0; - }; - - if (boundary != 0) - { - tria->set_boundary (0); - delete boundary; - boundary = 0; - }; - - if (tria != 0) { - delete tria; - tria = 0; - }; - - // make it known to the underlying - // ProblemBase that tria and dof - // are already deleted - set_tria_and_dof (tria, dof); - - - if (rhs != 0) - { - delete rhs; - rhs = 0; - }; - - if (boundary_values != 0) - { - delete boundary_values; - boundary_values = 0; - }; - - ProblemBase::clear (); -}; - - - - -template -void PoissonProblem::create_new (const unsigned int) { - clear (); - - tria = new Triangulation(); - dof = new DoFHandler (*tria); - set_tria_and_dof (tria, dof); -}; - - - - -template -void PoissonProblem::declare_parameters (ParameterHandler &prm) { - if (dim>=2) - prm.declare_entry ("Test run", "zoom in", - Patterns::Selection("tensor|zoom in|ball|curved line|" - "random|jump|L-region|slit domain")); - else - prm.declare_entry ("Test run", "zoom in", - Patterns::Selection("tensor|zoom in|random")); - - prm.declare_entry ("Global refinement", "0", - Patterns::Integer()); - prm.declare_entry ("Right hand side", "zero", - Patterns::Selection("zero|constant|trigpoly|poly")); - prm.declare_entry ("Boundary values", "zero", - Patterns::Selection("zero|sine|jump")); - prm.declare_entry ("Output file", "gnuplot.1"); -}; - - - - -template -bool PoissonProblem::make_grid (ParameterHandler &prm) { - string test = prm.get ("Test run"); - unsigned int test_case; - if (test=="zoom in") test_case = 1; - else - if (test=="ball") test_case = 2; - else - if (test=="curved line") test_case = 3; - else - if (test=="random") test_case = 4; - else - if (test=="tensor") test_case = 5; - else - if (test=="jump") test_case = 6; - else - if (test=="L-region") test_case = 7; - else - if (test=="slit domain") test_case = 8; - else - { - cerr << "This test seems not to be implemented!" << endl; - return false; - }; - - switch (test_case) - { - case 1: - boundary = new StraightBoundary(); - tria->set_boundary (0, *boundary); - make_zoom_in_grid (); - break; - case 2: - // make ball grid around origin with - // unit radius - { - static const Point origin; - boundary = new HyperBallBoundary(origin, 1.); - GridGenerator::hyper_ball (*tria, origin, 1.); - tria->set_boundary (0, *boundary); - break; - }; - case 3: - // set the boundary function - { - boundary = new CurvedLine(); - GridGenerator::hyper_cube (*tria); - tria->set_boundary (0, *boundary); - break; - }; - case 4: - boundary = new StraightBoundary(); - tria->set_boundary (0, *boundary); - make_random_grid (); - break; - case 5: - boundary = new StraightBoundary(); - tria->set_boundary (0, *boundary); - GridGenerator::hyper_cube (*tria); - break; - case 6: - boundary = new StraightBoundary(); - tria->set_boundary (0, *boundary); - GridGenerator::hyper_cube (*tria); - tria->refine_global (1); - for (unsigned int i=0; i<5; ++i) - { - tria->begin_active(tria->n_levels()-1)->set_refine_flag(); - (--(tria->last_active()))->set_refine_flag(); - tria->execute_coarsening_and_refinement (); - }; - break; - case 7: - boundary = new StraightBoundary(); - tria->set_boundary (0, *boundary); - GridGenerator::hyper_L (*tria); - break; - case 8: - boundary = new StraightBoundary(); - tria->set_boundary (0, *boundary); - GridGenerator::hyper_cube_slit (*tria); - break; - default: - return false; - }; - - int refine_global = prm.get_integer ("Global refinement"); - if ((refine_global < 0) || (refine_global>10)) - return false; - else - tria->refine_global (refine_global); - - return true; -}; - - - - -template -void PoissonProblem::make_zoom_in_grid () { - GridGenerator::hyper_cube (*tria); - - // refine first cell - tria->begin_active()->set_refine_flag(); - tria->execute_coarsening_and_refinement (); - // refine first active cell - // on coarsest level - tria->begin_active()->set_refine_flag (); - tria->execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell; - for (int i=0; i<(dim==3 ? 5 : 17); ++i) - { - // refine the presently - // second last cell several - // times - cell = tria->last_active(tria->n_levels()-1); - --cell; - cell->set_refine_flag (); - tria->execute_coarsening_and_refinement (); - }; -}; - - - - -template -void PoissonProblem::make_random_grid () { - GridGenerator::hyper_cube (*tria); - tria->refine_global (1); - - Triangulation::active_cell_iterator cell, endc; - for (int i=0; i<(dim==3 ? 7 : 12); ++i) - { - int n_levels = tria->n_levels(); - cell = tria->begin_active(); - endc = tria->end(); - - for (; cell!=endc; ++cell) - { - double r = rand()*1.0/RAND_MAX, - weight = 1.* - (cell->level()*cell->level()) / - (n_levels*n_levels); - - if (r <= 0.5*weight) - cell->set_refine_flag (); - }; - - tria->execute_coarsening_and_refinement (); - }; -}; - - - - -template -bool PoissonProblem::set_right_hand_side (ParameterHandler &prm) { - string rhs_name = prm.get ("Right hand side"); - - if (rhs_name == "zero") - rhs = new ZeroFunction(); - else - if (rhs_name == "constant") - rhs = new ConstantFunction(1.); - else - if (rhs_name == "trigpoly") - rhs = new RHSTrigPoly(); - else - if (rhs_name == "poly") - rhs = new RHSPoly (); - else - return false; - - if (rhs != 0) - return true; - else - return false; -}; - - - -template -bool PoissonProblem::set_boundary_values (ParameterHandler &prm) { - string bv_name = prm.get ("Boundary values"); - - if (bv_name == "zero") - boundary_values = new ZeroFunction (); - else - if (bv_name == "sine") - boundary_values = new BoundaryValuesSine (); - else - if (bv_name == "jump") - boundary_values = new BoundaryValuesJump (); - else - { - cout << "Unknown boundary value function " << bv_name << endl; - return false; - }; - - if (boundary_values != 0) - return true; - else - return false; -}; - - - - -template -void PoissonProblem::run (ParameterHandler &prm) { - cout << "Test case = " << prm.get ("Test run") - << endl; - - cout << " Making grid... "; - if (!make_grid (prm)) - return; - cout << tria->n_active_cells() << " active cells." << endl; - - if (!set_right_hand_side (prm)) - return; - - if (!set_boundary_values (prm)) - return; - - FEQ1 fe; - PoissonEquation equation (*rhs); - QGauss2 quadrature; - - cout << " Distributing dofs... "; - dof->distribute_dofs (fe); - cout << dof->n_dofs() << " degrees of freedom." << endl; - - cout << " Assembling matrices..." << endl; - ProblemBase::FunctionMap dirichlet_bc; - dirichlet_bc[0] = boundary_values; - assemble (equation, quadrature, - UpdateFlags(update_values | update_gradients | - update_JxW_values | update_q_points), - dirichlet_bc); - - cout << " Solving..." << endl; - solve (); - - cout << " Writing to file <" << prm.get("Output file") << ">..." - << endl; - - DataOut out; - string o_filename = prm.get ("Output file"); - ofstream gnuplot(o_filename.c_str()); - out.attach_dof_handler (*dof_handler); - out.add_data_vector (solution, "solution"); - out.build_patches (); - out.write_gnuplot (gnuplot); - gnuplot.close (); - - // release the lock of the DoF object to - // the FE object - dof->clear (); - - cout << endl; -}; - - - - - -template class PoissonProblem<2>; diff --git a/tests/big-tests/poisson/results/.cvsignore b/tests/big-tests/poisson/results/.cvsignore deleted file mode 100644 index acabd78095..0000000000 --- a/tests/big-tests/poisson/results/.cvsignore +++ /dev/null @@ -1,2 +0,0 @@ -*.gnuplot -*.eps diff --git a/tests/big-tests/poisson/results/make_ps b/tests/big-tests/poisson/results/make_ps deleted file mode 100644 index df05475d6b..0000000000 --- a/tests/big-tests/poisson/results/make_ps +++ /dev/null @@ -1,38 +0,0 @@ -set data style lines -set noxtics -set noytics -set noztics -set nokey -set para -set hidden3d -set term postscript eps - -!echo " Making " -set output "zoom_in.eps" -splot "zoom_in.gnuplot" - -!echo " Making " -set output "ball.eps" -splot "ball.gnuplot" - -!echo " Making " -set output "curved_line.eps" -splot "curved_line.gnuplot" - -!echo " Making " -set output "random.eps" -splot "random.gnuplot" - -!echo " Making " -set output "jump.eps" -splot "jump.gnuplot" - -!echo " Making " -set view 52,115 -set output "L-region.eps" -splot "L-region.gnuplot" - -!echo " Making " -set view 52,115 -set output "slit_domain.eps" -splot "slit_domain.gnuplot" diff --git a/tests/configure b/tests/configure deleted file mode 100755 index bda0e01e07..0000000000 --- a/tests/configure +++ /dev/null @@ -1,743 +0,0 @@ -#! /bin/sh - -# Guess values for system-dependent variables and create Makefiles. -# Generated automatically using autoconf version 2.13 -# Copyright (C) 1992, 93, 94, 95, 96 Free Software Foundation, Inc. -# -# This configure script is free software; the Free Software Foundation -# gives unlimited permission to copy, distribute and modify it. - -# Defaults: -ac_help= -ac_default_prefix=/usr/local -# Any additions from configure.in: -ac_help="$ac_help - --with-deal=DIR DIR is the root of the deal.II library" - -# Initialize some variables set by options. -# The variables have the same names as the options, with -# dashes changed to underlines. -build=NONE -cache_file=./config.cache -exec_prefix=NONE -host=NONE -no_create= -nonopt=NONE -no_recursion= -prefix=NONE -program_prefix=NONE -program_suffix=NONE -program_transform_name=s,x,x, -silent= -site= -srcdir= -target=NONE -verbose= -x_includes=NONE -x_libraries=NONE -bindir='${exec_prefix}/bin' -sbindir='${exec_prefix}/sbin' -libexecdir='${exec_prefix}/libexec' -datadir='${prefix}/share' -sysconfdir='${prefix}/etc' -sharedstatedir='${prefix}/com' -localstatedir='${prefix}/var' -libdir='${exec_prefix}/lib' -includedir='${prefix}/include' -oldincludedir='/usr/include' -infodir='${prefix}/info' -mandir='${prefix}/man' - -# Initialize some other variables. -subdirs= -MFLAGS= MAKEFLAGS= -SHELL=${CONFIG_SHELL-/bin/sh} -# Maximum number of lines to put in a shell here document. -ac_max_here_lines=12 - -ac_prev= -for ac_option -do - - # If the previous option needs an argument, assign it. - if test -n "$ac_prev"; then - eval "$ac_prev=\$ac_option" - ac_prev= - continue - fi - - case "$ac_option" in - -*=*) ac_optarg=`echo "$ac_option" | sed 's/[-_a-zA-Z0-9]*=//'` ;; - *) ac_optarg= ;; - esac - - # Accept the important Cygnus configure options, so we can diagnose typos. - - case "$ac_option" in - - -bindir | --bindir | --bindi | --bind | --bin | --bi) - ac_prev=bindir ;; - -bindir=* | --bindir=* | --bindi=* | --bind=* | --bin=* | --bi=*) - bindir="$ac_optarg" ;; - - -build | --build | --buil | --bui | --bu) - ac_prev=build ;; - -build=* | --build=* | --buil=* | --bui=* | --bu=*) - build="$ac_optarg" ;; - - -cache-file | --cache-file | --cache-fil | --cache-fi \ - | --cache-f | --cache- | --cache | --cach | --cac | --ca | --c) - ac_prev=cache_file ;; - -cache-file=* | --cache-file=* | --cache-fil=* | --cache-fi=* \ - | --cache-f=* | --cache-=* | --cache=* | --cach=* | --cac=* | --ca=* | --c=*) - cache_file="$ac_optarg" ;; - - -datadir | --datadir | --datadi | --datad | --data | --dat | --da) - ac_prev=datadir ;; - -datadir=* | --datadir=* | --datadi=* | --datad=* | --data=* | --dat=* \ - | --da=*) - datadir="$ac_optarg" ;; - - -disable-* | --disable-*) - ac_feature=`echo $ac_option|sed -e 's/-*disable-//'` - # Reject names that are not valid shell variable names. - if test -n "`echo $ac_feature| sed 's/[-a-zA-Z0-9_]//g'`"; then - { echo "configure: error: $ac_feature: invalid feature name" 1>&2; exit 1; } - fi - ac_feature=`echo $ac_feature| sed 's/-/_/g'` - eval "enable_${ac_feature}=no" ;; - - -enable-* | --enable-*) - ac_feature=`echo $ac_option|sed -e 's/-*enable-//' -e 's/=.*//'` - # Reject names that are not valid shell variable names. - if test -n "`echo $ac_feature| sed 's/[-_a-zA-Z0-9]//g'`"; then - { echo "configure: error: $ac_feature: invalid feature name" 1>&2; exit 1; } - fi - ac_feature=`echo $ac_feature| sed 's/-/_/g'` - case "$ac_option" in - *=*) ;; - *) ac_optarg=yes ;; - esac - eval "enable_${ac_feature}='$ac_optarg'" ;; - - -exec-prefix | --exec_prefix | --exec-prefix | --exec-prefi \ - | --exec-pref | --exec-pre | --exec-pr | --exec-p | --exec- \ - | --exec | --exe | --ex) - ac_prev=exec_prefix ;; - -exec-prefix=* | --exec_prefix=* | --exec-prefix=* | --exec-prefi=* \ - | --exec-pref=* | --exec-pre=* | --exec-pr=* | --exec-p=* | --exec-=* \ - | --exec=* | --exe=* | --ex=*) - exec_prefix="$ac_optarg" ;; - - -gas | --gas | --ga | --g) - # Obsolete; use --with-gas. - with_gas=yes ;; - - -help | --help | --hel | --he) - # Omit some internal or obsolete options to make the list less imposing. - # This message is too long to be a string in the A/UX 3.1 sh. - cat << EOF -Usage: configure [options] [host] -Options: [defaults in brackets after descriptions] -Configuration: - --cache-file=FILE cache test results in FILE - --help print this message - --no-create do not create output files - --quiet, --silent do not print \`checking...' messages - --version print the version of autoconf that created configure -Directory and file names: - --prefix=PREFIX install architecture-independent files in PREFIX - [$ac_default_prefix] - --exec-prefix=EPREFIX install architecture-dependent files in EPREFIX - [same as prefix] - --bindir=DIR user executables in DIR [EPREFIX/bin] - --sbindir=DIR system admin executables in DIR [EPREFIX/sbin] - --libexecdir=DIR program executables in DIR [EPREFIX/libexec] - --datadir=DIR read-only architecture-independent data in DIR - [PREFIX/share] - --sysconfdir=DIR read-only single-machine data in DIR [PREFIX/etc] - --sharedstatedir=DIR modifiable architecture-independent data in DIR - [PREFIX/com] - --localstatedir=DIR modifiable single-machine data in DIR [PREFIX/var] - --libdir=DIR object code libraries in DIR [EPREFIX/lib] - --includedir=DIR C header files in DIR [PREFIX/include] - --oldincludedir=DIR C header files for non-gcc in DIR [/usr/include] - --infodir=DIR info documentation in DIR [PREFIX/info] - --mandir=DIR man documentation in DIR [PREFIX/man] - --srcdir=DIR find the sources in DIR [configure dir or ..] - --program-prefix=PREFIX prepend PREFIX to installed program names - --program-suffix=SUFFIX append SUFFIX to installed program names - --program-transform-name=PROGRAM - run sed PROGRAM on installed program names -EOF - cat << EOF -Host type: - --build=BUILD configure for building on BUILD [BUILD=HOST] - --host=HOST configure for HOST [guessed] - --target=TARGET configure for TARGET [TARGET=HOST] -Features and packages: - --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no) - --enable-FEATURE[=ARG] include FEATURE [ARG=yes] - --with-PACKAGE[=ARG] use PACKAGE [ARG=yes] - --without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no) - --x-includes=DIR X include files are in DIR - --x-libraries=DIR X library files are in DIR -EOF - if test -n "$ac_help"; then - echo "--enable and --with options recognized:$ac_help" - fi - exit 0 ;; - - -host | --host | --hos | --ho) - ac_prev=host ;; - -host=* | --host=* | --hos=* | --ho=*) - host="$ac_optarg" ;; - - -includedir | --includedir | --includedi | --included | --include \ - | --includ | --inclu | --incl | --inc) - ac_prev=includedir ;; - -includedir=* | --includedir=* | --includedi=* | --included=* | --include=* \ - | --includ=* | --inclu=* | --incl=* | --inc=*) - includedir="$ac_optarg" ;; - - -infodir | --infodir | --infodi | --infod | --info | --inf) - ac_prev=infodir ;; - -infodir=* | --infodir=* | --infodi=* | --infod=* | --info=* | --inf=*) - infodir="$ac_optarg" ;; - - -libdir | --libdir | --libdi | --libd) - ac_prev=libdir ;; - -libdir=* | --libdir=* | --libdi=* | --libd=*) - libdir="$ac_optarg" ;; - - -libexecdir | --libexecdir | --libexecdi | --libexecd | --libexec \ - | --libexe | --libex | --libe) - ac_prev=libexecdir ;; - -libexecdir=* | --libexecdir=* | --libexecdi=* | --libexecd=* | --libexec=* \ - | --libexe=* | --libex=* | --libe=*) - libexecdir="$ac_optarg" ;; - - -localstatedir | --localstatedir | --localstatedi | --localstated \ - | --localstate | --localstat | --localsta | --localst \ - | --locals | --local | --loca | --loc | --lo) - ac_prev=localstatedir ;; - -localstatedir=* | --localstatedir=* | --localstatedi=* | --localstated=* \ - | --localstate=* | --localstat=* | --localsta=* | --localst=* \ - | --locals=* | --local=* | --loca=* | --loc=* | --lo=*) - localstatedir="$ac_optarg" ;; - - -mandir | --mandir | --mandi | --mand | --man | --ma | --m) - ac_prev=mandir ;; - -mandir=* | --mandir=* | --mandi=* | --mand=* | --man=* | --ma=* | --m=*) - mandir="$ac_optarg" ;; - - -nfp | --nfp | --nf) - # Obsolete; use --without-fp. - with_fp=no ;; - - -no-create | --no-create | --no-creat | --no-crea | --no-cre \ - | --no-cr | --no-c) - no_create=yes ;; - - -no-recursion | --no-recursion | --no-recursio | --no-recursi \ - | --no-recurs | --no-recur | --no-recu | --no-rec | --no-re | --no-r) - no_recursion=yes ;; - - -oldincludedir | --oldincludedir | --oldincludedi | --oldincluded \ - | --oldinclude | --oldinclud | --oldinclu | --oldincl | --oldinc \ - | --oldin | --oldi | --old | --ol | --o) - ac_prev=oldincludedir ;; - -oldincludedir=* | --oldincludedir=* | --oldincludedi=* | --oldincluded=* \ - | --oldinclude=* | --oldinclud=* | --oldinclu=* | --oldincl=* | --oldinc=* \ - | --oldin=* | --oldi=* | --old=* | --ol=* | --o=*) - oldincludedir="$ac_optarg" ;; - - -prefix | --prefix | --prefi | --pref | --pre | --pr | --p) - ac_prev=prefix ;; - -prefix=* | --prefix=* | --prefi=* | --pref=* | --pre=* | --pr=* | --p=*) - prefix="$ac_optarg" ;; - - -program-prefix | --program-prefix | --program-prefi | --program-pref \ - | --program-pre | --program-pr | --program-p) - ac_prev=program_prefix ;; - -program-prefix=* | --program-prefix=* | --program-prefi=* \ - | --program-pref=* | --program-pre=* | --program-pr=* | --program-p=*) - program_prefix="$ac_optarg" ;; - - -program-suffix | --program-suffix | --program-suffi | --program-suff \ - | --program-suf | --program-su | --program-s) - ac_prev=program_suffix ;; - -program-suffix=* | --program-suffix=* | --program-suffi=* \ - | --program-suff=* | --program-suf=* | --program-su=* | --program-s=*) - program_suffix="$ac_optarg" ;; - - -program-transform-name | --program-transform-name \ - | --program-transform-nam | --program-transform-na \ - | --program-transform-n | --program-transform- \ - | --program-transform | --program-transfor \ - | --program-transfo | --program-transf \ - | --program-trans | --program-tran \ - | --progr-tra | --program-tr | --program-t) - ac_prev=program_transform_name ;; - -program-transform-name=* | --program-transform-name=* \ - | --program-transform-nam=* | --program-transform-na=* \ - | --program-transform-n=* | --program-transform-=* \ - | --program-transform=* | --program-transfor=* \ - | --program-transfo=* | --program-transf=* \ - | --program-trans=* | --program-tran=* \ - | --progr-tra=* | --program-tr=* | --program-t=*) - program_transform_name="$ac_optarg" ;; - - -q | -quiet | --quiet | --quie | --qui | --qu | --q \ - | -silent | --silent | --silen | --sile | --sil) - silent=yes ;; - - -sbindir | --sbindir | --sbindi | --sbind | --sbin | --sbi | --sb) - ac_prev=sbindir ;; - -sbindir=* | --sbindir=* | --sbindi=* | --sbind=* | --sbin=* \ - | --sbi=* | --sb=*) - sbindir="$ac_optarg" ;; - - -sharedstatedir | --sharedstatedir | --sharedstatedi \ - | --sharedstated | --sharedstate | --sharedstat | --sharedsta \ - | --sharedst | --shareds | --shared | --share | --shar \ - | --sha | --sh) - ac_prev=sharedstatedir ;; - -sharedstatedir=* | --sharedstatedir=* | --sharedstatedi=* \ - | --sharedstated=* | --sharedstate=* | --sharedstat=* | --sharedsta=* \ - | --sharedst=* | --shareds=* | --shared=* | --share=* | --shar=* \ - | --sha=* | --sh=*) - sharedstatedir="$ac_optarg" ;; - - -site | --site | --sit) - ac_prev=site ;; - -site=* | --site=* | --sit=*) - site="$ac_optarg" ;; - - -srcdir | --srcdir | --srcdi | --srcd | --src | --sr) - ac_prev=srcdir ;; - -srcdir=* | --srcdir=* | --srcdi=* | --srcd=* | --src=* | --sr=*) - srcdir="$ac_optarg" ;; - - -sysconfdir | --sysconfdir | --sysconfdi | --sysconfd | --sysconf \ - | --syscon | --sysco | --sysc | --sys | --sy) - ac_prev=sysconfdir ;; - -sysconfdir=* | --sysconfdir=* | --sysconfdi=* | --sysconfd=* | --sysconf=* \ - | --syscon=* | --sysco=* | --sysc=* | --sys=* | --sy=*) - sysconfdir="$ac_optarg" ;; - - -target | --target | --targe | --targ | --tar | --ta | --t) - ac_prev=target ;; - -target=* | --target=* | --targe=* | --targ=* | --tar=* | --ta=* | --t=*) - target="$ac_optarg" ;; - - -v | -verbose | --verbose | --verbos | --verbo | --verb) - verbose=yes ;; - - -version | --version | --versio | --versi | --vers) - echo "configure generated by autoconf version 2.13" - exit 0 ;; - - -with-* | --with-*) - ac_package=`echo $ac_option|sed -e 's/-*with-//' -e 's/=.*//'` - # Reject names that are not valid shell variable names. - if test -n "`echo $ac_package| sed 's/[-_a-zA-Z0-9]//g'`"; then - { echo "configure: error: $ac_package: invalid package name" 1>&2; exit 1; } - fi - ac_package=`echo $ac_package| sed 's/-/_/g'` - case "$ac_option" in - *=*) ;; - *) ac_optarg=yes ;; - esac - eval "with_${ac_package}='$ac_optarg'" ;; - - -without-* | --without-*) - ac_package=`echo $ac_option|sed -e 's/-*without-//'` - # Reject names that are not valid shell variable names. - if test -n "`echo $ac_package| sed 's/[-a-zA-Z0-9_]//g'`"; then - { echo "configure: error: $ac_package: invalid package name" 1>&2; exit 1; } - fi - ac_package=`echo $ac_package| sed 's/-/_/g'` - eval "with_${ac_package}=no" ;; - - --x) - # Obsolete; use --with-x. - with_x=yes ;; - - -x-includes | --x-includes | --x-include | --x-includ | --x-inclu \ - | --x-incl | --x-inc | --x-in | --x-i) - ac_prev=x_includes ;; - -x-includes=* | --x-includes=* | --x-include=* | --x-includ=* | --x-inclu=* \ - | --x-incl=* | --x-inc=* | --x-in=* | --x-i=*) - x_includes="$ac_optarg" ;; - - -x-libraries | --x-libraries | --x-librarie | --x-librari \ - | --x-librar | --x-libra | --x-libr | --x-lib | --x-li | --x-l) - ac_prev=x_libraries ;; - -x-libraries=* | --x-libraries=* | --x-librarie=* | --x-librari=* \ - | --x-librar=* | --x-libra=* | --x-libr=* | --x-lib=* | --x-li=* | --x-l=*) - x_libraries="$ac_optarg" ;; - - -*) { echo "configure: error: $ac_option: invalid option; use --help to show usage" 1>&2; exit 1; } - ;; - - *) - if test -n "`echo $ac_option| sed 's/[-a-z0-9.]//g'`"; then - echo "configure: warning: $ac_option: invalid host type" 1>&2 - fi - if test "x$nonopt" != xNONE; then - { echo "configure: error: can only configure for one host and one target at a time" 1>&2; exit 1; } - fi - nonopt="$ac_option" - ;; - - esac -done - -if test -n "$ac_prev"; then - { echo "configure: error: missing argument to --`echo $ac_prev | sed 's/_/-/g'`" 1>&2; exit 1; } -fi - -trap 'rm -fr conftest* confdefs* core core.* *.core $ac_clean_files; exit 1' 1 2 15 - -# File descriptor usage: -# 0 standard input -# 1 file creation -# 2 errors and warnings -# 3 some systems may open it to /dev/tty -# 4 used on the Kubota Titan -# 6 checking for... messages and results -# 5 compiler messages saved in config.log -if test "$silent" = yes; then - exec 6>/dev/null -else - exec 6>&1 -fi -exec 5>./config.log - -echo "\ -This file contains any messages produced by compilers while -running configure, to aid debugging if configure makes a mistake. -" 1>&5 - -# Strip out --no-create and --no-recursion so they do not pile up. -# Also quote any args containing shell metacharacters. -ac_configure_args= -for ac_arg -do - case "$ac_arg" in - -no-create | --no-create | --no-creat | --no-crea | --no-cre \ - | --no-cr | --no-c) ;; - -no-recursion | --no-recursion | --no-recursio | --no-recursi \ - | --no-recurs | --no-recur | --no-recu | --no-rec | --no-re | --no-r) ;; - *" "*|*" "*|*[\[\]\~\#\$\^\&\*\(\)\{\}\\\|\;\<\>\?]*) - ac_configure_args="$ac_configure_args '$ac_arg'" ;; - *) ac_configure_args="$ac_configure_args $ac_arg" ;; - esac -done - -# NLS nuisances. -# Only set these to C if already set. These must not be set unconditionally -# because not all systems understand e.g. LANG=C (notably SCO). -# Fixing LC_MESSAGES prevents Solaris sh from translating var values in `set'! -# Non-C LC_CTYPE values break the ctype check. -if test "${LANG+set}" = set; then LANG=C; export LANG; fi -if test "${LC_ALL+set}" = set; then LC_ALL=C; export LC_ALL; fi -if test "${LC_MESSAGES+set}" = set; then LC_MESSAGES=C; export LC_MESSAGES; fi -if test "${LC_CTYPE+set}" = set; then LC_CTYPE=C; export LC_CTYPE; fi - -# confdefs.h avoids OS command line length limits that DEFS can exceed. -rm -rf conftest* confdefs.h -# AIX cpp loses on an empty file, so make sure it contains at least a newline. -echo > confdefs.h - -# A filename unique to this package, relative to the directory that -# configure is in, which we can look for to find out if srcdir is correct. -ac_unique_file=base - -# Find the source files, if location was not specified. -if test -z "$srcdir"; then - ac_srcdir_defaulted=yes - # Try the directory containing this script, then its parent. - ac_prog=$0 - ac_confdir=`echo $ac_prog|sed 's%/[^/][^/]*$%%'` - test "x$ac_confdir" = "x$ac_prog" && ac_confdir=. - srcdir=$ac_confdir - if test ! -r $srcdir/$ac_unique_file; then - srcdir=.. - fi -else - ac_srcdir_defaulted=no -fi -if test ! -r $srcdir/$ac_unique_file; then - if test "$ac_srcdir_defaulted" = yes; then - { echo "configure: error: can not find sources in $ac_confdir or .." 1>&2; exit 1; } - else - { echo "configure: error: can not find sources in $srcdir" 1>&2; exit 1; } - fi -fi -srcdir=`echo "${srcdir}" | sed 's%\([^/]\)/*$%\1%'` - -# Prefer explicitly selected file to automatically selected ones. -if test -z "$CONFIG_SITE"; then - if test "x$prefix" != xNONE; then - CONFIG_SITE="$prefix/share/config.site $prefix/etc/config.site" - else - CONFIG_SITE="$ac_default_prefix/share/config.site $ac_default_prefix/etc/config.site" - fi -fi -for ac_site_file in $CONFIG_SITE; do - if test -r "$ac_site_file"; then - echo "loading site script $ac_site_file" - . "$ac_site_file" - fi -done - - -ac_ext=c -# CFLAGS is not in ac_cpp because -g, -O, etc. are not valid cpp options. -ac_cpp='$CPP $CPPFLAGS' -ac_compile='${CC-cc} -c $CFLAGS $CPPFLAGS conftest.$ac_ext 1>&5' -ac_link='${CC-cc} -o conftest${ac_exeext} $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS 1>&5' -cross_compiling=$ac_cv_prog_cc_cross - -ac_exeext= -ac_objext=o -if (echo "testing\c"; echo 1,2,3) | grep c >/dev/null; then - # Stardent Vistra SVR4 grep lacks -e, says ghazi@caip.rutgers.edu. - if (echo -n testing; echo 1,2,3) | sed s/-n/xn/ | grep xn >/dev/null; then - ac_n= ac_c=' -' ac_t=' ' - else - ac_n=-n ac_c= ac_t= - fi -else - ac_n= ac_c='\c' ac_t= -fi - - - -# Check whether --with-deal or --without-deal was given. -if test "${with_deal+set}" = set; then - withval="$with_deal" - DEAL2_DIR=$withval -else - if test -r ../common/Make.global_options ; then - DEAL2_DIR=`pwd`/.. ; - fi - if test -r ../deal.II/common/Make.global_options ; then - DEAL2_DIR=`pwd`/../deal.II ; - fi - if test -r ../deal/common/Make.global_options ; then - DEAL2_DIR=`pwd`/../deal ; - fi -fi - - - -trap '' 1 2 15 - -trap 'rm -fr conftest* confdefs* core core.* *.core $ac_clean_files; exit 1' 1 2 15 - -test "x$prefix" = xNONE && prefix=$ac_default_prefix -# Let make expand exec_prefix. -test "x$exec_prefix" = xNONE && exec_prefix='${prefix}' - -# Any assignment to VPATH causes Sun make to only execute -# the first set of double-colon rules, so remove it if not needed. -# If there is a colon in the path, we need to keep it. -if test "x$srcdir" = x.; then - ac_vpsub='/^[ ]*VPATH[ ]*=[^:]*$/d' -fi - -trap 'rm -f $CONFIG_STATUS conftest*; exit 1' 1 2 15 - -# Transform confdefs.h into DEFS. -# Protect against shell expansion while executing Makefile rules. -# Protect against Makefile macro expansion. -cat > conftest.defs <<\EOF -s%#define \([A-Za-z_][A-Za-z0-9_]*\) *\(.*\)%-D\1=\2%g -s%[ `~#$^&*(){}\\|;'"<>?]%\\&%g -s%\[%\\&%g -s%\]%\\&%g -s%\$%$$%g -EOF -DEFS=`sed -f conftest.defs confdefs.h | tr '\012' ' '` -rm -f conftest.defs - - -# Without the "./", some shells look in PATH for config.status. -: ${CONFIG_STATUS=./config.status} - -echo creating $CONFIG_STATUS -rm -f $CONFIG_STATUS -cat > $CONFIG_STATUS </dev/null | sed 1q`: -# -# $0 $ac_configure_args -# -# Compiler output produced by configure, useful for debugging -# configure, is in ./config.log if it exists. - -ac_cs_usage="Usage: $CONFIG_STATUS [--recheck] [--version] [--help]" -for ac_option -do - case "\$ac_option" in - -recheck | --recheck | --rechec | --reche | --rech | --rec | --re | --r) - echo "running \${CONFIG_SHELL-/bin/sh} $0 $ac_configure_args --no-create --no-recursion" - exec \${CONFIG_SHELL-/bin/sh} $0 $ac_configure_args --no-create --no-recursion ;; - -version | --version | --versio | --versi | --vers | --ver | --ve | --v) - echo "$CONFIG_STATUS generated by autoconf version 2.13" - exit 0 ;; - -help | --help | --hel | --he | --h) - echo "\$ac_cs_usage"; exit 0 ;; - *) echo "\$ac_cs_usage"; exit 1 ;; - esac -done - -ac_given_srcdir=$srcdir - -trap 'rm -fr `echo "Makefile base/Makefile lac/Makefile fe/Makefile deal.II/Makefile big-tests/Makefile" | sed "s/:[^ ]*//g"` conftest*; exit 1' 1 2 15 -EOF -cat >> $CONFIG_STATUS < conftest.subs <<\\CEOF -$ac_vpsub -$extrasub -s%@SHELL@%$SHELL%g -s%@CFLAGS@%$CFLAGS%g -s%@CPPFLAGS@%$CPPFLAGS%g -s%@CXXFLAGS@%$CXXFLAGS%g -s%@FFLAGS@%$FFLAGS%g -s%@DEFS@%$DEFS%g -s%@LDFLAGS@%$LDFLAGS%g -s%@LIBS@%$LIBS%g -s%@exec_prefix@%$exec_prefix%g -s%@prefix@%$prefix%g -s%@program_transform_name@%$program_transform_name%g -s%@bindir@%$bindir%g -s%@sbindir@%$sbindir%g -s%@libexecdir@%$libexecdir%g -s%@datadir@%$datadir%g -s%@sysconfdir@%$sysconfdir%g -s%@sharedstatedir@%$sharedstatedir%g -s%@localstatedir@%$localstatedir%g -s%@libdir@%$libdir%g -s%@includedir@%$includedir%g -s%@oldincludedir@%$oldincludedir%g -s%@infodir@%$infodir%g -s%@mandir@%$mandir%g -s%@DEAL2_DIR@%$DEAL2_DIR%g - -CEOF -EOF - -cat >> $CONFIG_STATUS <<\EOF - -# Split the substitutions into bite-sized pieces for seds with -# small command number limits, like on Digital OSF/1 and HP-UX. -ac_max_sed_cmds=90 # Maximum number of lines to put in a sed script. -ac_file=1 # Number of current file. -ac_beg=1 # First line for current file. -ac_end=$ac_max_sed_cmds # Line after last line for current file. -ac_more_lines=: -ac_sed_cmds="" -while $ac_more_lines; do - if test $ac_beg -gt 1; then - sed "1,${ac_beg}d; ${ac_end}q" conftest.subs > conftest.s$ac_file - else - sed "${ac_end}q" conftest.subs > conftest.s$ac_file - fi - if test ! -s conftest.s$ac_file; then - ac_more_lines=false - rm -f conftest.s$ac_file - else - if test -z "$ac_sed_cmds"; then - ac_sed_cmds="sed -f conftest.s$ac_file" - else - ac_sed_cmds="$ac_sed_cmds | sed -f conftest.s$ac_file" - fi - ac_file=`expr $ac_file + 1` - ac_beg=$ac_end - ac_end=`expr $ac_end + $ac_max_sed_cmds` - fi -done -if test -z "$ac_sed_cmds"; then - ac_sed_cmds=cat -fi -EOF - -cat >> $CONFIG_STATUS <> $CONFIG_STATUS <<\EOF -for ac_file in .. $CONFIG_FILES; do if test "x$ac_file" != x..; then - # Support "outfile[:infile[:infile...]]", defaulting infile="outfile.in". - case "$ac_file" in - *:*) ac_file_in=`echo "$ac_file"|sed 's%[^:]*:%%'` - ac_file=`echo "$ac_file"|sed 's%:.*%%'` ;; - *) ac_file_in="${ac_file}.in" ;; - esac - - # Adjust a relative srcdir, top_srcdir, and INSTALL for subdirectories. - - # Remove last slash and all that follows it. Not all systems have dirname. - ac_dir=`echo $ac_file|sed 's%/[^/][^/]*$%%'` - if test "$ac_dir" != "$ac_file" && test "$ac_dir" != .; then - # The file is in a subdirectory. - test ! -d "$ac_dir" && mkdir "$ac_dir" - ac_dir_suffix="/`echo $ac_dir|sed 's%^\./%%'`" - # A "../" for each directory in $ac_dir_suffix. - ac_dots=`echo $ac_dir_suffix|sed 's%/[^/]*%../%g'` - else - ac_dir_suffix= ac_dots= - fi - - case "$ac_given_srcdir" in - .) srcdir=. - if test -z "$ac_dots"; then top_srcdir=. - else top_srcdir=`echo $ac_dots|sed 's%/$%%'`; fi ;; - /*) srcdir="$ac_given_srcdir$ac_dir_suffix"; top_srcdir="$ac_given_srcdir" ;; - *) # Relative path. - srcdir="$ac_dots$ac_given_srcdir$ac_dir_suffix" - top_srcdir="$ac_dots$ac_given_srcdir" ;; - esac - - - echo creating "$ac_file" - rm -f "$ac_file" - configure_input="Generated automatically from `echo $ac_file_in|sed 's%.*/%%'` by configure." - case "$ac_file" in - *Makefile*) ac_comsub="1i\\ -# $configure_input" ;; - *) ac_comsub= ;; - esac - - ac_file_inputs=`echo $ac_file_in|sed -e "s%^%$ac_given_srcdir/%" -e "s%:% $ac_given_srcdir/%g"` - sed -e "$ac_comsub -s%@configure_input@%$configure_input%g -s%@srcdir@%$srcdir%g -s%@top_srcdir@%$top_srcdir%g -" $ac_file_inputs | (eval "$ac_sed_cmds") > $ac_file -fi; done -rm -f conftest.s* - -EOF -cat >> $CONFIG_STATUS <> $CONFIG_STATUS <<\EOF - -exit 0 -EOF -chmod +x $CONFIG_STATUS -rm -fr confdefs* $ac_clean_files -test "$no_create" = yes || ${CONFIG_SHELL-/bin/sh} $CONFIG_STATUS || exit 1 - diff --git a/tests/configure.in b/tests/configure.in deleted file mode 100644 index bfdeb75dba..0000000000 --- a/tests/configure.in +++ /dev/null @@ -1,26 +0,0 @@ -dnl $Id$ -dnl -dnl configure script to find the main deal library -dnl in .. or ../deal.II or ../deal -dnl - -define([AC_CACHE_LOAD], )dnl -define([AC_CACHE_SAVE], )dnl -AC_INIT(base) - -dnl Supply deal-directory in command line or find it -AC_ARG_WITH(deal, -[ --with-deal=DIR DIR is the root of the deal.II library], - DEAL2_DIR=$withval, - if test -r ../common/Make.global_options ; then - DEAL2_DIR=`pwd`/.. ; - fi - if test -r ../deal.II/common/Make.global_options ; then - DEAL2_DIR=`pwd`/../deal.II ; - fi - if test -r ../deal/common/Make.global_options ; then - DEAL2_DIR=`pwd`/../deal ; - fi) -AC_SUBST(DEAL2_DIR) - -AC_OUTPUT(Makefile base/Makefile lac/Makefile fe/Makefile deal.II/Makefile big-tests/Makefile) diff --git a/tests/deal.II/.cvsignore b/tests/deal.II/.cvsignore deleted file mode 100644 index f58f66dbe0..0000000000 --- a/tests/deal.II/.cvsignore +++ /dev/null @@ -1,5 +0,0 @@ -Makefile Make.depend -*.go -*.testcase -*.output -*.check diff --git a/tests/deal.II/Conventions b/tests/deal.II/Conventions deleted file mode 100644 index cb46cdc1a7..0000000000 --- a/tests/deal.II/Conventions +++ /dev/null @@ -1,24 +0,0 @@ -Conventions for the /tests/deal.II directory: -============================================= - -Since the files in this directory may need to be linked against one or -more of the deal_II_?d.[g.]a libraries and since we do not want to -specify this in the Makefile explicitely, please use the following two -lines somewhere in the .cc file for the respective testcase: - -// deal_II_libraries.g=-ldeal_II_2d.g -// deal_II_libraries=-ldeal_II_2d - -Respectively, if the program needs to be linked with the 3d library, -replace 2d by 3d. If the program needs to be linked against both, then -write - -// deal_II_libraries.g=-ldeal_II_2d.g -ldeal_II_3d.g -// deal_II_libraries=-ldeal_II_2d -ldeal_II_3d - - -East test case shall give its output (apart from errors) to -'cout'. For each test case, there shall be a file with the name of the -test case and the extension '.expect' which contains the output that -we expect if program and library are working as expected. The actual -output of the program is autoamtically compared against this file. \ No newline at end of file diff --git a/tests/deal.II/Makefile.in b/tests/deal.II/Makefile.in deleted file mode 100644 index b36ac06ea8..0000000000 --- a/tests/deal.II/Makefile.in +++ /dev/null @@ -1,383 +0,0 @@ -############################################################ -# $Id$ -# Copyright (C) 2000 by the deal.II authors -############################################################ - -############################################################ -# Include general settings for including DEAL libraries -############################################################ - -D = @DEAL2_DIR@ - -include $D/common/Make.global_options - - -############################################################ -# Set debug-mode as a default -############################################################ - -debug-mode = on - - -############################################################ -# Define library names -############################################################ - -libs.g = $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs = $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -############################################################ -# Select compiler flags according to debug-mode -############################################################ - -ifeq ($(debug-mode),on) -libraries = $(libs.g) -libdeal3d = $(lib-deal2-3d.g) -libdeal1d = $(lib-deal2-1d.g) -flags = $(CXXFLAGS.g) $(CXXFLAGS) -endif - -ifeq ($(debug-mode),off) -libraries = $(libs) -libdeal3d = $(lib-deal2-3d.o) -libdeal1d = $(lib-deal2-1d.o) -flags = $(CXXFLAGS.o) $(CXXFLAGS) -endif - - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - -%.go : %.cc Makefile - @echo =====debug========= $< - @$(CXX) $(flags) -c $< -o $@ -%.o : %.cc Makefile - @echo =====optimized===== $< - @$(CXX) $(flags) -c $< -o $@ - - -all: grid_test.check dof_test.check data_out.check \ - fe_tables.check gradients.check \ - constraints.check mg.check mglocal.check wave-test-3.check \ - block_matrices.check second_derivatives.check - -exe: $(all:.check=.testcase) benchmark -run: $(all:.check=.output) -############################################################ -# Typical block for building a running program -# -# 1. provide a list of source files in ...-cc-files -# -# 2. generate the list of object files according to debug-mode -# -# 3. make executable -# -# 4. Explicit dependencies of object files (will be automatic soon) -# -############################################################ - -template-cc-files = template.cc - -ifeq ($(debug-mode),on) -template-o-files = $(template-cc-files:.cc=.go) -else -template-o-files = $(template-cc-files:.cc=.o) -endif - -template.testcase: $(template-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ - -constraints-cc-files = constraints.cc - -ifeq ($(debug-mode),on) -constraints-o-files = $(constraints-cc-files:.cc=.go) -else -constraints-o-files = $(constraints-cc-files:.cc=.o) -endif - -constraints.testcase: $(constraints-o-files) $(libdeal3d) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ - -dof_test-cc-files = dof_test.cc - -ifeq ($(debug-mode),on) -dof_test-o-files = $(dof_test-cc-files:.cc=.go) -else -dof_test-o-files = $(dof_test-cc-files:.cc=.o) -endif - -dof_test.testcase: $(dof_test-o-files) $(libdeal3d) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ - - -data_out-cc-files = data_out.cc - -ifeq ($(debug-mode),on) -data_out-o-files = $(data_out-cc-files:.cc=.go) -else -data_out-o-files = $(data_out-cc-files:.cc=.o) -endif - -data_out.testcase: $(data_out-o-files) $(libdeal3d) $(libraries) - @echo =====linking======= $< - @$(CXX) $(flags) -o $@ $^ - - -############################################################ - -fe_tables-cc-files = fe_tables.cc - -ifeq ($(debug-mode),on) -fe_tables-o-files = $(fe_tables-cc-files:.cc=.go) -else -fe_tables-o-files = $(fe_tables-cc-files:.cc=.o) -endif - -fe_tables.testcase: $(fe_tables-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ - -gradients-cc-files = gradients.cc - -ifeq ($(debug-mode),on) -gradients-o-files = $(gradients-cc-files:.cc=.go) -else -gradients-o-files = $(gradients-cc-files:.cc=.o) -endif - -gradients.testcase: $(gradients-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ - -grid_test-cc-files = grid_test.cc - -ifeq ($(debug-mode),on) -grid_test-o-files = $(grid_test-cc-files:.cc=.go) -else -grid_test-o-files = $(grid_test-cc-files:.cc=.o) -endif - -grid_test.testcase: $(grid_test-o-files) $(libdeal3d) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ - -grid_generator-cc-files = grid_generator.cc - -ifeq ($(debug-mode),on) -grid_generator-o-files = $(grid_generator-cc-files:.cc=.go) -else -grid_generator-o-files = $(grid_generator-cc-files:.cc=.o) -endif - -grid_generator.testcase: $(grid_generator-o-files) $(libdeal3d) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ - -second_derivatives-cc-files = second_derivatives.cc - -ifeq ($(debug-mode),on) -second_derivatives-o-files = $(second_derivatives-cc-files:.cc=.go) -else -second_derivatives-o-files = $(second_derivatives-cc-files:.cc=.o) -endif - -second_derivatives.testcase: $(second_derivatives-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ - -wave-test-3-cc-files = wave-test-3.cc - -ifeq ($(debug-mode),on) -wave-test-3-o-files = $(wave-test-3-cc-files:.cc=.go) -else -wave-test-3-o-files = $(wave-test-3-cc-files:.cc=.o) -endif - -wave-test-3.testcase: $(wave-test-3-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ - - -mglocal-cc-files = mglocal.cc - -ifeq ($(debug-mode),on) -mglocal-o-files = $(mglocal-cc-files:.cc=.go) -else -mglocal-o-files = $(mglocal-cc-files:.cc=.o) -endif - -mglocal.testcase: $(mglocal-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - - -############################################################ - - -mg-cc-files = mg.cc - -ifeq ($(debug-mode),on) -mg-o-files = $(mg-cc-files:.cc=.go) -else -mg-o-files = $(mg-cc-files:.cc=.o) -endif - -mg.testcase: $(mg-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - - -############################################################ - - -block_matrices-cc-files = block_matrices.cc - -ifeq ($(debug-mode),on) -block_matrices-o-files = $(block_matrices-cc-files:.cc=.go) -else -block_matrices-o-files = $(block_matrices-cc-files:.cc=.o) -endif - -block_matrices.testcase: $(block_matrices-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ - - -intergrid_map-cc-files = intergrid_map.cc - -ifeq ($(debug-mode),on) -intergrid_map-o-files = $(intergrid_map-cc-files:.cc=.go) -else -intergrid_map-o-files = $(intergrid_map-cc-files:.cc=.o) -endif - -intergrid_map.testcase: $(intergrid_map-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) $(lib-deal2-1d.g) $(lib-deal2-3d.g) - - -############################################################ -# Continue with other targets if needed -############################################################ - - -benchmark-cc-files = benchmark.cc - -ifeq ($(debug-mode),on) -benchmark-o-files = $(benchmark-cc-files:.cc=.go) -else -benchmark-o-files = $(benchmark-cc-files:.cc=.o) -endif - -benchmark.testcase: $(benchmark-o-files) $(libraries) - $(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - -############################################################ -# Continue with other targets if needed -############################################################ - - -target1-cc-files = t1.cc t2.cc t3.cc - -ifeq ($(debug-mode),on) -target1-o-files = $(target1-cc-files:.cc=.go) -else -target1-o-files = $(target1-cc-files:.cc=.o) -endif - -target1: $(target1-o-files) $(libraries) - $(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ -# Postprocessing -############################################################ - -wave-test-3.output: wave-test-3.testcase - @echo =====Running======= $< - @./$< - @perl -pi -e 's/JobId.*//; \ - s/value.*//; \ - s/Creation Date.*//g; \ - s/Time tag:.*//g; \ - s/(\.\d\d)\d*/\1/g;' $@ - -%.output:%.testcase - @echo =====Running======= $< - @./$< - @perl -pi -e 's/JobId.*//;\ - s/value.*//;\ - s/%%Creation Date:.*//;\ - s/# Time =.*//; \ - s/^\s+Time =.*//;\ - s/^\s+Date =.*//;' $@ - -%.check:%.output - @-diff $< $(patsubst %.output,%.checked, $<) && echo '=====OK============' $< - @touch $@ -############################################################ -# Cleanup targets -############################################################ - -clean: - rm -f Make.depend *.o *.go *.output - -veryclean: clean - rm -f *.testcase *.inp *.gpl *.eps *.gnuplot - -############################################################ -# Automatic generation of dependencies -############################################################ - -all-cc-files = $(shell echo *.cc) - -Make.depend: $(all-cc-files) - @echo =====Dependencies== Make.depend - @$(CXX) $(CXXFLAGS.g) $^ -M > $@ - @perl -pi -e 's/(^[^.]+)\.o:/\1.o \1.go:/;' $@ - -include Make.depend diff --git a/tests/deal.II/block_matrices.cc b/tests/deal.II/block_matrices.cc deleted file mode 100644 index 064dddb83b..0000000000 --- a/tests/deal.II/block_matrices.cc +++ /dev/null @@ -1,415 +0,0 @@ -//---------------------------- block_matrices.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- block_matrices.cc --------------------------- -/* Author: Wolfgang Bangerth, University of Heidelberg, 2000 */ -/* Program is based on /examples/step-3 - Purpose: compare the results when using a normal matrix and - a block matrix -*/ - -#include -#include -#include -#include - -#include -#include -#include - -#include - -#include - -#include -#include - -#include -#include -#include - -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include - - -template -class LaplaceProblem -{ - public: - LaplaceProblem (); - - void run (); - void reinit_sparsity (); - void reinit_vectors (); - - Vector solution; - - private: - void make_grid_and_dofs (); - void assemble_system (); - void solve (); - - Triangulation<2> triangulation; - FEQ1<2> fe; - DoFHandler<2> dof_handler; - - Sparsity sparsity_pattern; - Matrix system_matrix; - - Vector system_rhs; -}; - - -template -LaplaceProblem::LaplaceProblem () : - dof_handler (triangulation) -{ - sparsity_pattern.reinit (system_matrix.n_block_rows(), - system_matrix.n_block_cols()); -}; - - - -template <> -LaplaceProblem,SparseMatrix,SparsityPattern>::LaplaceProblem () : - dof_handler (triangulation) -{}; - - - -template <> -LaplaceProblem,SparseMatrix,SparsityPattern>::LaplaceProblem () : - dof_handler (triangulation) -{}; - - - -template -void LaplaceProblem::make_grid_and_dofs () -{ - GridGenerator::hyper_cube (triangulation, -1, 1); - triangulation.refine_global (3); - deallog << "Number of active cells: " - << triangulation.n_active_cells() - << endl; - deallog << "Total number of cells: " - << triangulation.n_cells() - << endl; - - dof_handler.distribute_dofs (fe); - - deallog << "Number of degrees of freedom: " - << dof_handler.n_dofs() - << endl; - - reinit_sparsity (); - DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); - sparsity_pattern.compress(); - - system_matrix.reinit (sparsity_pattern); - reinit_vectors (); -}; - - -template <> -void LaplaceProblem,SparseMatrix,SparsityPattern>::reinit_sparsity () -{ - sparsity_pattern.reinit (dof_handler.n_dofs(), - dof_handler.n_dofs(), - dof_handler.max_couplings_between_dofs()); -}; - - - -template <> -void LaplaceProblem,SparseMatrix,SparsityPattern>::reinit_vectors () -{ - solution.reinit (dof_handler.n_dofs()); - system_rhs.reinit (dof_handler.n_dofs()); -}; - - - -template <> -void LaplaceProblem,SparseMatrix,SparsityPattern>::reinit_sparsity () -{ - sparsity_pattern.reinit (dof_handler.n_dofs(), - dof_handler.n_dofs(), - dof_handler.max_couplings_between_dofs()); -}; - - - -template <> -void LaplaceProblem,SparseMatrix,SparsityPattern>::reinit_vectors () -{ - solution.reinit (dof_handler.n_dofs()); - system_rhs.reinit (dof_handler.n_dofs()); -}; - - - -template <> -void LaplaceProblem,BlockSparseMatrix,BlockSparsityPattern>::reinit_sparsity () -{ - const unsigned int n_dofs = dof_handler.n_dofs(); - const unsigned int block_size[2] = { n_dofs/3, n_dofs - n_dofs/3 }; - - for (unsigned int i=0; i<2; ++i) - for (unsigned int j=0; j<2; ++j) - sparsity_pattern.block(i,j).reinit (block_size[i], block_size[j], - dof_handler.max_couplings_between_dofs()); - sparsity_pattern.collect_sizes (); -}; - - - -template <> -void LaplaceProblem,BlockSparseMatrix,BlockSparsityPattern>::reinit_vectors () -{ - const unsigned int n_dofs = dof_handler.n_dofs(); - const unsigned int block_size_[2] = { n_dofs/3, n_dofs - n_dofs/3 }; - const vector block_size (&block_size_[0], - &block_size_[2]); - - solution.reinit (block_size); - system_rhs.reinit (block_size); -}; - - - -template <> -void LaplaceProblem,BlockSparseMatrix,BlockSparsityPattern>::reinit_sparsity () -{ - const unsigned int n_dofs = dof_handler.n_dofs(); - const unsigned int block_size[3] = { n_dofs/5, n_dofs/7, n_dofs - n_dofs/5 - n_dofs/7 }; - - for (unsigned int i=0; i<3; ++i) - for (unsigned int j=0; j<3; ++j) - sparsity_pattern.block(i,j).reinit (block_size[i], block_size[j], - dof_handler.max_couplings_between_dofs()); - sparsity_pattern.collect_sizes (); -}; - - - -template <> -void LaplaceProblem,BlockSparseMatrix,BlockSparsityPattern>::reinit_vectors () -{ - const unsigned int n_dofs = dof_handler.n_dofs(); - const unsigned int block_size_[3] = { n_dofs/5, n_dofs/7, n_dofs - n_dofs/5 - n_dofs/7 }; - const vector block_size (&block_size_[0], - &block_size_[3]); - - solution.reinit (block_size); - system_rhs.reinit (block_size); -}; - - - -template -void LaplaceProblem::assemble_system () -{ - QGauss2<2> quadrature_formula; - FEValues<2> fe_values (fe, quadrature_formula, - UpdateFlags(update_values | - update_gradients | - update_JxW_values)); - - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const unsigned int n_q_points = quadrature_formula.n_quadrature_points; - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - ::Vector cell_rhs (dofs_per_cell); - - vector local_dof_indices (dofs_per_cell); - - DoFHandler<2>::active_cell_iterator cell = dof_handler.begin_active(), - endc = dof_handler.end(); - for (; cell!=endc; ++cell) - { - fe_values.reinit (cell); - - cell_matrix.clear (); - cell_rhs.clear (); - - for (unsigned int i=0; iget_dof_indices (local_dof_indices); - - for (unsigned int i=0; i boundary_values; - VectorTools::interpolate_boundary_values (dof_handler, - 0, - ZeroFunction<2>(), - boundary_values); - MatrixTools<2>::apply_boundary_values (boundary_values, - system_matrix, - solution, - system_rhs); -}; - - -template -void LaplaceProblem::solve () -{ - SolverControl solver_control (1000, 1e-12, false, false); - PrimitiveVectorMemory vector_memory; - SolverCG cg (solver_control, vector_memory); - - PreconditionJacobi preconditioner; - preconditioner.initialize (system_matrix, 0.8); - - cg.solve (system_matrix, solution, system_rhs, - preconditioner); -}; - - -template -void LaplaceProblem::run () -{ - make_grid_and_dofs (); - assemble_system (); - solve (); - - for (unsigned int i=0; i > solutions; - - if (true) - { - LaplaceProblem,SparseMatrix,SparsityPattern> - laplace_problem; - laplace_problem.run (); - - solutions.push_back (vector()); - solutions.back().resize (laplace_problem.solution.size()); - for (unsigned int i=0; i,SparseMatrix,SparsityPattern> - laplace_problem; - laplace_problem.run (); - - solutions.push_back (vector()); - solutions.back().resize (laplace_problem.solution.size()); - for (unsigned int i=0; i,BlockSparseMatrix,BlockSparsityPattern> - laplace_problem; - laplace_problem.run (); - - solutions.push_back (vector()); - solutions.back().resize (laplace_problem.solution.size()); - for (unsigned int i=0; i,BlockSparseMatrix,BlockSparsityPattern> - laplace_problem; - laplace_problem.run (); - - solutions.push_back (vector()); - solutions.back().resize (laplace_problem.solution.size()); - for (unsigned int i=0; i - accuracy*fabs(solutions[i][j] + solutions[0][j])) - { - deallog << "Discrepancy: i=" << i << ", j=" << j - << ", sol[i][j]=" << solutions[i][j] - << ", sol[0][j]=" << solutions[0][j] - << endl; - deallog << flush; - Assert (false, ExcInternalError()); - }; - }; - - - return 0; -}; diff --git a/tests/deal.II/block_matrices.checked b/tests/deal.II/block_matrices.checked deleted file mode 100644 index 76bb01cf5f..0000000000 --- a/tests/deal.II/block_matrices.checked +++ /dev/null @@ -1,338 +0,0 @@ - -DEAL::Number of active cells: 64 -DEAL::Total number of cells: 85 -DEAL::Number of degrees of freedom: 81 -DEAL::0 0.000 -DEAL::1 0.000 -DEAL::2 0.07506 -DEAL::3 0.000 -DEAL::4 0.000 -DEAL::5 0.1146 -DEAL::6 0.1838 -DEAL::7 0.1146 -DEAL::8 0.000 -DEAL::9 0.000 -DEAL::10 0.1350 -DEAL::11 0.000 -DEAL::12 0.1414 -DEAL::13 0.2322 -DEAL::14 0.2206 -DEAL::15 0.2675 -DEAL::16 0.2206 -DEAL::17 0.2824 -DEAL::18 0.2984 -DEAL::19 0.2824 -DEAL::20 0.2322 -DEAL::21 0.1350 -DEAL::22 0.000 -DEAL::23 0.1414 -DEAL::24 0.000 -DEAL::25 0.000 -DEAL::26 0.1350 -DEAL::27 0.000 -DEAL::28 0.1146 -DEAL::29 0.1838 -DEAL::30 0.2206 -DEAL::31 0.000 -DEAL::32 0.07506 -DEAL::33 0.000 -DEAL::34 0.000 -DEAL::35 0.000 -DEAL::36 0.1146 -DEAL::37 0.1350 -DEAL::38 0.2206 -DEAL::39 0.000 -DEAL::40 0.000 -DEAL::41 0.1414 -DEAL::42 0.2322 -DEAL::43 0.2675 -DEAL::44 0.2824 -DEAL::45 0.2675 -DEAL::46 0.2824 -DEAL::47 0.2206 -DEAL::48 0.1838 -DEAL::49 0.2206 -DEAL::50 0.2322 -DEAL::51 0.1350 -DEAL::52 0.000 -DEAL::53 0.000 -DEAL::54 0.1146 -DEAL::55 0.07506 -DEAL::56 0.1146 -DEAL::57 0.000 -DEAL::58 0.000 -DEAL::59 0.000 -DEAL::60 0.000 -DEAL::61 0.1350 -DEAL::62 0.1414 -DEAL::63 0.000 -DEAL::64 0.000 -DEAL::65 0.1350 -DEAL::66 0.000 -DEAL::67 0.2206 -DEAL::68 0.1838 -DEAL::69 0.1146 -DEAL::70 0.000 -DEAL::71 0.2675 -DEAL::72 0.2206 -DEAL::73 0.1350 -DEAL::74 0.1146 -DEAL::75 0.000 -DEAL::76 0.000 -DEAL::77 0.07506 -DEAL::78 0.000 -DEAL::79 0.000 -DEAL::80 0.000 -DEAL::Number of active cells: 64 -DEAL::Total number of cells: 85 -DEAL::Number of degrees of freedom: 81 -DEAL::0 0.000 -DEAL::1 0.000 -DEAL::2 0.07506 -DEAL::3 0.000 -DEAL::4 0.000 -DEAL::5 0.1146 -DEAL::6 0.1838 -DEAL::7 0.1146 -DEAL::8 0.000 -DEAL::9 0.000 -DEAL::10 0.1350 -DEAL::11 0.000 -DEAL::12 0.1414 -DEAL::13 0.2322 -DEAL::14 0.2206 -DEAL::15 0.2675 -DEAL::16 0.2206 -DEAL::17 0.2824 -DEAL::18 0.2984 -DEAL::19 0.2824 -DEAL::20 0.2322 -DEAL::21 0.1350 -DEAL::22 0.000 -DEAL::23 0.1414 -DEAL::24 0.000 -DEAL::25 0.000 -DEAL::26 0.1350 -DEAL::27 0.000 -DEAL::28 0.1146 -DEAL::29 0.1838 -DEAL::30 0.2206 -DEAL::31 0.000 -DEAL::32 0.07506 -DEAL::33 0.000 -DEAL::34 0.000 -DEAL::35 0.000 -DEAL::36 0.1146 -DEAL::37 0.1350 -DEAL::38 0.2206 -DEAL::39 0.000 -DEAL::40 0.000 -DEAL::41 0.1414 -DEAL::42 0.2322 -DEAL::43 0.2675 -DEAL::44 0.2824 -DEAL::45 0.2675 -DEAL::46 0.2824 -DEAL::47 0.2206 -DEAL::48 0.1838 -DEAL::49 0.2206 -DEAL::50 0.2322 -DEAL::51 0.1350 -DEAL::52 0.000 -DEAL::53 0.000 -DEAL::54 0.1146 -DEAL::55 0.07506 -DEAL::56 0.1146 -DEAL::57 0.000 -DEAL::58 0.000 -DEAL::59 0.000 -DEAL::60 0.000 -DEAL::61 0.1350 -DEAL::62 0.1414 -DEAL::63 0.000 -DEAL::64 0.000 -DEAL::65 0.1350 -DEAL::66 0.000 -DEAL::67 0.2206 -DEAL::68 0.1838 -DEAL::69 0.1146 -DEAL::70 0.000 -DEAL::71 0.2675 -DEAL::72 0.2206 -DEAL::73 0.1350 -DEAL::74 0.1146 -DEAL::75 0.000 -DEAL::76 0.000 -DEAL::77 0.07506 -DEAL::78 0.000 -DEAL::79 0.000 -DEAL::80 0.000 -DEAL::Number of active cells: 64 -DEAL::Total number of cells: 85 -DEAL::Number of degrees of freedom: 81 -DEAL::0 0.000 -DEAL::1 0.000 -DEAL::2 0.07506 -DEAL::3 0.000 -DEAL::4 0.000 -DEAL::5 0.1146 -DEAL::6 0.1838 -DEAL::7 0.1146 -DEAL::8 0.000 -DEAL::9 0.000 -DEAL::10 0.1350 -DEAL::11 0.000 -DEAL::12 0.1414 -DEAL::13 0.2322 -DEAL::14 0.2206 -DEAL::15 0.2675 -DEAL::16 0.2206 -DEAL::17 0.2824 -DEAL::18 0.2984 -DEAL::19 0.2824 -DEAL::20 0.2322 -DEAL::21 0.1350 -DEAL::22 0.000 -DEAL::23 0.1414 -DEAL::24 0.000 -DEAL::25 0.000 -DEAL::26 0.1350 -DEAL::27 0.000 -DEAL::28 0.1146 -DEAL::29 0.1838 -DEAL::30 0.2206 -DEAL::31 0.000 -DEAL::32 0.07506 -DEAL::33 0.000 -DEAL::34 0.000 -DEAL::35 0.000 -DEAL::36 0.1146 -DEAL::37 0.1350 -DEAL::38 0.2206 -DEAL::39 0.000 -DEAL::40 0.000 -DEAL::41 0.1414 -DEAL::42 0.2322 -DEAL::43 0.2675 -DEAL::44 0.2824 -DEAL::45 0.2675 -DEAL::46 0.2824 -DEAL::47 0.2206 -DEAL::48 0.1838 -DEAL::49 0.2206 -DEAL::50 0.2322 -DEAL::51 0.1350 -DEAL::52 0.000 -DEAL::53 0.000 -DEAL::54 0.1146 -DEAL::55 0.07506 -DEAL::56 0.1146 -DEAL::57 0.000 -DEAL::58 0.000 -DEAL::59 0.000 -DEAL::60 0.000 -DEAL::61 0.1350 -DEAL::62 0.1414 -DEAL::63 0.000 -DEAL::64 0.000 -DEAL::65 0.1350 -DEAL::66 0.000 -DEAL::67 0.2206 -DEAL::68 0.1838 -DEAL::69 0.1146 -DEAL::70 0.000 -DEAL::71 0.2675 -DEAL::72 0.2206 -DEAL::73 0.1350 -DEAL::74 0.1146 -DEAL::75 0.000 -DEAL::76 0.000 -DEAL::77 0.07506 -DEAL::78 0.000 -DEAL::79 0.000 -DEAL::80 0.000 -DEAL::Number of active cells: 64 -DEAL::Total number of cells: 85 -DEAL::Number of degrees of freedom: 81 -DEAL::0 0.000 -DEAL::1 0.000 -DEAL::2 0.07506 -DEAL::3 0.000 -DEAL::4 0.000 -DEAL::5 0.1146 -DEAL::6 0.1838 -DEAL::7 0.1146 -DEAL::8 0.000 -DEAL::9 0.000 -DEAL::10 0.1350 -DEAL::11 0.000 -DEAL::12 0.1414 -DEAL::13 0.2322 -DEAL::14 0.2206 -DEAL::15 0.2675 -DEAL::16 0.2206 -DEAL::17 0.2824 -DEAL::18 0.2984 -DEAL::19 0.2824 -DEAL::20 0.2322 -DEAL::21 0.1350 -DEAL::22 0.000 -DEAL::23 0.1414 -DEAL::24 0.000 -DEAL::25 0.000 -DEAL::26 0.1350 -DEAL::27 0.000 -DEAL::28 0.1146 -DEAL::29 0.1838 -DEAL::30 0.2206 -DEAL::31 0.000 -DEAL::32 0.07506 -DEAL::33 0.000 -DEAL::34 0.000 -DEAL::35 0.000 -DEAL::36 0.1146 -DEAL::37 0.1350 -DEAL::38 0.2206 -DEAL::39 0.000 -DEAL::40 0.000 -DEAL::41 0.1414 -DEAL::42 0.2322 -DEAL::43 0.2675 -DEAL::44 0.2824 -DEAL::45 0.2675 -DEAL::46 0.2824 -DEAL::47 0.2206 -DEAL::48 0.1838 -DEAL::49 0.2206 -DEAL::50 0.2322 -DEAL::51 0.1350 -DEAL::52 0.000 -DEAL::53 0.000 -DEAL::54 0.1146 -DEAL::55 0.07506 -DEAL::56 0.1146 -DEAL::57 0.000 -DEAL::58 0.000 -DEAL::59 0.000 -DEAL::60 0.000 -DEAL::61 0.1350 -DEAL::62 0.1414 -DEAL::63 0.000 -DEAL::64 0.000 -DEAL::65 0.1350 -DEAL::66 0.000 -DEAL::67 0.2206 -DEAL::68 0.1838 -DEAL::69 0.1146 -DEAL::70 0.000 -DEAL::71 0.2675 -DEAL::72 0.2206 -DEAL::73 0.1350 -DEAL::74 0.1146 -DEAL::75 0.000 -DEAL::76 0.000 -DEAL::77 0.07506 -DEAL::78 0.000 -DEAL::79 0.000 -DEAL::80 0.000 -DEAL::Checking 4 data sets. diff --git a/tests/deal.II/constraints.cc b/tests/deal.II/constraints.cc deleted file mode 100644 index 5f326c2f91..0000000000 --- a/tests/deal.II/constraints.cc +++ /dev/null @@ -1,278 +0,0 @@ -//---------------------------- constraints.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- constraints.cc --------------------------- - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include - - -void make_tria (Triangulation<3> &tria, int step) -{ - switch (step) - { - case 0: - case 1: - { - // two cells packed behind each - // other. if step==0, refine back one, - // otherwise the one in front - const Point<3> vertices[12] = { Point<3>(0,0,0), - Point<3>(1,0,0), - Point<3>(1,0,1), - Point<3>(0,0,1), - - Point<3>(0,1,0), - Point<3>(1,1,0), - Point<3>(1,1,1), - Point<3>(0,1,1), - - Point<3>(0,2,0), - Point<3>(1,2,0), - Point<3>(1,2,1), - Point<3>(0,2,1) }; - const int cell_vertices[2][8] = { { 0,1,2,3,4,5,6,7 }, { 4,5,6,7,8,9,10,11 } }; - vector > cells (2, CellData<3>()); - for (unsigned int cell=0; cell<2; ++cell) - for (unsigned int j=0; j<8; ++j) - cells[cell].vertices[j] = cell_vertices[cell][j]; - cells[0].material_id = 0; - cells[1].material_id = 0; - - tria.create_triangulation (vector >(&vertices[0], &vertices[12]), - cells, - SubCellData()); // no boundary information - - if (step==0) - tria.last_active()->set_refine_flag(); - else - tria.begin_active()->set_refine_flag(); - tria.execute_coarsening_and_refinement (); - - break; - }; - - case 2: - case 3: - { - // two cells packed next to each - // other. if step==2, refine right one, - // otherwise the left one - const Point<3> vertices[12] = { Point<3>(0,0,0), - Point<3>(1,0,0), - Point<3>(1,0,1), - Point<3>(0,0,1), - - Point<3>(0,1,0), - Point<3>(1,1,0), - Point<3>(1,1,1), - Point<3>(0,1,1), - - Point<3>(2,0,0), - Point<3>(2,0,1), - Point<3>(2,1,0), - Point<3>(2,1,1) }; - const int cell_vertices[2][8] = { { 0,1,2,3,4,5,6,7 }, { 1,8,9,2,5,10,11,6 } }; - vector > cells (2, CellData<3>()); - for (unsigned int cell=0; cell<2; ++cell) - for (unsigned int j=0; j<8; ++j) - cells[cell].vertices[j] = cell_vertices[cell][j]; - cells[0].material_id = 0; - cells[1].material_id = 0; - - tria.create_triangulation (vector >(&vertices[0], &vertices[12]), - cells, - SubCellData()); // no boundary information - - if (step==2) - tria.last_active()->set_refine_flag(); - else - tria.begin_active()->set_refine_flag(); - tria.execute_coarsening_and_refinement (); - - break; - }; - - case 4: - case 5: - { - // two cells packed on top of each - // other. if step==4, refine top one, - // otherwise the bottom one - const Point<3> vertices[12] = { Point<3>(0,0,0), - Point<3>(1,0,0), - Point<3>(1,0,1), - Point<3>(0,0,1), - - Point<3>(0,1,0), - Point<3>(1,1,0), - Point<3>(1,1,1), - Point<3>(0,1,1), - - Point<3>(1,0,2), - Point<3>(0,0,2), - Point<3>(1,1,2), - Point<3>(0,1,2) }; - const int cell_vertices[2][8] = { { 0,1,2,3,4,5,6,7 }, { 3, 2, 8, 9 , 7, 6, 10, 11} }; - vector > cells (2, CellData<3>()); - for (unsigned int cell=0; cell<2; ++cell) - for (unsigned int j=0; j<8; ++j) - cells[cell].vertices[j] = cell_vertices[cell][j]; - cells[0].material_id = 0; - cells[1].material_id = 0; - - tria.create_triangulation (vector >(&vertices[0], &vertices[12]), - cells, - SubCellData()); // no boundary information - - if (step==4) - tria.last_active()->set_refine_flag(); - else - tria.begin_active()->set_refine_flag(); - tria.execute_coarsening_and_refinement (); - - break; - }; - - -case 6: - case 7: - case 8: - { - // four cells, with several refined - // (see below) - const Point<3> vertices[18] = { Point<3>(0,0,0), - Point<3>(1,0,0), - Point<3>(1,0,1), - Point<3>(0,0,1), - - Point<3>(0,1,0), - Point<3>(1,1,0), - Point<3>(1,1,1), - Point<3>(0,1,1), - - Point<3>(2,0,0), - Point<3>(2,0,1), - Point<3>(2,1,0), - Point<3>(2,1,1), - - Point<3>(0,2,0), - Point<3>(1,2,0), - Point<3>(1,2,1), - Point<3>(0,2,1), - - Point<3>(2,2,0), - Point<3>(2,2,1) }; - - const int cell_vertices[4][8] = { { 0,1,2,3,4,5,6,7 }, - { 1,8,9,2,5,10,11,6 }, - { 4,5,6,7,12,13,14,15}, - { 5,10,11,6,13,16,17,14} }; - vector > cells (4, CellData<3>()); - for (unsigned int cell=0; cell<4; ++cell) - for (unsigned int j=0; j<8; ++j) - cells[cell].vertices[j] = cell_vertices[cell][j]; - cells[0].material_id = 0; - cells[1].material_id = 0; - cells[2].material_id = 0; - cells[3].material_id = 0; - - tria.create_triangulation (vector >(&vertices[0], &vertices[18]), - cells, - SubCellData()); // no boundary information - - switch (step) - { - case 6: - tria.begin_active()->set_refine_flag (); - break; - - case 7: - tria.begin_active()->set_refine_flag (); - (++tria.begin_active())->set_refine_flag (); - break; - case 8: - tria.begin_active()->set_refine_flag (); - (++(++(++tria.begin_active())))->set_refine_flag (); - break; - }; - - tria.execute_coarsening_and_refinement (); - - break; - }; - }; -}; - - -int main () -{ - ofstream logfile("constraints.output"); - logfile.precision (3); - deallog.attach(logfile); - deallog.depth_console(0); - - FiniteElement<3> *fe; - - for (unsigned int element=0; element<2; ++element) - { - switch (element) - { - case 0: - fe = new FEQ1<3>(); - break; - case 1: - fe = new FEQ2<3>(); - break; - }; - - for (int step=0; step<9; ++step) - { - deallog << "Element=" << element << ", Step=" << step << endl; - - Triangulation<3> tria; - make_tria (tria, step); - GridOut().write_gnuplot (tria, logfile); - - DoFHandler<3> dof (tria); - dof.distribute_dofs (*fe); - - ConstraintMatrix constraints; - DoFTools::make_hanging_node_constraints (dof, constraints); - constraints.close (); - - constraints.print (logfile); - - // release fe - dof.clear (); - - deallog << endl; - }; - - delete fe; - }; -}; - diff --git a/tests/deal.II/constraints.checked b/tests/deal.II/constraints.checked deleted file mode 100644 index 2d63b80671..0000000000 --- a/tests/deal.II/constraints.checked +++ /dev/null @@ -1,6086 +0,0 @@ - -DEAL::Element=0, Step=0 -0.00 0.00 0.00 0 0 -1.00 0.00 0.00 0 0 -1.00 0.00 1.00 0 0 -0.00 0.00 1.00 0 0 -0.00 0.00 0.00 0 0 - -0.00 1.00 0.00 0 0 -1.00 1.00 0.00 0 0 -1.00 1.00 1.00 0 0 -0.00 1.00 1.00 0 0 -0.00 1.00 0.00 0 0 - -0.00 0.00 0.00 0 0 -0.00 1.00 0.00 0 0 - -1.00 0.00 0.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 0.00 1.00 0 0 -1.00 1.00 1.00 0 0 - -0.00 0.00 1.00 0 0 -0.00 1.00 1.00 0 0 - -0.00 1.00 0.00 1 0 -0.500 1.00 0.00 1 0 -0.500 1.00 0.500 1 0 -0.00 1.00 0.500 1 0 -0.00 1.00 0.00 1 0 - -0.00 1.50 0.00 1 0 -0.500 1.50 0.00 1 0 -0.500 1.50 0.500 1 0 -0.00 1.50 0.500 1 0 -0.00 1.50 0.00 1 0 - -0.00 1.00 0.00 1 0 -0.00 1.50 0.00 1 0 - -0.500 1.00 0.00 1 0 -0.500 1.50 0.00 1 0 - -0.500 1.00 0.500 1 0 -0.500 1.50 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.00 1.50 0.500 1 0 - -0.500 1.00 0.00 1 0 -1.00 1.00 0.00 1 0 -1.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 0.00 1 0 - -0.500 1.50 0.00 1 0 -1.00 1.50 0.00 1 0 -1.00 1.50 0.500 1 0 -0.500 1.50 0.500 1 0 -0.500 1.50 0.00 1 0 - -0.500 1.00 0.00 1 0 -0.500 1.50 0.00 1 0 - -1.00 1.00 0.00 1 0 -1.00 1.50 0.00 1 0 - -1.00 1.00 0.500 1 0 -1.00 1.50 0.500 1 0 - -0.500 1.00 0.500 1 0 -0.500 1.50 0.500 1 0 - -0.500 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 0.500 1 0 - -0.500 1.50 0.500 1 0 -1.00 1.50 0.500 1 0 -1.00 1.50 1.00 1 0 -0.500 1.50 1.00 1 0 -0.500 1.50 0.500 1 0 - -0.500 1.00 0.500 1 0 -0.500 1.50 0.500 1 0 - -1.00 1.00 0.500 1 0 -1.00 1.50 0.500 1 0 - -1.00 1.00 1.00 1 0 -1.00 1.50 1.00 1 0 - -0.500 1.00 1.00 1 0 -0.500 1.50 1.00 1 0 - -0.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 1.00 1 0 -0.00 1.00 1.00 1 0 -0.00 1.00 0.500 1 0 - -0.00 1.50 0.500 1 0 -0.500 1.50 0.500 1 0 -0.500 1.50 1.00 1 0 -0.00 1.50 1.00 1 0 -0.00 1.50 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.00 1.50 0.500 1 0 - -0.500 1.00 0.500 1 0 -0.500 1.50 0.500 1 0 - -0.500 1.00 1.00 1 0 -0.500 1.50 1.00 1 0 - -0.00 1.00 1.00 1 0 -0.00 1.50 1.00 1 0 - -0.00 1.50 0.00 1 0 -0.500 1.50 0.00 1 0 -0.500 1.50 0.500 1 0 -0.00 1.50 0.500 1 0 -0.00 1.50 0.00 1 0 - -0.00 2.00 0.00 1 0 -0.500 2.00 0.00 1 0 -0.500 2.00 0.500 1 0 -0.00 2.00 0.500 1 0 -0.00 2.00 0.00 1 0 - -0.00 1.50 0.00 1 0 -0.00 2.00 0.00 1 0 - -0.500 1.50 0.00 1 0 -0.500 2.00 0.00 1 0 - -0.500 1.50 0.500 1 0 -0.500 2.00 0.500 1 0 - -0.00 1.50 0.500 1 0 -0.00 2.00 0.500 1 0 - -0.500 1.50 0.00 1 0 -1.00 1.50 0.00 1 0 -1.00 1.50 0.500 1 0 -0.500 1.50 0.500 1 0 -0.500 1.50 0.00 1 0 - -0.500 2.00 0.00 1 0 -1.00 2.00 0.00 1 0 -1.00 2.00 0.500 1 0 -0.500 2.00 0.500 1 0 -0.500 2.00 0.00 1 0 - -0.500 1.50 0.00 1 0 -0.500 2.00 0.00 1 0 - -1.00 1.50 0.00 1 0 -1.00 2.00 0.00 1 0 - -1.00 1.50 0.500 1 0 -1.00 2.00 0.500 1 0 - -0.500 1.50 0.500 1 0 -0.500 2.00 0.500 1 0 - -0.500 1.50 0.500 1 0 -1.00 1.50 0.500 1 0 -1.00 1.50 1.00 1 0 -0.500 1.50 1.00 1 0 -0.500 1.50 0.500 1 0 - -0.500 2.00 0.500 1 0 -1.00 2.00 0.500 1 0 -1.00 2.00 1.00 1 0 -0.500 2.00 1.00 1 0 -0.500 2.00 0.500 1 0 - -0.500 1.50 0.500 1 0 -0.500 2.00 0.500 1 0 - -1.00 1.50 0.500 1 0 -1.00 2.00 0.500 1 0 - -1.00 1.50 1.00 1 0 -1.00 2.00 1.00 1 0 - -0.500 1.50 1.00 1 0 -0.500 2.00 1.00 1 0 - -0.00 1.50 0.500 1 0 -0.500 1.50 0.500 1 0 -0.500 1.50 1.00 1 0 -0.00 1.50 1.00 1 0 -0.00 1.50 0.500 1 0 - -0.00 2.00 0.500 1 0 -0.500 2.00 0.500 1 0 -0.500 2.00 1.00 1 0 -0.00 2.00 1.00 1 0 -0.00 2.00 0.500 1 0 - -0.00 1.50 0.500 1 0 -0.00 2.00 0.500 1 0 - -0.500 1.50 0.500 1 0 -0.500 2.00 0.500 1 0 - -0.500 1.50 1.00 1 0 -0.500 2.00 1.00 1 0 - -0.00 1.50 1.00 1 0 -0.00 2.00 1.00 1 0 - - 8 4: 0.500 - 8 5: 0.500 - 9 4: 0.250 - 9 5: 0.250 - 9 6: 0.250 - 9 7: 0.250 - 10 4: 0.500 - 10 7: 0.500 - 15 5: 0.500 - 15 6: 0.500 - 18 6: 0.500 - 18 7: 0.500 - -DEAL::Element=0, Step=1 -0.00 1.00 0.00 0 0 -1.00 1.00 0.00 0 0 -1.00 1.00 1.00 0 0 -0.00 1.00 1.00 0 0 -0.00 1.00 0.00 0 0 - -0.00 2.00 0.00 0 0 -1.00 2.00 0.00 0 0 -1.00 2.00 1.00 0 0 -0.00 2.00 1.00 0 0 -0.00 2.00 0.00 0 0 - -0.00 1.00 0.00 0 0 -0.00 2.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -1.00 2.00 0.00 0 0 - -1.00 1.00 1.00 0 0 -1.00 2.00 1.00 0 0 - -0.00 1.00 1.00 0 0 -0.00 2.00 1.00 0 0 - -0.00 0.00 0.00 1 0 -0.500 0.00 0.00 1 0 -0.500 0.00 0.500 1 0 -0.00 0.00 0.500 1 0 -0.00 0.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 0.00 0.00 1 0 -0.00 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.00 1 0 -1.00 0.00 0.00 1 0 -1.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 1.00 1 0 -0.500 0.00 1.00 1 0 -0.500 0.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 1.00 1 0 -0.00 0.00 1.00 1 0 -0.00 0.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 1.00 1 0 -0.00 0.500 1.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 1.00 0.00 1 0 -0.500 1.00 0.00 1 0 -0.500 1.00 0.500 1 0 -0.00 1.00 0.500 1 0 -0.00 1.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.00 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 1.00 0.00 1 0 -1.00 1.00 0.00 1 0 -1.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 1.00 1 0 -0.00 1.00 1.00 1 0 -0.00 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.00 1.00 1.00 1 0 - - 26 0: 0.500 - 26 1: 0.500 - 27 0: 0.250 - 27 1: 0.250 - 27 2: 0.250 - 27 3: 0.250 - 28 0: 0.500 - 28 3: 0.500 - 29 1: 0.500 - 29 2: 0.500 - 30 2: 0.500 - 30 3: 0.500 - -DEAL::Element=0, Step=2 -0.00 0.00 0.00 0 0 -1.00 0.00 0.00 0 0 -1.00 0.00 1.00 0 0 -0.00 0.00 1.00 0 0 -0.00 0.00 0.00 0 0 - -0.00 1.00 0.00 0 0 -1.00 1.00 0.00 0 0 -1.00 1.00 1.00 0 0 -0.00 1.00 1.00 0 0 -0.00 1.00 0.00 0 0 - -0.00 0.00 0.00 0 0 -0.00 1.00 0.00 0 0 - -1.00 0.00 0.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 0.00 1.00 0 0 -1.00 1.00 1.00 0 0 - -0.00 0.00 1.00 0 0 -0.00 1.00 1.00 0 0 - -1.00 0.00 0.00 1 0 -1.50 0.00 0.00 1 0 -1.50 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.50 0.500 0.00 1 0 -1.50 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.50 0.00 0.00 1 0 -1.50 0.500 0.00 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.50 0.00 0.00 1 0 -2.00 0.00 0.00 1 0 -2.00 0.00 0.500 1 0 -1.50 0.00 0.500 1 0 -1.50 0.00 0.00 1 0 - -1.50 0.500 0.00 1 0 -2.00 0.500 0.00 1 0 -2.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 0.00 1 0 - -1.50 0.00 0.00 1 0 -1.50 0.500 0.00 1 0 - -2.00 0.00 0.00 1 0 -2.00 0.500 0.00 1 0 - -2.00 0.00 0.500 1 0 -2.00 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -2.00 0.00 0.500 1 0 -2.00 0.00 1.00 1 0 -1.50 0.00 1.00 1 0 -1.50 0.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -2.00 0.500 0.500 1 0 -2.00 0.500 1.00 1 0 -1.50 0.500 1.00 1 0 -1.50 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -2.00 0.00 0.500 1 0 -2.00 0.500 0.500 1 0 - -2.00 0.00 1.00 1 0 -2.00 0.500 1.00 1 0 - -1.50 0.00 1.00 1 0 -1.50 0.500 1.00 1 0 - -1.00 0.00 0.500 1 0 -1.50 0.00 0.500 1 0 -1.50 0.00 1.00 1 0 -1.00 0.00 1.00 1 0 -1.00 0.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 1.00 1 0 -1.00 0.500 1.00 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -1.50 0.00 1.00 1 0 -1.50 0.500 1.00 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -1.00 0.500 0.00 1 0 -1.50 0.500 0.00 1 0 -1.50 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 0.00 1 0 - -1.00 1.00 0.00 1 0 -1.50 1.00 0.00 1 0 -1.50 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.50 0.500 0.00 1 0 -1.50 1.00 0.00 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.50 0.500 0.00 1 0 -2.00 0.500 0.00 1 0 -2.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 0.00 1 0 - -1.50 1.00 0.00 1 0 -2.00 1.00 0.00 1 0 -2.00 1.00 0.500 1 0 -1.50 1.00 0.500 1 0 -1.50 1.00 0.00 1 0 - -1.50 0.500 0.00 1 0 -1.50 1.00 0.00 1 0 - -2.00 0.500 0.00 1 0 -2.00 1.00 0.00 1 0 - -2.00 0.500 0.500 1 0 -2.00 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -2.00 0.500 0.500 1 0 -2.00 0.500 1.00 1 0 -1.50 0.500 1.00 1 0 -1.50 0.500 0.500 1 0 - -1.50 1.00 0.500 1 0 -2.00 1.00 0.500 1 0 -2.00 1.00 1.00 1 0 -1.50 1.00 1.00 1 0 -1.50 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -2.00 0.500 0.500 1 0 -2.00 1.00 0.500 1 0 - -2.00 0.500 1.00 1 0 -2.00 1.00 1.00 1 0 - -1.50 0.500 1.00 1 0 -1.50 1.00 1.00 1 0 - -1.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 1.00 1 0 -1.00 0.500 1.00 1 0 -1.00 0.500 0.500 1 0 - -1.00 1.00 0.500 1 0 -1.50 1.00 0.500 1 0 -1.50 1.00 1.00 1 0 -1.00 1.00 1.00 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -1.50 0.500 1.00 1 0 -1.50 1.00 1.00 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - - 10 1: 0.500 - 10 2: 0.500 - 11 1: 0.500 - 11 5: 0.500 - 14 1: 0.250 - 14 2: 0.250 - 14 5: 0.250 - 14 6: 0.250 - 23 2: 0.500 - 23 6: 0.500 - 26 5: 0.500 - 26 6: 0.500 - -DEAL::Element=0, Step=3 -1.00 0.00 0.00 0 0 -2.00 0.00 0.00 0 0 -2.00 0.00 1.00 0 0 -1.00 0.00 1.00 0 0 -1.00 0.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -2.00 1.00 0.00 0 0 -2.00 1.00 1.00 0 0 -1.00 1.00 1.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 0.00 0.00 0 0 -1.00 1.00 0.00 0 0 - -2.00 0.00 0.00 0 0 -2.00 1.00 0.00 0 0 - -2.00 0.00 1.00 0 0 -2.00 1.00 1.00 0 0 - -1.00 0.00 1.00 0 0 -1.00 1.00 1.00 0 0 - -0.00 0.00 0.00 1 0 -0.500 0.00 0.00 1 0 -0.500 0.00 0.500 1 0 -0.00 0.00 0.500 1 0 -0.00 0.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 0.00 0.00 1 0 -0.00 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.00 1 0 -1.00 0.00 0.00 1 0 -1.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 1.00 1 0 -0.500 0.00 1.00 1 0 -0.500 0.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 1.00 1 0 -0.00 0.00 1.00 1 0 -0.00 0.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 1.00 1 0 -0.00 0.500 1.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 1.00 0.00 1 0 -0.500 1.00 0.00 1 0 -0.500 1.00 0.500 1 0 -0.00 1.00 0.500 1 0 -0.00 1.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.00 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 1.00 0.00 1 0 -1.00 1.00 0.00 1 0 -1.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 1.00 1 0 -0.00 1.00 1.00 1 0 -0.00 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.00 1.00 1.00 1 0 - - 16 0: 0.500 - 16 3: 0.500 - 17 0: 0.500 - 17 4: 0.500 - 18 0: 0.250 - 18 3: 0.250 - 18 4: 0.250 - 18 7: 0.250 - 20 3: 0.500 - 20 7: 0.500 - 28 4: 0.500 - 28 7: 0.500 - -DEAL::Element=0, Step=4 -0.00 0.00 0.00 0 0 -1.00 0.00 0.00 0 0 -1.00 0.00 1.00 0 0 -0.00 0.00 1.00 0 0 -0.00 0.00 0.00 0 0 - -0.00 1.00 0.00 0 0 -1.00 1.00 0.00 0 0 -1.00 1.00 1.00 0 0 -0.00 1.00 1.00 0 0 -0.00 1.00 0.00 0 0 - -0.00 0.00 0.00 0 0 -0.00 1.00 0.00 0 0 - -1.00 0.00 0.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 0.00 1.00 0 0 -1.00 1.00 1.00 0 0 - -0.00 0.00 1.00 0 0 -0.00 1.00 1.00 0 0 - -0.00 0.00 1.00 1 0 -0.500 0.00 1.00 1 0 -0.500 0.00 1.50 1 0 -0.00 0.00 1.50 1 0 -0.00 0.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 1.50 1 0 -0.00 0.500 1.50 1 0 -0.00 0.500 1.00 1 0 - -0.00 0.00 1.00 1 0 -0.00 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.500 0.00 1.50 1 0 -0.500 0.500 1.50 1 0 - -0.00 0.00 1.50 1 0 -0.00 0.500 1.50 1 0 - -0.500 0.00 1.00 1 0 -1.00 0.00 1.00 1 0 -1.00 0.00 1.50 1 0 -0.500 0.00 1.50 1 0 -0.500 0.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -1.00 0.500 1.00 1 0 -1.00 0.500 1.50 1 0 -0.500 0.500 1.50 1 0 -0.500 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -1.00 0.00 1.50 1 0 -1.00 0.500 1.50 1 0 - -0.500 0.00 1.50 1 0 -0.500 0.500 1.50 1 0 - -0.500 0.00 1.50 1 0 -1.00 0.00 1.50 1 0 -1.00 0.00 2.00 1 0 -0.500 0.00 2.00 1 0 -0.500 0.00 1.50 1 0 - -0.500 0.500 1.50 1 0 -1.00 0.500 1.50 1 0 -1.00 0.500 2.00 1 0 -0.500 0.500 2.00 1 0 -0.500 0.500 1.50 1 0 - -0.500 0.00 1.50 1 0 -0.500 0.500 1.50 1 0 - -1.00 0.00 1.50 1 0 -1.00 0.500 1.50 1 0 - -1.00 0.00 2.00 1 0 -1.00 0.500 2.00 1 0 - -0.500 0.00 2.00 1 0 -0.500 0.500 2.00 1 0 - -0.00 0.00 1.50 1 0 -0.500 0.00 1.50 1 0 -0.500 0.00 2.00 1 0 -0.00 0.00 2.00 1 0 -0.00 0.00 1.50 1 0 - -0.00 0.500 1.50 1 0 -0.500 0.500 1.50 1 0 -0.500 0.500 2.00 1 0 -0.00 0.500 2.00 1 0 -0.00 0.500 1.50 1 0 - -0.00 0.00 1.50 1 0 -0.00 0.500 1.50 1 0 - -0.500 0.00 1.50 1 0 -0.500 0.500 1.50 1 0 - -0.500 0.00 2.00 1 0 -0.500 0.500 2.00 1 0 - -0.00 0.00 2.00 1 0 -0.00 0.500 2.00 1 0 - -0.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 1.50 1 0 -0.00 0.500 1.50 1 0 -0.00 0.500 1.00 1 0 - -0.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 1.50 1 0 -0.00 1.00 1.50 1 0 -0.00 1.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.00 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.500 0.500 1.50 1 0 -0.500 1.00 1.50 1 0 - -0.00 0.500 1.50 1 0 -0.00 1.00 1.50 1 0 - -0.500 0.500 1.00 1 0 -1.00 0.500 1.00 1 0 -1.00 0.500 1.50 1 0 -0.500 0.500 1.50 1 0 -0.500 0.500 1.00 1 0 - -0.500 1.00 1.00 1 0 -1.00 1.00 1.00 1 0 -1.00 1.00 1.50 1 0 -0.500 1.00 1.50 1 0 -0.500 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - -1.00 0.500 1.50 1 0 -1.00 1.00 1.50 1 0 - -0.500 0.500 1.50 1 0 -0.500 1.00 1.50 1 0 - -0.500 0.500 1.50 1 0 -1.00 0.500 1.50 1 0 -1.00 0.500 2.00 1 0 -0.500 0.500 2.00 1 0 -0.500 0.500 1.50 1 0 - -0.500 1.00 1.50 1 0 -1.00 1.00 1.50 1 0 -1.00 1.00 2.00 1 0 -0.500 1.00 2.00 1 0 -0.500 1.00 1.50 1 0 - -0.500 0.500 1.50 1 0 -0.500 1.00 1.50 1 0 - -1.00 0.500 1.50 1 0 -1.00 1.00 1.50 1 0 - -1.00 0.500 2.00 1 0 -1.00 1.00 2.00 1 0 - -0.500 0.500 2.00 1 0 -0.500 1.00 2.00 1 0 - -0.00 0.500 1.50 1 0 -0.500 0.500 1.50 1 0 -0.500 0.500 2.00 1 0 -0.00 0.500 2.00 1 0 -0.00 0.500 1.50 1 0 - -0.00 1.00 1.50 1 0 -0.500 1.00 1.50 1 0 -0.500 1.00 2.00 1 0 -0.00 1.00 2.00 1 0 -0.00 1.00 1.50 1 0 - -0.00 0.500 1.50 1 0 -0.00 1.00 1.50 1 0 - -0.500 0.500 1.50 1 0 -0.500 1.00 1.50 1 0 - -0.500 0.500 2.00 1 0 -0.500 1.00 2.00 1 0 - -0.00 0.500 2.00 1 0 -0.00 1.00 2.00 1 0 - - 8 2: 0.500 - 8 3: 0.500 - 11 3: 0.500 - 11 7: 0.500 - 12 2: 0.250 - 12 3: 0.250 - 12 6: 0.250 - 12 7: 0.250 - 16 2: 0.500 - 16 6: 0.500 - 24 6: 0.500 - 24 7: 0.500 - -DEAL::Element=0, Step=5 -0.00 0.00 1.00 0 0 -1.00 0.00 1.00 0 0 -1.00 0.00 2.00 0 0 -0.00 0.00 2.00 0 0 -0.00 0.00 1.00 0 0 - -0.00 1.00 1.00 0 0 -1.00 1.00 1.00 0 0 -1.00 1.00 2.00 0 0 -0.00 1.00 2.00 0 0 -0.00 1.00 1.00 0 0 - -0.00 0.00 1.00 0 0 -0.00 1.00 1.00 0 0 - -1.00 0.00 1.00 0 0 -1.00 1.00 1.00 0 0 - -1.00 0.00 2.00 0 0 -1.00 1.00 2.00 0 0 - -0.00 0.00 2.00 0 0 -0.00 1.00 2.00 0 0 - -0.00 0.00 0.00 1 0 -0.500 0.00 0.00 1 0 -0.500 0.00 0.500 1 0 -0.00 0.00 0.500 1 0 -0.00 0.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 0.00 0.00 1 0 -0.00 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.00 1 0 -1.00 0.00 0.00 1 0 -1.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 1.00 1 0 -0.500 0.00 1.00 1 0 -0.500 0.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 1.00 1 0 -0.00 0.00 1.00 1 0 -0.00 0.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 1.00 1 0 -0.00 0.500 1.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 1.00 0.00 1 0 -0.500 1.00 0.00 1 0 -0.500 1.00 0.500 1 0 -0.00 1.00 0.500 1 0 -0.00 1.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.00 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 1.00 0.00 1 0 -1.00 1.00 0.00 1 0 -1.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 1.00 1 0 -0.00 1.00 1.00 1 0 -0.00 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.00 1.00 1.00 1 0 - - 20 0: 0.500 - 20 1: 0.500 - 21 1: 0.500 - 21 5: 0.500 - 22 0: 0.250 - 22 1: 0.250 - 22 4: 0.250 - 22 5: 0.250 - 23 0: 0.500 - 23 4: 0.500 - 30 4: 0.500 - 30 5: 0.500 - -DEAL::Element=0, Step=6 -1.00 0.00 0.00 0 0 -2.00 0.00 0.00 0 0 -2.00 0.00 1.00 0 0 -1.00 0.00 1.00 0 0 -1.00 0.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -2.00 1.00 0.00 0 0 -2.00 1.00 1.00 0 0 -1.00 1.00 1.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 0.00 0.00 0 0 -1.00 1.00 0.00 0 0 - -2.00 0.00 0.00 0 0 -2.00 1.00 0.00 0 0 - -2.00 0.00 1.00 0 0 -2.00 1.00 1.00 0 0 - -1.00 0.00 1.00 0 0 -1.00 1.00 1.00 0 0 - -0.00 1.00 0.00 0 0 -1.00 1.00 0.00 0 0 -1.00 1.00 1.00 0 0 -0.00 1.00 1.00 0 0 -0.00 1.00 0.00 0 0 - -0.00 2.00 0.00 0 0 -1.00 2.00 0.00 0 0 -1.00 2.00 1.00 0 0 -0.00 2.00 1.00 0 0 -0.00 2.00 0.00 0 0 - -0.00 1.00 0.00 0 0 -0.00 2.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -1.00 2.00 0.00 0 0 - -1.00 1.00 1.00 0 0 -1.00 2.00 1.00 0 0 - -0.00 1.00 1.00 0 0 -0.00 2.00 1.00 0 0 - -1.00 1.00 0.00 0 0 -2.00 1.00 0.00 0 0 -2.00 1.00 1.00 0 0 -1.00 1.00 1.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 2.00 0.00 0 0 -2.00 2.00 0.00 0 0 -2.00 2.00 1.00 0 0 -1.00 2.00 1.00 0 0 -1.00 2.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -1.00 2.00 0.00 0 0 - -2.00 1.00 0.00 0 0 -2.00 2.00 0.00 0 0 - -2.00 1.00 1.00 0 0 -2.00 2.00 1.00 0 0 - -1.00 1.00 1.00 0 0 -1.00 2.00 1.00 0 0 - -0.00 0.00 0.00 1 0 -0.500 0.00 0.00 1 0 -0.500 0.00 0.500 1 0 -0.00 0.00 0.500 1 0 -0.00 0.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 0.00 0.00 1 0 -0.00 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.00 1 0 -1.00 0.00 0.00 1 0 -1.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 1.00 1 0 -0.500 0.00 1.00 1 0 -0.500 0.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 1.00 1 0 -0.00 0.00 1.00 1 0 -0.00 0.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 1.00 1 0 -0.00 0.500 1.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 1.00 0.00 1 0 -0.500 1.00 0.00 1 0 -0.500 1.00 0.500 1 0 -0.00 1.00 0.500 1 0 -0.00 1.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.00 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 1.00 0.00 1 0 -1.00 1.00 0.00 1 0 -1.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 1.00 1 0 -0.00 1.00 1.00 1 0 -0.00 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.00 1.00 1.00 1 0 - - 24 0: 0.500 - 24 3: 0.500 - 25 0: 0.500 - 25 4: 0.500 - 26 0: 0.250 - 26 3: 0.250 - 26 4: 0.250 - 26 7: 0.250 - 28 3: 0.500 - 28 7: 0.500 - 32 4: 0.500 - 32 8: 0.500 - 33 4: 0.250 - 33 7: 0.250 - 33 8: 0.250 - 33 9: 0.250 - 34 8: 0.500 - 34 9: 0.500 - 35 4: 0.500 - 35 7: 0.500 - 36 7: 0.500 - 36 9: 0.500 - -DEAL::Element=0, Step=7 -0.00 1.00 0.00 0 0 -1.00 1.00 0.00 0 0 -1.00 1.00 1.00 0 0 -0.00 1.00 1.00 0 0 -0.00 1.00 0.00 0 0 - -0.00 2.00 0.00 0 0 -1.00 2.00 0.00 0 0 -1.00 2.00 1.00 0 0 -0.00 2.00 1.00 0 0 -0.00 2.00 0.00 0 0 - -0.00 1.00 0.00 0 0 -0.00 2.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -1.00 2.00 0.00 0 0 - -1.00 1.00 1.00 0 0 -1.00 2.00 1.00 0 0 - -0.00 1.00 1.00 0 0 -0.00 2.00 1.00 0 0 - -1.00 1.00 0.00 0 0 -2.00 1.00 0.00 0 0 -2.00 1.00 1.00 0 0 -1.00 1.00 1.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 2.00 0.00 0 0 -2.00 2.00 0.00 0 0 -2.00 2.00 1.00 0 0 -1.00 2.00 1.00 0 0 -1.00 2.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -1.00 2.00 0.00 0 0 - -2.00 1.00 0.00 0 0 -2.00 2.00 0.00 0 0 - -2.00 1.00 1.00 0 0 -2.00 2.00 1.00 0 0 - -1.00 1.00 1.00 0 0 -1.00 2.00 1.00 0 0 - -0.00 0.00 0.00 1 0 -0.500 0.00 0.00 1 0 -0.500 0.00 0.500 1 0 -0.00 0.00 0.500 1 0 -0.00 0.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 0.00 0.00 1 0 -0.00 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.00 1 0 -1.00 0.00 0.00 1 0 -1.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 1.00 1 0 -0.500 0.00 1.00 1 0 -0.500 0.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 1.00 1 0 -0.00 0.00 1.00 1 0 -0.00 0.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 1.00 1 0 -0.00 0.500 1.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 1.00 0.00 1 0 -0.500 1.00 0.00 1 0 -0.500 1.00 0.500 1 0 -0.00 1.00 0.500 1 0 -0.00 1.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.00 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 1.00 0.00 1 0 -1.00 1.00 0.00 1 0 -1.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 1.00 1 0 -0.00 1.00 1.00 1 0 -0.00 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.00 1.00 1.00 1 0 - -1.00 0.00 0.00 1 0 -1.50 0.00 0.00 1 0 -1.50 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.50 0.500 0.00 1 0 -1.50 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.50 0.00 0.00 1 0 -1.50 0.500 0.00 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.50 0.00 0.00 1 0 -2.00 0.00 0.00 1 0 -2.00 0.00 0.500 1 0 -1.50 0.00 0.500 1 0 -1.50 0.00 0.00 1 0 - -1.50 0.500 0.00 1 0 -2.00 0.500 0.00 1 0 -2.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 0.00 1 0 - -1.50 0.00 0.00 1 0 -1.50 0.500 0.00 1 0 - -2.00 0.00 0.00 1 0 -2.00 0.500 0.00 1 0 - -2.00 0.00 0.500 1 0 -2.00 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -2.00 0.00 0.500 1 0 -2.00 0.00 1.00 1 0 -1.50 0.00 1.00 1 0 -1.50 0.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -2.00 0.500 0.500 1 0 -2.00 0.500 1.00 1 0 -1.50 0.500 1.00 1 0 -1.50 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -2.00 0.00 0.500 1 0 -2.00 0.500 0.500 1 0 - -2.00 0.00 1.00 1 0 -2.00 0.500 1.00 1 0 - -1.50 0.00 1.00 1 0 -1.50 0.500 1.00 1 0 - -1.00 0.00 0.500 1 0 -1.50 0.00 0.500 1 0 -1.50 0.00 1.00 1 0 -1.00 0.00 1.00 1 0 -1.00 0.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 1.00 1 0 -1.00 0.500 1.00 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -1.50 0.00 1.00 1 0 -1.50 0.500 1.00 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -1.00 0.500 0.00 1 0 -1.50 0.500 0.00 1 0 -1.50 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 0.00 1 0 - -1.00 1.00 0.00 1 0 -1.50 1.00 0.00 1 0 -1.50 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.50 0.500 0.00 1 0 -1.50 1.00 0.00 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.50 0.500 0.00 1 0 -2.00 0.500 0.00 1 0 -2.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 0.00 1 0 - -1.50 1.00 0.00 1 0 -2.00 1.00 0.00 1 0 -2.00 1.00 0.500 1 0 -1.50 1.00 0.500 1 0 -1.50 1.00 0.00 1 0 - -1.50 0.500 0.00 1 0 -1.50 1.00 0.00 1 0 - -2.00 0.500 0.00 1 0 -2.00 1.00 0.00 1 0 - -2.00 0.500 0.500 1 0 -2.00 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -2.00 0.500 0.500 1 0 -2.00 0.500 1.00 1 0 -1.50 0.500 1.00 1 0 -1.50 0.500 0.500 1 0 - -1.50 1.00 0.500 1 0 -2.00 1.00 0.500 1 0 -2.00 1.00 1.00 1 0 -1.50 1.00 1.00 1 0 -1.50 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -2.00 0.500 0.500 1 0 -2.00 1.00 0.500 1 0 - -2.00 0.500 1.00 1 0 -2.00 1.00 1.00 1 0 - -1.50 0.500 1.00 1 0 -1.50 1.00 1.00 1 0 - -1.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 1.00 1 0 -1.00 0.500 1.00 1 0 -1.00 0.500 0.500 1 0 - -1.00 1.00 0.500 1 0 -1.50 1.00 0.500 1 0 -1.50 1.00 1.00 1 0 -1.00 1.00 1.00 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -1.50 0.500 1.00 1 0 -1.50 1.00 1.00 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - - 30 0: 0.500 - 30 1: 0.500 - 31 0: 0.250 - 31 1: 0.250 - 31 2: 0.250 - 31 3: 0.250 - 32 0: 0.500 - 32 3: 0.500 - 33 1: 0.500 - 33 2: 0.500 - 34 2: 0.500 - 34 3: 0.500 - 47 1: 0.500 - 47 8: 0.500 - 48 1: 0.250 - 48 2: 0.250 - 48 8: 0.250 - 48 9: 0.250 - 49 8: 0.500 - 49 9: 0.500 - 50 2: 0.500 - 50 9: 0.500 - -DEAL::Element=0, Step=8 -1.00 0.00 0.00 0 0 -2.00 0.00 0.00 0 0 -2.00 0.00 1.00 0 0 -1.00 0.00 1.00 0 0 -1.00 0.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -2.00 1.00 0.00 0 0 -2.00 1.00 1.00 0 0 -1.00 1.00 1.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 0.00 0.00 0 0 -1.00 1.00 0.00 0 0 - -2.00 0.00 0.00 0 0 -2.00 1.00 0.00 0 0 - -2.00 0.00 1.00 0 0 -2.00 1.00 1.00 0 0 - -1.00 0.00 1.00 0 0 -1.00 1.00 1.00 0 0 - -0.00 1.00 0.00 0 0 -1.00 1.00 0.00 0 0 -1.00 1.00 1.00 0 0 -0.00 1.00 1.00 0 0 -0.00 1.00 0.00 0 0 - -0.00 2.00 0.00 0 0 -1.00 2.00 0.00 0 0 -1.00 2.00 1.00 0 0 -0.00 2.00 1.00 0 0 -0.00 2.00 0.00 0 0 - -0.00 1.00 0.00 0 0 -0.00 2.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -1.00 2.00 0.00 0 0 - -1.00 1.00 1.00 0 0 -1.00 2.00 1.00 0 0 - -0.00 1.00 1.00 0 0 -0.00 2.00 1.00 0 0 - -0.00 0.00 0.00 1 0 -0.500 0.00 0.00 1 0 -0.500 0.00 0.500 1 0 -0.00 0.00 0.500 1 0 -0.00 0.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 0.00 0.00 1 0 -0.00 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.00 1 0 -1.00 0.00 0.00 1 0 -1.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 1.00 1 0 -0.500 0.00 1.00 1 0 -0.500 0.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 1.00 1 0 -0.00 0.00 1.00 1 0 -0.00 0.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 1.00 1 0 -0.00 0.500 1.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 1.00 0.00 1 0 -0.500 1.00 0.00 1 0 -0.500 1.00 0.500 1 0 -0.00 1.00 0.500 1 0 -0.00 1.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.00 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 1.00 0.00 1 0 -1.00 1.00 0.00 1 0 -1.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 1.00 1 0 -0.00 1.00 1.00 1 0 -0.00 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.00 1.00 1.00 1 0 - -1.00 1.00 0.00 1 0 -1.50 1.00 0.00 1 0 -1.50 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 0.00 1 0 - -1.00 1.50 0.00 1 0 -1.50 1.50 0.00 1 0 -1.50 1.50 0.500 1 0 -1.00 1.50 0.500 1 0 -1.00 1.50 0.00 1 0 - -1.00 1.00 0.00 1 0 -1.00 1.50 0.00 1 0 - -1.50 1.00 0.00 1 0 -1.50 1.50 0.00 1 0 - -1.50 1.00 0.500 1 0 -1.50 1.50 0.500 1 0 - -1.00 1.00 0.500 1 0 -1.00 1.50 0.500 1 0 - -1.50 1.00 0.00 1 0 -2.00 1.00 0.00 1 0 -2.00 1.00 0.500 1 0 -1.50 1.00 0.500 1 0 -1.50 1.00 0.00 1 0 - -1.50 1.50 0.00 1 0 -2.00 1.50 0.00 1 0 -2.00 1.50 0.500 1 0 -1.50 1.50 0.500 1 0 -1.50 1.50 0.00 1 0 - -1.50 1.00 0.00 1 0 -1.50 1.50 0.00 1 0 - -2.00 1.00 0.00 1 0 -2.00 1.50 0.00 1 0 - -2.00 1.00 0.500 1 0 -2.00 1.50 0.500 1 0 - -1.50 1.00 0.500 1 0 -1.50 1.50 0.500 1 0 - -1.50 1.00 0.500 1 0 -2.00 1.00 0.500 1 0 -2.00 1.00 1.00 1 0 -1.50 1.00 1.00 1 0 -1.50 1.00 0.500 1 0 - -1.50 1.50 0.500 1 0 -2.00 1.50 0.500 1 0 -2.00 1.50 1.00 1 0 -1.50 1.50 1.00 1 0 -1.50 1.50 0.500 1 0 - -1.50 1.00 0.500 1 0 -1.50 1.50 0.500 1 0 - -2.00 1.00 0.500 1 0 -2.00 1.50 0.500 1 0 - -2.00 1.00 1.00 1 0 -2.00 1.50 1.00 1 0 - -1.50 1.00 1.00 1 0 -1.50 1.50 1.00 1 0 - -1.00 1.00 0.500 1 0 -1.50 1.00 0.500 1 0 -1.50 1.00 1.00 1 0 -1.00 1.00 1.00 1 0 -1.00 1.00 0.500 1 0 - -1.00 1.50 0.500 1 0 -1.50 1.50 0.500 1 0 -1.50 1.50 1.00 1 0 -1.00 1.50 1.00 1 0 -1.00 1.50 0.500 1 0 - -1.00 1.00 0.500 1 0 -1.00 1.50 0.500 1 0 - -1.50 1.00 0.500 1 0 -1.50 1.50 0.500 1 0 - -1.50 1.00 1.00 1 0 -1.50 1.50 1.00 1 0 - -1.00 1.00 1.00 1 0 -1.00 1.50 1.00 1 0 - -1.00 1.50 0.00 1 0 -1.50 1.50 0.00 1 0 -1.50 1.50 0.500 1 0 -1.00 1.50 0.500 1 0 -1.00 1.50 0.00 1 0 - -1.00 2.00 0.00 1 0 -1.50 2.00 0.00 1 0 -1.50 2.00 0.500 1 0 -1.00 2.00 0.500 1 0 -1.00 2.00 0.00 1 0 - -1.00 1.50 0.00 1 0 -1.00 2.00 0.00 1 0 - -1.50 1.50 0.00 1 0 -1.50 2.00 0.00 1 0 - -1.50 1.50 0.500 1 0 -1.50 2.00 0.500 1 0 - -1.00 1.50 0.500 1 0 -1.00 2.00 0.500 1 0 - -1.50 1.50 0.00 1 0 -2.00 1.50 0.00 1 0 -2.00 1.50 0.500 1 0 -1.50 1.50 0.500 1 0 -1.50 1.50 0.00 1 0 - -1.50 2.00 0.00 1 0 -2.00 2.00 0.00 1 0 -2.00 2.00 0.500 1 0 -1.50 2.00 0.500 1 0 -1.50 2.00 0.00 1 0 - -1.50 1.50 0.00 1 0 -1.50 2.00 0.00 1 0 - -2.00 1.50 0.00 1 0 -2.00 2.00 0.00 1 0 - -2.00 1.50 0.500 1 0 -2.00 2.00 0.500 1 0 - -1.50 1.50 0.500 1 0 -1.50 2.00 0.500 1 0 - -1.50 1.50 0.500 1 0 -2.00 1.50 0.500 1 0 -2.00 1.50 1.00 1 0 -1.50 1.50 1.00 1 0 -1.50 1.50 0.500 1 0 - -1.50 2.00 0.500 1 0 -2.00 2.00 0.500 1 0 -2.00 2.00 1.00 1 0 -1.50 2.00 1.00 1 0 -1.50 2.00 0.500 1 0 - -1.50 1.50 0.500 1 0 -1.50 2.00 0.500 1 0 - -2.00 1.50 0.500 1 0 -2.00 2.00 0.500 1 0 - -2.00 1.50 1.00 1 0 -2.00 2.00 1.00 1 0 - -1.50 1.50 1.00 1 0 -1.50 2.00 1.00 1 0 - -1.00 1.50 0.500 1 0 -1.50 1.50 0.500 1 0 -1.50 1.50 1.00 1 0 -1.00 1.50 1.00 1 0 -1.00 1.50 0.500 1 0 - -1.00 2.00 0.500 1 0 -1.50 2.00 0.500 1 0 -1.50 2.00 1.00 1 0 -1.00 2.00 1.00 1 0 -1.00 2.00 0.500 1 0 - -1.00 1.50 0.500 1 0 -1.00 2.00 0.500 1 0 - -1.50 1.50 0.500 1 0 -1.50 2.00 0.500 1 0 - -1.50 1.50 1.00 1 0 -1.50 2.00 1.00 1 0 - -1.00 1.50 1.00 1 0 -1.00 2.00 1.00 1 0 - - 22 0: 0.500 - 22 3: 0.500 - 23 0: 0.500 - 23 4: 0.500 - 24 0: 0.250 - 24 3: 0.250 - 24 4: 0.250 - 24 7: 0.250 - 26 3: 0.500 - 26 7: 0.500 - 30 4: 0.500 - 30 8: 0.500 - 31 4: 0.250 - 31 7: 0.250 - 31 8: 0.250 - 31 9: 0.250 - 32 8: 0.500 - 32 9: 0.500 - 33 4: 0.500 - 33 7: 0.500 - 34 7: 0.500 - 34 9: 0.500 - 35 4: 0.500 - 35 5: 0.500 - 36 4: 0.250 - 36 5: 0.250 - 36 6: 0.250 - 36 7: 0.250 - 37 4: 0.500 - 37 11: 0.500 - 40 4: 0.250 - 40 7: 0.250 - 40 11: 0.250 - 40 12: 0.250 - 41 5: 0.500 - 41 6: 0.500 - 44 6: 0.500 - 44 7: 0.500 - 47 7: 0.500 - 47 12: 0.500 - 50 11: 0.500 - 50 12: 0.500 - -DEAL::Element=1, Step=0 -0.00 0.00 0.00 0 0 -1.00 0.00 0.00 0 0 -1.00 0.00 1.00 0 0 -0.00 0.00 1.00 0 0 -0.00 0.00 0.00 0 0 - -0.00 1.00 0.00 0 0 -1.00 1.00 0.00 0 0 -1.00 1.00 1.00 0 0 -0.00 1.00 1.00 0 0 -0.00 1.00 0.00 0 0 - -0.00 0.00 0.00 0 0 -0.00 1.00 0.00 0 0 - -1.00 0.00 0.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 0.00 1.00 0 0 -1.00 1.00 1.00 0 0 - -0.00 0.00 1.00 0 0 -0.00 1.00 1.00 0 0 - -0.00 1.00 0.00 1 0 -0.500 1.00 0.00 1 0 -0.500 1.00 0.500 1 0 -0.00 1.00 0.500 1 0 -0.00 1.00 0.00 1 0 - -0.00 1.50 0.00 1 0 -0.500 1.50 0.00 1 0 -0.500 1.50 0.500 1 0 -0.00 1.50 0.500 1 0 -0.00 1.50 0.00 1 0 - -0.00 1.00 0.00 1 0 -0.00 1.50 0.00 1 0 - -0.500 1.00 0.00 1 0 -0.500 1.50 0.00 1 0 - -0.500 1.00 0.500 1 0 -0.500 1.50 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.00 1.50 0.500 1 0 - -0.500 1.00 0.00 1 0 -1.00 1.00 0.00 1 0 -1.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 0.00 1 0 - -0.500 1.50 0.00 1 0 -1.00 1.50 0.00 1 0 -1.00 1.50 0.500 1 0 -0.500 1.50 0.500 1 0 -0.500 1.50 0.00 1 0 - -0.500 1.00 0.00 1 0 -0.500 1.50 0.00 1 0 - -1.00 1.00 0.00 1 0 -1.00 1.50 0.00 1 0 - -1.00 1.00 0.500 1 0 -1.00 1.50 0.500 1 0 - -0.500 1.00 0.500 1 0 -0.500 1.50 0.500 1 0 - -0.500 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 0.500 1 0 - -0.500 1.50 0.500 1 0 -1.00 1.50 0.500 1 0 -1.00 1.50 1.00 1 0 -0.500 1.50 1.00 1 0 -0.500 1.50 0.500 1 0 - -0.500 1.00 0.500 1 0 -0.500 1.50 0.500 1 0 - -1.00 1.00 0.500 1 0 -1.00 1.50 0.500 1 0 - -1.00 1.00 1.00 1 0 -1.00 1.50 1.00 1 0 - -0.500 1.00 1.00 1 0 -0.500 1.50 1.00 1 0 - -0.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 1.00 1 0 -0.00 1.00 1.00 1 0 -0.00 1.00 0.500 1 0 - -0.00 1.50 0.500 1 0 -0.500 1.50 0.500 1 0 -0.500 1.50 1.00 1 0 -0.00 1.50 1.00 1 0 -0.00 1.50 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.00 1.50 0.500 1 0 - -0.500 1.00 0.500 1 0 -0.500 1.50 0.500 1 0 - -0.500 1.00 1.00 1 0 -0.500 1.50 1.00 1 0 - -0.00 1.00 1.00 1 0 -0.00 1.50 1.00 1 0 - -0.00 1.50 0.00 1 0 -0.500 1.50 0.00 1 0 -0.500 1.50 0.500 1 0 -0.00 1.50 0.500 1 0 -0.00 1.50 0.00 1 0 - -0.00 2.00 0.00 1 0 -0.500 2.00 0.00 1 0 -0.500 2.00 0.500 1 0 -0.00 2.00 0.500 1 0 -0.00 2.00 0.00 1 0 - -0.00 1.50 0.00 1 0 -0.00 2.00 0.00 1 0 - -0.500 1.50 0.00 1 0 -0.500 2.00 0.00 1 0 - -0.500 1.50 0.500 1 0 -0.500 2.00 0.500 1 0 - -0.00 1.50 0.500 1 0 -0.00 2.00 0.500 1 0 - -0.500 1.50 0.00 1 0 -1.00 1.50 0.00 1 0 -1.00 1.50 0.500 1 0 -0.500 1.50 0.500 1 0 -0.500 1.50 0.00 1 0 - -0.500 2.00 0.00 1 0 -1.00 2.00 0.00 1 0 -1.00 2.00 0.500 1 0 -0.500 2.00 0.500 1 0 -0.500 2.00 0.00 1 0 - -0.500 1.50 0.00 1 0 -0.500 2.00 0.00 1 0 - -1.00 1.50 0.00 1 0 -1.00 2.00 0.00 1 0 - -1.00 1.50 0.500 1 0 -1.00 2.00 0.500 1 0 - -0.500 1.50 0.500 1 0 -0.500 2.00 0.500 1 0 - -0.500 1.50 0.500 1 0 -1.00 1.50 0.500 1 0 -1.00 1.50 1.00 1 0 -0.500 1.50 1.00 1 0 -0.500 1.50 0.500 1 0 - -0.500 2.00 0.500 1 0 -1.00 2.00 0.500 1 0 -1.00 2.00 1.00 1 0 -0.500 2.00 1.00 1 0 -0.500 2.00 0.500 1 0 - -0.500 1.50 0.500 1 0 -0.500 2.00 0.500 1 0 - -1.00 1.50 0.500 1 0 -1.00 2.00 0.500 1 0 - -1.00 1.50 1.00 1 0 -1.00 2.00 1.00 1 0 - -0.500 1.50 1.00 1 0 -0.500 2.00 1.00 1 0 - -0.00 1.50 0.500 1 0 -0.500 1.50 0.500 1 0 -0.500 1.50 1.00 1 0 -0.00 1.50 1.00 1 0 -0.00 1.50 0.500 1 0 - -0.00 2.00 0.500 1 0 -0.500 2.00 0.500 1 0 -0.500 2.00 1.00 1 0 -0.00 2.00 1.00 1 0 -0.00 2.00 0.500 1 0 - -0.00 1.50 0.500 1 0 -0.00 2.00 0.500 1 0 - -0.500 1.50 0.500 1 0 -0.500 2.00 0.500 1 0 - -0.500 1.50 1.00 1 0 -0.500 2.00 1.00 1 0 - -0.00 1.50 1.00 1 0 -0.00 2.00 1.00 1 0 - - 27 12: 1.00 - 28 21: 1.00 - 29 15: 1.00 - 34 4: 0.375 - 34 5: -0.125 - 34 12: 0.750 - 35 12: 0.375 - 35 14: -0.125 - 35 21: 0.750 - 36 13: -0.125 - 36 15: 0.375 - 36 21: 0.750 - 37 4: 0.375 - 37 7: -0.125 - 37 15: 0.750 - 46 4: 0.141 - 46 5: -0.0469 - 46 6: 0.0156 - 46 7: -0.0469 - 46 12: 0.281 - 46 13: -0.0938 - 46 14: -0.0938 - 46 15: 0.281 - 46 21: 0.562 - 53 13: 1.00 - 56 4: -0.125 - 56 5: 0.375 - 56 12: 0.750 - 57 5: 0.375 - 57 6: -0.125 - 57 13: 0.750 - 58 13: 0.375 - 58 15: -0.125 - 58 21: 0.750 - 64 4: -0.0469 - 64 5: 0.141 - 64 6: -0.0469 - 64 7: 0.0156 - 64 12: 0.281 - 64 13: 0.281 - 64 14: -0.0938 - 64 15: -0.0938 - 64 21: 0.562 - 70 14: 1.00 - 73 5: -0.125 - 73 6: 0.375 - 73 13: 0.750 - 74 6: 0.375 - 74 7: -0.125 - 74 14: 0.750 - 75 12: -0.125 - 75 14: 0.375 - 75 21: 0.750 - 81 4: 0.0156 - 81 5: -0.0469 - 81 6: 0.141 - 81 7: -0.0469 - 81 12: -0.0938 - 81 13: 0.281 - 81 14: 0.281 - 81 15: -0.0938 - 81 21: 0.562 - 88 6: -0.125 - 88 7: 0.375 - 88 14: 0.750 - 89 4: -0.125 - 89 7: 0.375 - 89 15: 0.750 - 93 4: -0.0469 - 93 5: 0.0156 - 93 6: -0.0469 - 93 7: 0.141 - 93 12: -0.0938 - 93 13: -0.0938 - 93 14: 0.281 - 93 15: 0.281 - 93 21: 0.562 - -DEAL::Element=1, Step=1 -0.00 1.00 0.00 0 0 -1.00 1.00 0.00 0 0 -1.00 1.00 1.00 0 0 -0.00 1.00 1.00 0 0 -0.00 1.00 0.00 0 0 - -0.00 2.00 0.00 0 0 -1.00 2.00 0.00 0 0 -1.00 2.00 1.00 0 0 -0.00 2.00 1.00 0 0 -0.00 2.00 0.00 0 0 - -0.00 1.00 0.00 0 0 -0.00 2.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -1.00 2.00 0.00 0 0 - -1.00 1.00 1.00 0 0 -1.00 2.00 1.00 0 0 - -0.00 1.00 1.00 0 0 -0.00 2.00 1.00 0 0 - -0.00 0.00 0.00 1 0 -0.500 0.00 0.00 1 0 -0.500 0.00 0.500 1 0 -0.00 0.00 0.500 1 0 -0.00 0.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 0.00 0.00 1 0 -0.00 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.00 1 0 -1.00 0.00 0.00 1 0 -1.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 1.00 1 0 -0.500 0.00 1.00 1 0 -0.500 0.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 1.00 1 0 -0.00 0.00 1.00 1 0 -0.00 0.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 1.00 1 0 -0.00 0.500 1.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 1.00 0.00 1 0 -0.500 1.00 0.00 1 0 -0.500 1.00 0.500 1 0 -0.00 1.00 0.500 1 0 -0.00 1.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.00 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 1.00 0.00 1 0 -1.00 1.00 0.00 1 0 -1.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 1.00 1 0 -0.00 1.00 1.00 1 0 -0.00 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.00 1.00 1.00 1 0 - - 102 8: 1.00 - 103 20: 1.00 - 104 11: 1.00 - 105 0: 0.375 - 105 1: -0.125 - 105 8: 0.750 - 106 8: 0.375 - 106 10: -0.125 - 106 20: 0.750 - 107 9: -0.125 - 107 11: 0.375 - 107 20: 0.750 - 108 0: 0.375 - 108 3: -0.125 - 108 11: 0.750 - 113 0: 0.141 - 113 1: -0.0469 - 113 2: 0.0156 - 113 3: -0.0469 - 113 8: 0.281 - 113 9: -0.0938 - 113 10: -0.0938 - 113 11: 0.281 - 113 20: 0.562 - 119 9: 1.00 - 120 0: -0.125 - 120 1: 0.375 - 120 8: 0.750 - 121 1: 0.375 - 121 2: -0.125 - 121 9: 0.750 - 122 9: 0.375 - 122 11: -0.125 - 122 20: 0.750 - 125 0: -0.0469 - 125 1: 0.141 - 125 2: -0.0469 - 125 3: 0.0156 - 125 8: 0.281 - 125 9: 0.281 - 125 10: -0.0938 - 125 11: -0.0938 - 125 20: 0.562 - 130 10: 1.00 - 131 1: -0.125 - 131 2: 0.375 - 131 9: 0.750 - 132 2: 0.375 - 132 3: -0.125 - 132 10: 0.750 - 133 8: -0.125 - 133 10: 0.375 - 133 20: 0.750 - 136 0: 0.0156 - 136 1: -0.0469 - 136 2: 0.141 - 136 3: -0.0469 - 136 8: -0.0938 - 136 9: 0.281 - 136 10: 0.281 - 136 11: -0.0938 - 136 20: 0.562 - 141 2: -0.125 - 141 3: 0.375 - 141 10: 0.750 - 142 0: -0.125 - 142 3: 0.375 - 142 11: 0.750 - 144 0: -0.0469 - 144 1: 0.0156 - 144 2: -0.0469 - 144 3: 0.141 - 144 8: -0.0938 - 144 9: -0.0938 - 144 10: 0.281 - 144 11: 0.281 - 144 20: 0.562 - -DEAL::Element=1, Step=2 -0.00 0.00 0.00 0 0 -1.00 0.00 0.00 0 0 -1.00 0.00 1.00 0 0 -0.00 0.00 1.00 0 0 -0.00 0.00 0.00 0 0 - -0.00 1.00 0.00 0 0 -1.00 1.00 0.00 0 0 -1.00 1.00 1.00 0 0 -0.00 1.00 1.00 0 0 -0.00 1.00 0.00 0 0 - -0.00 0.00 0.00 0 0 -0.00 1.00 0.00 0 0 - -1.00 0.00 0.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 0.00 1.00 0 0 -1.00 1.00 1.00 0 0 - -0.00 0.00 1.00 0 0 -0.00 1.00 1.00 0 0 - -1.00 0.00 0.00 1 0 -1.50 0.00 0.00 1 0 -1.50 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.50 0.500 0.00 1 0 -1.50 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.50 0.00 0.00 1 0 -1.50 0.500 0.00 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.50 0.00 0.00 1 0 -2.00 0.00 0.00 1 0 -2.00 0.00 0.500 1 0 -1.50 0.00 0.500 1 0 -1.50 0.00 0.00 1 0 - -1.50 0.500 0.00 1 0 -2.00 0.500 0.00 1 0 -2.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 0.00 1 0 - -1.50 0.00 0.00 1 0 -1.50 0.500 0.00 1 0 - -2.00 0.00 0.00 1 0 -2.00 0.500 0.00 1 0 - -2.00 0.00 0.500 1 0 -2.00 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -2.00 0.00 0.500 1 0 -2.00 0.00 1.00 1 0 -1.50 0.00 1.00 1 0 -1.50 0.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -2.00 0.500 0.500 1 0 -2.00 0.500 1.00 1 0 -1.50 0.500 1.00 1 0 -1.50 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -2.00 0.00 0.500 1 0 -2.00 0.500 0.500 1 0 - -2.00 0.00 1.00 1 0 -2.00 0.500 1.00 1 0 - -1.50 0.00 1.00 1 0 -1.50 0.500 1.00 1 0 - -1.00 0.00 0.500 1 0 -1.50 0.00 0.500 1 0 -1.50 0.00 1.00 1 0 -1.00 0.00 1.00 1 0 -1.00 0.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 1.00 1 0 -1.00 0.500 1.00 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -1.50 0.00 1.00 1 0 -1.50 0.500 1.00 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -1.00 0.500 0.00 1 0 -1.50 0.500 0.00 1 0 -1.50 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 0.00 1 0 - -1.00 1.00 0.00 1 0 -1.50 1.00 0.00 1 0 -1.50 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.50 0.500 0.00 1 0 -1.50 1.00 0.00 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.50 0.500 0.00 1 0 -2.00 0.500 0.00 1 0 -2.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 0.00 1 0 - -1.50 1.00 0.00 1 0 -2.00 1.00 0.00 1 0 -2.00 1.00 0.500 1 0 -1.50 1.00 0.500 1 0 -1.50 1.00 0.00 1 0 - -1.50 0.500 0.00 1 0 -1.50 1.00 0.00 1 0 - -2.00 0.500 0.00 1 0 -2.00 1.00 0.00 1 0 - -2.00 0.500 0.500 1 0 -2.00 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -2.00 0.500 0.500 1 0 -2.00 0.500 1.00 1 0 -1.50 0.500 1.00 1 0 -1.50 0.500 0.500 1 0 - -1.50 1.00 0.500 1 0 -2.00 1.00 0.500 1 0 -2.00 1.00 1.00 1 0 -1.50 1.00 1.00 1 0 -1.50 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -2.00 0.500 0.500 1 0 -2.00 1.00 0.500 1 0 - -2.00 0.500 1.00 1 0 -2.00 1.00 1.00 1 0 - -1.50 0.500 1.00 1 0 -1.50 1.00 1.00 1 0 - -1.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 1.00 1 0 -1.00 0.500 1.00 1 0 -1.00 0.500 0.500 1 0 - -1.00 1.00 0.500 1 0 -1.50 1.00 0.500 1 0 -1.50 1.00 1.00 1 0 -1.00 1.00 1.00 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -1.50 0.500 1.00 1 0 -1.50 1.00 1.00 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - - 29 9: 1.00 - 30 17: 1.00 - 33 23: 1.00 - 37 1: 0.375 - 37 2: -0.125 - 37 9: 0.750 - 41 17: 0.375 - 41 18: -0.125 - 41 23: 0.750 - 42 1: 0.375 - 42 5: -0.125 - 42 17: 0.750 - 45 9: 0.375 - 45 13: -0.125 - 45 23: 0.750 - 51 1: 0.141 - 51 2: -0.0469 - 51 5: -0.0469 - 51 6: 0.0156 - 51 9: 0.281 - 51 13: -0.0938 - 51 17: 0.281 - 51 18: -0.0938 - 51 23: 0.562 - 89 18: 1.00 - 91 1: -0.125 - 91 2: 0.375 - 91 9: 0.750 - 93 17: -0.125 - 93 18: 0.375 - 93 23: 0.750 - 94 2: 0.375 - 94 6: -0.125 - 94 18: 0.750 - 98 1: -0.0469 - 98 2: 0.141 - 98 5: 0.0156 - 98 6: -0.0469 - 98 9: 0.281 - 98 13: -0.0938 - 98 17: -0.0938 - 98 18: 0.281 - 98 23: 0.562 - 102 13: 1.00 - 106 5: 0.375 - 106 6: -0.125 - 106 13: 0.750 - 107 1: -0.125 - 107 5: 0.375 - 107 17: 0.750 - 110 9: -0.125 - 110 13: 0.375 - 110 23: 0.750 - 115 1: -0.0469 - 115 2: 0.0156 - 115 5: 0.141 - 115 6: -0.0469 - 115 9: -0.0938 - 115 13: 0.281 - 115 17: 0.281 - 115 18: -0.0938 - 115 23: 0.562 - 142 5: -0.125 - 142 6: 0.375 - 142 13: 0.750 - 143 2: -0.125 - 143 6: 0.375 - 143 18: 0.750 - 146 1: 0.0156 - 146 2: -0.0469 - 146 5: -0.0469 - 146 6: 0.141 - 146 9: -0.0938 - 146 13: 0.281 - 146 17: -0.0938 - 146 18: 0.281 - 146 23: 0.562 - -DEAL::Element=1, Step=3 -1.00 0.00 0.00 0 0 -2.00 0.00 0.00 0 0 -2.00 0.00 1.00 0 0 -1.00 0.00 1.00 0 0 -1.00 0.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -2.00 1.00 0.00 0 0 -2.00 1.00 1.00 0 0 -1.00 1.00 1.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 0.00 0.00 0 0 -1.00 1.00 0.00 0 0 - -2.00 0.00 0.00 0 0 -2.00 1.00 0.00 0 0 - -2.00 0.00 1.00 0 0 -2.00 1.00 1.00 0 0 - -1.00 0.00 1.00 0 0 -1.00 1.00 1.00 0 0 - -0.00 0.00 0.00 1 0 -0.500 0.00 0.00 1 0 -0.500 0.00 0.500 1 0 -0.00 0.00 0.500 1 0 -0.00 0.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 0.00 0.00 1 0 -0.00 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.00 1 0 -1.00 0.00 0.00 1 0 -1.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 1.00 1 0 -0.500 0.00 1.00 1 0 -0.500 0.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 1.00 1 0 -0.00 0.00 1.00 1 0 -0.00 0.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 1.00 1 0 -0.00 0.500 1.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 1.00 0.00 1 0 -0.500 1.00 0.00 1 0 -0.500 1.00 0.500 1 0 -0.00 1.00 0.500 1 0 -0.00 1.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.00 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 1.00 0.00 1 0 -1.00 1.00 0.00 1 0 -1.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 1.00 1 0 -0.00 1.00 1.00 1 0 -0.00 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.00 1.00 1.00 1 0 - - 54 11: 1.00 - 55 16: 1.00 - 56 25: 1.00 - 58 0: 0.375 - 58 3: -0.125 - 58 11: 0.750 - 61 16: 0.375 - 61 19: -0.125 - 61 25: 0.750 - 63 0: 0.375 - 63 4: -0.125 - 63 16: 0.750 - 64 11: 0.375 - 64 15: -0.125 - 64 25: 0.750 - 68 0: 0.141 - 68 3: -0.0469 - 68 4: -0.0469 - 68 7: 0.0156 - 68 11: 0.281 - 68 15: -0.0938 - 68 16: 0.281 - 68 19: -0.0938 - 68 25: 0.562 - 72 19: 1.00 - 74 0: -0.125 - 74 3: 0.375 - 74 11: 0.750 - 77 16: -0.125 - 77 19: 0.375 - 77 25: 0.750 - 80 3: 0.375 - 80 7: -0.125 - 80 19: 0.750 - 84 0: -0.0469 - 84 3: 0.141 - 84 4: 0.0156 - 84 7: -0.0469 - 84 11: 0.281 - 84 15: -0.0938 - 84 16: -0.0938 - 84 19: 0.281 - 84 25: 0.562 - 118 15: 1.00 - 120 4: 0.375 - 120 7: -0.125 - 120 15: 0.750 - 122 0: -0.125 - 122 4: 0.375 - 122 16: 0.750 - 123 11: -0.125 - 123 15: 0.375 - 123 25: 0.750 - 126 0: -0.0469 - 126 3: 0.0156 - 126 4: 0.141 - 126 7: -0.0469 - 126 11: -0.0938 - 126 15: 0.281 - 126 16: 0.281 - 126 19: -0.0938 - 126 25: 0.562 - 130 4: -0.125 - 130 7: 0.375 - 130 15: 0.750 - 133 3: -0.125 - 133 7: 0.375 - 133 19: 0.750 - 136 0: 0.0156 - 136 3: -0.0469 - 136 4: -0.0469 - 136 7: 0.141 - 136 11: -0.0938 - 136 15: 0.281 - 136 16: -0.0938 - 136 19: 0.281 - 136 25: 0.562 - -DEAL::Element=1, Step=4 -0.00 0.00 0.00 0 0 -1.00 0.00 0.00 0 0 -1.00 0.00 1.00 0 0 -0.00 0.00 1.00 0 0 -0.00 0.00 0.00 0 0 - -0.00 1.00 0.00 0 0 -1.00 1.00 0.00 0 0 -1.00 1.00 1.00 0 0 -0.00 1.00 1.00 0 0 -0.00 1.00 0.00 0 0 - -0.00 0.00 0.00 0 0 -0.00 1.00 0.00 0 0 - -1.00 0.00 0.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 0.00 1.00 0 0 -1.00 1.00 1.00 0 0 - -0.00 0.00 1.00 0 0 -0.00 1.00 1.00 0 0 - -0.00 0.00 1.00 1 0 -0.500 0.00 1.00 1 0 -0.500 0.00 1.50 1 0 -0.00 0.00 1.50 1 0 -0.00 0.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 1.50 1 0 -0.00 0.500 1.50 1 0 -0.00 0.500 1.00 1 0 - -0.00 0.00 1.00 1 0 -0.00 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.500 0.00 1.50 1 0 -0.500 0.500 1.50 1 0 - -0.00 0.00 1.50 1 0 -0.00 0.500 1.50 1 0 - -0.500 0.00 1.00 1 0 -1.00 0.00 1.00 1 0 -1.00 0.00 1.50 1 0 -0.500 0.00 1.50 1 0 -0.500 0.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -1.00 0.500 1.00 1 0 -1.00 0.500 1.50 1 0 -0.500 0.500 1.50 1 0 -0.500 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -1.00 0.00 1.50 1 0 -1.00 0.500 1.50 1 0 - -0.500 0.00 1.50 1 0 -0.500 0.500 1.50 1 0 - -0.500 0.00 1.50 1 0 -1.00 0.00 1.50 1 0 -1.00 0.00 2.00 1 0 -0.500 0.00 2.00 1 0 -0.500 0.00 1.50 1 0 - -0.500 0.500 1.50 1 0 -1.00 0.500 1.50 1 0 -1.00 0.500 2.00 1 0 -0.500 0.500 2.00 1 0 -0.500 0.500 1.50 1 0 - -0.500 0.00 1.50 1 0 -0.500 0.500 1.50 1 0 - -1.00 0.00 1.50 1 0 -1.00 0.500 1.50 1 0 - -1.00 0.00 2.00 1 0 -1.00 0.500 2.00 1 0 - -0.500 0.00 2.00 1 0 -0.500 0.500 2.00 1 0 - -0.00 0.00 1.50 1 0 -0.500 0.00 1.50 1 0 -0.500 0.00 2.00 1 0 -0.00 0.00 2.00 1 0 -0.00 0.00 1.50 1 0 - -0.00 0.500 1.50 1 0 -0.500 0.500 1.50 1 0 -0.500 0.500 2.00 1 0 -0.00 0.500 2.00 1 0 -0.00 0.500 1.50 1 0 - -0.00 0.00 1.50 1 0 -0.00 0.500 1.50 1 0 - -0.500 0.00 1.50 1 0 -0.500 0.500 1.50 1 0 - -0.500 0.00 2.00 1 0 -0.500 0.500 2.00 1 0 - -0.00 0.00 2.00 1 0 -0.00 0.500 2.00 1 0 - -0.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 1.50 1 0 -0.00 0.500 1.50 1 0 -0.00 0.500 1.00 1 0 - -0.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 1.50 1 0 -0.00 1.00 1.50 1 0 -0.00 1.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.00 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.500 0.500 1.50 1 0 -0.500 1.00 1.50 1 0 - -0.00 0.500 1.50 1 0 -0.00 1.00 1.50 1 0 - -0.500 0.500 1.00 1 0 -1.00 0.500 1.00 1 0 -1.00 0.500 1.50 1 0 -0.500 0.500 1.50 1 0 -0.500 0.500 1.00 1 0 - -0.500 1.00 1.00 1 0 -1.00 1.00 1.00 1 0 -1.00 1.00 1.50 1 0 -0.500 1.00 1.50 1 0 -0.500 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - -1.00 0.500 1.50 1 0 -1.00 1.00 1.50 1 0 - -0.500 0.500 1.50 1 0 -0.500 1.00 1.50 1 0 - -0.500 0.500 1.50 1 0 -1.00 0.500 1.50 1 0 -1.00 0.500 2.00 1 0 -0.500 0.500 2.00 1 0 -0.500 0.500 1.50 1 0 - -0.500 1.00 1.50 1 0 -1.00 1.00 1.50 1 0 -1.00 1.00 2.00 1 0 -0.500 1.00 2.00 1 0 -0.500 1.00 1.50 1 0 - -0.500 0.500 1.50 1 0 -0.500 1.00 1.50 1 0 - -1.00 0.500 1.50 1 0 -1.00 1.00 1.50 1 0 - -1.00 0.500 2.00 1 0 -1.00 1.00 2.00 1 0 - -0.500 0.500 2.00 1 0 -0.500 1.00 2.00 1 0 - -0.00 0.500 1.50 1 0 -0.500 0.500 1.50 1 0 -0.500 0.500 2.00 1 0 -0.00 0.500 2.00 1 0 -0.00 0.500 1.50 1 0 - -0.00 1.00 1.50 1 0 -0.500 1.00 1.50 1 0 -0.500 1.00 2.00 1 0 -0.00 1.00 2.00 1 0 -0.00 1.00 1.50 1 0 - -0.00 0.500 1.50 1 0 -0.00 1.00 1.50 1 0 - -0.500 0.500 1.50 1 0 -0.500 1.00 1.50 1 0 - -0.500 0.500 2.00 1 0 -0.500 1.00 2.00 1 0 - -0.00 0.500 2.00 1 0 -0.00 1.00 2.00 1 0 - - 27 10: 1.00 - 30 19: 1.00 - 31 24: 1.00 - 34 2: -0.125 - 34 3: 0.375 - 34 10: 0.750 - 38 18: -0.125 - 38 19: 0.375 - 38 24: 0.750 - 42 3: 0.375 - 42 7: -0.125 - 42 19: 0.750 - 43 10: 0.375 - 43 14: -0.125 - 43 24: 0.750 - 48 2: -0.0469 - 48 3: 0.141 - 48 6: 0.0156 - 48 7: -0.0469 - 48 10: 0.281 - 48 14: -0.0938 - 48 18: -0.0938 - 48 19: 0.281 - 48 24: 0.562 - 54 18: 1.00 - 56 2: 0.375 - 56 3: -0.125 - 56 10: 0.750 - 59 18: 0.375 - 59 19: -0.125 - 59 24: 0.750 - 62 2: 0.375 - 62 6: -0.125 - 62 18: 0.750 - 66 2: 0.141 - 66 3: -0.0469 - 66 6: -0.0469 - 66 7: 0.0156 - 66 10: 0.281 - 66 14: -0.0938 - 66 18: 0.281 - 66 19: -0.0938 - 66 24: 0.562 - 100 14: 1.00 - 103 6: -0.125 - 103 7: 0.375 - 103 14: 0.750 - 107 3: -0.125 - 107 7: 0.375 - 107 19: 0.750 - 108 10: -0.125 - 108 14: 0.375 - 108 24: 0.750 - 112 2: 0.0156 - 112 3: -0.0469 - 112 6: -0.0469 - 112 7: 0.141 - 112 10: -0.0938 - 112 14: 0.281 - 112 18: -0.0938 - 112 19: 0.281 - 112 24: 0.562 - 118 6: 0.375 - 118 7: -0.125 - 118 14: 0.750 - 121 2: -0.125 - 121 6: 0.375 - 121 18: 0.750 - 124 2: -0.0469 - 124 3: 0.0156 - 124 6: 0.141 - 124 7: -0.0469 - 124 10: -0.0938 - 124 14: 0.281 - 124 18: 0.281 - 124 19: -0.0938 - 124 24: 0.562 - -DEAL::Element=1, Step=5 -0.00 0.00 1.00 0 0 -1.00 0.00 1.00 0 0 -1.00 0.00 2.00 0 0 -0.00 0.00 2.00 0 0 -0.00 0.00 1.00 0 0 - -0.00 1.00 1.00 0 0 -1.00 1.00 1.00 0 0 -1.00 1.00 2.00 0 0 -0.00 1.00 2.00 0 0 -0.00 1.00 1.00 0 0 - -0.00 0.00 1.00 0 0 -0.00 1.00 1.00 0 0 - -1.00 0.00 1.00 0 0 -1.00 1.00 1.00 0 0 - -1.00 0.00 2.00 0 0 -1.00 1.00 2.00 0 0 - -0.00 0.00 2.00 0 0 -0.00 1.00 2.00 0 0 - -0.00 0.00 0.00 1 0 -0.500 0.00 0.00 1 0 -0.500 0.00 0.500 1 0 -0.00 0.00 0.500 1 0 -0.00 0.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 0.00 0.00 1 0 -0.00 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.00 1 0 -1.00 0.00 0.00 1 0 -1.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 1.00 1 0 -0.500 0.00 1.00 1 0 -0.500 0.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 1.00 1 0 -0.00 0.00 1.00 1 0 -0.00 0.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 1.00 1 0 -0.00 0.500 1.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 1.00 0.00 1 0 -0.500 1.00 0.00 1 0 -0.500 1.00 0.500 1 0 -0.00 1.00 0.500 1 0 -0.00 1.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.00 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 1.00 0.00 1 0 -1.00 1.00 0.00 1 0 -1.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 1.00 1 0 -0.00 1.00 1.00 1 0 -0.00 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.00 1.00 1.00 1 0 - - 72 8: 1.00 - 73 17: 1.00 - 74 22: 1.00 - 76 0: -0.125 - 76 1: 0.375 - 76 8: 0.750 - 79 16: -0.125 - 79 17: 0.375 - 79 22: 0.750 - 81 1: 0.375 - 81 5: -0.125 - 81 17: 0.750 - 82 8: 0.375 - 82 12: -0.125 - 82 22: 0.750 - 86 0: -0.0469 - 86 1: 0.141 - 86 4: 0.0156 - 86 5: -0.0469 - 86 8: 0.281 - 86 12: -0.0938 - 86 16: -0.0938 - 86 17: 0.281 - 86 22: 0.562 - 89 16: 1.00 - 90 0: 0.375 - 90 1: -0.125 - 90 8: 0.750 - 92 16: 0.375 - 92 17: -0.125 - 92 22: 0.750 - 94 0: 0.375 - 94 4: -0.125 - 94 16: 0.750 - 97 0: 0.141 - 97 1: -0.0469 - 97 4: -0.0469 - 97 5: 0.0156 - 97 8: 0.281 - 97 12: -0.0938 - 97 16: 0.281 - 97 17: -0.0938 - 97 22: 0.562 - 130 12: 1.00 - 132 4: -0.125 - 132 5: 0.375 - 132 12: 0.750 - 134 1: -0.125 - 134 5: 0.375 - 134 17: 0.750 - 135 8: -0.125 - 135 12: 0.375 - 135 22: 0.750 - 138 0: 0.0156 - 138 1: -0.0469 - 138 4: -0.0469 - 138 5: 0.141 - 138 8: -0.0938 - 138 12: 0.281 - 138 16: -0.0938 - 138 17: 0.281 - 138 22: 0.562 - 141 4: 0.375 - 141 5: -0.125 - 141 12: 0.750 - 143 0: -0.125 - 143 4: 0.375 - 143 16: 0.750 - 145 0: -0.0469 - 145 1: 0.0156 - 145 4: 0.141 - 145 5: -0.0469 - 145 8: -0.0938 - 145 12: 0.281 - 145 16: 0.281 - 145 17: -0.0938 - 145 22: 0.562 - -DEAL::Element=1, Step=6 -1.00 0.00 0.00 0 0 -2.00 0.00 0.00 0 0 -2.00 0.00 1.00 0 0 -1.00 0.00 1.00 0 0 -1.00 0.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -2.00 1.00 0.00 0 0 -2.00 1.00 1.00 0 0 -1.00 1.00 1.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 0.00 0.00 0 0 -1.00 1.00 0.00 0 0 - -2.00 0.00 0.00 0 0 -2.00 1.00 0.00 0 0 - -2.00 0.00 1.00 0 0 -2.00 1.00 1.00 0 0 - -1.00 0.00 1.00 0 0 -1.00 1.00 1.00 0 0 - -0.00 1.00 0.00 0 0 -1.00 1.00 0.00 0 0 -1.00 1.00 1.00 0 0 -0.00 1.00 1.00 0 0 -0.00 1.00 0.00 0 0 - -0.00 2.00 0.00 0 0 -1.00 2.00 0.00 0 0 -1.00 2.00 1.00 0 0 -0.00 2.00 1.00 0 0 -0.00 2.00 0.00 0 0 - -0.00 1.00 0.00 0 0 -0.00 2.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -1.00 2.00 0.00 0 0 - -1.00 1.00 1.00 0 0 -1.00 2.00 1.00 0 0 - -0.00 1.00 1.00 0 0 -0.00 2.00 1.00 0 0 - -1.00 1.00 0.00 0 0 -2.00 1.00 0.00 0 0 -2.00 1.00 1.00 0 0 -1.00 1.00 1.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 2.00 0.00 0 0 -2.00 2.00 0.00 0 0 -2.00 2.00 1.00 0 0 -1.00 2.00 1.00 0 0 -1.00 2.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -1.00 2.00 0.00 0 0 - -2.00 1.00 0.00 0 0 -2.00 2.00 0.00 0 0 - -2.00 1.00 1.00 0 0 -2.00 2.00 1.00 0 0 - -1.00 1.00 1.00 0 0 -1.00 2.00 1.00 0 0 - -0.00 0.00 0.00 1 0 -0.500 0.00 0.00 1 0 -0.500 0.00 0.500 1 0 -0.00 0.00 0.500 1 0 -0.00 0.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 0.00 0.00 1 0 -0.00 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.00 1 0 -1.00 0.00 0.00 1 0 -1.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 1.00 1 0 -0.500 0.00 1.00 1 0 -0.500 0.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 1.00 1 0 -0.00 0.00 1.00 1 0 -0.00 0.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 1.00 1 0 -0.00 0.500 1.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 1.00 0.00 1 0 -0.500 1.00 0.00 1 0 -0.500 1.00 0.500 1 0 -0.00 1.00 0.500 1 0 -0.00 1.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.00 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 1.00 0.00 1 0 -1.00 1.00 0.00 1 0 -1.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 1.00 1 0 -0.00 1.00 1.00 1 0 -0.00 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.00 1.00 1.00 1 0 - - 90 11: 1.00 - 91 16: 1.00 - 92 25: 1.00 - 94 0: 0.375 - 94 3: -0.125 - 94 11: 0.750 - 97 16: 0.375 - 97 19: -0.125 - 97 25: 0.750 - 99 0: 0.375 - 99 4: -0.125 - 99 16: 0.750 - 100 11: 0.375 - 100 15: -0.125 - 100 25: 0.750 - 104 0: 0.141 - 104 3: -0.0469 - 104 4: -0.0469 - 104 7: 0.0156 - 104 11: 0.281 - 104 15: -0.0938 - 104 16: 0.281 - 104 19: -0.0938 - 104 25: 0.562 - 108 19: 1.00 - 110 0: -0.125 - 110 3: 0.375 - 110 11: 0.750 - 113 16: -0.125 - 113 19: 0.375 - 113 25: 0.750 - 116 3: 0.375 - 116 7: -0.125 - 116 19: 0.750 - 120 0: -0.0469 - 120 3: 0.141 - 120 4: 0.0156 - 120 7: -0.0469 - 120 11: 0.281 - 120 15: -0.0938 - 120 16: -0.0938 - 120 19: 0.281 - 120 25: 0.562 - 136 33: 1.00 - 137 44: 1.00 - 138 35: 1.00 - 139 4: -0.125 - 139 27: 0.375 - 139 33: 0.750 - 140 33: 0.375 - 140 34: -0.125 - 140 44: 0.750 - 141 15: -0.125 - 141 35: 0.375 - 141 44: 0.750 - 142 27: 0.375 - 142 28: -0.125 - 142 35: 0.750 - 147 4: -0.0469 - 147 7: 0.0156 - 147 15: -0.0938 - 147 27: 0.141 - 147 28: -0.0469 - 147 33: 0.281 - 147 34: -0.0938 - 147 35: 0.281 - 147 44: 0.562 - 153 15: 1.00 - 154 4: 0.375 - 154 27: -0.125 - 154 33: 0.750 - 155 4: 0.375 - 155 7: -0.125 - 155 15: 0.750 - 156 15: 0.375 - 156 35: -0.125 - 156 44: 0.750 - 157 0: -0.125 - 157 4: 0.375 - 157 16: 0.750 - 158 11: -0.125 - 158 15: 0.375 - 158 25: 0.750 - 159 4: 0.141 - 159 7: -0.0469 - 159 15: 0.281 - 159 27: -0.0469 - 159 28: 0.0156 - 159 33: 0.281 - 159 34: -0.0938 - 159 35: -0.0938 - 159 44: 0.562 - 161 0: -0.0469 - 161 3: 0.0156 - 161 4: 0.141 - 161 7: -0.0469 - 161 11: -0.0938 - 161 15: 0.281 - 161 16: 0.281 - 161 19: -0.0938 - 161 25: 0.562 - 164 34: 1.00 - 165 4: -0.125 - 165 7: 0.375 - 165 15: 0.750 - 166 7: 0.375 - 166 28: -0.125 - 166 34: 0.750 - 167 33: -0.125 - 167 34: 0.375 - 167 44: 0.750 - 168 3: -0.125 - 168 7: 0.375 - 168 19: 0.750 - 170 4: -0.0469 - 170 7: 0.141 - 170 15: 0.281 - 170 27: 0.0156 - 170 28: -0.0469 - 170 33: -0.0938 - 170 34: 0.281 - 170 35: -0.0938 - 170 44: 0.562 - 171 0: 0.0156 - 171 3: -0.0469 - 171 4: -0.0469 - 171 7: 0.141 - 171 11: -0.0938 - 171 15: 0.281 - 171 16: -0.0938 - 171 19: 0.281 - 171 25: 0.562 - 175 7: -0.125 - 175 28: 0.375 - 175 34: 0.750 - 176 27: -0.125 - 176 28: 0.375 - 176 35: 0.750 - 178 4: 0.0156 - 178 7: -0.0469 - 178 15: -0.0938 - 178 27: -0.0469 - 178 28: 0.141 - 178 33: -0.0938 - 178 34: 0.281 - 178 35: 0.281 - 178 44: 0.562 - -DEAL::Element=1, Step=7 -0.00 1.00 0.00 0 0 -1.00 1.00 0.00 0 0 -1.00 1.00 1.00 0 0 -0.00 1.00 1.00 0 0 -0.00 1.00 0.00 0 0 - -0.00 2.00 0.00 0 0 -1.00 2.00 0.00 0 0 -1.00 2.00 1.00 0 0 -0.00 2.00 1.00 0 0 -0.00 2.00 0.00 0 0 - -0.00 1.00 0.00 0 0 -0.00 2.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -1.00 2.00 0.00 0 0 - -1.00 1.00 1.00 0 0 -1.00 2.00 1.00 0 0 - -0.00 1.00 1.00 0 0 -0.00 2.00 1.00 0 0 - -1.00 1.00 0.00 0 0 -2.00 1.00 0.00 0 0 -2.00 1.00 1.00 0 0 -1.00 1.00 1.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 2.00 0.00 0 0 -2.00 2.00 0.00 0 0 -2.00 2.00 1.00 0 0 -1.00 2.00 1.00 0 0 -1.00 2.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -1.00 2.00 0.00 0 0 - -2.00 1.00 0.00 0 0 -2.00 2.00 0.00 0 0 - -2.00 1.00 1.00 0 0 -2.00 2.00 1.00 0 0 - -1.00 1.00 1.00 0 0 -1.00 2.00 1.00 0 0 - -0.00 0.00 0.00 1 0 -0.500 0.00 0.00 1 0 -0.500 0.00 0.500 1 0 -0.00 0.00 0.500 1 0 -0.00 0.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 0.00 0.00 1 0 -0.00 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.00 1 0 -1.00 0.00 0.00 1 0 -1.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 1.00 1 0 -0.500 0.00 1.00 1 0 -0.500 0.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 1.00 1 0 -0.00 0.00 1.00 1 0 -0.00 0.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 1.00 1 0 -0.00 0.500 1.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 1.00 0.00 1 0 -0.500 1.00 0.00 1 0 -0.500 1.00 0.500 1 0 -0.00 1.00 0.500 1 0 -0.00 1.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.00 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 1.00 0.00 1 0 -1.00 1.00 0.00 1 0 -1.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 1.00 1 0 -0.00 1.00 1.00 1 0 -0.00 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.00 1.00 1.00 1 0 - -1.00 0.00 0.00 1 0 -1.50 0.00 0.00 1 0 -1.50 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.50 0.500 0.00 1 0 -1.50 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.50 0.00 0.00 1 0 -1.50 0.500 0.00 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.50 0.00 0.00 1 0 -2.00 0.00 0.00 1 0 -2.00 0.00 0.500 1 0 -1.50 0.00 0.500 1 0 -1.50 0.00 0.00 1 0 - -1.50 0.500 0.00 1 0 -2.00 0.500 0.00 1 0 -2.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 0.00 1 0 - -1.50 0.00 0.00 1 0 -1.50 0.500 0.00 1 0 - -2.00 0.00 0.00 1 0 -2.00 0.500 0.00 1 0 - -2.00 0.00 0.500 1 0 -2.00 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -2.00 0.00 0.500 1 0 -2.00 0.00 1.00 1 0 -1.50 0.00 1.00 1 0 -1.50 0.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -2.00 0.500 0.500 1 0 -2.00 0.500 1.00 1 0 -1.50 0.500 1.00 1 0 -1.50 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -2.00 0.00 0.500 1 0 -2.00 0.500 0.500 1 0 - -2.00 0.00 1.00 1 0 -2.00 0.500 1.00 1 0 - -1.50 0.00 1.00 1 0 -1.50 0.500 1.00 1 0 - -1.00 0.00 0.500 1 0 -1.50 0.00 0.500 1 0 -1.50 0.00 1.00 1 0 -1.00 0.00 1.00 1 0 -1.00 0.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 1.00 1 0 -1.00 0.500 1.00 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.50 0.00 0.500 1 0 -1.50 0.500 0.500 1 0 - -1.50 0.00 1.00 1 0 -1.50 0.500 1.00 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -1.00 0.500 0.00 1 0 -1.50 0.500 0.00 1 0 -1.50 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 0.00 1 0 - -1.00 1.00 0.00 1 0 -1.50 1.00 0.00 1 0 -1.50 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.50 0.500 0.00 1 0 -1.50 1.00 0.00 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.50 0.500 0.00 1 0 -2.00 0.500 0.00 1 0 -2.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 0.00 1 0 - -1.50 1.00 0.00 1 0 -2.00 1.00 0.00 1 0 -2.00 1.00 0.500 1 0 -1.50 1.00 0.500 1 0 -1.50 1.00 0.00 1 0 - -1.50 0.500 0.00 1 0 -1.50 1.00 0.00 1 0 - -2.00 0.500 0.00 1 0 -2.00 1.00 0.00 1 0 - -2.00 0.500 0.500 1 0 -2.00 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -2.00 0.500 0.500 1 0 -2.00 0.500 1.00 1 0 -1.50 0.500 1.00 1 0 -1.50 0.500 0.500 1 0 - -1.50 1.00 0.500 1 0 -2.00 1.00 0.500 1 0 -2.00 1.00 1.00 1 0 -1.50 1.00 1.00 1 0 -1.50 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -2.00 0.500 0.500 1 0 -2.00 1.00 0.500 1 0 - -2.00 0.500 1.00 1 0 -2.00 1.00 1.00 1 0 - -1.50 0.500 1.00 1 0 -1.50 1.00 1.00 1 0 - -1.00 0.500 0.500 1 0 -1.50 0.500 0.500 1 0 -1.50 0.500 1.00 1 0 -1.00 0.500 1.00 1 0 -1.00 0.500 0.500 1 0 - -1.00 1.00 0.500 1 0 -1.50 1.00 0.500 1 0 -1.50 1.00 1.00 1 0 -1.00 1.00 1.00 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.50 0.500 0.500 1 0 -1.50 1.00 0.500 1 0 - -1.50 0.500 1.00 1 0 -1.50 1.00 1.00 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - - 120 8: 1.00 - 121 20: 1.00 - 122 11: 1.00 - 123 0: 0.375 - 123 1: -0.125 - 123 8: 0.750 - 124 8: 0.375 - 124 10: -0.125 - 124 20: 0.750 - 125 9: -0.125 - 125 11: 0.375 - 125 20: 0.750 - 126 0: 0.375 - 126 3: -0.125 - 126 11: 0.750 - 131 0: 0.141 - 131 1: -0.0469 - 131 2: 0.0156 - 131 3: -0.0469 - 131 8: 0.281 - 131 9: -0.0938 - 131 10: -0.0938 - 131 11: 0.281 - 131 20: 0.562 - 137 9: 1.00 - 138 0: -0.125 - 138 1: 0.375 - 138 8: 0.750 - 139 1: 0.375 - 139 2: -0.125 - 139 9: 0.750 - 140 9: 0.375 - 140 11: -0.125 - 140 20: 0.750 - 143 0: -0.0469 - 143 1: 0.141 - 143 2: -0.0469 - 143 3: 0.0156 - 143 8: 0.281 - 143 9: 0.281 - 143 10: -0.0938 - 143 11: -0.0938 - 143 20: 0.562 - 148 10: 1.00 - 149 1: -0.125 - 149 2: 0.375 - 149 9: 0.750 - 150 2: 0.375 - 150 3: -0.125 - 150 10: 0.750 - 151 8: -0.125 - 151 10: 0.375 - 151 20: 0.750 - 154 0: 0.0156 - 154 1: -0.0469 - 154 2: 0.141 - 154 3: -0.0469 - 154 8: -0.0938 - 154 9: 0.281 - 154 10: 0.281 - 154 11: -0.0938 - 154 20: 0.562 - 159 2: -0.125 - 159 3: 0.375 - 159 10: 0.750 - 160 0: -0.125 - 160 3: 0.375 - 160 11: 0.750 - 162 0: -0.0469 - 162 1: 0.0156 - 162 2: -0.0469 - 162 3: 0.141 - 162 8: -0.0938 - 162 9: -0.0938 - 162 10: 0.281 - 162 11: 0.281 - 162 20: 0.562 - 226 31: 1.00 - 227 39: 1.00 - 228 1: 0.375 - 228 27: -0.125 - 228 31: 0.750 - 229 31: 0.375 - 229 33: -0.125 - 229 39: 0.750 - 230 9: 0.375 - 230 32: -0.125 - 230 39: 0.750 - 233 1: 0.141 - 233 2: -0.0469 - 233 9: 0.281 - 233 27: -0.0469 - 233 28: 0.0156 - 233 31: 0.281 - 233 32: -0.0938 - 233 33: -0.0938 - 233 39: 0.562 - 238 32: 1.00 - 239 1: -0.125 - 239 27: 0.375 - 239 31: 0.750 - 240 27: 0.375 - 240 28: -0.125 - 240 32: 0.750 - 241 9: -0.125 - 241 32: 0.375 - 241 39: 0.750 - 244 1: -0.0469 - 244 2: 0.0156 - 244 9: -0.0938 - 244 27: 0.141 - 244 28: -0.0469 - 244 31: 0.281 - 244 32: 0.281 - 244 33: -0.0938 - 244 39: 0.562 - 249 33: 1.00 - 250 27: -0.125 - 250 28: 0.375 - 250 32: 0.750 - 251 2: -0.125 - 251 28: 0.375 - 251 33: 0.750 - 252 31: -0.125 - 252 33: 0.375 - 252 39: 0.750 - 255 1: 0.0156 - 255 2: -0.0469 - 255 9: -0.0938 - 255 27: -0.0469 - 255 28: 0.141 - 255 31: -0.0938 - 255 32: 0.281 - 255 33: 0.281 - 255 39: 0.562 - 260 2: 0.375 - 260 28: -0.125 - 260 33: 0.750 - 261 1: -0.0469 - 261 2: 0.141 - 261 9: 0.281 - 261 27: 0.0156 - 261 28: -0.0469 - 261 31: -0.0938 - 261 32: -0.0938 - 261 33: 0.281 - 261 39: 0.562 - -DEAL::Element=1, Step=8 -1.00 0.00 0.00 0 0 -2.00 0.00 0.00 0 0 -2.00 0.00 1.00 0 0 -1.00 0.00 1.00 0 0 -1.00 0.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -2.00 1.00 0.00 0 0 -2.00 1.00 1.00 0 0 -1.00 1.00 1.00 0 0 -1.00 1.00 0.00 0 0 - -1.00 0.00 0.00 0 0 -1.00 1.00 0.00 0 0 - -2.00 0.00 0.00 0 0 -2.00 1.00 0.00 0 0 - -2.00 0.00 1.00 0 0 -2.00 1.00 1.00 0 0 - -1.00 0.00 1.00 0 0 -1.00 1.00 1.00 0 0 - -0.00 1.00 0.00 0 0 -1.00 1.00 0.00 0 0 -1.00 1.00 1.00 0 0 -0.00 1.00 1.00 0 0 -0.00 1.00 0.00 0 0 - -0.00 2.00 0.00 0 0 -1.00 2.00 0.00 0 0 -1.00 2.00 1.00 0 0 -0.00 2.00 1.00 0 0 -0.00 2.00 0.00 0 0 - -0.00 1.00 0.00 0 0 -0.00 2.00 0.00 0 0 - -1.00 1.00 0.00 0 0 -1.00 2.00 0.00 0 0 - -1.00 1.00 1.00 0 0 -1.00 2.00 1.00 0 0 - -0.00 1.00 1.00 0 0 -0.00 2.00 1.00 0 0 - -0.00 0.00 0.00 1 0 -0.500 0.00 0.00 1 0 -0.500 0.00 0.500 1 0 -0.00 0.00 0.500 1 0 -0.00 0.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 0.00 0.00 1 0 -0.00 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.00 1 0 -1.00 0.00 0.00 1 0 -1.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 0.00 0.00 1 0 -0.500 0.500 0.00 1 0 - -1.00 0.00 0.00 1 0 -1.00 0.500 0.00 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -1.00 0.00 0.500 1 0 -1.00 0.00 1.00 1 0 -0.500 0.00 1.00 1 0 -0.500 0.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -1.00 0.00 0.500 1 0 -1.00 0.500 0.500 1 0 - -1.00 0.00 1.00 1 0 -1.00 0.500 1.00 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 0.500 1 0 -0.500 0.00 0.500 1 0 -0.500 0.00 1.00 1 0 -0.00 0.00 1.00 1 0 -0.00 0.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 0.00 0.500 1 0 -0.00 0.500 0.500 1 0 - -0.500 0.00 0.500 1 0 -0.500 0.500 0.500 1 0 - -0.500 0.00 1.00 1 0 -0.500 0.500 1.00 1 0 - -0.00 0.00 1.00 1 0 -0.00 0.500 1.00 1 0 - -0.00 0.500 0.00 1 0 -0.500 0.500 0.00 1 0 -0.500 0.500 0.500 1 0 -0.00 0.500 0.500 1 0 -0.00 0.500 0.00 1 0 - -0.00 1.00 0.00 1 0 -0.500 1.00 0.00 1 0 -0.500 1.00 0.500 1 0 -0.00 1.00 0.500 1 0 -0.00 1.00 0.00 1 0 - -0.00 0.500 0.00 1 0 -0.00 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.00 1 0 -1.00 0.500 0.00 1 0 -1.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 0.00 1 0 - -0.500 1.00 0.00 1 0 -1.00 1.00 0.00 1 0 -1.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 0.00 1 0 - -0.500 0.500 0.00 1 0 -0.500 1.00 0.00 1 0 - -1.00 0.500 0.00 1 0 -1.00 1.00 0.00 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -1.00 0.500 0.500 1 0 -1.00 0.500 1.00 1 0 -0.500 0.500 1.00 1 0 -0.500 0.500 0.500 1 0 - -0.500 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 1.00 1 0 -0.500 1.00 1.00 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -1.00 0.500 0.500 1 0 -1.00 1.00 0.500 1 0 - -1.00 0.500 1.00 1 0 -1.00 1.00 1.00 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 0.500 1 0 -0.500 0.500 0.500 1 0 -0.500 0.500 1.00 1 0 -0.00 0.500 1.00 1 0 -0.00 0.500 0.500 1 0 - -0.00 1.00 0.500 1 0 -0.500 1.00 0.500 1 0 -0.500 1.00 1.00 1 0 -0.00 1.00 1.00 1 0 -0.00 1.00 0.500 1 0 - -0.00 0.500 0.500 1 0 -0.00 1.00 0.500 1 0 - -0.500 0.500 0.500 1 0 -0.500 1.00 0.500 1 0 - -0.500 0.500 1.00 1 0 -0.500 1.00 1.00 1 0 - -0.00 0.500 1.00 1 0 -0.00 1.00 1.00 1 0 - -1.00 1.00 0.00 1 0 -1.50 1.00 0.00 1 0 -1.50 1.00 0.500 1 0 -1.00 1.00 0.500 1 0 -1.00 1.00 0.00 1 0 - -1.00 1.50 0.00 1 0 -1.50 1.50 0.00 1 0 -1.50 1.50 0.500 1 0 -1.00 1.50 0.500 1 0 -1.00 1.50 0.00 1 0 - -1.00 1.00 0.00 1 0 -1.00 1.50 0.00 1 0 - -1.50 1.00 0.00 1 0 -1.50 1.50 0.00 1 0 - -1.50 1.00 0.500 1 0 -1.50 1.50 0.500 1 0 - -1.00 1.00 0.500 1 0 -1.00 1.50 0.500 1 0 - -1.50 1.00 0.00 1 0 -2.00 1.00 0.00 1 0 -2.00 1.00 0.500 1 0 -1.50 1.00 0.500 1 0 -1.50 1.00 0.00 1 0 - -1.50 1.50 0.00 1 0 -2.00 1.50 0.00 1 0 -2.00 1.50 0.500 1 0 -1.50 1.50 0.500 1 0 -1.50 1.50 0.00 1 0 - -1.50 1.00 0.00 1 0 -1.50 1.50 0.00 1 0 - -2.00 1.00 0.00 1 0 -2.00 1.50 0.00 1 0 - -2.00 1.00 0.500 1 0 -2.00 1.50 0.500 1 0 - -1.50 1.00 0.500 1 0 -1.50 1.50 0.500 1 0 - -1.50 1.00 0.500 1 0 -2.00 1.00 0.500 1 0 -2.00 1.00 1.00 1 0 -1.50 1.00 1.00 1 0 -1.50 1.00 0.500 1 0 - -1.50 1.50 0.500 1 0 -2.00 1.50 0.500 1 0 -2.00 1.50 1.00 1 0 -1.50 1.50 1.00 1 0 -1.50 1.50 0.500 1 0 - -1.50 1.00 0.500 1 0 -1.50 1.50 0.500 1 0 - -2.00 1.00 0.500 1 0 -2.00 1.50 0.500 1 0 - -2.00 1.00 1.00 1 0 -2.00 1.50 1.00 1 0 - -1.50 1.00 1.00 1 0 -1.50 1.50 1.00 1 0 - -1.00 1.00 0.500 1 0 -1.50 1.00 0.500 1 0 -1.50 1.00 1.00 1 0 -1.00 1.00 1.00 1 0 -1.00 1.00 0.500 1 0 - -1.00 1.50 0.500 1 0 -1.50 1.50 0.500 1 0 -1.50 1.50 1.00 1 0 -1.00 1.50 1.00 1 0 -1.00 1.50 0.500 1 0 - -1.00 1.00 0.500 1 0 -1.00 1.50 0.500 1 0 - -1.50 1.00 0.500 1 0 -1.50 1.50 0.500 1 0 - -1.50 1.00 1.00 1 0 -1.50 1.50 1.00 1 0 - -1.00 1.00 1.00 1 0 -1.00 1.50 1.00 1 0 - -1.00 1.50 0.00 1 0 -1.50 1.50 0.00 1 0 -1.50 1.50 0.500 1 0 -1.00 1.50 0.500 1 0 -1.00 1.50 0.00 1 0 - -1.00 2.00 0.00 1 0 -1.50 2.00 0.00 1 0 -1.50 2.00 0.500 1 0 -1.00 2.00 0.500 1 0 -1.00 2.00 0.00 1 0 - -1.00 1.50 0.00 1 0 -1.00 2.00 0.00 1 0 - -1.50 1.50 0.00 1 0 -1.50 2.00 0.00 1 0 - -1.50 1.50 0.500 1 0 -1.50 2.00 0.500 1 0 - -1.00 1.50 0.500 1 0 -1.00 2.00 0.500 1 0 - -1.50 1.50 0.00 1 0 -2.00 1.50 0.00 1 0 -2.00 1.50 0.500 1 0 -1.50 1.50 0.500 1 0 -1.50 1.50 0.00 1 0 - -1.50 2.00 0.00 1 0 -2.00 2.00 0.00 1 0 -2.00 2.00 0.500 1 0 -1.50 2.00 0.500 1 0 -1.50 2.00 0.00 1 0 - -1.50 1.50 0.00 1 0 -1.50 2.00 0.00 1 0 - -2.00 1.50 0.00 1 0 -2.00 2.00 0.00 1 0 - -2.00 1.50 0.500 1 0 -2.00 2.00 0.500 1 0 - -1.50 1.50 0.500 1 0 -1.50 2.00 0.500 1 0 - -1.50 1.50 0.500 1 0 -2.00 1.50 0.500 1 0 -2.00 1.50 1.00 1 0 -1.50 1.50 1.00 1 0 -1.50 1.50 0.500 1 0 - -1.50 2.00 0.500 1 0 -2.00 2.00 0.500 1 0 -2.00 2.00 1.00 1 0 -1.50 2.00 1.00 1 0 -1.50 2.00 0.500 1 0 - -1.50 1.50 0.500 1 0 -1.50 2.00 0.500 1 0 - -2.00 1.50 0.500 1 0 -2.00 2.00 0.500 1 0 - -2.00 1.50 1.00 1 0 -2.00 2.00 1.00 1 0 - -1.50 1.50 1.00 1 0 -1.50 2.00 1.00 1 0 - -1.00 1.50 0.500 1 0 -1.50 1.50 0.500 1 0 -1.50 1.50 1.00 1 0 -1.00 1.50 1.00 1 0 -1.00 1.50 0.500 1 0 - -1.00 2.00 0.500 1 0 -1.50 2.00 0.500 1 0 -1.50 2.00 1.00 1 0 -1.00 2.00 1.00 1 0 -1.00 2.00 0.500 1 0 - -1.00 1.50 0.500 1 0 -1.00 2.00 0.500 1 0 - -1.50 1.50 0.500 1 0 -1.50 2.00 0.500 1 0 - -1.50 1.50 1.00 1 0 -1.50 2.00 1.00 1 0 - -1.00 1.50 1.00 1 0 -1.00 2.00 1.00 1 0 - - 78 11: 1.00 - 79 16: 1.00 - 80 25: 1.00 - 82 0: 0.375 - 82 3: -0.125 - 82 11: 0.750 - 85 16: 0.375 - 85 19: -0.125 - 85 25: 0.750 - 87 0: 0.375 - 87 4: -0.125 - 87 16: 0.750 - 88 11: 0.375 - 88 15: -0.125 - 88 25: 0.750 - 92 0: 0.141 - 92 3: -0.0469 - 92 4: -0.0469 - 92 7: 0.0156 - 92 11: 0.281 - 92 15: -0.0938 - 92 16: 0.281 - 92 19: -0.0938 - 92 25: 0.562 - 96 19: 1.00 - 98 0: -0.125 - 98 3: 0.375 - 98 11: 0.750 - 101 16: -0.125 - 101 19: 0.375 - 101 25: 0.750 - 104 3: 0.375 - 104 7: -0.125 - 104 19: 0.750 - 108 0: -0.0469 - 108 3: 0.141 - 108 4: 0.0156 - 108 7: -0.0469 - 108 11: 0.281 - 108 15: -0.0938 - 108 16: -0.0938 - 108 19: 0.281 - 108 25: 0.562 - 124 33: 1.00 - 125 44: 1.00 - 126 35: 1.00 - 127 4: -0.125 - 127 27: 0.375 - 127 33: 0.750 - 128 33: 0.375 - 128 34: -0.125 - 128 44: 0.750 - 129 15: -0.125 - 129 35: 0.375 - 129 44: 0.750 - 130 27: 0.375 - 130 28: -0.125 - 130 35: 0.750 - 135 4: -0.0469 - 135 7: 0.0156 - 135 15: -0.0938 - 135 27: 0.141 - 135 28: -0.0469 - 135 33: 0.281 - 135 34: -0.0938 - 135 35: 0.281 - 135 44: 0.562 - 141 15: 1.00 - 142 4: 0.375 - 142 27: -0.125 - 142 33: 0.750 - 143 4: 0.375 - 143 7: -0.125 - 143 15: 0.750 - 144 15: 0.375 - 144 35: -0.125 - 144 44: 0.750 - 145 0: -0.125 - 145 4: 0.375 - 145 16: 0.750 - 146 11: -0.125 - 146 15: 0.375 - 146 25: 0.750 - 147 4: 0.141 - 147 7: -0.0469 - 147 15: 0.281 - 147 27: -0.0469 - 147 28: 0.0156 - 147 33: 0.281 - 147 34: -0.0938 - 147 35: -0.0938 - 147 44: 0.562 - 149 0: -0.0469 - 149 3: 0.0156 - 149 4: 0.141 - 149 7: -0.0469 - 149 11: -0.0938 - 149 15: 0.281 - 149 16: 0.281 - 149 19: -0.0938 - 149 25: 0.562 - 152 34: 1.00 - 153 4: -0.125 - 153 7: 0.375 - 153 15: 0.750 - 154 7: 0.375 - 154 28: -0.125 - 154 34: 0.750 - 155 33: -0.125 - 155 34: 0.375 - 155 44: 0.750 - 156 3: -0.125 - 156 7: 0.375 - 156 19: 0.750 - 158 4: -0.0469 - 158 7: 0.141 - 158 15: 0.281 - 158 27: 0.0156 - 158 28: -0.0469 - 158 33: -0.0938 - 158 34: 0.281 - 158 35: -0.0938 - 158 44: 0.562 - 159 0: 0.0156 - 159 3: -0.0469 - 159 4: -0.0469 - 159 7: 0.141 - 159 11: -0.0938 - 159 15: 0.281 - 159 16: -0.0938 - 159 19: 0.281 - 159 25: 0.562 - 163 7: -0.125 - 163 28: 0.375 - 163 34: 0.750 - 164 27: -0.125 - 164 28: 0.375 - 164 35: 0.750 - 166 4: 0.0156 - 166 7: -0.0469 - 166 15: -0.0938 - 166 27: -0.0469 - 166 28: 0.141 - 166 33: -0.0938 - 166 34: 0.281 - 166 35: 0.281 - 166 44: 0.562 - 170 12: 1.00 - 171 21: 1.00 - 172 41: 1.00 - 175 47: 1.00 - 176 4: 0.375 - 176 5: -0.125 - 176 12: 0.750 - 177 12: 0.375 - 177 14: -0.125 - 177 21: 0.750 - 178 13: -0.125 - 178 15: 0.375 - 178 21: 0.750 - 182 41: 0.375 - 182 42: -0.125 - 182 47: 0.750 - 183 4: 0.375 - 183 30: -0.125 - 183 41: 0.750 - 186 15: 0.375 - 186 37: -0.125 - 186 47: 0.750 - 187 4: 0.141 - 187 5: -0.0469 - 187 6: 0.0156 - 187 7: -0.0469 - 187 12: 0.281 - 187 13: -0.0938 - 187 14: -0.0938 - 187 15: 0.281 - 187 21: 0.562 - 192 4: 0.141 - 192 7: -0.0469 - 192 15: 0.281 - 192 30: -0.0469 - 192 31: 0.0156 - 192 37: -0.0938 - 192 41: 0.281 - 192 42: -0.0938 - 192 47: 0.562 - 194 13: 1.00 - 197 4: -0.125 - 197 5: 0.375 - 197 12: 0.750 - 198 5: 0.375 - 198 6: -0.125 - 198 13: 0.750 - 199 13: 0.375 - 199 15: -0.125 - 199 21: 0.750 - 205 4: -0.0469 - 205 5: 0.141 - 205 6: -0.0469 - 205 7: 0.0156 - 205 12: 0.281 - 205 13: 0.281 - 205 14: -0.0938 - 205 15: -0.0938 - 205 21: 0.562 - 211 14: 1.00 - 214 5: -0.125 - 214 6: 0.375 - 214 13: 0.750 - 215 6: 0.375 - 215 7: -0.125 - 215 14: 0.750 - 216 12: -0.125 - 216 14: 0.375 - 216 21: 0.750 - 222 4: 0.0156 - 222 5: -0.0469 - 222 6: 0.141 - 222 7: -0.0469 - 222 12: -0.0938 - 222 13: 0.281 - 222 14: 0.281 - 222 15: -0.0938 - 222 21: 0.562 - 228 42: 1.00 - 229 6: -0.125 - 229 7: 0.375 - 229 14: 0.750 - 231 41: -0.125 - 231 42: 0.375 - 231 47: 0.750 - 232 7: 0.375 - 232 31: -0.125 - 232 42: 0.750 - 233 4: -0.0469 - 233 5: 0.0156 - 233 6: -0.0469 - 233 7: 0.141 - 233 12: -0.0938 - 233 13: -0.0938 - 233 14: 0.281 - 233 15: 0.281 - 233 21: 0.562 - 236 4: -0.0469 - 236 7: 0.141 - 236 15: 0.281 - 236 30: 0.0156 - 236 31: -0.0469 - 236 37: -0.0938 - 236 41: -0.0938 - 236 42: 0.281 - 236 47: 0.562 - 240 37: 1.00 - 244 30: 0.375 - 244 31: -0.125 - 244 37: 0.750 - 245 4: -0.125 - 245 30: 0.375 - 245 41: 0.750 - 248 15: -0.125 - 248 37: 0.375 - 248 47: 0.750 - 253 4: -0.0469 - 253 7: 0.0156 - 253 15: -0.0938 - 253 30: 0.141 - 253 31: -0.0469 - 253 37: 0.281 - 253 41: 0.281 - 253 42: -0.0938 - 253 47: 0.562 - 280 30: -0.125 - 280 31: 0.375 - 280 37: 0.750 - 281 7: -0.125 - 281 31: 0.375 - 281 42: 0.750 - 284 4: 0.0156 - 284 7: -0.0469 - 284 15: -0.0938 - 284 30: -0.0469 - 284 31: 0.141 - 284 37: 0.281 - 284 41: -0.0938 - 284 42: 0.281 - 284 47: 0.562 - diff --git a/tests/deal.II/data_out.cc b/tests/deal.II/data_out.cc deleted file mode 100644 index 4c735aa071..0000000000 --- a/tests/deal.II/data_out.cc +++ /dev/null @@ -1,264 +0,0 @@ -//---------------------------- data_out.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- data_out.cc --------------------------- - - -/* Author: Wolfgang Bangerth, University of Heidelberg, 1999 */ -/* adapted from step-4. */ - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include - -#include - - -ofstream logfile("data_out.output"); - - -template -class LaplaceProblem -{ - public: - LaplaceProblem (); - void run (); - - private: - void make_grid_and_dofs (); - void solve (); - void output_results () const; - - Triangulation triangulation; - FEQ1 fe; - DoFHandler dof_handler; - - SparsityPattern sparsity_pattern; - SparseMatrix system_matrix; - - Vector solution; - Vector system_rhs; -}; - - -template -class RightHandSide : public Function -{ - public: - virtual double value (const Point &p, - const unsigned int component = 0) const; -}; - - - -template -class BoundaryValues : public Function -{ - public: - virtual double value (const Point &p, - const unsigned int component = 0) const; -}; - - - - -template -double RightHandSide::value (const Point &p, - const unsigned int) const -{ - double return_value = 0; - for (unsigned int i=0; i -double BoundaryValues::value (const Point &p, - const unsigned int) const -{ - return p.square(); -}; - - - - -template -LaplaceProblem::LaplaceProblem () : - dof_handler (triangulation) -{}; - - - -template -void LaplaceProblem::make_grid_and_dofs () -{ - GridGenerator::hyper_cube (triangulation, 0, 1); - triangulation.refine_global (dim==2 ? 2 : 1); - for (unsigned int i=0; i<2; ++i) - { - triangulation.begin_active()->set_refine_flag (); - triangulation.execute_coarsening_and_refinement (); - }; - - - logfile << " Number of active cells: " - << triangulation.n_active_cells() - << endl - << " Total number of cells: " - << triangulation.n_cells() - << endl; - - dof_handler.distribute_dofs (fe); - - logfile << " Number of degrees of freedom: " - << dof_handler.n_dofs() - << endl; - - sparsity_pattern.reinit (dof_handler.n_dofs(), - dof_handler.n_dofs(), - dof_handler.max_couplings_between_dofs()); - DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); - sparsity_pattern.compress(); - - system_matrix.reinit (sparsity_pattern); - - solution.reinit (dof_handler.n_dofs()); - system_rhs.reinit (dof_handler.n_dofs()); -}; - - - - -template -void LaplaceProblem::solve () -{ - // dummy solve. just insert some - // arbitrary values - for (unsigned int i=0; i -void LaplaceProblem<2>::output_results () const -{ - const unsigned int dim = 2; - - // test regular output in 2d - if (true) - { - DataOut data_out; - data_out.attach_dof_handler (dof_handler); - data_out.add_data_vector (solution, "solution"); - data_out.build_patches (); - data_out.write_gmv (logfile); - data_out.write_gnuplot (logfile); - data_out.write_ucd (logfile); - data_out.write_povray (logfile); - data_out.write_eps (logfile); - }; - - // test DataOutRotation in 2d - if (true) - { - DataOutRotation data_out; - data_out.attach_dof_handler (dof_handler); - data_out.add_data_vector (solution, "solution"); - data_out.build_patches (10); - data_out.write_gmv (logfile); - data_out.write_gnuplot (logfile); - data_out.write_ucd (logfile); - }; -}; - - - -template <> -void LaplaceProblem<3>::output_results () const -{ - const unsigned int dim = 3; - - // test regular output in 3d - if (true) - { - DataOut data_out; - data_out.attach_dof_handler (dof_handler); - data_out.add_data_vector (solution, "solution"); - data_out.build_patches (); - data_out.write_gmv (logfile); - data_out.write_gnuplot (logfile); - data_out.write_ucd (logfile); - }; - - // test DataOutFaces in 3d. note: - // not all output formats support - // this - if (true) - { - DataOutFaces data_out; - data_out.attach_dof_handler (dof_handler); - data_out.add_data_vector (solution, "solution"); - data_out.build_patches (10); - data_out.write_gmv (logfile); - data_out.write_gnuplot (logfile); - data_out.write_ucd (logfile); - }; -}; - - - -template -void LaplaceProblem::run () -{ - make_grid_and_dofs(); - solve (); - output_results (); -}; - - - -int main () -{ - deallog.depth_console (0); - - LaplaceProblem<2> laplace_problem_2d; - laplace_problem_2d.run (); - - LaplaceProblem<3> laplace_problem_3d; - laplace_problem_3d.run (); - - return 0; -}; diff --git a/tests/deal.II/data_out.checked b/tests/deal.II/data_out.checked deleted file mode 100644 index 463a9e8005..0000000000 --- a/tests/deal.II/data_out.checked +++ /dev/null @@ -1,45372 +0,0 @@ - Number of active cells: 22 - Total number of cells: 29 - Number of degrees of freedom: 34 -gmvinput ascii - -nodes 88 -0.25 0.25 0.5 0.5 0 0 0.25 0.25 0.5 0.5 0.75 0.75 0.75 0.75 1 1 0.75 0.75 1 1 0.5 0.5 0.75 0.75 0.5 0.5 0.75 0.75 0.75 0.75 1 1 0.75 0.75 1 1 0.5 0.5 0.75 0.75 0 0 0.25 0.25 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 0 0 0.25 0.25 0 0 0.125 0.125 0.125 0.125 0.25 0.25 0.125 0.125 0.25 0.25 0 0 0.125 0.125 0.25 0.25 0.375 0.375 0.375 0.375 0.5 0.5 0.375 0.375 0.5 0.5 0.25 0.25 0.375 0.375 -0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0 0.25 0 0.25 0 0.25 0 0.25 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.75 1 0.75 1 0.75 1 0.75 1 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.75 1 0.75 1 0.75 1 0.75 1 0 0.125 0 0.125 0 0.125 0 0.125 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0 0.125 0 0.125 0 0.125 0 0.125 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - -cells 22 -quad 4 - 1 3 4 2 -quad 4 - 5 7 8 6 -quad 4 - 9 11 12 10 -quad 4 - 13 15 16 14 -quad 4 - 17 19 20 18 -quad 4 - 21 23 24 22 -quad 4 - 25 27 28 26 -quad 4 - 29 31 32 30 -quad 4 - 33 35 36 34 -quad 4 - 37 39 40 38 -quad 4 - 41 43 44 42 -quad 4 - 45 47 48 46 -quad 4 - 49 51 52 50 -quad 4 - 53 55 56 54 -quad 4 - 57 59 60 58 -quad 4 - 61 63 64 62 -quad 4 - 65 67 68 66 -quad 4 - 69 71 72 70 -quad 4 - 73 75 76 74 -quad 4 - 77 79 80 78 -quad 4 - 81 83 84 82 -quad 4 - 85 87 88 86 - -variable -solution 1 -0 3 1 2 4 5 0 3 6 1 7 8 7 8 9 10 8 12 10 11 1 2 8 12 2 14 12 13 12 13 11 15 13 17 15 16 14 18 13 17 5 20 3 19 3 19 2 14 19 21 14 18 20 22 19 21 23 26 24 25 24 25 27 28 25 29 28 0 26 4 25 29 27 28 30 31 30 31 6 32 31 33 32 1 28 0 31 33 - -endvars -endgmv -# This file was generated by the deal.II library. -# Date = 2000/9/19 - -# -# For a description of the GNUPLOT format see the GNUPLOT manual. -# -# -0.25 0.25 0 -0.25 0.5 3 - -0.5 0.25 1 -0.5 0.5 2 - - -0 0.25 4 -0 0.5 5 - -0.25 0.25 0 -0.25 0.5 3 - - -0.5 0 6 -0.5 0.25 1 - -0.75 0 7 -0.75 0.25 8 - - -0.75 0 7 -0.75 0.25 8 - -1 0 9 -1 0.25 10 - - -0.75 0.25 8 -0.75 0.5 12 - -1 0.25 10 -1 0.5 11 - - -0.5 0.25 1 -0.5 0.5 2 - -0.75 0.25 8 -0.75 0.5 12 - - -0.5 0.5 2 -0.5 0.75 14 - -0.75 0.5 12 -0.75 0.75 13 - - -0.75 0.5 12 -0.75 0.75 13 - -1 0.5 11 -1 0.75 15 - - -0.75 0.75 13 -0.75 1 17 - -1 0.75 15 -1 1 16 - - -0.5 0.75 14 -0.5 1 18 - -0.75 0.75 13 -0.75 1 17 - - -0 0.5 5 -0 0.75 20 - -0.25 0.5 3 -0.25 0.75 19 - - -0.25 0.5 3 -0.25 0.75 19 - -0.5 0.5 2 -0.5 0.75 14 - - -0.25 0.75 19 -0.25 1 21 - -0.5 0.75 14 -0.5 1 18 - - -0 0.75 20 -0 1 22 - -0.25 0.75 19 -0.25 1 21 - - -0 0 23 -0 0.125 26 - -0.125 0 24 -0.125 0.125 25 - - -0.125 0 24 -0.125 0.125 25 - -0.25 0 27 -0.25 0.125 28 - - -0.125 0.125 25 -0.125 0.25 29 - -0.25 0.125 28 -0.25 0.25 0 - - -0 0.125 26 -0 0.25 4 - -0.125 0.125 25 -0.125 0.25 29 - - -0.25 0 27 -0.25 0.125 28 - -0.375 0 30 -0.375 0.125 31 - - -0.375 0 30 -0.375 0.125 31 - -0.5 0 6 -0.5 0.125 32 - - -0.375 0.125 31 -0.375 0.25 33 - -0.5 0.125 32 -0.5 0.25 1 - - -0.25 0.125 28 -0.25 0.25 0 - -0.375 0.125 31 -0.375 0.25 33 - - -# This file was generated by the deal.II library. -# Date = 2000/9/19 - -# -# For a description of the UCD format see the AVS Developer's guide. -# -88 22 1 0 0 -1 0.25 0.25 0 -2 0.25 0.5 0 -3 0.5 0.25 0 -4 0.5 0.5 0 -5 0 0.25 0 -6 0 0.5 0 -7 0.25 0.25 0 -8 0.25 0.5 0 -9 0.5 0 0 -10 0.5 0.25 0 -11 0.75 0 0 -12 0.75 0.25 0 -13 0.75 0 0 -14 0.75 0.25 0 -15 1 0 0 -16 1 0.25 0 -17 0.75 0.25 0 -18 0.75 0.5 0 -19 1 0.25 0 -20 1 0.5 0 -21 0.5 0.25 0 -22 0.5 0.5 0 -23 0.75 0.25 0 -24 0.75 0.5 0 -25 0.5 0.5 0 -26 0.5 0.75 0 -27 0.75 0.5 0 -28 0.75 0.75 0 -29 0.75 0.5 0 -30 0.75 0.75 0 -31 1 0.5 0 -32 1 0.75 0 -33 0.75 0.75 0 -34 0.75 1 0 -35 1 0.75 0 -36 1 1 0 -37 0.5 0.75 0 -38 0.5 1 0 -39 0.75 0.75 0 -40 0.75 1 0 -41 0 0.5 0 -42 0 0.75 0 -43 0.25 0.5 0 -44 0.25 0.75 0 -45 0.25 0.5 0 -46 0.25 0.75 0 -47 0.5 0.5 0 -48 0.5 0.75 0 -49 0.25 0.75 0 -50 0.25 1 0 -51 0.5 0.75 0 -52 0.5 1 0 -53 0 0.75 0 -54 0 1 0 -55 0.25 0.75 0 -56 0.25 1 0 -57 0 0 0 -58 0 0.125 0 -59 0.125 0 0 -60 0.125 0.125 0 -61 0.125 0 0 -62 0.125 0.125 0 -63 0.25 0 0 -64 0.25 0.125 0 -65 0.125 0.125 0 -66 0.125 0.25 0 -67 0.25 0.125 0 -68 0.25 0.25 0 -69 0 0.125 0 -70 0 0.25 0 -71 0.125 0.125 0 -72 0.125 0.25 0 -73 0.25 0 0 -74 0.25 0.125 0 -75 0.375 0 0 -76 0.375 0.125 0 -77 0.375 0 0 -78 0.375 0.125 0 -79 0.5 0 0 -80 0.5 0.125 0 -81 0.375 0.125 0 -82 0.375 0.25 0 -83 0.5 0.125 0 -84 0.5 0.25 0 -85 0.25 0.125 0 -86 0.25 0.25 0 -87 0.375 0.125 0 -88 0.375 0.25 0 -1 0 quad 1 3 4 2 -2 0 quad 5 7 8 6 -3 0 quad 9 11 12 10 -4 0 quad 13 15 16 14 -5 0 quad 17 19 20 18 -6 0 quad 21 23 24 22 -7 0 quad 25 27 28 26 -8 0 quad 29 31 32 30 -9 0 quad 33 35 36 34 -10 0 quad 37 39 40 38 -11 0 quad 41 43 44 42 -12 0 quad 45 47 48 46 -13 0 quad 49 51 52 50 -14 0 quad 53 55 56 54 -15 0 quad 57 59 60 58 -16 0 quad 61 63 64 62 -17 0 quad 65 67 68 66 -18 0 quad 69 71 72 70 -19 0 quad 73 75 76 74 -20 0 quad 77 79 80 78 -21 0 quad 81 83 84 82 -22 0 quad 85 87 88 86 - -1 1 -solution,dimensionless -1 0 -2 3 -3 1 -4 2 -5 4 -6 5 -7 0 -8 3 -9 6 -10 1 -11 7 -12 8 -13 7 -14 8 -15 9 -16 10 -17 8 -18 12 -19 10 -20 11 -21 1 -22 2 -23 8 -24 12 -25 2 -26 14 -27 12 -28 13 -29 12 -30 13 -31 11 -32 15 -33 13 -34 17 -35 15 -36 16 -37 14 -38 18 -39 13 -40 17 -41 5 -42 20 -43 3 -44 19 -45 3 -46 19 -47 2 -48 14 -49 19 -50 21 -51 14 -52 18 -53 20 -54 22 -55 19 -56 21 -57 23 -58 26 -59 24 -60 25 -61 24 -62 25 -63 27 -64 28 -65 25 -66 29 -67 28 -68 0 -69 26 -70 4 -71 25 -72 29 -73 27 -74 28 -75 30 -76 31 -77 30 -78 31 -79 6 -80 32 -81 31 -82 33 -83 32 -84 1 -85 28 -86 0 -87 31 -88 33 -/* This file was generated by the deal.II library. - - - - For a description of the POVRAY format see the POVRAY manual. -*/ -#include "colors.inc" -#include "textures.inc" - - -camera { - location <1,4,-7> - look_at <0,0,0> - angle 30 -} - -light_source { - <1,4,-7> - color Grey -} - -light_source { - <0,20,0> - color White -} -#declare HMIN=1; -#declare HMAX=31; - -#declare Tex=texture{ - pigment { - gradient y - scale y*(HMAX-HMIN)*0.1 - color_map { - [0.00 color Light_Purple] - [0.95 color Light_Purple] - [1.00 color White] -} } } - - -mesh { -triangle { - <0.25,0,0.25>, - <0.5,1,0.25>, - <0.5,2,0.5>} -triangle { - <0.25,0,0.25>, - <0.5,2,0.5>, - <0.25,3,0.5>} -triangle { - <0,4,0.25>, - <0.25,0,0.25>, - <0.25,3,0.5>} -triangle { - <0,4,0.25>, - <0.25,3,0.5>, - <0,5,0.5>} -triangle { - <0.5,6,0>, - <0.75,7,0>, - <0.75,8,0.25>} -triangle { - <0.5,6,0>, - <0.75,8,0.25>, - <0.5,1,0.25>} -triangle { - <0.75,7,0>, - <1,9,0>, - <1,10,0.25>} -triangle { - <0.75,7,0>, - <1,10,0.25>, - <0.75,8,0.25>} -triangle { - <0.75,8,0.25>, - <1,10,0.25>, - <1,11,0.5>} -triangle { - <0.75,8,0.25>, - <1,11,0.5>, - <0.75,12,0.5>} -triangle { - <0.5,1,0.25>, - <0.75,8,0.25>, - <0.75,12,0.5>} -triangle { - <0.5,1,0.25>, - <0.75,12,0.5>, - <0.5,2,0.5>} -triangle { - <0.5,2,0.5>, - <0.75,12,0.5>, - <0.75,13,0.75>} -triangle { - <0.5,2,0.5>, - <0.75,13,0.75>, - <0.5,14,0.75>} -triangle { - <0.75,12,0.5>, - <1,11,0.5>, - <1,15,0.75>} -triangle { - <0.75,12,0.5>, - <1,15,0.75>, - <0.75,13,0.75>} -triangle { - <0.75,13,0.75>, - <1,15,0.75>, - <1,16,1>} -triangle { - <0.75,13,0.75>, - <1,16,1>, - <0.75,17,1>} -triangle { - <0.5,14,0.75>, - <0.75,13,0.75>, - <0.75,17,1>} -triangle { - <0.5,14,0.75>, - <0.75,17,1>, - <0.5,18,1>} -triangle { - <0,5,0.5>, - <0.25,3,0.5>, - <0.25,19,0.75>} -triangle { - <0,5,0.5>, - <0.25,19,0.75>, - <0,20,0.75>} -triangle { - <0.25,3,0.5>, - <0.5,2,0.5>, - <0.5,14,0.75>} -triangle { - <0.25,3,0.5>, - <0.5,14,0.75>, - <0.25,19,0.75>} -triangle { - <0.25,19,0.75>, - <0.5,14,0.75>, - <0.5,18,1>} -triangle { - <0.25,19,0.75>, - <0.5,18,1>, - <0.25,21,1>} -triangle { - <0,20,0.75>, - <0.25,19,0.75>, - <0.25,21,1>} -triangle { - <0,20,0.75>, - <0.25,21,1>, - <0,22,1>} -triangle { - <0,23,0>, - <0.125,24,0>, - <0.125,25,0.125>} -triangle { - <0,23,0>, - <0.125,25,0.125>, - <0,26,0.125>} -triangle { - <0.125,24,0>, - <0.25,27,0>, - <0.25,28,0.125>} -triangle { - <0.125,24,0>, - <0.25,28,0.125>, - <0.125,25,0.125>} -triangle { - <0.125,25,0.125>, - <0.25,28,0.125>, - <0.25,0,0.25>} -triangle { - <0.125,25,0.125>, - <0.25,0,0.25>, - <0.125,29,0.25>} -triangle { - <0,26,0.125>, - <0.125,25,0.125>, - <0.125,29,0.25>} -triangle { - <0,26,0.125>, - <0.125,29,0.25>, - <0,4,0.25>} -triangle { - <0.25,27,0>, - <0.375,30,0>, - <0.375,31,0.125>} -triangle { - <0.25,27,0>, - <0.375,31,0.125>, - <0.25,28,0.125>} -triangle { - <0.375,30,0>, - <0.5,6,0>, - <0.5,32,0.125>} -triangle { - <0.375,30,0>, - <0.5,32,0.125>, - <0.375,31,0.125>} -triangle { - <0.375,31,0.125>, - <0.5,32,0.125>, - <0.5,1,0.25>} -triangle { - <0.375,31,0.125>, - <0.5,1,0.25>, - <0.375,33,0.25>} -triangle { - <0.25,28,0.125>, - <0.375,31,0.125>, - <0.375,33,0.25>} -triangle { - <0.25,28,0.125>, - <0.375,33,0.25>, - <0.25,0,0.25>} - texture {Tex} -} - -%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library - -%%BoundingBox: 0 0 300 6269 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.5 setlinewidth -0 0 0 s 75 0 m 122.55 176.47 l 150 390.43 l 102.45 594.35 lf -0 sg 75 0 m 122.55 176.47 l 150 390.43 l 102.45 594.35 lx -0 0 0.21818 s 27.452 774.5 m 75 0 l 102.45 594.35 l 54.904 988.46 lf -0 sg 27.452 774.5 m 75 0 l 102.45 594.35 l 54.904 988.46 lx -0 0 0.61818 s 122.55 176.47 m 170.1 1494.1 l 197.55 2278.6 l 150 390.43 lf -0 sg 122.55 176.47 m 170.1 1494.1 l 197.55 2278.6 l 150 390.43 lx -0 0 0.58182 s 95.096 1103.7 m 142.64 1280.1 l 170.1 1494.1 l 122.55 176.47 lf -0 sg 95.096 1103.7 m 142.64 1280.1 l 170.1 1494.1 l 122.55 176.47 lx -0 0.16364 0.83636 s 102.45 594.35 m 150 390.43 l 177.45 2696.5 l 129.9 3661.2 lf -0 sg 102.45 594.35 m 150 390.43 l 177.45 2696.5 l 129.9 3661.2 lx -0 0.018182 0.98182 s 142.64 1280.1 m 190.19 1646.8 l 217.64 1860.7 l 170.1 1494.1 lf -0 sg 142.64 1280.1 m 190.19 1646.8 l 217.64 1860.7 l 170.1 1494.1 lx -0 0.27273 0.72727 s 150 390.43 m 197.55 2278.6 l 225 2492.6 l 177.45 2696.5 lf -0 sg 150 390.43 m 197.55 2278.6 l 225 2492.6 l 177.45 2696.5 lx -0 0.27273 0.72727 s 170.1 1494.1 m 217.64 1860.7 l 245.1 2074.7 l 197.55 2278.6 lf -0 sg 170.1 1494.1 m 217.64 1860.7 l 245.1 2074.7 l 197.55 2278.6 lx -0 0.49091 0.50909 s 54.904 988.46 m 102.45 594.35 l 129.9 3661.2 l 82.356 3865.1 lf -0 sg 54.904 988.46 m 102.45 594.35 l 129.9 3661.2 l 82.356 3865.1 lx -0 0.63636 0.36364 s 197.55 2278.6 m 245.1 2074.7 l 272.55 2859.3 l 225 2492.6 lf -0 sg 197.55 2278.6 m 245.1 2074.7 l 272.55 2859.3 l 225 2492.6 lx -0 1 0 s 225 2492.6 m 272.55 2859.3 l 300 3073.2 l 252.45 3277.1 lf -0 sg 225 2492.6 m 272.55 2859.3 l 300 3073.2 l 252.45 3277.1 lx -0.036364 0.96364 0 s 177.45 2696.5 m 225 2492.6 l 252.45 3277.1 l 204.9 3481.1 lf -0 sg 177.45 2696.5 m 225 2492.6 l 252.45 3277.1 l 204.9 3481.1 lx -0.4 0.6 0 s 129.9 3661.2 m 177.45 2696.5 l 204.9 3481.1 l 157.36 4065.4 lf -0 sg 129.9 3661.2 m 177.45 2696.5 l 204.9 3481.1 l 157.36 4065.4 lx -0.76364 0.23636 0 s 82.356 3865.1 m 129.9 3661.2 l 157.36 4065.4 l 109.81 4269.3 lf -0 sg 82.356 3865.1 m 129.9 3661.2 l 157.36 4065.4 l 109.81 4269.3 lx -0.76364 0.23636 0 s 37.5 4749.8 m 61.274 5313.5 l 75 0 l 51.226 5522.4 lf -0 sg 37.5 4749.8 m 61.274 5313.5 l 75 0 l 51.226 5522.4 lx -0.83636 0.16364 0 s 13.726 4946.8 m 37.5 4749.8 l 51.226 5522.4 l 27.452 774.5 lf -0 sg 13.726 4946.8 m 37.5 4749.8 l 51.226 5522.4 l 27.452 774.5 lx -1 0.12727 0.12727 s 61.274 5313.5 m 85.048 5877.2 l 98.774 6269.5 l 75 0 lf -0 sg 61.274 5313.5 m 85.048 5877.2 l 98.774 6269.5 l 75 0 lx -1 0.30909 0.30909 s 85.048 5877.2 m 108.82 6060.5 l 122.55 176.47 l 98.774 6269.5 lf -0 sg 85.048 5877.2 m 108.82 6060.5 l 122.55 176.47 l 98.774 6269.5 lx -1 0.34545 0.34545 s 0 4364.4 m 23.774 4547.7 l 37.5 4749.8 l 13.726 4946.8 lf -0 sg 0 4364.4 m 23.774 4547.7 l 37.5 4749.8 l 13.726 4946.8 lx -1 0.38182 0.38182 s 71.322 5675.1 m 95.096 1103.7 l 108.82 6060.5 l 85.048 5877.2 lf -0 sg 71.322 5675.1 m 95.096 1103.7 l 108.82 6060.5 l 85.048 5877.2 lx -1 0.56364 0.56364 s 23.774 4547.7 m 47.548 5111.4 l 61.274 5313.5 l 37.5 4749.8 lf -0 sg 23.774 4547.7 m 47.548 5111.4 l 61.274 5313.5 l 37.5 4749.8 lx -1 1 1 s 47.548 5111.4 m 71.322 5675.1 l 85.048 5877.2 l 61.274 5313.5 lf -0 sg 47.548 5111.4 m 71.322 5675.1 l 85.048 5877.2 l 61.274 5313.5 lx -showpage -gmvinput ascii - -nodes 1760 -0.25 0.25 0.20225 0.20225 0.5 0.5 0.40451 0.40451 0.20225 0.20225 0.077254 0.077254 0.40451 0.40451 0.15451 0.15451 0.077254 0.077254 -0.077254 -0.077254 0.15451 0.15451 -0.15451 -0.15451 -0.077254 -0.077254 -0.20225 -0.20225 -0.15451 -0.15451 -0.40451 -0.40451 -0.20225 -0.20225 -0.25 -0.25 -0.40451 -0.40451 -0.5 -0.5 -0.25 -0.25 -0.20225 -0.20225 -0.5 -0.5 -0.40451 -0.40451 -0.20225 -0.20225 -0.077254 -0.077254 -0.40451 -0.40451 -0.15451 -0.15451 -0.077254 -0.077254 0.077254 0.077254 -0.15451 -0.15451 0.15451 0.15451 0.077254 0.077254 0.20225 0.20225 0.15451 0.15451 0.40451 0.40451 0.20225 0.20225 0.25 0.25 0.40451 0.40451 0.5 0.5 0 0 0 0 0.25 0.25 0.20225 0.20225 0 0 0 0 0.20225 0.20225 0.077254 0.077254 0 0 0 0 0.077254 0.077254 -0.077254 -0.077254 -0 -0 -0 -0 -0.077254 -0.077254 -0.20225 -0.20225 -0 -0 -0 -0 -0.20225 -0.20225 -0.25 -0.25 -0 -0 -0 -0 -0.25 -0.25 -0.20225 -0.20225 -0 -0 -0 -0 -0.20225 -0.20225 -0.077254 -0.077254 0 0 0 0 -0.077254 -0.077254 0.077254 0.077254 0 0 0 0 0.077254 0.077254 0.20225 0.20225 0 0 0 0 0.20225 0.20225 0.25 0.25 0.5 0.5 0.40451 0.40451 0.75 0.75 0.60676 0.60676 0.40451 0.40451 0.15451 0.15451 0.60676 0.60676 0.23176 0.23176 0.15451 0.15451 -0.15451 -0.15451 0.23176 0.23176 -0.23176 -0.23176 -0.15451 -0.15451 -0.40451 -0.40451 -0.23176 -0.23176 -0.60676 -0.60676 -0.40451 -0.40451 -0.5 -0.5 -0.60676 -0.60676 -0.75 -0.75 -0.5 -0.5 -0.40451 -0.40451 -0.75 -0.75 -0.60676 -0.60676 -0.40451 -0.40451 -0.15451 -0.15451 -0.60676 -0.60676 -0.23176 -0.23176 -0.15451 -0.15451 0.15451 0.15451 -0.23176 -0.23176 0.23176 0.23176 0.15451 0.15451 0.40451 0.40451 0.23176 0.23176 0.60676 0.60676 0.40451 0.40451 0.5 0.5 0.60676 0.60676 0.75 0.75 0.75 0.75 0.60676 0.60676 1 1 0.80902 0.80902 0.60676 0.60676 0.23176 0.23176 0.80902 0.80902 0.30902 0.30902 0.23176 0.23176 -0.23176 -0.23176 0.30902 0.30902 -0.30902 -0.30902 -0.23176 -0.23176 -0.60676 -0.60676 -0.30902 -0.30902 -0.80902 -0.80902 -0.60676 -0.60676 -0.75 -0.75 -0.80902 -0.80902 -1 -1 -0.75 -0.75 -0.60676 -0.60676 -1 -1 -0.80902 -0.80902 -0.60676 -0.60676 -0.23176 -0.23176 -0.80902 -0.80902 -0.30902 -0.30902 -0.23176 -0.23176 0.23176 0.23176 -0.30902 -0.30902 0.30902 0.30902 0.23176 0.23176 0.60676 0.60676 0.30902 0.30902 0.80902 0.80902 0.60676 0.60676 0.75 0.75 0.80902 0.80902 1 1 0.75 0.75 0.60676 0.60676 1 1 0.80902 0.80902 0.60676 0.60676 0.23176 0.23176 0.80902 0.80902 0.30902 0.30902 0.23176 0.23176 -0.23176 -0.23176 0.30902 0.30902 -0.30902 -0.30902 -0.23176 -0.23176 -0.60676 -0.60676 -0.30902 -0.30902 -0.80902 -0.80902 -0.60676 -0.60676 -0.75 -0.75 -0.80902 -0.80902 -1 -1 -0.75 -0.75 -0.60676 -0.60676 -1 -1 -0.80902 -0.80902 -0.60676 -0.60676 -0.23176 -0.23176 -0.80902 -0.80902 -0.30902 -0.30902 -0.23176 -0.23176 0.23176 0.23176 -0.30902 -0.30902 0.30902 0.30902 0.23176 0.23176 0.60676 0.60676 0.30902 0.30902 0.80902 0.80902 0.60676 0.60676 0.75 0.75 0.80902 0.80902 1 1 0.5 0.5 0.40451 0.40451 0.75 0.75 0.60676 0.60676 0.40451 0.40451 0.15451 0.15451 0.60676 0.60676 0.23176 0.23176 0.15451 0.15451 -0.15451 -0.15451 0.23176 0.23176 -0.23176 -0.23176 -0.15451 -0.15451 -0.40451 -0.40451 -0.23176 -0.23176 -0.60676 -0.60676 -0.40451 -0.40451 -0.5 -0.5 -0.60676 -0.60676 -0.75 -0.75 -0.5 -0.5 -0.40451 -0.40451 -0.75 -0.75 -0.60676 -0.60676 -0.40451 -0.40451 -0.15451 -0.15451 -0.60676 -0.60676 -0.23176 -0.23176 -0.15451 -0.15451 0.15451 0.15451 -0.23176 -0.23176 0.23176 0.23176 0.15451 0.15451 0.40451 0.40451 0.23176 0.23176 0.60676 0.60676 0.40451 0.40451 0.5 0.5 0.60676 0.60676 0.75 0.75 0.5 0.5 0.40451 0.40451 0.75 0.75 0.60676 0.60676 0.40451 0.40451 0.15451 0.15451 0.60676 0.60676 0.23176 0.23176 0.15451 0.15451 -0.15451 -0.15451 0.23176 0.23176 -0.23176 -0.23176 -0.15451 -0.15451 -0.40451 -0.40451 -0.23176 -0.23176 -0.60676 -0.60676 -0.40451 -0.40451 -0.5 -0.5 -0.60676 -0.60676 -0.75 -0.75 -0.5 -0.5 -0.40451 -0.40451 -0.75 -0.75 -0.60676 -0.60676 -0.40451 -0.40451 -0.15451 -0.15451 -0.60676 -0.60676 -0.23176 -0.23176 -0.15451 -0.15451 0.15451 0.15451 -0.23176 -0.23176 0.23176 0.23176 0.15451 0.15451 0.40451 0.40451 0.23176 0.23176 0.60676 0.60676 0.40451 0.40451 0.5 0.5 0.60676 0.60676 0.75 0.75 0.75 0.75 0.60676 0.60676 1 1 0.80902 0.80902 0.60676 0.60676 0.23176 0.23176 0.80902 0.80902 0.30902 0.30902 0.23176 0.23176 -0.23176 -0.23176 0.30902 0.30902 -0.30902 -0.30902 -0.23176 -0.23176 -0.60676 -0.60676 -0.30902 -0.30902 -0.80902 -0.80902 -0.60676 -0.60676 -0.75 -0.75 -0.80902 -0.80902 -1 -1 -0.75 -0.75 -0.60676 -0.60676 -1 -1 -0.80902 -0.80902 -0.60676 -0.60676 -0.23176 -0.23176 -0.80902 -0.80902 -0.30902 -0.30902 -0.23176 -0.23176 0.23176 0.23176 -0.30902 -0.30902 0.30902 0.30902 0.23176 0.23176 0.60676 0.60676 0.30902 0.30902 0.80902 0.80902 0.60676 0.60676 0.75 0.75 0.80902 0.80902 1 1 0.75 0.75 0.60676 0.60676 1 1 0.80902 0.80902 0.60676 0.60676 0.23176 0.23176 0.80902 0.80902 0.30902 0.30902 0.23176 0.23176 -0.23176 -0.23176 0.30902 0.30902 -0.30902 -0.30902 -0.23176 -0.23176 -0.60676 -0.60676 -0.30902 -0.30902 -0.80902 -0.80902 -0.60676 -0.60676 -0.75 -0.75 -0.80902 -0.80902 -1 -1 -0.75 -0.75 -0.60676 -0.60676 -1 -1 -0.80902 -0.80902 -0.60676 -0.60676 -0.23176 -0.23176 -0.80902 -0.80902 -0.30902 -0.30902 -0.23176 -0.23176 0.23176 0.23176 -0.30902 -0.30902 0.30902 0.30902 0.23176 0.23176 0.60676 0.60676 0.30902 0.30902 0.80902 0.80902 0.60676 0.60676 0.75 0.75 0.80902 0.80902 1 1 0.5 0.5 0.40451 0.40451 0.75 0.75 0.60676 0.60676 0.40451 0.40451 0.15451 0.15451 0.60676 0.60676 0.23176 0.23176 0.15451 0.15451 -0.15451 -0.15451 0.23176 0.23176 -0.23176 -0.23176 -0.15451 -0.15451 -0.40451 -0.40451 -0.23176 -0.23176 -0.60676 -0.60676 -0.40451 -0.40451 -0.5 -0.5 -0.60676 -0.60676 -0.75 -0.75 -0.5 -0.5 -0.40451 -0.40451 -0.75 -0.75 -0.60676 -0.60676 -0.40451 -0.40451 -0.15451 -0.15451 -0.60676 -0.60676 -0.23176 -0.23176 -0.15451 -0.15451 0.15451 0.15451 -0.23176 -0.23176 0.23176 0.23176 0.15451 0.15451 0.40451 0.40451 0.23176 0.23176 0.60676 0.60676 0.40451 0.40451 0.5 0.5 0.60676 0.60676 0.75 0.75 0 0 0 0 0.25 0.25 0.20225 0.20225 0 0 0 0 0.20225 0.20225 0.077254 0.077254 0 0 0 0 0.077254 0.077254 -0.077254 -0.077254 -0 -0 -0 -0 -0.077254 -0.077254 -0.20225 -0.20225 -0 -0 -0 -0 -0.20225 -0.20225 -0.25 -0.25 -0 -0 -0 -0 -0.25 -0.25 -0.20225 -0.20225 -0 -0 -0 -0 -0.20225 -0.20225 -0.077254 -0.077254 0 0 0 0 -0.077254 -0.077254 0.077254 0.077254 0 0 0 0 0.077254 0.077254 0.20225 0.20225 0 0 0 0 0.20225 0.20225 0.25 0.25 0.25 0.25 0.20225 0.20225 0.5 0.5 0.40451 0.40451 0.20225 0.20225 0.077254 0.077254 0.40451 0.40451 0.15451 0.15451 0.077254 0.077254 -0.077254 -0.077254 0.15451 0.15451 -0.15451 -0.15451 -0.077254 -0.077254 -0.20225 -0.20225 -0.15451 -0.15451 -0.40451 -0.40451 -0.20225 -0.20225 -0.25 -0.25 -0.40451 -0.40451 -0.5 -0.5 -0.25 -0.25 -0.20225 -0.20225 -0.5 -0.5 -0.40451 -0.40451 -0.20225 -0.20225 -0.077254 -0.077254 -0.40451 -0.40451 -0.15451 -0.15451 -0.077254 -0.077254 0.077254 0.077254 -0.15451 -0.15451 0.15451 0.15451 0.077254 0.077254 0.20225 0.20225 0.15451 0.15451 0.40451 0.40451 0.20225 0.20225 0.25 0.25 0.40451 0.40451 0.5 0.5 0.25 0.25 0.20225 0.20225 0.5 0.5 0.40451 0.40451 0.20225 0.20225 0.077254 0.077254 0.40451 0.40451 0.15451 0.15451 0.077254 0.077254 -0.077254 -0.077254 0.15451 0.15451 -0.15451 -0.15451 -0.077254 -0.077254 -0.20225 -0.20225 -0.15451 -0.15451 -0.40451 -0.40451 -0.20225 -0.20225 -0.25 -0.25 -0.40451 -0.40451 -0.5 -0.5 -0.25 -0.25 -0.20225 -0.20225 -0.5 -0.5 -0.40451 -0.40451 -0.20225 -0.20225 -0.077254 -0.077254 -0.40451 -0.40451 -0.15451 -0.15451 -0.077254 -0.077254 0.077254 0.077254 -0.15451 -0.15451 0.15451 0.15451 0.077254 0.077254 0.20225 0.20225 0.15451 0.15451 0.40451 0.40451 0.20225 0.20225 0.25 0.25 0.40451 0.40451 0.5 0.5 0 0 0 0 0.25 0.25 0.20225 0.20225 0 0 0 0 0.20225 0.20225 0.077254 0.077254 0 0 0 0 0.077254 0.077254 -0.077254 -0.077254 -0 -0 -0 -0 -0.077254 -0.077254 -0.20225 -0.20225 -0 -0 -0 -0 -0.20225 -0.20225 -0.25 -0.25 -0 -0 -0 -0 -0.25 -0.25 -0.20225 -0.20225 -0 -0 -0 -0 -0.20225 -0.20225 -0.077254 -0.077254 0 0 0 0 -0.077254 -0.077254 0.077254 0.077254 0 0 0 0 0.077254 0.077254 0.20225 0.20225 0 0 0 0 0.20225 0.20225 0.25 0.25 0 0 0 0 0.125 0.125 0.10113 0.10113 0 0 0 0 0.10113 0.10113 0.038627 0.038627 0 0 0 0 0.038627 0.038627 -0.038627 -0.038627 -0 -0 -0 -0 -0.038627 -0.038627 -0.10113 -0.10113 -0 -0 -0 -0 -0.10113 -0.10113 -0.125 -0.125 -0 -0 -0 -0 -0.125 -0.125 -0.10113 -0.10113 -0 -0 -0 -0 -0.10113 -0.10113 -0.038627 -0.038627 0 0 0 0 -0.038627 -0.038627 0.038627 0.038627 0 0 0 0 0.038627 0.038627 0.10113 0.10113 0 0 0 0 0.10113 0.10113 0.125 0.125 0.125 0.125 0.10113 0.10113 0.25 0.25 0.20225 0.20225 0.10113 0.10113 0.038627 0.038627 0.20225 0.20225 0.077254 0.077254 0.038627 0.038627 -0.038627 -0.038627 0.077254 0.077254 -0.077254 -0.077254 -0.038627 -0.038627 -0.10113 -0.10113 -0.077254 -0.077254 -0.20225 -0.20225 -0.10113 -0.10113 -0.125 -0.125 -0.20225 -0.20225 -0.25 -0.25 -0.125 -0.125 -0.10113 -0.10113 -0.25 -0.25 -0.20225 -0.20225 -0.10113 -0.10113 -0.038627 -0.038627 -0.20225 -0.20225 -0.077254 -0.077254 -0.038627 -0.038627 0.038627 0.038627 -0.077254 -0.077254 0.077254 0.077254 0.038627 0.038627 0.10113 0.10113 0.077254 0.077254 0.20225 0.20225 0.10113 0.10113 0.125 0.125 0.20225 0.20225 0.25 0.25 0.125 0.125 0.10113 0.10113 0.25 0.25 0.20225 0.20225 0.10113 0.10113 0.038627 0.038627 0.20225 0.20225 0.077254 0.077254 0.038627 0.038627 -0.038627 -0.038627 0.077254 0.077254 -0.077254 -0.077254 -0.038627 -0.038627 -0.10113 -0.10113 -0.077254 -0.077254 -0.20225 -0.20225 -0.10113 -0.10113 -0.125 -0.125 -0.20225 -0.20225 -0.25 -0.25 -0.125 -0.125 -0.10113 -0.10113 -0.25 -0.25 -0.20225 -0.20225 -0.10113 -0.10113 -0.038627 -0.038627 -0.20225 -0.20225 -0.077254 -0.077254 -0.038627 -0.038627 0.038627 0.038627 -0.077254 -0.077254 0.077254 0.077254 0.038627 0.038627 0.10113 0.10113 0.077254 0.077254 0.20225 0.20225 0.10113 0.10113 0.125 0.125 0.20225 0.20225 0.25 0.25 0 0 0 0 0.125 0.125 0.10113 0.10113 0 0 0 0 0.10113 0.10113 0.038627 0.038627 0 0 0 0 0.038627 0.038627 -0.038627 -0.038627 -0 -0 -0 -0 -0.038627 -0.038627 -0.10113 -0.10113 -0 -0 -0 -0 -0.10113 -0.10113 -0.125 -0.125 -0 -0 -0 -0 -0.125 -0.125 -0.10113 -0.10113 -0 -0 -0 -0 -0.10113 -0.10113 -0.038627 -0.038627 0 0 0 0 -0.038627 -0.038627 0.038627 0.038627 0 0 0 0 0.038627 0.038627 0.10113 0.10113 0 0 0 0 0.10113 0.10113 0.125 0.125 0.25 0.25 0.20225 0.20225 0.375 0.375 0.30338 0.30338 0.20225 0.20225 0.077254 0.077254 0.30338 0.30338 0.11588 0.11588 0.077254 0.077254 -0.077254 -0.077254 0.11588 0.11588 -0.11588 -0.11588 -0.077254 -0.077254 -0.20225 -0.20225 -0.11588 -0.11588 -0.30338 -0.30338 -0.20225 -0.20225 -0.25 -0.25 -0.30338 -0.30338 -0.375 -0.375 -0.25 -0.25 -0.20225 -0.20225 -0.375 -0.375 -0.30338 -0.30338 -0.20225 -0.20225 -0.077254 -0.077254 -0.30338 -0.30338 -0.11588 -0.11588 -0.077254 -0.077254 0.077254 0.077254 -0.11588 -0.11588 0.11588 0.11588 0.077254 0.077254 0.20225 0.20225 0.11588 0.11588 0.30338 0.30338 0.20225 0.20225 0.25 0.25 0.30338 0.30338 0.375 0.375 0.375 0.375 0.30338 0.30338 0.5 0.5 0.40451 0.40451 0.30338 0.30338 0.11588 0.11588 0.40451 0.40451 0.15451 0.15451 0.11588 0.11588 -0.11588 -0.11588 0.15451 0.15451 -0.15451 -0.15451 -0.11588 -0.11588 -0.30338 -0.30338 -0.15451 -0.15451 -0.40451 -0.40451 -0.30338 -0.30338 -0.375 -0.375 -0.40451 -0.40451 -0.5 -0.5 -0.375 -0.375 -0.30338 -0.30338 -0.5 -0.5 -0.40451 -0.40451 -0.30338 -0.30338 -0.11588 -0.11588 -0.40451 -0.40451 -0.15451 -0.15451 -0.11588 -0.11588 0.11588 0.11588 -0.15451 -0.15451 0.15451 0.15451 0.11588 0.11588 0.30338 0.30338 0.15451 0.15451 0.40451 0.40451 0.30338 0.30338 0.375 0.375 0.40451 0.40451 0.5 0.5 0.375 0.375 0.30338 0.30338 0.5 0.5 0.40451 0.40451 0.30338 0.30338 0.11588 0.11588 0.40451 0.40451 0.15451 0.15451 0.11588 0.11588 -0.11588 -0.11588 0.15451 0.15451 -0.15451 -0.15451 -0.11588 -0.11588 -0.30338 -0.30338 -0.15451 -0.15451 -0.40451 -0.40451 -0.30338 -0.30338 -0.375 -0.375 -0.40451 -0.40451 -0.5 -0.5 -0.375 -0.375 -0.30338 -0.30338 -0.5 -0.5 -0.40451 -0.40451 -0.30338 -0.30338 -0.11588 -0.11588 -0.40451 -0.40451 -0.15451 -0.15451 -0.11588 -0.11588 0.11588 0.11588 -0.15451 -0.15451 0.15451 0.15451 0.11588 0.11588 0.30338 0.30338 0.15451 0.15451 0.40451 0.40451 0.30338 0.30338 0.375 0.375 0.40451 0.40451 0.5 0.5 0.25 0.25 0.20225 0.20225 0.375 0.375 0.30338 0.30338 0.20225 0.20225 0.077254 0.077254 0.30338 0.30338 0.11588 0.11588 0.077254 0.077254 -0.077254 -0.077254 0.11588 0.11588 -0.11588 -0.11588 -0.077254 -0.077254 -0.20225 -0.20225 -0.11588 -0.11588 -0.30338 -0.30338 -0.20225 -0.20225 -0.25 -0.25 -0.30338 -0.30338 -0.375 -0.375 -0.25 -0.25 -0.20225 -0.20225 -0.375 -0.375 -0.30338 -0.30338 -0.20225 -0.20225 -0.077254 -0.077254 -0.30338 -0.30338 -0.11588 -0.11588 -0.077254 -0.077254 0.077254 0.077254 -0.11588 -0.11588 0.11588 0.11588 0.077254 0.077254 0.20225 0.20225 0.11588 0.11588 0.30338 0.30338 0.20225 0.20225 0.25 0.25 0.30338 0.30338 0.375 0.375 -0 0 0.14695 0.14695 0 0 0.29389 0.29389 0.14695 0.14695 0.23776 0.23776 0.29389 0.29389 0.47553 0.47553 0.23776 0.23776 0.23776 0.23776 0.47553 0.47553 0.47553 0.47553 0.23776 0.23776 0.14695 0.14695 0.47553 0.47553 0.29389 0.29389 0.14695 0.14695 3.0616e-17 3.0616e-17 0.29389 0.29389 6.1232e-17 6.1232e-17 3.0616e-17 3.0616e-17 -0.14695 -0.14695 6.1232e-17 6.1232e-17 -0.29389 -0.29389 -0.14695 -0.14695 -0.23776 -0.23776 -0.29389 -0.29389 -0.47553 -0.47553 -0.23776 -0.23776 -0.23776 -0.23776 -0.47553 -0.47553 -0.47553 -0.47553 -0.23776 -0.23776 -0.14695 -0.14695 -0.47553 -0.47553 -0.29389 -0.29389 -0.14695 -0.14695 -6.1232e-17 -6.1232e-17 -0.29389 -0.29389 -1.2246e-16 -1.2246e-16 0 0 0 0 0 0 0.14695 0.14695 0 0 0 0 0.14695 0.14695 0.23776 0.23776 0 0 0 0 0.23776 0.23776 0.23776 0.23776 0 0 0 0 0.23776 0.23776 0.14695 0.14695 0 0 0 0 0.14695 0.14695 3.0616e-17 3.0616e-17 0 0 0 0 3.0616e-17 3.0616e-17 -0.14695 -0.14695 -0 -0 -0 -0 -0.14695 -0.14695 -0.23776 -0.23776 -0 -0 -0 -0 -0.23776 -0.23776 -0.23776 -0.23776 -0 -0 -0 -0 -0.23776 -0.23776 -0.14695 -0.14695 -0 -0 -0 -0 -0.14695 -0.14695 -6.1232e-17 -6.1232e-17 0 0 0.29389 0.29389 0 0 0.44084 0.44084 0.29389 0.29389 0.47553 0.47553 0.44084 0.44084 0.71329 0.71329 0.47553 0.47553 0.47553 0.47553 0.71329 0.71329 0.71329 0.71329 0.47553 0.47553 0.29389 0.29389 0.71329 0.71329 0.44084 0.44084 0.29389 0.29389 6.1232e-17 6.1232e-17 0.44084 0.44084 9.1849e-17 9.1849e-17 6.1232e-17 6.1232e-17 -0.29389 -0.29389 9.1849e-17 9.1849e-17 -0.44084 -0.44084 -0.29389 -0.29389 -0.47553 -0.47553 -0.44084 -0.44084 -0.71329 -0.71329 -0.47553 -0.47553 -0.47553 -0.47553 -0.71329 -0.71329 -0.71329 -0.71329 -0.47553 -0.47553 -0.29389 -0.29389 -0.71329 -0.71329 -0.44084 -0.44084 -0.29389 -0.29389 -1.2246e-16 -1.2246e-16 -0.44084 -0.44084 -1.837e-16 -1.837e-16 0 0 0.44084 0.44084 0 0 0.58779 0.58779 0.44084 0.44084 0.71329 0.71329 0.58779 0.58779 0.95106 0.95106 0.71329 0.71329 0.71329 0.71329 0.95106 0.95106 0.95106 0.95106 0.71329 0.71329 0.44084 0.44084 0.95106 0.95106 0.58779 0.58779 0.44084 0.44084 9.1849e-17 9.1849e-17 0.58779 0.58779 1.2246e-16 1.2246e-16 9.1849e-17 9.1849e-17 -0.44084 -0.44084 1.2246e-16 1.2246e-16 -0.58779 -0.58779 -0.44084 -0.44084 -0.71329 -0.71329 -0.58779 -0.58779 -0.95106 -0.95106 -0.71329 -0.71329 -0.71329 -0.71329 -0.95106 -0.95106 -0.95106 -0.95106 -0.71329 -0.71329 -0.44084 -0.44084 -0.95106 -0.95106 -0.58779 -0.58779 -0.44084 -0.44084 -1.837e-16 -1.837e-16 -0.58779 -0.58779 -2.4493e-16 -2.4493e-16 0 0 0.44084 0.44084 0 0 0.58779 0.58779 0.44084 0.44084 0.71329 0.71329 0.58779 0.58779 0.95106 0.95106 0.71329 0.71329 0.71329 0.71329 0.95106 0.95106 0.95106 0.95106 0.71329 0.71329 0.44084 0.44084 0.95106 0.95106 0.58779 0.58779 0.44084 0.44084 9.1849e-17 9.1849e-17 0.58779 0.58779 1.2246e-16 1.2246e-16 9.1849e-17 9.1849e-17 -0.44084 -0.44084 1.2246e-16 1.2246e-16 -0.58779 -0.58779 -0.44084 -0.44084 -0.71329 -0.71329 -0.58779 -0.58779 -0.95106 -0.95106 -0.71329 -0.71329 -0.71329 -0.71329 -0.95106 -0.95106 -0.95106 -0.95106 -0.71329 -0.71329 -0.44084 -0.44084 -0.95106 -0.95106 -0.58779 -0.58779 -0.44084 -0.44084 -1.837e-16 -1.837e-16 -0.58779 -0.58779 -2.4493e-16 -2.4493e-16 0 0 0.29389 0.29389 0 0 0.44084 0.44084 0.29389 0.29389 0.47553 0.47553 0.44084 0.44084 0.71329 0.71329 0.47553 0.47553 0.47553 0.47553 0.71329 0.71329 0.71329 0.71329 0.47553 0.47553 0.29389 0.29389 0.71329 0.71329 0.44084 0.44084 0.29389 0.29389 6.1232e-17 6.1232e-17 0.44084 0.44084 9.1849e-17 9.1849e-17 6.1232e-17 6.1232e-17 -0.29389 -0.29389 9.1849e-17 9.1849e-17 -0.44084 -0.44084 -0.29389 -0.29389 -0.47553 -0.47553 -0.44084 -0.44084 -0.71329 -0.71329 -0.47553 -0.47553 -0.47553 -0.47553 -0.71329 -0.71329 -0.71329 -0.71329 -0.47553 -0.47553 -0.29389 -0.29389 -0.71329 -0.71329 -0.44084 -0.44084 -0.29389 -0.29389 -1.2246e-16 -1.2246e-16 -0.44084 -0.44084 -1.837e-16 -1.837e-16 0 0 0.29389 0.29389 0 0 0.44084 0.44084 0.29389 0.29389 0.47553 0.47553 0.44084 0.44084 0.71329 0.71329 0.47553 0.47553 0.47553 0.47553 0.71329 0.71329 0.71329 0.71329 0.47553 0.47553 0.29389 0.29389 0.71329 0.71329 0.44084 0.44084 0.29389 0.29389 6.1232e-17 6.1232e-17 0.44084 0.44084 9.1849e-17 9.1849e-17 6.1232e-17 6.1232e-17 -0.29389 -0.29389 9.1849e-17 9.1849e-17 -0.44084 -0.44084 -0.29389 -0.29389 -0.47553 -0.47553 -0.44084 -0.44084 -0.71329 -0.71329 -0.47553 -0.47553 -0.47553 -0.47553 -0.71329 -0.71329 -0.71329 -0.71329 -0.47553 -0.47553 -0.29389 -0.29389 -0.71329 -0.71329 -0.44084 -0.44084 -0.29389 -0.29389 -1.2246e-16 -1.2246e-16 -0.44084 -0.44084 -1.837e-16 -1.837e-16 0 0 0.44084 0.44084 0 0 0.58779 0.58779 0.44084 0.44084 0.71329 0.71329 0.58779 0.58779 0.95106 0.95106 0.71329 0.71329 0.71329 0.71329 0.95106 0.95106 0.95106 0.95106 0.71329 0.71329 0.44084 0.44084 0.95106 0.95106 0.58779 0.58779 0.44084 0.44084 9.1849e-17 9.1849e-17 0.58779 0.58779 1.2246e-16 1.2246e-16 9.1849e-17 9.1849e-17 -0.44084 -0.44084 1.2246e-16 1.2246e-16 -0.58779 -0.58779 -0.44084 -0.44084 -0.71329 -0.71329 -0.58779 -0.58779 -0.95106 -0.95106 -0.71329 -0.71329 -0.71329 -0.71329 -0.95106 -0.95106 -0.95106 -0.95106 -0.71329 -0.71329 -0.44084 -0.44084 -0.95106 -0.95106 -0.58779 -0.58779 -0.44084 -0.44084 -1.837e-16 -1.837e-16 -0.58779 -0.58779 -2.4493e-16 -2.4493e-16 0 0 0.44084 0.44084 0 0 0.58779 0.58779 0.44084 0.44084 0.71329 0.71329 0.58779 0.58779 0.95106 0.95106 0.71329 0.71329 0.71329 0.71329 0.95106 0.95106 0.95106 0.95106 0.71329 0.71329 0.44084 0.44084 0.95106 0.95106 0.58779 0.58779 0.44084 0.44084 9.1849e-17 9.1849e-17 0.58779 0.58779 1.2246e-16 1.2246e-16 9.1849e-17 9.1849e-17 -0.44084 -0.44084 1.2246e-16 1.2246e-16 -0.58779 -0.58779 -0.44084 -0.44084 -0.71329 -0.71329 -0.58779 -0.58779 -0.95106 -0.95106 -0.71329 -0.71329 -0.71329 -0.71329 -0.95106 -0.95106 -0.95106 -0.95106 -0.71329 -0.71329 -0.44084 -0.44084 -0.95106 -0.95106 -0.58779 -0.58779 -0.44084 -0.44084 -1.837e-16 -1.837e-16 -0.58779 -0.58779 -2.4493e-16 -2.4493e-16 0 0 0.29389 0.29389 0 0 0.44084 0.44084 0.29389 0.29389 0.47553 0.47553 0.44084 0.44084 0.71329 0.71329 0.47553 0.47553 0.47553 0.47553 0.71329 0.71329 0.71329 0.71329 0.47553 0.47553 0.29389 0.29389 0.71329 0.71329 0.44084 0.44084 0.29389 0.29389 6.1232e-17 6.1232e-17 0.44084 0.44084 9.1849e-17 9.1849e-17 6.1232e-17 6.1232e-17 -0.29389 -0.29389 9.1849e-17 9.1849e-17 -0.44084 -0.44084 -0.29389 -0.29389 -0.47553 -0.47553 -0.44084 -0.44084 -0.71329 -0.71329 -0.47553 -0.47553 -0.47553 -0.47553 -0.71329 -0.71329 -0.71329 -0.71329 -0.47553 -0.47553 -0.29389 -0.29389 -0.71329 -0.71329 -0.44084 -0.44084 -0.29389 -0.29389 -1.2246e-16 -1.2246e-16 -0.44084 -0.44084 -1.837e-16 -1.837e-16 0 0 0 0 0 0 0.14695 0.14695 0 0 0 0 0.14695 0.14695 0.23776 0.23776 0 0 0 0 0.23776 0.23776 0.23776 0.23776 0 0 0 0 0.23776 0.23776 0.14695 0.14695 0 0 0 0 0.14695 0.14695 3.0616e-17 3.0616e-17 0 0 0 0 3.0616e-17 3.0616e-17 -0.14695 -0.14695 -0 -0 -0 -0 -0.14695 -0.14695 -0.23776 -0.23776 -0 -0 -0 -0 -0.23776 -0.23776 -0.23776 -0.23776 -0 -0 -0 -0 -0.23776 -0.23776 -0.14695 -0.14695 -0 -0 -0 -0 -0.14695 -0.14695 -6.1232e-17 -6.1232e-17 0 0 0.14695 0.14695 0 0 0.29389 0.29389 0.14695 0.14695 0.23776 0.23776 0.29389 0.29389 0.47553 0.47553 0.23776 0.23776 0.23776 0.23776 0.47553 0.47553 0.47553 0.47553 0.23776 0.23776 0.14695 0.14695 0.47553 0.47553 0.29389 0.29389 0.14695 0.14695 3.0616e-17 3.0616e-17 0.29389 0.29389 6.1232e-17 6.1232e-17 3.0616e-17 3.0616e-17 -0.14695 -0.14695 6.1232e-17 6.1232e-17 -0.29389 -0.29389 -0.14695 -0.14695 -0.23776 -0.23776 -0.29389 -0.29389 -0.47553 -0.47553 -0.23776 -0.23776 -0.23776 -0.23776 -0.47553 -0.47553 -0.47553 -0.47553 -0.23776 -0.23776 -0.14695 -0.14695 -0.47553 -0.47553 -0.29389 -0.29389 -0.14695 -0.14695 -6.1232e-17 -6.1232e-17 -0.29389 -0.29389 -1.2246e-16 -1.2246e-16 0 0 0.14695 0.14695 0 0 0.29389 0.29389 0.14695 0.14695 0.23776 0.23776 0.29389 0.29389 0.47553 0.47553 0.23776 0.23776 0.23776 0.23776 0.47553 0.47553 0.47553 0.47553 0.23776 0.23776 0.14695 0.14695 0.47553 0.47553 0.29389 0.29389 0.14695 0.14695 3.0616e-17 3.0616e-17 0.29389 0.29389 6.1232e-17 6.1232e-17 3.0616e-17 3.0616e-17 -0.14695 -0.14695 6.1232e-17 6.1232e-17 -0.29389 -0.29389 -0.14695 -0.14695 -0.23776 -0.23776 -0.29389 -0.29389 -0.47553 -0.47553 -0.23776 -0.23776 -0.23776 -0.23776 -0.47553 -0.47553 -0.47553 -0.47553 -0.23776 -0.23776 -0.14695 -0.14695 -0.47553 -0.47553 -0.29389 -0.29389 -0.14695 -0.14695 -6.1232e-17 -6.1232e-17 -0.29389 -0.29389 -1.2246e-16 -1.2246e-16 0 0 0 0 0 0 0.14695 0.14695 0 0 0 0 0.14695 0.14695 0.23776 0.23776 0 0 0 0 0.23776 0.23776 0.23776 0.23776 0 0 0 0 0.23776 0.23776 0.14695 0.14695 0 0 0 0 0.14695 0.14695 3.0616e-17 3.0616e-17 0 0 0 0 3.0616e-17 3.0616e-17 -0.14695 -0.14695 -0 -0 -0 -0 -0.14695 -0.14695 -0.23776 -0.23776 -0 -0 -0 -0 -0.23776 -0.23776 -0.23776 -0.23776 -0 -0 -0 -0 -0.23776 -0.23776 -0.14695 -0.14695 -0 -0 -0 -0 -0.14695 -0.14695 -6.1232e-17 -6.1232e-17 0 0 0 0 0 0 0.073473 0.073473 0 0 0 0 0.073473 0.073473 0.11888 0.11888 0 0 0 0 0.11888 0.11888 0.11888 0.11888 0 0 0 0 0.11888 0.11888 0.073473 0.073473 0 0 0 0 0.073473 0.073473 1.5308e-17 1.5308e-17 0 0 0 0 1.5308e-17 1.5308e-17 -0.073473 -0.073473 -0 -0 -0 -0 -0.073473 -0.073473 -0.11888 -0.11888 -0 -0 -0 -0 -0.11888 -0.11888 -0.11888 -0.11888 -0 -0 -0 -0 -0.11888 -0.11888 -0.073473 -0.073473 -0 -0 -0 -0 -0.073473 -0.073473 -3.0616e-17 -3.0616e-17 0 0 0.073473 0.073473 0 0 0.14695 0.14695 0.073473 0.073473 0.11888 0.11888 0.14695 0.14695 0.23776 0.23776 0.11888 0.11888 0.11888 0.11888 0.23776 0.23776 0.23776 0.23776 0.11888 0.11888 0.073473 0.073473 0.23776 0.23776 0.14695 0.14695 0.073473 0.073473 1.5308e-17 1.5308e-17 0.14695 0.14695 3.0616e-17 3.0616e-17 1.5308e-17 1.5308e-17 -0.073473 -0.073473 3.0616e-17 3.0616e-17 -0.14695 -0.14695 -0.073473 -0.073473 -0.11888 -0.11888 -0.14695 -0.14695 -0.23776 -0.23776 -0.11888 -0.11888 -0.11888 -0.11888 -0.23776 -0.23776 -0.23776 -0.23776 -0.11888 -0.11888 -0.073473 -0.073473 -0.23776 -0.23776 -0.14695 -0.14695 -0.073473 -0.073473 -3.0616e-17 -3.0616e-17 -0.14695 -0.14695 -6.1232e-17 -6.1232e-17 0 0 0.073473 0.073473 0 0 0.14695 0.14695 0.073473 0.073473 0.11888 0.11888 0.14695 0.14695 0.23776 0.23776 0.11888 0.11888 0.11888 0.11888 0.23776 0.23776 0.23776 0.23776 0.11888 0.11888 0.073473 0.073473 0.23776 0.23776 0.14695 0.14695 0.073473 0.073473 1.5308e-17 1.5308e-17 0.14695 0.14695 3.0616e-17 3.0616e-17 1.5308e-17 1.5308e-17 -0.073473 -0.073473 3.0616e-17 3.0616e-17 -0.14695 -0.14695 -0.073473 -0.073473 -0.11888 -0.11888 -0.14695 -0.14695 -0.23776 -0.23776 -0.11888 -0.11888 -0.11888 -0.11888 -0.23776 -0.23776 -0.23776 -0.23776 -0.11888 -0.11888 -0.073473 -0.073473 -0.23776 -0.23776 -0.14695 -0.14695 -0.073473 -0.073473 -3.0616e-17 -3.0616e-17 -0.14695 -0.14695 -6.1232e-17 -6.1232e-17 0 0 0 0 0 0 0.073473 0.073473 0 0 0 0 0.073473 0.073473 0.11888 0.11888 0 0 0 0 0.11888 0.11888 0.11888 0.11888 0 0 0 0 0.11888 0.11888 0.073473 0.073473 0 0 0 0 0.073473 0.073473 1.5308e-17 1.5308e-17 0 0 0 0 1.5308e-17 1.5308e-17 -0.073473 -0.073473 -0 -0 -0 -0 -0.073473 -0.073473 -0.11888 -0.11888 -0 -0 -0 -0 -0.11888 -0.11888 -0.11888 -0.11888 -0 -0 -0 -0 -0.11888 -0.11888 -0.073473 -0.073473 -0 -0 -0 -0 -0.073473 -0.073473 -3.0616e-17 -3.0616e-17 0 0 0.14695 0.14695 0 0 0.22042 0.22042 0.14695 0.14695 0.23776 0.23776 0.22042 0.22042 0.35665 0.35665 0.23776 0.23776 0.23776 0.23776 0.35665 0.35665 0.35665 0.35665 0.23776 0.23776 0.14695 0.14695 0.35665 0.35665 0.22042 0.22042 0.14695 0.14695 3.0616e-17 3.0616e-17 0.22042 0.22042 4.5924e-17 4.5924e-17 3.0616e-17 3.0616e-17 -0.14695 -0.14695 4.5924e-17 4.5924e-17 -0.22042 -0.22042 -0.14695 -0.14695 -0.23776 -0.23776 -0.22042 -0.22042 -0.35665 -0.35665 -0.23776 -0.23776 -0.23776 -0.23776 -0.35665 -0.35665 -0.35665 -0.35665 -0.23776 -0.23776 -0.14695 -0.14695 -0.35665 -0.35665 -0.22042 -0.22042 -0.14695 -0.14695 -6.1232e-17 -6.1232e-17 -0.22042 -0.22042 -9.1849e-17 -9.1849e-17 0 0 0.22042 0.22042 0 0 0.29389 0.29389 0.22042 0.22042 0.35665 0.35665 0.29389 0.29389 0.47553 0.47553 0.35665 0.35665 0.35665 0.35665 0.47553 0.47553 0.47553 0.47553 0.35665 0.35665 0.22042 0.22042 0.47553 0.47553 0.29389 0.29389 0.22042 0.22042 4.5924e-17 4.5924e-17 0.29389 0.29389 6.1232e-17 6.1232e-17 4.5924e-17 4.5924e-17 -0.22042 -0.22042 6.1232e-17 6.1232e-17 -0.29389 -0.29389 -0.22042 -0.22042 -0.35665 -0.35665 -0.29389 -0.29389 -0.47553 -0.47553 -0.35665 -0.35665 -0.35665 -0.35665 -0.47553 -0.47553 -0.47553 -0.47553 -0.35665 -0.35665 -0.22042 -0.22042 -0.47553 -0.47553 -0.29389 -0.29389 -0.22042 -0.22042 -9.1849e-17 -9.1849e-17 -0.29389 -0.29389 -1.2246e-16 -1.2246e-16 0 0 0.22042 0.22042 0 0 0.29389 0.29389 0.22042 0.22042 0.35665 0.35665 0.29389 0.29389 0.47553 0.47553 0.35665 0.35665 0.35665 0.35665 0.47553 0.47553 0.47553 0.47553 0.35665 0.35665 0.22042 0.22042 0.47553 0.47553 0.29389 0.29389 0.22042 0.22042 4.5924e-17 4.5924e-17 0.29389 0.29389 6.1232e-17 6.1232e-17 4.5924e-17 4.5924e-17 -0.22042 -0.22042 6.1232e-17 6.1232e-17 -0.29389 -0.29389 -0.22042 -0.22042 -0.35665 -0.35665 -0.29389 -0.29389 -0.47553 -0.47553 -0.35665 -0.35665 -0.35665 -0.35665 -0.47553 -0.47553 -0.47553 -0.47553 -0.35665 -0.35665 -0.22042 -0.22042 -0.47553 -0.47553 -0.29389 -0.29389 -0.22042 -0.22042 -9.1849e-17 -9.1849e-17 -0.29389 -0.29389 -1.2246e-16 -1.2246e-16 0 0 0.14695 0.14695 0 0 0.22042 0.22042 0.14695 0.14695 0.23776 0.23776 0.22042 0.22042 0.35665 0.35665 0.23776 0.23776 0.23776 0.23776 0.35665 0.35665 0.35665 0.35665 0.23776 0.23776 0.14695 0.14695 0.35665 0.35665 0.22042 0.22042 0.14695 0.14695 3.0616e-17 3.0616e-17 0.22042 0.22042 4.5924e-17 4.5924e-17 3.0616e-17 3.0616e-17 -0.14695 -0.14695 4.5924e-17 4.5924e-17 -0.22042 -0.22042 -0.14695 -0.14695 -0.23776 -0.23776 -0.22042 -0.22042 -0.35665 -0.35665 -0.23776 -0.23776 -0.23776 -0.23776 -0.35665 -0.35665 -0.35665 -0.35665 -0.23776 -0.23776 -0.14695 -0.14695 -0.35665 -0.35665 -0.22042 -0.22042 -0.14695 -0.14695 -6.1232e-17 -6.1232e-17 -0.22042 -0.22042 -9.1849e-17 -9.1849e-17 -0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.5 0.75 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0 0.125 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 0.125 0.25 - -cells 220 -hex 8 - 1 5 7 3 2 6 8 4 -hex 8 - 9 13 15 11 10 14 16 12 -hex 8 - 17 21 23 19 18 22 24 20 -hex 8 - 25 29 31 27 26 30 32 28 -hex 8 - 33 37 39 35 34 38 40 36 -hex 8 - 41 45 47 43 42 46 48 44 -hex 8 - 49 53 55 51 50 54 56 52 -hex 8 - 57 61 63 59 58 62 64 60 -hex 8 - 65 69 71 67 66 70 72 68 -hex 8 - 73 77 79 75 74 78 80 76 -hex 8 - 81 85 87 83 82 86 88 84 -hex 8 - 89 93 95 91 90 94 96 92 -hex 8 - 97 101 103 99 98 102 104 100 -hex 8 - 105 109 111 107 106 110 112 108 -hex 8 - 113 117 119 115 114 118 120 116 -hex 8 - 121 125 127 123 122 126 128 124 -hex 8 - 129 133 135 131 130 134 136 132 -hex 8 - 137 141 143 139 138 142 144 140 -hex 8 - 145 149 151 147 146 150 152 148 -hex 8 - 153 157 159 155 154 158 160 156 -hex 8 - 161 165 167 163 162 166 168 164 -hex 8 - 169 173 175 171 170 174 176 172 -hex 8 - 177 181 183 179 178 182 184 180 -hex 8 - 185 189 191 187 186 190 192 188 -hex 8 - 193 197 199 195 194 198 200 196 -hex 8 - 201 205 207 203 202 206 208 204 -hex 8 - 209 213 215 211 210 214 216 212 -hex 8 - 217 221 223 219 218 222 224 220 -hex 8 - 225 229 231 227 226 230 232 228 -hex 8 - 233 237 239 235 234 238 240 236 -hex 8 - 241 245 247 243 242 246 248 244 -hex 8 - 249 253 255 251 250 254 256 252 -hex 8 - 257 261 263 259 258 262 264 260 -hex 8 - 265 269 271 267 266 270 272 268 -hex 8 - 273 277 279 275 274 278 280 276 -hex 8 - 281 285 287 283 282 286 288 284 -hex 8 - 289 293 295 291 290 294 296 292 -hex 8 - 297 301 303 299 298 302 304 300 -hex 8 - 305 309 311 307 306 310 312 308 -hex 8 - 313 317 319 315 314 318 320 316 -hex 8 - 321 325 327 323 322 326 328 324 -hex 8 - 329 333 335 331 330 334 336 332 -hex 8 - 337 341 343 339 338 342 344 340 -hex 8 - 345 349 351 347 346 350 352 348 -hex 8 - 353 357 359 355 354 358 360 356 -hex 8 - 361 365 367 363 362 366 368 364 -hex 8 - 369 373 375 371 370 374 376 372 -hex 8 - 377 381 383 379 378 382 384 380 -hex 8 - 385 389 391 387 386 390 392 388 -hex 8 - 393 397 399 395 394 398 400 396 -hex 8 - 401 405 407 403 402 406 408 404 -hex 8 - 409 413 415 411 410 414 416 412 -hex 8 - 417 421 423 419 418 422 424 420 -hex 8 - 425 429 431 427 426 430 432 428 -hex 8 - 433 437 439 435 434 438 440 436 -hex 8 - 441 445 447 443 442 446 448 444 -hex 8 - 449 453 455 451 450 454 456 452 -hex 8 - 457 461 463 459 458 462 464 460 -hex 8 - 465 469 471 467 466 470 472 468 -hex 8 - 473 477 479 475 474 478 480 476 -hex 8 - 481 485 487 483 482 486 488 484 -hex 8 - 489 493 495 491 490 494 496 492 -hex 8 - 497 501 503 499 498 502 504 500 -hex 8 - 505 509 511 507 506 510 512 508 -hex 8 - 513 517 519 515 514 518 520 516 -hex 8 - 521 525 527 523 522 526 528 524 -hex 8 - 529 533 535 531 530 534 536 532 -hex 8 - 537 541 543 539 538 542 544 540 -hex 8 - 545 549 551 547 546 550 552 548 -hex 8 - 553 557 559 555 554 558 560 556 -hex 8 - 561 565 567 563 562 566 568 564 -hex 8 - 569 573 575 571 570 574 576 572 -hex 8 - 577 581 583 579 578 582 584 580 -hex 8 - 585 589 591 587 586 590 592 588 -hex 8 - 593 597 599 595 594 598 600 596 -hex 8 - 601 605 607 603 602 606 608 604 -hex 8 - 609 613 615 611 610 614 616 612 -hex 8 - 617 621 623 619 618 622 624 620 -hex 8 - 625 629 631 627 626 630 632 628 -hex 8 - 633 637 639 635 634 638 640 636 -hex 8 - 641 645 647 643 642 646 648 644 -hex 8 - 649 653 655 651 650 654 656 652 -hex 8 - 657 661 663 659 658 662 664 660 -hex 8 - 665 669 671 667 666 670 672 668 -hex 8 - 673 677 679 675 674 678 680 676 -hex 8 - 681 685 687 683 682 686 688 684 -hex 8 - 689 693 695 691 690 694 696 692 -hex 8 - 697 701 703 699 698 702 704 700 -hex 8 - 705 709 711 707 706 710 712 708 -hex 8 - 713 717 719 715 714 718 720 716 -hex 8 - 721 725 727 723 722 726 728 724 -hex 8 - 729 733 735 731 730 734 736 732 -hex 8 - 737 741 743 739 738 742 744 740 -hex 8 - 745 749 751 747 746 750 752 748 -hex 8 - 753 757 759 755 754 758 760 756 -hex 8 - 761 765 767 763 762 766 768 764 -hex 8 - 769 773 775 771 770 774 776 772 -hex 8 - 777 781 783 779 778 782 784 780 -hex 8 - 785 789 791 787 786 790 792 788 -hex 8 - 793 797 799 795 794 798 800 796 -hex 8 - 801 805 807 803 802 806 808 804 -hex 8 - 809 813 815 811 810 814 816 812 -hex 8 - 817 821 823 819 818 822 824 820 -hex 8 - 825 829 831 827 826 830 832 828 -hex 8 - 833 837 839 835 834 838 840 836 -hex 8 - 841 845 847 843 842 846 848 844 -hex 8 - 849 853 855 851 850 854 856 852 -hex 8 - 857 861 863 859 858 862 864 860 -hex 8 - 865 869 871 867 866 870 872 868 -hex 8 - 873 877 879 875 874 878 880 876 -hex 8 - 881 885 887 883 882 886 888 884 -hex 8 - 889 893 895 891 890 894 896 892 -hex 8 - 897 901 903 899 898 902 904 900 -hex 8 - 905 909 911 907 906 910 912 908 -hex 8 - 913 917 919 915 914 918 920 916 -hex 8 - 921 925 927 923 922 926 928 924 -hex 8 - 929 933 935 931 930 934 936 932 -hex 8 - 937 941 943 939 938 942 944 940 -hex 8 - 945 949 951 947 946 950 952 948 -hex 8 - 953 957 959 955 954 958 960 956 -hex 8 - 961 965 967 963 962 966 968 964 -hex 8 - 969 973 975 971 970 974 976 972 -hex 8 - 977 981 983 979 978 982 984 980 -hex 8 - 985 989 991 987 986 990 992 988 -hex 8 - 993 997 999 995 994 998 1000 996 -hex 8 - 1001 1005 1007 1003 1002 1006 1008 1004 -hex 8 - 1009 1013 1015 1011 1010 1014 1016 1012 -hex 8 - 1017 1021 1023 1019 1018 1022 1024 1020 -hex 8 - 1025 1029 1031 1027 1026 1030 1032 1028 -hex 8 - 1033 1037 1039 1035 1034 1038 1040 1036 -hex 8 - 1041 1045 1047 1043 1042 1046 1048 1044 -hex 8 - 1049 1053 1055 1051 1050 1054 1056 1052 -hex 8 - 1057 1061 1063 1059 1058 1062 1064 1060 -hex 8 - 1065 1069 1071 1067 1066 1070 1072 1068 -hex 8 - 1073 1077 1079 1075 1074 1078 1080 1076 -hex 8 - 1081 1085 1087 1083 1082 1086 1088 1084 -hex 8 - 1089 1093 1095 1091 1090 1094 1096 1092 -hex 8 - 1097 1101 1103 1099 1098 1102 1104 1100 -hex 8 - 1105 1109 1111 1107 1106 1110 1112 1108 -hex 8 - 1113 1117 1119 1115 1114 1118 1120 1116 -hex 8 - 1121 1125 1127 1123 1122 1126 1128 1124 -hex 8 - 1129 1133 1135 1131 1130 1134 1136 1132 -hex 8 - 1137 1141 1143 1139 1138 1142 1144 1140 -hex 8 - 1145 1149 1151 1147 1146 1150 1152 1148 -hex 8 - 1153 1157 1159 1155 1154 1158 1160 1156 -hex 8 - 1161 1165 1167 1163 1162 1166 1168 1164 -hex 8 - 1169 1173 1175 1171 1170 1174 1176 1172 -hex 8 - 1177 1181 1183 1179 1178 1182 1184 1180 -hex 8 - 1185 1189 1191 1187 1186 1190 1192 1188 -hex 8 - 1193 1197 1199 1195 1194 1198 1200 1196 -hex 8 - 1201 1205 1207 1203 1202 1206 1208 1204 -hex 8 - 1209 1213 1215 1211 1210 1214 1216 1212 -hex 8 - 1217 1221 1223 1219 1218 1222 1224 1220 -hex 8 - 1225 1229 1231 1227 1226 1230 1232 1228 -hex 8 - 1233 1237 1239 1235 1234 1238 1240 1236 -hex 8 - 1241 1245 1247 1243 1242 1246 1248 1244 -hex 8 - 1249 1253 1255 1251 1250 1254 1256 1252 -hex 8 - 1257 1261 1263 1259 1258 1262 1264 1260 -hex 8 - 1265 1269 1271 1267 1266 1270 1272 1268 -hex 8 - 1273 1277 1279 1275 1274 1278 1280 1276 -hex 8 - 1281 1285 1287 1283 1282 1286 1288 1284 -hex 8 - 1289 1293 1295 1291 1290 1294 1296 1292 -hex 8 - 1297 1301 1303 1299 1298 1302 1304 1300 -hex 8 - 1305 1309 1311 1307 1306 1310 1312 1308 -hex 8 - 1313 1317 1319 1315 1314 1318 1320 1316 -hex 8 - 1321 1325 1327 1323 1322 1326 1328 1324 -hex 8 - 1329 1333 1335 1331 1330 1334 1336 1332 -hex 8 - 1337 1341 1343 1339 1338 1342 1344 1340 -hex 8 - 1345 1349 1351 1347 1346 1350 1352 1348 -hex 8 - 1353 1357 1359 1355 1354 1358 1360 1356 -hex 8 - 1361 1365 1367 1363 1362 1366 1368 1364 -hex 8 - 1369 1373 1375 1371 1370 1374 1376 1372 -hex 8 - 1377 1381 1383 1379 1378 1382 1384 1380 -hex 8 - 1385 1389 1391 1387 1386 1390 1392 1388 -hex 8 - 1393 1397 1399 1395 1394 1398 1400 1396 -hex 8 - 1401 1405 1407 1403 1402 1406 1408 1404 -hex 8 - 1409 1413 1415 1411 1410 1414 1416 1412 -hex 8 - 1417 1421 1423 1419 1418 1422 1424 1420 -hex 8 - 1425 1429 1431 1427 1426 1430 1432 1428 -hex 8 - 1433 1437 1439 1435 1434 1438 1440 1436 -hex 8 - 1441 1445 1447 1443 1442 1446 1448 1444 -hex 8 - 1449 1453 1455 1451 1450 1454 1456 1452 -hex 8 - 1457 1461 1463 1459 1458 1462 1464 1460 -hex 8 - 1465 1469 1471 1467 1466 1470 1472 1468 -hex 8 - 1473 1477 1479 1475 1474 1478 1480 1476 -hex 8 - 1481 1485 1487 1483 1482 1486 1488 1484 -hex 8 - 1489 1493 1495 1491 1490 1494 1496 1492 -hex 8 - 1497 1501 1503 1499 1498 1502 1504 1500 -hex 8 - 1505 1509 1511 1507 1506 1510 1512 1508 -hex 8 - 1513 1517 1519 1515 1514 1518 1520 1516 -hex 8 - 1521 1525 1527 1523 1522 1526 1528 1524 -hex 8 - 1529 1533 1535 1531 1530 1534 1536 1532 -hex 8 - 1537 1541 1543 1539 1538 1542 1544 1540 -hex 8 - 1545 1549 1551 1547 1546 1550 1552 1548 -hex 8 - 1553 1557 1559 1555 1554 1558 1560 1556 -hex 8 - 1561 1565 1567 1563 1562 1566 1568 1564 -hex 8 - 1569 1573 1575 1571 1570 1574 1576 1572 -hex 8 - 1577 1581 1583 1579 1578 1582 1584 1580 -hex 8 - 1585 1589 1591 1587 1586 1590 1592 1588 -hex 8 - 1593 1597 1599 1595 1594 1598 1600 1596 -hex 8 - 1601 1605 1607 1603 1602 1606 1608 1604 -hex 8 - 1609 1613 1615 1611 1610 1614 1616 1612 -hex 8 - 1617 1621 1623 1619 1618 1622 1624 1620 -hex 8 - 1625 1629 1631 1627 1626 1630 1632 1628 -hex 8 - 1633 1637 1639 1635 1634 1638 1640 1636 -hex 8 - 1641 1645 1647 1643 1642 1646 1648 1644 -hex 8 - 1649 1653 1655 1651 1650 1654 1656 1652 -hex 8 - 1657 1661 1663 1659 1658 1662 1664 1660 -hex 8 - 1665 1669 1671 1667 1666 1670 1672 1668 -hex 8 - 1673 1677 1679 1675 1674 1678 1680 1676 -hex 8 - 1681 1685 1687 1683 1682 1686 1688 1684 -hex 8 - 1689 1693 1695 1691 1690 1694 1696 1692 -hex 8 - 1697 1701 1703 1699 1698 1702 1704 1700 -hex 8 - 1705 1709 1711 1707 1706 1710 1712 1708 -hex 8 - 1713 1717 1719 1715 1714 1718 1720 1716 -hex 8 - 1721 1725 1727 1723 1722 1726 1728 1724 -hex 8 - 1729 1733 1735 1731 1730 1734 1736 1732 -hex 8 - 1737 1741 1743 1739 1738 1742 1744 1740 -hex 8 - 1745 1749 1751 1747 1746 1750 1752 1748 -hex 8 - 1753 1757 1759 1755 1754 1758 1760 1756 - -variable -solution 1 -0 3 0 3 1 2 1 2 0 3 0 3 1 2 1 2 0 3 0 3 1 2 1 2 0 3 0 3 1 2 1 2 0 3 0 3 1 2 1 2 0 3 0 3 1 2 1 2 0 3 0 3 1 2 1 2 0 3 0 3 1 2 1 2 0 3 0 3 1 2 1 2 0 3 0 3 1 2 1 2 4 5 4 5 0 3 0 3 4 5 4 5 0 3 0 3 4 5 4 5 0 3 0 3 4 5 4 5 0 3 0 3 4 5 4 5 0 3 0 3 4 5 4 5 0 3 0 3 4 5 4 5 0 3 0 3 4 5 4 5 0 3 0 3 4 5 4 5 0 3 0 3 4 5 4 5 0 3 0 3 6 1 6 1 7 8 7 8 6 1 6 1 7 8 7 8 6 1 6 1 7 8 7 8 6 1 6 1 7 8 7 8 6 1 6 1 7 8 7 8 6 1 6 1 7 8 7 8 6 1 6 1 7 8 7 8 6 1 6 1 7 8 7 8 6 1 6 1 7 8 7 8 6 1 6 1 7 8 7 8 7 8 7 8 9 10 9 10 7 8 7 8 9 10 9 10 7 8 7 8 9 10 9 10 7 8 7 8 9 10 9 10 7 8 7 8 9 10 9 10 7 8 7 8 9 10 9 10 7 8 7 8 9 10 9 10 7 8 7 8 9 10 9 10 7 8 7 8 9 10 9 10 7 8 7 8 9 10 9 10 8 12 8 12 10 11 10 11 8 12 8 12 10 11 10 11 8 12 8 12 10 11 10 11 8 12 8 12 10 11 10 11 8 12 8 12 10 11 10 11 8 12 8 12 10 11 10 11 8 12 8 12 10 11 10 11 8 12 8 12 10 11 10 11 8 12 8 12 10 11 10 11 8 12 8 12 10 11 10 11 1 2 1 2 8 12 8 12 1 2 1 2 8 12 8 12 1 2 1 2 8 12 8 12 1 2 1 2 8 12 8 12 1 2 1 2 8 12 8 12 1 2 1 2 8 12 8 12 1 2 1 2 8 12 8 12 1 2 1 2 8 12 8 12 1 2 1 2 8 12 8 12 1 2 1 2 8 12 8 12 2 14 2 14 12 13 12 13 2 14 2 14 12 13 12 13 2 14 2 14 12 13 12 13 2 14 2 14 12 13 12 13 2 14 2 14 12 13 12 13 2 14 2 14 12 13 12 13 2 14 2 14 12 13 12 13 2 14 2 14 12 13 12 13 2 14 2 14 12 13 12 13 2 14 2 14 12 13 12 13 12 13 12 13 11 15 11 15 12 13 12 13 11 15 11 15 12 13 12 13 11 15 11 15 12 13 12 13 11 15 11 15 12 13 12 13 11 15 11 15 12 13 12 13 11 15 11 15 12 13 12 13 11 15 11 15 12 13 12 13 11 15 11 15 12 13 12 13 11 15 11 15 12 13 12 13 11 15 11 15 13 17 13 17 15 16 15 16 13 17 13 17 15 16 15 16 13 17 13 17 15 16 15 16 13 17 13 17 15 16 15 16 13 17 13 17 15 16 15 16 13 17 13 17 15 16 15 16 13 17 13 17 15 16 15 16 13 17 13 17 15 16 15 16 13 17 13 17 15 16 15 16 13 17 13 17 15 16 15 16 14 18 14 18 13 17 13 17 14 18 14 18 13 17 13 17 14 18 14 18 13 17 13 17 14 18 14 18 13 17 13 17 14 18 14 18 13 17 13 17 14 18 14 18 13 17 13 17 14 18 14 18 13 17 13 17 14 18 14 18 13 17 13 17 14 18 14 18 13 17 13 17 14 18 14 18 13 17 13 17 5 20 5 20 3 19 3 19 5 20 5 20 3 19 3 19 5 20 5 20 3 19 3 19 5 20 5 20 3 19 3 19 5 20 5 20 3 19 3 19 5 20 5 20 3 19 3 19 5 20 5 20 3 19 3 19 5 20 5 20 3 19 3 19 5 20 5 20 3 19 3 19 5 20 5 20 3 19 3 19 3 19 3 19 2 14 2 14 3 19 3 19 2 14 2 14 3 19 3 19 2 14 2 14 3 19 3 19 2 14 2 14 3 19 3 19 2 14 2 14 3 19 3 19 2 14 2 14 3 19 3 19 2 14 2 14 3 19 3 19 2 14 2 14 3 19 3 19 2 14 2 14 3 19 3 19 2 14 2 14 19 21 19 21 14 18 14 18 19 21 19 21 14 18 14 18 19 21 19 21 14 18 14 18 19 21 19 21 14 18 14 18 19 21 19 21 14 18 14 18 19 21 19 21 14 18 14 18 19 21 19 21 14 18 14 18 19 21 19 21 14 18 14 18 19 21 19 21 14 18 14 18 19 21 19 21 14 18 14 18 20 22 20 22 19 21 19 21 20 22 20 22 19 21 19 21 20 22 20 22 19 21 19 21 20 22 20 22 19 21 19 21 20 22 20 22 19 21 19 21 20 22 20 22 19 21 19 21 20 22 20 22 19 21 19 21 20 22 20 22 19 21 19 21 20 22 20 22 19 21 19 21 20 22 20 22 19 21 19 21 23 26 23 26 24 25 24 25 23 26 23 26 24 25 24 25 23 26 23 26 24 25 24 25 23 26 23 26 24 25 24 25 23 26 23 26 24 25 24 25 23 26 23 26 24 25 24 25 23 26 23 26 24 25 24 25 23 26 23 26 24 25 24 25 23 26 23 26 24 25 24 25 23 26 23 26 24 25 24 25 24 25 24 25 27 28 27 28 24 25 24 25 27 28 27 28 24 25 24 25 27 28 27 28 24 25 24 25 27 28 27 28 24 25 24 25 27 28 27 28 24 25 24 25 27 28 27 28 24 25 24 25 27 28 27 28 24 25 24 25 27 28 27 28 24 25 24 25 27 28 27 28 24 25 24 25 27 28 27 28 25 29 25 29 28 0 28 0 25 29 25 29 28 0 28 0 25 29 25 29 28 0 28 0 25 29 25 29 28 0 28 0 25 29 25 29 28 0 28 0 25 29 25 29 28 0 28 0 25 29 25 29 28 0 28 0 25 29 25 29 28 0 28 0 25 29 25 29 28 0 28 0 25 29 25 29 28 0 28 0 26 4 26 4 25 29 25 29 26 4 26 4 25 29 25 29 26 4 26 4 25 29 25 29 26 4 26 4 25 29 25 29 26 4 26 4 25 29 25 29 26 4 26 4 25 29 25 29 26 4 26 4 25 29 25 29 26 4 26 4 25 29 25 29 26 4 26 4 25 29 25 29 26 4 26 4 25 29 25 29 27 28 27 28 30 31 30 31 27 28 27 28 30 31 30 31 27 28 27 28 30 31 30 31 27 28 27 28 30 31 30 31 27 28 27 28 30 31 30 31 27 28 27 28 30 31 30 31 27 28 27 28 30 31 30 31 27 28 27 28 30 31 30 31 27 28 27 28 30 31 30 31 27 28 27 28 30 31 30 31 30 31 30 31 6 32 6 32 30 31 30 31 6 32 6 32 30 31 30 31 6 32 6 32 30 31 30 31 6 32 6 32 30 31 30 31 6 32 6 32 30 31 30 31 6 32 6 32 30 31 30 31 6 32 6 32 30 31 30 31 6 32 6 32 30 31 30 31 6 32 6 32 30 31 30 31 6 32 6 32 31 33 31 33 32 1 32 1 31 33 31 33 32 1 32 1 31 33 31 33 32 1 32 1 31 33 31 33 32 1 32 1 31 33 31 33 32 1 32 1 31 33 31 33 32 1 32 1 31 33 31 33 32 1 32 1 31 33 31 33 32 1 32 1 31 33 31 33 32 1 32 1 31 33 31 33 32 1 32 1 28 0 28 0 31 33 31 33 28 0 28 0 31 33 31 33 28 0 28 0 31 33 31 33 28 0 28 0 31 33 31 33 28 0 28 0 31 33 31 33 28 0 28 0 31 33 31 33 28 0 28 0 31 33 31 33 28 0 28 0 31 33 31 33 28 0 28 0 31 33 31 33 28 0 28 0 31 33 31 33 - -endvars -endgmv -# This file was generated by the deal.II library. -# Date = 2000/9/19 - -# -# For a description of the GNUPLOT format see the GNUPLOT manual. -# -# -0.25 0 0.25 0 -0.5 0 0.25 1 - - -0.25 0 0.25 0 -0.20225 0.14695 0.25 0 - - -0.25 0 0.25 0 -0.25 0 0.5 3 - - -0.25 0 0.5 3 -0.5 0 0.5 2 - - -0.25 0 0.5 3 -0.20225 0.14695 0.5 3 - - -0.20225 0.14695 0.25 0 -0.40451 0.29389 0.25 1 - - -0.20225 0.14695 0.25 0 -0.20225 0.14695 0.5 3 - - -0.20225 0.14695 0.5 3 -0.40451 0.29389 0.5 2 - - -0.5 0 0.25 1 -0.40451 0.29389 0.25 1 - - -0.5 0 0.25 1 -0.5 0 0.5 2 - - -0.5 0 0.5 2 -0.40451 0.29389 0.5 2 - - -0.40451 0.29389 0.25 1 -0.40451 0.29389 0.5 2 - - -0.20225 0.14695 0.25 0 -0.40451 0.29389 0.25 1 - - -0.20225 0.14695 0.25 0 -0.077254 0.23776 0.25 0 - - -0.20225 0.14695 0.25 0 -0.20225 0.14695 0.5 3 - - -0.20225 0.14695 0.5 3 -0.40451 0.29389 0.5 2 - - -0.20225 0.14695 0.5 3 -0.077254 0.23776 0.5 3 - - -0.077254 0.23776 0.25 0 -0.15451 0.47553 0.25 1 - - -0.077254 0.23776 0.25 0 -0.077254 0.23776 0.5 3 - - -0.077254 0.23776 0.5 3 -0.15451 0.47553 0.5 2 - - -0.40451 0.29389 0.25 1 -0.15451 0.47553 0.25 1 - - -0.40451 0.29389 0.25 1 -0.40451 0.29389 0.5 2 - - -0.40451 0.29389 0.5 2 -0.15451 0.47553 0.5 2 - - -0.15451 0.47553 0.25 1 -0.15451 0.47553 0.5 2 - - -0.077254 0.23776 0.25 0 -0.15451 0.47553 0.25 1 - - -0.077254 0.23776 0.25 0 --0.077254 0.23776 0.25 0 - - -0.077254 0.23776 0.25 0 -0.077254 0.23776 0.5 3 - - -0.077254 0.23776 0.5 3 -0.15451 0.47553 0.5 2 - - -0.077254 0.23776 0.5 3 --0.077254 0.23776 0.5 3 - - --0.077254 0.23776 0.25 0 --0.15451 0.47553 0.25 1 - - --0.077254 0.23776 0.25 0 --0.077254 0.23776 0.5 3 - - --0.077254 0.23776 0.5 3 --0.15451 0.47553 0.5 2 - - -0.15451 0.47553 0.25 1 --0.15451 0.47553 0.25 1 - - -0.15451 0.47553 0.25 1 -0.15451 0.47553 0.5 2 - - -0.15451 0.47553 0.5 2 --0.15451 0.47553 0.5 2 - - --0.15451 0.47553 0.25 1 --0.15451 0.47553 0.5 2 - - --0.077254 0.23776 0.25 0 --0.15451 0.47553 0.25 1 - - --0.077254 0.23776 0.25 0 --0.20225 0.14695 0.25 0 - - --0.077254 0.23776 0.25 0 --0.077254 0.23776 0.5 3 - - --0.077254 0.23776 0.5 3 --0.15451 0.47553 0.5 2 - - --0.077254 0.23776 0.5 3 --0.20225 0.14695 0.5 3 - - --0.20225 0.14695 0.25 0 --0.40451 0.29389 0.25 1 - - --0.20225 0.14695 0.25 0 --0.20225 0.14695 0.5 3 - - --0.20225 0.14695 0.5 3 --0.40451 0.29389 0.5 2 - - --0.15451 0.47553 0.25 1 --0.40451 0.29389 0.25 1 - - --0.15451 0.47553 0.25 1 --0.15451 0.47553 0.5 2 - - --0.15451 0.47553 0.5 2 --0.40451 0.29389 0.5 2 - - --0.40451 0.29389 0.25 1 --0.40451 0.29389 0.5 2 - - --0.20225 0.14695 0.25 0 --0.40451 0.29389 0.25 1 - - --0.20225 0.14695 0.25 0 --0.25 3.0616e-17 0.25 0 - - --0.20225 0.14695 0.25 0 --0.20225 0.14695 0.5 3 - - --0.20225 0.14695 0.5 3 --0.40451 0.29389 0.5 2 - - --0.20225 0.14695 0.5 3 --0.25 3.0616e-17 0.5 3 - - --0.25 3.0616e-17 0.25 0 --0.5 6.1232e-17 0.25 1 - - --0.25 3.0616e-17 0.25 0 --0.25 3.0616e-17 0.5 3 - - --0.25 3.0616e-17 0.5 3 --0.5 6.1232e-17 0.5 2 - - --0.40451 0.29389 0.25 1 --0.5 6.1232e-17 0.25 1 - - --0.40451 0.29389 0.25 1 --0.40451 0.29389 0.5 2 - - --0.40451 0.29389 0.5 2 --0.5 6.1232e-17 0.5 2 - - --0.5 6.1232e-17 0.25 1 --0.5 6.1232e-17 0.5 2 - - --0.25 3.0616e-17 0.25 0 --0.5 6.1232e-17 0.25 1 - - --0.25 3.0616e-17 0.25 0 --0.20225 -0.14695 0.25 0 - - --0.25 3.0616e-17 0.25 0 --0.25 3.0616e-17 0.5 3 - - --0.25 3.0616e-17 0.5 3 --0.5 6.1232e-17 0.5 2 - - --0.25 3.0616e-17 0.5 3 --0.20225 -0.14695 0.5 3 - - --0.20225 -0.14695 0.25 0 --0.40451 -0.29389 0.25 1 - - --0.20225 -0.14695 0.25 0 --0.20225 -0.14695 0.5 3 - - --0.20225 -0.14695 0.5 3 --0.40451 -0.29389 0.5 2 - - --0.5 6.1232e-17 0.25 1 --0.40451 -0.29389 0.25 1 - - --0.5 6.1232e-17 0.25 1 --0.5 6.1232e-17 0.5 2 - - --0.5 6.1232e-17 0.5 2 --0.40451 -0.29389 0.5 2 - - --0.40451 -0.29389 0.25 1 --0.40451 -0.29389 0.5 2 - - --0.20225 -0.14695 0.25 0 --0.40451 -0.29389 0.25 1 - - --0.20225 -0.14695 0.25 0 --0.077254 -0.23776 0.25 0 - - --0.20225 -0.14695 0.25 0 --0.20225 -0.14695 0.5 3 - - --0.20225 -0.14695 0.5 3 --0.40451 -0.29389 0.5 2 - - --0.20225 -0.14695 0.5 3 --0.077254 -0.23776 0.5 3 - - --0.077254 -0.23776 0.25 0 --0.15451 -0.47553 0.25 1 - - --0.077254 -0.23776 0.25 0 --0.077254 -0.23776 0.5 3 - - --0.077254 -0.23776 0.5 3 --0.15451 -0.47553 0.5 2 - - --0.40451 -0.29389 0.25 1 --0.15451 -0.47553 0.25 1 - - --0.40451 -0.29389 0.25 1 --0.40451 -0.29389 0.5 2 - - --0.40451 -0.29389 0.5 2 --0.15451 -0.47553 0.5 2 - - --0.15451 -0.47553 0.25 1 --0.15451 -0.47553 0.5 2 - - --0.077254 -0.23776 0.25 0 --0.15451 -0.47553 0.25 1 - - --0.077254 -0.23776 0.25 0 -0.077254 -0.23776 0.25 0 - - --0.077254 -0.23776 0.25 0 --0.077254 -0.23776 0.5 3 - - --0.077254 -0.23776 0.5 3 --0.15451 -0.47553 0.5 2 - - --0.077254 -0.23776 0.5 3 -0.077254 -0.23776 0.5 3 - - -0.077254 -0.23776 0.25 0 -0.15451 -0.47553 0.25 1 - - -0.077254 -0.23776 0.25 0 -0.077254 -0.23776 0.5 3 - - -0.077254 -0.23776 0.5 3 -0.15451 -0.47553 0.5 2 - - --0.15451 -0.47553 0.25 1 -0.15451 -0.47553 0.25 1 - - --0.15451 -0.47553 0.25 1 --0.15451 -0.47553 0.5 2 - - --0.15451 -0.47553 0.5 2 -0.15451 -0.47553 0.5 2 - - -0.15451 -0.47553 0.25 1 -0.15451 -0.47553 0.5 2 - - -0.077254 -0.23776 0.25 0 -0.15451 -0.47553 0.25 1 - - -0.077254 -0.23776 0.25 0 -0.20225 -0.14695 0.25 0 - - -0.077254 -0.23776 0.25 0 -0.077254 -0.23776 0.5 3 - - -0.077254 -0.23776 0.5 3 -0.15451 -0.47553 0.5 2 - - -0.077254 -0.23776 0.5 3 -0.20225 -0.14695 0.5 3 - - -0.20225 -0.14695 0.25 0 -0.40451 -0.29389 0.25 1 - - -0.20225 -0.14695 0.25 0 -0.20225 -0.14695 0.5 3 - - -0.20225 -0.14695 0.5 3 -0.40451 -0.29389 0.5 2 - - -0.15451 -0.47553 0.25 1 -0.40451 -0.29389 0.25 1 - - -0.15451 -0.47553 0.25 1 -0.15451 -0.47553 0.5 2 - - -0.15451 -0.47553 0.5 2 -0.40451 -0.29389 0.5 2 - - -0.40451 -0.29389 0.25 1 -0.40451 -0.29389 0.5 2 - - -0.20225 -0.14695 0.25 0 -0.40451 -0.29389 0.25 1 - - -0.20225 -0.14695 0.25 0 -0.25 -6.1232e-17 0.25 0 - - -0.20225 -0.14695 0.25 0 -0.20225 -0.14695 0.5 3 - - -0.20225 -0.14695 0.5 3 -0.40451 -0.29389 0.5 2 - - -0.20225 -0.14695 0.5 3 -0.25 -6.1232e-17 0.5 3 - - -0.25 -6.1232e-17 0.25 0 -0.5 -1.2246e-16 0.25 1 - - -0.25 -6.1232e-17 0.25 0 -0.25 -6.1232e-17 0.5 3 - - -0.25 -6.1232e-17 0.5 3 -0.5 -1.2246e-16 0.5 2 - - -0.40451 -0.29389 0.25 1 -0.5 -1.2246e-16 0.25 1 - - -0.40451 -0.29389 0.25 1 -0.40451 -0.29389 0.5 2 - - -0.40451 -0.29389 0.5 2 -0.5 -1.2246e-16 0.5 2 - - -0.5 -1.2246e-16 0.25 1 -0.5 -1.2246e-16 0.5 2 - - -0 0 0.25 4 -0.25 0 0.25 0 - - -0 0 0.25 4 -0 0 0.25 4 - - -0 0 0.25 4 -0 0 0.5 5 - - -0 0 0.5 5 -0.25 0 0.5 3 - - -0 0 0.5 5 -0 0 0.5 5 - - -0 0 0.25 4 -0.20225 0.14695 0.25 0 - - -0 0 0.25 4 -0 0 0.5 5 - - -0 0 0.5 5 -0.20225 0.14695 0.5 3 - - -0.25 0 0.25 0 -0.20225 0.14695 0.25 0 - - -0.25 0 0.25 0 -0.25 0 0.5 3 - - -0.25 0 0.5 3 -0.20225 0.14695 0.5 3 - - -0.20225 0.14695 0.25 0 -0.20225 0.14695 0.5 3 - - -0 0 0.25 4 -0.20225 0.14695 0.25 0 - - -0 0 0.25 4 -0 0 0.25 4 - - -0 0 0.25 4 -0 0 0.5 5 - - -0 0 0.5 5 -0.20225 0.14695 0.5 3 - - -0 0 0.5 5 -0 0 0.5 5 - - -0 0 0.25 4 -0.077254 0.23776 0.25 0 - - -0 0 0.25 4 -0 0 0.5 5 - - -0 0 0.5 5 -0.077254 0.23776 0.5 3 - - -0.20225 0.14695 0.25 0 -0.077254 0.23776 0.25 0 - - -0.20225 0.14695 0.25 0 -0.20225 0.14695 0.5 3 - - -0.20225 0.14695 0.5 3 -0.077254 0.23776 0.5 3 - - -0.077254 0.23776 0.25 0 -0.077254 0.23776 0.5 3 - - -0 0 0.25 4 -0.077254 0.23776 0.25 0 - - -0 0 0.25 4 -0 0 0.25 4 - - -0 0 0.25 4 -0 0 0.5 5 - - -0 0 0.5 5 -0.077254 0.23776 0.5 3 - - -0 0 0.5 5 -0 0 0.5 5 - - -0 0 0.25 4 --0.077254 0.23776 0.25 0 - - -0 0 0.25 4 -0 0 0.5 5 - - -0 0 0.5 5 --0.077254 0.23776 0.5 3 - - -0.077254 0.23776 0.25 0 --0.077254 0.23776 0.25 0 - - -0.077254 0.23776 0.25 0 -0.077254 0.23776 0.5 3 - - -0.077254 0.23776 0.5 3 --0.077254 0.23776 0.5 3 - - --0.077254 0.23776 0.25 0 --0.077254 0.23776 0.5 3 - - --0 0 0.25 4 --0.077254 0.23776 0.25 0 - - --0 0 0.25 4 --0 0 0.25 4 - - --0 0 0.25 4 --0 0 0.5 5 - - --0 0 0.5 5 --0.077254 0.23776 0.5 3 - - --0 0 0.5 5 --0 0 0.5 5 - - --0 0 0.25 4 --0.20225 0.14695 0.25 0 - - --0 0 0.25 4 --0 0 0.5 5 - - --0 0 0.5 5 --0.20225 0.14695 0.5 3 - - --0.077254 0.23776 0.25 0 --0.20225 0.14695 0.25 0 - - --0.077254 0.23776 0.25 0 --0.077254 0.23776 0.5 3 - - --0.077254 0.23776 0.5 3 --0.20225 0.14695 0.5 3 - - --0.20225 0.14695 0.25 0 --0.20225 0.14695 0.5 3 - - --0 0 0.25 4 --0.20225 0.14695 0.25 0 - - --0 0 0.25 4 --0 0 0.25 4 - - --0 0 0.25 4 --0 0 0.5 5 - - --0 0 0.5 5 --0.20225 0.14695 0.5 3 - - --0 0 0.5 5 --0 0 0.5 5 - - --0 0 0.25 4 --0.25 3.0616e-17 0.25 0 - - --0 0 0.25 4 --0 0 0.5 5 - - --0 0 0.5 5 --0.25 3.0616e-17 0.5 3 - - --0.20225 0.14695 0.25 0 --0.25 3.0616e-17 0.25 0 - - --0.20225 0.14695 0.25 0 --0.20225 0.14695 0.5 3 - - --0.20225 0.14695 0.5 3 --0.25 3.0616e-17 0.5 3 - - --0.25 3.0616e-17 0.25 0 --0.25 3.0616e-17 0.5 3 - - --0 0 0.25 4 --0.25 3.0616e-17 0.25 0 - - --0 0 0.25 4 --0 0 0.25 4 - - --0 0 0.25 4 --0 0 0.5 5 - - --0 0 0.5 5 --0.25 3.0616e-17 0.5 3 - - --0 0 0.5 5 --0 0 0.5 5 - - --0 0 0.25 4 --0.20225 -0.14695 0.25 0 - - --0 0 0.25 4 --0 0 0.5 5 - - --0 0 0.5 5 --0.20225 -0.14695 0.5 3 - - --0.25 3.0616e-17 0.25 0 --0.20225 -0.14695 0.25 0 - - --0.25 3.0616e-17 0.25 0 --0.25 3.0616e-17 0.5 3 - - --0.25 3.0616e-17 0.5 3 --0.20225 -0.14695 0.5 3 - - --0.20225 -0.14695 0.25 0 --0.20225 -0.14695 0.5 3 - - --0 -0 0.25 4 --0.20225 -0.14695 0.25 0 - - --0 -0 0.25 4 --0 -0 0.25 4 - - --0 -0 0.25 4 --0 -0 0.5 5 - - --0 -0 0.5 5 --0.20225 -0.14695 0.5 3 - - --0 -0 0.5 5 --0 -0 0.5 5 - - --0 -0 0.25 4 --0.077254 -0.23776 0.25 0 - - --0 -0 0.25 4 --0 -0 0.5 5 - - --0 -0 0.5 5 --0.077254 -0.23776 0.5 3 - - --0.20225 -0.14695 0.25 0 --0.077254 -0.23776 0.25 0 - - --0.20225 -0.14695 0.25 0 --0.20225 -0.14695 0.5 3 - - --0.20225 -0.14695 0.5 3 --0.077254 -0.23776 0.5 3 - - --0.077254 -0.23776 0.25 0 --0.077254 -0.23776 0.5 3 - - -0 -0 0.25 4 --0.077254 -0.23776 0.25 0 - - -0 -0 0.25 4 -0 -0 0.25 4 - - -0 -0 0.25 4 -0 -0 0.5 5 - - -0 -0 0.5 5 --0.077254 -0.23776 0.5 3 - - -0 -0 0.5 5 -0 -0 0.5 5 - - -0 -0 0.25 4 -0.077254 -0.23776 0.25 0 - - -0 -0 0.25 4 -0 -0 0.5 5 - - -0 -0 0.5 5 -0.077254 -0.23776 0.5 3 - - --0.077254 -0.23776 0.25 0 -0.077254 -0.23776 0.25 0 - - --0.077254 -0.23776 0.25 0 --0.077254 -0.23776 0.5 3 - - --0.077254 -0.23776 0.5 3 -0.077254 -0.23776 0.5 3 - - -0.077254 -0.23776 0.25 0 -0.077254 -0.23776 0.5 3 - - -0 -0 0.25 4 -0.077254 -0.23776 0.25 0 - - -0 -0 0.25 4 -0 -0 0.25 4 - - -0 -0 0.25 4 -0 -0 0.5 5 - - -0 -0 0.5 5 -0.077254 -0.23776 0.5 3 - - -0 -0 0.5 5 -0 -0 0.5 5 - - -0 -0 0.25 4 -0.20225 -0.14695 0.25 0 - - -0 -0 0.25 4 -0 -0 0.5 5 - - -0 -0 0.5 5 -0.20225 -0.14695 0.5 3 - - -0.077254 -0.23776 0.25 0 -0.20225 -0.14695 0.25 0 - - -0.077254 -0.23776 0.25 0 -0.077254 -0.23776 0.5 3 - - -0.077254 -0.23776 0.5 3 -0.20225 -0.14695 0.5 3 - - -0.20225 -0.14695 0.25 0 -0.20225 -0.14695 0.5 3 - - -0 -0 0.25 4 -0.20225 -0.14695 0.25 0 - - -0 -0 0.25 4 -0 -0 0.25 4 - - -0 -0 0.25 4 -0 -0 0.5 5 - - -0 -0 0.5 5 -0.20225 -0.14695 0.5 3 - - -0 -0 0.5 5 -0 -0 0.5 5 - - -0 -0 0.25 4 -0.25 -6.1232e-17 0.25 0 - - -0 -0 0.25 4 -0 -0 0.5 5 - - -0 -0 0.5 5 -0.25 -6.1232e-17 0.5 3 - - -0.20225 -0.14695 0.25 0 -0.25 -6.1232e-17 0.25 0 - - -0.20225 -0.14695 0.25 0 -0.20225 -0.14695 0.5 3 - - -0.20225 -0.14695 0.5 3 -0.25 -6.1232e-17 0.5 3 - - -0.25 -6.1232e-17 0.25 0 -0.25 -6.1232e-17 0.5 3 - - -0.5 0 0 6 -0.75 0 0 7 - - -0.5 0 0 6 -0.40451 0.29389 0 6 - - -0.5 0 0 6 -0.5 0 0.25 1 - - -0.5 0 0.25 1 -0.75 0 0.25 8 - - -0.5 0 0.25 1 -0.40451 0.29389 0.25 1 - - -0.40451 0.29389 0 6 -0.60676 0.44084 0 7 - - -0.40451 0.29389 0 6 -0.40451 0.29389 0.25 1 - - -0.40451 0.29389 0.25 1 -0.60676 0.44084 0.25 8 - - -0.75 0 0 7 -0.60676 0.44084 0 7 - - -0.75 0 0 7 -0.75 0 0.25 8 - - -0.75 0 0.25 8 -0.60676 0.44084 0.25 8 - - -0.60676 0.44084 0 7 -0.60676 0.44084 0.25 8 - - -0.40451 0.29389 0 6 -0.60676 0.44084 0 7 - - -0.40451 0.29389 0 6 -0.15451 0.47553 0 6 - - -0.40451 0.29389 0 6 -0.40451 0.29389 0.25 1 - - -0.40451 0.29389 0.25 1 -0.60676 0.44084 0.25 8 - - -0.40451 0.29389 0.25 1 -0.15451 0.47553 0.25 1 - - -0.15451 0.47553 0 6 -0.23176 0.71329 0 7 - - -0.15451 0.47553 0 6 -0.15451 0.47553 0.25 1 - - -0.15451 0.47553 0.25 1 -0.23176 0.71329 0.25 8 - - -0.60676 0.44084 0 7 -0.23176 0.71329 0 7 - - -0.60676 0.44084 0 7 -0.60676 0.44084 0.25 8 - - -0.60676 0.44084 0.25 8 -0.23176 0.71329 0.25 8 - - -0.23176 0.71329 0 7 -0.23176 0.71329 0.25 8 - - -0.15451 0.47553 0 6 -0.23176 0.71329 0 7 - - -0.15451 0.47553 0 6 --0.15451 0.47553 0 6 - - -0.15451 0.47553 0 6 -0.15451 0.47553 0.25 1 - - -0.15451 0.47553 0.25 1 -0.23176 0.71329 0.25 8 - - -0.15451 0.47553 0.25 1 --0.15451 0.47553 0.25 1 - - --0.15451 0.47553 0 6 --0.23176 0.71329 0 7 - - --0.15451 0.47553 0 6 --0.15451 0.47553 0.25 1 - - --0.15451 0.47553 0.25 1 --0.23176 0.71329 0.25 8 - - -0.23176 0.71329 0 7 --0.23176 0.71329 0 7 - - -0.23176 0.71329 0 7 -0.23176 0.71329 0.25 8 - - -0.23176 0.71329 0.25 8 --0.23176 0.71329 0.25 8 - - --0.23176 0.71329 0 7 --0.23176 0.71329 0.25 8 - - --0.15451 0.47553 0 6 --0.23176 0.71329 0 7 - - --0.15451 0.47553 0 6 --0.40451 0.29389 0 6 - - --0.15451 0.47553 0 6 --0.15451 0.47553 0.25 1 - - --0.15451 0.47553 0.25 1 --0.23176 0.71329 0.25 8 - - --0.15451 0.47553 0.25 1 --0.40451 0.29389 0.25 1 - - --0.40451 0.29389 0 6 --0.60676 0.44084 0 7 - - --0.40451 0.29389 0 6 --0.40451 0.29389 0.25 1 - - --0.40451 0.29389 0.25 1 --0.60676 0.44084 0.25 8 - - --0.23176 0.71329 0 7 --0.60676 0.44084 0 7 - - --0.23176 0.71329 0 7 --0.23176 0.71329 0.25 8 - - --0.23176 0.71329 0.25 8 --0.60676 0.44084 0.25 8 - - --0.60676 0.44084 0 7 --0.60676 0.44084 0.25 8 - - --0.40451 0.29389 0 6 --0.60676 0.44084 0 7 - - --0.40451 0.29389 0 6 --0.5 6.1232e-17 0 6 - - --0.40451 0.29389 0 6 --0.40451 0.29389 0.25 1 - - --0.40451 0.29389 0.25 1 --0.60676 0.44084 0.25 8 - - --0.40451 0.29389 0.25 1 --0.5 6.1232e-17 0.25 1 - - --0.5 6.1232e-17 0 6 --0.75 9.1849e-17 0 7 - - --0.5 6.1232e-17 0 6 --0.5 6.1232e-17 0.25 1 - - --0.5 6.1232e-17 0.25 1 --0.75 9.1849e-17 0.25 8 - - --0.60676 0.44084 0 7 --0.75 9.1849e-17 0 7 - - --0.60676 0.44084 0 7 --0.60676 0.44084 0.25 8 - - --0.60676 0.44084 0.25 8 --0.75 9.1849e-17 0.25 8 - - --0.75 9.1849e-17 0 7 --0.75 9.1849e-17 0.25 8 - - --0.5 6.1232e-17 0 6 --0.75 9.1849e-17 0 7 - - --0.5 6.1232e-17 0 6 --0.40451 -0.29389 0 6 - - --0.5 6.1232e-17 0 6 --0.5 6.1232e-17 0.25 1 - - --0.5 6.1232e-17 0.25 1 --0.75 9.1849e-17 0.25 8 - - --0.5 6.1232e-17 0.25 1 --0.40451 -0.29389 0.25 1 - - --0.40451 -0.29389 0 6 --0.60676 -0.44084 0 7 - - --0.40451 -0.29389 0 6 --0.40451 -0.29389 0.25 1 - - --0.40451 -0.29389 0.25 1 --0.60676 -0.44084 0.25 8 - - --0.75 9.1849e-17 0 7 --0.60676 -0.44084 0 7 - - --0.75 9.1849e-17 0 7 --0.75 9.1849e-17 0.25 8 - - --0.75 9.1849e-17 0.25 8 --0.60676 -0.44084 0.25 8 - - --0.60676 -0.44084 0 7 --0.60676 -0.44084 0.25 8 - - --0.40451 -0.29389 0 6 --0.60676 -0.44084 0 7 - - --0.40451 -0.29389 0 6 --0.15451 -0.47553 0 6 - - --0.40451 -0.29389 0 6 --0.40451 -0.29389 0.25 1 - - --0.40451 -0.29389 0.25 1 --0.60676 -0.44084 0.25 8 - - --0.40451 -0.29389 0.25 1 --0.15451 -0.47553 0.25 1 - - --0.15451 -0.47553 0 6 --0.23176 -0.71329 0 7 - - --0.15451 -0.47553 0 6 --0.15451 -0.47553 0.25 1 - - --0.15451 -0.47553 0.25 1 --0.23176 -0.71329 0.25 8 - - --0.60676 -0.44084 0 7 --0.23176 -0.71329 0 7 - - --0.60676 -0.44084 0 7 --0.60676 -0.44084 0.25 8 - - --0.60676 -0.44084 0.25 8 --0.23176 -0.71329 0.25 8 - - --0.23176 -0.71329 0 7 --0.23176 -0.71329 0.25 8 - - --0.15451 -0.47553 0 6 --0.23176 -0.71329 0 7 - - --0.15451 -0.47553 0 6 -0.15451 -0.47553 0 6 - - --0.15451 -0.47553 0 6 --0.15451 -0.47553 0.25 1 - - --0.15451 -0.47553 0.25 1 --0.23176 -0.71329 0.25 8 - - --0.15451 -0.47553 0.25 1 -0.15451 -0.47553 0.25 1 - - -0.15451 -0.47553 0 6 -0.23176 -0.71329 0 7 - - -0.15451 -0.47553 0 6 -0.15451 -0.47553 0.25 1 - - -0.15451 -0.47553 0.25 1 -0.23176 -0.71329 0.25 8 - - --0.23176 -0.71329 0 7 -0.23176 -0.71329 0 7 - - --0.23176 -0.71329 0 7 --0.23176 -0.71329 0.25 8 - - --0.23176 -0.71329 0.25 8 -0.23176 -0.71329 0.25 8 - - -0.23176 -0.71329 0 7 -0.23176 -0.71329 0.25 8 - - -0.15451 -0.47553 0 6 -0.23176 -0.71329 0 7 - - -0.15451 -0.47553 0 6 -0.40451 -0.29389 0 6 - - -0.15451 -0.47553 0 6 -0.15451 -0.47553 0.25 1 - - -0.15451 -0.47553 0.25 1 -0.23176 -0.71329 0.25 8 - - -0.15451 -0.47553 0.25 1 -0.40451 -0.29389 0.25 1 - - -0.40451 -0.29389 0 6 -0.60676 -0.44084 0 7 - - -0.40451 -0.29389 0 6 -0.40451 -0.29389 0.25 1 - - -0.40451 -0.29389 0.25 1 -0.60676 -0.44084 0.25 8 - - -0.23176 -0.71329 0 7 -0.60676 -0.44084 0 7 - - -0.23176 -0.71329 0 7 -0.23176 -0.71329 0.25 8 - - -0.23176 -0.71329 0.25 8 -0.60676 -0.44084 0.25 8 - - -0.60676 -0.44084 0 7 -0.60676 -0.44084 0.25 8 - - -0.40451 -0.29389 0 6 -0.60676 -0.44084 0 7 - - -0.40451 -0.29389 0 6 -0.5 -1.2246e-16 0 6 - - -0.40451 -0.29389 0 6 -0.40451 -0.29389 0.25 1 - - -0.40451 -0.29389 0.25 1 -0.60676 -0.44084 0.25 8 - - -0.40451 -0.29389 0.25 1 -0.5 -1.2246e-16 0.25 1 - - -0.5 -1.2246e-16 0 6 -0.75 -1.837e-16 0 7 - - -0.5 -1.2246e-16 0 6 -0.5 -1.2246e-16 0.25 1 - - -0.5 -1.2246e-16 0.25 1 -0.75 -1.837e-16 0.25 8 - - -0.60676 -0.44084 0 7 -0.75 -1.837e-16 0 7 - - -0.60676 -0.44084 0 7 -0.60676 -0.44084 0.25 8 - - -0.60676 -0.44084 0.25 8 -0.75 -1.837e-16 0.25 8 - - -0.75 -1.837e-16 0 7 -0.75 -1.837e-16 0.25 8 - - -0.75 0 0 7 -1 0 0 9 - - -0.75 0 0 7 -0.60676 0.44084 0 7 - - -0.75 0 0 7 -0.75 0 0.25 8 - - -0.75 0 0.25 8 -1 0 0.25 10 - - -0.75 0 0.25 8 -0.60676 0.44084 0.25 8 - - -0.60676 0.44084 0 7 -0.80902 0.58779 0 9 - - -0.60676 0.44084 0 7 -0.60676 0.44084 0.25 8 - - -0.60676 0.44084 0.25 8 -0.80902 0.58779 0.25 10 - - -1 0 0 9 -0.80902 0.58779 0 9 - - -1 0 0 9 -1 0 0.25 10 - - -1 0 0.25 10 -0.80902 0.58779 0.25 10 - - -0.80902 0.58779 0 9 -0.80902 0.58779 0.25 10 - - -0.60676 0.44084 0 7 -0.80902 0.58779 0 9 - - -0.60676 0.44084 0 7 -0.23176 0.71329 0 7 - - -0.60676 0.44084 0 7 -0.60676 0.44084 0.25 8 - - -0.60676 0.44084 0.25 8 -0.80902 0.58779 0.25 10 - - -0.60676 0.44084 0.25 8 -0.23176 0.71329 0.25 8 - - -0.23176 0.71329 0 7 -0.30902 0.95106 0 9 - - -0.23176 0.71329 0 7 -0.23176 0.71329 0.25 8 - - -0.23176 0.71329 0.25 8 -0.30902 0.95106 0.25 10 - - -0.80902 0.58779 0 9 -0.30902 0.95106 0 9 - - -0.80902 0.58779 0 9 -0.80902 0.58779 0.25 10 - - -0.80902 0.58779 0.25 10 -0.30902 0.95106 0.25 10 - - -0.30902 0.95106 0 9 -0.30902 0.95106 0.25 10 - - -0.23176 0.71329 0 7 -0.30902 0.95106 0 9 - - -0.23176 0.71329 0 7 --0.23176 0.71329 0 7 - - -0.23176 0.71329 0 7 -0.23176 0.71329 0.25 8 - - -0.23176 0.71329 0.25 8 -0.30902 0.95106 0.25 10 - - -0.23176 0.71329 0.25 8 --0.23176 0.71329 0.25 8 - - --0.23176 0.71329 0 7 --0.30902 0.95106 0 9 - - --0.23176 0.71329 0 7 --0.23176 0.71329 0.25 8 - - --0.23176 0.71329 0.25 8 --0.30902 0.95106 0.25 10 - - -0.30902 0.95106 0 9 --0.30902 0.95106 0 9 - - -0.30902 0.95106 0 9 -0.30902 0.95106 0.25 10 - - -0.30902 0.95106 0.25 10 --0.30902 0.95106 0.25 10 - - --0.30902 0.95106 0 9 --0.30902 0.95106 0.25 10 - - --0.23176 0.71329 0 7 --0.30902 0.95106 0 9 - - --0.23176 0.71329 0 7 --0.60676 0.44084 0 7 - - --0.23176 0.71329 0 7 --0.23176 0.71329 0.25 8 - - --0.23176 0.71329 0.25 8 --0.30902 0.95106 0.25 10 - - --0.23176 0.71329 0.25 8 --0.60676 0.44084 0.25 8 - - --0.60676 0.44084 0 7 --0.80902 0.58779 0 9 - - --0.60676 0.44084 0 7 --0.60676 0.44084 0.25 8 - - --0.60676 0.44084 0.25 8 --0.80902 0.58779 0.25 10 - - --0.30902 0.95106 0 9 --0.80902 0.58779 0 9 - - --0.30902 0.95106 0 9 --0.30902 0.95106 0.25 10 - - --0.30902 0.95106 0.25 10 --0.80902 0.58779 0.25 10 - - --0.80902 0.58779 0 9 --0.80902 0.58779 0.25 10 - - --0.60676 0.44084 0 7 --0.80902 0.58779 0 9 - - --0.60676 0.44084 0 7 --0.75 9.1849e-17 0 7 - - --0.60676 0.44084 0 7 --0.60676 0.44084 0.25 8 - - --0.60676 0.44084 0.25 8 --0.80902 0.58779 0.25 10 - - --0.60676 0.44084 0.25 8 --0.75 9.1849e-17 0.25 8 - - --0.75 9.1849e-17 0 7 --1 1.2246e-16 0 9 - - --0.75 9.1849e-17 0 7 --0.75 9.1849e-17 0.25 8 - - --0.75 9.1849e-17 0.25 8 --1 1.2246e-16 0.25 10 - - --0.80902 0.58779 0 9 --1 1.2246e-16 0 9 - - --0.80902 0.58779 0 9 --0.80902 0.58779 0.25 10 - - --0.80902 0.58779 0.25 10 --1 1.2246e-16 0.25 10 - - --1 1.2246e-16 0 9 --1 1.2246e-16 0.25 10 - - --0.75 9.1849e-17 0 7 --1 1.2246e-16 0 9 - - --0.75 9.1849e-17 0 7 --0.60676 -0.44084 0 7 - - --0.75 9.1849e-17 0 7 --0.75 9.1849e-17 0.25 8 - - --0.75 9.1849e-17 0.25 8 --1 1.2246e-16 0.25 10 - - --0.75 9.1849e-17 0.25 8 --0.60676 -0.44084 0.25 8 - - --0.60676 -0.44084 0 7 --0.80902 -0.58779 0 9 - - --0.60676 -0.44084 0 7 --0.60676 -0.44084 0.25 8 - - --0.60676 -0.44084 0.25 8 --0.80902 -0.58779 0.25 10 - - --1 1.2246e-16 0 9 --0.80902 -0.58779 0 9 - - --1 1.2246e-16 0 9 --1 1.2246e-16 0.25 10 - - --1 1.2246e-16 0.25 10 --0.80902 -0.58779 0.25 10 - - --0.80902 -0.58779 0 9 --0.80902 -0.58779 0.25 10 - - --0.60676 -0.44084 0 7 --0.80902 -0.58779 0 9 - - --0.60676 -0.44084 0 7 --0.23176 -0.71329 0 7 - - --0.60676 -0.44084 0 7 --0.60676 -0.44084 0.25 8 - - --0.60676 -0.44084 0.25 8 --0.80902 -0.58779 0.25 10 - - --0.60676 -0.44084 0.25 8 --0.23176 -0.71329 0.25 8 - - --0.23176 -0.71329 0 7 --0.30902 -0.95106 0 9 - - --0.23176 -0.71329 0 7 --0.23176 -0.71329 0.25 8 - - --0.23176 -0.71329 0.25 8 --0.30902 -0.95106 0.25 10 - - --0.80902 -0.58779 0 9 --0.30902 -0.95106 0 9 - - --0.80902 -0.58779 0 9 --0.80902 -0.58779 0.25 10 - - --0.80902 -0.58779 0.25 10 --0.30902 -0.95106 0.25 10 - - --0.30902 -0.95106 0 9 --0.30902 -0.95106 0.25 10 - - --0.23176 -0.71329 0 7 --0.30902 -0.95106 0 9 - - --0.23176 -0.71329 0 7 -0.23176 -0.71329 0 7 - - --0.23176 -0.71329 0 7 --0.23176 -0.71329 0.25 8 - - --0.23176 -0.71329 0.25 8 --0.30902 -0.95106 0.25 10 - - --0.23176 -0.71329 0.25 8 -0.23176 -0.71329 0.25 8 - - -0.23176 -0.71329 0 7 -0.30902 -0.95106 0 9 - - -0.23176 -0.71329 0 7 -0.23176 -0.71329 0.25 8 - - -0.23176 -0.71329 0.25 8 -0.30902 -0.95106 0.25 10 - - --0.30902 -0.95106 0 9 -0.30902 -0.95106 0 9 - - --0.30902 -0.95106 0 9 --0.30902 -0.95106 0.25 10 - - --0.30902 -0.95106 0.25 10 -0.30902 -0.95106 0.25 10 - - -0.30902 -0.95106 0 9 -0.30902 -0.95106 0.25 10 - - -0.23176 -0.71329 0 7 -0.30902 -0.95106 0 9 - - -0.23176 -0.71329 0 7 -0.60676 -0.44084 0 7 - - -0.23176 -0.71329 0 7 -0.23176 -0.71329 0.25 8 - - -0.23176 -0.71329 0.25 8 -0.30902 -0.95106 0.25 10 - - -0.23176 -0.71329 0.25 8 -0.60676 -0.44084 0.25 8 - - -0.60676 -0.44084 0 7 -0.80902 -0.58779 0 9 - - -0.60676 -0.44084 0 7 -0.60676 -0.44084 0.25 8 - - -0.60676 -0.44084 0.25 8 -0.80902 -0.58779 0.25 10 - - -0.30902 -0.95106 0 9 -0.80902 -0.58779 0 9 - - -0.30902 -0.95106 0 9 -0.30902 -0.95106 0.25 10 - - -0.30902 -0.95106 0.25 10 -0.80902 -0.58779 0.25 10 - - -0.80902 -0.58779 0 9 -0.80902 -0.58779 0.25 10 - - -0.60676 -0.44084 0 7 -0.80902 -0.58779 0 9 - - -0.60676 -0.44084 0 7 -0.75 -1.837e-16 0 7 - - -0.60676 -0.44084 0 7 -0.60676 -0.44084 0.25 8 - - -0.60676 -0.44084 0.25 8 -0.80902 -0.58779 0.25 10 - - -0.60676 -0.44084 0.25 8 -0.75 -1.837e-16 0.25 8 - - -0.75 -1.837e-16 0 7 -1 -2.4493e-16 0 9 - - -0.75 -1.837e-16 0 7 -0.75 -1.837e-16 0.25 8 - - -0.75 -1.837e-16 0.25 8 -1 -2.4493e-16 0.25 10 - - -0.80902 -0.58779 0 9 -1 -2.4493e-16 0 9 - - -0.80902 -0.58779 0 9 -0.80902 -0.58779 0.25 10 - - -0.80902 -0.58779 0.25 10 -1 -2.4493e-16 0.25 10 - - -1 -2.4493e-16 0 9 -1 -2.4493e-16 0.25 10 - - -0.75 0 0.25 8 -1 0 0.25 10 - - -0.75 0 0.25 8 -0.60676 0.44084 0.25 8 - - -0.75 0 0.25 8 -0.75 0 0.5 12 - - -0.75 0 0.5 12 -1 0 0.5 11 - - -0.75 0 0.5 12 -0.60676 0.44084 0.5 12 - - -0.60676 0.44084 0.25 8 -0.80902 0.58779 0.25 10 - - -0.60676 0.44084 0.25 8 -0.60676 0.44084 0.5 12 - - -0.60676 0.44084 0.5 12 -0.80902 0.58779 0.5 11 - - -1 0 0.25 10 -0.80902 0.58779 0.25 10 - - -1 0 0.25 10 -1 0 0.5 11 - - -1 0 0.5 11 -0.80902 0.58779 0.5 11 - - -0.80902 0.58779 0.25 10 -0.80902 0.58779 0.5 11 - - -0.60676 0.44084 0.25 8 -0.80902 0.58779 0.25 10 - - -0.60676 0.44084 0.25 8 -0.23176 0.71329 0.25 8 - - -0.60676 0.44084 0.25 8 -0.60676 0.44084 0.5 12 - - -0.60676 0.44084 0.5 12 -0.80902 0.58779 0.5 11 - - -0.60676 0.44084 0.5 12 -0.23176 0.71329 0.5 12 - - -0.23176 0.71329 0.25 8 -0.30902 0.95106 0.25 10 - - -0.23176 0.71329 0.25 8 -0.23176 0.71329 0.5 12 - - -0.23176 0.71329 0.5 12 -0.30902 0.95106 0.5 11 - - -0.80902 0.58779 0.25 10 -0.30902 0.95106 0.25 10 - - -0.80902 0.58779 0.25 10 -0.80902 0.58779 0.5 11 - - -0.80902 0.58779 0.5 11 -0.30902 0.95106 0.5 11 - - -0.30902 0.95106 0.25 10 -0.30902 0.95106 0.5 11 - - -0.23176 0.71329 0.25 8 -0.30902 0.95106 0.25 10 - - -0.23176 0.71329 0.25 8 --0.23176 0.71329 0.25 8 - - -0.23176 0.71329 0.25 8 -0.23176 0.71329 0.5 12 - - -0.23176 0.71329 0.5 12 -0.30902 0.95106 0.5 11 - - -0.23176 0.71329 0.5 12 --0.23176 0.71329 0.5 12 - - --0.23176 0.71329 0.25 8 --0.30902 0.95106 0.25 10 - - --0.23176 0.71329 0.25 8 --0.23176 0.71329 0.5 12 - - --0.23176 0.71329 0.5 12 --0.30902 0.95106 0.5 11 - - -0.30902 0.95106 0.25 10 --0.30902 0.95106 0.25 10 - - -0.30902 0.95106 0.25 10 -0.30902 0.95106 0.5 11 - - -0.30902 0.95106 0.5 11 --0.30902 0.95106 0.5 11 - - --0.30902 0.95106 0.25 10 --0.30902 0.95106 0.5 11 - - --0.23176 0.71329 0.25 8 --0.30902 0.95106 0.25 10 - - --0.23176 0.71329 0.25 8 --0.60676 0.44084 0.25 8 - - --0.23176 0.71329 0.25 8 --0.23176 0.71329 0.5 12 - - --0.23176 0.71329 0.5 12 --0.30902 0.95106 0.5 11 - - --0.23176 0.71329 0.5 12 --0.60676 0.44084 0.5 12 - - --0.60676 0.44084 0.25 8 --0.80902 0.58779 0.25 10 - - --0.60676 0.44084 0.25 8 --0.60676 0.44084 0.5 12 - - --0.60676 0.44084 0.5 12 --0.80902 0.58779 0.5 11 - - --0.30902 0.95106 0.25 10 --0.80902 0.58779 0.25 10 - - --0.30902 0.95106 0.25 10 --0.30902 0.95106 0.5 11 - - --0.30902 0.95106 0.5 11 --0.80902 0.58779 0.5 11 - - --0.80902 0.58779 0.25 10 --0.80902 0.58779 0.5 11 - - --0.60676 0.44084 0.25 8 --0.80902 0.58779 0.25 10 - - --0.60676 0.44084 0.25 8 --0.75 9.1849e-17 0.25 8 - - --0.60676 0.44084 0.25 8 --0.60676 0.44084 0.5 12 - - --0.60676 0.44084 0.5 12 --0.80902 0.58779 0.5 11 - - --0.60676 0.44084 0.5 12 --0.75 9.1849e-17 0.5 12 - - --0.75 9.1849e-17 0.25 8 --1 1.2246e-16 0.25 10 - - --0.75 9.1849e-17 0.25 8 --0.75 9.1849e-17 0.5 12 - - --0.75 9.1849e-17 0.5 12 --1 1.2246e-16 0.5 11 - - --0.80902 0.58779 0.25 10 --1 1.2246e-16 0.25 10 - - --0.80902 0.58779 0.25 10 --0.80902 0.58779 0.5 11 - - --0.80902 0.58779 0.5 11 --1 1.2246e-16 0.5 11 - - --1 1.2246e-16 0.25 10 --1 1.2246e-16 0.5 11 - - --0.75 9.1849e-17 0.25 8 --1 1.2246e-16 0.25 10 - - --0.75 9.1849e-17 0.25 8 --0.60676 -0.44084 0.25 8 - - --0.75 9.1849e-17 0.25 8 --0.75 9.1849e-17 0.5 12 - - --0.75 9.1849e-17 0.5 12 --1 1.2246e-16 0.5 11 - - --0.75 9.1849e-17 0.5 12 --0.60676 -0.44084 0.5 12 - - --0.60676 -0.44084 0.25 8 --0.80902 -0.58779 0.25 10 - - --0.60676 -0.44084 0.25 8 --0.60676 -0.44084 0.5 12 - - --0.60676 -0.44084 0.5 12 --0.80902 -0.58779 0.5 11 - - --1 1.2246e-16 0.25 10 --0.80902 -0.58779 0.25 10 - - --1 1.2246e-16 0.25 10 --1 1.2246e-16 0.5 11 - - --1 1.2246e-16 0.5 11 --0.80902 -0.58779 0.5 11 - - --0.80902 -0.58779 0.25 10 --0.80902 -0.58779 0.5 11 - - --0.60676 -0.44084 0.25 8 --0.80902 -0.58779 0.25 10 - - --0.60676 -0.44084 0.25 8 --0.23176 -0.71329 0.25 8 - - --0.60676 -0.44084 0.25 8 --0.60676 -0.44084 0.5 12 - - --0.60676 -0.44084 0.5 12 --0.80902 -0.58779 0.5 11 - - --0.60676 -0.44084 0.5 12 --0.23176 -0.71329 0.5 12 - - --0.23176 -0.71329 0.25 8 --0.30902 -0.95106 0.25 10 - - --0.23176 -0.71329 0.25 8 --0.23176 -0.71329 0.5 12 - - --0.23176 -0.71329 0.5 12 --0.30902 -0.95106 0.5 11 - - --0.80902 -0.58779 0.25 10 --0.30902 -0.95106 0.25 10 - - --0.80902 -0.58779 0.25 10 --0.80902 -0.58779 0.5 11 - - --0.80902 -0.58779 0.5 11 --0.30902 -0.95106 0.5 11 - - --0.30902 -0.95106 0.25 10 --0.30902 -0.95106 0.5 11 - - --0.23176 -0.71329 0.25 8 --0.30902 -0.95106 0.25 10 - - --0.23176 -0.71329 0.25 8 -0.23176 -0.71329 0.25 8 - - --0.23176 -0.71329 0.25 8 --0.23176 -0.71329 0.5 12 - - --0.23176 -0.71329 0.5 12 --0.30902 -0.95106 0.5 11 - - --0.23176 -0.71329 0.5 12 -0.23176 -0.71329 0.5 12 - - -0.23176 -0.71329 0.25 8 -0.30902 -0.95106 0.25 10 - - -0.23176 -0.71329 0.25 8 -0.23176 -0.71329 0.5 12 - - -0.23176 -0.71329 0.5 12 -0.30902 -0.95106 0.5 11 - - --0.30902 -0.95106 0.25 10 -0.30902 -0.95106 0.25 10 - - --0.30902 -0.95106 0.25 10 --0.30902 -0.95106 0.5 11 - - --0.30902 -0.95106 0.5 11 -0.30902 -0.95106 0.5 11 - - -0.30902 -0.95106 0.25 10 -0.30902 -0.95106 0.5 11 - - -0.23176 -0.71329 0.25 8 -0.30902 -0.95106 0.25 10 - - -0.23176 -0.71329 0.25 8 -0.60676 -0.44084 0.25 8 - - -0.23176 -0.71329 0.25 8 -0.23176 -0.71329 0.5 12 - - -0.23176 -0.71329 0.5 12 -0.30902 -0.95106 0.5 11 - - -0.23176 -0.71329 0.5 12 -0.60676 -0.44084 0.5 12 - - -0.60676 -0.44084 0.25 8 -0.80902 -0.58779 0.25 10 - - -0.60676 -0.44084 0.25 8 -0.60676 -0.44084 0.5 12 - - -0.60676 -0.44084 0.5 12 -0.80902 -0.58779 0.5 11 - - -0.30902 -0.95106 0.25 10 -0.80902 -0.58779 0.25 10 - - -0.30902 -0.95106 0.25 10 -0.30902 -0.95106 0.5 11 - - -0.30902 -0.95106 0.5 11 -0.80902 -0.58779 0.5 11 - - -0.80902 -0.58779 0.25 10 -0.80902 -0.58779 0.5 11 - - -0.60676 -0.44084 0.25 8 -0.80902 -0.58779 0.25 10 - - -0.60676 -0.44084 0.25 8 -0.75 -1.837e-16 0.25 8 - - -0.60676 -0.44084 0.25 8 -0.60676 -0.44084 0.5 12 - - -0.60676 -0.44084 0.5 12 -0.80902 -0.58779 0.5 11 - - -0.60676 -0.44084 0.5 12 -0.75 -1.837e-16 0.5 12 - - -0.75 -1.837e-16 0.25 8 -1 -2.4493e-16 0.25 10 - - -0.75 -1.837e-16 0.25 8 -0.75 -1.837e-16 0.5 12 - - -0.75 -1.837e-16 0.5 12 -1 -2.4493e-16 0.5 11 - - -0.80902 -0.58779 0.25 10 -1 -2.4493e-16 0.25 10 - - -0.80902 -0.58779 0.25 10 -0.80902 -0.58779 0.5 11 - - -0.80902 -0.58779 0.5 11 -1 -2.4493e-16 0.5 11 - - -1 -2.4493e-16 0.25 10 -1 -2.4493e-16 0.5 11 - - -0.5 0 0.25 1 -0.75 0 0.25 8 - - -0.5 0 0.25 1 -0.40451 0.29389 0.25 1 - - -0.5 0 0.25 1 -0.5 0 0.5 2 - - -0.5 0 0.5 2 -0.75 0 0.5 12 - - -0.5 0 0.5 2 -0.40451 0.29389 0.5 2 - - -0.40451 0.29389 0.25 1 -0.60676 0.44084 0.25 8 - - -0.40451 0.29389 0.25 1 -0.40451 0.29389 0.5 2 - - -0.40451 0.29389 0.5 2 -0.60676 0.44084 0.5 12 - - -0.75 0 0.25 8 -0.60676 0.44084 0.25 8 - - -0.75 0 0.25 8 -0.75 0 0.5 12 - - -0.75 0 0.5 12 -0.60676 0.44084 0.5 12 - - -0.60676 0.44084 0.25 8 -0.60676 0.44084 0.5 12 - - -0.40451 0.29389 0.25 1 -0.60676 0.44084 0.25 8 - - -0.40451 0.29389 0.25 1 -0.15451 0.47553 0.25 1 - - -0.40451 0.29389 0.25 1 -0.40451 0.29389 0.5 2 - - -0.40451 0.29389 0.5 2 -0.60676 0.44084 0.5 12 - - -0.40451 0.29389 0.5 2 -0.15451 0.47553 0.5 2 - - -0.15451 0.47553 0.25 1 -0.23176 0.71329 0.25 8 - - -0.15451 0.47553 0.25 1 -0.15451 0.47553 0.5 2 - - -0.15451 0.47553 0.5 2 -0.23176 0.71329 0.5 12 - - -0.60676 0.44084 0.25 8 -0.23176 0.71329 0.25 8 - - -0.60676 0.44084 0.25 8 -0.60676 0.44084 0.5 12 - - -0.60676 0.44084 0.5 12 -0.23176 0.71329 0.5 12 - - -0.23176 0.71329 0.25 8 -0.23176 0.71329 0.5 12 - - -0.15451 0.47553 0.25 1 -0.23176 0.71329 0.25 8 - - -0.15451 0.47553 0.25 1 --0.15451 0.47553 0.25 1 - - -0.15451 0.47553 0.25 1 -0.15451 0.47553 0.5 2 - - -0.15451 0.47553 0.5 2 -0.23176 0.71329 0.5 12 - - -0.15451 0.47553 0.5 2 --0.15451 0.47553 0.5 2 - - --0.15451 0.47553 0.25 1 --0.23176 0.71329 0.25 8 - - --0.15451 0.47553 0.25 1 --0.15451 0.47553 0.5 2 - - --0.15451 0.47553 0.5 2 --0.23176 0.71329 0.5 12 - - -0.23176 0.71329 0.25 8 --0.23176 0.71329 0.25 8 - - -0.23176 0.71329 0.25 8 -0.23176 0.71329 0.5 12 - - -0.23176 0.71329 0.5 12 --0.23176 0.71329 0.5 12 - - --0.23176 0.71329 0.25 8 --0.23176 0.71329 0.5 12 - - --0.15451 0.47553 0.25 1 --0.23176 0.71329 0.25 8 - - --0.15451 0.47553 0.25 1 --0.40451 0.29389 0.25 1 - - --0.15451 0.47553 0.25 1 --0.15451 0.47553 0.5 2 - - --0.15451 0.47553 0.5 2 --0.23176 0.71329 0.5 12 - - --0.15451 0.47553 0.5 2 --0.40451 0.29389 0.5 2 - - --0.40451 0.29389 0.25 1 --0.60676 0.44084 0.25 8 - - --0.40451 0.29389 0.25 1 --0.40451 0.29389 0.5 2 - - --0.40451 0.29389 0.5 2 --0.60676 0.44084 0.5 12 - - --0.23176 0.71329 0.25 8 --0.60676 0.44084 0.25 8 - - --0.23176 0.71329 0.25 8 --0.23176 0.71329 0.5 12 - - --0.23176 0.71329 0.5 12 --0.60676 0.44084 0.5 12 - - --0.60676 0.44084 0.25 8 --0.60676 0.44084 0.5 12 - - --0.40451 0.29389 0.25 1 --0.60676 0.44084 0.25 8 - - --0.40451 0.29389 0.25 1 --0.5 6.1232e-17 0.25 1 - - --0.40451 0.29389 0.25 1 --0.40451 0.29389 0.5 2 - - --0.40451 0.29389 0.5 2 --0.60676 0.44084 0.5 12 - - --0.40451 0.29389 0.5 2 --0.5 6.1232e-17 0.5 2 - - --0.5 6.1232e-17 0.25 1 --0.75 9.1849e-17 0.25 8 - - --0.5 6.1232e-17 0.25 1 --0.5 6.1232e-17 0.5 2 - - --0.5 6.1232e-17 0.5 2 --0.75 9.1849e-17 0.5 12 - - --0.60676 0.44084 0.25 8 --0.75 9.1849e-17 0.25 8 - - --0.60676 0.44084 0.25 8 --0.60676 0.44084 0.5 12 - - --0.60676 0.44084 0.5 12 --0.75 9.1849e-17 0.5 12 - - --0.75 9.1849e-17 0.25 8 --0.75 9.1849e-17 0.5 12 - - --0.5 6.1232e-17 0.25 1 --0.75 9.1849e-17 0.25 8 - - --0.5 6.1232e-17 0.25 1 --0.40451 -0.29389 0.25 1 - - --0.5 6.1232e-17 0.25 1 --0.5 6.1232e-17 0.5 2 - - --0.5 6.1232e-17 0.5 2 --0.75 9.1849e-17 0.5 12 - - --0.5 6.1232e-17 0.5 2 --0.40451 -0.29389 0.5 2 - - --0.40451 -0.29389 0.25 1 --0.60676 -0.44084 0.25 8 - - --0.40451 -0.29389 0.25 1 --0.40451 -0.29389 0.5 2 - - --0.40451 -0.29389 0.5 2 --0.60676 -0.44084 0.5 12 - - --0.75 9.1849e-17 0.25 8 --0.60676 -0.44084 0.25 8 - - --0.75 9.1849e-17 0.25 8 --0.75 9.1849e-17 0.5 12 - - --0.75 9.1849e-17 0.5 12 --0.60676 -0.44084 0.5 12 - - --0.60676 -0.44084 0.25 8 --0.60676 -0.44084 0.5 12 - - --0.40451 -0.29389 0.25 1 --0.60676 -0.44084 0.25 8 - - --0.40451 -0.29389 0.25 1 --0.15451 -0.47553 0.25 1 - - --0.40451 -0.29389 0.25 1 --0.40451 -0.29389 0.5 2 - - --0.40451 -0.29389 0.5 2 --0.60676 -0.44084 0.5 12 - - --0.40451 -0.29389 0.5 2 --0.15451 -0.47553 0.5 2 - - --0.15451 -0.47553 0.25 1 --0.23176 -0.71329 0.25 8 - - --0.15451 -0.47553 0.25 1 --0.15451 -0.47553 0.5 2 - - --0.15451 -0.47553 0.5 2 --0.23176 -0.71329 0.5 12 - - --0.60676 -0.44084 0.25 8 --0.23176 -0.71329 0.25 8 - - --0.60676 -0.44084 0.25 8 --0.60676 -0.44084 0.5 12 - - --0.60676 -0.44084 0.5 12 --0.23176 -0.71329 0.5 12 - - --0.23176 -0.71329 0.25 8 --0.23176 -0.71329 0.5 12 - - --0.15451 -0.47553 0.25 1 --0.23176 -0.71329 0.25 8 - - --0.15451 -0.47553 0.25 1 -0.15451 -0.47553 0.25 1 - - --0.15451 -0.47553 0.25 1 --0.15451 -0.47553 0.5 2 - - --0.15451 -0.47553 0.5 2 --0.23176 -0.71329 0.5 12 - - --0.15451 -0.47553 0.5 2 -0.15451 -0.47553 0.5 2 - - -0.15451 -0.47553 0.25 1 -0.23176 -0.71329 0.25 8 - - -0.15451 -0.47553 0.25 1 -0.15451 -0.47553 0.5 2 - - -0.15451 -0.47553 0.5 2 -0.23176 -0.71329 0.5 12 - - --0.23176 -0.71329 0.25 8 -0.23176 -0.71329 0.25 8 - - --0.23176 -0.71329 0.25 8 --0.23176 -0.71329 0.5 12 - - --0.23176 -0.71329 0.5 12 -0.23176 -0.71329 0.5 12 - - -0.23176 -0.71329 0.25 8 -0.23176 -0.71329 0.5 12 - - -0.15451 -0.47553 0.25 1 -0.23176 -0.71329 0.25 8 - - -0.15451 -0.47553 0.25 1 -0.40451 -0.29389 0.25 1 - - -0.15451 -0.47553 0.25 1 -0.15451 -0.47553 0.5 2 - - -0.15451 -0.47553 0.5 2 -0.23176 -0.71329 0.5 12 - - -0.15451 -0.47553 0.5 2 -0.40451 -0.29389 0.5 2 - - -0.40451 -0.29389 0.25 1 -0.60676 -0.44084 0.25 8 - - -0.40451 -0.29389 0.25 1 -0.40451 -0.29389 0.5 2 - - -0.40451 -0.29389 0.5 2 -0.60676 -0.44084 0.5 12 - - -0.23176 -0.71329 0.25 8 -0.60676 -0.44084 0.25 8 - - -0.23176 -0.71329 0.25 8 -0.23176 -0.71329 0.5 12 - - -0.23176 -0.71329 0.5 12 -0.60676 -0.44084 0.5 12 - - -0.60676 -0.44084 0.25 8 -0.60676 -0.44084 0.5 12 - - -0.40451 -0.29389 0.25 1 -0.60676 -0.44084 0.25 8 - - -0.40451 -0.29389 0.25 1 -0.5 -1.2246e-16 0.25 1 - - -0.40451 -0.29389 0.25 1 -0.40451 -0.29389 0.5 2 - - -0.40451 -0.29389 0.5 2 -0.60676 -0.44084 0.5 12 - - -0.40451 -0.29389 0.5 2 -0.5 -1.2246e-16 0.5 2 - - -0.5 -1.2246e-16 0.25 1 -0.75 -1.837e-16 0.25 8 - - -0.5 -1.2246e-16 0.25 1 -0.5 -1.2246e-16 0.5 2 - - -0.5 -1.2246e-16 0.5 2 -0.75 -1.837e-16 0.5 12 - - -0.60676 -0.44084 0.25 8 -0.75 -1.837e-16 0.25 8 - - -0.60676 -0.44084 0.25 8 -0.60676 -0.44084 0.5 12 - - -0.60676 -0.44084 0.5 12 -0.75 -1.837e-16 0.5 12 - - -0.75 -1.837e-16 0.25 8 -0.75 -1.837e-16 0.5 12 - - -0.5 0 0.5 2 -0.75 0 0.5 12 - - -0.5 0 0.5 2 -0.40451 0.29389 0.5 2 - - -0.5 0 0.5 2 -0.5 0 0.75 14 - - -0.5 0 0.75 14 -0.75 0 0.75 13 - - -0.5 0 0.75 14 -0.40451 0.29389 0.75 14 - - -0.40451 0.29389 0.5 2 -0.60676 0.44084 0.5 12 - - -0.40451 0.29389 0.5 2 -0.40451 0.29389 0.75 14 - - -0.40451 0.29389 0.75 14 -0.60676 0.44084 0.75 13 - - -0.75 0 0.5 12 -0.60676 0.44084 0.5 12 - - -0.75 0 0.5 12 -0.75 0 0.75 13 - - -0.75 0 0.75 13 -0.60676 0.44084 0.75 13 - - -0.60676 0.44084 0.5 12 -0.60676 0.44084 0.75 13 - - -0.40451 0.29389 0.5 2 -0.60676 0.44084 0.5 12 - - -0.40451 0.29389 0.5 2 -0.15451 0.47553 0.5 2 - - -0.40451 0.29389 0.5 2 -0.40451 0.29389 0.75 14 - - -0.40451 0.29389 0.75 14 -0.60676 0.44084 0.75 13 - - -0.40451 0.29389 0.75 14 -0.15451 0.47553 0.75 14 - - -0.15451 0.47553 0.5 2 -0.23176 0.71329 0.5 12 - - -0.15451 0.47553 0.5 2 -0.15451 0.47553 0.75 14 - - -0.15451 0.47553 0.75 14 -0.23176 0.71329 0.75 13 - - -0.60676 0.44084 0.5 12 -0.23176 0.71329 0.5 12 - - -0.60676 0.44084 0.5 12 -0.60676 0.44084 0.75 13 - - -0.60676 0.44084 0.75 13 -0.23176 0.71329 0.75 13 - - -0.23176 0.71329 0.5 12 -0.23176 0.71329 0.75 13 - - -0.15451 0.47553 0.5 2 -0.23176 0.71329 0.5 12 - - -0.15451 0.47553 0.5 2 --0.15451 0.47553 0.5 2 - - -0.15451 0.47553 0.5 2 -0.15451 0.47553 0.75 14 - - -0.15451 0.47553 0.75 14 -0.23176 0.71329 0.75 13 - - -0.15451 0.47553 0.75 14 --0.15451 0.47553 0.75 14 - - --0.15451 0.47553 0.5 2 --0.23176 0.71329 0.5 12 - - --0.15451 0.47553 0.5 2 --0.15451 0.47553 0.75 14 - - --0.15451 0.47553 0.75 14 --0.23176 0.71329 0.75 13 - - -0.23176 0.71329 0.5 12 --0.23176 0.71329 0.5 12 - - -0.23176 0.71329 0.5 12 -0.23176 0.71329 0.75 13 - - -0.23176 0.71329 0.75 13 --0.23176 0.71329 0.75 13 - - --0.23176 0.71329 0.5 12 --0.23176 0.71329 0.75 13 - - --0.15451 0.47553 0.5 2 --0.23176 0.71329 0.5 12 - - --0.15451 0.47553 0.5 2 --0.40451 0.29389 0.5 2 - - --0.15451 0.47553 0.5 2 --0.15451 0.47553 0.75 14 - - --0.15451 0.47553 0.75 14 --0.23176 0.71329 0.75 13 - - --0.15451 0.47553 0.75 14 --0.40451 0.29389 0.75 14 - - --0.40451 0.29389 0.5 2 --0.60676 0.44084 0.5 12 - - --0.40451 0.29389 0.5 2 --0.40451 0.29389 0.75 14 - - --0.40451 0.29389 0.75 14 --0.60676 0.44084 0.75 13 - - --0.23176 0.71329 0.5 12 --0.60676 0.44084 0.5 12 - - --0.23176 0.71329 0.5 12 --0.23176 0.71329 0.75 13 - - --0.23176 0.71329 0.75 13 --0.60676 0.44084 0.75 13 - - --0.60676 0.44084 0.5 12 --0.60676 0.44084 0.75 13 - - --0.40451 0.29389 0.5 2 --0.60676 0.44084 0.5 12 - - --0.40451 0.29389 0.5 2 --0.5 6.1232e-17 0.5 2 - - --0.40451 0.29389 0.5 2 --0.40451 0.29389 0.75 14 - - --0.40451 0.29389 0.75 14 --0.60676 0.44084 0.75 13 - - --0.40451 0.29389 0.75 14 --0.5 6.1232e-17 0.75 14 - - --0.5 6.1232e-17 0.5 2 --0.75 9.1849e-17 0.5 12 - - --0.5 6.1232e-17 0.5 2 --0.5 6.1232e-17 0.75 14 - - --0.5 6.1232e-17 0.75 14 --0.75 9.1849e-17 0.75 13 - - --0.60676 0.44084 0.5 12 --0.75 9.1849e-17 0.5 12 - - --0.60676 0.44084 0.5 12 --0.60676 0.44084 0.75 13 - - --0.60676 0.44084 0.75 13 --0.75 9.1849e-17 0.75 13 - - --0.75 9.1849e-17 0.5 12 --0.75 9.1849e-17 0.75 13 - - --0.5 6.1232e-17 0.5 2 --0.75 9.1849e-17 0.5 12 - - --0.5 6.1232e-17 0.5 2 --0.40451 -0.29389 0.5 2 - - --0.5 6.1232e-17 0.5 2 --0.5 6.1232e-17 0.75 14 - - --0.5 6.1232e-17 0.75 14 --0.75 9.1849e-17 0.75 13 - - --0.5 6.1232e-17 0.75 14 --0.40451 -0.29389 0.75 14 - - --0.40451 -0.29389 0.5 2 --0.60676 -0.44084 0.5 12 - - --0.40451 -0.29389 0.5 2 --0.40451 -0.29389 0.75 14 - - --0.40451 -0.29389 0.75 14 --0.60676 -0.44084 0.75 13 - - --0.75 9.1849e-17 0.5 12 --0.60676 -0.44084 0.5 12 - - --0.75 9.1849e-17 0.5 12 --0.75 9.1849e-17 0.75 13 - - --0.75 9.1849e-17 0.75 13 --0.60676 -0.44084 0.75 13 - - --0.60676 -0.44084 0.5 12 --0.60676 -0.44084 0.75 13 - - --0.40451 -0.29389 0.5 2 --0.60676 -0.44084 0.5 12 - - --0.40451 -0.29389 0.5 2 --0.15451 -0.47553 0.5 2 - - --0.40451 -0.29389 0.5 2 --0.40451 -0.29389 0.75 14 - - --0.40451 -0.29389 0.75 14 --0.60676 -0.44084 0.75 13 - - --0.40451 -0.29389 0.75 14 --0.15451 -0.47553 0.75 14 - - --0.15451 -0.47553 0.5 2 --0.23176 -0.71329 0.5 12 - - --0.15451 -0.47553 0.5 2 --0.15451 -0.47553 0.75 14 - - --0.15451 -0.47553 0.75 14 --0.23176 -0.71329 0.75 13 - - --0.60676 -0.44084 0.5 12 --0.23176 -0.71329 0.5 12 - - --0.60676 -0.44084 0.5 12 --0.60676 -0.44084 0.75 13 - - --0.60676 -0.44084 0.75 13 --0.23176 -0.71329 0.75 13 - - --0.23176 -0.71329 0.5 12 --0.23176 -0.71329 0.75 13 - - --0.15451 -0.47553 0.5 2 --0.23176 -0.71329 0.5 12 - - --0.15451 -0.47553 0.5 2 -0.15451 -0.47553 0.5 2 - - --0.15451 -0.47553 0.5 2 --0.15451 -0.47553 0.75 14 - - --0.15451 -0.47553 0.75 14 --0.23176 -0.71329 0.75 13 - - --0.15451 -0.47553 0.75 14 -0.15451 -0.47553 0.75 14 - - -0.15451 -0.47553 0.5 2 -0.23176 -0.71329 0.5 12 - - -0.15451 -0.47553 0.5 2 -0.15451 -0.47553 0.75 14 - - -0.15451 -0.47553 0.75 14 -0.23176 -0.71329 0.75 13 - - --0.23176 -0.71329 0.5 12 -0.23176 -0.71329 0.5 12 - - --0.23176 -0.71329 0.5 12 --0.23176 -0.71329 0.75 13 - - --0.23176 -0.71329 0.75 13 -0.23176 -0.71329 0.75 13 - - -0.23176 -0.71329 0.5 12 -0.23176 -0.71329 0.75 13 - - -0.15451 -0.47553 0.5 2 -0.23176 -0.71329 0.5 12 - - -0.15451 -0.47553 0.5 2 -0.40451 -0.29389 0.5 2 - - -0.15451 -0.47553 0.5 2 -0.15451 -0.47553 0.75 14 - - -0.15451 -0.47553 0.75 14 -0.23176 -0.71329 0.75 13 - - -0.15451 -0.47553 0.75 14 -0.40451 -0.29389 0.75 14 - - -0.40451 -0.29389 0.5 2 -0.60676 -0.44084 0.5 12 - - -0.40451 -0.29389 0.5 2 -0.40451 -0.29389 0.75 14 - - -0.40451 -0.29389 0.75 14 -0.60676 -0.44084 0.75 13 - - -0.23176 -0.71329 0.5 12 -0.60676 -0.44084 0.5 12 - - -0.23176 -0.71329 0.5 12 -0.23176 -0.71329 0.75 13 - - -0.23176 -0.71329 0.75 13 -0.60676 -0.44084 0.75 13 - - -0.60676 -0.44084 0.5 12 -0.60676 -0.44084 0.75 13 - - -0.40451 -0.29389 0.5 2 -0.60676 -0.44084 0.5 12 - - -0.40451 -0.29389 0.5 2 -0.5 -1.2246e-16 0.5 2 - - -0.40451 -0.29389 0.5 2 -0.40451 -0.29389 0.75 14 - - -0.40451 -0.29389 0.75 14 -0.60676 -0.44084 0.75 13 - - -0.40451 -0.29389 0.75 14 -0.5 -1.2246e-16 0.75 14 - - -0.5 -1.2246e-16 0.5 2 -0.75 -1.837e-16 0.5 12 - - -0.5 -1.2246e-16 0.5 2 -0.5 -1.2246e-16 0.75 14 - - -0.5 -1.2246e-16 0.75 14 -0.75 -1.837e-16 0.75 13 - - -0.60676 -0.44084 0.5 12 -0.75 -1.837e-16 0.5 12 - - -0.60676 -0.44084 0.5 12 -0.60676 -0.44084 0.75 13 - - -0.60676 -0.44084 0.75 13 -0.75 -1.837e-16 0.75 13 - - -0.75 -1.837e-16 0.5 12 -0.75 -1.837e-16 0.75 13 - - -0.75 0 0.5 12 -1 0 0.5 11 - - -0.75 0 0.5 12 -0.60676 0.44084 0.5 12 - - -0.75 0 0.5 12 -0.75 0 0.75 13 - - -0.75 0 0.75 13 -1 0 0.75 15 - - -0.75 0 0.75 13 -0.60676 0.44084 0.75 13 - - -0.60676 0.44084 0.5 12 -0.80902 0.58779 0.5 11 - - -0.60676 0.44084 0.5 12 -0.60676 0.44084 0.75 13 - - -0.60676 0.44084 0.75 13 -0.80902 0.58779 0.75 15 - - -1 0 0.5 11 -0.80902 0.58779 0.5 11 - - -1 0 0.5 11 -1 0 0.75 15 - - -1 0 0.75 15 -0.80902 0.58779 0.75 15 - - -0.80902 0.58779 0.5 11 -0.80902 0.58779 0.75 15 - - -0.60676 0.44084 0.5 12 -0.80902 0.58779 0.5 11 - - -0.60676 0.44084 0.5 12 -0.23176 0.71329 0.5 12 - - -0.60676 0.44084 0.5 12 -0.60676 0.44084 0.75 13 - - -0.60676 0.44084 0.75 13 -0.80902 0.58779 0.75 15 - - -0.60676 0.44084 0.75 13 -0.23176 0.71329 0.75 13 - - -0.23176 0.71329 0.5 12 -0.30902 0.95106 0.5 11 - - -0.23176 0.71329 0.5 12 -0.23176 0.71329 0.75 13 - - -0.23176 0.71329 0.75 13 -0.30902 0.95106 0.75 15 - - -0.80902 0.58779 0.5 11 -0.30902 0.95106 0.5 11 - - -0.80902 0.58779 0.5 11 -0.80902 0.58779 0.75 15 - - -0.80902 0.58779 0.75 15 -0.30902 0.95106 0.75 15 - - -0.30902 0.95106 0.5 11 -0.30902 0.95106 0.75 15 - - -0.23176 0.71329 0.5 12 -0.30902 0.95106 0.5 11 - - -0.23176 0.71329 0.5 12 --0.23176 0.71329 0.5 12 - - -0.23176 0.71329 0.5 12 -0.23176 0.71329 0.75 13 - - -0.23176 0.71329 0.75 13 -0.30902 0.95106 0.75 15 - - -0.23176 0.71329 0.75 13 --0.23176 0.71329 0.75 13 - - --0.23176 0.71329 0.5 12 --0.30902 0.95106 0.5 11 - - --0.23176 0.71329 0.5 12 --0.23176 0.71329 0.75 13 - - --0.23176 0.71329 0.75 13 --0.30902 0.95106 0.75 15 - - -0.30902 0.95106 0.5 11 --0.30902 0.95106 0.5 11 - - -0.30902 0.95106 0.5 11 -0.30902 0.95106 0.75 15 - - -0.30902 0.95106 0.75 15 --0.30902 0.95106 0.75 15 - - --0.30902 0.95106 0.5 11 --0.30902 0.95106 0.75 15 - - --0.23176 0.71329 0.5 12 --0.30902 0.95106 0.5 11 - - --0.23176 0.71329 0.5 12 --0.60676 0.44084 0.5 12 - - --0.23176 0.71329 0.5 12 --0.23176 0.71329 0.75 13 - - --0.23176 0.71329 0.75 13 --0.30902 0.95106 0.75 15 - - --0.23176 0.71329 0.75 13 --0.60676 0.44084 0.75 13 - - --0.60676 0.44084 0.5 12 --0.80902 0.58779 0.5 11 - - --0.60676 0.44084 0.5 12 --0.60676 0.44084 0.75 13 - - --0.60676 0.44084 0.75 13 --0.80902 0.58779 0.75 15 - - --0.30902 0.95106 0.5 11 --0.80902 0.58779 0.5 11 - - --0.30902 0.95106 0.5 11 --0.30902 0.95106 0.75 15 - - --0.30902 0.95106 0.75 15 --0.80902 0.58779 0.75 15 - - --0.80902 0.58779 0.5 11 --0.80902 0.58779 0.75 15 - - --0.60676 0.44084 0.5 12 --0.80902 0.58779 0.5 11 - - --0.60676 0.44084 0.5 12 --0.75 9.1849e-17 0.5 12 - - --0.60676 0.44084 0.5 12 --0.60676 0.44084 0.75 13 - - --0.60676 0.44084 0.75 13 --0.80902 0.58779 0.75 15 - - --0.60676 0.44084 0.75 13 --0.75 9.1849e-17 0.75 13 - - --0.75 9.1849e-17 0.5 12 --1 1.2246e-16 0.5 11 - - --0.75 9.1849e-17 0.5 12 --0.75 9.1849e-17 0.75 13 - - --0.75 9.1849e-17 0.75 13 --1 1.2246e-16 0.75 15 - - --0.80902 0.58779 0.5 11 --1 1.2246e-16 0.5 11 - - --0.80902 0.58779 0.5 11 --0.80902 0.58779 0.75 15 - - --0.80902 0.58779 0.75 15 --1 1.2246e-16 0.75 15 - - --1 1.2246e-16 0.5 11 --1 1.2246e-16 0.75 15 - - --0.75 9.1849e-17 0.5 12 --1 1.2246e-16 0.5 11 - - --0.75 9.1849e-17 0.5 12 --0.60676 -0.44084 0.5 12 - - --0.75 9.1849e-17 0.5 12 --0.75 9.1849e-17 0.75 13 - - --0.75 9.1849e-17 0.75 13 --1 1.2246e-16 0.75 15 - - --0.75 9.1849e-17 0.75 13 --0.60676 -0.44084 0.75 13 - - --0.60676 -0.44084 0.5 12 --0.80902 -0.58779 0.5 11 - - --0.60676 -0.44084 0.5 12 --0.60676 -0.44084 0.75 13 - - --0.60676 -0.44084 0.75 13 --0.80902 -0.58779 0.75 15 - - --1 1.2246e-16 0.5 11 --0.80902 -0.58779 0.5 11 - - --1 1.2246e-16 0.5 11 --1 1.2246e-16 0.75 15 - - --1 1.2246e-16 0.75 15 --0.80902 -0.58779 0.75 15 - - --0.80902 -0.58779 0.5 11 --0.80902 -0.58779 0.75 15 - - --0.60676 -0.44084 0.5 12 --0.80902 -0.58779 0.5 11 - - --0.60676 -0.44084 0.5 12 --0.23176 -0.71329 0.5 12 - - --0.60676 -0.44084 0.5 12 --0.60676 -0.44084 0.75 13 - - --0.60676 -0.44084 0.75 13 --0.80902 -0.58779 0.75 15 - - --0.60676 -0.44084 0.75 13 --0.23176 -0.71329 0.75 13 - - --0.23176 -0.71329 0.5 12 --0.30902 -0.95106 0.5 11 - - --0.23176 -0.71329 0.5 12 --0.23176 -0.71329 0.75 13 - - --0.23176 -0.71329 0.75 13 --0.30902 -0.95106 0.75 15 - - --0.80902 -0.58779 0.5 11 --0.30902 -0.95106 0.5 11 - - --0.80902 -0.58779 0.5 11 --0.80902 -0.58779 0.75 15 - - --0.80902 -0.58779 0.75 15 --0.30902 -0.95106 0.75 15 - - --0.30902 -0.95106 0.5 11 --0.30902 -0.95106 0.75 15 - - --0.23176 -0.71329 0.5 12 --0.30902 -0.95106 0.5 11 - - --0.23176 -0.71329 0.5 12 -0.23176 -0.71329 0.5 12 - - --0.23176 -0.71329 0.5 12 --0.23176 -0.71329 0.75 13 - - --0.23176 -0.71329 0.75 13 --0.30902 -0.95106 0.75 15 - - --0.23176 -0.71329 0.75 13 -0.23176 -0.71329 0.75 13 - - -0.23176 -0.71329 0.5 12 -0.30902 -0.95106 0.5 11 - - -0.23176 -0.71329 0.5 12 -0.23176 -0.71329 0.75 13 - - -0.23176 -0.71329 0.75 13 -0.30902 -0.95106 0.75 15 - - --0.30902 -0.95106 0.5 11 -0.30902 -0.95106 0.5 11 - - --0.30902 -0.95106 0.5 11 --0.30902 -0.95106 0.75 15 - - --0.30902 -0.95106 0.75 15 -0.30902 -0.95106 0.75 15 - - -0.30902 -0.95106 0.5 11 -0.30902 -0.95106 0.75 15 - - -0.23176 -0.71329 0.5 12 -0.30902 -0.95106 0.5 11 - - -0.23176 -0.71329 0.5 12 -0.60676 -0.44084 0.5 12 - - -0.23176 -0.71329 0.5 12 -0.23176 -0.71329 0.75 13 - - -0.23176 -0.71329 0.75 13 -0.30902 -0.95106 0.75 15 - - -0.23176 -0.71329 0.75 13 -0.60676 -0.44084 0.75 13 - - -0.60676 -0.44084 0.5 12 -0.80902 -0.58779 0.5 11 - - -0.60676 -0.44084 0.5 12 -0.60676 -0.44084 0.75 13 - - -0.60676 -0.44084 0.75 13 -0.80902 -0.58779 0.75 15 - - -0.30902 -0.95106 0.5 11 -0.80902 -0.58779 0.5 11 - - -0.30902 -0.95106 0.5 11 -0.30902 -0.95106 0.75 15 - - -0.30902 -0.95106 0.75 15 -0.80902 -0.58779 0.75 15 - - -0.80902 -0.58779 0.5 11 -0.80902 -0.58779 0.75 15 - - -0.60676 -0.44084 0.5 12 -0.80902 -0.58779 0.5 11 - - -0.60676 -0.44084 0.5 12 -0.75 -1.837e-16 0.5 12 - - -0.60676 -0.44084 0.5 12 -0.60676 -0.44084 0.75 13 - - -0.60676 -0.44084 0.75 13 -0.80902 -0.58779 0.75 15 - - -0.60676 -0.44084 0.75 13 -0.75 -1.837e-16 0.75 13 - - -0.75 -1.837e-16 0.5 12 -1 -2.4493e-16 0.5 11 - - -0.75 -1.837e-16 0.5 12 -0.75 -1.837e-16 0.75 13 - - -0.75 -1.837e-16 0.75 13 -1 -2.4493e-16 0.75 15 - - -0.80902 -0.58779 0.5 11 -1 -2.4493e-16 0.5 11 - - -0.80902 -0.58779 0.5 11 -0.80902 -0.58779 0.75 15 - - -0.80902 -0.58779 0.75 15 -1 -2.4493e-16 0.75 15 - - -1 -2.4493e-16 0.5 11 -1 -2.4493e-16 0.75 15 - - -0.75 0 0.75 13 -1 0 0.75 15 - - -0.75 0 0.75 13 -0.60676 0.44084 0.75 13 - - -0.75 0 0.75 13 -0.75 0 1 17 - - -0.75 0 1 17 -1 0 1 16 - - -0.75 0 1 17 -0.60676 0.44084 1 17 - - -0.60676 0.44084 0.75 13 -0.80902 0.58779 0.75 15 - - -0.60676 0.44084 0.75 13 -0.60676 0.44084 1 17 - - -0.60676 0.44084 1 17 -0.80902 0.58779 1 16 - - -1 0 0.75 15 -0.80902 0.58779 0.75 15 - - -1 0 0.75 15 -1 0 1 16 - - -1 0 1 16 -0.80902 0.58779 1 16 - - -0.80902 0.58779 0.75 15 -0.80902 0.58779 1 16 - - -0.60676 0.44084 0.75 13 -0.80902 0.58779 0.75 15 - - -0.60676 0.44084 0.75 13 -0.23176 0.71329 0.75 13 - - -0.60676 0.44084 0.75 13 -0.60676 0.44084 1 17 - - -0.60676 0.44084 1 17 -0.80902 0.58779 1 16 - - -0.60676 0.44084 1 17 -0.23176 0.71329 1 17 - - -0.23176 0.71329 0.75 13 -0.30902 0.95106 0.75 15 - - -0.23176 0.71329 0.75 13 -0.23176 0.71329 1 17 - - -0.23176 0.71329 1 17 -0.30902 0.95106 1 16 - - -0.80902 0.58779 0.75 15 -0.30902 0.95106 0.75 15 - - -0.80902 0.58779 0.75 15 -0.80902 0.58779 1 16 - - -0.80902 0.58779 1 16 -0.30902 0.95106 1 16 - - -0.30902 0.95106 0.75 15 -0.30902 0.95106 1 16 - - -0.23176 0.71329 0.75 13 -0.30902 0.95106 0.75 15 - - -0.23176 0.71329 0.75 13 --0.23176 0.71329 0.75 13 - - -0.23176 0.71329 0.75 13 -0.23176 0.71329 1 17 - - -0.23176 0.71329 1 17 -0.30902 0.95106 1 16 - - -0.23176 0.71329 1 17 --0.23176 0.71329 1 17 - - --0.23176 0.71329 0.75 13 --0.30902 0.95106 0.75 15 - - --0.23176 0.71329 0.75 13 --0.23176 0.71329 1 17 - - --0.23176 0.71329 1 17 --0.30902 0.95106 1 16 - - -0.30902 0.95106 0.75 15 --0.30902 0.95106 0.75 15 - - -0.30902 0.95106 0.75 15 -0.30902 0.95106 1 16 - - -0.30902 0.95106 1 16 --0.30902 0.95106 1 16 - - --0.30902 0.95106 0.75 15 --0.30902 0.95106 1 16 - - --0.23176 0.71329 0.75 13 --0.30902 0.95106 0.75 15 - - --0.23176 0.71329 0.75 13 --0.60676 0.44084 0.75 13 - - --0.23176 0.71329 0.75 13 --0.23176 0.71329 1 17 - - --0.23176 0.71329 1 17 --0.30902 0.95106 1 16 - - --0.23176 0.71329 1 17 --0.60676 0.44084 1 17 - - --0.60676 0.44084 0.75 13 --0.80902 0.58779 0.75 15 - - --0.60676 0.44084 0.75 13 --0.60676 0.44084 1 17 - - --0.60676 0.44084 1 17 --0.80902 0.58779 1 16 - - --0.30902 0.95106 0.75 15 --0.80902 0.58779 0.75 15 - - --0.30902 0.95106 0.75 15 --0.30902 0.95106 1 16 - - --0.30902 0.95106 1 16 --0.80902 0.58779 1 16 - - --0.80902 0.58779 0.75 15 --0.80902 0.58779 1 16 - - --0.60676 0.44084 0.75 13 --0.80902 0.58779 0.75 15 - - --0.60676 0.44084 0.75 13 --0.75 9.1849e-17 0.75 13 - - --0.60676 0.44084 0.75 13 --0.60676 0.44084 1 17 - - --0.60676 0.44084 1 17 --0.80902 0.58779 1 16 - - --0.60676 0.44084 1 17 --0.75 9.1849e-17 1 17 - - --0.75 9.1849e-17 0.75 13 --1 1.2246e-16 0.75 15 - - --0.75 9.1849e-17 0.75 13 --0.75 9.1849e-17 1 17 - - --0.75 9.1849e-17 1 17 --1 1.2246e-16 1 16 - - --0.80902 0.58779 0.75 15 --1 1.2246e-16 0.75 15 - - --0.80902 0.58779 0.75 15 --0.80902 0.58779 1 16 - - --0.80902 0.58779 1 16 --1 1.2246e-16 1 16 - - --1 1.2246e-16 0.75 15 --1 1.2246e-16 1 16 - - --0.75 9.1849e-17 0.75 13 --1 1.2246e-16 0.75 15 - - --0.75 9.1849e-17 0.75 13 --0.60676 -0.44084 0.75 13 - - --0.75 9.1849e-17 0.75 13 --0.75 9.1849e-17 1 17 - - --0.75 9.1849e-17 1 17 --1 1.2246e-16 1 16 - - --0.75 9.1849e-17 1 17 --0.60676 -0.44084 1 17 - - --0.60676 -0.44084 0.75 13 --0.80902 -0.58779 0.75 15 - - --0.60676 -0.44084 0.75 13 --0.60676 -0.44084 1 17 - - --0.60676 -0.44084 1 17 --0.80902 -0.58779 1 16 - - --1 1.2246e-16 0.75 15 --0.80902 -0.58779 0.75 15 - - --1 1.2246e-16 0.75 15 --1 1.2246e-16 1 16 - - --1 1.2246e-16 1 16 --0.80902 -0.58779 1 16 - - --0.80902 -0.58779 0.75 15 --0.80902 -0.58779 1 16 - - --0.60676 -0.44084 0.75 13 --0.80902 -0.58779 0.75 15 - - --0.60676 -0.44084 0.75 13 --0.23176 -0.71329 0.75 13 - - --0.60676 -0.44084 0.75 13 --0.60676 -0.44084 1 17 - - --0.60676 -0.44084 1 17 --0.80902 -0.58779 1 16 - - --0.60676 -0.44084 1 17 --0.23176 -0.71329 1 17 - - --0.23176 -0.71329 0.75 13 --0.30902 -0.95106 0.75 15 - - --0.23176 -0.71329 0.75 13 --0.23176 -0.71329 1 17 - - --0.23176 -0.71329 1 17 --0.30902 -0.95106 1 16 - - --0.80902 -0.58779 0.75 15 --0.30902 -0.95106 0.75 15 - - --0.80902 -0.58779 0.75 15 --0.80902 -0.58779 1 16 - - --0.80902 -0.58779 1 16 --0.30902 -0.95106 1 16 - - --0.30902 -0.95106 0.75 15 --0.30902 -0.95106 1 16 - - --0.23176 -0.71329 0.75 13 --0.30902 -0.95106 0.75 15 - - --0.23176 -0.71329 0.75 13 -0.23176 -0.71329 0.75 13 - - --0.23176 -0.71329 0.75 13 --0.23176 -0.71329 1 17 - - --0.23176 -0.71329 1 17 --0.30902 -0.95106 1 16 - - --0.23176 -0.71329 1 17 -0.23176 -0.71329 1 17 - - -0.23176 -0.71329 0.75 13 -0.30902 -0.95106 0.75 15 - - -0.23176 -0.71329 0.75 13 -0.23176 -0.71329 1 17 - - -0.23176 -0.71329 1 17 -0.30902 -0.95106 1 16 - - --0.30902 -0.95106 0.75 15 -0.30902 -0.95106 0.75 15 - - --0.30902 -0.95106 0.75 15 --0.30902 -0.95106 1 16 - - --0.30902 -0.95106 1 16 -0.30902 -0.95106 1 16 - - -0.30902 -0.95106 0.75 15 -0.30902 -0.95106 1 16 - - -0.23176 -0.71329 0.75 13 -0.30902 -0.95106 0.75 15 - - -0.23176 -0.71329 0.75 13 -0.60676 -0.44084 0.75 13 - - -0.23176 -0.71329 0.75 13 -0.23176 -0.71329 1 17 - - -0.23176 -0.71329 1 17 -0.30902 -0.95106 1 16 - - -0.23176 -0.71329 1 17 -0.60676 -0.44084 1 17 - - -0.60676 -0.44084 0.75 13 -0.80902 -0.58779 0.75 15 - - -0.60676 -0.44084 0.75 13 -0.60676 -0.44084 1 17 - - -0.60676 -0.44084 1 17 -0.80902 -0.58779 1 16 - - -0.30902 -0.95106 0.75 15 -0.80902 -0.58779 0.75 15 - - -0.30902 -0.95106 0.75 15 -0.30902 -0.95106 1 16 - - -0.30902 -0.95106 1 16 -0.80902 -0.58779 1 16 - - -0.80902 -0.58779 0.75 15 -0.80902 -0.58779 1 16 - - -0.60676 -0.44084 0.75 13 -0.80902 -0.58779 0.75 15 - - -0.60676 -0.44084 0.75 13 -0.75 -1.837e-16 0.75 13 - - -0.60676 -0.44084 0.75 13 -0.60676 -0.44084 1 17 - - -0.60676 -0.44084 1 17 -0.80902 -0.58779 1 16 - - -0.60676 -0.44084 1 17 -0.75 -1.837e-16 1 17 - - -0.75 -1.837e-16 0.75 13 -1 -2.4493e-16 0.75 15 - - -0.75 -1.837e-16 0.75 13 -0.75 -1.837e-16 1 17 - - -0.75 -1.837e-16 1 17 -1 -2.4493e-16 1 16 - - -0.80902 -0.58779 0.75 15 -1 -2.4493e-16 0.75 15 - - -0.80902 -0.58779 0.75 15 -0.80902 -0.58779 1 16 - - -0.80902 -0.58779 1 16 -1 -2.4493e-16 1 16 - - -1 -2.4493e-16 0.75 15 -1 -2.4493e-16 1 16 - - -0.5 0 0.75 14 -0.75 0 0.75 13 - - -0.5 0 0.75 14 -0.40451 0.29389 0.75 14 - - -0.5 0 0.75 14 -0.5 0 1 18 - - -0.5 0 1 18 -0.75 0 1 17 - - -0.5 0 1 18 -0.40451 0.29389 1 18 - - -0.40451 0.29389 0.75 14 -0.60676 0.44084 0.75 13 - - -0.40451 0.29389 0.75 14 -0.40451 0.29389 1 18 - - -0.40451 0.29389 1 18 -0.60676 0.44084 1 17 - - -0.75 0 0.75 13 -0.60676 0.44084 0.75 13 - - -0.75 0 0.75 13 -0.75 0 1 17 - - -0.75 0 1 17 -0.60676 0.44084 1 17 - - -0.60676 0.44084 0.75 13 -0.60676 0.44084 1 17 - - -0.40451 0.29389 0.75 14 -0.60676 0.44084 0.75 13 - - -0.40451 0.29389 0.75 14 -0.15451 0.47553 0.75 14 - - -0.40451 0.29389 0.75 14 -0.40451 0.29389 1 18 - - -0.40451 0.29389 1 18 -0.60676 0.44084 1 17 - - -0.40451 0.29389 1 18 -0.15451 0.47553 1 18 - - -0.15451 0.47553 0.75 14 -0.23176 0.71329 0.75 13 - - -0.15451 0.47553 0.75 14 -0.15451 0.47553 1 18 - - -0.15451 0.47553 1 18 -0.23176 0.71329 1 17 - - -0.60676 0.44084 0.75 13 -0.23176 0.71329 0.75 13 - - -0.60676 0.44084 0.75 13 -0.60676 0.44084 1 17 - - -0.60676 0.44084 1 17 -0.23176 0.71329 1 17 - - -0.23176 0.71329 0.75 13 -0.23176 0.71329 1 17 - - -0.15451 0.47553 0.75 14 -0.23176 0.71329 0.75 13 - - -0.15451 0.47553 0.75 14 --0.15451 0.47553 0.75 14 - - -0.15451 0.47553 0.75 14 -0.15451 0.47553 1 18 - - -0.15451 0.47553 1 18 -0.23176 0.71329 1 17 - - -0.15451 0.47553 1 18 --0.15451 0.47553 1 18 - - --0.15451 0.47553 0.75 14 --0.23176 0.71329 0.75 13 - - --0.15451 0.47553 0.75 14 --0.15451 0.47553 1 18 - - --0.15451 0.47553 1 18 --0.23176 0.71329 1 17 - - -0.23176 0.71329 0.75 13 --0.23176 0.71329 0.75 13 - - -0.23176 0.71329 0.75 13 -0.23176 0.71329 1 17 - - -0.23176 0.71329 1 17 --0.23176 0.71329 1 17 - - --0.23176 0.71329 0.75 13 --0.23176 0.71329 1 17 - - --0.15451 0.47553 0.75 14 --0.23176 0.71329 0.75 13 - - --0.15451 0.47553 0.75 14 --0.40451 0.29389 0.75 14 - - --0.15451 0.47553 0.75 14 --0.15451 0.47553 1 18 - - --0.15451 0.47553 1 18 --0.23176 0.71329 1 17 - - --0.15451 0.47553 1 18 --0.40451 0.29389 1 18 - - --0.40451 0.29389 0.75 14 --0.60676 0.44084 0.75 13 - - --0.40451 0.29389 0.75 14 --0.40451 0.29389 1 18 - - --0.40451 0.29389 1 18 --0.60676 0.44084 1 17 - - --0.23176 0.71329 0.75 13 --0.60676 0.44084 0.75 13 - - --0.23176 0.71329 0.75 13 --0.23176 0.71329 1 17 - - --0.23176 0.71329 1 17 --0.60676 0.44084 1 17 - - --0.60676 0.44084 0.75 13 --0.60676 0.44084 1 17 - - --0.40451 0.29389 0.75 14 --0.60676 0.44084 0.75 13 - - --0.40451 0.29389 0.75 14 --0.5 6.1232e-17 0.75 14 - - --0.40451 0.29389 0.75 14 --0.40451 0.29389 1 18 - - --0.40451 0.29389 1 18 --0.60676 0.44084 1 17 - - --0.40451 0.29389 1 18 --0.5 6.1232e-17 1 18 - - --0.5 6.1232e-17 0.75 14 --0.75 9.1849e-17 0.75 13 - - --0.5 6.1232e-17 0.75 14 --0.5 6.1232e-17 1 18 - - --0.5 6.1232e-17 1 18 --0.75 9.1849e-17 1 17 - - --0.60676 0.44084 0.75 13 --0.75 9.1849e-17 0.75 13 - - --0.60676 0.44084 0.75 13 --0.60676 0.44084 1 17 - - --0.60676 0.44084 1 17 --0.75 9.1849e-17 1 17 - - --0.75 9.1849e-17 0.75 13 --0.75 9.1849e-17 1 17 - - --0.5 6.1232e-17 0.75 14 --0.75 9.1849e-17 0.75 13 - - --0.5 6.1232e-17 0.75 14 --0.40451 -0.29389 0.75 14 - - --0.5 6.1232e-17 0.75 14 --0.5 6.1232e-17 1 18 - - --0.5 6.1232e-17 1 18 --0.75 9.1849e-17 1 17 - - --0.5 6.1232e-17 1 18 --0.40451 -0.29389 1 18 - - --0.40451 -0.29389 0.75 14 --0.60676 -0.44084 0.75 13 - - --0.40451 -0.29389 0.75 14 --0.40451 -0.29389 1 18 - - --0.40451 -0.29389 1 18 --0.60676 -0.44084 1 17 - - --0.75 9.1849e-17 0.75 13 --0.60676 -0.44084 0.75 13 - - --0.75 9.1849e-17 0.75 13 --0.75 9.1849e-17 1 17 - - --0.75 9.1849e-17 1 17 --0.60676 -0.44084 1 17 - - --0.60676 -0.44084 0.75 13 --0.60676 -0.44084 1 17 - - --0.40451 -0.29389 0.75 14 --0.60676 -0.44084 0.75 13 - - --0.40451 -0.29389 0.75 14 --0.15451 -0.47553 0.75 14 - - --0.40451 -0.29389 0.75 14 --0.40451 -0.29389 1 18 - - --0.40451 -0.29389 1 18 --0.60676 -0.44084 1 17 - - --0.40451 -0.29389 1 18 --0.15451 -0.47553 1 18 - - --0.15451 -0.47553 0.75 14 --0.23176 -0.71329 0.75 13 - - --0.15451 -0.47553 0.75 14 --0.15451 -0.47553 1 18 - - --0.15451 -0.47553 1 18 --0.23176 -0.71329 1 17 - - --0.60676 -0.44084 0.75 13 --0.23176 -0.71329 0.75 13 - - --0.60676 -0.44084 0.75 13 --0.60676 -0.44084 1 17 - - --0.60676 -0.44084 1 17 --0.23176 -0.71329 1 17 - - --0.23176 -0.71329 0.75 13 --0.23176 -0.71329 1 17 - - --0.15451 -0.47553 0.75 14 --0.23176 -0.71329 0.75 13 - - --0.15451 -0.47553 0.75 14 -0.15451 -0.47553 0.75 14 - - --0.15451 -0.47553 0.75 14 --0.15451 -0.47553 1 18 - - --0.15451 -0.47553 1 18 --0.23176 -0.71329 1 17 - - --0.15451 -0.47553 1 18 -0.15451 -0.47553 1 18 - - -0.15451 -0.47553 0.75 14 -0.23176 -0.71329 0.75 13 - - -0.15451 -0.47553 0.75 14 -0.15451 -0.47553 1 18 - - -0.15451 -0.47553 1 18 -0.23176 -0.71329 1 17 - - --0.23176 -0.71329 0.75 13 -0.23176 -0.71329 0.75 13 - - --0.23176 -0.71329 0.75 13 --0.23176 -0.71329 1 17 - - --0.23176 -0.71329 1 17 -0.23176 -0.71329 1 17 - - -0.23176 -0.71329 0.75 13 -0.23176 -0.71329 1 17 - - -0.15451 -0.47553 0.75 14 -0.23176 -0.71329 0.75 13 - - -0.15451 -0.47553 0.75 14 -0.40451 -0.29389 0.75 14 - - -0.15451 -0.47553 0.75 14 -0.15451 -0.47553 1 18 - - -0.15451 -0.47553 1 18 -0.23176 -0.71329 1 17 - - -0.15451 -0.47553 1 18 -0.40451 -0.29389 1 18 - - -0.40451 -0.29389 0.75 14 -0.60676 -0.44084 0.75 13 - - -0.40451 -0.29389 0.75 14 -0.40451 -0.29389 1 18 - - -0.40451 -0.29389 1 18 -0.60676 -0.44084 1 17 - - -0.23176 -0.71329 0.75 13 -0.60676 -0.44084 0.75 13 - - -0.23176 -0.71329 0.75 13 -0.23176 -0.71329 1 17 - - -0.23176 -0.71329 1 17 -0.60676 -0.44084 1 17 - - -0.60676 -0.44084 0.75 13 -0.60676 -0.44084 1 17 - - -0.40451 -0.29389 0.75 14 -0.60676 -0.44084 0.75 13 - - -0.40451 -0.29389 0.75 14 -0.5 -1.2246e-16 0.75 14 - - -0.40451 -0.29389 0.75 14 -0.40451 -0.29389 1 18 - - -0.40451 -0.29389 1 18 -0.60676 -0.44084 1 17 - - -0.40451 -0.29389 1 18 -0.5 -1.2246e-16 1 18 - - -0.5 -1.2246e-16 0.75 14 -0.75 -1.837e-16 0.75 13 - - -0.5 -1.2246e-16 0.75 14 -0.5 -1.2246e-16 1 18 - - -0.5 -1.2246e-16 1 18 -0.75 -1.837e-16 1 17 - - -0.60676 -0.44084 0.75 13 -0.75 -1.837e-16 0.75 13 - - -0.60676 -0.44084 0.75 13 -0.60676 -0.44084 1 17 - - -0.60676 -0.44084 1 17 -0.75 -1.837e-16 1 17 - - -0.75 -1.837e-16 0.75 13 -0.75 -1.837e-16 1 17 - - -0 0 0.5 5 -0.25 0 0.5 3 - - -0 0 0.5 5 -0 0 0.5 5 - - -0 0 0.5 5 -0 0 0.75 20 - - -0 0 0.75 20 -0.25 0 0.75 19 - - -0 0 0.75 20 -0 0 0.75 20 - - -0 0 0.5 5 -0.20225 0.14695 0.5 3 - - -0 0 0.5 5 -0 0 0.75 20 - - -0 0 0.75 20 -0.20225 0.14695 0.75 19 - - -0.25 0 0.5 3 -0.20225 0.14695 0.5 3 - - -0.25 0 0.5 3 -0.25 0 0.75 19 - - -0.25 0 0.75 19 -0.20225 0.14695 0.75 19 - - -0.20225 0.14695 0.5 3 -0.20225 0.14695 0.75 19 - - -0 0 0.5 5 -0.20225 0.14695 0.5 3 - - -0 0 0.5 5 -0 0 0.5 5 - - -0 0 0.5 5 -0 0 0.75 20 - - -0 0 0.75 20 -0.20225 0.14695 0.75 19 - - -0 0 0.75 20 -0 0 0.75 20 - - -0 0 0.5 5 -0.077254 0.23776 0.5 3 - - -0 0 0.5 5 -0 0 0.75 20 - - -0 0 0.75 20 -0.077254 0.23776 0.75 19 - - -0.20225 0.14695 0.5 3 -0.077254 0.23776 0.5 3 - - -0.20225 0.14695 0.5 3 -0.20225 0.14695 0.75 19 - - -0.20225 0.14695 0.75 19 -0.077254 0.23776 0.75 19 - - -0.077254 0.23776 0.5 3 -0.077254 0.23776 0.75 19 - - -0 0 0.5 5 -0.077254 0.23776 0.5 3 - - -0 0 0.5 5 -0 0 0.5 5 - - -0 0 0.5 5 -0 0 0.75 20 - - -0 0 0.75 20 -0.077254 0.23776 0.75 19 - - -0 0 0.75 20 -0 0 0.75 20 - - -0 0 0.5 5 --0.077254 0.23776 0.5 3 - - -0 0 0.5 5 -0 0 0.75 20 - - -0 0 0.75 20 --0.077254 0.23776 0.75 19 - - -0.077254 0.23776 0.5 3 --0.077254 0.23776 0.5 3 - - -0.077254 0.23776 0.5 3 -0.077254 0.23776 0.75 19 - - -0.077254 0.23776 0.75 19 --0.077254 0.23776 0.75 19 - - --0.077254 0.23776 0.5 3 --0.077254 0.23776 0.75 19 - - --0 0 0.5 5 --0.077254 0.23776 0.5 3 - - --0 0 0.5 5 --0 0 0.5 5 - - --0 0 0.5 5 --0 0 0.75 20 - - --0 0 0.75 20 --0.077254 0.23776 0.75 19 - - --0 0 0.75 20 --0 0 0.75 20 - - --0 0 0.5 5 --0.20225 0.14695 0.5 3 - - --0 0 0.5 5 --0 0 0.75 20 - - --0 0 0.75 20 --0.20225 0.14695 0.75 19 - - --0.077254 0.23776 0.5 3 --0.20225 0.14695 0.5 3 - - --0.077254 0.23776 0.5 3 --0.077254 0.23776 0.75 19 - - --0.077254 0.23776 0.75 19 --0.20225 0.14695 0.75 19 - - --0.20225 0.14695 0.5 3 --0.20225 0.14695 0.75 19 - - --0 0 0.5 5 --0.20225 0.14695 0.5 3 - - --0 0 0.5 5 --0 0 0.5 5 - - --0 0 0.5 5 --0 0 0.75 20 - - --0 0 0.75 20 --0.20225 0.14695 0.75 19 - - --0 0 0.75 20 --0 0 0.75 20 - - --0 0 0.5 5 --0.25 3.0616e-17 0.5 3 - - --0 0 0.5 5 --0 0 0.75 20 - - --0 0 0.75 20 --0.25 3.0616e-17 0.75 19 - - --0.20225 0.14695 0.5 3 --0.25 3.0616e-17 0.5 3 - - --0.20225 0.14695 0.5 3 --0.20225 0.14695 0.75 19 - - --0.20225 0.14695 0.75 19 --0.25 3.0616e-17 0.75 19 - - --0.25 3.0616e-17 0.5 3 --0.25 3.0616e-17 0.75 19 - - --0 0 0.5 5 --0.25 3.0616e-17 0.5 3 - - --0 0 0.5 5 --0 0 0.5 5 - - --0 0 0.5 5 --0 0 0.75 20 - - --0 0 0.75 20 --0.25 3.0616e-17 0.75 19 - - --0 0 0.75 20 --0 0 0.75 20 - - --0 0 0.5 5 --0.20225 -0.14695 0.5 3 - - --0 0 0.5 5 --0 0 0.75 20 - - --0 0 0.75 20 --0.20225 -0.14695 0.75 19 - - --0.25 3.0616e-17 0.5 3 --0.20225 -0.14695 0.5 3 - - --0.25 3.0616e-17 0.5 3 --0.25 3.0616e-17 0.75 19 - - --0.25 3.0616e-17 0.75 19 --0.20225 -0.14695 0.75 19 - - --0.20225 -0.14695 0.5 3 --0.20225 -0.14695 0.75 19 - - --0 -0 0.5 5 --0.20225 -0.14695 0.5 3 - - --0 -0 0.5 5 --0 -0 0.5 5 - - --0 -0 0.5 5 --0 -0 0.75 20 - - --0 -0 0.75 20 --0.20225 -0.14695 0.75 19 - - --0 -0 0.75 20 --0 -0 0.75 20 - - --0 -0 0.5 5 --0.077254 -0.23776 0.5 3 - - --0 -0 0.5 5 --0 -0 0.75 20 - - --0 -0 0.75 20 --0.077254 -0.23776 0.75 19 - - --0.20225 -0.14695 0.5 3 --0.077254 -0.23776 0.5 3 - - --0.20225 -0.14695 0.5 3 --0.20225 -0.14695 0.75 19 - - --0.20225 -0.14695 0.75 19 --0.077254 -0.23776 0.75 19 - - --0.077254 -0.23776 0.5 3 --0.077254 -0.23776 0.75 19 - - -0 -0 0.5 5 --0.077254 -0.23776 0.5 3 - - -0 -0 0.5 5 -0 -0 0.5 5 - - -0 -0 0.5 5 -0 -0 0.75 20 - - -0 -0 0.75 20 --0.077254 -0.23776 0.75 19 - - -0 -0 0.75 20 -0 -0 0.75 20 - - -0 -0 0.5 5 -0.077254 -0.23776 0.5 3 - - -0 -0 0.5 5 -0 -0 0.75 20 - - -0 -0 0.75 20 -0.077254 -0.23776 0.75 19 - - --0.077254 -0.23776 0.5 3 -0.077254 -0.23776 0.5 3 - - --0.077254 -0.23776 0.5 3 --0.077254 -0.23776 0.75 19 - - --0.077254 -0.23776 0.75 19 -0.077254 -0.23776 0.75 19 - - -0.077254 -0.23776 0.5 3 -0.077254 -0.23776 0.75 19 - - -0 -0 0.5 5 -0.077254 -0.23776 0.5 3 - - -0 -0 0.5 5 -0 -0 0.5 5 - - -0 -0 0.5 5 -0 -0 0.75 20 - - -0 -0 0.75 20 -0.077254 -0.23776 0.75 19 - - -0 -0 0.75 20 -0 -0 0.75 20 - - -0 -0 0.5 5 -0.20225 -0.14695 0.5 3 - - -0 -0 0.5 5 -0 -0 0.75 20 - - -0 -0 0.75 20 -0.20225 -0.14695 0.75 19 - - -0.077254 -0.23776 0.5 3 -0.20225 -0.14695 0.5 3 - - -0.077254 -0.23776 0.5 3 -0.077254 -0.23776 0.75 19 - - -0.077254 -0.23776 0.75 19 -0.20225 -0.14695 0.75 19 - - -0.20225 -0.14695 0.5 3 -0.20225 -0.14695 0.75 19 - - -0 -0 0.5 5 -0.20225 -0.14695 0.5 3 - - -0 -0 0.5 5 -0 -0 0.5 5 - - -0 -0 0.5 5 -0 -0 0.75 20 - - -0 -0 0.75 20 -0.20225 -0.14695 0.75 19 - - -0 -0 0.75 20 -0 -0 0.75 20 - - -0 -0 0.5 5 -0.25 -6.1232e-17 0.5 3 - - -0 -0 0.5 5 -0 -0 0.75 20 - - -0 -0 0.75 20 -0.25 -6.1232e-17 0.75 19 - - -0.20225 -0.14695 0.5 3 -0.25 -6.1232e-17 0.5 3 - - -0.20225 -0.14695 0.5 3 -0.20225 -0.14695 0.75 19 - - -0.20225 -0.14695 0.75 19 -0.25 -6.1232e-17 0.75 19 - - -0.25 -6.1232e-17 0.5 3 -0.25 -6.1232e-17 0.75 19 - - -0.25 0 0.5 3 -0.5 0 0.5 2 - - -0.25 0 0.5 3 -0.20225 0.14695 0.5 3 - - -0.25 0 0.5 3 -0.25 0 0.75 19 - - -0.25 0 0.75 19 -0.5 0 0.75 14 - - -0.25 0 0.75 19 -0.20225 0.14695 0.75 19 - - -0.20225 0.14695 0.5 3 -0.40451 0.29389 0.5 2 - - -0.20225 0.14695 0.5 3 -0.20225 0.14695 0.75 19 - - -0.20225 0.14695 0.75 19 -0.40451 0.29389 0.75 14 - - -0.5 0 0.5 2 -0.40451 0.29389 0.5 2 - - -0.5 0 0.5 2 -0.5 0 0.75 14 - - -0.5 0 0.75 14 -0.40451 0.29389 0.75 14 - - -0.40451 0.29389 0.5 2 -0.40451 0.29389 0.75 14 - - -0.20225 0.14695 0.5 3 -0.40451 0.29389 0.5 2 - - -0.20225 0.14695 0.5 3 -0.077254 0.23776 0.5 3 - - -0.20225 0.14695 0.5 3 -0.20225 0.14695 0.75 19 - - -0.20225 0.14695 0.75 19 -0.40451 0.29389 0.75 14 - - -0.20225 0.14695 0.75 19 -0.077254 0.23776 0.75 19 - - -0.077254 0.23776 0.5 3 -0.15451 0.47553 0.5 2 - - -0.077254 0.23776 0.5 3 -0.077254 0.23776 0.75 19 - - -0.077254 0.23776 0.75 19 -0.15451 0.47553 0.75 14 - - -0.40451 0.29389 0.5 2 -0.15451 0.47553 0.5 2 - - -0.40451 0.29389 0.5 2 -0.40451 0.29389 0.75 14 - - -0.40451 0.29389 0.75 14 -0.15451 0.47553 0.75 14 - - -0.15451 0.47553 0.5 2 -0.15451 0.47553 0.75 14 - - -0.077254 0.23776 0.5 3 -0.15451 0.47553 0.5 2 - - -0.077254 0.23776 0.5 3 --0.077254 0.23776 0.5 3 - - -0.077254 0.23776 0.5 3 -0.077254 0.23776 0.75 19 - - -0.077254 0.23776 0.75 19 -0.15451 0.47553 0.75 14 - - -0.077254 0.23776 0.75 19 --0.077254 0.23776 0.75 19 - - --0.077254 0.23776 0.5 3 --0.15451 0.47553 0.5 2 - - --0.077254 0.23776 0.5 3 --0.077254 0.23776 0.75 19 - - --0.077254 0.23776 0.75 19 --0.15451 0.47553 0.75 14 - - -0.15451 0.47553 0.5 2 --0.15451 0.47553 0.5 2 - - -0.15451 0.47553 0.5 2 -0.15451 0.47553 0.75 14 - - -0.15451 0.47553 0.75 14 --0.15451 0.47553 0.75 14 - - --0.15451 0.47553 0.5 2 --0.15451 0.47553 0.75 14 - - --0.077254 0.23776 0.5 3 --0.15451 0.47553 0.5 2 - - --0.077254 0.23776 0.5 3 --0.20225 0.14695 0.5 3 - - --0.077254 0.23776 0.5 3 --0.077254 0.23776 0.75 19 - - --0.077254 0.23776 0.75 19 --0.15451 0.47553 0.75 14 - - --0.077254 0.23776 0.75 19 --0.20225 0.14695 0.75 19 - - --0.20225 0.14695 0.5 3 --0.40451 0.29389 0.5 2 - - --0.20225 0.14695 0.5 3 --0.20225 0.14695 0.75 19 - - --0.20225 0.14695 0.75 19 --0.40451 0.29389 0.75 14 - - --0.15451 0.47553 0.5 2 --0.40451 0.29389 0.5 2 - - --0.15451 0.47553 0.5 2 --0.15451 0.47553 0.75 14 - - --0.15451 0.47553 0.75 14 --0.40451 0.29389 0.75 14 - - --0.40451 0.29389 0.5 2 --0.40451 0.29389 0.75 14 - - --0.20225 0.14695 0.5 3 --0.40451 0.29389 0.5 2 - - --0.20225 0.14695 0.5 3 --0.25 3.0616e-17 0.5 3 - - --0.20225 0.14695 0.5 3 --0.20225 0.14695 0.75 19 - - --0.20225 0.14695 0.75 19 --0.40451 0.29389 0.75 14 - - --0.20225 0.14695 0.75 19 --0.25 3.0616e-17 0.75 19 - - --0.25 3.0616e-17 0.5 3 --0.5 6.1232e-17 0.5 2 - - --0.25 3.0616e-17 0.5 3 --0.25 3.0616e-17 0.75 19 - - --0.25 3.0616e-17 0.75 19 --0.5 6.1232e-17 0.75 14 - - --0.40451 0.29389 0.5 2 --0.5 6.1232e-17 0.5 2 - - --0.40451 0.29389 0.5 2 --0.40451 0.29389 0.75 14 - - --0.40451 0.29389 0.75 14 --0.5 6.1232e-17 0.75 14 - - --0.5 6.1232e-17 0.5 2 --0.5 6.1232e-17 0.75 14 - - --0.25 3.0616e-17 0.5 3 --0.5 6.1232e-17 0.5 2 - - --0.25 3.0616e-17 0.5 3 --0.20225 -0.14695 0.5 3 - - --0.25 3.0616e-17 0.5 3 --0.25 3.0616e-17 0.75 19 - - --0.25 3.0616e-17 0.75 19 --0.5 6.1232e-17 0.75 14 - - --0.25 3.0616e-17 0.75 19 --0.20225 -0.14695 0.75 19 - - --0.20225 -0.14695 0.5 3 --0.40451 -0.29389 0.5 2 - - --0.20225 -0.14695 0.5 3 --0.20225 -0.14695 0.75 19 - - --0.20225 -0.14695 0.75 19 --0.40451 -0.29389 0.75 14 - - --0.5 6.1232e-17 0.5 2 --0.40451 -0.29389 0.5 2 - - --0.5 6.1232e-17 0.5 2 --0.5 6.1232e-17 0.75 14 - - --0.5 6.1232e-17 0.75 14 --0.40451 -0.29389 0.75 14 - - --0.40451 -0.29389 0.5 2 --0.40451 -0.29389 0.75 14 - - --0.20225 -0.14695 0.5 3 --0.40451 -0.29389 0.5 2 - - --0.20225 -0.14695 0.5 3 --0.077254 -0.23776 0.5 3 - - --0.20225 -0.14695 0.5 3 --0.20225 -0.14695 0.75 19 - - --0.20225 -0.14695 0.75 19 --0.40451 -0.29389 0.75 14 - - --0.20225 -0.14695 0.75 19 --0.077254 -0.23776 0.75 19 - - --0.077254 -0.23776 0.5 3 --0.15451 -0.47553 0.5 2 - - --0.077254 -0.23776 0.5 3 --0.077254 -0.23776 0.75 19 - - --0.077254 -0.23776 0.75 19 --0.15451 -0.47553 0.75 14 - - --0.40451 -0.29389 0.5 2 --0.15451 -0.47553 0.5 2 - - --0.40451 -0.29389 0.5 2 --0.40451 -0.29389 0.75 14 - - --0.40451 -0.29389 0.75 14 --0.15451 -0.47553 0.75 14 - - --0.15451 -0.47553 0.5 2 --0.15451 -0.47553 0.75 14 - - --0.077254 -0.23776 0.5 3 --0.15451 -0.47553 0.5 2 - - --0.077254 -0.23776 0.5 3 -0.077254 -0.23776 0.5 3 - - --0.077254 -0.23776 0.5 3 --0.077254 -0.23776 0.75 19 - - --0.077254 -0.23776 0.75 19 --0.15451 -0.47553 0.75 14 - - --0.077254 -0.23776 0.75 19 -0.077254 -0.23776 0.75 19 - - -0.077254 -0.23776 0.5 3 -0.15451 -0.47553 0.5 2 - - -0.077254 -0.23776 0.5 3 -0.077254 -0.23776 0.75 19 - - -0.077254 -0.23776 0.75 19 -0.15451 -0.47553 0.75 14 - - --0.15451 -0.47553 0.5 2 -0.15451 -0.47553 0.5 2 - - --0.15451 -0.47553 0.5 2 --0.15451 -0.47553 0.75 14 - - --0.15451 -0.47553 0.75 14 -0.15451 -0.47553 0.75 14 - - -0.15451 -0.47553 0.5 2 -0.15451 -0.47553 0.75 14 - - -0.077254 -0.23776 0.5 3 -0.15451 -0.47553 0.5 2 - - -0.077254 -0.23776 0.5 3 -0.20225 -0.14695 0.5 3 - - -0.077254 -0.23776 0.5 3 -0.077254 -0.23776 0.75 19 - - -0.077254 -0.23776 0.75 19 -0.15451 -0.47553 0.75 14 - - -0.077254 -0.23776 0.75 19 -0.20225 -0.14695 0.75 19 - - -0.20225 -0.14695 0.5 3 -0.40451 -0.29389 0.5 2 - - -0.20225 -0.14695 0.5 3 -0.20225 -0.14695 0.75 19 - - -0.20225 -0.14695 0.75 19 -0.40451 -0.29389 0.75 14 - - -0.15451 -0.47553 0.5 2 -0.40451 -0.29389 0.5 2 - - -0.15451 -0.47553 0.5 2 -0.15451 -0.47553 0.75 14 - - -0.15451 -0.47553 0.75 14 -0.40451 -0.29389 0.75 14 - - -0.40451 -0.29389 0.5 2 -0.40451 -0.29389 0.75 14 - - -0.20225 -0.14695 0.5 3 -0.40451 -0.29389 0.5 2 - - -0.20225 -0.14695 0.5 3 -0.25 -6.1232e-17 0.5 3 - - -0.20225 -0.14695 0.5 3 -0.20225 -0.14695 0.75 19 - - -0.20225 -0.14695 0.75 19 -0.40451 -0.29389 0.75 14 - - -0.20225 -0.14695 0.75 19 -0.25 -6.1232e-17 0.75 19 - - -0.25 -6.1232e-17 0.5 3 -0.5 -1.2246e-16 0.5 2 - - -0.25 -6.1232e-17 0.5 3 -0.25 -6.1232e-17 0.75 19 - - -0.25 -6.1232e-17 0.75 19 -0.5 -1.2246e-16 0.75 14 - - -0.40451 -0.29389 0.5 2 -0.5 -1.2246e-16 0.5 2 - - -0.40451 -0.29389 0.5 2 -0.40451 -0.29389 0.75 14 - - -0.40451 -0.29389 0.75 14 -0.5 -1.2246e-16 0.75 14 - - -0.5 -1.2246e-16 0.5 2 -0.5 -1.2246e-16 0.75 14 - - -0.25 0 0.75 19 -0.5 0 0.75 14 - - -0.25 0 0.75 19 -0.20225 0.14695 0.75 19 - - -0.25 0 0.75 19 -0.25 0 1 21 - - -0.25 0 1 21 -0.5 0 1 18 - - -0.25 0 1 21 -0.20225 0.14695 1 21 - - -0.20225 0.14695 0.75 19 -0.40451 0.29389 0.75 14 - - -0.20225 0.14695 0.75 19 -0.20225 0.14695 1 21 - - -0.20225 0.14695 1 21 -0.40451 0.29389 1 18 - - -0.5 0 0.75 14 -0.40451 0.29389 0.75 14 - - -0.5 0 0.75 14 -0.5 0 1 18 - - -0.5 0 1 18 -0.40451 0.29389 1 18 - - -0.40451 0.29389 0.75 14 -0.40451 0.29389 1 18 - - -0.20225 0.14695 0.75 19 -0.40451 0.29389 0.75 14 - - -0.20225 0.14695 0.75 19 -0.077254 0.23776 0.75 19 - - -0.20225 0.14695 0.75 19 -0.20225 0.14695 1 21 - - -0.20225 0.14695 1 21 -0.40451 0.29389 1 18 - - -0.20225 0.14695 1 21 -0.077254 0.23776 1 21 - - -0.077254 0.23776 0.75 19 -0.15451 0.47553 0.75 14 - - -0.077254 0.23776 0.75 19 -0.077254 0.23776 1 21 - - -0.077254 0.23776 1 21 -0.15451 0.47553 1 18 - - -0.40451 0.29389 0.75 14 -0.15451 0.47553 0.75 14 - - -0.40451 0.29389 0.75 14 -0.40451 0.29389 1 18 - - -0.40451 0.29389 1 18 -0.15451 0.47553 1 18 - - -0.15451 0.47553 0.75 14 -0.15451 0.47553 1 18 - - -0.077254 0.23776 0.75 19 -0.15451 0.47553 0.75 14 - - -0.077254 0.23776 0.75 19 --0.077254 0.23776 0.75 19 - - -0.077254 0.23776 0.75 19 -0.077254 0.23776 1 21 - - -0.077254 0.23776 1 21 -0.15451 0.47553 1 18 - - -0.077254 0.23776 1 21 --0.077254 0.23776 1 21 - - --0.077254 0.23776 0.75 19 --0.15451 0.47553 0.75 14 - - --0.077254 0.23776 0.75 19 --0.077254 0.23776 1 21 - - --0.077254 0.23776 1 21 --0.15451 0.47553 1 18 - - -0.15451 0.47553 0.75 14 --0.15451 0.47553 0.75 14 - - -0.15451 0.47553 0.75 14 -0.15451 0.47553 1 18 - - -0.15451 0.47553 1 18 --0.15451 0.47553 1 18 - - --0.15451 0.47553 0.75 14 --0.15451 0.47553 1 18 - - --0.077254 0.23776 0.75 19 --0.15451 0.47553 0.75 14 - - --0.077254 0.23776 0.75 19 --0.20225 0.14695 0.75 19 - - --0.077254 0.23776 0.75 19 --0.077254 0.23776 1 21 - - --0.077254 0.23776 1 21 --0.15451 0.47553 1 18 - - --0.077254 0.23776 1 21 --0.20225 0.14695 1 21 - - --0.20225 0.14695 0.75 19 --0.40451 0.29389 0.75 14 - - --0.20225 0.14695 0.75 19 --0.20225 0.14695 1 21 - - --0.20225 0.14695 1 21 --0.40451 0.29389 1 18 - - --0.15451 0.47553 0.75 14 --0.40451 0.29389 0.75 14 - - --0.15451 0.47553 0.75 14 --0.15451 0.47553 1 18 - - --0.15451 0.47553 1 18 --0.40451 0.29389 1 18 - - --0.40451 0.29389 0.75 14 --0.40451 0.29389 1 18 - - --0.20225 0.14695 0.75 19 --0.40451 0.29389 0.75 14 - - --0.20225 0.14695 0.75 19 --0.25 3.0616e-17 0.75 19 - - --0.20225 0.14695 0.75 19 --0.20225 0.14695 1 21 - - --0.20225 0.14695 1 21 --0.40451 0.29389 1 18 - - --0.20225 0.14695 1 21 --0.25 3.0616e-17 1 21 - - --0.25 3.0616e-17 0.75 19 --0.5 6.1232e-17 0.75 14 - - --0.25 3.0616e-17 0.75 19 --0.25 3.0616e-17 1 21 - - --0.25 3.0616e-17 1 21 --0.5 6.1232e-17 1 18 - - --0.40451 0.29389 0.75 14 --0.5 6.1232e-17 0.75 14 - - --0.40451 0.29389 0.75 14 --0.40451 0.29389 1 18 - - --0.40451 0.29389 1 18 --0.5 6.1232e-17 1 18 - - --0.5 6.1232e-17 0.75 14 --0.5 6.1232e-17 1 18 - - --0.25 3.0616e-17 0.75 19 --0.5 6.1232e-17 0.75 14 - - --0.25 3.0616e-17 0.75 19 --0.20225 -0.14695 0.75 19 - - --0.25 3.0616e-17 0.75 19 --0.25 3.0616e-17 1 21 - - --0.25 3.0616e-17 1 21 --0.5 6.1232e-17 1 18 - - --0.25 3.0616e-17 1 21 --0.20225 -0.14695 1 21 - - --0.20225 -0.14695 0.75 19 --0.40451 -0.29389 0.75 14 - - --0.20225 -0.14695 0.75 19 --0.20225 -0.14695 1 21 - - --0.20225 -0.14695 1 21 --0.40451 -0.29389 1 18 - - --0.5 6.1232e-17 0.75 14 --0.40451 -0.29389 0.75 14 - - --0.5 6.1232e-17 0.75 14 --0.5 6.1232e-17 1 18 - - --0.5 6.1232e-17 1 18 --0.40451 -0.29389 1 18 - - --0.40451 -0.29389 0.75 14 --0.40451 -0.29389 1 18 - - --0.20225 -0.14695 0.75 19 --0.40451 -0.29389 0.75 14 - - --0.20225 -0.14695 0.75 19 --0.077254 -0.23776 0.75 19 - - --0.20225 -0.14695 0.75 19 --0.20225 -0.14695 1 21 - - --0.20225 -0.14695 1 21 --0.40451 -0.29389 1 18 - - --0.20225 -0.14695 1 21 --0.077254 -0.23776 1 21 - - --0.077254 -0.23776 0.75 19 --0.15451 -0.47553 0.75 14 - - --0.077254 -0.23776 0.75 19 --0.077254 -0.23776 1 21 - - --0.077254 -0.23776 1 21 --0.15451 -0.47553 1 18 - - --0.40451 -0.29389 0.75 14 --0.15451 -0.47553 0.75 14 - - --0.40451 -0.29389 0.75 14 --0.40451 -0.29389 1 18 - - --0.40451 -0.29389 1 18 --0.15451 -0.47553 1 18 - - --0.15451 -0.47553 0.75 14 --0.15451 -0.47553 1 18 - - --0.077254 -0.23776 0.75 19 --0.15451 -0.47553 0.75 14 - - --0.077254 -0.23776 0.75 19 -0.077254 -0.23776 0.75 19 - - --0.077254 -0.23776 0.75 19 --0.077254 -0.23776 1 21 - - --0.077254 -0.23776 1 21 --0.15451 -0.47553 1 18 - - --0.077254 -0.23776 1 21 -0.077254 -0.23776 1 21 - - -0.077254 -0.23776 0.75 19 -0.15451 -0.47553 0.75 14 - - -0.077254 -0.23776 0.75 19 -0.077254 -0.23776 1 21 - - -0.077254 -0.23776 1 21 -0.15451 -0.47553 1 18 - - --0.15451 -0.47553 0.75 14 -0.15451 -0.47553 0.75 14 - - --0.15451 -0.47553 0.75 14 --0.15451 -0.47553 1 18 - - --0.15451 -0.47553 1 18 -0.15451 -0.47553 1 18 - - -0.15451 -0.47553 0.75 14 -0.15451 -0.47553 1 18 - - -0.077254 -0.23776 0.75 19 -0.15451 -0.47553 0.75 14 - - -0.077254 -0.23776 0.75 19 -0.20225 -0.14695 0.75 19 - - -0.077254 -0.23776 0.75 19 -0.077254 -0.23776 1 21 - - -0.077254 -0.23776 1 21 -0.15451 -0.47553 1 18 - - -0.077254 -0.23776 1 21 -0.20225 -0.14695 1 21 - - -0.20225 -0.14695 0.75 19 -0.40451 -0.29389 0.75 14 - - -0.20225 -0.14695 0.75 19 -0.20225 -0.14695 1 21 - - -0.20225 -0.14695 1 21 -0.40451 -0.29389 1 18 - - -0.15451 -0.47553 0.75 14 -0.40451 -0.29389 0.75 14 - - -0.15451 -0.47553 0.75 14 -0.15451 -0.47553 1 18 - - -0.15451 -0.47553 1 18 -0.40451 -0.29389 1 18 - - -0.40451 -0.29389 0.75 14 -0.40451 -0.29389 1 18 - - -0.20225 -0.14695 0.75 19 -0.40451 -0.29389 0.75 14 - - -0.20225 -0.14695 0.75 19 -0.25 -6.1232e-17 0.75 19 - - -0.20225 -0.14695 0.75 19 -0.20225 -0.14695 1 21 - - -0.20225 -0.14695 1 21 -0.40451 -0.29389 1 18 - - -0.20225 -0.14695 1 21 -0.25 -6.1232e-17 1 21 - - -0.25 -6.1232e-17 0.75 19 -0.5 -1.2246e-16 0.75 14 - - -0.25 -6.1232e-17 0.75 19 -0.25 -6.1232e-17 1 21 - - -0.25 -6.1232e-17 1 21 -0.5 -1.2246e-16 1 18 - - -0.40451 -0.29389 0.75 14 -0.5 -1.2246e-16 0.75 14 - - -0.40451 -0.29389 0.75 14 -0.40451 -0.29389 1 18 - - -0.40451 -0.29389 1 18 -0.5 -1.2246e-16 1 18 - - -0.5 -1.2246e-16 0.75 14 -0.5 -1.2246e-16 1 18 - - -0 0 0.75 20 -0.25 0 0.75 19 - - -0 0 0.75 20 -0 0 0.75 20 - - -0 0 0.75 20 -0 0 1 22 - - -0 0 1 22 -0.25 0 1 21 - - -0 0 1 22 -0 0 1 22 - - -0 0 0.75 20 -0.20225 0.14695 0.75 19 - - -0 0 0.75 20 -0 0 1 22 - - -0 0 1 22 -0.20225 0.14695 1 21 - - -0.25 0 0.75 19 -0.20225 0.14695 0.75 19 - - -0.25 0 0.75 19 -0.25 0 1 21 - - -0.25 0 1 21 -0.20225 0.14695 1 21 - - -0.20225 0.14695 0.75 19 -0.20225 0.14695 1 21 - - -0 0 0.75 20 -0.20225 0.14695 0.75 19 - - -0 0 0.75 20 -0 0 0.75 20 - - -0 0 0.75 20 -0 0 1 22 - - -0 0 1 22 -0.20225 0.14695 1 21 - - -0 0 1 22 -0 0 1 22 - - -0 0 0.75 20 -0.077254 0.23776 0.75 19 - - -0 0 0.75 20 -0 0 1 22 - - -0 0 1 22 -0.077254 0.23776 1 21 - - -0.20225 0.14695 0.75 19 -0.077254 0.23776 0.75 19 - - -0.20225 0.14695 0.75 19 -0.20225 0.14695 1 21 - - -0.20225 0.14695 1 21 -0.077254 0.23776 1 21 - - -0.077254 0.23776 0.75 19 -0.077254 0.23776 1 21 - - -0 0 0.75 20 -0.077254 0.23776 0.75 19 - - -0 0 0.75 20 -0 0 0.75 20 - - -0 0 0.75 20 -0 0 1 22 - - -0 0 1 22 -0.077254 0.23776 1 21 - - -0 0 1 22 -0 0 1 22 - - -0 0 0.75 20 --0.077254 0.23776 0.75 19 - - -0 0 0.75 20 -0 0 1 22 - - -0 0 1 22 --0.077254 0.23776 1 21 - - -0.077254 0.23776 0.75 19 --0.077254 0.23776 0.75 19 - - -0.077254 0.23776 0.75 19 -0.077254 0.23776 1 21 - - -0.077254 0.23776 1 21 --0.077254 0.23776 1 21 - - --0.077254 0.23776 0.75 19 --0.077254 0.23776 1 21 - - --0 0 0.75 20 --0.077254 0.23776 0.75 19 - - --0 0 0.75 20 --0 0 0.75 20 - - --0 0 0.75 20 --0 0 1 22 - - --0 0 1 22 --0.077254 0.23776 1 21 - - --0 0 1 22 --0 0 1 22 - - --0 0 0.75 20 --0.20225 0.14695 0.75 19 - - --0 0 0.75 20 --0 0 1 22 - - --0 0 1 22 --0.20225 0.14695 1 21 - - --0.077254 0.23776 0.75 19 --0.20225 0.14695 0.75 19 - - --0.077254 0.23776 0.75 19 --0.077254 0.23776 1 21 - - --0.077254 0.23776 1 21 --0.20225 0.14695 1 21 - - --0.20225 0.14695 0.75 19 --0.20225 0.14695 1 21 - - --0 0 0.75 20 --0.20225 0.14695 0.75 19 - - --0 0 0.75 20 --0 0 0.75 20 - - --0 0 0.75 20 --0 0 1 22 - - --0 0 1 22 --0.20225 0.14695 1 21 - - --0 0 1 22 --0 0 1 22 - - --0 0 0.75 20 --0.25 3.0616e-17 0.75 19 - - --0 0 0.75 20 --0 0 1 22 - - --0 0 1 22 --0.25 3.0616e-17 1 21 - - --0.20225 0.14695 0.75 19 --0.25 3.0616e-17 0.75 19 - - --0.20225 0.14695 0.75 19 --0.20225 0.14695 1 21 - - --0.20225 0.14695 1 21 --0.25 3.0616e-17 1 21 - - --0.25 3.0616e-17 0.75 19 --0.25 3.0616e-17 1 21 - - --0 0 0.75 20 --0.25 3.0616e-17 0.75 19 - - --0 0 0.75 20 --0 0 0.75 20 - - --0 0 0.75 20 --0 0 1 22 - - --0 0 1 22 --0.25 3.0616e-17 1 21 - - --0 0 1 22 --0 0 1 22 - - --0 0 0.75 20 --0.20225 -0.14695 0.75 19 - - --0 0 0.75 20 --0 0 1 22 - - --0 0 1 22 --0.20225 -0.14695 1 21 - - --0.25 3.0616e-17 0.75 19 --0.20225 -0.14695 0.75 19 - - --0.25 3.0616e-17 0.75 19 --0.25 3.0616e-17 1 21 - - --0.25 3.0616e-17 1 21 --0.20225 -0.14695 1 21 - - --0.20225 -0.14695 0.75 19 --0.20225 -0.14695 1 21 - - --0 -0 0.75 20 --0.20225 -0.14695 0.75 19 - - --0 -0 0.75 20 --0 -0 0.75 20 - - --0 -0 0.75 20 --0 -0 1 22 - - --0 -0 1 22 --0.20225 -0.14695 1 21 - - --0 -0 1 22 --0 -0 1 22 - - --0 -0 0.75 20 --0.077254 -0.23776 0.75 19 - - --0 -0 0.75 20 --0 -0 1 22 - - --0 -0 1 22 --0.077254 -0.23776 1 21 - - --0.20225 -0.14695 0.75 19 --0.077254 -0.23776 0.75 19 - - --0.20225 -0.14695 0.75 19 --0.20225 -0.14695 1 21 - - --0.20225 -0.14695 1 21 --0.077254 -0.23776 1 21 - - --0.077254 -0.23776 0.75 19 --0.077254 -0.23776 1 21 - - -0 -0 0.75 20 --0.077254 -0.23776 0.75 19 - - -0 -0 0.75 20 -0 -0 0.75 20 - - -0 -0 0.75 20 -0 -0 1 22 - - -0 -0 1 22 --0.077254 -0.23776 1 21 - - -0 -0 1 22 -0 -0 1 22 - - -0 -0 0.75 20 -0.077254 -0.23776 0.75 19 - - -0 -0 0.75 20 -0 -0 1 22 - - -0 -0 1 22 -0.077254 -0.23776 1 21 - - --0.077254 -0.23776 0.75 19 -0.077254 -0.23776 0.75 19 - - --0.077254 -0.23776 0.75 19 --0.077254 -0.23776 1 21 - - --0.077254 -0.23776 1 21 -0.077254 -0.23776 1 21 - - -0.077254 -0.23776 0.75 19 -0.077254 -0.23776 1 21 - - -0 -0 0.75 20 -0.077254 -0.23776 0.75 19 - - -0 -0 0.75 20 -0 -0 0.75 20 - - -0 -0 0.75 20 -0 -0 1 22 - - -0 -0 1 22 -0.077254 -0.23776 1 21 - - -0 -0 1 22 -0 -0 1 22 - - -0 -0 0.75 20 -0.20225 -0.14695 0.75 19 - - -0 -0 0.75 20 -0 -0 1 22 - - -0 -0 1 22 -0.20225 -0.14695 1 21 - - -0.077254 -0.23776 0.75 19 -0.20225 -0.14695 0.75 19 - - -0.077254 -0.23776 0.75 19 -0.077254 -0.23776 1 21 - - -0.077254 -0.23776 1 21 -0.20225 -0.14695 1 21 - - -0.20225 -0.14695 0.75 19 -0.20225 -0.14695 1 21 - - -0 -0 0.75 20 -0.20225 -0.14695 0.75 19 - - -0 -0 0.75 20 -0 -0 0.75 20 - - -0 -0 0.75 20 -0 -0 1 22 - - -0 -0 1 22 -0.20225 -0.14695 1 21 - - -0 -0 1 22 -0 -0 1 22 - - -0 -0 0.75 20 -0.25 -6.1232e-17 0.75 19 - - -0 -0 0.75 20 -0 -0 1 22 - - -0 -0 1 22 -0.25 -6.1232e-17 1 21 - - -0.20225 -0.14695 0.75 19 -0.25 -6.1232e-17 0.75 19 - - -0.20225 -0.14695 0.75 19 -0.20225 -0.14695 1 21 - - -0.20225 -0.14695 1 21 -0.25 -6.1232e-17 1 21 - - -0.25 -6.1232e-17 0.75 19 -0.25 -6.1232e-17 1 21 - - -0 0 0 23 -0.125 0 0 24 - - -0 0 0 23 -0 0 0 23 - - -0 0 0 23 -0 0 0.125 26 - - -0 0 0.125 26 -0.125 0 0.125 25 - - -0 0 0.125 26 -0 0 0.125 26 - - -0 0 0 23 -0.10113 0.073473 0 24 - - -0 0 0 23 -0 0 0.125 26 - - -0 0 0.125 26 -0.10113 0.073473 0.125 25 - - -0.125 0 0 24 -0.10113 0.073473 0 24 - - -0.125 0 0 24 -0.125 0 0.125 25 - - -0.125 0 0.125 25 -0.10113 0.073473 0.125 25 - - -0.10113 0.073473 0 24 -0.10113 0.073473 0.125 25 - - -0 0 0 23 -0.10113 0.073473 0 24 - - -0 0 0 23 -0 0 0 23 - - -0 0 0 23 -0 0 0.125 26 - - -0 0 0.125 26 -0.10113 0.073473 0.125 25 - - -0 0 0.125 26 -0 0 0.125 26 - - -0 0 0 23 -0.038627 0.11888 0 24 - - -0 0 0 23 -0 0 0.125 26 - - -0 0 0.125 26 -0.038627 0.11888 0.125 25 - - -0.10113 0.073473 0 24 -0.038627 0.11888 0 24 - - -0.10113 0.073473 0 24 -0.10113 0.073473 0.125 25 - - -0.10113 0.073473 0.125 25 -0.038627 0.11888 0.125 25 - - -0.038627 0.11888 0 24 -0.038627 0.11888 0.125 25 - - -0 0 0 23 -0.038627 0.11888 0 24 - - -0 0 0 23 -0 0 0 23 - - -0 0 0 23 -0 0 0.125 26 - - -0 0 0.125 26 -0.038627 0.11888 0.125 25 - - -0 0 0.125 26 -0 0 0.125 26 - - -0 0 0 23 --0.038627 0.11888 0 24 - - -0 0 0 23 -0 0 0.125 26 - - -0 0 0.125 26 --0.038627 0.11888 0.125 25 - - -0.038627 0.11888 0 24 --0.038627 0.11888 0 24 - - -0.038627 0.11888 0 24 -0.038627 0.11888 0.125 25 - - -0.038627 0.11888 0.125 25 --0.038627 0.11888 0.125 25 - - --0.038627 0.11888 0 24 --0.038627 0.11888 0.125 25 - - --0 0 0 23 --0.038627 0.11888 0 24 - - --0 0 0 23 --0 0 0 23 - - --0 0 0 23 --0 0 0.125 26 - - --0 0 0.125 26 --0.038627 0.11888 0.125 25 - - --0 0 0.125 26 --0 0 0.125 26 - - --0 0 0 23 --0.10113 0.073473 0 24 - - --0 0 0 23 --0 0 0.125 26 - - --0 0 0.125 26 --0.10113 0.073473 0.125 25 - - --0.038627 0.11888 0 24 --0.10113 0.073473 0 24 - - --0.038627 0.11888 0 24 --0.038627 0.11888 0.125 25 - - --0.038627 0.11888 0.125 25 --0.10113 0.073473 0.125 25 - - --0.10113 0.073473 0 24 --0.10113 0.073473 0.125 25 - - --0 0 0 23 --0.10113 0.073473 0 24 - - --0 0 0 23 --0 0 0 23 - - --0 0 0 23 --0 0 0.125 26 - - --0 0 0.125 26 --0.10113 0.073473 0.125 25 - - --0 0 0.125 26 --0 0 0.125 26 - - --0 0 0 23 --0.125 1.5308e-17 0 24 - - --0 0 0 23 --0 0 0.125 26 - - --0 0 0.125 26 --0.125 1.5308e-17 0.125 25 - - --0.10113 0.073473 0 24 --0.125 1.5308e-17 0 24 - - --0.10113 0.073473 0 24 --0.10113 0.073473 0.125 25 - - --0.10113 0.073473 0.125 25 --0.125 1.5308e-17 0.125 25 - - --0.125 1.5308e-17 0 24 --0.125 1.5308e-17 0.125 25 - - --0 0 0 23 --0.125 1.5308e-17 0 24 - - --0 0 0 23 --0 0 0 23 - - --0 0 0 23 --0 0 0.125 26 - - --0 0 0.125 26 --0.125 1.5308e-17 0.125 25 - - --0 0 0.125 26 --0 0 0.125 26 - - --0 0 0 23 --0.10113 -0.073473 0 24 - - --0 0 0 23 --0 0 0.125 26 - - --0 0 0.125 26 --0.10113 -0.073473 0.125 25 - - --0.125 1.5308e-17 0 24 --0.10113 -0.073473 0 24 - - --0.125 1.5308e-17 0 24 --0.125 1.5308e-17 0.125 25 - - --0.125 1.5308e-17 0.125 25 --0.10113 -0.073473 0.125 25 - - --0.10113 -0.073473 0 24 --0.10113 -0.073473 0.125 25 - - --0 -0 0 23 --0.10113 -0.073473 0 24 - - --0 -0 0 23 --0 -0 0 23 - - --0 -0 0 23 --0 -0 0.125 26 - - --0 -0 0.125 26 --0.10113 -0.073473 0.125 25 - - --0 -0 0.125 26 --0 -0 0.125 26 - - --0 -0 0 23 --0.038627 -0.11888 0 24 - - --0 -0 0 23 --0 -0 0.125 26 - - --0 -0 0.125 26 --0.038627 -0.11888 0.125 25 - - --0.10113 -0.073473 0 24 --0.038627 -0.11888 0 24 - - --0.10113 -0.073473 0 24 --0.10113 -0.073473 0.125 25 - - --0.10113 -0.073473 0.125 25 --0.038627 -0.11888 0.125 25 - - --0.038627 -0.11888 0 24 --0.038627 -0.11888 0.125 25 - - -0 -0 0 23 --0.038627 -0.11888 0 24 - - -0 -0 0 23 -0 -0 0 23 - - -0 -0 0 23 -0 -0 0.125 26 - - -0 -0 0.125 26 --0.038627 -0.11888 0.125 25 - - -0 -0 0.125 26 -0 -0 0.125 26 - - -0 -0 0 23 -0.038627 -0.11888 0 24 - - -0 -0 0 23 -0 -0 0.125 26 - - -0 -0 0.125 26 -0.038627 -0.11888 0.125 25 - - --0.038627 -0.11888 0 24 -0.038627 -0.11888 0 24 - - --0.038627 -0.11888 0 24 --0.038627 -0.11888 0.125 25 - - --0.038627 -0.11888 0.125 25 -0.038627 -0.11888 0.125 25 - - -0.038627 -0.11888 0 24 -0.038627 -0.11888 0.125 25 - - -0 -0 0 23 -0.038627 -0.11888 0 24 - - -0 -0 0 23 -0 -0 0 23 - - -0 -0 0 23 -0 -0 0.125 26 - - -0 -0 0.125 26 -0.038627 -0.11888 0.125 25 - - -0 -0 0.125 26 -0 -0 0.125 26 - - -0 -0 0 23 -0.10113 -0.073473 0 24 - - -0 -0 0 23 -0 -0 0.125 26 - - -0 -0 0.125 26 -0.10113 -0.073473 0.125 25 - - -0.038627 -0.11888 0 24 -0.10113 -0.073473 0 24 - - -0.038627 -0.11888 0 24 -0.038627 -0.11888 0.125 25 - - -0.038627 -0.11888 0.125 25 -0.10113 -0.073473 0.125 25 - - -0.10113 -0.073473 0 24 -0.10113 -0.073473 0.125 25 - - -0 -0 0 23 -0.10113 -0.073473 0 24 - - -0 -0 0 23 -0 -0 0 23 - - -0 -0 0 23 -0 -0 0.125 26 - - -0 -0 0.125 26 -0.10113 -0.073473 0.125 25 - - -0 -0 0.125 26 -0 -0 0.125 26 - - -0 -0 0 23 -0.125 -3.0616e-17 0 24 - - -0 -0 0 23 -0 -0 0.125 26 - - -0 -0 0.125 26 -0.125 -3.0616e-17 0.125 25 - - -0.10113 -0.073473 0 24 -0.125 -3.0616e-17 0 24 - - -0.10113 -0.073473 0 24 -0.10113 -0.073473 0.125 25 - - -0.10113 -0.073473 0.125 25 -0.125 -3.0616e-17 0.125 25 - - -0.125 -3.0616e-17 0 24 -0.125 -3.0616e-17 0.125 25 - - -0.125 0 0 24 -0.25 0 0 27 - - -0.125 0 0 24 -0.10113 0.073473 0 24 - - -0.125 0 0 24 -0.125 0 0.125 25 - - -0.125 0 0.125 25 -0.25 0 0.125 28 - - -0.125 0 0.125 25 -0.10113 0.073473 0.125 25 - - -0.10113 0.073473 0 24 -0.20225 0.14695 0 27 - - -0.10113 0.073473 0 24 -0.10113 0.073473 0.125 25 - - -0.10113 0.073473 0.125 25 -0.20225 0.14695 0.125 28 - - -0.25 0 0 27 -0.20225 0.14695 0 27 - - -0.25 0 0 27 -0.25 0 0.125 28 - - -0.25 0 0.125 28 -0.20225 0.14695 0.125 28 - - -0.20225 0.14695 0 27 -0.20225 0.14695 0.125 28 - - -0.10113 0.073473 0 24 -0.20225 0.14695 0 27 - - -0.10113 0.073473 0 24 -0.038627 0.11888 0 24 - - -0.10113 0.073473 0 24 -0.10113 0.073473 0.125 25 - - -0.10113 0.073473 0.125 25 -0.20225 0.14695 0.125 28 - - -0.10113 0.073473 0.125 25 -0.038627 0.11888 0.125 25 - - -0.038627 0.11888 0 24 -0.077254 0.23776 0 27 - - -0.038627 0.11888 0 24 -0.038627 0.11888 0.125 25 - - -0.038627 0.11888 0.125 25 -0.077254 0.23776 0.125 28 - - -0.20225 0.14695 0 27 -0.077254 0.23776 0 27 - - -0.20225 0.14695 0 27 -0.20225 0.14695 0.125 28 - - -0.20225 0.14695 0.125 28 -0.077254 0.23776 0.125 28 - - -0.077254 0.23776 0 27 -0.077254 0.23776 0.125 28 - - -0.038627 0.11888 0 24 -0.077254 0.23776 0 27 - - -0.038627 0.11888 0 24 --0.038627 0.11888 0 24 - - -0.038627 0.11888 0 24 -0.038627 0.11888 0.125 25 - - -0.038627 0.11888 0.125 25 -0.077254 0.23776 0.125 28 - - -0.038627 0.11888 0.125 25 --0.038627 0.11888 0.125 25 - - --0.038627 0.11888 0 24 --0.077254 0.23776 0 27 - - --0.038627 0.11888 0 24 --0.038627 0.11888 0.125 25 - - --0.038627 0.11888 0.125 25 --0.077254 0.23776 0.125 28 - - -0.077254 0.23776 0 27 --0.077254 0.23776 0 27 - - -0.077254 0.23776 0 27 -0.077254 0.23776 0.125 28 - - -0.077254 0.23776 0.125 28 --0.077254 0.23776 0.125 28 - - --0.077254 0.23776 0 27 --0.077254 0.23776 0.125 28 - - --0.038627 0.11888 0 24 --0.077254 0.23776 0 27 - - --0.038627 0.11888 0 24 --0.10113 0.073473 0 24 - - --0.038627 0.11888 0 24 --0.038627 0.11888 0.125 25 - - --0.038627 0.11888 0.125 25 --0.077254 0.23776 0.125 28 - - --0.038627 0.11888 0.125 25 --0.10113 0.073473 0.125 25 - - --0.10113 0.073473 0 24 --0.20225 0.14695 0 27 - - --0.10113 0.073473 0 24 --0.10113 0.073473 0.125 25 - - --0.10113 0.073473 0.125 25 --0.20225 0.14695 0.125 28 - - --0.077254 0.23776 0 27 --0.20225 0.14695 0 27 - - --0.077254 0.23776 0 27 --0.077254 0.23776 0.125 28 - - --0.077254 0.23776 0.125 28 --0.20225 0.14695 0.125 28 - - --0.20225 0.14695 0 27 --0.20225 0.14695 0.125 28 - - --0.10113 0.073473 0 24 --0.20225 0.14695 0 27 - - --0.10113 0.073473 0 24 --0.125 1.5308e-17 0 24 - - --0.10113 0.073473 0 24 --0.10113 0.073473 0.125 25 - - --0.10113 0.073473 0.125 25 --0.20225 0.14695 0.125 28 - - --0.10113 0.073473 0.125 25 --0.125 1.5308e-17 0.125 25 - - --0.125 1.5308e-17 0 24 --0.25 3.0616e-17 0 27 - - --0.125 1.5308e-17 0 24 --0.125 1.5308e-17 0.125 25 - - --0.125 1.5308e-17 0.125 25 --0.25 3.0616e-17 0.125 28 - - --0.20225 0.14695 0 27 --0.25 3.0616e-17 0 27 - - --0.20225 0.14695 0 27 --0.20225 0.14695 0.125 28 - - --0.20225 0.14695 0.125 28 --0.25 3.0616e-17 0.125 28 - - --0.25 3.0616e-17 0 27 --0.25 3.0616e-17 0.125 28 - - --0.125 1.5308e-17 0 24 --0.25 3.0616e-17 0 27 - - --0.125 1.5308e-17 0 24 --0.10113 -0.073473 0 24 - - --0.125 1.5308e-17 0 24 --0.125 1.5308e-17 0.125 25 - - --0.125 1.5308e-17 0.125 25 --0.25 3.0616e-17 0.125 28 - - --0.125 1.5308e-17 0.125 25 --0.10113 -0.073473 0.125 25 - - --0.10113 -0.073473 0 24 --0.20225 -0.14695 0 27 - - --0.10113 -0.073473 0 24 --0.10113 -0.073473 0.125 25 - - --0.10113 -0.073473 0.125 25 --0.20225 -0.14695 0.125 28 - - --0.25 3.0616e-17 0 27 --0.20225 -0.14695 0 27 - - --0.25 3.0616e-17 0 27 --0.25 3.0616e-17 0.125 28 - - --0.25 3.0616e-17 0.125 28 --0.20225 -0.14695 0.125 28 - - --0.20225 -0.14695 0 27 --0.20225 -0.14695 0.125 28 - - --0.10113 -0.073473 0 24 --0.20225 -0.14695 0 27 - - --0.10113 -0.073473 0 24 --0.038627 -0.11888 0 24 - - --0.10113 -0.073473 0 24 --0.10113 -0.073473 0.125 25 - - --0.10113 -0.073473 0.125 25 --0.20225 -0.14695 0.125 28 - - --0.10113 -0.073473 0.125 25 --0.038627 -0.11888 0.125 25 - - --0.038627 -0.11888 0 24 --0.077254 -0.23776 0 27 - - --0.038627 -0.11888 0 24 --0.038627 -0.11888 0.125 25 - - --0.038627 -0.11888 0.125 25 --0.077254 -0.23776 0.125 28 - - --0.20225 -0.14695 0 27 --0.077254 -0.23776 0 27 - - --0.20225 -0.14695 0 27 --0.20225 -0.14695 0.125 28 - - --0.20225 -0.14695 0.125 28 --0.077254 -0.23776 0.125 28 - - --0.077254 -0.23776 0 27 --0.077254 -0.23776 0.125 28 - - --0.038627 -0.11888 0 24 --0.077254 -0.23776 0 27 - - --0.038627 -0.11888 0 24 -0.038627 -0.11888 0 24 - - --0.038627 -0.11888 0 24 --0.038627 -0.11888 0.125 25 - - --0.038627 -0.11888 0.125 25 --0.077254 -0.23776 0.125 28 - - --0.038627 -0.11888 0.125 25 -0.038627 -0.11888 0.125 25 - - -0.038627 -0.11888 0 24 -0.077254 -0.23776 0 27 - - -0.038627 -0.11888 0 24 -0.038627 -0.11888 0.125 25 - - -0.038627 -0.11888 0.125 25 -0.077254 -0.23776 0.125 28 - - --0.077254 -0.23776 0 27 -0.077254 -0.23776 0 27 - - --0.077254 -0.23776 0 27 --0.077254 -0.23776 0.125 28 - - --0.077254 -0.23776 0.125 28 -0.077254 -0.23776 0.125 28 - - -0.077254 -0.23776 0 27 -0.077254 -0.23776 0.125 28 - - -0.038627 -0.11888 0 24 -0.077254 -0.23776 0 27 - - -0.038627 -0.11888 0 24 -0.10113 -0.073473 0 24 - - -0.038627 -0.11888 0 24 -0.038627 -0.11888 0.125 25 - - -0.038627 -0.11888 0.125 25 -0.077254 -0.23776 0.125 28 - - -0.038627 -0.11888 0.125 25 -0.10113 -0.073473 0.125 25 - - -0.10113 -0.073473 0 24 -0.20225 -0.14695 0 27 - - -0.10113 -0.073473 0 24 -0.10113 -0.073473 0.125 25 - - -0.10113 -0.073473 0.125 25 -0.20225 -0.14695 0.125 28 - - -0.077254 -0.23776 0 27 -0.20225 -0.14695 0 27 - - -0.077254 -0.23776 0 27 -0.077254 -0.23776 0.125 28 - - -0.077254 -0.23776 0.125 28 -0.20225 -0.14695 0.125 28 - - -0.20225 -0.14695 0 27 -0.20225 -0.14695 0.125 28 - - -0.10113 -0.073473 0 24 -0.20225 -0.14695 0 27 - - -0.10113 -0.073473 0 24 -0.125 -3.0616e-17 0 24 - - -0.10113 -0.073473 0 24 -0.10113 -0.073473 0.125 25 - - -0.10113 -0.073473 0.125 25 -0.20225 -0.14695 0.125 28 - - -0.10113 -0.073473 0.125 25 -0.125 -3.0616e-17 0.125 25 - - -0.125 -3.0616e-17 0 24 -0.25 -6.1232e-17 0 27 - - -0.125 -3.0616e-17 0 24 -0.125 -3.0616e-17 0.125 25 - - -0.125 -3.0616e-17 0.125 25 -0.25 -6.1232e-17 0.125 28 - - -0.20225 -0.14695 0 27 -0.25 -6.1232e-17 0 27 - - -0.20225 -0.14695 0 27 -0.20225 -0.14695 0.125 28 - - -0.20225 -0.14695 0.125 28 -0.25 -6.1232e-17 0.125 28 - - -0.25 -6.1232e-17 0 27 -0.25 -6.1232e-17 0.125 28 - - -0.125 0 0.125 25 -0.25 0 0.125 28 - - -0.125 0 0.125 25 -0.10113 0.073473 0.125 25 - - -0.125 0 0.125 25 -0.125 0 0.25 29 - - -0.125 0 0.25 29 -0.25 0 0.25 0 - - -0.125 0 0.25 29 -0.10113 0.073473 0.25 29 - - -0.10113 0.073473 0.125 25 -0.20225 0.14695 0.125 28 - - -0.10113 0.073473 0.125 25 -0.10113 0.073473 0.25 29 - - -0.10113 0.073473 0.25 29 -0.20225 0.14695 0.25 0 - - -0.25 0 0.125 28 -0.20225 0.14695 0.125 28 - - -0.25 0 0.125 28 -0.25 0 0.25 0 - - -0.25 0 0.25 0 -0.20225 0.14695 0.25 0 - - -0.20225 0.14695 0.125 28 -0.20225 0.14695 0.25 0 - - -0.10113 0.073473 0.125 25 -0.20225 0.14695 0.125 28 - - -0.10113 0.073473 0.125 25 -0.038627 0.11888 0.125 25 - - -0.10113 0.073473 0.125 25 -0.10113 0.073473 0.25 29 - - -0.10113 0.073473 0.25 29 -0.20225 0.14695 0.25 0 - - -0.10113 0.073473 0.25 29 -0.038627 0.11888 0.25 29 - - -0.038627 0.11888 0.125 25 -0.077254 0.23776 0.125 28 - - -0.038627 0.11888 0.125 25 -0.038627 0.11888 0.25 29 - - -0.038627 0.11888 0.25 29 -0.077254 0.23776 0.25 0 - - -0.20225 0.14695 0.125 28 -0.077254 0.23776 0.125 28 - - -0.20225 0.14695 0.125 28 -0.20225 0.14695 0.25 0 - - -0.20225 0.14695 0.25 0 -0.077254 0.23776 0.25 0 - - -0.077254 0.23776 0.125 28 -0.077254 0.23776 0.25 0 - - -0.038627 0.11888 0.125 25 -0.077254 0.23776 0.125 28 - - -0.038627 0.11888 0.125 25 --0.038627 0.11888 0.125 25 - - -0.038627 0.11888 0.125 25 -0.038627 0.11888 0.25 29 - - -0.038627 0.11888 0.25 29 -0.077254 0.23776 0.25 0 - - -0.038627 0.11888 0.25 29 --0.038627 0.11888 0.25 29 - - --0.038627 0.11888 0.125 25 --0.077254 0.23776 0.125 28 - - --0.038627 0.11888 0.125 25 --0.038627 0.11888 0.25 29 - - --0.038627 0.11888 0.25 29 --0.077254 0.23776 0.25 0 - - -0.077254 0.23776 0.125 28 --0.077254 0.23776 0.125 28 - - -0.077254 0.23776 0.125 28 -0.077254 0.23776 0.25 0 - - -0.077254 0.23776 0.25 0 --0.077254 0.23776 0.25 0 - - --0.077254 0.23776 0.125 28 --0.077254 0.23776 0.25 0 - - --0.038627 0.11888 0.125 25 --0.077254 0.23776 0.125 28 - - --0.038627 0.11888 0.125 25 --0.10113 0.073473 0.125 25 - - --0.038627 0.11888 0.125 25 --0.038627 0.11888 0.25 29 - - --0.038627 0.11888 0.25 29 --0.077254 0.23776 0.25 0 - - --0.038627 0.11888 0.25 29 --0.10113 0.073473 0.25 29 - - --0.10113 0.073473 0.125 25 --0.20225 0.14695 0.125 28 - - --0.10113 0.073473 0.125 25 --0.10113 0.073473 0.25 29 - - --0.10113 0.073473 0.25 29 --0.20225 0.14695 0.25 0 - - --0.077254 0.23776 0.125 28 --0.20225 0.14695 0.125 28 - - --0.077254 0.23776 0.125 28 --0.077254 0.23776 0.25 0 - - --0.077254 0.23776 0.25 0 --0.20225 0.14695 0.25 0 - - --0.20225 0.14695 0.125 28 --0.20225 0.14695 0.25 0 - - --0.10113 0.073473 0.125 25 --0.20225 0.14695 0.125 28 - - --0.10113 0.073473 0.125 25 --0.125 1.5308e-17 0.125 25 - - --0.10113 0.073473 0.125 25 --0.10113 0.073473 0.25 29 - - --0.10113 0.073473 0.25 29 --0.20225 0.14695 0.25 0 - - --0.10113 0.073473 0.25 29 --0.125 1.5308e-17 0.25 29 - - --0.125 1.5308e-17 0.125 25 --0.25 3.0616e-17 0.125 28 - - --0.125 1.5308e-17 0.125 25 --0.125 1.5308e-17 0.25 29 - - --0.125 1.5308e-17 0.25 29 --0.25 3.0616e-17 0.25 0 - - --0.20225 0.14695 0.125 28 --0.25 3.0616e-17 0.125 28 - - --0.20225 0.14695 0.125 28 --0.20225 0.14695 0.25 0 - - --0.20225 0.14695 0.25 0 --0.25 3.0616e-17 0.25 0 - - --0.25 3.0616e-17 0.125 28 --0.25 3.0616e-17 0.25 0 - - --0.125 1.5308e-17 0.125 25 --0.25 3.0616e-17 0.125 28 - - --0.125 1.5308e-17 0.125 25 --0.10113 -0.073473 0.125 25 - - --0.125 1.5308e-17 0.125 25 --0.125 1.5308e-17 0.25 29 - - --0.125 1.5308e-17 0.25 29 --0.25 3.0616e-17 0.25 0 - - --0.125 1.5308e-17 0.25 29 --0.10113 -0.073473 0.25 29 - - --0.10113 -0.073473 0.125 25 --0.20225 -0.14695 0.125 28 - - --0.10113 -0.073473 0.125 25 --0.10113 -0.073473 0.25 29 - - --0.10113 -0.073473 0.25 29 --0.20225 -0.14695 0.25 0 - - --0.25 3.0616e-17 0.125 28 --0.20225 -0.14695 0.125 28 - - --0.25 3.0616e-17 0.125 28 --0.25 3.0616e-17 0.25 0 - - --0.25 3.0616e-17 0.25 0 --0.20225 -0.14695 0.25 0 - - --0.20225 -0.14695 0.125 28 --0.20225 -0.14695 0.25 0 - - --0.10113 -0.073473 0.125 25 --0.20225 -0.14695 0.125 28 - - --0.10113 -0.073473 0.125 25 --0.038627 -0.11888 0.125 25 - - --0.10113 -0.073473 0.125 25 --0.10113 -0.073473 0.25 29 - - --0.10113 -0.073473 0.25 29 --0.20225 -0.14695 0.25 0 - - --0.10113 -0.073473 0.25 29 --0.038627 -0.11888 0.25 29 - - --0.038627 -0.11888 0.125 25 --0.077254 -0.23776 0.125 28 - - --0.038627 -0.11888 0.125 25 --0.038627 -0.11888 0.25 29 - - --0.038627 -0.11888 0.25 29 --0.077254 -0.23776 0.25 0 - - --0.20225 -0.14695 0.125 28 --0.077254 -0.23776 0.125 28 - - --0.20225 -0.14695 0.125 28 --0.20225 -0.14695 0.25 0 - - --0.20225 -0.14695 0.25 0 --0.077254 -0.23776 0.25 0 - - --0.077254 -0.23776 0.125 28 --0.077254 -0.23776 0.25 0 - - --0.038627 -0.11888 0.125 25 --0.077254 -0.23776 0.125 28 - - --0.038627 -0.11888 0.125 25 -0.038627 -0.11888 0.125 25 - - --0.038627 -0.11888 0.125 25 --0.038627 -0.11888 0.25 29 - - --0.038627 -0.11888 0.25 29 --0.077254 -0.23776 0.25 0 - - --0.038627 -0.11888 0.25 29 -0.038627 -0.11888 0.25 29 - - -0.038627 -0.11888 0.125 25 -0.077254 -0.23776 0.125 28 - - -0.038627 -0.11888 0.125 25 -0.038627 -0.11888 0.25 29 - - -0.038627 -0.11888 0.25 29 -0.077254 -0.23776 0.25 0 - - --0.077254 -0.23776 0.125 28 -0.077254 -0.23776 0.125 28 - - --0.077254 -0.23776 0.125 28 --0.077254 -0.23776 0.25 0 - - --0.077254 -0.23776 0.25 0 -0.077254 -0.23776 0.25 0 - - -0.077254 -0.23776 0.125 28 -0.077254 -0.23776 0.25 0 - - -0.038627 -0.11888 0.125 25 -0.077254 -0.23776 0.125 28 - - -0.038627 -0.11888 0.125 25 -0.10113 -0.073473 0.125 25 - - -0.038627 -0.11888 0.125 25 -0.038627 -0.11888 0.25 29 - - -0.038627 -0.11888 0.25 29 -0.077254 -0.23776 0.25 0 - - -0.038627 -0.11888 0.25 29 -0.10113 -0.073473 0.25 29 - - -0.10113 -0.073473 0.125 25 -0.20225 -0.14695 0.125 28 - - -0.10113 -0.073473 0.125 25 -0.10113 -0.073473 0.25 29 - - -0.10113 -0.073473 0.25 29 -0.20225 -0.14695 0.25 0 - - -0.077254 -0.23776 0.125 28 -0.20225 -0.14695 0.125 28 - - -0.077254 -0.23776 0.125 28 -0.077254 -0.23776 0.25 0 - - -0.077254 -0.23776 0.25 0 -0.20225 -0.14695 0.25 0 - - -0.20225 -0.14695 0.125 28 -0.20225 -0.14695 0.25 0 - - -0.10113 -0.073473 0.125 25 -0.20225 -0.14695 0.125 28 - - -0.10113 -0.073473 0.125 25 -0.125 -3.0616e-17 0.125 25 - - -0.10113 -0.073473 0.125 25 -0.10113 -0.073473 0.25 29 - - -0.10113 -0.073473 0.25 29 -0.20225 -0.14695 0.25 0 - - -0.10113 -0.073473 0.25 29 -0.125 -3.0616e-17 0.25 29 - - -0.125 -3.0616e-17 0.125 25 -0.25 -6.1232e-17 0.125 28 - - -0.125 -3.0616e-17 0.125 25 -0.125 -3.0616e-17 0.25 29 - - -0.125 -3.0616e-17 0.25 29 -0.25 -6.1232e-17 0.25 0 - - -0.20225 -0.14695 0.125 28 -0.25 -6.1232e-17 0.125 28 - - -0.20225 -0.14695 0.125 28 -0.20225 -0.14695 0.25 0 - - -0.20225 -0.14695 0.25 0 -0.25 -6.1232e-17 0.25 0 - - -0.25 -6.1232e-17 0.125 28 -0.25 -6.1232e-17 0.25 0 - - -0 0 0.125 26 -0.125 0 0.125 25 - - -0 0 0.125 26 -0 0 0.125 26 - - -0 0 0.125 26 -0 0 0.25 4 - - -0 0 0.25 4 -0.125 0 0.25 29 - - -0 0 0.25 4 -0 0 0.25 4 - - -0 0 0.125 26 -0.10113 0.073473 0.125 25 - - -0 0 0.125 26 -0 0 0.25 4 - - -0 0 0.25 4 -0.10113 0.073473 0.25 29 - - -0.125 0 0.125 25 -0.10113 0.073473 0.125 25 - - -0.125 0 0.125 25 -0.125 0 0.25 29 - - -0.125 0 0.25 29 -0.10113 0.073473 0.25 29 - - -0.10113 0.073473 0.125 25 -0.10113 0.073473 0.25 29 - - -0 0 0.125 26 -0.10113 0.073473 0.125 25 - - -0 0 0.125 26 -0 0 0.125 26 - - -0 0 0.125 26 -0 0 0.25 4 - - -0 0 0.25 4 -0.10113 0.073473 0.25 29 - - -0 0 0.25 4 -0 0 0.25 4 - - -0 0 0.125 26 -0.038627 0.11888 0.125 25 - - -0 0 0.125 26 -0 0 0.25 4 - - -0 0 0.25 4 -0.038627 0.11888 0.25 29 - - -0.10113 0.073473 0.125 25 -0.038627 0.11888 0.125 25 - - -0.10113 0.073473 0.125 25 -0.10113 0.073473 0.25 29 - - -0.10113 0.073473 0.25 29 -0.038627 0.11888 0.25 29 - - -0.038627 0.11888 0.125 25 -0.038627 0.11888 0.25 29 - - -0 0 0.125 26 -0.038627 0.11888 0.125 25 - - -0 0 0.125 26 -0 0 0.125 26 - - -0 0 0.125 26 -0 0 0.25 4 - - -0 0 0.25 4 -0.038627 0.11888 0.25 29 - - -0 0 0.25 4 -0 0 0.25 4 - - -0 0 0.125 26 --0.038627 0.11888 0.125 25 - - -0 0 0.125 26 -0 0 0.25 4 - - -0 0 0.25 4 --0.038627 0.11888 0.25 29 - - -0.038627 0.11888 0.125 25 --0.038627 0.11888 0.125 25 - - -0.038627 0.11888 0.125 25 -0.038627 0.11888 0.25 29 - - -0.038627 0.11888 0.25 29 --0.038627 0.11888 0.25 29 - - --0.038627 0.11888 0.125 25 --0.038627 0.11888 0.25 29 - - --0 0 0.125 26 --0.038627 0.11888 0.125 25 - - --0 0 0.125 26 --0 0 0.125 26 - - --0 0 0.125 26 --0 0 0.25 4 - - --0 0 0.25 4 --0.038627 0.11888 0.25 29 - - --0 0 0.25 4 --0 0 0.25 4 - - --0 0 0.125 26 --0.10113 0.073473 0.125 25 - - --0 0 0.125 26 --0 0 0.25 4 - - --0 0 0.25 4 --0.10113 0.073473 0.25 29 - - --0.038627 0.11888 0.125 25 --0.10113 0.073473 0.125 25 - - --0.038627 0.11888 0.125 25 --0.038627 0.11888 0.25 29 - - --0.038627 0.11888 0.25 29 --0.10113 0.073473 0.25 29 - - --0.10113 0.073473 0.125 25 --0.10113 0.073473 0.25 29 - - --0 0 0.125 26 --0.10113 0.073473 0.125 25 - - --0 0 0.125 26 --0 0 0.125 26 - - --0 0 0.125 26 --0 0 0.25 4 - - --0 0 0.25 4 --0.10113 0.073473 0.25 29 - - --0 0 0.25 4 --0 0 0.25 4 - - --0 0 0.125 26 --0.125 1.5308e-17 0.125 25 - - --0 0 0.125 26 --0 0 0.25 4 - - --0 0 0.25 4 --0.125 1.5308e-17 0.25 29 - - --0.10113 0.073473 0.125 25 --0.125 1.5308e-17 0.125 25 - - --0.10113 0.073473 0.125 25 --0.10113 0.073473 0.25 29 - - --0.10113 0.073473 0.25 29 --0.125 1.5308e-17 0.25 29 - - --0.125 1.5308e-17 0.125 25 --0.125 1.5308e-17 0.25 29 - - --0 0 0.125 26 --0.125 1.5308e-17 0.125 25 - - --0 0 0.125 26 --0 0 0.125 26 - - --0 0 0.125 26 --0 0 0.25 4 - - --0 0 0.25 4 --0.125 1.5308e-17 0.25 29 - - --0 0 0.25 4 --0 0 0.25 4 - - --0 0 0.125 26 --0.10113 -0.073473 0.125 25 - - --0 0 0.125 26 --0 0 0.25 4 - - --0 0 0.25 4 --0.10113 -0.073473 0.25 29 - - --0.125 1.5308e-17 0.125 25 --0.10113 -0.073473 0.125 25 - - --0.125 1.5308e-17 0.125 25 --0.125 1.5308e-17 0.25 29 - - --0.125 1.5308e-17 0.25 29 --0.10113 -0.073473 0.25 29 - - --0.10113 -0.073473 0.125 25 --0.10113 -0.073473 0.25 29 - - --0 -0 0.125 26 --0.10113 -0.073473 0.125 25 - - --0 -0 0.125 26 --0 -0 0.125 26 - - --0 -0 0.125 26 --0 -0 0.25 4 - - --0 -0 0.25 4 --0.10113 -0.073473 0.25 29 - - --0 -0 0.25 4 --0 -0 0.25 4 - - --0 -0 0.125 26 --0.038627 -0.11888 0.125 25 - - --0 -0 0.125 26 --0 -0 0.25 4 - - --0 -0 0.25 4 --0.038627 -0.11888 0.25 29 - - --0.10113 -0.073473 0.125 25 --0.038627 -0.11888 0.125 25 - - --0.10113 -0.073473 0.125 25 --0.10113 -0.073473 0.25 29 - - --0.10113 -0.073473 0.25 29 --0.038627 -0.11888 0.25 29 - - --0.038627 -0.11888 0.125 25 --0.038627 -0.11888 0.25 29 - - -0 -0 0.125 26 --0.038627 -0.11888 0.125 25 - - -0 -0 0.125 26 -0 -0 0.125 26 - - -0 -0 0.125 26 -0 -0 0.25 4 - - -0 -0 0.25 4 --0.038627 -0.11888 0.25 29 - - -0 -0 0.25 4 -0 -0 0.25 4 - - -0 -0 0.125 26 -0.038627 -0.11888 0.125 25 - - -0 -0 0.125 26 -0 -0 0.25 4 - - -0 -0 0.25 4 -0.038627 -0.11888 0.25 29 - - --0.038627 -0.11888 0.125 25 -0.038627 -0.11888 0.125 25 - - --0.038627 -0.11888 0.125 25 --0.038627 -0.11888 0.25 29 - - --0.038627 -0.11888 0.25 29 -0.038627 -0.11888 0.25 29 - - -0.038627 -0.11888 0.125 25 -0.038627 -0.11888 0.25 29 - - -0 -0 0.125 26 -0.038627 -0.11888 0.125 25 - - -0 -0 0.125 26 -0 -0 0.125 26 - - -0 -0 0.125 26 -0 -0 0.25 4 - - -0 -0 0.25 4 -0.038627 -0.11888 0.25 29 - - -0 -0 0.25 4 -0 -0 0.25 4 - - -0 -0 0.125 26 -0.10113 -0.073473 0.125 25 - - -0 -0 0.125 26 -0 -0 0.25 4 - - -0 -0 0.25 4 -0.10113 -0.073473 0.25 29 - - -0.038627 -0.11888 0.125 25 -0.10113 -0.073473 0.125 25 - - -0.038627 -0.11888 0.125 25 -0.038627 -0.11888 0.25 29 - - -0.038627 -0.11888 0.25 29 -0.10113 -0.073473 0.25 29 - - -0.10113 -0.073473 0.125 25 -0.10113 -0.073473 0.25 29 - - -0 -0 0.125 26 -0.10113 -0.073473 0.125 25 - - -0 -0 0.125 26 -0 -0 0.125 26 - - -0 -0 0.125 26 -0 -0 0.25 4 - - -0 -0 0.25 4 -0.10113 -0.073473 0.25 29 - - -0 -0 0.25 4 -0 -0 0.25 4 - - -0 -0 0.125 26 -0.125 -3.0616e-17 0.125 25 - - -0 -0 0.125 26 -0 -0 0.25 4 - - -0 -0 0.25 4 -0.125 -3.0616e-17 0.25 29 - - -0.10113 -0.073473 0.125 25 -0.125 -3.0616e-17 0.125 25 - - -0.10113 -0.073473 0.125 25 -0.10113 -0.073473 0.25 29 - - -0.10113 -0.073473 0.25 29 -0.125 -3.0616e-17 0.25 29 - - -0.125 -3.0616e-17 0.125 25 -0.125 -3.0616e-17 0.25 29 - - -0.25 0 0 27 -0.375 0 0 30 - - -0.25 0 0 27 -0.20225 0.14695 0 27 - - -0.25 0 0 27 -0.25 0 0.125 28 - - -0.25 0 0.125 28 -0.375 0 0.125 31 - - -0.25 0 0.125 28 -0.20225 0.14695 0.125 28 - - -0.20225 0.14695 0 27 -0.30338 0.22042 0 30 - - -0.20225 0.14695 0 27 -0.20225 0.14695 0.125 28 - - -0.20225 0.14695 0.125 28 -0.30338 0.22042 0.125 31 - - -0.375 0 0 30 -0.30338 0.22042 0 30 - - -0.375 0 0 30 -0.375 0 0.125 31 - - -0.375 0 0.125 31 -0.30338 0.22042 0.125 31 - - -0.30338 0.22042 0 30 -0.30338 0.22042 0.125 31 - - -0.20225 0.14695 0 27 -0.30338 0.22042 0 30 - - -0.20225 0.14695 0 27 -0.077254 0.23776 0 27 - - -0.20225 0.14695 0 27 -0.20225 0.14695 0.125 28 - - -0.20225 0.14695 0.125 28 -0.30338 0.22042 0.125 31 - - -0.20225 0.14695 0.125 28 -0.077254 0.23776 0.125 28 - - -0.077254 0.23776 0 27 -0.11588 0.35665 0 30 - - -0.077254 0.23776 0 27 -0.077254 0.23776 0.125 28 - - -0.077254 0.23776 0.125 28 -0.11588 0.35665 0.125 31 - - -0.30338 0.22042 0 30 -0.11588 0.35665 0 30 - - -0.30338 0.22042 0 30 -0.30338 0.22042 0.125 31 - - -0.30338 0.22042 0.125 31 -0.11588 0.35665 0.125 31 - - -0.11588 0.35665 0 30 -0.11588 0.35665 0.125 31 - - -0.077254 0.23776 0 27 -0.11588 0.35665 0 30 - - -0.077254 0.23776 0 27 --0.077254 0.23776 0 27 - - -0.077254 0.23776 0 27 -0.077254 0.23776 0.125 28 - - -0.077254 0.23776 0.125 28 -0.11588 0.35665 0.125 31 - - -0.077254 0.23776 0.125 28 --0.077254 0.23776 0.125 28 - - --0.077254 0.23776 0 27 --0.11588 0.35665 0 30 - - --0.077254 0.23776 0 27 --0.077254 0.23776 0.125 28 - - --0.077254 0.23776 0.125 28 --0.11588 0.35665 0.125 31 - - -0.11588 0.35665 0 30 --0.11588 0.35665 0 30 - - -0.11588 0.35665 0 30 -0.11588 0.35665 0.125 31 - - -0.11588 0.35665 0.125 31 --0.11588 0.35665 0.125 31 - - --0.11588 0.35665 0 30 --0.11588 0.35665 0.125 31 - - --0.077254 0.23776 0 27 --0.11588 0.35665 0 30 - - --0.077254 0.23776 0 27 --0.20225 0.14695 0 27 - - --0.077254 0.23776 0 27 --0.077254 0.23776 0.125 28 - - --0.077254 0.23776 0.125 28 --0.11588 0.35665 0.125 31 - - --0.077254 0.23776 0.125 28 --0.20225 0.14695 0.125 28 - - --0.20225 0.14695 0 27 --0.30338 0.22042 0 30 - - --0.20225 0.14695 0 27 --0.20225 0.14695 0.125 28 - - --0.20225 0.14695 0.125 28 --0.30338 0.22042 0.125 31 - - --0.11588 0.35665 0 30 --0.30338 0.22042 0 30 - - --0.11588 0.35665 0 30 --0.11588 0.35665 0.125 31 - - --0.11588 0.35665 0.125 31 --0.30338 0.22042 0.125 31 - - --0.30338 0.22042 0 30 --0.30338 0.22042 0.125 31 - - --0.20225 0.14695 0 27 --0.30338 0.22042 0 30 - - --0.20225 0.14695 0 27 --0.25 3.0616e-17 0 27 - - --0.20225 0.14695 0 27 --0.20225 0.14695 0.125 28 - - --0.20225 0.14695 0.125 28 --0.30338 0.22042 0.125 31 - - --0.20225 0.14695 0.125 28 --0.25 3.0616e-17 0.125 28 - - --0.25 3.0616e-17 0 27 --0.375 4.5924e-17 0 30 - - --0.25 3.0616e-17 0 27 --0.25 3.0616e-17 0.125 28 - - --0.25 3.0616e-17 0.125 28 --0.375 4.5924e-17 0.125 31 - - --0.30338 0.22042 0 30 --0.375 4.5924e-17 0 30 - - --0.30338 0.22042 0 30 --0.30338 0.22042 0.125 31 - - --0.30338 0.22042 0.125 31 --0.375 4.5924e-17 0.125 31 - - --0.375 4.5924e-17 0 30 --0.375 4.5924e-17 0.125 31 - - --0.25 3.0616e-17 0 27 --0.375 4.5924e-17 0 30 - - --0.25 3.0616e-17 0 27 --0.20225 -0.14695 0 27 - - --0.25 3.0616e-17 0 27 --0.25 3.0616e-17 0.125 28 - - --0.25 3.0616e-17 0.125 28 --0.375 4.5924e-17 0.125 31 - - --0.25 3.0616e-17 0.125 28 --0.20225 -0.14695 0.125 28 - - --0.20225 -0.14695 0 27 --0.30338 -0.22042 0 30 - - --0.20225 -0.14695 0 27 --0.20225 -0.14695 0.125 28 - - --0.20225 -0.14695 0.125 28 --0.30338 -0.22042 0.125 31 - - --0.375 4.5924e-17 0 30 --0.30338 -0.22042 0 30 - - --0.375 4.5924e-17 0 30 --0.375 4.5924e-17 0.125 31 - - --0.375 4.5924e-17 0.125 31 --0.30338 -0.22042 0.125 31 - - --0.30338 -0.22042 0 30 --0.30338 -0.22042 0.125 31 - - --0.20225 -0.14695 0 27 --0.30338 -0.22042 0 30 - - --0.20225 -0.14695 0 27 --0.077254 -0.23776 0 27 - - --0.20225 -0.14695 0 27 --0.20225 -0.14695 0.125 28 - - --0.20225 -0.14695 0.125 28 --0.30338 -0.22042 0.125 31 - - --0.20225 -0.14695 0.125 28 --0.077254 -0.23776 0.125 28 - - --0.077254 -0.23776 0 27 --0.11588 -0.35665 0 30 - - --0.077254 -0.23776 0 27 --0.077254 -0.23776 0.125 28 - - --0.077254 -0.23776 0.125 28 --0.11588 -0.35665 0.125 31 - - --0.30338 -0.22042 0 30 --0.11588 -0.35665 0 30 - - --0.30338 -0.22042 0 30 --0.30338 -0.22042 0.125 31 - - --0.30338 -0.22042 0.125 31 --0.11588 -0.35665 0.125 31 - - --0.11588 -0.35665 0 30 --0.11588 -0.35665 0.125 31 - - --0.077254 -0.23776 0 27 --0.11588 -0.35665 0 30 - - --0.077254 -0.23776 0 27 -0.077254 -0.23776 0 27 - - --0.077254 -0.23776 0 27 --0.077254 -0.23776 0.125 28 - - --0.077254 -0.23776 0.125 28 --0.11588 -0.35665 0.125 31 - - --0.077254 -0.23776 0.125 28 -0.077254 -0.23776 0.125 28 - - -0.077254 -0.23776 0 27 -0.11588 -0.35665 0 30 - - -0.077254 -0.23776 0 27 -0.077254 -0.23776 0.125 28 - - -0.077254 -0.23776 0.125 28 -0.11588 -0.35665 0.125 31 - - --0.11588 -0.35665 0 30 -0.11588 -0.35665 0 30 - - --0.11588 -0.35665 0 30 --0.11588 -0.35665 0.125 31 - - --0.11588 -0.35665 0.125 31 -0.11588 -0.35665 0.125 31 - - -0.11588 -0.35665 0 30 -0.11588 -0.35665 0.125 31 - - -0.077254 -0.23776 0 27 -0.11588 -0.35665 0 30 - - -0.077254 -0.23776 0 27 -0.20225 -0.14695 0 27 - - -0.077254 -0.23776 0 27 -0.077254 -0.23776 0.125 28 - - -0.077254 -0.23776 0.125 28 -0.11588 -0.35665 0.125 31 - - -0.077254 -0.23776 0.125 28 -0.20225 -0.14695 0.125 28 - - -0.20225 -0.14695 0 27 -0.30338 -0.22042 0 30 - - -0.20225 -0.14695 0 27 -0.20225 -0.14695 0.125 28 - - -0.20225 -0.14695 0.125 28 -0.30338 -0.22042 0.125 31 - - -0.11588 -0.35665 0 30 -0.30338 -0.22042 0 30 - - -0.11588 -0.35665 0 30 -0.11588 -0.35665 0.125 31 - - -0.11588 -0.35665 0.125 31 -0.30338 -0.22042 0.125 31 - - -0.30338 -0.22042 0 30 -0.30338 -0.22042 0.125 31 - - -0.20225 -0.14695 0 27 -0.30338 -0.22042 0 30 - - -0.20225 -0.14695 0 27 -0.25 -6.1232e-17 0 27 - - -0.20225 -0.14695 0 27 -0.20225 -0.14695 0.125 28 - - -0.20225 -0.14695 0.125 28 -0.30338 -0.22042 0.125 31 - - -0.20225 -0.14695 0.125 28 -0.25 -6.1232e-17 0.125 28 - - -0.25 -6.1232e-17 0 27 -0.375 -9.1849e-17 0 30 - - -0.25 -6.1232e-17 0 27 -0.25 -6.1232e-17 0.125 28 - - -0.25 -6.1232e-17 0.125 28 -0.375 -9.1849e-17 0.125 31 - - -0.30338 -0.22042 0 30 -0.375 -9.1849e-17 0 30 - - -0.30338 -0.22042 0 30 -0.30338 -0.22042 0.125 31 - - -0.30338 -0.22042 0.125 31 -0.375 -9.1849e-17 0.125 31 - - -0.375 -9.1849e-17 0 30 -0.375 -9.1849e-17 0.125 31 - - -0.375 0 0 30 -0.5 0 0 6 - - -0.375 0 0 30 -0.30338 0.22042 0 30 - - -0.375 0 0 30 -0.375 0 0.125 31 - - -0.375 0 0.125 31 -0.5 0 0.125 32 - - -0.375 0 0.125 31 -0.30338 0.22042 0.125 31 - - -0.30338 0.22042 0 30 -0.40451 0.29389 0 6 - - -0.30338 0.22042 0 30 -0.30338 0.22042 0.125 31 - - -0.30338 0.22042 0.125 31 -0.40451 0.29389 0.125 32 - - -0.5 0 0 6 -0.40451 0.29389 0 6 - - -0.5 0 0 6 -0.5 0 0.125 32 - - -0.5 0 0.125 32 -0.40451 0.29389 0.125 32 - - -0.40451 0.29389 0 6 -0.40451 0.29389 0.125 32 - - -0.30338 0.22042 0 30 -0.40451 0.29389 0 6 - - -0.30338 0.22042 0 30 -0.11588 0.35665 0 30 - - -0.30338 0.22042 0 30 -0.30338 0.22042 0.125 31 - - -0.30338 0.22042 0.125 31 -0.40451 0.29389 0.125 32 - - -0.30338 0.22042 0.125 31 -0.11588 0.35665 0.125 31 - - -0.11588 0.35665 0 30 -0.15451 0.47553 0 6 - - -0.11588 0.35665 0 30 -0.11588 0.35665 0.125 31 - - -0.11588 0.35665 0.125 31 -0.15451 0.47553 0.125 32 - - -0.40451 0.29389 0 6 -0.15451 0.47553 0 6 - - -0.40451 0.29389 0 6 -0.40451 0.29389 0.125 32 - - -0.40451 0.29389 0.125 32 -0.15451 0.47553 0.125 32 - - -0.15451 0.47553 0 6 -0.15451 0.47553 0.125 32 - - -0.11588 0.35665 0 30 -0.15451 0.47553 0 6 - - -0.11588 0.35665 0 30 --0.11588 0.35665 0 30 - - -0.11588 0.35665 0 30 -0.11588 0.35665 0.125 31 - - -0.11588 0.35665 0.125 31 -0.15451 0.47553 0.125 32 - - -0.11588 0.35665 0.125 31 --0.11588 0.35665 0.125 31 - - --0.11588 0.35665 0 30 --0.15451 0.47553 0 6 - - --0.11588 0.35665 0 30 --0.11588 0.35665 0.125 31 - - --0.11588 0.35665 0.125 31 --0.15451 0.47553 0.125 32 - - -0.15451 0.47553 0 6 --0.15451 0.47553 0 6 - - -0.15451 0.47553 0 6 -0.15451 0.47553 0.125 32 - - -0.15451 0.47553 0.125 32 --0.15451 0.47553 0.125 32 - - --0.15451 0.47553 0 6 --0.15451 0.47553 0.125 32 - - --0.11588 0.35665 0 30 --0.15451 0.47553 0 6 - - --0.11588 0.35665 0 30 --0.30338 0.22042 0 30 - - --0.11588 0.35665 0 30 --0.11588 0.35665 0.125 31 - - --0.11588 0.35665 0.125 31 --0.15451 0.47553 0.125 32 - - --0.11588 0.35665 0.125 31 --0.30338 0.22042 0.125 31 - - --0.30338 0.22042 0 30 --0.40451 0.29389 0 6 - - --0.30338 0.22042 0 30 --0.30338 0.22042 0.125 31 - - --0.30338 0.22042 0.125 31 --0.40451 0.29389 0.125 32 - - --0.15451 0.47553 0 6 --0.40451 0.29389 0 6 - - --0.15451 0.47553 0 6 --0.15451 0.47553 0.125 32 - - --0.15451 0.47553 0.125 32 --0.40451 0.29389 0.125 32 - - --0.40451 0.29389 0 6 --0.40451 0.29389 0.125 32 - - --0.30338 0.22042 0 30 --0.40451 0.29389 0 6 - - --0.30338 0.22042 0 30 --0.375 4.5924e-17 0 30 - - --0.30338 0.22042 0 30 --0.30338 0.22042 0.125 31 - - --0.30338 0.22042 0.125 31 --0.40451 0.29389 0.125 32 - - --0.30338 0.22042 0.125 31 --0.375 4.5924e-17 0.125 31 - - --0.375 4.5924e-17 0 30 --0.5 6.1232e-17 0 6 - - --0.375 4.5924e-17 0 30 --0.375 4.5924e-17 0.125 31 - - --0.375 4.5924e-17 0.125 31 --0.5 6.1232e-17 0.125 32 - - --0.40451 0.29389 0 6 --0.5 6.1232e-17 0 6 - - --0.40451 0.29389 0 6 --0.40451 0.29389 0.125 32 - - --0.40451 0.29389 0.125 32 --0.5 6.1232e-17 0.125 32 - - --0.5 6.1232e-17 0 6 --0.5 6.1232e-17 0.125 32 - - --0.375 4.5924e-17 0 30 --0.5 6.1232e-17 0 6 - - --0.375 4.5924e-17 0 30 --0.30338 -0.22042 0 30 - - --0.375 4.5924e-17 0 30 --0.375 4.5924e-17 0.125 31 - - --0.375 4.5924e-17 0.125 31 --0.5 6.1232e-17 0.125 32 - - --0.375 4.5924e-17 0.125 31 --0.30338 -0.22042 0.125 31 - - --0.30338 -0.22042 0 30 --0.40451 -0.29389 0 6 - - --0.30338 -0.22042 0 30 --0.30338 -0.22042 0.125 31 - - --0.30338 -0.22042 0.125 31 --0.40451 -0.29389 0.125 32 - - --0.5 6.1232e-17 0 6 --0.40451 -0.29389 0 6 - - --0.5 6.1232e-17 0 6 --0.5 6.1232e-17 0.125 32 - - --0.5 6.1232e-17 0.125 32 --0.40451 -0.29389 0.125 32 - - --0.40451 -0.29389 0 6 --0.40451 -0.29389 0.125 32 - - --0.30338 -0.22042 0 30 --0.40451 -0.29389 0 6 - - --0.30338 -0.22042 0 30 --0.11588 -0.35665 0 30 - - --0.30338 -0.22042 0 30 --0.30338 -0.22042 0.125 31 - - --0.30338 -0.22042 0.125 31 --0.40451 -0.29389 0.125 32 - - --0.30338 -0.22042 0.125 31 --0.11588 -0.35665 0.125 31 - - --0.11588 -0.35665 0 30 --0.15451 -0.47553 0 6 - - --0.11588 -0.35665 0 30 --0.11588 -0.35665 0.125 31 - - --0.11588 -0.35665 0.125 31 --0.15451 -0.47553 0.125 32 - - --0.40451 -0.29389 0 6 --0.15451 -0.47553 0 6 - - --0.40451 -0.29389 0 6 --0.40451 -0.29389 0.125 32 - - --0.40451 -0.29389 0.125 32 --0.15451 -0.47553 0.125 32 - - --0.15451 -0.47553 0 6 --0.15451 -0.47553 0.125 32 - - --0.11588 -0.35665 0 30 --0.15451 -0.47553 0 6 - - --0.11588 -0.35665 0 30 -0.11588 -0.35665 0 30 - - --0.11588 -0.35665 0 30 --0.11588 -0.35665 0.125 31 - - --0.11588 -0.35665 0.125 31 --0.15451 -0.47553 0.125 32 - - --0.11588 -0.35665 0.125 31 -0.11588 -0.35665 0.125 31 - - -0.11588 -0.35665 0 30 -0.15451 -0.47553 0 6 - - -0.11588 -0.35665 0 30 -0.11588 -0.35665 0.125 31 - - -0.11588 -0.35665 0.125 31 -0.15451 -0.47553 0.125 32 - - --0.15451 -0.47553 0 6 -0.15451 -0.47553 0 6 - - --0.15451 -0.47553 0 6 --0.15451 -0.47553 0.125 32 - - --0.15451 -0.47553 0.125 32 -0.15451 -0.47553 0.125 32 - - -0.15451 -0.47553 0 6 -0.15451 -0.47553 0.125 32 - - -0.11588 -0.35665 0 30 -0.15451 -0.47553 0 6 - - -0.11588 -0.35665 0 30 -0.30338 -0.22042 0 30 - - -0.11588 -0.35665 0 30 -0.11588 -0.35665 0.125 31 - - -0.11588 -0.35665 0.125 31 -0.15451 -0.47553 0.125 32 - - -0.11588 -0.35665 0.125 31 -0.30338 -0.22042 0.125 31 - - -0.30338 -0.22042 0 30 -0.40451 -0.29389 0 6 - - -0.30338 -0.22042 0 30 -0.30338 -0.22042 0.125 31 - - -0.30338 -0.22042 0.125 31 -0.40451 -0.29389 0.125 32 - - -0.15451 -0.47553 0 6 -0.40451 -0.29389 0 6 - - -0.15451 -0.47553 0 6 -0.15451 -0.47553 0.125 32 - - -0.15451 -0.47553 0.125 32 -0.40451 -0.29389 0.125 32 - - -0.40451 -0.29389 0 6 -0.40451 -0.29389 0.125 32 - - -0.30338 -0.22042 0 30 -0.40451 -0.29389 0 6 - - -0.30338 -0.22042 0 30 -0.375 -9.1849e-17 0 30 - - -0.30338 -0.22042 0 30 -0.30338 -0.22042 0.125 31 - - -0.30338 -0.22042 0.125 31 -0.40451 -0.29389 0.125 32 - - -0.30338 -0.22042 0.125 31 -0.375 -9.1849e-17 0.125 31 - - -0.375 -9.1849e-17 0 30 -0.5 -1.2246e-16 0 6 - - -0.375 -9.1849e-17 0 30 -0.375 -9.1849e-17 0.125 31 - - -0.375 -9.1849e-17 0.125 31 -0.5 -1.2246e-16 0.125 32 - - -0.40451 -0.29389 0 6 -0.5 -1.2246e-16 0 6 - - -0.40451 -0.29389 0 6 -0.40451 -0.29389 0.125 32 - - -0.40451 -0.29389 0.125 32 -0.5 -1.2246e-16 0.125 32 - - -0.5 -1.2246e-16 0 6 -0.5 -1.2246e-16 0.125 32 - - -0.375 0 0.125 31 -0.5 0 0.125 32 - - -0.375 0 0.125 31 -0.30338 0.22042 0.125 31 - - -0.375 0 0.125 31 -0.375 0 0.25 33 - - -0.375 0 0.25 33 -0.5 0 0.25 1 - - -0.375 0 0.25 33 -0.30338 0.22042 0.25 33 - - -0.30338 0.22042 0.125 31 -0.40451 0.29389 0.125 32 - - -0.30338 0.22042 0.125 31 -0.30338 0.22042 0.25 33 - - -0.30338 0.22042 0.25 33 -0.40451 0.29389 0.25 1 - - -0.5 0 0.125 32 -0.40451 0.29389 0.125 32 - - -0.5 0 0.125 32 -0.5 0 0.25 1 - - -0.5 0 0.25 1 -0.40451 0.29389 0.25 1 - - -0.40451 0.29389 0.125 32 -0.40451 0.29389 0.25 1 - - -0.30338 0.22042 0.125 31 -0.40451 0.29389 0.125 32 - - -0.30338 0.22042 0.125 31 -0.11588 0.35665 0.125 31 - - -0.30338 0.22042 0.125 31 -0.30338 0.22042 0.25 33 - - -0.30338 0.22042 0.25 33 -0.40451 0.29389 0.25 1 - - -0.30338 0.22042 0.25 33 -0.11588 0.35665 0.25 33 - - -0.11588 0.35665 0.125 31 -0.15451 0.47553 0.125 32 - - -0.11588 0.35665 0.125 31 -0.11588 0.35665 0.25 33 - - -0.11588 0.35665 0.25 33 -0.15451 0.47553 0.25 1 - - -0.40451 0.29389 0.125 32 -0.15451 0.47553 0.125 32 - - -0.40451 0.29389 0.125 32 -0.40451 0.29389 0.25 1 - - -0.40451 0.29389 0.25 1 -0.15451 0.47553 0.25 1 - - -0.15451 0.47553 0.125 32 -0.15451 0.47553 0.25 1 - - -0.11588 0.35665 0.125 31 -0.15451 0.47553 0.125 32 - - -0.11588 0.35665 0.125 31 --0.11588 0.35665 0.125 31 - - -0.11588 0.35665 0.125 31 -0.11588 0.35665 0.25 33 - - -0.11588 0.35665 0.25 33 -0.15451 0.47553 0.25 1 - - -0.11588 0.35665 0.25 33 --0.11588 0.35665 0.25 33 - - --0.11588 0.35665 0.125 31 --0.15451 0.47553 0.125 32 - - --0.11588 0.35665 0.125 31 --0.11588 0.35665 0.25 33 - - --0.11588 0.35665 0.25 33 --0.15451 0.47553 0.25 1 - - -0.15451 0.47553 0.125 32 --0.15451 0.47553 0.125 32 - - -0.15451 0.47553 0.125 32 -0.15451 0.47553 0.25 1 - - -0.15451 0.47553 0.25 1 --0.15451 0.47553 0.25 1 - - --0.15451 0.47553 0.125 32 --0.15451 0.47553 0.25 1 - - --0.11588 0.35665 0.125 31 --0.15451 0.47553 0.125 32 - - --0.11588 0.35665 0.125 31 --0.30338 0.22042 0.125 31 - - --0.11588 0.35665 0.125 31 --0.11588 0.35665 0.25 33 - - --0.11588 0.35665 0.25 33 --0.15451 0.47553 0.25 1 - - --0.11588 0.35665 0.25 33 --0.30338 0.22042 0.25 33 - - --0.30338 0.22042 0.125 31 --0.40451 0.29389 0.125 32 - - --0.30338 0.22042 0.125 31 --0.30338 0.22042 0.25 33 - - --0.30338 0.22042 0.25 33 --0.40451 0.29389 0.25 1 - - --0.15451 0.47553 0.125 32 --0.40451 0.29389 0.125 32 - - --0.15451 0.47553 0.125 32 --0.15451 0.47553 0.25 1 - - --0.15451 0.47553 0.25 1 --0.40451 0.29389 0.25 1 - - --0.40451 0.29389 0.125 32 --0.40451 0.29389 0.25 1 - - --0.30338 0.22042 0.125 31 --0.40451 0.29389 0.125 32 - - --0.30338 0.22042 0.125 31 --0.375 4.5924e-17 0.125 31 - - --0.30338 0.22042 0.125 31 --0.30338 0.22042 0.25 33 - - --0.30338 0.22042 0.25 33 --0.40451 0.29389 0.25 1 - - --0.30338 0.22042 0.25 33 --0.375 4.5924e-17 0.25 33 - - --0.375 4.5924e-17 0.125 31 --0.5 6.1232e-17 0.125 32 - - --0.375 4.5924e-17 0.125 31 --0.375 4.5924e-17 0.25 33 - - --0.375 4.5924e-17 0.25 33 --0.5 6.1232e-17 0.25 1 - - --0.40451 0.29389 0.125 32 --0.5 6.1232e-17 0.125 32 - - --0.40451 0.29389 0.125 32 --0.40451 0.29389 0.25 1 - - --0.40451 0.29389 0.25 1 --0.5 6.1232e-17 0.25 1 - - --0.5 6.1232e-17 0.125 32 --0.5 6.1232e-17 0.25 1 - - --0.375 4.5924e-17 0.125 31 --0.5 6.1232e-17 0.125 32 - - --0.375 4.5924e-17 0.125 31 --0.30338 -0.22042 0.125 31 - - --0.375 4.5924e-17 0.125 31 --0.375 4.5924e-17 0.25 33 - - --0.375 4.5924e-17 0.25 33 --0.5 6.1232e-17 0.25 1 - - --0.375 4.5924e-17 0.25 33 --0.30338 -0.22042 0.25 33 - - --0.30338 -0.22042 0.125 31 --0.40451 -0.29389 0.125 32 - - --0.30338 -0.22042 0.125 31 --0.30338 -0.22042 0.25 33 - - --0.30338 -0.22042 0.25 33 --0.40451 -0.29389 0.25 1 - - --0.5 6.1232e-17 0.125 32 --0.40451 -0.29389 0.125 32 - - --0.5 6.1232e-17 0.125 32 --0.5 6.1232e-17 0.25 1 - - --0.5 6.1232e-17 0.25 1 --0.40451 -0.29389 0.25 1 - - --0.40451 -0.29389 0.125 32 --0.40451 -0.29389 0.25 1 - - --0.30338 -0.22042 0.125 31 --0.40451 -0.29389 0.125 32 - - --0.30338 -0.22042 0.125 31 --0.11588 -0.35665 0.125 31 - - --0.30338 -0.22042 0.125 31 --0.30338 -0.22042 0.25 33 - - --0.30338 -0.22042 0.25 33 --0.40451 -0.29389 0.25 1 - - --0.30338 -0.22042 0.25 33 --0.11588 -0.35665 0.25 33 - - --0.11588 -0.35665 0.125 31 --0.15451 -0.47553 0.125 32 - - --0.11588 -0.35665 0.125 31 --0.11588 -0.35665 0.25 33 - - --0.11588 -0.35665 0.25 33 --0.15451 -0.47553 0.25 1 - - --0.40451 -0.29389 0.125 32 --0.15451 -0.47553 0.125 32 - - --0.40451 -0.29389 0.125 32 --0.40451 -0.29389 0.25 1 - - --0.40451 -0.29389 0.25 1 --0.15451 -0.47553 0.25 1 - - --0.15451 -0.47553 0.125 32 --0.15451 -0.47553 0.25 1 - - --0.11588 -0.35665 0.125 31 --0.15451 -0.47553 0.125 32 - - --0.11588 -0.35665 0.125 31 -0.11588 -0.35665 0.125 31 - - --0.11588 -0.35665 0.125 31 --0.11588 -0.35665 0.25 33 - - --0.11588 -0.35665 0.25 33 --0.15451 -0.47553 0.25 1 - - --0.11588 -0.35665 0.25 33 -0.11588 -0.35665 0.25 33 - - -0.11588 -0.35665 0.125 31 -0.15451 -0.47553 0.125 32 - - -0.11588 -0.35665 0.125 31 -0.11588 -0.35665 0.25 33 - - -0.11588 -0.35665 0.25 33 -0.15451 -0.47553 0.25 1 - - --0.15451 -0.47553 0.125 32 -0.15451 -0.47553 0.125 32 - - --0.15451 -0.47553 0.125 32 --0.15451 -0.47553 0.25 1 - - --0.15451 -0.47553 0.25 1 -0.15451 -0.47553 0.25 1 - - -0.15451 -0.47553 0.125 32 -0.15451 -0.47553 0.25 1 - - -0.11588 -0.35665 0.125 31 -0.15451 -0.47553 0.125 32 - - -0.11588 -0.35665 0.125 31 -0.30338 -0.22042 0.125 31 - - -0.11588 -0.35665 0.125 31 -0.11588 -0.35665 0.25 33 - - -0.11588 -0.35665 0.25 33 -0.15451 -0.47553 0.25 1 - - -0.11588 -0.35665 0.25 33 -0.30338 -0.22042 0.25 33 - - -0.30338 -0.22042 0.125 31 -0.40451 -0.29389 0.125 32 - - -0.30338 -0.22042 0.125 31 -0.30338 -0.22042 0.25 33 - - -0.30338 -0.22042 0.25 33 -0.40451 -0.29389 0.25 1 - - -0.15451 -0.47553 0.125 32 -0.40451 -0.29389 0.125 32 - - -0.15451 -0.47553 0.125 32 -0.15451 -0.47553 0.25 1 - - -0.15451 -0.47553 0.25 1 -0.40451 -0.29389 0.25 1 - - -0.40451 -0.29389 0.125 32 -0.40451 -0.29389 0.25 1 - - -0.30338 -0.22042 0.125 31 -0.40451 -0.29389 0.125 32 - - -0.30338 -0.22042 0.125 31 -0.375 -9.1849e-17 0.125 31 - - -0.30338 -0.22042 0.125 31 -0.30338 -0.22042 0.25 33 - - -0.30338 -0.22042 0.25 33 -0.40451 -0.29389 0.25 1 - - -0.30338 -0.22042 0.25 33 -0.375 -9.1849e-17 0.25 33 - - -0.375 -9.1849e-17 0.125 31 -0.5 -1.2246e-16 0.125 32 - - -0.375 -9.1849e-17 0.125 31 -0.375 -9.1849e-17 0.25 33 - - -0.375 -9.1849e-17 0.25 33 -0.5 -1.2246e-16 0.25 1 - - -0.40451 -0.29389 0.125 32 -0.5 -1.2246e-16 0.125 32 - - -0.40451 -0.29389 0.125 32 -0.40451 -0.29389 0.25 1 - - -0.40451 -0.29389 0.25 1 -0.5 -1.2246e-16 0.25 1 - - -0.5 -1.2246e-16 0.125 32 -0.5 -1.2246e-16 0.25 1 - - -0.25 0 0.125 28 -0.375 0 0.125 31 - - -0.25 0 0.125 28 -0.20225 0.14695 0.125 28 - - -0.25 0 0.125 28 -0.25 0 0.25 0 - - -0.25 0 0.25 0 -0.375 0 0.25 33 - - -0.25 0 0.25 0 -0.20225 0.14695 0.25 0 - - -0.20225 0.14695 0.125 28 -0.30338 0.22042 0.125 31 - - -0.20225 0.14695 0.125 28 -0.20225 0.14695 0.25 0 - - -0.20225 0.14695 0.25 0 -0.30338 0.22042 0.25 33 - - -0.375 0 0.125 31 -0.30338 0.22042 0.125 31 - - -0.375 0 0.125 31 -0.375 0 0.25 33 - - -0.375 0 0.25 33 -0.30338 0.22042 0.25 33 - - -0.30338 0.22042 0.125 31 -0.30338 0.22042 0.25 33 - - -0.20225 0.14695 0.125 28 -0.30338 0.22042 0.125 31 - - -0.20225 0.14695 0.125 28 -0.077254 0.23776 0.125 28 - - -0.20225 0.14695 0.125 28 -0.20225 0.14695 0.25 0 - - -0.20225 0.14695 0.25 0 -0.30338 0.22042 0.25 33 - - -0.20225 0.14695 0.25 0 -0.077254 0.23776 0.25 0 - - -0.077254 0.23776 0.125 28 -0.11588 0.35665 0.125 31 - - -0.077254 0.23776 0.125 28 -0.077254 0.23776 0.25 0 - - -0.077254 0.23776 0.25 0 -0.11588 0.35665 0.25 33 - - -0.30338 0.22042 0.125 31 -0.11588 0.35665 0.125 31 - - -0.30338 0.22042 0.125 31 -0.30338 0.22042 0.25 33 - - -0.30338 0.22042 0.25 33 -0.11588 0.35665 0.25 33 - - -0.11588 0.35665 0.125 31 -0.11588 0.35665 0.25 33 - - -0.077254 0.23776 0.125 28 -0.11588 0.35665 0.125 31 - - -0.077254 0.23776 0.125 28 --0.077254 0.23776 0.125 28 - - -0.077254 0.23776 0.125 28 -0.077254 0.23776 0.25 0 - - -0.077254 0.23776 0.25 0 -0.11588 0.35665 0.25 33 - - -0.077254 0.23776 0.25 0 --0.077254 0.23776 0.25 0 - - --0.077254 0.23776 0.125 28 --0.11588 0.35665 0.125 31 - - --0.077254 0.23776 0.125 28 --0.077254 0.23776 0.25 0 - - --0.077254 0.23776 0.25 0 --0.11588 0.35665 0.25 33 - - -0.11588 0.35665 0.125 31 --0.11588 0.35665 0.125 31 - - -0.11588 0.35665 0.125 31 -0.11588 0.35665 0.25 33 - - -0.11588 0.35665 0.25 33 --0.11588 0.35665 0.25 33 - - --0.11588 0.35665 0.125 31 --0.11588 0.35665 0.25 33 - - --0.077254 0.23776 0.125 28 --0.11588 0.35665 0.125 31 - - --0.077254 0.23776 0.125 28 --0.20225 0.14695 0.125 28 - - --0.077254 0.23776 0.125 28 --0.077254 0.23776 0.25 0 - - --0.077254 0.23776 0.25 0 --0.11588 0.35665 0.25 33 - - --0.077254 0.23776 0.25 0 --0.20225 0.14695 0.25 0 - - --0.20225 0.14695 0.125 28 --0.30338 0.22042 0.125 31 - - --0.20225 0.14695 0.125 28 --0.20225 0.14695 0.25 0 - - --0.20225 0.14695 0.25 0 --0.30338 0.22042 0.25 33 - - --0.11588 0.35665 0.125 31 --0.30338 0.22042 0.125 31 - - --0.11588 0.35665 0.125 31 --0.11588 0.35665 0.25 33 - - --0.11588 0.35665 0.25 33 --0.30338 0.22042 0.25 33 - - --0.30338 0.22042 0.125 31 --0.30338 0.22042 0.25 33 - - --0.20225 0.14695 0.125 28 --0.30338 0.22042 0.125 31 - - --0.20225 0.14695 0.125 28 --0.25 3.0616e-17 0.125 28 - - --0.20225 0.14695 0.125 28 --0.20225 0.14695 0.25 0 - - --0.20225 0.14695 0.25 0 --0.30338 0.22042 0.25 33 - - --0.20225 0.14695 0.25 0 --0.25 3.0616e-17 0.25 0 - - --0.25 3.0616e-17 0.125 28 --0.375 4.5924e-17 0.125 31 - - --0.25 3.0616e-17 0.125 28 --0.25 3.0616e-17 0.25 0 - - --0.25 3.0616e-17 0.25 0 --0.375 4.5924e-17 0.25 33 - - --0.30338 0.22042 0.125 31 --0.375 4.5924e-17 0.125 31 - - --0.30338 0.22042 0.125 31 --0.30338 0.22042 0.25 33 - - --0.30338 0.22042 0.25 33 --0.375 4.5924e-17 0.25 33 - - --0.375 4.5924e-17 0.125 31 --0.375 4.5924e-17 0.25 33 - - --0.25 3.0616e-17 0.125 28 --0.375 4.5924e-17 0.125 31 - - --0.25 3.0616e-17 0.125 28 --0.20225 -0.14695 0.125 28 - - --0.25 3.0616e-17 0.125 28 --0.25 3.0616e-17 0.25 0 - - --0.25 3.0616e-17 0.25 0 --0.375 4.5924e-17 0.25 33 - - --0.25 3.0616e-17 0.25 0 --0.20225 -0.14695 0.25 0 - - --0.20225 -0.14695 0.125 28 --0.30338 -0.22042 0.125 31 - - --0.20225 -0.14695 0.125 28 --0.20225 -0.14695 0.25 0 - - --0.20225 -0.14695 0.25 0 --0.30338 -0.22042 0.25 33 - - --0.375 4.5924e-17 0.125 31 --0.30338 -0.22042 0.125 31 - - --0.375 4.5924e-17 0.125 31 --0.375 4.5924e-17 0.25 33 - - --0.375 4.5924e-17 0.25 33 --0.30338 -0.22042 0.25 33 - - --0.30338 -0.22042 0.125 31 --0.30338 -0.22042 0.25 33 - - --0.20225 -0.14695 0.125 28 --0.30338 -0.22042 0.125 31 - - --0.20225 -0.14695 0.125 28 --0.077254 -0.23776 0.125 28 - - --0.20225 -0.14695 0.125 28 --0.20225 -0.14695 0.25 0 - - --0.20225 -0.14695 0.25 0 --0.30338 -0.22042 0.25 33 - - --0.20225 -0.14695 0.25 0 --0.077254 -0.23776 0.25 0 - - --0.077254 -0.23776 0.125 28 --0.11588 -0.35665 0.125 31 - - --0.077254 -0.23776 0.125 28 --0.077254 -0.23776 0.25 0 - - --0.077254 -0.23776 0.25 0 --0.11588 -0.35665 0.25 33 - - --0.30338 -0.22042 0.125 31 --0.11588 -0.35665 0.125 31 - - --0.30338 -0.22042 0.125 31 --0.30338 -0.22042 0.25 33 - - --0.30338 -0.22042 0.25 33 --0.11588 -0.35665 0.25 33 - - --0.11588 -0.35665 0.125 31 --0.11588 -0.35665 0.25 33 - - --0.077254 -0.23776 0.125 28 --0.11588 -0.35665 0.125 31 - - --0.077254 -0.23776 0.125 28 -0.077254 -0.23776 0.125 28 - - --0.077254 -0.23776 0.125 28 --0.077254 -0.23776 0.25 0 - - --0.077254 -0.23776 0.25 0 --0.11588 -0.35665 0.25 33 - - --0.077254 -0.23776 0.25 0 -0.077254 -0.23776 0.25 0 - - -0.077254 -0.23776 0.125 28 -0.11588 -0.35665 0.125 31 - - -0.077254 -0.23776 0.125 28 -0.077254 -0.23776 0.25 0 - - -0.077254 -0.23776 0.25 0 -0.11588 -0.35665 0.25 33 - - --0.11588 -0.35665 0.125 31 -0.11588 -0.35665 0.125 31 - - --0.11588 -0.35665 0.125 31 --0.11588 -0.35665 0.25 33 - - --0.11588 -0.35665 0.25 33 -0.11588 -0.35665 0.25 33 - - -0.11588 -0.35665 0.125 31 -0.11588 -0.35665 0.25 33 - - -0.077254 -0.23776 0.125 28 -0.11588 -0.35665 0.125 31 - - -0.077254 -0.23776 0.125 28 -0.20225 -0.14695 0.125 28 - - -0.077254 -0.23776 0.125 28 -0.077254 -0.23776 0.25 0 - - -0.077254 -0.23776 0.25 0 -0.11588 -0.35665 0.25 33 - - -0.077254 -0.23776 0.25 0 -0.20225 -0.14695 0.25 0 - - -0.20225 -0.14695 0.125 28 -0.30338 -0.22042 0.125 31 - - -0.20225 -0.14695 0.125 28 -0.20225 -0.14695 0.25 0 - - -0.20225 -0.14695 0.25 0 -0.30338 -0.22042 0.25 33 - - -0.11588 -0.35665 0.125 31 -0.30338 -0.22042 0.125 31 - - -0.11588 -0.35665 0.125 31 -0.11588 -0.35665 0.25 33 - - -0.11588 -0.35665 0.25 33 -0.30338 -0.22042 0.25 33 - - -0.30338 -0.22042 0.125 31 -0.30338 -0.22042 0.25 33 - - -0.20225 -0.14695 0.125 28 -0.30338 -0.22042 0.125 31 - - -0.20225 -0.14695 0.125 28 -0.25 -6.1232e-17 0.125 28 - - -0.20225 -0.14695 0.125 28 -0.20225 -0.14695 0.25 0 - - -0.20225 -0.14695 0.25 0 -0.30338 -0.22042 0.25 33 - - -0.20225 -0.14695 0.25 0 -0.25 -6.1232e-17 0.25 0 - - -0.25 -6.1232e-17 0.125 28 -0.375 -9.1849e-17 0.125 31 - - -0.25 -6.1232e-17 0.125 28 -0.25 -6.1232e-17 0.25 0 - - -0.25 -6.1232e-17 0.25 0 -0.375 -9.1849e-17 0.25 33 - - -0.30338 -0.22042 0.125 31 -0.375 -9.1849e-17 0.125 31 - - -0.30338 -0.22042 0.125 31 -0.30338 -0.22042 0.25 33 - - -0.30338 -0.22042 0.25 33 -0.375 -9.1849e-17 0.25 33 - - -0.375 -9.1849e-17 0.125 31 -0.375 -9.1849e-17 0.25 33 - - -# This file was generated by the deal.II library. -# Date = 2000/9/19 - -# -# For a description of the UCD format see the AVS Developer's guide. -# -1760 220 1 0 0 -1 0.25 0 0.25 -2 0.25 0 0.5 -3 0.20225 0.14695 0.25 -4 0.20225 0.14695 0.5 -5 0.5 0 0.25 -6 0.5 0 0.5 -7 0.40451 0.29389 0.25 -8 0.40451 0.29389 0.5 -9 0.20225 0.14695 0.25 -10 0.20225 0.14695 0.5 -11 0.077254 0.23776 0.25 -12 0.077254 0.23776 0.5 -13 0.40451 0.29389 0.25 -14 0.40451 0.29389 0.5 -15 0.15451 0.47553 0.25 -16 0.15451 0.47553 0.5 -17 0.077254 0.23776 0.25 -18 0.077254 0.23776 0.5 -19 -0.077254 0.23776 0.25 -20 -0.077254 0.23776 0.5 -21 0.15451 0.47553 0.25 -22 0.15451 0.47553 0.5 -23 -0.15451 0.47553 0.25 -24 -0.15451 0.47553 0.5 -25 -0.077254 0.23776 0.25 -26 -0.077254 0.23776 0.5 -27 -0.20225 0.14695 0.25 -28 -0.20225 0.14695 0.5 -29 -0.15451 0.47553 0.25 -30 -0.15451 0.47553 0.5 -31 -0.40451 0.29389 0.25 -32 -0.40451 0.29389 0.5 -33 -0.20225 0.14695 0.25 -34 -0.20225 0.14695 0.5 -35 -0.25 3.0616e-17 0.25 -36 -0.25 3.0616e-17 0.5 -37 -0.40451 0.29389 0.25 -38 -0.40451 0.29389 0.5 -39 -0.5 6.1232e-17 0.25 -40 -0.5 6.1232e-17 0.5 -41 -0.25 3.0616e-17 0.25 -42 -0.25 3.0616e-17 0.5 -43 -0.20225 -0.14695 0.25 -44 -0.20225 -0.14695 0.5 -45 -0.5 6.1232e-17 0.25 -46 -0.5 6.1232e-17 0.5 -47 -0.40451 -0.29389 0.25 -48 -0.40451 -0.29389 0.5 -49 -0.20225 -0.14695 0.25 -50 -0.20225 -0.14695 0.5 -51 -0.077254 -0.23776 0.25 -52 -0.077254 -0.23776 0.5 -53 -0.40451 -0.29389 0.25 -54 -0.40451 -0.29389 0.5 -55 -0.15451 -0.47553 0.25 -56 -0.15451 -0.47553 0.5 -57 -0.077254 -0.23776 0.25 -58 -0.077254 -0.23776 0.5 -59 0.077254 -0.23776 0.25 -60 0.077254 -0.23776 0.5 -61 -0.15451 -0.47553 0.25 -62 -0.15451 -0.47553 0.5 -63 0.15451 -0.47553 0.25 -64 0.15451 -0.47553 0.5 -65 0.077254 -0.23776 0.25 -66 0.077254 -0.23776 0.5 -67 0.20225 -0.14695 0.25 -68 0.20225 -0.14695 0.5 -69 0.15451 -0.47553 0.25 -70 0.15451 -0.47553 0.5 -71 0.40451 -0.29389 0.25 -72 0.40451 -0.29389 0.5 -73 0.20225 -0.14695 0.25 -74 0.20225 -0.14695 0.5 -75 0.25 -6.1232e-17 0.25 -76 0.25 -6.1232e-17 0.5 -77 0.40451 -0.29389 0.25 -78 0.40451 -0.29389 0.5 -79 0.5 -1.2246e-16 0.25 -80 0.5 -1.2246e-16 0.5 -81 0 0 0.25 -82 0 0 0.5 -83 0 0 0.25 -84 0 0 0.5 -85 0.25 0 0.25 -86 0.25 0 0.5 -87 0.20225 0.14695 0.25 -88 0.20225 0.14695 0.5 -89 0 0 0.25 -90 0 0 0.5 -91 0 0 0.25 -92 0 0 0.5 -93 0.20225 0.14695 0.25 -94 0.20225 0.14695 0.5 -95 0.077254 0.23776 0.25 -96 0.077254 0.23776 0.5 -97 0 0 0.25 -98 0 0 0.5 -99 0 0 0.25 -100 0 0 0.5 -101 0.077254 0.23776 0.25 -102 0.077254 0.23776 0.5 -103 -0.077254 0.23776 0.25 -104 -0.077254 0.23776 0.5 -105 -0 0 0.25 -106 -0 0 0.5 -107 -0 0 0.25 -108 -0 0 0.5 -109 -0.077254 0.23776 0.25 -110 -0.077254 0.23776 0.5 -111 -0.20225 0.14695 0.25 -112 -0.20225 0.14695 0.5 -113 -0 0 0.25 -114 -0 0 0.5 -115 -0 0 0.25 -116 -0 0 0.5 -117 -0.20225 0.14695 0.25 -118 -0.20225 0.14695 0.5 -119 -0.25 3.0616e-17 0.25 -120 -0.25 3.0616e-17 0.5 -121 -0 0 0.25 -122 -0 0 0.5 -123 -0 0 0.25 -124 -0 0 0.5 -125 -0.25 3.0616e-17 0.25 -126 -0.25 3.0616e-17 0.5 -127 -0.20225 -0.14695 0.25 -128 -0.20225 -0.14695 0.5 -129 -0 -0 0.25 -130 -0 -0 0.5 -131 -0 -0 0.25 -132 -0 -0 0.5 -133 -0.20225 -0.14695 0.25 -134 -0.20225 -0.14695 0.5 -135 -0.077254 -0.23776 0.25 -136 -0.077254 -0.23776 0.5 -137 0 -0 0.25 -138 0 -0 0.5 -139 0 -0 0.25 -140 0 -0 0.5 -141 -0.077254 -0.23776 0.25 -142 -0.077254 -0.23776 0.5 -143 0.077254 -0.23776 0.25 -144 0.077254 -0.23776 0.5 -145 0 -0 0.25 -146 0 -0 0.5 -147 0 -0 0.25 -148 0 -0 0.5 -149 0.077254 -0.23776 0.25 -150 0.077254 -0.23776 0.5 -151 0.20225 -0.14695 0.25 -152 0.20225 -0.14695 0.5 -153 0 -0 0.25 -154 0 -0 0.5 -155 0 -0 0.25 -156 0 -0 0.5 -157 0.20225 -0.14695 0.25 -158 0.20225 -0.14695 0.5 -159 0.25 -6.1232e-17 0.25 -160 0.25 -6.1232e-17 0.5 -161 0.5 0 0 -162 0.5 0 0.25 -163 0.40451 0.29389 0 -164 0.40451 0.29389 0.25 -165 0.75 0 0 -166 0.75 0 0.25 -167 0.60676 0.44084 0 -168 0.60676 0.44084 0.25 -169 0.40451 0.29389 0 -170 0.40451 0.29389 0.25 -171 0.15451 0.47553 0 -172 0.15451 0.47553 0.25 -173 0.60676 0.44084 0 -174 0.60676 0.44084 0.25 -175 0.23176 0.71329 0 -176 0.23176 0.71329 0.25 -177 0.15451 0.47553 0 -178 0.15451 0.47553 0.25 -179 -0.15451 0.47553 0 -180 -0.15451 0.47553 0.25 -181 0.23176 0.71329 0 -182 0.23176 0.71329 0.25 -183 -0.23176 0.71329 0 -184 -0.23176 0.71329 0.25 -185 -0.15451 0.47553 0 -186 -0.15451 0.47553 0.25 -187 -0.40451 0.29389 0 -188 -0.40451 0.29389 0.25 -189 -0.23176 0.71329 0 -190 -0.23176 0.71329 0.25 -191 -0.60676 0.44084 0 -192 -0.60676 0.44084 0.25 -193 -0.40451 0.29389 0 -194 -0.40451 0.29389 0.25 -195 -0.5 6.1232e-17 0 -196 -0.5 6.1232e-17 0.25 -197 -0.60676 0.44084 0 -198 -0.60676 0.44084 0.25 -199 -0.75 9.1849e-17 0 -200 -0.75 9.1849e-17 0.25 -201 -0.5 6.1232e-17 0 -202 -0.5 6.1232e-17 0.25 -203 -0.40451 -0.29389 0 -204 -0.40451 -0.29389 0.25 -205 -0.75 9.1849e-17 0 -206 -0.75 9.1849e-17 0.25 -207 -0.60676 -0.44084 0 -208 -0.60676 -0.44084 0.25 -209 -0.40451 -0.29389 0 -210 -0.40451 -0.29389 0.25 -211 -0.15451 -0.47553 0 -212 -0.15451 -0.47553 0.25 -213 -0.60676 -0.44084 0 -214 -0.60676 -0.44084 0.25 -215 -0.23176 -0.71329 0 -216 -0.23176 -0.71329 0.25 -217 -0.15451 -0.47553 0 -218 -0.15451 -0.47553 0.25 -219 0.15451 -0.47553 0 -220 0.15451 -0.47553 0.25 -221 -0.23176 -0.71329 0 -222 -0.23176 -0.71329 0.25 -223 0.23176 -0.71329 0 -224 0.23176 -0.71329 0.25 -225 0.15451 -0.47553 0 -226 0.15451 -0.47553 0.25 -227 0.40451 -0.29389 0 -228 0.40451 -0.29389 0.25 -229 0.23176 -0.71329 0 -230 0.23176 -0.71329 0.25 -231 0.60676 -0.44084 0 -232 0.60676 -0.44084 0.25 -233 0.40451 -0.29389 0 -234 0.40451 -0.29389 0.25 -235 0.5 -1.2246e-16 0 -236 0.5 -1.2246e-16 0.25 -237 0.60676 -0.44084 0 -238 0.60676 -0.44084 0.25 -239 0.75 -1.837e-16 0 -240 0.75 -1.837e-16 0.25 -241 0.75 0 0 -242 0.75 0 0.25 -243 0.60676 0.44084 0 -244 0.60676 0.44084 0.25 -245 1 0 0 -246 1 0 0.25 -247 0.80902 0.58779 0 -248 0.80902 0.58779 0.25 -249 0.60676 0.44084 0 -250 0.60676 0.44084 0.25 -251 0.23176 0.71329 0 -252 0.23176 0.71329 0.25 -253 0.80902 0.58779 0 -254 0.80902 0.58779 0.25 -255 0.30902 0.95106 0 -256 0.30902 0.95106 0.25 -257 0.23176 0.71329 0 -258 0.23176 0.71329 0.25 -259 -0.23176 0.71329 0 -260 -0.23176 0.71329 0.25 -261 0.30902 0.95106 0 -262 0.30902 0.95106 0.25 -263 -0.30902 0.95106 0 -264 -0.30902 0.95106 0.25 -265 -0.23176 0.71329 0 -266 -0.23176 0.71329 0.25 -267 -0.60676 0.44084 0 -268 -0.60676 0.44084 0.25 -269 -0.30902 0.95106 0 -270 -0.30902 0.95106 0.25 -271 -0.80902 0.58779 0 -272 -0.80902 0.58779 0.25 -273 -0.60676 0.44084 0 -274 -0.60676 0.44084 0.25 -275 -0.75 9.1849e-17 0 -276 -0.75 9.1849e-17 0.25 -277 -0.80902 0.58779 0 -278 -0.80902 0.58779 0.25 -279 -1 1.2246e-16 0 -280 -1 1.2246e-16 0.25 -281 -0.75 9.1849e-17 0 -282 -0.75 9.1849e-17 0.25 -283 -0.60676 -0.44084 0 -284 -0.60676 -0.44084 0.25 -285 -1 1.2246e-16 0 -286 -1 1.2246e-16 0.25 -287 -0.80902 -0.58779 0 -288 -0.80902 -0.58779 0.25 -289 -0.60676 -0.44084 0 -290 -0.60676 -0.44084 0.25 -291 -0.23176 -0.71329 0 -292 -0.23176 -0.71329 0.25 -293 -0.80902 -0.58779 0 -294 -0.80902 -0.58779 0.25 -295 -0.30902 -0.95106 0 -296 -0.30902 -0.95106 0.25 -297 -0.23176 -0.71329 0 -298 -0.23176 -0.71329 0.25 -299 0.23176 -0.71329 0 -300 0.23176 -0.71329 0.25 -301 -0.30902 -0.95106 0 -302 -0.30902 -0.95106 0.25 -303 0.30902 -0.95106 0 -304 0.30902 -0.95106 0.25 -305 0.23176 -0.71329 0 -306 0.23176 -0.71329 0.25 -307 0.60676 -0.44084 0 -308 0.60676 -0.44084 0.25 -309 0.30902 -0.95106 0 -310 0.30902 -0.95106 0.25 -311 0.80902 -0.58779 0 -312 0.80902 -0.58779 0.25 -313 0.60676 -0.44084 0 -314 0.60676 -0.44084 0.25 -315 0.75 -1.837e-16 0 -316 0.75 -1.837e-16 0.25 -317 0.80902 -0.58779 0 -318 0.80902 -0.58779 0.25 -319 1 -2.4493e-16 0 -320 1 -2.4493e-16 0.25 -321 0.75 0 0.25 -322 0.75 0 0.5 -323 0.60676 0.44084 0.25 -324 0.60676 0.44084 0.5 -325 1 0 0.25 -326 1 0 0.5 -327 0.80902 0.58779 0.25 -328 0.80902 0.58779 0.5 -329 0.60676 0.44084 0.25 -330 0.60676 0.44084 0.5 -331 0.23176 0.71329 0.25 -332 0.23176 0.71329 0.5 -333 0.80902 0.58779 0.25 -334 0.80902 0.58779 0.5 -335 0.30902 0.95106 0.25 -336 0.30902 0.95106 0.5 -337 0.23176 0.71329 0.25 -338 0.23176 0.71329 0.5 -339 -0.23176 0.71329 0.25 -340 -0.23176 0.71329 0.5 -341 0.30902 0.95106 0.25 -342 0.30902 0.95106 0.5 -343 -0.30902 0.95106 0.25 -344 -0.30902 0.95106 0.5 -345 -0.23176 0.71329 0.25 -346 -0.23176 0.71329 0.5 -347 -0.60676 0.44084 0.25 -348 -0.60676 0.44084 0.5 -349 -0.30902 0.95106 0.25 -350 -0.30902 0.95106 0.5 -351 -0.80902 0.58779 0.25 -352 -0.80902 0.58779 0.5 -353 -0.60676 0.44084 0.25 -354 -0.60676 0.44084 0.5 -355 -0.75 9.1849e-17 0.25 -356 -0.75 9.1849e-17 0.5 -357 -0.80902 0.58779 0.25 -358 -0.80902 0.58779 0.5 -359 -1 1.2246e-16 0.25 -360 -1 1.2246e-16 0.5 -361 -0.75 9.1849e-17 0.25 -362 -0.75 9.1849e-17 0.5 -363 -0.60676 -0.44084 0.25 -364 -0.60676 -0.44084 0.5 -365 -1 1.2246e-16 0.25 -366 -1 1.2246e-16 0.5 -367 -0.80902 -0.58779 0.25 -368 -0.80902 -0.58779 0.5 -369 -0.60676 -0.44084 0.25 -370 -0.60676 -0.44084 0.5 -371 -0.23176 -0.71329 0.25 -372 -0.23176 -0.71329 0.5 -373 -0.80902 -0.58779 0.25 -374 -0.80902 -0.58779 0.5 -375 -0.30902 -0.95106 0.25 -376 -0.30902 -0.95106 0.5 -377 -0.23176 -0.71329 0.25 -378 -0.23176 -0.71329 0.5 -379 0.23176 -0.71329 0.25 -380 0.23176 -0.71329 0.5 -381 -0.30902 -0.95106 0.25 -382 -0.30902 -0.95106 0.5 -383 0.30902 -0.95106 0.25 -384 0.30902 -0.95106 0.5 -385 0.23176 -0.71329 0.25 -386 0.23176 -0.71329 0.5 -387 0.60676 -0.44084 0.25 -388 0.60676 -0.44084 0.5 -389 0.30902 -0.95106 0.25 -390 0.30902 -0.95106 0.5 -391 0.80902 -0.58779 0.25 -392 0.80902 -0.58779 0.5 -393 0.60676 -0.44084 0.25 -394 0.60676 -0.44084 0.5 -395 0.75 -1.837e-16 0.25 -396 0.75 -1.837e-16 0.5 -397 0.80902 -0.58779 0.25 -398 0.80902 -0.58779 0.5 -399 1 -2.4493e-16 0.25 -400 1 -2.4493e-16 0.5 -401 0.5 0 0.25 -402 0.5 0 0.5 -403 0.40451 0.29389 0.25 -404 0.40451 0.29389 0.5 -405 0.75 0 0.25 -406 0.75 0 0.5 -407 0.60676 0.44084 0.25 -408 0.60676 0.44084 0.5 -409 0.40451 0.29389 0.25 -410 0.40451 0.29389 0.5 -411 0.15451 0.47553 0.25 -412 0.15451 0.47553 0.5 -413 0.60676 0.44084 0.25 -414 0.60676 0.44084 0.5 -415 0.23176 0.71329 0.25 -416 0.23176 0.71329 0.5 -417 0.15451 0.47553 0.25 -418 0.15451 0.47553 0.5 -419 -0.15451 0.47553 0.25 -420 -0.15451 0.47553 0.5 -421 0.23176 0.71329 0.25 -422 0.23176 0.71329 0.5 -423 -0.23176 0.71329 0.25 -424 -0.23176 0.71329 0.5 -425 -0.15451 0.47553 0.25 -426 -0.15451 0.47553 0.5 -427 -0.40451 0.29389 0.25 -428 -0.40451 0.29389 0.5 -429 -0.23176 0.71329 0.25 -430 -0.23176 0.71329 0.5 -431 -0.60676 0.44084 0.25 -432 -0.60676 0.44084 0.5 -433 -0.40451 0.29389 0.25 -434 -0.40451 0.29389 0.5 -435 -0.5 6.1232e-17 0.25 -436 -0.5 6.1232e-17 0.5 -437 -0.60676 0.44084 0.25 -438 -0.60676 0.44084 0.5 -439 -0.75 9.1849e-17 0.25 -440 -0.75 9.1849e-17 0.5 -441 -0.5 6.1232e-17 0.25 -442 -0.5 6.1232e-17 0.5 -443 -0.40451 -0.29389 0.25 -444 -0.40451 -0.29389 0.5 -445 -0.75 9.1849e-17 0.25 -446 -0.75 9.1849e-17 0.5 -447 -0.60676 -0.44084 0.25 -448 -0.60676 -0.44084 0.5 -449 -0.40451 -0.29389 0.25 -450 -0.40451 -0.29389 0.5 -451 -0.15451 -0.47553 0.25 -452 -0.15451 -0.47553 0.5 -453 -0.60676 -0.44084 0.25 -454 -0.60676 -0.44084 0.5 -455 -0.23176 -0.71329 0.25 -456 -0.23176 -0.71329 0.5 -457 -0.15451 -0.47553 0.25 -458 -0.15451 -0.47553 0.5 -459 0.15451 -0.47553 0.25 -460 0.15451 -0.47553 0.5 -461 -0.23176 -0.71329 0.25 -462 -0.23176 -0.71329 0.5 -463 0.23176 -0.71329 0.25 -464 0.23176 -0.71329 0.5 -465 0.15451 -0.47553 0.25 -466 0.15451 -0.47553 0.5 -467 0.40451 -0.29389 0.25 -468 0.40451 -0.29389 0.5 -469 0.23176 -0.71329 0.25 -470 0.23176 -0.71329 0.5 -471 0.60676 -0.44084 0.25 -472 0.60676 -0.44084 0.5 -473 0.40451 -0.29389 0.25 -474 0.40451 -0.29389 0.5 -475 0.5 -1.2246e-16 0.25 -476 0.5 -1.2246e-16 0.5 -477 0.60676 -0.44084 0.25 -478 0.60676 -0.44084 0.5 -479 0.75 -1.837e-16 0.25 -480 0.75 -1.837e-16 0.5 -481 0.5 0 0.5 -482 0.5 0 0.75 -483 0.40451 0.29389 0.5 -484 0.40451 0.29389 0.75 -485 0.75 0 0.5 -486 0.75 0 0.75 -487 0.60676 0.44084 0.5 -488 0.60676 0.44084 0.75 -489 0.40451 0.29389 0.5 -490 0.40451 0.29389 0.75 -491 0.15451 0.47553 0.5 -492 0.15451 0.47553 0.75 -493 0.60676 0.44084 0.5 -494 0.60676 0.44084 0.75 -495 0.23176 0.71329 0.5 -496 0.23176 0.71329 0.75 -497 0.15451 0.47553 0.5 -498 0.15451 0.47553 0.75 -499 -0.15451 0.47553 0.5 -500 -0.15451 0.47553 0.75 -501 0.23176 0.71329 0.5 -502 0.23176 0.71329 0.75 -503 -0.23176 0.71329 0.5 -504 -0.23176 0.71329 0.75 -505 -0.15451 0.47553 0.5 -506 -0.15451 0.47553 0.75 -507 -0.40451 0.29389 0.5 -508 -0.40451 0.29389 0.75 -509 -0.23176 0.71329 0.5 -510 -0.23176 0.71329 0.75 -511 -0.60676 0.44084 0.5 -512 -0.60676 0.44084 0.75 -513 -0.40451 0.29389 0.5 -514 -0.40451 0.29389 0.75 -515 -0.5 6.1232e-17 0.5 -516 -0.5 6.1232e-17 0.75 -517 -0.60676 0.44084 0.5 -518 -0.60676 0.44084 0.75 -519 -0.75 9.1849e-17 0.5 -520 -0.75 9.1849e-17 0.75 -521 -0.5 6.1232e-17 0.5 -522 -0.5 6.1232e-17 0.75 -523 -0.40451 -0.29389 0.5 -524 -0.40451 -0.29389 0.75 -525 -0.75 9.1849e-17 0.5 -526 -0.75 9.1849e-17 0.75 -527 -0.60676 -0.44084 0.5 -528 -0.60676 -0.44084 0.75 -529 -0.40451 -0.29389 0.5 -530 -0.40451 -0.29389 0.75 -531 -0.15451 -0.47553 0.5 -532 -0.15451 -0.47553 0.75 -533 -0.60676 -0.44084 0.5 -534 -0.60676 -0.44084 0.75 -535 -0.23176 -0.71329 0.5 -536 -0.23176 -0.71329 0.75 -537 -0.15451 -0.47553 0.5 -538 -0.15451 -0.47553 0.75 -539 0.15451 -0.47553 0.5 -540 0.15451 -0.47553 0.75 -541 -0.23176 -0.71329 0.5 -542 -0.23176 -0.71329 0.75 -543 0.23176 -0.71329 0.5 -544 0.23176 -0.71329 0.75 -545 0.15451 -0.47553 0.5 -546 0.15451 -0.47553 0.75 -547 0.40451 -0.29389 0.5 -548 0.40451 -0.29389 0.75 -549 0.23176 -0.71329 0.5 -550 0.23176 -0.71329 0.75 -551 0.60676 -0.44084 0.5 -552 0.60676 -0.44084 0.75 -553 0.40451 -0.29389 0.5 -554 0.40451 -0.29389 0.75 -555 0.5 -1.2246e-16 0.5 -556 0.5 -1.2246e-16 0.75 -557 0.60676 -0.44084 0.5 -558 0.60676 -0.44084 0.75 -559 0.75 -1.837e-16 0.5 -560 0.75 -1.837e-16 0.75 -561 0.75 0 0.5 -562 0.75 0 0.75 -563 0.60676 0.44084 0.5 -564 0.60676 0.44084 0.75 -565 1 0 0.5 -566 1 0 0.75 -567 0.80902 0.58779 0.5 -568 0.80902 0.58779 0.75 -569 0.60676 0.44084 0.5 -570 0.60676 0.44084 0.75 -571 0.23176 0.71329 0.5 -572 0.23176 0.71329 0.75 -573 0.80902 0.58779 0.5 -574 0.80902 0.58779 0.75 -575 0.30902 0.95106 0.5 -576 0.30902 0.95106 0.75 -577 0.23176 0.71329 0.5 -578 0.23176 0.71329 0.75 -579 -0.23176 0.71329 0.5 -580 -0.23176 0.71329 0.75 -581 0.30902 0.95106 0.5 -582 0.30902 0.95106 0.75 -583 -0.30902 0.95106 0.5 -584 -0.30902 0.95106 0.75 -585 -0.23176 0.71329 0.5 -586 -0.23176 0.71329 0.75 -587 -0.60676 0.44084 0.5 -588 -0.60676 0.44084 0.75 -589 -0.30902 0.95106 0.5 -590 -0.30902 0.95106 0.75 -591 -0.80902 0.58779 0.5 -592 -0.80902 0.58779 0.75 -593 -0.60676 0.44084 0.5 -594 -0.60676 0.44084 0.75 -595 -0.75 9.1849e-17 0.5 -596 -0.75 9.1849e-17 0.75 -597 -0.80902 0.58779 0.5 -598 -0.80902 0.58779 0.75 -599 -1 1.2246e-16 0.5 -600 -1 1.2246e-16 0.75 -601 -0.75 9.1849e-17 0.5 -602 -0.75 9.1849e-17 0.75 -603 -0.60676 -0.44084 0.5 -604 -0.60676 -0.44084 0.75 -605 -1 1.2246e-16 0.5 -606 -1 1.2246e-16 0.75 -607 -0.80902 -0.58779 0.5 -608 -0.80902 -0.58779 0.75 -609 -0.60676 -0.44084 0.5 -610 -0.60676 -0.44084 0.75 -611 -0.23176 -0.71329 0.5 -612 -0.23176 -0.71329 0.75 -613 -0.80902 -0.58779 0.5 -614 -0.80902 -0.58779 0.75 -615 -0.30902 -0.95106 0.5 -616 -0.30902 -0.95106 0.75 -617 -0.23176 -0.71329 0.5 -618 -0.23176 -0.71329 0.75 -619 0.23176 -0.71329 0.5 -620 0.23176 -0.71329 0.75 -621 -0.30902 -0.95106 0.5 -622 -0.30902 -0.95106 0.75 -623 0.30902 -0.95106 0.5 -624 0.30902 -0.95106 0.75 -625 0.23176 -0.71329 0.5 -626 0.23176 -0.71329 0.75 -627 0.60676 -0.44084 0.5 -628 0.60676 -0.44084 0.75 -629 0.30902 -0.95106 0.5 -630 0.30902 -0.95106 0.75 -631 0.80902 -0.58779 0.5 -632 0.80902 -0.58779 0.75 -633 0.60676 -0.44084 0.5 -634 0.60676 -0.44084 0.75 -635 0.75 -1.837e-16 0.5 -636 0.75 -1.837e-16 0.75 -637 0.80902 -0.58779 0.5 -638 0.80902 -0.58779 0.75 -639 1 -2.4493e-16 0.5 -640 1 -2.4493e-16 0.75 -641 0.75 0 0.75 -642 0.75 0 1 -643 0.60676 0.44084 0.75 -644 0.60676 0.44084 1 -645 1 0 0.75 -646 1 0 1 -647 0.80902 0.58779 0.75 -648 0.80902 0.58779 1 -649 0.60676 0.44084 0.75 -650 0.60676 0.44084 1 -651 0.23176 0.71329 0.75 -652 0.23176 0.71329 1 -653 0.80902 0.58779 0.75 -654 0.80902 0.58779 1 -655 0.30902 0.95106 0.75 -656 0.30902 0.95106 1 -657 0.23176 0.71329 0.75 -658 0.23176 0.71329 1 -659 -0.23176 0.71329 0.75 -660 -0.23176 0.71329 1 -661 0.30902 0.95106 0.75 -662 0.30902 0.95106 1 -663 -0.30902 0.95106 0.75 -664 -0.30902 0.95106 1 -665 -0.23176 0.71329 0.75 -666 -0.23176 0.71329 1 -667 -0.60676 0.44084 0.75 -668 -0.60676 0.44084 1 -669 -0.30902 0.95106 0.75 -670 -0.30902 0.95106 1 -671 -0.80902 0.58779 0.75 -672 -0.80902 0.58779 1 -673 -0.60676 0.44084 0.75 -674 -0.60676 0.44084 1 -675 -0.75 9.1849e-17 0.75 -676 -0.75 9.1849e-17 1 -677 -0.80902 0.58779 0.75 -678 -0.80902 0.58779 1 -679 -1 1.2246e-16 0.75 -680 -1 1.2246e-16 1 -681 -0.75 9.1849e-17 0.75 -682 -0.75 9.1849e-17 1 -683 -0.60676 -0.44084 0.75 -684 -0.60676 -0.44084 1 -685 -1 1.2246e-16 0.75 -686 -1 1.2246e-16 1 -687 -0.80902 -0.58779 0.75 -688 -0.80902 -0.58779 1 -689 -0.60676 -0.44084 0.75 -690 -0.60676 -0.44084 1 -691 -0.23176 -0.71329 0.75 -692 -0.23176 -0.71329 1 -693 -0.80902 -0.58779 0.75 -694 -0.80902 -0.58779 1 -695 -0.30902 -0.95106 0.75 -696 -0.30902 -0.95106 1 -697 -0.23176 -0.71329 0.75 -698 -0.23176 -0.71329 1 -699 0.23176 -0.71329 0.75 -700 0.23176 -0.71329 1 -701 -0.30902 -0.95106 0.75 -702 -0.30902 -0.95106 1 -703 0.30902 -0.95106 0.75 -704 0.30902 -0.95106 1 -705 0.23176 -0.71329 0.75 -706 0.23176 -0.71329 1 -707 0.60676 -0.44084 0.75 -708 0.60676 -0.44084 1 -709 0.30902 -0.95106 0.75 -710 0.30902 -0.95106 1 -711 0.80902 -0.58779 0.75 -712 0.80902 -0.58779 1 -713 0.60676 -0.44084 0.75 -714 0.60676 -0.44084 1 -715 0.75 -1.837e-16 0.75 -716 0.75 -1.837e-16 1 -717 0.80902 -0.58779 0.75 -718 0.80902 -0.58779 1 -719 1 -2.4493e-16 0.75 -720 1 -2.4493e-16 1 -721 0.5 0 0.75 -722 0.5 0 1 -723 0.40451 0.29389 0.75 -724 0.40451 0.29389 1 -725 0.75 0 0.75 -726 0.75 0 1 -727 0.60676 0.44084 0.75 -728 0.60676 0.44084 1 -729 0.40451 0.29389 0.75 -730 0.40451 0.29389 1 -731 0.15451 0.47553 0.75 -732 0.15451 0.47553 1 -733 0.60676 0.44084 0.75 -734 0.60676 0.44084 1 -735 0.23176 0.71329 0.75 -736 0.23176 0.71329 1 -737 0.15451 0.47553 0.75 -738 0.15451 0.47553 1 -739 -0.15451 0.47553 0.75 -740 -0.15451 0.47553 1 -741 0.23176 0.71329 0.75 -742 0.23176 0.71329 1 -743 -0.23176 0.71329 0.75 -744 -0.23176 0.71329 1 -745 -0.15451 0.47553 0.75 -746 -0.15451 0.47553 1 -747 -0.40451 0.29389 0.75 -748 -0.40451 0.29389 1 -749 -0.23176 0.71329 0.75 -750 -0.23176 0.71329 1 -751 -0.60676 0.44084 0.75 -752 -0.60676 0.44084 1 -753 -0.40451 0.29389 0.75 -754 -0.40451 0.29389 1 -755 -0.5 6.1232e-17 0.75 -756 -0.5 6.1232e-17 1 -757 -0.60676 0.44084 0.75 -758 -0.60676 0.44084 1 -759 -0.75 9.1849e-17 0.75 -760 -0.75 9.1849e-17 1 -761 -0.5 6.1232e-17 0.75 -762 -0.5 6.1232e-17 1 -763 -0.40451 -0.29389 0.75 -764 -0.40451 -0.29389 1 -765 -0.75 9.1849e-17 0.75 -766 -0.75 9.1849e-17 1 -767 -0.60676 -0.44084 0.75 -768 -0.60676 -0.44084 1 -769 -0.40451 -0.29389 0.75 -770 -0.40451 -0.29389 1 -771 -0.15451 -0.47553 0.75 -772 -0.15451 -0.47553 1 -773 -0.60676 -0.44084 0.75 -774 -0.60676 -0.44084 1 -775 -0.23176 -0.71329 0.75 -776 -0.23176 -0.71329 1 -777 -0.15451 -0.47553 0.75 -778 -0.15451 -0.47553 1 -779 0.15451 -0.47553 0.75 -780 0.15451 -0.47553 1 -781 -0.23176 -0.71329 0.75 -782 -0.23176 -0.71329 1 -783 0.23176 -0.71329 0.75 -784 0.23176 -0.71329 1 -785 0.15451 -0.47553 0.75 -786 0.15451 -0.47553 1 -787 0.40451 -0.29389 0.75 -788 0.40451 -0.29389 1 -789 0.23176 -0.71329 0.75 -790 0.23176 -0.71329 1 -791 0.60676 -0.44084 0.75 -792 0.60676 -0.44084 1 -793 0.40451 -0.29389 0.75 -794 0.40451 -0.29389 1 -795 0.5 -1.2246e-16 0.75 -796 0.5 -1.2246e-16 1 -797 0.60676 -0.44084 0.75 -798 0.60676 -0.44084 1 -799 0.75 -1.837e-16 0.75 -800 0.75 -1.837e-16 1 -801 0 0 0.5 -802 0 0 0.75 -803 0 0 0.5 -804 0 0 0.75 -805 0.25 0 0.5 -806 0.25 0 0.75 -807 0.20225 0.14695 0.5 -808 0.20225 0.14695 0.75 -809 0 0 0.5 -810 0 0 0.75 -811 0 0 0.5 -812 0 0 0.75 -813 0.20225 0.14695 0.5 -814 0.20225 0.14695 0.75 -815 0.077254 0.23776 0.5 -816 0.077254 0.23776 0.75 -817 0 0 0.5 -818 0 0 0.75 -819 0 0 0.5 -820 0 0 0.75 -821 0.077254 0.23776 0.5 -822 0.077254 0.23776 0.75 -823 -0.077254 0.23776 0.5 -824 -0.077254 0.23776 0.75 -825 -0 0 0.5 -826 -0 0 0.75 -827 -0 0 0.5 -828 -0 0 0.75 -829 -0.077254 0.23776 0.5 -830 -0.077254 0.23776 0.75 -831 -0.20225 0.14695 0.5 -832 -0.20225 0.14695 0.75 -833 -0 0 0.5 -834 -0 0 0.75 -835 -0 0 0.5 -836 -0 0 0.75 -837 -0.20225 0.14695 0.5 -838 -0.20225 0.14695 0.75 -839 -0.25 3.0616e-17 0.5 -840 -0.25 3.0616e-17 0.75 -841 -0 0 0.5 -842 -0 0 0.75 -843 -0 0 0.5 -844 -0 0 0.75 -845 -0.25 3.0616e-17 0.5 -846 -0.25 3.0616e-17 0.75 -847 -0.20225 -0.14695 0.5 -848 -0.20225 -0.14695 0.75 -849 -0 -0 0.5 -850 -0 -0 0.75 -851 -0 -0 0.5 -852 -0 -0 0.75 -853 -0.20225 -0.14695 0.5 -854 -0.20225 -0.14695 0.75 -855 -0.077254 -0.23776 0.5 -856 -0.077254 -0.23776 0.75 -857 0 -0 0.5 -858 0 -0 0.75 -859 0 -0 0.5 -860 0 -0 0.75 -861 -0.077254 -0.23776 0.5 -862 -0.077254 -0.23776 0.75 -863 0.077254 -0.23776 0.5 -864 0.077254 -0.23776 0.75 -865 0 -0 0.5 -866 0 -0 0.75 -867 0 -0 0.5 -868 0 -0 0.75 -869 0.077254 -0.23776 0.5 -870 0.077254 -0.23776 0.75 -871 0.20225 -0.14695 0.5 -872 0.20225 -0.14695 0.75 -873 0 -0 0.5 -874 0 -0 0.75 -875 0 -0 0.5 -876 0 -0 0.75 -877 0.20225 -0.14695 0.5 -878 0.20225 -0.14695 0.75 -879 0.25 -6.1232e-17 0.5 -880 0.25 -6.1232e-17 0.75 -881 0.25 0 0.5 -882 0.25 0 0.75 -883 0.20225 0.14695 0.5 -884 0.20225 0.14695 0.75 -885 0.5 0 0.5 -886 0.5 0 0.75 -887 0.40451 0.29389 0.5 -888 0.40451 0.29389 0.75 -889 0.20225 0.14695 0.5 -890 0.20225 0.14695 0.75 -891 0.077254 0.23776 0.5 -892 0.077254 0.23776 0.75 -893 0.40451 0.29389 0.5 -894 0.40451 0.29389 0.75 -895 0.15451 0.47553 0.5 -896 0.15451 0.47553 0.75 -897 0.077254 0.23776 0.5 -898 0.077254 0.23776 0.75 -899 -0.077254 0.23776 0.5 -900 -0.077254 0.23776 0.75 -901 0.15451 0.47553 0.5 -902 0.15451 0.47553 0.75 -903 -0.15451 0.47553 0.5 -904 -0.15451 0.47553 0.75 -905 -0.077254 0.23776 0.5 -906 -0.077254 0.23776 0.75 -907 -0.20225 0.14695 0.5 -908 -0.20225 0.14695 0.75 -909 -0.15451 0.47553 0.5 -910 -0.15451 0.47553 0.75 -911 -0.40451 0.29389 0.5 -912 -0.40451 0.29389 0.75 -913 -0.20225 0.14695 0.5 -914 -0.20225 0.14695 0.75 -915 -0.25 3.0616e-17 0.5 -916 -0.25 3.0616e-17 0.75 -917 -0.40451 0.29389 0.5 -918 -0.40451 0.29389 0.75 -919 -0.5 6.1232e-17 0.5 -920 -0.5 6.1232e-17 0.75 -921 -0.25 3.0616e-17 0.5 -922 -0.25 3.0616e-17 0.75 -923 -0.20225 -0.14695 0.5 -924 -0.20225 -0.14695 0.75 -925 -0.5 6.1232e-17 0.5 -926 -0.5 6.1232e-17 0.75 -927 -0.40451 -0.29389 0.5 -928 -0.40451 -0.29389 0.75 -929 -0.20225 -0.14695 0.5 -930 -0.20225 -0.14695 0.75 -931 -0.077254 -0.23776 0.5 -932 -0.077254 -0.23776 0.75 -933 -0.40451 -0.29389 0.5 -934 -0.40451 -0.29389 0.75 -935 -0.15451 -0.47553 0.5 -936 -0.15451 -0.47553 0.75 -937 -0.077254 -0.23776 0.5 -938 -0.077254 -0.23776 0.75 -939 0.077254 -0.23776 0.5 -940 0.077254 -0.23776 0.75 -941 -0.15451 -0.47553 0.5 -942 -0.15451 -0.47553 0.75 -943 0.15451 -0.47553 0.5 -944 0.15451 -0.47553 0.75 -945 0.077254 -0.23776 0.5 -946 0.077254 -0.23776 0.75 -947 0.20225 -0.14695 0.5 -948 0.20225 -0.14695 0.75 -949 0.15451 -0.47553 0.5 -950 0.15451 -0.47553 0.75 -951 0.40451 -0.29389 0.5 -952 0.40451 -0.29389 0.75 -953 0.20225 -0.14695 0.5 -954 0.20225 -0.14695 0.75 -955 0.25 -6.1232e-17 0.5 -956 0.25 -6.1232e-17 0.75 -957 0.40451 -0.29389 0.5 -958 0.40451 -0.29389 0.75 -959 0.5 -1.2246e-16 0.5 -960 0.5 -1.2246e-16 0.75 -961 0.25 0 0.75 -962 0.25 0 1 -963 0.20225 0.14695 0.75 -964 0.20225 0.14695 1 -965 0.5 0 0.75 -966 0.5 0 1 -967 0.40451 0.29389 0.75 -968 0.40451 0.29389 1 -969 0.20225 0.14695 0.75 -970 0.20225 0.14695 1 -971 0.077254 0.23776 0.75 -972 0.077254 0.23776 1 -973 0.40451 0.29389 0.75 -974 0.40451 0.29389 1 -975 0.15451 0.47553 0.75 -976 0.15451 0.47553 1 -977 0.077254 0.23776 0.75 -978 0.077254 0.23776 1 -979 -0.077254 0.23776 0.75 -980 -0.077254 0.23776 1 -981 0.15451 0.47553 0.75 -982 0.15451 0.47553 1 -983 -0.15451 0.47553 0.75 -984 -0.15451 0.47553 1 -985 -0.077254 0.23776 0.75 -986 -0.077254 0.23776 1 -987 -0.20225 0.14695 0.75 -988 -0.20225 0.14695 1 -989 -0.15451 0.47553 0.75 -990 -0.15451 0.47553 1 -991 -0.40451 0.29389 0.75 -992 -0.40451 0.29389 1 -993 -0.20225 0.14695 0.75 -994 -0.20225 0.14695 1 -995 -0.25 3.0616e-17 0.75 -996 -0.25 3.0616e-17 1 -997 -0.40451 0.29389 0.75 -998 -0.40451 0.29389 1 -999 -0.5 6.1232e-17 0.75 -1000 -0.5 6.1232e-17 1 -1001 -0.25 3.0616e-17 0.75 -1002 -0.25 3.0616e-17 1 -1003 -0.20225 -0.14695 0.75 -1004 -0.20225 -0.14695 1 -1005 -0.5 6.1232e-17 0.75 -1006 -0.5 6.1232e-17 1 -1007 -0.40451 -0.29389 0.75 -1008 -0.40451 -0.29389 1 -1009 -0.20225 -0.14695 0.75 -1010 -0.20225 -0.14695 1 -1011 -0.077254 -0.23776 0.75 -1012 -0.077254 -0.23776 1 -1013 -0.40451 -0.29389 0.75 -1014 -0.40451 -0.29389 1 -1015 -0.15451 -0.47553 0.75 -1016 -0.15451 -0.47553 1 -1017 -0.077254 -0.23776 0.75 -1018 -0.077254 -0.23776 1 -1019 0.077254 -0.23776 0.75 -1020 0.077254 -0.23776 1 -1021 -0.15451 -0.47553 0.75 -1022 -0.15451 -0.47553 1 -1023 0.15451 -0.47553 0.75 -1024 0.15451 -0.47553 1 -1025 0.077254 -0.23776 0.75 -1026 0.077254 -0.23776 1 -1027 0.20225 -0.14695 0.75 -1028 0.20225 -0.14695 1 -1029 0.15451 -0.47553 0.75 -1030 0.15451 -0.47553 1 -1031 0.40451 -0.29389 0.75 -1032 0.40451 -0.29389 1 -1033 0.20225 -0.14695 0.75 -1034 0.20225 -0.14695 1 -1035 0.25 -6.1232e-17 0.75 -1036 0.25 -6.1232e-17 1 -1037 0.40451 -0.29389 0.75 -1038 0.40451 -0.29389 1 -1039 0.5 -1.2246e-16 0.75 -1040 0.5 -1.2246e-16 1 -1041 0 0 0.75 -1042 0 0 1 -1043 0 0 0.75 -1044 0 0 1 -1045 0.25 0 0.75 -1046 0.25 0 1 -1047 0.20225 0.14695 0.75 -1048 0.20225 0.14695 1 -1049 0 0 0.75 -1050 0 0 1 -1051 0 0 0.75 -1052 0 0 1 -1053 0.20225 0.14695 0.75 -1054 0.20225 0.14695 1 -1055 0.077254 0.23776 0.75 -1056 0.077254 0.23776 1 -1057 0 0 0.75 -1058 0 0 1 -1059 0 0 0.75 -1060 0 0 1 -1061 0.077254 0.23776 0.75 -1062 0.077254 0.23776 1 -1063 -0.077254 0.23776 0.75 -1064 -0.077254 0.23776 1 -1065 -0 0 0.75 -1066 -0 0 1 -1067 -0 0 0.75 -1068 -0 0 1 -1069 -0.077254 0.23776 0.75 -1070 -0.077254 0.23776 1 -1071 -0.20225 0.14695 0.75 -1072 -0.20225 0.14695 1 -1073 -0 0 0.75 -1074 -0 0 1 -1075 -0 0 0.75 -1076 -0 0 1 -1077 -0.20225 0.14695 0.75 -1078 -0.20225 0.14695 1 -1079 -0.25 3.0616e-17 0.75 -1080 -0.25 3.0616e-17 1 -1081 -0 0 0.75 -1082 -0 0 1 -1083 -0 0 0.75 -1084 -0 0 1 -1085 -0.25 3.0616e-17 0.75 -1086 -0.25 3.0616e-17 1 -1087 -0.20225 -0.14695 0.75 -1088 -0.20225 -0.14695 1 -1089 -0 -0 0.75 -1090 -0 -0 1 -1091 -0 -0 0.75 -1092 -0 -0 1 -1093 -0.20225 -0.14695 0.75 -1094 -0.20225 -0.14695 1 -1095 -0.077254 -0.23776 0.75 -1096 -0.077254 -0.23776 1 -1097 0 -0 0.75 -1098 0 -0 1 -1099 0 -0 0.75 -1100 0 -0 1 -1101 -0.077254 -0.23776 0.75 -1102 -0.077254 -0.23776 1 -1103 0.077254 -0.23776 0.75 -1104 0.077254 -0.23776 1 -1105 0 -0 0.75 -1106 0 -0 1 -1107 0 -0 0.75 -1108 0 -0 1 -1109 0.077254 -0.23776 0.75 -1110 0.077254 -0.23776 1 -1111 0.20225 -0.14695 0.75 -1112 0.20225 -0.14695 1 -1113 0 -0 0.75 -1114 0 -0 1 -1115 0 -0 0.75 -1116 0 -0 1 -1117 0.20225 -0.14695 0.75 -1118 0.20225 -0.14695 1 -1119 0.25 -6.1232e-17 0.75 -1120 0.25 -6.1232e-17 1 -1121 0 0 0 -1122 0 0 0.125 -1123 0 0 0 -1124 0 0 0.125 -1125 0.125 0 0 -1126 0.125 0 0.125 -1127 0.10113 0.073473 0 -1128 0.10113 0.073473 0.125 -1129 0 0 0 -1130 0 0 0.125 -1131 0 0 0 -1132 0 0 0.125 -1133 0.10113 0.073473 0 -1134 0.10113 0.073473 0.125 -1135 0.038627 0.11888 0 -1136 0.038627 0.11888 0.125 -1137 0 0 0 -1138 0 0 0.125 -1139 0 0 0 -1140 0 0 0.125 -1141 0.038627 0.11888 0 -1142 0.038627 0.11888 0.125 -1143 -0.038627 0.11888 0 -1144 -0.038627 0.11888 0.125 -1145 -0 0 0 -1146 -0 0 0.125 -1147 -0 0 0 -1148 -0 0 0.125 -1149 -0.038627 0.11888 0 -1150 -0.038627 0.11888 0.125 -1151 -0.10113 0.073473 0 -1152 -0.10113 0.073473 0.125 -1153 -0 0 0 -1154 -0 0 0.125 -1155 -0 0 0 -1156 -0 0 0.125 -1157 -0.10113 0.073473 0 -1158 -0.10113 0.073473 0.125 -1159 -0.125 1.5308e-17 0 -1160 -0.125 1.5308e-17 0.125 -1161 -0 0 0 -1162 -0 0 0.125 -1163 -0 0 0 -1164 -0 0 0.125 -1165 -0.125 1.5308e-17 0 -1166 -0.125 1.5308e-17 0.125 -1167 -0.10113 -0.073473 0 -1168 -0.10113 -0.073473 0.125 -1169 -0 -0 0 -1170 -0 -0 0.125 -1171 -0 -0 0 -1172 -0 -0 0.125 -1173 -0.10113 -0.073473 0 -1174 -0.10113 -0.073473 0.125 -1175 -0.038627 -0.11888 0 -1176 -0.038627 -0.11888 0.125 -1177 0 -0 0 -1178 0 -0 0.125 -1179 0 -0 0 -1180 0 -0 0.125 -1181 -0.038627 -0.11888 0 -1182 -0.038627 -0.11888 0.125 -1183 0.038627 -0.11888 0 -1184 0.038627 -0.11888 0.125 -1185 0 -0 0 -1186 0 -0 0.125 -1187 0 -0 0 -1188 0 -0 0.125 -1189 0.038627 -0.11888 0 -1190 0.038627 -0.11888 0.125 -1191 0.10113 -0.073473 0 -1192 0.10113 -0.073473 0.125 -1193 0 -0 0 -1194 0 -0 0.125 -1195 0 -0 0 -1196 0 -0 0.125 -1197 0.10113 -0.073473 0 -1198 0.10113 -0.073473 0.125 -1199 0.125 -3.0616e-17 0 -1200 0.125 -3.0616e-17 0.125 -1201 0.125 0 0 -1202 0.125 0 0.125 -1203 0.10113 0.073473 0 -1204 0.10113 0.073473 0.125 -1205 0.25 0 0 -1206 0.25 0 0.125 -1207 0.20225 0.14695 0 -1208 0.20225 0.14695 0.125 -1209 0.10113 0.073473 0 -1210 0.10113 0.073473 0.125 -1211 0.038627 0.11888 0 -1212 0.038627 0.11888 0.125 -1213 0.20225 0.14695 0 -1214 0.20225 0.14695 0.125 -1215 0.077254 0.23776 0 -1216 0.077254 0.23776 0.125 -1217 0.038627 0.11888 0 -1218 0.038627 0.11888 0.125 -1219 -0.038627 0.11888 0 -1220 -0.038627 0.11888 0.125 -1221 0.077254 0.23776 0 -1222 0.077254 0.23776 0.125 -1223 -0.077254 0.23776 0 -1224 -0.077254 0.23776 0.125 -1225 -0.038627 0.11888 0 -1226 -0.038627 0.11888 0.125 -1227 -0.10113 0.073473 0 -1228 -0.10113 0.073473 0.125 -1229 -0.077254 0.23776 0 -1230 -0.077254 0.23776 0.125 -1231 -0.20225 0.14695 0 -1232 -0.20225 0.14695 0.125 -1233 -0.10113 0.073473 0 -1234 -0.10113 0.073473 0.125 -1235 -0.125 1.5308e-17 0 -1236 -0.125 1.5308e-17 0.125 -1237 -0.20225 0.14695 0 -1238 -0.20225 0.14695 0.125 -1239 -0.25 3.0616e-17 0 -1240 -0.25 3.0616e-17 0.125 -1241 -0.125 1.5308e-17 0 -1242 -0.125 1.5308e-17 0.125 -1243 -0.10113 -0.073473 0 -1244 -0.10113 -0.073473 0.125 -1245 -0.25 3.0616e-17 0 -1246 -0.25 3.0616e-17 0.125 -1247 -0.20225 -0.14695 0 -1248 -0.20225 -0.14695 0.125 -1249 -0.10113 -0.073473 0 -1250 -0.10113 -0.073473 0.125 -1251 -0.038627 -0.11888 0 -1252 -0.038627 -0.11888 0.125 -1253 -0.20225 -0.14695 0 -1254 -0.20225 -0.14695 0.125 -1255 -0.077254 -0.23776 0 -1256 -0.077254 -0.23776 0.125 -1257 -0.038627 -0.11888 0 -1258 -0.038627 -0.11888 0.125 -1259 0.038627 -0.11888 0 -1260 0.038627 -0.11888 0.125 -1261 -0.077254 -0.23776 0 -1262 -0.077254 -0.23776 0.125 -1263 0.077254 -0.23776 0 -1264 0.077254 -0.23776 0.125 -1265 0.038627 -0.11888 0 -1266 0.038627 -0.11888 0.125 -1267 0.10113 -0.073473 0 -1268 0.10113 -0.073473 0.125 -1269 0.077254 -0.23776 0 -1270 0.077254 -0.23776 0.125 -1271 0.20225 -0.14695 0 -1272 0.20225 -0.14695 0.125 -1273 0.10113 -0.073473 0 -1274 0.10113 -0.073473 0.125 -1275 0.125 -3.0616e-17 0 -1276 0.125 -3.0616e-17 0.125 -1277 0.20225 -0.14695 0 -1278 0.20225 -0.14695 0.125 -1279 0.25 -6.1232e-17 0 -1280 0.25 -6.1232e-17 0.125 -1281 0.125 0 0.125 -1282 0.125 0 0.25 -1283 0.10113 0.073473 0.125 -1284 0.10113 0.073473 0.25 -1285 0.25 0 0.125 -1286 0.25 0 0.25 -1287 0.20225 0.14695 0.125 -1288 0.20225 0.14695 0.25 -1289 0.10113 0.073473 0.125 -1290 0.10113 0.073473 0.25 -1291 0.038627 0.11888 0.125 -1292 0.038627 0.11888 0.25 -1293 0.20225 0.14695 0.125 -1294 0.20225 0.14695 0.25 -1295 0.077254 0.23776 0.125 -1296 0.077254 0.23776 0.25 -1297 0.038627 0.11888 0.125 -1298 0.038627 0.11888 0.25 -1299 -0.038627 0.11888 0.125 -1300 -0.038627 0.11888 0.25 -1301 0.077254 0.23776 0.125 -1302 0.077254 0.23776 0.25 -1303 -0.077254 0.23776 0.125 -1304 -0.077254 0.23776 0.25 -1305 -0.038627 0.11888 0.125 -1306 -0.038627 0.11888 0.25 -1307 -0.10113 0.073473 0.125 -1308 -0.10113 0.073473 0.25 -1309 -0.077254 0.23776 0.125 -1310 -0.077254 0.23776 0.25 -1311 -0.20225 0.14695 0.125 -1312 -0.20225 0.14695 0.25 -1313 -0.10113 0.073473 0.125 -1314 -0.10113 0.073473 0.25 -1315 -0.125 1.5308e-17 0.125 -1316 -0.125 1.5308e-17 0.25 -1317 -0.20225 0.14695 0.125 -1318 -0.20225 0.14695 0.25 -1319 -0.25 3.0616e-17 0.125 -1320 -0.25 3.0616e-17 0.25 -1321 -0.125 1.5308e-17 0.125 -1322 -0.125 1.5308e-17 0.25 -1323 -0.10113 -0.073473 0.125 -1324 -0.10113 -0.073473 0.25 -1325 -0.25 3.0616e-17 0.125 -1326 -0.25 3.0616e-17 0.25 -1327 -0.20225 -0.14695 0.125 -1328 -0.20225 -0.14695 0.25 -1329 -0.10113 -0.073473 0.125 -1330 -0.10113 -0.073473 0.25 -1331 -0.038627 -0.11888 0.125 -1332 -0.038627 -0.11888 0.25 -1333 -0.20225 -0.14695 0.125 -1334 -0.20225 -0.14695 0.25 -1335 -0.077254 -0.23776 0.125 -1336 -0.077254 -0.23776 0.25 -1337 -0.038627 -0.11888 0.125 -1338 -0.038627 -0.11888 0.25 -1339 0.038627 -0.11888 0.125 -1340 0.038627 -0.11888 0.25 -1341 -0.077254 -0.23776 0.125 -1342 -0.077254 -0.23776 0.25 -1343 0.077254 -0.23776 0.125 -1344 0.077254 -0.23776 0.25 -1345 0.038627 -0.11888 0.125 -1346 0.038627 -0.11888 0.25 -1347 0.10113 -0.073473 0.125 -1348 0.10113 -0.073473 0.25 -1349 0.077254 -0.23776 0.125 -1350 0.077254 -0.23776 0.25 -1351 0.20225 -0.14695 0.125 -1352 0.20225 -0.14695 0.25 -1353 0.10113 -0.073473 0.125 -1354 0.10113 -0.073473 0.25 -1355 0.125 -3.0616e-17 0.125 -1356 0.125 -3.0616e-17 0.25 -1357 0.20225 -0.14695 0.125 -1358 0.20225 -0.14695 0.25 -1359 0.25 -6.1232e-17 0.125 -1360 0.25 -6.1232e-17 0.25 -1361 0 0 0.125 -1362 0 0 0.25 -1363 0 0 0.125 -1364 0 0 0.25 -1365 0.125 0 0.125 -1366 0.125 0 0.25 -1367 0.10113 0.073473 0.125 -1368 0.10113 0.073473 0.25 -1369 0 0 0.125 -1370 0 0 0.25 -1371 0 0 0.125 -1372 0 0 0.25 -1373 0.10113 0.073473 0.125 -1374 0.10113 0.073473 0.25 -1375 0.038627 0.11888 0.125 -1376 0.038627 0.11888 0.25 -1377 0 0 0.125 -1378 0 0 0.25 -1379 0 0 0.125 -1380 0 0 0.25 -1381 0.038627 0.11888 0.125 -1382 0.038627 0.11888 0.25 -1383 -0.038627 0.11888 0.125 -1384 -0.038627 0.11888 0.25 -1385 -0 0 0.125 -1386 -0 0 0.25 -1387 -0 0 0.125 -1388 -0 0 0.25 -1389 -0.038627 0.11888 0.125 -1390 -0.038627 0.11888 0.25 -1391 -0.10113 0.073473 0.125 -1392 -0.10113 0.073473 0.25 -1393 -0 0 0.125 -1394 -0 0 0.25 -1395 -0 0 0.125 -1396 -0 0 0.25 -1397 -0.10113 0.073473 0.125 -1398 -0.10113 0.073473 0.25 -1399 -0.125 1.5308e-17 0.125 -1400 -0.125 1.5308e-17 0.25 -1401 -0 0 0.125 -1402 -0 0 0.25 -1403 -0 0 0.125 -1404 -0 0 0.25 -1405 -0.125 1.5308e-17 0.125 -1406 -0.125 1.5308e-17 0.25 -1407 -0.10113 -0.073473 0.125 -1408 -0.10113 -0.073473 0.25 -1409 -0 -0 0.125 -1410 -0 -0 0.25 -1411 -0 -0 0.125 -1412 -0 -0 0.25 -1413 -0.10113 -0.073473 0.125 -1414 -0.10113 -0.073473 0.25 -1415 -0.038627 -0.11888 0.125 -1416 -0.038627 -0.11888 0.25 -1417 0 -0 0.125 -1418 0 -0 0.25 -1419 0 -0 0.125 -1420 0 -0 0.25 -1421 -0.038627 -0.11888 0.125 -1422 -0.038627 -0.11888 0.25 -1423 0.038627 -0.11888 0.125 -1424 0.038627 -0.11888 0.25 -1425 0 -0 0.125 -1426 0 -0 0.25 -1427 0 -0 0.125 -1428 0 -0 0.25 -1429 0.038627 -0.11888 0.125 -1430 0.038627 -0.11888 0.25 -1431 0.10113 -0.073473 0.125 -1432 0.10113 -0.073473 0.25 -1433 0 -0 0.125 -1434 0 -0 0.25 -1435 0 -0 0.125 -1436 0 -0 0.25 -1437 0.10113 -0.073473 0.125 -1438 0.10113 -0.073473 0.25 -1439 0.125 -3.0616e-17 0.125 -1440 0.125 -3.0616e-17 0.25 -1441 0.25 0 0 -1442 0.25 0 0.125 -1443 0.20225 0.14695 0 -1444 0.20225 0.14695 0.125 -1445 0.375 0 0 -1446 0.375 0 0.125 -1447 0.30338 0.22042 0 -1448 0.30338 0.22042 0.125 -1449 0.20225 0.14695 0 -1450 0.20225 0.14695 0.125 -1451 0.077254 0.23776 0 -1452 0.077254 0.23776 0.125 -1453 0.30338 0.22042 0 -1454 0.30338 0.22042 0.125 -1455 0.11588 0.35665 0 -1456 0.11588 0.35665 0.125 -1457 0.077254 0.23776 0 -1458 0.077254 0.23776 0.125 -1459 -0.077254 0.23776 0 -1460 -0.077254 0.23776 0.125 -1461 0.11588 0.35665 0 -1462 0.11588 0.35665 0.125 -1463 -0.11588 0.35665 0 -1464 -0.11588 0.35665 0.125 -1465 -0.077254 0.23776 0 -1466 -0.077254 0.23776 0.125 -1467 -0.20225 0.14695 0 -1468 -0.20225 0.14695 0.125 -1469 -0.11588 0.35665 0 -1470 -0.11588 0.35665 0.125 -1471 -0.30338 0.22042 0 -1472 -0.30338 0.22042 0.125 -1473 -0.20225 0.14695 0 -1474 -0.20225 0.14695 0.125 -1475 -0.25 3.0616e-17 0 -1476 -0.25 3.0616e-17 0.125 -1477 -0.30338 0.22042 0 -1478 -0.30338 0.22042 0.125 -1479 -0.375 4.5924e-17 0 -1480 -0.375 4.5924e-17 0.125 -1481 -0.25 3.0616e-17 0 -1482 -0.25 3.0616e-17 0.125 -1483 -0.20225 -0.14695 0 -1484 -0.20225 -0.14695 0.125 -1485 -0.375 4.5924e-17 0 -1486 -0.375 4.5924e-17 0.125 -1487 -0.30338 -0.22042 0 -1488 -0.30338 -0.22042 0.125 -1489 -0.20225 -0.14695 0 -1490 -0.20225 -0.14695 0.125 -1491 -0.077254 -0.23776 0 -1492 -0.077254 -0.23776 0.125 -1493 -0.30338 -0.22042 0 -1494 -0.30338 -0.22042 0.125 -1495 -0.11588 -0.35665 0 -1496 -0.11588 -0.35665 0.125 -1497 -0.077254 -0.23776 0 -1498 -0.077254 -0.23776 0.125 -1499 0.077254 -0.23776 0 -1500 0.077254 -0.23776 0.125 -1501 -0.11588 -0.35665 0 -1502 -0.11588 -0.35665 0.125 -1503 0.11588 -0.35665 0 -1504 0.11588 -0.35665 0.125 -1505 0.077254 -0.23776 0 -1506 0.077254 -0.23776 0.125 -1507 0.20225 -0.14695 0 -1508 0.20225 -0.14695 0.125 -1509 0.11588 -0.35665 0 -1510 0.11588 -0.35665 0.125 -1511 0.30338 -0.22042 0 -1512 0.30338 -0.22042 0.125 -1513 0.20225 -0.14695 0 -1514 0.20225 -0.14695 0.125 -1515 0.25 -6.1232e-17 0 -1516 0.25 -6.1232e-17 0.125 -1517 0.30338 -0.22042 0 -1518 0.30338 -0.22042 0.125 -1519 0.375 -9.1849e-17 0 -1520 0.375 -9.1849e-17 0.125 -1521 0.375 0 0 -1522 0.375 0 0.125 -1523 0.30338 0.22042 0 -1524 0.30338 0.22042 0.125 -1525 0.5 0 0 -1526 0.5 0 0.125 -1527 0.40451 0.29389 0 -1528 0.40451 0.29389 0.125 -1529 0.30338 0.22042 0 -1530 0.30338 0.22042 0.125 -1531 0.11588 0.35665 0 -1532 0.11588 0.35665 0.125 -1533 0.40451 0.29389 0 -1534 0.40451 0.29389 0.125 -1535 0.15451 0.47553 0 -1536 0.15451 0.47553 0.125 -1537 0.11588 0.35665 0 -1538 0.11588 0.35665 0.125 -1539 -0.11588 0.35665 0 -1540 -0.11588 0.35665 0.125 -1541 0.15451 0.47553 0 -1542 0.15451 0.47553 0.125 -1543 -0.15451 0.47553 0 -1544 -0.15451 0.47553 0.125 -1545 -0.11588 0.35665 0 -1546 -0.11588 0.35665 0.125 -1547 -0.30338 0.22042 0 -1548 -0.30338 0.22042 0.125 -1549 -0.15451 0.47553 0 -1550 -0.15451 0.47553 0.125 -1551 -0.40451 0.29389 0 -1552 -0.40451 0.29389 0.125 -1553 -0.30338 0.22042 0 -1554 -0.30338 0.22042 0.125 -1555 -0.375 4.5924e-17 0 -1556 -0.375 4.5924e-17 0.125 -1557 -0.40451 0.29389 0 -1558 -0.40451 0.29389 0.125 -1559 -0.5 6.1232e-17 0 -1560 -0.5 6.1232e-17 0.125 -1561 -0.375 4.5924e-17 0 -1562 -0.375 4.5924e-17 0.125 -1563 -0.30338 -0.22042 0 -1564 -0.30338 -0.22042 0.125 -1565 -0.5 6.1232e-17 0 -1566 -0.5 6.1232e-17 0.125 -1567 -0.40451 -0.29389 0 -1568 -0.40451 -0.29389 0.125 -1569 -0.30338 -0.22042 0 -1570 -0.30338 -0.22042 0.125 -1571 -0.11588 -0.35665 0 -1572 -0.11588 -0.35665 0.125 -1573 -0.40451 -0.29389 0 -1574 -0.40451 -0.29389 0.125 -1575 -0.15451 -0.47553 0 -1576 -0.15451 -0.47553 0.125 -1577 -0.11588 -0.35665 0 -1578 -0.11588 -0.35665 0.125 -1579 0.11588 -0.35665 0 -1580 0.11588 -0.35665 0.125 -1581 -0.15451 -0.47553 0 -1582 -0.15451 -0.47553 0.125 -1583 0.15451 -0.47553 0 -1584 0.15451 -0.47553 0.125 -1585 0.11588 -0.35665 0 -1586 0.11588 -0.35665 0.125 -1587 0.30338 -0.22042 0 -1588 0.30338 -0.22042 0.125 -1589 0.15451 -0.47553 0 -1590 0.15451 -0.47553 0.125 -1591 0.40451 -0.29389 0 -1592 0.40451 -0.29389 0.125 -1593 0.30338 -0.22042 0 -1594 0.30338 -0.22042 0.125 -1595 0.375 -9.1849e-17 0 -1596 0.375 -9.1849e-17 0.125 -1597 0.40451 -0.29389 0 -1598 0.40451 -0.29389 0.125 -1599 0.5 -1.2246e-16 0 -1600 0.5 -1.2246e-16 0.125 -1601 0.375 0 0.125 -1602 0.375 0 0.25 -1603 0.30338 0.22042 0.125 -1604 0.30338 0.22042 0.25 -1605 0.5 0 0.125 -1606 0.5 0 0.25 -1607 0.40451 0.29389 0.125 -1608 0.40451 0.29389 0.25 -1609 0.30338 0.22042 0.125 -1610 0.30338 0.22042 0.25 -1611 0.11588 0.35665 0.125 -1612 0.11588 0.35665 0.25 -1613 0.40451 0.29389 0.125 -1614 0.40451 0.29389 0.25 -1615 0.15451 0.47553 0.125 -1616 0.15451 0.47553 0.25 -1617 0.11588 0.35665 0.125 -1618 0.11588 0.35665 0.25 -1619 -0.11588 0.35665 0.125 -1620 -0.11588 0.35665 0.25 -1621 0.15451 0.47553 0.125 -1622 0.15451 0.47553 0.25 -1623 -0.15451 0.47553 0.125 -1624 -0.15451 0.47553 0.25 -1625 -0.11588 0.35665 0.125 -1626 -0.11588 0.35665 0.25 -1627 -0.30338 0.22042 0.125 -1628 -0.30338 0.22042 0.25 -1629 -0.15451 0.47553 0.125 -1630 -0.15451 0.47553 0.25 -1631 -0.40451 0.29389 0.125 -1632 -0.40451 0.29389 0.25 -1633 -0.30338 0.22042 0.125 -1634 -0.30338 0.22042 0.25 -1635 -0.375 4.5924e-17 0.125 -1636 -0.375 4.5924e-17 0.25 -1637 -0.40451 0.29389 0.125 -1638 -0.40451 0.29389 0.25 -1639 -0.5 6.1232e-17 0.125 -1640 -0.5 6.1232e-17 0.25 -1641 -0.375 4.5924e-17 0.125 -1642 -0.375 4.5924e-17 0.25 -1643 -0.30338 -0.22042 0.125 -1644 -0.30338 -0.22042 0.25 -1645 -0.5 6.1232e-17 0.125 -1646 -0.5 6.1232e-17 0.25 -1647 -0.40451 -0.29389 0.125 -1648 -0.40451 -0.29389 0.25 -1649 -0.30338 -0.22042 0.125 -1650 -0.30338 -0.22042 0.25 -1651 -0.11588 -0.35665 0.125 -1652 -0.11588 -0.35665 0.25 -1653 -0.40451 -0.29389 0.125 -1654 -0.40451 -0.29389 0.25 -1655 -0.15451 -0.47553 0.125 -1656 -0.15451 -0.47553 0.25 -1657 -0.11588 -0.35665 0.125 -1658 -0.11588 -0.35665 0.25 -1659 0.11588 -0.35665 0.125 -1660 0.11588 -0.35665 0.25 -1661 -0.15451 -0.47553 0.125 -1662 -0.15451 -0.47553 0.25 -1663 0.15451 -0.47553 0.125 -1664 0.15451 -0.47553 0.25 -1665 0.11588 -0.35665 0.125 -1666 0.11588 -0.35665 0.25 -1667 0.30338 -0.22042 0.125 -1668 0.30338 -0.22042 0.25 -1669 0.15451 -0.47553 0.125 -1670 0.15451 -0.47553 0.25 -1671 0.40451 -0.29389 0.125 -1672 0.40451 -0.29389 0.25 -1673 0.30338 -0.22042 0.125 -1674 0.30338 -0.22042 0.25 -1675 0.375 -9.1849e-17 0.125 -1676 0.375 -9.1849e-17 0.25 -1677 0.40451 -0.29389 0.125 -1678 0.40451 -0.29389 0.25 -1679 0.5 -1.2246e-16 0.125 -1680 0.5 -1.2246e-16 0.25 -1681 0.25 0 0.125 -1682 0.25 0 0.25 -1683 0.20225 0.14695 0.125 -1684 0.20225 0.14695 0.25 -1685 0.375 0 0.125 -1686 0.375 0 0.25 -1687 0.30338 0.22042 0.125 -1688 0.30338 0.22042 0.25 -1689 0.20225 0.14695 0.125 -1690 0.20225 0.14695 0.25 -1691 0.077254 0.23776 0.125 -1692 0.077254 0.23776 0.25 -1693 0.30338 0.22042 0.125 -1694 0.30338 0.22042 0.25 -1695 0.11588 0.35665 0.125 -1696 0.11588 0.35665 0.25 -1697 0.077254 0.23776 0.125 -1698 0.077254 0.23776 0.25 -1699 -0.077254 0.23776 0.125 -1700 -0.077254 0.23776 0.25 -1701 0.11588 0.35665 0.125 -1702 0.11588 0.35665 0.25 -1703 -0.11588 0.35665 0.125 -1704 -0.11588 0.35665 0.25 -1705 -0.077254 0.23776 0.125 -1706 -0.077254 0.23776 0.25 -1707 -0.20225 0.14695 0.125 -1708 -0.20225 0.14695 0.25 -1709 -0.11588 0.35665 0.125 -1710 -0.11588 0.35665 0.25 -1711 -0.30338 0.22042 0.125 -1712 -0.30338 0.22042 0.25 -1713 -0.20225 0.14695 0.125 -1714 -0.20225 0.14695 0.25 -1715 -0.25 3.0616e-17 0.125 -1716 -0.25 3.0616e-17 0.25 -1717 -0.30338 0.22042 0.125 -1718 -0.30338 0.22042 0.25 -1719 -0.375 4.5924e-17 0.125 -1720 -0.375 4.5924e-17 0.25 -1721 -0.25 3.0616e-17 0.125 -1722 -0.25 3.0616e-17 0.25 -1723 -0.20225 -0.14695 0.125 -1724 -0.20225 -0.14695 0.25 -1725 -0.375 4.5924e-17 0.125 -1726 -0.375 4.5924e-17 0.25 -1727 -0.30338 -0.22042 0.125 -1728 -0.30338 -0.22042 0.25 -1729 -0.20225 -0.14695 0.125 -1730 -0.20225 -0.14695 0.25 -1731 -0.077254 -0.23776 0.125 -1732 -0.077254 -0.23776 0.25 -1733 -0.30338 -0.22042 0.125 -1734 -0.30338 -0.22042 0.25 -1735 -0.11588 -0.35665 0.125 -1736 -0.11588 -0.35665 0.25 -1737 -0.077254 -0.23776 0.125 -1738 -0.077254 -0.23776 0.25 -1739 0.077254 -0.23776 0.125 -1740 0.077254 -0.23776 0.25 -1741 -0.11588 -0.35665 0.125 -1742 -0.11588 -0.35665 0.25 -1743 0.11588 -0.35665 0.125 -1744 0.11588 -0.35665 0.25 -1745 0.077254 -0.23776 0.125 -1746 0.077254 -0.23776 0.25 -1747 0.20225 -0.14695 0.125 -1748 0.20225 -0.14695 0.25 -1749 0.11588 -0.35665 0.125 -1750 0.11588 -0.35665 0.25 -1751 0.30338 -0.22042 0.125 -1752 0.30338 -0.22042 0.25 -1753 0.20225 -0.14695 0.125 -1754 0.20225 -0.14695 0.25 -1755 0.25 -6.1232e-17 0.125 -1756 0.25 -6.1232e-17 0.25 -1757 0.30338 -0.22042 0.125 -1758 0.30338 -0.22042 0.25 -1759 0.375 -9.1849e-17 0.125 -1760 0.375 -9.1849e-17 0.25 -1 0 hex 1 5 7 3 2 6 8 4 -2 0 hex 9 13 15 11 10 14 16 12 -3 0 hex 17 21 23 19 18 22 24 20 -4 0 hex 25 29 31 27 26 30 32 28 -5 0 hex 33 37 39 35 34 38 40 36 -6 0 hex 41 45 47 43 42 46 48 44 -7 0 hex 49 53 55 51 50 54 56 52 -8 0 hex 57 61 63 59 58 62 64 60 -9 0 hex 65 69 71 67 66 70 72 68 -10 0 hex 73 77 79 75 74 78 80 76 -11 0 hex 81 85 87 83 82 86 88 84 -12 0 hex 89 93 95 91 90 94 96 92 -13 0 hex 97 101 103 99 98 102 104 100 -14 0 hex 105 109 111 107 106 110 112 108 -15 0 hex 113 117 119 115 114 118 120 116 -16 0 hex 121 125 127 123 122 126 128 124 -17 0 hex 129 133 135 131 130 134 136 132 -18 0 hex 137 141 143 139 138 142 144 140 -19 0 hex 145 149 151 147 146 150 152 148 -20 0 hex 153 157 159 155 154 158 160 156 -21 0 hex 161 165 167 163 162 166 168 164 -22 0 hex 169 173 175 171 170 174 176 172 -23 0 hex 177 181 183 179 178 182 184 180 -24 0 hex 185 189 191 187 186 190 192 188 -25 0 hex 193 197 199 195 194 198 200 196 -26 0 hex 201 205 207 203 202 206 208 204 -27 0 hex 209 213 215 211 210 214 216 212 -28 0 hex 217 221 223 219 218 222 224 220 -29 0 hex 225 229 231 227 226 230 232 228 -30 0 hex 233 237 239 235 234 238 240 236 -31 0 hex 241 245 247 243 242 246 248 244 -32 0 hex 249 253 255 251 250 254 256 252 -33 0 hex 257 261 263 259 258 262 264 260 -34 0 hex 265 269 271 267 266 270 272 268 -35 0 hex 273 277 279 275 274 278 280 276 -36 0 hex 281 285 287 283 282 286 288 284 -37 0 hex 289 293 295 291 290 294 296 292 -38 0 hex 297 301 303 299 298 302 304 300 -39 0 hex 305 309 311 307 306 310 312 308 -40 0 hex 313 317 319 315 314 318 320 316 -41 0 hex 321 325 327 323 322 326 328 324 -42 0 hex 329 333 335 331 330 334 336 332 -43 0 hex 337 341 343 339 338 342 344 340 -44 0 hex 345 349 351 347 346 350 352 348 -45 0 hex 353 357 359 355 354 358 360 356 -46 0 hex 361 365 367 363 362 366 368 364 -47 0 hex 369 373 375 371 370 374 376 372 -48 0 hex 377 381 383 379 378 382 384 380 -49 0 hex 385 389 391 387 386 390 392 388 -50 0 hex 393 397 399 395 394 398 400 396 -51 0 hex 401 405 407 403 402 406 408 404 -52 0 hex 409 413 415 411 410 414 416 412 -53 0 hex 417 421 423 419 418 422 424 420 -54 0 hex 425 429 431 427 426 430 432 428 -55 0 hex 433 437 439 435 434 438 440 436 -56 0 hex 441 445 447 443 442 446 448 444 -57 0 hex 449 453 455 451 450 454 456 452 -58 0 hex 457 461 463 459 458 462 464 460 -59 0 hex 465 469 471 467 466 470 472 468 -60 0 hex 473 477 479 475 474 478 480 476 -61 0 hex 481 485 487 483 482 486 488 484 -62 0 hex 489 493 495 491 490 494 496 492 -63 0 hex 497 501 503 499 498 502 504 500 -64 0 hex 505 509 511 507 506 510 512 508 -65 0 hex 513 517 519 515 514 518 520 516 -66 0 hex 521 525 527 523 522 526 528 524 -67 0 hex 529 533 535 531 530 534 536 532 -68 0 hex 537 541 543 539 538 542 544 540 -69 0 hex 545 549 551 547 546 550 552 548 -70 0 hex 553 557 559 555 554 558 560 556 -71 0 hex 561 565 567 563 562 566 568 564 -72 0 hex 569 573 575 571 570 574 576 572 -73 0 hex 577 581 583 579 578 582 584 580 -74 0 hex 585 589 591 587 586 590 592 588 -75 0 hex 593 597 599 595 594 598 600 596 -76 0 hex 601 605 607 603 602 606 608 604 -77 0 hex 609 613 615 611 610 614 616 612 -78 0 hex 617 621 623 619 618 622 624 620 -79 0 hex 625 629 631 627 626 630 632 628 -80 0 hex 633 637 639 635 634 638 640 636 -81 0 hex 641 645 647 643 642 646 648 644 -82 0 hex 649 653 655 651 650 654 656 652 -83 0 hex 657 661 663 659 658 662 664 660 -84 0 hex 665 669 671 667 666 670 672 668 -85 0 hex 673 677 679 675 674 678 680 676 -86 0 hex 681 685 687 683 682 686 688 684 -87 0 hex 689 693 695 691 690 694 696 692 -88 0 hex 697 701 703 699 698 702 704 700 -89 0 hex 705 709 711 707 706 710 712 708 -90 0 hex 713 717 719 715 714 718 720 716 -91 0 hex 721 725 727 723 722 726 728 724 -92 0 hex 729 733 735 731 730 734 736 732 -93 0 hex 737 741 743 739 738 742 744 740 -94 0 hex 745 749 751 747 746 750 752 748 -95 0 hex 753 757 759 755 754 758 760 756 -96 0 hex 761 765 767 763 762 766 768 764 -97 0 hex 769 773 775 771 770 774 776 772 -98 0 hex 777 781 783 779 778 782 784 780 -99 0 hex 785 789 791 787 786 790 792 788 -100 0 hex 793 797 799 795 794 798 800 796 -101 0 hex 801 805 807 803 802 806 808 804 -102 0 hex 809 813 815 811 810 814 816 812 -103 0 hex 817 821 823 819 818 822 824 820 -104 0 hex 825 829 831 827 826 830 832 828 -105 0 hex 833 837 839 835 834 838 840 836 -106 0 hex 841 845 847 843 842 846 848 844 -107 0 hex 849 853 855 851 850 854 856 852 -108 0 hex 857 861 863 859 858 862 864 860 -109 0 hex 865 869 871 867 866 870 872 868 -110 0 hex 873 877 879 875 874 878 880 876 -111 0 hex 881 885 887 883 882 886 888 884 -112 0 hex 889 893 895 891 890 894 896 892 -113 0 hex 897 901 903 899 898 902 904 900 -114 0 hex 905 909 911 907 906 910 912 908 -115 0 hex 913 917 919 915 914 918 920 916 -116 0 hex 921 925 927 923 922 926 928 924 -117 0 hex 929 933 935 931 930 934 936 932 -118 0 hex 937 941 943 939 938 942 944 940 -119 0 hex 945 949 951 947 946 950 952 948 -120 0 hex 953 957 959 955 954 958 960 956 -121 0 hex 961 965 967 963 962 966 968 964 -122 0 hex 969 973 975 971 970 974 976 972 -123 0 hex 977 981 983 979 978 982 984 980 -124 0 hex 985 989 991 987 986 990 992 988 -125 0 hex 993 997 999 995 994 998 1000 996 -126 0 hex 1001 1005 1007 1003 1002 1006 1008 1004 -127 0 hex 1009 1013 1015 1011 1010 1014 1016 1012 -128 0 hex 1017 1021 1023 1019 1018 1022 1024 1020 -129 0 hex 1025 1029 1031 1027 1026 1030 1032 1028 -130 0 hex 1033 1037 1039 1035 1034 1038 1040 1036 -131 0 hex 1041 1045 1047 1043 1042 1046 1048 1044 -132 0 hex 1049 1053 1055 1051 1050 1054 1056 1052 -133 0 hex 1057 1061 1063 1059 1058 1062 1064 1060 -134 0 hex 1065 1069 1071 1067 1066 1070 1072 1068 -135 0 hex 1073 1077 1079 1075 1074 1078 1080 1076 -136 0 hex 1081 1085 1087 1083 1082 1086 1088 1084 -137 0 hex 1089 1093 1095 1091 1090 1094 1096 1092 -138 0 hex 1097 1101 1103 1099 1098 1102 1104 1100 -139 0 hex 1105 1109 1111 1107 1106 1110 1112 1108 -140 0 hex 1113 1117 1119 1115 1114 1118 1120 1116 -141 0 hex 1121 1125 1127 1123 1122 1126 1128 1124 -142 0 hex 1129 1133 1135 1131 1130 1134 1136 1132 -143 0 hex 1137 1141 1143 1139 1138 1142 1144 1140 -144 0 hex 1145 1149 1151 1147 1146 1150 1152 1148 -145 0 hex 1153 1157 1159 1155 1154 1158 1160 1156 -146 0 hex 1161 1165 1167 1163 1162 1166 1168 1164 -147 0 hex 1169 1173 1175 1171 1170 1174 1176 1172 -148 0 hex 1177 1181 1183 1179 1178 1182 1184 1180 -149 0 hex 1185 1189 1191 1187 1186 1190 1192 1188 -150 0 hex 1193 1197 1199 1195 1194 1198 1200 1196 -151 0 hex 1201 1205 1207 1203 1202 1206 1208 1204 -152 0 hex 1209 1213 1215 1211 1210 1214 1216 1212 -153 0 hex 1217 1221 1223 1219 1218 1222 1224 1220 -154 0 hex 1225 1229 1231 1227 1226 1230 1232 1228 -155 0 hex 1233 1237 1239 1235 1234 1238 1240 1236 -156 0 hex 1241 1245 1247 1243 1242 1246 1248 1244 -157 0 hex 1249 1253 1255 1251 1250 1254 1256 1252 -158 0 hex 1257 1261 1263 1259 1258 1262 1264 1260 -159 0 hex 1265 1269 1271 1267 1266 1270 1272 1268 -160 0 hex 1273 1277 1279 1275 1274 1278 1280 1276 -161 0 hex 1281 1285 1287 1283 1282 1286 1288 1284 -162 0 hex 1289 1293 1295 1291 1290 1294 1296 1292 -163 0 hex 1297 1301 1303 1299 1298 1302 1304 1300 -164 0 hex 1305 1309 1311 1307 1306 1310 1312 1308 -165 0 hex 1313 1317 1319 1315 1314 1318 1320 1316 -166 0 hex 1321 1325 1327 1323 1322 1326 1328 1324 -167 0 hex 1329 1333 1335 1331 1330 1334 1336 1332 -168 0 hex 1337 1341 1343 1339 1338 1342 1344 1340 -169 0 hex 1345 1349 1351 1347 1346 1350 1352 1348 -170 0 hex 1353 1357 1359 1355 1354 1358 1360 1356 -171 0 hex 1361 1365 1367 1363 1362 1366 1368 1364 -172 0 hex 1369 1373 1375 1371 1370 1374 1376 1372 -173 0 hex 1377 1381 1383 1379 1378 1382 1384 1380 -174 0 hex 1385 1389 1391 1387 1386 1390 1392 1388 -175 0 hex 1393 1397 1399 1395 1394 1398 1400 1396 -176 0 hex 1401 1405 1407 1403 1402 1406 1408 1404 -177 0 hex 1409 1413 1415 1411 1410 1414 1416 1412 -178 0 hex 1417 1421 1423 1419 1418 1422 1424 1420 -179 0 hex 1425 1429 1431 1427 1426 1430 1432 1428 -180 0 hex 1433 1437 1439 1435 1434 1438 1440 1436 -181 0 hex 1441 1445 1447 1443 1442 1446 1448 1444 -182 0 hex 1449 1453 1455 1451 1450 1454 1456 1452 -183 0 hex 1457 1461 1463 1459 1458 1462 1464 1460 -184 0 hex 1465 1469 1471 1467 1466 1470 1472 1468 -185 0 hex 1473 1477 1479 1475 1474 1478 1480 1476 -186 0 hex 1481 1485 1487 1483 1482 1486 1488 1484 -187 0 hex 1489 1493 1495 1491 1490 1494 1496 1492 -188 0 hex 1497 1501 1503 1499 1498 1502 1504 1500 -189 0 hex 1505 1509 1511 1507 1506 1510 1512 1508 -190 0 hex 1513 1517 1519 1515 1514 1518 1520 1516 -191 0 hex 1521 1525 1527 1523 1522 1526 1528 1524 -192 0 hex 1529 1533 1535 1531 1530 1534 1536 1532 -193 0 hex 1537 1541 1543 1539 1538 1542 1544 1540 -194 0 hex 1545 1549 1551 1547 1546 1550 1552 1548 -195 0 hex 1553 1557 1559 1555 1554 1558 1560 1556 -196 0 hex 1561 1565 1567 1563 1562 1566 1568 1564 -197 0 hex 1569 1573 1575 1571 1570 1574 1576 1572 -198 0 hex 1577 1581 1583 1579 1578 1582 1584 1580 -199 0 hex 1585 1589 1591 1587 1586 1590 1592 1588 -200 0 hex 1593 1597 1599 1595 1594 1598 1600 1596 -201 0 hex 1601 1605 1607 1603 1602 1606 1608 1604 -202 0 hex 1609 1613 1615 1611 1610 1614 1616 1612 -203 0 hex 1617 1621 1623 1619 1618 1622 1624 1620 -204 0 hex 1625 1629 1631 1627 1626 1630 1632 1628 -205 0 hex 1633 1637 1639 1635 1634 1638 1640 1636 -206 0 hex 1641 1645 1647 1643 1642 1646 1648 1644 -207 0 hex 1649 1653 1655 1651 1650 1654 1656 1652 -208 0 hex 1657 1661 1663 1659 1658 1662 1664 1660 -209 0 hex 1665 1669 1671 1667 1666 1670 1672 1668 -210 0 hex 1673 1677 1679 1675 1674 1678 1680 1676 -211 0 hex 1681 1685 1687 1683 1682 1686 1688 1684 -212 0 hex 1689 1693 1695 1691 1690 1694 1696 1692 -213 0 hex 1697 1701 1703 1699 1698 1702 1704 1700 -214 0 hex 1705 1709 1711 1707 1706 1710 1712 1708 -215 0 hex 1713 1717 1719 1715 1714 1718 1720 1716 -216 0 hex 1721 1725 1727 1723 1722 1726 1728 1724 -217 0 hex 1729 1733 1735 1731 1730 1734 1736 1732 -218 0 hex 1737 1741 1743 1739 1738 1742 1744 1740 -219 0 hex 1745 1749 1751 1747 1746 1750 1752 1748 -220 0 hex 1753 1757 1759 1755 1754 1758 1760 1756 - -1 1 -solution,dimensionless -1 0 -2 3 -3 0 -4 3 -5 1 -6 2 -7 1 -8 2 -9 0 -10 3 -11 0 -12 3 -13 1 -14 2 -15 1 -16 2 -17 0 -18 3 -19 0 -20 3 -21 1 -22 2 -23 1 -24 2 -25 0 -26 3 -27 0 -28 3 -29 1 -30 2 -31 1 -32 2 -33 0 -34 3 -35 0 -36 3 -37 1 -38 2 -39 1 -40 2 -41 0 -42 3 -43 0 -44 3 -45 1 -46 2 -47 1 -48 2 -49 0 -50 3 -51 0 -52 3 -53 1 -54 2 -55 1 -56 2 -57 0 -58 3 -59 0 -60 3 -61 1 -62 2 -63 1 -64 2 -65 0 -66 3 -67 0 -68 3 -69 1 -70 2 -71 1 -72 2 -73 0 -74 3 -75 0 -76 3 -77 1 -78 2 -79 1 -80 2 -81 4 -82 5 -83 4 -84 5 -85 0 -86 3 -87 0 -88 3 -89 4 -90 5 -91 4 -92 5 -93 0 -94 3 -95 0 -96 3 -97 4 -98 5 -99 4 -100 5 -101 0 -102 3 -103 0 -104 3 -105 4 -106 5 -107 4 -108 5 -109 0 -110 3 -111 0 -112 3 -113 4 -114 5 -115 4 -116 5 -117 0 -118 3 -119 0 -120 3 -121 4 -122 5 -123 4 -124 5 -125 0 -126 3 -127 0 -128 3 -129 4 -130 5 -131 4 -132 5 -133 0 -134 3 -135 0 -136 3 -137 4 -138 5 -139 4 -140 5 -141 0 -142 3 -143 0 -144 3 -145 4 -146 5 -147 4 -148 5 -149 0 -150 3 -151 0 -152 3 -153 4 -154 5 -155 4 -156 5 -157 0 -158 3 -159 0 -160 3 -161 6 -162 1 -163 6 -164 1 -165 7 -166 8 -167 7 -168 8 -169 6 -170 1 -171 6 -172 1 -173 7 -174 8 -175 7 -176 8 -177 6 -178 1 -179 6 -180 1 -181 7 -182 8 -183 7 -184 8 -185 6 -186 1 -187 6 -188 1 -189 7 -190 8 -191 7 -192 8 -193 6 -194 1 -195 6 -196 1 -197 7 -198 8 -199 7 -200 8 -201 6 -202 1 -203 6 -204 1 -205 7 -206 8 -207 7 -208 8 -209 6 -210 1 -211 6 -212 1 -213 7 -214 8 -215 7 -216 8 -217 6 -218 1 -219 6 -220 1 -221 7 -222 8 -223 7 -224 8 -225 6 -226 1 -227 6 -228 1 -229 7 -230 8 -231 7 -232 8 -233 6 -234 1 -235 6 -236 1 -237 7 -238 8 -239 7 -240 8 -241 7 -242 8 -243 7 -244 8 -245 9 -246 10 -247 9 -248 10 -249 7 -250 8 -251 7 -252 8 -253 9 -254 10 -255 9 -256 10 -257 7 -258 8 -259 7 -260 8 -261 9 -262 10 -263 9 -264 10 -265 7 -266 8 -267 7 -268 8 -269 9 -270 10 -271 9 -272 10 -273 7 -274 8 -275 7 -276 8 -277 9 -278 10 -279 9 -280 10 -281 7 -282 8 -283 7 -284 8 -285 9 -286 10 -287 9 -288 10 -289 7 -290 8 -291 7 -292 8 -293 9 -294 10 -295 9 -296 10 -297 7 -298 8 -299 7 -300 8 -301 9 -302 10 -303 9 -304 10 -305 7 -306 8 -307 7 -308 8 -309 9 -310 10 -311 9 -312 10 -313 7 -314 8 -315 7 -316 8 -317 9 -318 10 -319 9 -320 10 -321 8 -322 12 -323 8 -324 12 -325 10 -326 11 -327 10 -328 11 -329 8 -330 12 -331 8 -332 12 -333 10 -334 11 -335 10 -336 11 -337 8 -338 12 -339 8 -340 12 -341 10 -342 11 -343 10 -344 11 -345 8 -346 12 -347 8 -348 12 -349 10 -350 11 -351 10 -352 11 -353 8 -354 12 -355 8 -356 12 -357 10 -358 11 -359 10 -360 11 -361 8 -362 12 -363 8 -364 12 -365 10 -366 11 -367 10 -368 11 -369 8 -370 12 -371 8 -372 12 -373 10 -374 11 -375 10 -376 11 -377 8 -378 12 -379 8 -380 12 -381 10 -382 11 -383 10 -384 11 -385 8 -386 12 -387 8 -388 12 -389 10 -390 11 -391 10 -392 11 -393 8 -394 12 -395 8 -396 12 -397 10 -398 11 -399 10 -400 11 -401 1 -402 2 -403 1 -404 2 -405 8 -406 12 -407 8 -408 12 -409 1 -410 2 -411 1 -412 2 -413 8 -414 12 -415 8 -416 12 -417 1 -418 2 -419 1 -420 2 -421 8 -422 12 -423 8 -424 12 -425 1 -426 2 -427 1 -428 2 -429 8 -430 12 -431 8 -432 12 -433 1 -434 2 -435 1 -436 2 -437 8 -438 12 -439 8 -440 12 -441 1 -442 2 -443 1 -444 2 -445 8 -446 12 -447 8 -448 12 -449 1 -450 2 -451 1 -452 2 -453 8 -454 12 -455 8 -456 12 -457 1 -458 2 -459 1 -460 2 -461 8 -462 12 -463 8 -464 12 -465 1 -466 2 -467 1 -468 2 -469 8 -470 12 -471 8 -472 12 -473 1 -474 2 -475 1 -476 2 -477 8 -478 12 -479 8 -480 12 -481 2 -482 14 -483 2 -484 14 -485 12 -486 13 -487 12 -488 13 -489 2 -490 14 -491 2 -492 14 -493 12 -494 13 -495 12 -496 13 -497 2 -498 14 -499 2 -500 14 -501 12 -502 13 -503 12 -504 13 -505 2 -506 14 -507 2 -508 14 -509 12 -510 13 -511 12 -512 13 -513 2 -514 14 -515 2 -516 14 -517 12 -518 13 -519 12 -520 13 -521 2 -522 14 -523 2 -524 14 -525 12 -526 13 -527 12 -528 13 -529 2 -530 14 -531 2 -532 14 -533 12 -534 13 -535 12 -536 13 -537 2 -538 14 -539 2 -540 14 -541 12 -542 13 -543 12 -544 13 -545 2 -546 14 -547 2 -548 14 -549 12 -550 13 -551 12 -552 13 -553 2 -554 14 -555 2 -556 14 -557 12 -558 13 -559 12 -560 13 -561 12 -562 13 -563 12 -564 13 -565 11 -566 15 -567 11 -568 15 -569 12 -570 13 -571 12 -572 13 -573 11 -574 15 -575 11 -576 15 -577 12 -578 13 -579 12 -580 13 -581 11 -582 15 -583 11 -584 15 -585 12 -586 13 -587 12 -588 13 -589 11 -590 15 -591 11 -592 15 -593 12 -594 13 -595 12 -596 13 -597 11 -598 15 -599 11 -600 15 -601 12 -602 13 -603 12 -604 13 -605 11 -606 15 -607 11 -608 15 -609 12 -610 13 -611 12 -612 13 -613 11 -614 15 -615 11 -616 15 -617 12 -618 13 -619 12 -620 13 -621 11 -622 15 -623 11 -624 15 -625 12 -626 13 -627 12 -628 13 -629 11 -630 15 -631 11 -632 15 -633 12 -634 13 -635 12 -636 13 -637 11 -638 15 -639 11 -640 15 -641 13 -642 17 -643 13 -644 17 -645 15 -646 16 -647 15 -648 16 -649 13 -650 17 -651 13 -652 17 -653 15 -654 16 -655 15 -656 16 -657 13 -658 17 -659 13 -660 17 -661 15 -662 16 -663 15 -664 16 -665 13 -666 17 -667 13 -668 17 -669 15 -670 16 -671 15 -672 16 -673 13 -674 17 -675 13 -676 17 -677 15 -678 16 -679 15 -680 16 -681 13 -682 17 -683 13 -684 17 -685 15 -686 16 -687 15 -688 16 -689 13 -690 17 -691 13 -692 17 -693 15 -694 16 -695 15 -696 16 -697 13 -698 17 -699 13 -700 17 -701 15 -702 16 -703 15 -704 16 -705 13 -706 17 -707 13 -708 17 -709 15 -710 16 -711 15 -712 16 -713 13 -714 17 -715 13 -716 17 -717 15 -718 16 -719 15 -720 16 -721 14 -722 18 -723 14 -724 18 -725 13 -726 17 -727 13 -728 17 -729 14 -730 18 -731 14 -732 18 -733 13 -734 17 -735 13 -736 17 -737 14 -738 18 -739 14 -740 18 -741 13 -742 17 -743 13 -744 17 -745 14 -746 18 -747 14 -748 18 -749 13 -750 17 -751 13 -752 17 -753 14 -754 18 -755 14 -756 18 -757 13 -758 17 -759 13 -760 17 -761 14 -762 18 -763 14 -764 18 -765 13 -766 17 -767 13 -768 17 -769 14 -770 18 -771 14 -772 18 -773 13 -774 17 -775 13 -776 17 -777 14 -778 18 -779 14 -780 18 -781 13 -782 17 -783 13 -784 17 -785 14 -786 18 -787 14 -788 18 -789 13 -790 17 -791 13 -792 17 -793 14 -794 18 -795 14 -796 18 -797 13 -798 17 -799 13 -800 17 -801 5 -802 20 -803 5 -804 20 -805 3 -806 19 -807 3 -808 19 -809 5 -810 20 -811 5 -812 20 -813 3 -814 19 -815 3 -816 19 -817 5 -818 20 -819 5 -820 20 -821 3 -822 19 -823 3 -824 19 -825 5 -826 20 -827 5 -828 20 -829 3 -830 19 -831 3 -832 19 -833 5 -834 20 -835 5 -836 20 -837 3 -838 19 -839 3 -840 19 -841 5 -842 20 -843 5 -844 20 -845 3 -846 19 -847 3 -848 19 -849 5 -850 20 -851 5 -852 20 -853 3 -854 19 -855 3 -856 19 -857 5 -858 20 -859 5 -860 20 -861 3 -862 19 -863 3 -864 19 -865 5 -866 20 -867 5 -868 20 -869 3 -870 19 -871 3 -872 19 -873 5 -874 20 -875 5 -876 20 -877 3 -878 19 -879 3 -880 19 -881 3 -882 19 -883 3 -884 19 -885 2 -886 14 -887 2 -888 14 -889 3 -890 19 -891 3 -892 19 -893 2 -894 14 -895 2 -896 14 -897 3 -898 19 -899 3 -900 19 -901 2 -902 14 -903 2 -904 14 -905 3 -906 19 -907 3 -908 19 -909 2 -910 14 -911 2 -912 14 -913 3 -914 19 -915 3 -916 19 -917 2 -918 14 -919 2 -920 14 -921 3 -922 19 -923 3 -924 19 -925 2 -926 14 -927 2 -928 14 -929 3 -930 19 -931 3 -932 19 -933 2 -934 14 -935 2 -936 14 -937 3 -938 19 -939 3 -940 19 -941 2 -942 14 -943 2 -944 14 -945 3 -946 19 -947 3 -948 19 -949 2 -950 14 -951 2 -952 14 -953 3 -954 19 -955 3 -956 19 -957 2 -958 14 -959 2 -960 14 -961 19 -962 21 -963 19 -964 21 -965 14 -966 18 -967 14 -968 18 -969 19 -970 21 -971 19 -972 21 -973 14 -974 18 -975 14 -976 18 -977 19 -978 21 -979 19 -980 21 -981 14 -982 18 -983 14 -984 18 -985 19 -986 21 -987 19 -988 21 -989 14 -990 18 -991 14 -992 18 -993 19 -994 21 -995 19 -996 21 -997 14 -998 18 -999 14 -1000 18 -1001 19 -1002 21 -1003 19 -1004 21 -1005 14 -1006 18 -1007 14 -1008 18 -1009 19 -1010 21 -1011 19 -1012 21 -1013 14 -1014 18 -1015 14 -1016 18 -1017 19 -1018 21 -1019 19 -1020 21 -1021 14 -1022 18 -1023 14 -1024 18 -1025 19 -1026 21 -1027 19 -1028 21 -1029 14 -1030 18 -1031 14 -1032 18 -1033 19 -1034 21 -1035 19 -1036 21 -1037 14 -1038 18 -1039 14 -1040 18 -1041 20 -1042 22 -1043 20 -1044 22 -1045 19 -1046 21 -1047 19 -1048 21 -1049 20 -1050 22 -1051 20 -1052 22 -1053 19 -1054 21 -1055 19 -1056 21 -1057 20 -1058 22 -1059 20 -1060 22 -1061 19 -1062 21 -1063 19 -1064 21 -1065 20 -1066 22 -1067 20 -1068 22 -1069 19 -1070 21 -1071 19 -1072 21 -1073 20 -1074 22 -1075 20 -1076 22 -1077 19 -1078 21 -1079 19 -1080 21 -1081 20 -1082 22 -1083 20 -1084 22 -1085 19 -1086 21 -1087 19 -1088 21 -1089 20 -1090 22 -1091 20 -1092 22 -1093 19 -1094 21 -1095 19 -1096 21 -1097 20 -1098 22 -1099 20 -1100 22 -1101 19 -1102 21 -1103 19 -1104 21 -1105 20 -1106 22 -1107 20 -1108 22 -1109 19 -1110 21 -1111 19 -1112 21 -1113 20 -1114 22 -1115 20 -1116 22 -1117 19 -1118 21 -1119 19 -1120 21 -1121 23 -1122 26 -1123 23 -1124 26 -1125 24 -1126 25 -1127 24 -1128 25 -1129 23 -1130 26 -1131 23 -1132 26 -1133 24 -1134 25 -1135 24 -1136 25 -1137 23 -1138 26 -1139 23 -1140 26 -1141 24 -1142 25 -1143 24 -1144 25 -1145 23 -1146 26 -1147 23 -1148 26 -1149 24 -1150 25 -1151 24 -1152 25 -1153 23 -1154 26 -1155 23 -1156 26 -1157 24 -1158 25 -1159 24 -1160 25 -1161 23 -1162 26 -1163 23 -1164 26 -1165 24 -1166 25 -1167 24 -1168 25 -1169 23 -1170 26 -1171 23 -1172 26 -1173 24 -1174 25 -1175 24 -1176 25 -1177 23 -1178 26 -1179 23 -1180 26 -1181 24 -1182 25 -1183 24 -1184 25 -1185 23 -1186 26 -1187 23 -1188 26 -1189 24 -1190 25 -1191 24 -1192 25 -1193 23 -1194 26 -1195 23 -1196 26 -1197 24 -1198 25 -1199 24 -1200 25 -1201 24 -1202 25 -1203 24 -1204 25 -1205 27 -1206 28 -1207 27 -1208 28 -1209 24 -1210 25 -1211 24 -1212 25 -1213 27 -1214 28 -1215 27 -1216 28 -1217 24 -1218 25 -1219 24 -1220 25 -1221 27 -1222 28 -1223 27 -1224 28 -1225 24 -1226 25 -1227 24 -1228 25 -1229 27 -1230 28 -1231 27 -1232 28 -1233 24 -1234 25 -1235 24 -1236 25 -1237 27 -1238 28 -1239 27 -1240 28 -1241 24 -1242 25 -1243 24 -1244 25 -1245 27 -1246 28 -1247 27 -1248 28 -1249 24 -1250 25 -1251 24 -1252 25 -1253 27 -1254 28 -1255 27 -1256 28 -1257 24 -1258 25 -1259 24 -1260 25 -1261 27 -1262 28 -1263 27 -1264 28 -1265 24 -1266 25 -1267 24 -1268 25 -1269 27 -1270 28 -1271 27 -1272 28 -1273 24 -1274 25 -1275 24 -1276 25 -1277 27 -1278 28 -1279 27 -1280 28 -1281 25 -1282 29 -1283 25 -1284 29 -1285 28 -1286 0 -1287 28 -1288 0 -1289 25 -1290 29 -1291 25 -1292 29 -1293 28 -1294 0 -1295 28 -1296 0 -1297 25 -1298 29 -1299 25 -1300 29 -1301 28 -1302 0 -1303 28 -1304 0 -1305 25 -1306 29 -1307 25 -1308 29 -1309 28 -1310 0 -1311 28 -1312 0 -1313 25 -1314 29 -1315 25 -1316 29 -1317 28 -1318 0 -1319 28 -1320 0 -1321 25 -1322 29 -1323 25 -1324 29 -1325 28 -1326 0 -1327 28 -1328 0 -1329 25 -1330 29 -1331 25 -1332 29 -1333 28 -1334 0 -1335 28 -1336 0 -1337 25 -1338 29 -1339 25 -1340 29 -1341 28 -1342 0 -1343 28 -1344 0 -1345 25 -1346 29 -1347 25 -1348 29 -1349 28 -1350 0 -1351 28 -1352 0 -1353 25 -1354 29 -1355 25 -1356 29 -1357 28 -1358 0 -1359 28 -1360 0 -1361 26 -1362 4 -1363 26 -1364 4 -1365 25 -1366 29 -1367 25 -1368 29 -1369 26 -1370 4 -1371 26 -1372 4 -1373 25 -1374 29 -1375 25 -1376 29 -1377 26 -1378 4 -1379 26 -1380 4 -1381 25 -1382 29 -1383 25 -1384 29 -1385 26 -1386 4 -1387 26 -1388 4 -1389 25 -1390 29 -1391 25 -1392 29 -1393 26 -1394 4 -1395 26 -1396 4 -1397 25 -1398 29 -1399 25 -1400 29 -1401 26 -1402 4 -1403 26 -1404 4 -1405 25 -1406 29 -1407 25 -1408 29 -1409 26 -1410 4 -1411 26 -1412 4 -1413 25 -1414 29 -1415 25 -1416 29 -1417 26 -1418 4 -1419 26 -1420 4 -1421 25 -1422 29 -1423 25 -1424 29 -1425 26 -1426 4 -1427 26 -1428 4 -1429 25 -1430 29 -1431 25 -1432 29 -1433 26 -1434 4 -1435 26 -1436 4 -1437 25 -1438 29 -1439 25 -1440 29 -1441 27 -1442 28 -1443 27 -1444 28 -1445 30 -1446 31 -1447 30 -1448 31 -1449 27 -1450 28 -1451 27 -1452 28 -1453 30 -1454 31 -1455 30 -1456 31 -1457 27 -1458 28 -1459 27 -1460 28 -1461 30 -1462 31 -1463 30 -1464 31 -1465 27 -1466 28 -1467 27 -1468 28 -1469 30 -1470 31 -1471 30 -1472 31 -1473 27 -1474 28 -1475 27 -1476 28 -1477 30 -1478 31 -1479 30 -1480 31 -1481 27 -1482 28 -1483 27 -1484 28 -1485 30 -1486 31 -1487 30 -1488 31 -1489 27 -1490 28 -1491 27 -1492 28 -1493 30 -1494 31 -1495 30 -1496 31 -1497 27 -1498 28 -1499 27 -1500 28 -1501 30 -1502 31 -1503 30 -1504 31 -1505 27 -1506 28 -1507 27 -1508 28 -1509 30 -1510 31 -1511 30 -1512 31 -1513 27 -1514 28 -1515 27 -1516 28 -1517 30 -1518 31 -1519 30 -1520 31 -1521 30 -1522 31 -1523 30 -1524 31 -1525 6 -1526 32 -1527 6 -1528 32 -1529 30 -1530 31 -1531 30 -1532 31 -1533 6 -1534 32 -1535 6 -1536 32 -1537 30 -1538 31 -1539 30 -1540 31 -1541 6 -1542 32 -1543 6 -1544 32 -1545 30 -1546 31 -1547 30 -1548 31 -1549 6 -1550 32 -1551 6 -1552 32 -1553 30 -1554 31 -1555 30 -1556 31 -1557 6 -1558 32 -1559 6 -1560 32 -1561 30 -1562 31 -1563 30 -1564 31 -1565 6 -1566 32 -1567 6 -1568 32 -1569 30 -1570 31 -1571 30 -1572 31 -1573 6 -1574 32 -1575 6 -1576 32 -1577 30 -1578 31 -1579 30 -1580 31 -1581 6 -1582 32 -1583 6 -1584 32 -1585 30 -1586 31 -1587 30 -1588 31 -1589 6 -1590 32 -1591 6 -1592 32 -1593 30 -1594 31 -1595 30 -1596 31 -1597 6 -1598 32 -1599 6 -1600 32 -1601 31 -1602 33 -1603 31 -1604 33 -1605 32 -1606 1 -1607 32 -1608 1 -1609 31 -1610 33 -1611 31 -1612 33 -1613 32 -1614 1 -1615 32 -1616 1 -1617 31 -1618 33 -1619 31 -1620 33 -1621 32 -1622 1 -1623 32 -1624 1 -1625 31 -1626 33 -1627 31 -1628 33 -1629 32 -1630 1 -1631 32 -1632 1 -1633 31 -1634 33 -1635 31 -1636 33 -1637 32 -1638 1 -1639 32 -1640 1 -1641 31 -1642 33 -1643 31 -1644 33 -1645 32 -1646 1 -1647 32 -1648 1 -1649 31 -1650 33 -1651 31 -1652 33 -1653 32 -1654 1 -1655 32 -1656 1 -1657 31 -1658 33 -1659 31 -1660 33 -1661 32 -1662 1 -1663 32 -1664 1 -1665 31 -1666 33 -1667 31 -1668 33 -1669 32 -1670 1 -1671 32 -1672 1 -1673 31 -1674 33 -1675 31 -1676 33 -1677 32 -1678 1 -1679 32 -1680 1 -1681 28 -1682 0 -1683 28 -1684 0 -1685 31 -1686 33 -1687 31 -1688 33 -1689 28 -1690 0 -1691 28 -1692 0 -1693 31 -1694 33 -1695 31 -1696 33 -1697 28 -1698 0 -1699 28 -1700 0 -1701 31 -1702 33 -1703 31 -1704 33 -1705 28 -1706 0 -1707 28 -1708 0 -1709 31 -1710 33 -1711 31 -1712 33 -1713 28 -1714 0 -1715 28 -1716 0 -1717 31 -1718 33 -1719 31 -1720 33 -1721 28 -1722 0 -1723 28 -1724 0 -1725 31 -1726 33 -1727 31 -1728 33 -1729 28 -1730 0 -1731 28 -1732 0 -1733 31 -1734 33 -1735 31 -1736 33 -1737 28 -1738 0 -1739 28 -1740 0 -1741 31 -1742 33 -1743 31 -1744 33 -1745 28 -1746 0 -1747 28 -1748 0 -1749 31 -1750 33 -1751 31 -1752 33 -1753 28 -1754 0 -1755 28 -1756 0 -1757 31 -1758 33 -1759 31 -1760 33 - Number of active cells: 22 - Total number of cells: 25 - Number of degrees of freedom: 60 -gmvinput ascii - -nodes 176 -0.5 0.5 0.5 0.5 1 1 1 1 0 0 0 0 0.5 0.5 0.5 0.5 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 0.5 0.5 0.5 0.5 1 1 1 1 0 0 0 0 0.5 0.5 0.5 0.5 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0 0 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0 0 0 0 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 1 1 1 1 0.75 0.75 0.75 0.75 1 1 1 1 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 1 1 1 1 0.75 0.75 0.75 0.75 1 1 1 1 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75 -0 0 0.5 0.5 0 0 0.5 0.5 0 0 0.5 0.5 0 0 0.5 0.5 0.5 0.5 1 1 0.5 0.5 1 1 0.5 0.5 1 1 0.5 0.5 1 1 0.5 0.5 1 1 0.5 0.5 1 1 0.5 0.5 1 1 0.5 0.5 1 1 0 0 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 0 0 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5 -0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 - -cells 22 -hex 8 - 1 5 7 3 2 6 8 4 -hex 8 - 9 13 15 11 10 14 16 12 -hex 8 - 17 21 23 19 18 22 24 20 -hex 8 - 25 29 31 27 26 30 32 28 -hex 8 - 33 37 39 35 34 38 40 36 -hex 8 - 41 45 47 43 42 46 48 44 -hex 8 - 49 53 55 51 50 54 56 52 -hex 8 - 57 61 63 59 58 62 64 60 -hex 8 - 65 69 71 67 66 70 72 68 -hex 8 - 73 77 79 75 74 78 80 76 -hex 8 - 81 85 87 83 82 86 88 84 -hex 8 - 89 93 95 91 90 94 96 92 -hex 8 - 97 101 103 99 98 102 104 100 -hex 8 - 105 109 111 107 106 110 112 108 -hex 8 - 113 117 119 115 114 118 120 116 -hex 8 - 121 125 127 123 122 126 128 124 -hex 8 - 129 133 135 131 130 134 136 132 -hex 8 - 137 141 143 139 138 142 144 140 -hex 8 - 145 149 151 147 146 150 152 148 -hex 8 - 153 157 159 155 154 158 160 156 -hex 8 - 161 165 167 163 162 166 168 164 -hex 8 - 169 173 175 171 170 174 176 172 - -variable -solution 1 -0 3 4 7 1 2 5 6 8 9 10 11 0 3 4 7 12 10 14 17 13 4 15 16 13 4 15 16 18 5 19 20 4 7 16 22 5 6 20 21 10 11 17 23 4 7 16 22 24 27 28 31 25 26 29 30 25 26 29 30 32 33 34 35 26 36 30 38 33 0 35 37 27 8 31 39 26 36 30 38 28 31 12 42 29 30 40 41 29 30 40 41 34 35 13 43 30 38 41 44 35 37 43 4 31 39 42 10 30 38 41 44 32 33 34 35 45 46 47 48 45 46 47 48 49 50 51 52 46 53 48 55 50 1 52 54 33 0 35 37 46 53 48 55 34 35 13 43 47 48 56 57 47 48 56 57 51 52 18 58 48 55 57 59 52 54 58 5 35 37 43 4 48 55 57 59 - -endvars -endgmv -# This file was generated by the deal.II library. -# Date = 2000/9/19 - -# -# For a description of the GNUPLOT format see the GNUPLOT manual. -# -# -0.5 0 0.5 0 -1 0 0.5 1 - - -0.5 0 0.5 0 -0.5 0.5 0.5 4 - - -0.5 0 0.5 0 -0.5 0 1 3 - - -0.5 0 1 3 -1 0 1 2 - - -0.5 0 1 3 -0.5 0.5 1 7 - - -0.5 0.5 0.5 4 -1 0.5 0.5 5 - - -0.5 0.5 0.5 4 -0.5 0.5 1 7 - - -0.5 0.5 1 7 -1 0.5 1 6 - - -1 0 0.5 1 -1 0.5 0.5 5 - - -1 0 0.5 1 -1 0 1 2 - - -1 0 1 2 -1 0.5 1 6 - - -1 0.5 0.5 5 -1 0.5 1 6 - - -0 0 0.5 8 -0.5 0 0.5 0 - - -0 0 0.5 8 -0 0.5 0.5 10 - - -0 0 0.5 8 -0 0 1 9 - - -0 0 1 9 -0.5 0 1 3 - - -0 0 1 9 -0 0.5 1 11 - - -0 0.5 0.5 10 -0.5 0.5 0.5 4 - - -0 0.5 0.5 10 -0 0.5 1 11 - - -0 0.5 1 11 -0.5 0.5 1 7 - - -0.5 0 0.5 0 -0.5 0.5 0.5 4 - - -0.5 0 0.5 0 -0.5 0 1 3 - - -0.5 0 1 3 -0.5 0.5 1 7 - - -0.5 0.5 0.5 4 -0.5 0.5 1 7 - - -0 0.5 0 12 -0.5 0.5 0 13 - - -0 0.5 0 12 -0 1 0 14 - - -0 0.5 0 12 -0 0.5 0.5 10 - - -0 0.5 0.5 10 -0.5 0.5 0.5 4 - - -0 0.5 0.5 10 -0 1 0.5 17 - - -0 1 0 14 -0.5 1 0 15 - - -0 1 0 14 -0 1 0.5 17 - - -0 1 0.5 17 -0.5 1 0.5 16 - - -0.5 0.5 0 13 -0.5 1 0 15 - - -0.5 0.5 0 13 -0.5 0.5 0.5 4 - - -0.5 0.5 0.5 4 -0.5 1 0.5 16 - - -0.5 1 0 15 -0.5 1 0.5 16 - - -0.5 0.5 0 13 -1 0.5 0 18 - - -0.5 0.5 0 13 -0.5 1 0 15 - - -0.5 0.5 0 13 -0.5 0.5 0.5 4 - - -0.5 0.5 0.5 4 -1 0.5 0.5 5 - - -0.5 0.5 0.5 4 -0.5 1 0.5 16 - - -0.5 1 0 15 -1 1 0 19 - - -0.5 1 0 15 -0.5 1 0.5 16 - - -0.5 1 0.5 16 -1 1 0.5 20 - - -1 0.5 0 18 -1 1 0 19 - - -1 0.5 0 18 -1 0.5 0.5 5 - - -1 0.5 0.5 5 -1 1 0.5 20 - - -1 1 0 19 -1 1 0.5 20 - - -0.5 0.5 0.5 4 -1 0.5 0.5 5 - - -0.5 0.5 0.5 4 -0.5 1 0.5 16 - - -0.5 0.5 0.5 4 -0.5 0.5 1 7 - - -0.5 0.5 1 7 -1 0.5 1 6 - - -0.5 0.5 1 7 -0.5 1 1 22 - - -0.5 1 0.5 16 -1 1 0.5 20 - - -0.5 1 0.5 16 -0.5 1 1 22 - - -0.5 1 1 22 -1 1 1 21 - - -1 0.5 0.5 5 -1 1 0.5 20 - - -1 0.5 0.5 5 -1 0.5 1 6 - - -1 0.5 1 6 -1 1 1 21 - - -1 1 0.5 20 -1 1 1 21 - - -0 0.5 0.5 10 -0.5 0.5 0.5 4 - - -0 0.5 0.5 10 -0 1 0.5 17 - - -0 0.5 0.5 10 -0 0.5 1 11 - - -0 0.5 1 11 -0.5 0.5 1 7 - - -0 0.5 1 11 -0 1 1 23 - - -0 1 0.5 17 -0.5 1 0.5 16 - - -0 1 0.5 17 -0 1 1 23 - - -0 1 1 23 -0.5 1 1 22 - - -0.5 0.5 0.5 4 -0.5 1 0.5 16 - - -0.5 0.5 0.5 4 -0.5 0.5 1 7 - - -0.5 0.5 1 7 -0.5 1 1 22 - - -0.5 1 0.5 16 -0.5 1 1 22 - - -0 0 0 24 -0.25 0 0 25 - - -0 0 0 24 -0 0.25 0 28 - - -0 0 0 24 -0 0 0.25 27 - - -0 0 0.25 27 -0.25 0 0.25 26 - - -0 0 0.25 27 -0 0.25 0.25 31 - - -0 0.25 0 28 -0.25 0.25 0 29 - - -0 0.25 0 28 -0 0.25 0.25 31 - - -0 0.25 0.25 31 -0.25 0.25 0.25 30 - - -0.25 0 0 25 -0.25 0.25 0 29 - - -0.25 0 0 25 -0.25 0 0.25 26 - - -0.25 0 0.25 26 -0.25 0.25 0.25 30 - - -0.25 0.25 0 29 -0.25 0.25 0.25 30 - - -0.25 0 0 25 -0.5 0 0 32 - - -0.25 0 0 25 -0.25 0.25 0 29 - - -0.25 0 0 25 -0.25 0 0.25 26 - - -0.25 0 0.25 26 -0.5 0 0.25 33 - - -0.25 0 0.25 26 -0.25 0.25 0.25 30 - - -0.25 0.25 0 29 -0.5 0.25 0 34 - - -0.25 0.25 0 29 -0.25 0.25 0.25 30 - - -0.25 0.25 0.25 30 -0.5 0.25 0.25 35 - - -0.5 0 0 32 -0.5 0.25 0 34 - - -0.5 0 0 32 -0.5 0 0.25 33 - - -0.5 0 0.25 33 -0.5 0.25 0.25 35 - - -0.5 0.25 0 34 -0.5 0.25 0.25 35 - - -0.25 0 0.25 26 -0.5 0 0.25 33 - - -0.25 0 0.25 26 -0.25 0.25 0.25 30 - - -0.25 0 0.25 26 -0.25 0 0.5 36 - - -0.25 0 0.5 36 -0.5 0 0.5 0 - - -0.25 0 0.5 36 -0.25 0.25 0.5 38 - - -0.25 0.25 0.25 30 -0.5 0.25 0.25 35 - - -0.25 0.25 0.25 30 -0.25 0.25 0.5 38 - - -0.25 0.25 0.5 38 -0.5 0.25 0.5 37 - - -0.5 0 0.25 33 -0.5 0.25 0.25 35 - - -0.5 0 0.25 33 -0.5 0 0.5 0 - - -0.5 0 0.5 0 -0.5 0.25 0.5 37 - - -0.5 0.25 0.25 35 -0.5 0.25 0.5 37 - - -0 0 0.25 27 -0.25 0 0.25 26 - - -0 0 0.25 27 -0 0.25 0.25 31 - - -0 0 0.25 27 -0 0 0.5 8 - - -0 0 0.5 8 -0.25 0 0.5 36 - - -0 0 0.5 8 -0 0.25 0.5 39 - - -0 0.25 0.25 31 -0.25 0.25 0.25 30 - - -0 0.25 0.25 31 -0 0.25 0.5 39 - - -0 0.25 0.5 39 -0.25 0.25 0.5 38 - - -0.25 0 0.25 26 -0.25 0.25 0.25 30 - - -0.25 0 0.25 26 -0.25 0 0.5 36 - - -0.25 0 0.5 36 -0.25 0.25 0.5 38 - - -0.25 0.25 0.25 30 -0.25 0.25 0.5 38 - - -0 0.25 0 28 -0.25 0.25 0 29 - - -0 0.25 0 28 -0 0.5 0 12 - - -0 0.25 0 28 -0 0.25 0.25 31 - - -0 0.25 0.25 31 -0.25 0.25 0.25 30 - - -0 0.25 0.25 31 -0 0.5 0.25 42 - - -0 0.5 0 12 -0.25 0.5 0 40 - - -0 0.5 0 12 -0 0.5 0.25 42 - - -0 0.5 0.25 42 -0.25 0.5 0.25 41 - - -0.25 0.25 0 29 -0.25 0.5 0 40 - - -0.25 0.25 0 29 -0.25 0.25 0.25 30 - - -0.25 0.25 0.25 30 -0.25 0.5 0.25 41 - - -0.25 0.5 0 40 -0.25 0.5 0.25 41 - - -0.25 0.25 0 29 -0.5 0.25 0 34 - - -0.25 0.25 0 29 -0.25 0.5 0 40 - - -0.25 0.25 0 29 -0.25 0.25 0.25 30 - - -0.25 0.25 0.25 30 -0.5 0.25 0.25 35 - - -0.25 0.25 0.25 30 -0.25 0.5 0.25 41 - - -0.25 0.5 0 40 -0.5 0.5 0 13 - - -0.25 0.5 0 40 -0.25 0.5 0.25 41 - - -0.25 0.5 0.25 41 -0.5 0.5 0.25 43 - - -0.5 0.25 0 34 -0.5 0.5 0 13 - - -0.5 0.25 0 34 -0.5 0.25 0.25 35 - - -0.5 0.25 0.25 35 -0.5 0.5 0.25 43 - - -0.5 0.5 0 13 -0.5 0.5 0.25 43 - - -0.25 0.25 0.25 30 -0.5 0.25 0.25 35 - - -0.25 0.25 0.25 30 -0.25 0.5 0.25 41 - - -0.25 0.25 0.25 30 -0.25 0.25 0.5 38 - - -0.25 0.25 0.5 38 -0.5 0.25 0.5 37 - - -0.25 0.25 0.5 38 -0.25 0.5 0.5 44 - - -0.25 0.5 0.25 41 -0.5 0.5 0.25 43 - - -0.25 0.5 0.25 41 -0.25 0.5 0.5 44 - - -0.25 0.5 0.5 44 -0.5 0.5 0.5 4 - - -0.5 0.25 0.25 35 -0.5 0.5 0.25 43 - - -0.5 0.25 0.25 35 -0.5 0.25 0.5 37 - - -0.5 0.25 0.5 37 -0.5 0.5 0.5 4 - - -0.5 0.5 0.25 43 -0.5 0.5 0.5 4 - - -0 0.25 0.25 31 -0.25 0.25 0.25 30 - - -0 0.25 0.25 31 -0 0.5 0.25 42 - - -0 0.25 0.25 31 -0 0.25 0.5 39 - - -0 0.25 0.5 39 -0.25 0.25 0.5 38 - - -0 0.25 0.5 39 -0 0.5 0.5 10 - - -0 0.5 0.25 42 -0.25 0.5 0.25 41 - - -0 0.5 0.25 42 -0 0.5 0.5 10 - - -0 0.5 0.5 10 -0.25 0.5 0.5 44 - - -0.25 0.25 0.25 30 -0.25 0.5 0.25 41 - - -0.25 0.25 0.25 30 -0.25 0.25 0.5 38 - - -0.25 0.25 0.5 38 -0.25 0.5 0.5 44 - - -0.25 0.5 0.25 41 -0.25 0.5 0.5 44 - - -0.5 0 0 32 -0.75 0 0 45 - - -0.5 0 0 32 -0.5 0.25 0 34 - - -0.5 0 0 32 -0.5 0 0.25 33 - - -0.5 0 0.25 33 -0.75 0 0.25 46 - - -0.5 0 0.25 33 -0.5 0.25 0.25 35 - - -0.5 0.25 0 34 -0.75 0.25 0 47 - - -0.5 0.25 0 34 -0.5 0.25 0.25 35 - - -0.5 0.25 0.25 35 -0.75 0.25 0.25 48 - - -0.75 0 0 45 -0.75 0.25 0 47 - - -0.75 0 0 45 -0.75 0 0.25 46 - - -0.75 0 0.25 46 -0.75 0.25 0.25 48 - - -0.75 0.25 0 47 -0.75 0.25 0.25 48 - - -0.75 0 0 45 -1 0 0 49 - - -0.75 0 0 45 -0.75 0.25 0 47 - - -0.75 0 0 45 -0.75 0 0.25 46 - - -0.75 0 0.25 46 -1 0 0.25 50 - - -0.75 0 0.25 46 -0.75 0.25 0.25 48 - - -0.75 0.25 0 47 -1 0.25 0 51 - - -0.75 0.25 0 47 -0.75 0.25 0.25 48 - - -0.75 0.25 0.25 48 -1 0.25 0.25 52 - - -1 0 0 49 -1 0.25 0 51 - - -1 0 0 49 -1 0 0.25 50 - - -1 0 0.25 50 -1 0.25 0.25 52 - - -1 0.25 0 51 -1 0.25 0.25 52 - - -0.75 0 0.25 46 -1 0 0.25 50 - - -0.75 0 0.25 46 -0.75 0.25 0.25 48 - - -0.75 0 0.25 46 -0.75 0 0.5 53 - - -0.75 0 0.5 53 -1 0 0.5 1 - - -0.75 0 0.5 53 -0.75 0.25 0.5 55 - - -0.75 0.25 0.25 48 -1 0.25 0.25 52 - - -0.75 0.25 0.25 48 -0.75 0.25 0.5 55 - - -0.75 0.25 0.5 55 -1 0.25 0.5 54 - - -1 0 0.25 50 -1 0.25 0.25 52 - - -1 0 0.25 50 -1 0 0.5 1 - - -1 0 0.5 1 -1 0.25 0.5 54 - - -1 0.25 0.25 52 -1 0.25 0.5 54 - - -0.5 0 0.25 33 -0.75 0 0.25 46 - - -0.5 0 0.25 33 -0.5 0.25 0.25 35 - - -0.5 0 0.25 33 -0.5 0 0.5 0 - - -0.5 0 0.5 0 -0.75 0 0.5 53 - - -0.5 0 0.5 0 -0.5 0.25 0.5 37 - - -0.5 0.25 0.25 35 -0.75 0.25 0.25 48 - - -0.5 0.25 0.25 35 -0.5 0.25 0.5 37 - - -0.5 0.25 0.5 37 -0.75 0.25 0.5 55 - - -0.75 0 0.25 46 -0.75 0.25 0.25 48 - - -0.75 0 0.25 46 -0.75 0 0.5 53 - - -0.75 0 0.5 53 -0.75 0.25 0.5 55 - - -0.75 0.25 0.25 48 -0.75 0.25 0.5 55 - - -0.5 0.25 0 34 -0.75 0.25 0 47 - - -0.5 0.25 0 34 -0.5 0.5 0 13 - - -0.5 0.25 0 34 -0.5 0.25 0.25 35 - - -0.5 0.25 0.25 35 -0.75 0.25 0.25 48 - - -0.5 0.25 0.25 35 -0.5 0.5 0.25 43 - - -0.5 0.5 0 13 -0.75 0.5 0 56 - - -0.5 0.5 0 13 -0.5 0.5 0.25 43 - - -0.5 0.5 0.25 43 -0.75 0.5 0.25 57 - - -0.75 0.25 0 47 -0.75 0.5 0 56 - - -0.75 0.25 0 47 -0.75 0.25 0.25 48 - - -0.75 0.25 0.25 48 -0.75 0.5 0.25 57 - - -0.75 0.5 0 56 -0.75 0.5 0.25 57 - - -0.75 0.25 0 47 -1 0.25 0 51 - - -0.75 0.25 0 47 -0.75 0.5 0 56 - - -0.75 0.25 0 47 -0.75 0.25 0.25 48 - - -0.75 0.25 0.25 48 -1 0.25 0.25 52 - - -0.75 0.25 0.25 48 -0.75 0.5 0.25 57 - - -0.75 0.5 0 56 -1 0.5 0 18 - - -0.75 0.5 0 56 -0.75 0.5 0.25 57 - - -0.75 0.5 0.25 57 -1 0.5 0.25 58 - - -1 0.25 0 51 -1 0.5 0 18 - - -1 0.25 0 51 -1 0.25 0.25 52 - - -1 0.25 0.25 52 -1 0.5 0.25 58 - - -1 0.5 0 18 -1 0.5 0.25 58 - - -0.75 0.25 0.25 48 -1 0.25 0.25 52 - - -0.75 0.25 0.25 48 -0.75 0.5 0.25 57 - - -0.75 0.25 0.25 48 -0.75 0.25 0.5 55 - - -0.75 0.25 0.5 55 -1 0.25 0.5 54 - - -0.75 0.25 0.5 55 -0.75 0.5 0.5 59 - - -0.75 0.5 0.25 57 -1 0.5 0.25 58 - - -0.75 0.5 0.25 57 -0.75 0.5 0.5 59 - - -0.75 0.5 0.5 59 -1 0.5 0.5 5 - - -1 0.25 0.25 52 -1 0.5 0.25 58 - - -1 0.25 0.25 52 -1 0.25 0.5 54 - - -1 0.25 0.5 54 -1 0.5 0.5 5 - - -1 0.5 0.25 58 -1 0.5 0.5 5 - - -0.5 0.25 0.25 35 -0.75 0.25 0.25 48 - - -0.5 0.25 0.25 35 -0.5 0.5 0.25 43 - - -0.5 0.25 0.25 35 -0.5 0.25 0.5 37 - - -0.5 0.25 0.5 37 -0.75 0.25 0.5 55 - - -0.5 0.25 0.5 37 -0.5 0.5 0.5 4 - - -0.5 0.5 0.25 43 -0.75 0.5 0.25 57 - - -0.5 0.5 0.25 43 -0.5 0.5 0.5 4 - - -0.5 0.5 0.5 4 -0.75 0.5 0.5 59 - - -0.75 0.25 0.25 48 -0.75 0.5 0.25 57 - - -0.75 0.25 0.25 48 -0.75 0.25 0.5 55 - - -0.75 0.25 0.5 55 -0.75 0.5 0.5 59 - - -0.75 0.5 0.25 57 -0.75 0.5 0.5 59 - - -# This file was generated by the deal.II library. -# Date = 2000/9/19 - -# -# For a description of the UCD format see the AVS Developer's guide. -# -176 22 1 0 0 -1 0.5 0 0.5 -2 0.5 0 1 -3 0.5 0.5 0.5 -4 0.5 0.5 1 -5 1 0 0.5 -6 1 0 1 -7 1 0.5 0.5 -8 1 0.5 1 -9 0 0 0.5 -10 0 0 1 -11 0 0.5 0.5 -12 0 0.5 1 -13 0.5 0 0.5 -14 0.5 0 1 -15 0.5 0.5 0.5 -16 0.5 0.5 1 -17 0 0.5 0 -18 0 0.5 0.5 -19 0 1 0 -20 0 1 0.5 -21 0.5 0.5 0 -22 0.5 0.5 0.5 -23 0.5 1 0 -24 0.5 1 0.5 -25 0.5 0.5 0 -26 0.5 0.5 0.5 -27 0.5 1 0 -28 0.5 1 0.5 -29 1 0.5 0 -30 1 0.5 0.5 -31 1 1 0 -32 1 1 0.5 -33 0.5 0.5 0.5 -34 0.5 0.5 1 -35 0.5 1 0.5 -36 0.5 1 1 -37 1 0.5 0.5 -38 1 0.5 1 -39 1 1 0.5 -40 1 1 1 -41 0 0.5 0.5 -42 0 0.5 1 -43 0 1 0.5 -44 0 1 1 -45 0.5 0.5 0.5 -46 0.5 0.5 1 -47 0.5 1 0.5 -48 0.5 1 1 -49 0 0 0 -50 0 0 0.25 -51 0 0.25 0 -52 0 0.25 0.25 -53 0.25 0 0 -54 0.25 0 0.25 -55 0.25 0.25 0 -56 0.25 0.25 0.25 -57 0.25 0 0 -58 0.25 0 0.25 -59 0.25 0.25 0 -60 0.25 0.25 0.25 -61 0.5 0 0 -62 0.5 0 0.25 -63 0.5 0.25 0 -64 0.5 0.25 0.25 -65 0.25 0 0.25 -66 0.25 0 0.5 -67 0.25 0.25 0.25 -68 0.25 0.25 0.5 -69 0.5 0 0.25 -70 0.5 0 0.5 -71 0.5 0.25 0.25 -72 0.5 0.25 0.5 -73 0 0 0.25 -74 0 0 0.5 -75 0 0.25 0.25 -76 0 0.25 0.5 -77 0.25 0 0.25 -78 0.25 0 0.5 -79 0.25 0.25 0.25 -80 0.25 0.25 0.5 -81 0 0.25 0 -82 0 0.25 0.25 -83 0 0.5 0 -84 0 0.5 0.25 -85 0.25 0.25 0 -86 0.25 0.25 0.25 -87 0.25 0.5 0 -88 0.25 0.5 0.25 -89 0.25 0.25 0 -90 0.25 0.25 0.25 -91 0.25 0.5 0 -92 0.25 0.5 0.25 -93 0.5 0.25 0 -94 0.5 0.25 0.25 -95 0.5 0.5 0 -96 0.5 0.5 0.25 -97 0.25 0.25 0.25 -98 0.25 0.25 0.5 -99 0.25 0.5 0.25 -100 0.25 0.5 0.5 -101 0.5 0.25 0.25 -102 0.5 0.25 0.5 -103 0.5 0.5 0.25 -104 0.5 0.5 0.5 -105 0 0.25 0.25 -106 0 0.25 0.5 -107 0 0.5 0.25 -108 0 0.5 0.5 -109 0.25 0.25 0.25 -110 0.25 0.25 0.5 -111 0.25 0.5 0.25 -112 0.25 0.5 0.5 -113 0.5 0 0 -114 0.5 0 0.25 -115 0.5 0.25 0 -116 0.5 0.25 0.25 -117 0.75 0 0 -118 0.75 0 0.25 -119 0.75 0.25 0 -120 0.75 0.25 0.25 -121 0.75 0 0 -122 0.75 0 0.25 -123 0.75 0.25 0 -124 0.75 0.25 0.25 -125 1 0 0 -126 1 0 0.25 -127 1 0.25 0 -128 1 0.25 0.25 -129 0.75 0 0.25 -130 0.75 0 0.5 -131 0.75 0.25 0.25 -132 0.75 0.25 0.5 -133 1 0 0.25 -134 1 0 0.5 -135 1 0.25 0.25 -136 1 0.25 0.5 -137 0.5 0 0.25 -138 0.5 0 0.5 -139 0.5 0.25 0.25 -140 0.5 0.25 0.5 -141 0.75 0 0.25 -142 0.75 0 0.5 -143 0.75 0.25 0.25 -144 0.75 0.25 0.5 -145 0.5 0.25 0 -146 0.5 0.25 0.25 -147 0.5 0.5 0 -148 0.5 0.5 0.25 -149 0.75 0.25 0 -150 0.75 0.25 0.25 -151 0.75 0.5 0 -152 0.75 0.5 0.25 -153 0.75 0.25 0 -154 0.75 0.25 0.25 -155 0.75 0.5 0 -156 0.75 0.5 0.25 -157 1 0.25 0 -158 1 0.25 0.25 -159 1 0.5 0 -160 1 0.5 0.25 -161 0.75 0.25 0.25 -162 0.75 0.25 0.5 -163 0.75 0.5 0.25 -164 0.75 0.5 0.5 -165 1 0.25 0.25 -166 1 0.25 0.5 -167 1 0.5 0.25 -168 1 0.5 0.5 -169 0.5 0.25 0.25 -170 0.5 0.25 0.5 -171 0.5 0.5 0.25 -172 0.5 0.5 0.5 -173 0.75 0.25 0.25 -174 0.75 0.25 0.5 -175 0.75 0.5 0.25 -176 0.75 0.5 0.5 -1 0 hex 1 5 7 3 2 6 8 4 -2 0 hex 9 13 15 11 10 14 16 12 -3 0 hex 17 21 23 19 18 22 24 20 -4 0 hex 25 29 31 27 26 30 32 28 -5 0 hex 33 37 39 35 34 38 40 36 -6 0 hex 41 45 47 43 42 46 48 44 -7 0 hex 49 53 55 51 50 54 56 52 -8 0 hex 57 61 63 59 58 62 64 60 -9 0 hex 65 69 71 67 66 70 72 68 -10 0 hex 73 77 79 75 74 78 80 76 -11 0 hex 81 85 87 83 82 86 88 84 -12 0 hex 89 93 95 91 90 94 96 92 -13 0 hex 97 101 103 99 98 102 104 100 -14 0 hex 105 109 111 107 106 110 112 108 -15 0 hex 113 117 119 115 114 118 120 116 -16 0 hex 121 125 127 123 122 126 128 124 -17 0 hex 129 133 135 131 130 134 136 132 -18 0 hex 137 141 143 139 138 142 144 140 -19 0 hex 145 149 151 147 146 150 152 148 -20 0 hex 153 157 159 155 154 158 160 156 -21 0 hex 161 165 167 163 162 166 168 164 -22 0 hex 169 173 175 171 170 174 176 172 - -1 1 -solution,dimensionless -1 0 -2 3 -3 4 -4 7 -5 1 -6 2 -7 5 -8 6 -9 8 -10 9 -11 10 -12 11 -13 0 -14 3 -15 4 -16 7 -17 12 -18 10 -19 14 -20 17 -21 13 -22 4 -23 15 -24 16 -25 13 -26 4 -27 15 -28 16 -29 18 -30 5 -31 19 -32 20 -33 4 -34 7 -35 16 -36 22 -37 5 -38 6 -39 20 -40 21 -41 10 -42 11 -43 17 -44 23 -45 4 -46 7 -47 16 -48 22 -49 24 -50 27 -51 28 -52 31 -53 25 -54 26 -55 29 -56 30 -57 25 -58 26 -59 29 -60 30 -61 32 -62 33 -63 34 -64 35 -65 26 -66 36 -67 30 -68 38 -69 33 -70 0 -71 35 -72 37 -73 27 -74 8 -75 31 -76 39 -77 26 -78 36 -79 30 -80 38 -81 28 -82 31 -83 12 -84 42 -85 29 -86 30 -87 40 -88 41 -89 29 -90 30 -91 40 -92 41 -93 34 -94 35 -95 13 -96 43 -97 30 -98 38 -99 41 -100 44 -101 35 -102 37 -103 43 -104 4 -105 31 -106 39 -107 42 -108 10 -109 30 -110 38 -111 41 -112 44 -113 32 -114 33 -115 34 -116 35 -117 45 -118 46 -119 47 -120 48 -121 45 -122 46 -123 47 -124 48 -125 49 -126 50 -127 51 -128 52 -129 46 -130 53 -131 48 -132 55 -133 50 -134 1 -135 52 -136 54 -137 33 -138 0 -139 35 -140 37 -141 46 -142 53 -143 48 -144 55 -145 34 -146 35 -147 13 -148 43 -149 47 -150 48 -151 56 -152 57 -153 47 -154 48 -155 56 -156 57 -157 51 -158 52 -159 18 -160 58 -161 48 -162 55 -163 57 -164 59 -165 52 -166 54 -167 58 -168 5 -169 35 -170 37 -171 43 -172 4 -173 48 -174 55 -175 57 -176 59 -gmvinput ascii - -nodes 5082 -0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1 1 1 1 1 1 1 1 1 1 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0 0 0 0 0 0 0 0 0 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0 0 0 0 0 0 0 0 0 0 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0 0 0 0 0 0 0 0 0 0 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 -0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 - -cells 4200 -quad 4 - 1 12 13 2 -quad 4 - 2 13 14 3 -quad 4 - 3 14 15 4 -quad 4 - 4 15 16 5 -quad 4 - 5 16 17 6 -quad 4 - 6 17 18 7 -quad 4 - 7 18 19 8 -quad 4 - 8 19 20 9 -quad 4 - 9 20 21 10 -quad 4 - 10 21 22 11 -quad 4 - 12 23 24 13 -quad 4 - 13 24 25 14 -quad 4 - 14 25 26 15 -quad 4 - 15 26 27 16 -quad 4 - 16 27 28 17 -quad 4 - 17 28 29 18 -quad 4 - 18 29 30 19 -quad 4 - 19 30 31 20 -quad 4 - 20 31 32 21 -quad 4 - 21 32 33 22 -quad 4 - 23 34 35 24 -quad 4 - 24 35 36 25 -quad 4 - 25 36 37 26 -quad 4 - 26 37 38 27 -quad 4 - 27 38 39 28 -quad 4 - 28 39 40 29 -quad 4 - 29 40 41 30 -quad 4 - 30 41 42 31 -quad 4 - 31 42 43 32 -quad 4 - 32 43 44 33 -quad 4 - 34 45 46 35 -quad 4 - 35 46 47 36 -quad 4 - 36 47 48 37 -quad 4 - 37 48 49 38 -quad 4 - 38 49 50 39 -quad 4 - 39 50 51 40 -quad 4 - 40 51 52 41 -quad 4 - 41 52 53 42 -quad 4 - 42 53 54 43 -quad 4 - 43 54 55 44 -quad 4 - 45 56 57 46 -quad 4 - 46 57 58 47 -quad 4 - 47 58 59 48 -quad 4 - 48 59 60 49 -quad 4 - 49 60 61 50 -quad 4 - 50 61 62 51 -quad 4 - 51 62 63 52 -quad 4 - 52 63 64 53 -quad 4 - 53 64 65 54 -quad 4 - 54 65 66 55 -quad 4 - 56 67 68 57 -quad 4 - 57 68 69 58 -quad 4 - 58 69 70 59 -quad 4 - 59 70 71 60 -quad 4 - 60 71 72 61 -quad 4 - 61 72 73 62 -quad 4 - 62 73 74 63 -quad 4 - 63 74 75 64 -quad 4 - 64 75 76 65 -quad 4 - 65 76 77 66 -quad 4 - 67 78 79 68 -quad 4 - 68 79 80 69 -quad 4 - 69 80 81 70 -quad 4 - 70 81 82 71 -quad 4 - 71 82 83 72 -quad 4 - 72 83 84 73 -quad 4 - 73 84 85 74 -quad 4 - 74 85 86 75 -quad 4 - 75 86 87 76 -quad 4 - 76 87 88 77 -quad 4 - 78 89 90 79 -quad 4 - 79 90 91 80 -quad 4 - 80 91 92 81 -quad 4 - 81 92 93 82 -quad 4 - 82 93 94 83 -quad 4 - 83 94 95 84 -quad 4 - 84 95 96 85 -quad 4 - 85 96 97 86 -quad 4 - 86 97 98 87 -quad 4 - 87 98 99 88 -quad 4 - 89 100 101 90 -quad 4 - 90 101 102 91 -quad 4 - 91 102 103 92 -quad 4 - 92 103 104 93 -quad 4 - 93 104 105 94 -quad 4 - 94 105 106 95 -quad 4 - 95 106 107 96 -quad 4 - 96 107 108 97 -quad 4 - 97 108 109 98 -quad 4 - 98 109 110 99 -quad 4 - 100 111 112 101 -quad 4 - 101 112 113 102 -quad 4 - 102 113 114 103 -quad 4 - 103 114 115 104 -quad 4 - 104 115 116 105 -quad 4 - 105 116 117 106 -quad 4 - 106 117 118 107 -quad 4 - 107 118 119 108 -quad 4 - 108 119 120 109 -quad 4 - 109 120 121 110 -quad 4 - 122 133 134 123 -quad 4 - 123 134 135 124 -quad 4 - 124 135 136 125 -quad 4 - 125 136 137 126 -quad 4 - 126 137 138 127 -quad 4 - 127 138 139 128 -quad 4 - 128 139 140 129 -quad 4 - 129 140 141 130 -quad 4 - 130 141 142 131 -quad 4 - 131 142 143 132 -quad 4 - 133 144 145 134 -quad 4 - 134 145 146 135 -quad 4 - 135 146 147 136 -quad 4 - 136 147 148 137 -quad 4 - 137 148 149 138 -quad 4 - 138 149 150 139 -quad 4 - 139 150 151 140 -quad 4 - 140 151 152 141 -quad 4 - 141 152 153 142 -quad 4 - 142 153 154 143 -quad 4 - 144 155 156 145 -quad 4 - 145 156 157 146 -quad 4 - 146 157 158 147 -quad 4 - 147 158 159 148 -quad 4 - 148 159 160 149 -quad 4 - 149 160 161 150 -quad 4 - 150 161 162 151 -quad 4 - 151 162 163 152 -quad 4 - 152 163 164 153 -quad 4 - 153 164 165 154 -quad 4 - 155 166 167 156 -quad 4 - 156 167 168 157 -quad 4 - 157 168 169 158 -quad 4 - 158 169 170 159 -quad 4 - 159 170 171 160 -quad 4 - 160 171 172 161 -quad 4 - 161 172 173 162 -quad 4 - 162 173 174 163 -quad 4 - 163 174 175 164 -quad 4 - 164 175 176 165 -quad 4 - 166 177 178 167 -quad 4 - 167 178 179 168 -quad 4 - 168 179 180 169 -quad 4 - 169 180 181 170 -quad 4 - 170 181 182 171 -quad 4 - 171 182 183 172 -quad 4 - 172 183 184 173 -quad 4 - 173 184 185 174 -quad 4 - 174 185 186 175 -quad 4 - 175 186 187 176 -quad 4 - 177 188 189 178 -quad 4 - 178 189 190 179 -quad 4 - 179 190 191 180 -quad 4 - 180 191 192 181 -quad 4 - 181 192 193 182 -quad 4 - 182 193 194 183 -quad 4 - 183 194 195 184 -quad 4 - 184 195 196 185 -quad 4 - 185 196 197 186 -quad 4 - 186 197 198 187 -quad 4 - 188 199 200 189 -quad 4 - 189 200 201 190 -quad 4 - 190 201 202 191 -quad 4 - 191 202 203 192 -quad 4 - 192 203 204 193 -quad 4 - 193 204 205 194 -quad 4 - 194 205 206 195 -quad 4 - 195 206 207 196 -quad 4 - 196 207 208 197 -quad 4 - 197 208 209 198 -quad 4 - 199 210 211 200 -quad 4 - 200 211 212 201 -quad 4 - 201 212 213 202 -quad 4 - 202 213 214 203 -quad 4 - 203 214 215 204 -quad 4 - 204 215 216 205 -quad 4 - 205 216 217 206 -quad 4 - 206 217 218 207 -quad 4 - 207 218 219 208 -quad 4 - 208 219 220 209 -quad 4 - 210 221 222 211 -quad 4 - 211 222 223 212 -quad 4 - 212 223 224 213 -quad 4 - 213 224 225 214 -quad 4 - 214 225 226 215 -quad 4 - 215 226 227 216 -quad 4 - 216 227 228 217 -quad 4 - 217 228 229 218 -quad 4 - 218 229 230 219 -quad 4 - 219 230 231 220 -quad 4 - 221 232 233 222 -quad 4 - 222 233 234 223 -quad 4 - 223 234 235 224 -quad 4 - 224 235 236 225 -quad 4 - 225 236 237 226 -quad 4 - 226 237 238 227 -quad 4 - 227 238 239 228 -quad 4 - 228 239 240 229 -quad 4 - 229 240 241 230 -quad 4 - 230 241 242 231 -quad 4 - 243 254 255 244 -quad 4 - 244 255 256 245 -quad 4 - 245 256 257 246 -quad 4 - 246 257 258 247 -quad 4 - 247 258 259 248 -quad 4 - 248 259 260 249 -quad 4 - 249 260 261 250 -quad 4 - 250 261 262 251 -quad 4 - 251 262 263 252 -quad 4 - 252 263 264 253 -quad 4 - 254 265 266 255 -quad 4 - 255 266 267 256 -quad 4 - 256 267 268 257 -quad 4 - 257 268 269 258 -quad 4 - 258 269 270 259 -quad 4 - 259 270 271 260 -quad 4 - 260 271 272 261 -quad 4 - 261 272 273 262 -quad 4 - 262 273 274 263 -quad 4 - 263 274 275 264 -quad 4 - 265 276 277 266 -quad 4 - 266 277 278 267 -quad 4 - 267 278 279 268 -quad 4 - 268 279 280 269 -quad 4 - 269 280 281 270 -quad 4 - 270 281 282 271 -quad 4 - 271 282 283 272 -quad 4 - 272 283 284 273 -quad 4 - 273 284 285 274 -quad 4 - 274 285 286 275 -quad 4 - 276 287 288 277 -quad 4 - 277 288 289 278 -quad 4 - 278 289 290 279 -quad 4 - 279 290 291 280 -quad 4 - 280 291 292 281 -quad 4 - 281 292 293 282 -quad 4 - 282 293 294 283 -quad 4 - 283 294 295 284 -quad 4 - 284 295 296 285 -quad 4 - 285 296 297 286 -quad 4 - 287 298 299 288 -quad 4 - 288 299 300 289 -quad 4 - 289 300 301 290 -quad 4 - 290 301 302 291 -quad 4 - 291 302 303 292 -quad 4 - 292 303 304 293 -quad 4 - 293 304 305 294 -quad 4 - 294 305 306 295 -quad 4 - 295 306 307 296 -quad 4 - 296 307 308 297 -quad 4 - 298 309 310 299 -quad 4 - 299 310 311 300 -quad 4 - 300 311 312 301 -quad 4 - 301 312 313 302 -quad 4 - 302 313 314 303 -quad 4 - 303 314 315 304 -quad 4 - 304 315 316 305 -quad 4 - 305 316 317 306 -quad 4 - 306 317 318 307 -quad 4 - 307 318 319 308 -quad 4 - 309 320 321 310 -quad 4 - 310 321 322 311 -quad 4 - 311 322 323 312 -quad 4 - 312 323 324 313 -quad 4 - 313 324 325 314 -quad 4 - 314 325 326 315 -quad 4 - 315 326 327 316 -quad 4 - 316 327 328 317 -quad 4 - 317 328 329 318 -quad 4 - 318 329 330 319 -quad 4 - 320 331 332 321 -quad 4 - 321 332 333 322 -quad 4 - 322 333 334 323 -quad 4 - 323 334 335 324 -quad 4 - 324 335 336 325 -quad 4 - 325 336 337 326 -quad 4 - 326 337 338 327 -quad 4 - 327 338 339 328 -quad 4 - 328 339 340 329 -quad 4 - 329 340 341 330 -quad 4 - 331 342 343 332 -quad 4 - 332 343 344 333 -quad 4 - 333 344 345 334 -quad 4 - 334 345 346 335 -quad 4 - 335 346 347 336 -quad 4 - 336 347 348 337 -quad 4 - 337 348 349 338 -quad 4 - 338 349 350 339 -quad 4 - 339 350 351 340 -quad 4 - 340 351 352 341 -quad 4 - 342 353 354 343 -quad 4 - 343 354 355 344 -quad 4 - 344 355 356 345 -quad 4 - 345 356 357 346 -quad 4 - 346 357 358 347 -quad 4 - 347 358 359 348 -quad 4 - 348 359 360 349 -quad 4 - 349 360 361 350 -quad 4 - 350 361 362 351 -quad 4 - 351 362 363 352 -quad 4 - 364 375 376 365 -quad 4 - 365 376 377 366 -quad 4 - 366 377 378 367 -quad 4 - 367 378 379 368 -quad 4 - 368 379 380 369 -quad 4 - 369 380 381 370 -quad 4 - 370 381 382 371 -quad 4 - 371 382 383 372 -quad 4 - 372 383 384 373 -quad 4 - 373 384 385 374 -quad 4 - 375 386 387 376 -quad 4 - 376 387 388 377 -quad 4 - 377 388 389 378 -quad 4 - 378 389 390 379 -quad 4 - 379 390 391 380 -quad 4 - 380 391 392 381 -quad 4 - 381 392 393 382 -quad 4 - 382 393 394 383 -quad 4 - 383 394 395 384 -quad 4 - 384 395 396 385 -quad 4 - 386 397 398 387 -quad 4 - 387 398 399 388 -quad 4 - 388 399 400 389 -quad 4 - 389 400 401 390 -quad 4 - 390 401 402 391 -quad 4 - 391 402 403 392 -quad 4 - 392 403 404 393 -quad 4 - 393 404 405 394 -quad 4 - 394 405 406 395 -quad 4 - 395 406 407 396 -quad 4 - 397 408 409 398 -quad 4 - 398 409 410 399 -quad 4 - 399 410 411 400 -quad 4 - 400 411 412 401 -quad 4 - 401 412 413 402 -quad 4 - 402 413 414 403 -quad 4 - 403 414 415 404 -quad 4 - 404 415 416 405 -quad 4 - 405 416 417 406 -quad 4 - 406 417 418 407 -quad 4 - 408 419 420 409 -quad 4 - 409 420 421 410 -quad 4 - 410 421 422 411 -quad 4 - 411 422 423 412 -quad 4 - 412 423 424 413 -quad 4 - 413 424 425 414 -quad 4 - 414 425 426 415 -quad 4 - 415 426 427 416 -quad 4 - 416 427 428 417 -quad 4 - 417 428 429 418 -quad 4 - 419 430 431 420 -quad 4 - 420 431 432 421 -quad 4 - 421 432 433 422 -quad 4 - 422 433 434 423 -quad 4 - 423 434 435 424 -quad 4 - 424 435 436 425 -quad 4 - 425 436 437 426 -quad 4 - 426 437 438 427 -quad 4 - 427 438 439 428 -quad 4 - 428 439 440 429 -quad 4 - 430 441 442 431 -quad 4 - 431 442 443 432 -quad 4 - 432 443 444 433 -quad 4 - 433 444 445 434 -quad 4 - 434 445 446 435 -quad 4 - 435 446 447 436 -quad 4 - 436 447 448 437 -quad 4 - 437 448 449 438 -quad 4 - 438 449 450 439 -quad 4 - 439 450 451 440 -quad 4 - 441 452 453 442 -quad 4 - 442 453 454 443 -quad 4 - 443 454 455 444 -quad 4 - 444 455 456 445 -quad 4 - 445 456 457 446 -quad 4 - 446 457 458 447 -quad 4 - 447 458 459 448 -quad 4 - 448 459 460 449 -quad 4 - 449 460 461 450 -quad 4 - 450 461 462 451 -quad 4 - 452 463 464 453 -quad 4 - 453 464 465 454 -quad 4 - 454 465 466 455 -quad 4 - 455 466 467 456 -quad 4 - 456 467 468 457 -quad 4 - 457 468 469 458 -quad 4 - 458 469 470 459 -quad 4 - 459 470 471 460 -quad 4 - 460 471 472 461 -quad 4 - 461 472 473 462 -quad 4 - 463 474 475 464 -quad 4 - 464 475 476 465 -quad 4 - 465 476 477 466 -quad 4 - 466 477 478 467 -quad 4 - 467 478 479 468 -quad 4 - 468 479 480 469 -quad 4 - 469 480 481 470 -quad 4 - 470 481 482 471 -quad 4 - 471 482 483 472 -quad 4 - 472 483 484 473 -quad 4 - 485 496 497 486 -quad 4 - 486 497 498 487 -quad 4 - 487 498 499 488 -quad 4 - 488 499 500 489 -quad 4 - 489 500 501 490 -quad 4 - 490 501 502 491 -quad 4 - 491 502 503 492 -quad 4 - 492 503 504 493 -quad 4 - 493 504 505 494 -quad 4 - 494 505 506 495 -quad 4 - 496 507 508 497 -quad 4 - 497 508 509 498 -quad 4 - 498 509 510 499 -quad 4 - 499 510 511 500 -quad 4 - 500 511 512 501 -quad 4 - 501 512 513 502 -quad 4 - 502 513 514 503 -quad 4 - 503 514 515 504 -quad 4 - 504 515 516 505 -quad 4 - 505 516 517 506 -quad 4 - 507 518 519 508 -quad 4 - 508 519 520 509 -quad 4 - 509 520 521 510 -quad 4 - 510 521 522 511 -quad 4 - 511 522 523 512 -quad 4 - 512 523 524 513 -quad 4 - 513 524 525 514 -quad 4 - 514 525 526 515 -quad 4 - 515 526 527 516 -quad 4 - 516 527 528 517 -quad 4 - 518 529 530 519 -quad 4 - 519 530 531 520 -quad 4 - 520 531 532 521 -quad 4 - 521 532 533 522 -quad 4 - 522 533 534 523 -quad 4 - 523 534 535 524 -quad 4 - 524 535 536 525 -quad 4 - 525 536 537 526 -quad 4 - 526 537 538 527 -quad 4 - 527 538 539 528 -quad 4 - 529 540 541 530 -quad 4 - 530 541 542 531 -quad 4 - 531 542 543 532 -quad 4 - 532 543 544 533 -quad 4 - 533 544 545 534 -quad 4 - 534 545 546 535 -quad 4 - 535 546 547 536 -quad 4 - 536 547 548 537 -quad 4 - 537 548 549 538 -quad 4 - 538 549 550 539 -quad 4 - 540 551 552 541 -quad 4 - 541 552 553 542 -quad 4 - 542 553 554 543 -quad 4 - 543 554 555 544 -quad 4 - 544 555 556 545 -quad 4 - 545 556 557 546 -quad 4 - 546 557 558 547 -quad 4 - 547 558 559 548 -quad 4 - 548 559 560 549 -quad 4 - 549 560 561 550 -quad 4 - 551 562 563 552 -quad 4 - 552 563 564 553 -quad 4 - 553 564 565 554 -quad 4 - 554 565 566 555 -quad 4 - 555 566 567 556 -quad 4 - 556 567 568 557 -quad 4 - 557 568 569 558 -quad 4 - 558 569 570 559 -quad 4 - 559 570 571 560 -quad 4 - 560 571 572 561 -quad 4 - 562 573 574 563 -quad 4 - 563 574 575 564 -quad 4 - 564 575 576 565 -quad 4 - 565 576 577 566 -quad 4 - 566 577 578 567 -quad 4 - 567 578 579 568 -quad 4 - 568 579 580 569 -quad 4 - 569 580 581 570 -quad 4 - 570 581 582 571 -quad 4 - 571 582 583 572 -quad 4 - 573 584 585 574 -quad 4 - 574 585 586 575 -quad 4 - 575 586 587 576 -quad 4 - 576 587 588 577 -quad 4 - 577 588 589 578 -quad 4 - 578 589 590 579 -quad 4 - 579 590 591 580 -quad 4 - 580 591 592 581 -quad 4 - 581 592 593 582 -quad 4 - 582 593 594 583 -quad 4 - 584 595 596 585 -quad 4 - 585 596 597 586 -quad 4 - 586 597 598 587 -quad 4 - 587 598 599 588 -quad 4 - 588 599 600 589 -quad 4 - 589 600 601 590 -quad 4 - 590 601 602 591 -quad 4 - 591 602 603 592 -quad 4 - 592 603 604 593 -quad 4 - 593 604 605 594 -quad 4 - 606 617 618 607 -quad 4 - 607 618 619 608 -quad 4 - 608 619 620 609 -quad 4 - 609 620 621 610 -quad 4 - 610 621 622 611 -quad 4 - 611 622 623 612 -quad 4 - 612 623 624 613 -quad 4 - 613 624 625 614 -quad 4 - 614 625 626 615 -quad 4 - 615 626 627 616 -quad 4 - 617 628 629 618 -quad 4 - 618 629 630 619 -quad 4 - 619 630 631 620 -quad 4 - 620 631 632 621 -quad 4 - 621 632 633 622 -quad 4 - 622 633 634 623 -quad 4 - 623 634 635 624 -quad 4 - 624 635 636 625 -quad 4 - 625 636 637 626 -quad 4 - 626 637 638 627 -quad 4 - 628 639 640 629 -quad 4 - 629 640 641 630 -quad 4 - 630 641 642 631 -quad 4 - 631 642 643 632 -quad 4 - 632 643 644 633 -quad 4 - 633 644 645 634 -quad 4 - 634 645 646 635 -quad 4 - 635 646 647 636 -quad 4 - 636 647 648 637 -quad 4 - 637 648 649 638 -quad 4 - 639 650 651 640 -quad 4 - 640 651 652 641 -quad 4 - 641 652 653 642 -quad 4 - 642 653 654 643 -quad 4 - 643 654 655 644 -quad 4 - 644 655 656 645 -quad 4 - 645 656 657 646 -quad 4 - 646 657 658 647 -quad 4 - 647 658 659 648 -quad 4 - 648 659 660 649 -quad 4 - 650 661 662 651 -quad 4 - 651 662 663 652 -quad 4 - 652 663 664 653 -quad 4 - 653 664 665 654 -quad 4 - 654 665 666 655 -quad 4 - 655 666 667 656 -quad 4 - 656 667 668 657 -quad 4 - 657 668 669 658 -quad 4 - 658 669 670 659 -quad 4 - 659 670 671 660 -quad 4 - 661 672 673 662 -quad 4 - 662 673 674 663 -quad 4 - 663 674 675 664 -quad 4 - 664 675 676 665 -quad 4 - 665 676 677 666 -quad 4 - 666 677 678 667 -quad 4 - 667 678 679 668 -quad 4 - 668 679 680 669 -quad 4 - 669 680 681 670 -quad 4 - 670 681 682 671 -quad 4 - 672 683 684 673 -quad 4 - 673 684 685 674 -quad 4 - 674 685 686 675 -quad 4 - 675 686 687 676 -quad 4 - 676 687 688 677 -quad 4 - 677 688 689 678 -quad 4 - 678 689 690 679 -quad 4 - 679 690 691 680 -quad 4 - 680 691 692 681 -quad 4 - 681 692 693 682 -quad 4 - 683 694 695 684 -quad 4 - 684 695 696 685 -quad 4 - 685 696 697 686 -quad 4 - 686 697 698 687 -quad 4 - 687 698 699 688 -quad 4 - 688 699 700 689 -quad 4 - 689 700 701 690 -quad 4 - 690 701 702 691 -quad 4 - 691 702 703 692 -quad 4 - 692 703 704 693 -quad 4 - 694 705 706 695 -quad 4 - 695 706 707 696 -quad 4 - 696 707 708 697 -quad 4 - 697 708 709 698 -quad 4 - 698 709 710 699 -quad 4 - 699 710 711 700 -quad 4 - 700 711 712 701 -quad 4 - 701 712 713 702 -quad 4 - 702 713 714 703 -quad 4 - 703 714 715 704 -quad 4 - 705 716 717 706 -quad 4 - 706 717 718 707 -quad 4 - 707 718 719 708 -quad 4 - 708 719 720 709 -quad 4 - 709 720 721 710 -quad 4 - 710 721 722 711 -quad 4 - 711 722 723 712 -quad 4 - 712 723 724 713 -quad 4 - 713 724 725 714 -quad 4 - 714 725 726 715 -quad 4 - 727 738 739 728 -quad 4 - 728 739 740 729 -quad 4 - 729 740 741 730 -quad 4 - 730 741 742 731 -quad 4 - 731 742 743 732 -quad 4 - 732 743 744 733 -quad 4 - 733 744 745 734 -quad 4 - 734 745 746 735 -quad 4 - 735 746 747 736 -quad 4 - 736 747 748 737 -quad 4 - 738 749 750 739 -quad 4 - 739 750 751 740 -quad 4 - 740 751 752 741 -quad 4 - 741 752 753 742 -quad 4 - 742 753 754 743 -quad 4 - 743 754 755 744 -quad 4 - 744 755 756 745 -quad 4 - 745 756 757 746 -quad 4 - 746 757 758 747 -quad 4 - 747 758 759 748 -quad 4 - 749 760 761 750 -quad 4 - 750 761 762 751 -quad 4 - 751 762 763 752 -quad 4 - 752 763 764 753 -quad 4 - 753 764 765 754 -quad 4 - 754 765 766 755 -quad 4 - 755 766 767 756 -quad 4 - 756 767 768 757 -quad 4 - 757 768 769 758 -quad 4 - 758 769 770 759 -quad 4 - 760 771 772 761 -quad 4 - 761 772 773 762 -quad 4 - 762 773 774 763 -quad 4 - 763 774 775 764 -quad 4 - 764 775 776 765 -quad 4 - 765 776 777 766 -quad 4 - 766 777 778 767 -quad 4 - 767 778 779 768 -quad 4 - 768 779 780 769 -quad 4 - 769 780 781 770 -quad 4 - 771 782 783 772 -quad 4 - 772 783 784 773 -quad 4 - 773 784 785 774 -quad 4 - 774 785 786 775 -quad 4 - 775 786 787 776 -quad 4 - 776 787 788 777 -quad 4 - 777 788 789 778 -quad 4 - 778 789 790 779 -quad 4 - 779 790 791 780 -quad 4 - 780 791 792 781 -quad 4 - 782 793 794 783 -quad 4 - 783 794 795 784 -quad 4 - 784 795 796 785 -quad 4 - 785 796 797 786 -quad 4 - 786 797 798 787 -quad 4 - 787 798 799 788 -quad 4 - 788 799 800 789 -quad 4 - 789 800 801 790 -quad 4 - 790 801 802 791 -quad 4 - 791 802 803 792 -quad 4 - 793 804 805 794 -quad 4 - 794 805 806 795 -quad 4 - 795 806 807 796 -quad 4 - 796 807 808 797 -quad 4 - 797 808 809 798 -quad 4 - 798 809 810 799 -quad 4 - 799 810 811 800 -quad 4 - 800 811 812 801 -quad 4 - 801 812 813 802 -quad 4 - 802 813 814 803 -quad 4 - 804 815 816 805 -quad 4 - 805 816 817 806 -quad 4 - 806 817 818 807 -quad 4 - 807 818 819 808 -quad 4 - 808 819 820 809 -quad 4 - 809 820 821 810 -quad 4 - 810 821 822 811 -quad 4 - 811 822 823 812 -quad 4 - 812 823 824 813 -quad 4 - 813 824 825 814 -quad 4 - 815 826 827 816 -quad 4 - 816 827 828 817 -quad 4 - 817 828 829 818 -quad 4 - 818 829 830 819 -quad 4 - 819 830 831 820 -quad 4 - 820 831 832 821 -quad 4 - 821 832 833 822 -quad 4 - 822 833 834 823 -quad 4 - 823 834 835 824 -quad 4 - 824 835 836 825 -quad 4 - 826 837 838 827 -quad 4 - 827 838 839 828 -quad 4 - 828 839 840 829 -quad 4 - 829 840 841 830 -quad 4 - 830 841 842 831 -quad 4 - 831 842 843 832 -quad 4 - 832 843 844 833 -quad 4 - 833 844 845 834 -quad 4 - 834 845 846 835 -quad 4 - 835 846 847 836 -quad 4 - 848 859 860 849 -quad 4 - 849 860 861 850 -quad 4 - 850 861 862 851 -quad 4 - 851 862 863 852 -quad 4 - 852 863 864 853 -quad 4 - 853 864 865 854 -quad 4 - 854 865 866 855 -quad 4 - 855 866 867 856 -quad 4 - 856 867 868 857 -quad 4 - 857 868 869 858 -quad 4 - 859 870 871 860 -quad 4 - 860 871 872 861 -quad 4 - 861 872 873 862 -quad 4 - 862 873 874 863 -quad 4 - 863 874 875 864 -quad 4 - 864 875 876 865 -quad 4 - 865 876 877 866 -quad 4 - 866 877 878 867 -quad 4 - 867 878 879 868 -quad 4 - 868 879 880 869 -quad 4 - 870 881 882 871 -quad 4 - 871 882 883 872 -quad 4 - 872 883 884 873 -quad 4 - 873 884 885 874 -quad 4 - 874 885 886 875 -quad 4 - 875 886 887 876 -quad 4 - 876 887 888 877 -quad 4 - 877 888 889 878 -quad 4 - 878 889 890 879 -quad 4 - 879 890 891 880 -quad 4 - 881 892 893 882 -quad 4 - 882 893 894 883 -quad 4 - 883 894 895 884 -quad 4 - 884 895 896 885 -quad 4 - 885 896 897 886 -quad 4 - 886 897 898 887 -quad 4 - 887 898 899 888 -quad 4 - 888 899 900 889 -quad 4 - 889 900 901 890 -quad 4 - 890 901 902 891 -quad 4 - 892 903 904 893 -quad 4 - 893 904 905 894 -quad 4 - 894 905 906 895 -quad 4 - 895 906 907 896 -quad 4 - 896 907 908 897 -quad 4 - 897 908 909 898 -quad 4 - 898 909 910 899 -quad 4 - 899 910 911 900 -quad 4 - 900 911 912 901 -quad 4 - 901 912 913 902 -quad 4 - 903 914 915 904 -quad 4 - 904 915 916 905 -quad 4 - 905 916 917 906 -quad 4 - 906 917 918 907 -quad 4 - 907 918 919 908 -quad 4 - 908 919 920 909 -quad 4 - 909 920 921 910 -quad 4 - 910 921 922 911 -quad 4 - 911 922 923 912 -quad 4 - 912 923 924 913 -quad 4 - 914 925 926 915 -quad 4 - 915 926 927 916 -quad 4 - 916 927 928 917 -quad 4 - 917 928 929 918 -quad 4 - 918 929 930 919 -quad 4 - 919 930 931 920 -quad 4 - 920 931 932 921 -quad 4 - 921 932 933 922 -quad 4 - 922 933 934 923 -quad 4 - 923 934 935 924 -quad 4 - 925 936 937 926 -quad 4 - 926 937 938 927 -quad 4 - 927 938 939 928 -quad 4 - 928 939 940 929 -quad 4 - 929 940 941 930 -quad 4 - 930 941 942 931 -quad 4 - 931 942 943 932 -quad 4 - 932 943 944 933 -quad 4 - 933 944 945 934 -quad 4 - 934 945 946 935 -quad 4 - 936 947 948 937 -quad 4 - 937 948 949 938 -quad 4 - 938 949 950 939 -quad 4 - 939 950 951 940 -quad 4 - 940 951 952 941 -quad 4 - 941 952 953 942 -quad 4 - 942 953 954 943 -quad 4 - 943 954 955 944 -quad 4 - 944 955 956 945 -quad 4 - 945 956 957 946 -quad 4 - 947 958 959 948 -quad 4 - 948 959 960 949 -quad 4 - 949 960 961 950 -quad 4 - 950 961 962 951 -quad 4 - 951 962 963 952 -quad 4 - 952 963 964 953 -quad 4 - 953 964 965 954 -quad 4 - 954 965 966 955 -quad 4 - 955 966 967 956 -quad 4 - 956 967 968 957 -quad 4 - 969 980 981 970 -quad 4 - 970 981 982 971 -quad 4 - 971 982 983 972 -quad 4 - 972 983 984 973 -quad 4 - 973 984 985 974 -quad 4 - 974 985 986 975 -quad 4 - 975 986 987 976 -quad 4 - 976 987 988 977 -quad 4 - 977 988 989 978 -quad 4 - 978 989 990 979 -quad 4 - 980 991 992 981 -quad 4 - 981 992 993 982 -quad 4 - 982 993 994 983 -quad 4 - 983 994 995 984 -quad 4 - 984 995 996 985 -quad 4 - 985 996 997 986 -quad 4 - 986 997 998 987 -quad 4 - 987 998 999 988 -quad 4 - 988 999 1000 989 -quad 4 - 989 1000 1001 990 -quad 4 - 991 1002 1003 992 -quad 4 - 992 1003 1004 993 -quad 4 - 993 1004 1005 994 -quad 4 - 994 1005 1006 995 -quad 4 - 995 1006 1007 996 -quad 4 - 996 1007 1008 997 -quad 4 - 997 1008 1009 998 -quad 4 - 998 1009 1010 999 -quad 4 - 999 1010 1011 1000 -quad 4 - 1000 1011 1012 1001 -quad 4 - 1002 1013 1014 1003 -quad 4 - 1003 1014 1015 1004 -quad 4 - 1004 1015 1016 1005 -quad 4 - 1005 1016 1017 1006 -quad 4 - 1006 1017 1018 1007 -quad 4 - 1007 1018 1019 1008 -quad 4 - 1008 1019 1020 1009 -quad 4 - 1009 1020 1021 1010 -quad 4 - 1010 1021 1022 1011 -quad 4 - 1011 1022 1023 1012 -quad 4 - 1013 1024 1025 1014 -quad 4 - 1014 1025 1026 1015 -quad 4 - 1015 1026 1027 1016 -quad 4 - 1016 1027 1028 1017 -quad 4 - 1017 1028 1029 1018 -quad 4 - 1018 1029 1030 1019 -quad 4 - 1019 1030 1031 1020 -quad 4 - 1020 1031 1032 1021 -quad 4 - 1021 1032 1033 1022 -quad 4 - 1022 1033 1034 1023 -quad 4 - 1024 1035 1036 1025 -quad 4 - 1025 1036 1037 1026 -quad 4 - 1026 1037 1038 1027 -quad 4 - 1027 1038 1039 1028 -quad 4 - 1028 1039 1040 1029 -quad 4 - 1029 1040 1041 1030 -quad 4 - 1030 1041 1042 1031 -quad 4 - 1031 1042 1043 1032 -quad 4 - 1032 1043 1044 1033 -quad 4 - 1033 1044 1045 1034 -quad 4 - 1035 1046 1047 1036 -quad 4 - 1036 1047 1048 1037 -quad 4 - 1037 1048 1049 1038 -quad 4 - 1038 1049 1050 1039 -quad 4 - 1039 1050 1051 1040 -quad 4 - 1040 1051 1052 1041 -quad 4 - 1041 1052 1053 1042 -quad 4 - 1042 1053 1054 1043 -quad 4 - 1043 1054 1055 1044 -quad 4 - 1044 1055 1056 1045 -quad 4 - 1046 1057 1058 1047 -quad 4 - 1047 1058 1059 1048 -quad 4 - 1048 1059 1060 1049 -quad 4 - 1049 1060 1061 1050 -quad 4 - 1050 1061 1062 1051 -quad 4 - 1051 1062 1063 1052 -quad 4 - 1052 1063 1064 1053 -quad 4 - 1053 1064 1065 1054 -quad 4 - 1054 1065 1066 1055 -quad 4 - 1055 1066 1067 1056 -quad 4 - 1057 1068 1069 1058 -quad 4 - 1058 1069 1070 1059 -quad 4 - 1059 1070 1071 1060 -quad 4 - 1060 1071 1072 1061 -quad 4 - 1061 1072 1073 1062 -quad 4 - 1062 1073 1074 1063 -quad 4 - 1063 1074 1075 1064 -quad 4 - 1064 1075 1076 1065 -quad 4 - 1065 1076 1077 1066 -quad 4 - 1066 1077 1078 1067 -quad 4 - 1068 1079 1080 1069 -quad 4 - 1069 1080 1081 1070 -quad 4 - 1070 1081 1082 1071 -quad 4 - 1071 1082 1083 1072 -quad 4 - 1072 1083 1084 1073 -quad 4 - 1073 1084 1085 1074 -quad 4 - 1074 1085 1086 1075 -quad 4 - 1075 1086 1087 1076 -quad 4 - 1076 1087 1088 1077 -quad 4 - 1077 1088 1089 1078 -quad 4 - 1090 1101 1102 1091 -quad 4 - 1091 1102 1103 1092 -quad 4 - 1092 1103 1104 1093 -quad 4 - 1093 1104 1105 1094 -quad 4 - 1094 1105 1106 1095 -quad 4 - 1095 1106 1107 1096 -quad 4 - 1096 1107 1108 1097 -quad 4 - 1097 1108 1109 1098 -quad 4 - 1098 1109 1110 1099 -quad 4 - 1099 1110 1111 1100 -quad 4 - 1101 1112 1113 1102 -quad 4 - 1102 1113 1114 1103 -quad 4 - 1103 1114 1115 1104 -quad 4 - 1104 1115 1116 1105 -quad 4 - 1105 1116 1117 1106 -quad 4 - 1106 1117 1118 1107 -quad 4 - 1107 1118 1119 1108 -quad 4 - 1108 1119 1120 1109 -quad 4 - 1109 1120 1121 1110 -quad 4 - 1110 1121 1122 1111 -quad 4 - 1112 1123 1124 1113 -quad 4 - 1113 1124 1125 1114 -quad 4 - 1114 1125 1126 1115 -quad 4 - 1115 1126 1127 1116 -quad 4 - 1116 1127 1128 1117 -quad 4 - 1117 1128 1129 1118 -quad 4 - 1118 1129 1130 1119 -quad 4 - 1119 1130 1131 1120 -quad 4 - 1120 1131 1132 1121 -quad 4 - 1121 1132 1133 1122 -quad 4 - 1123 1134 1135 1124 -quad 4 - 1124 1135 1136 1125 -quad 4 - 1125 1136 1137 1126 -quad 4 - 1126 1137 1138 1127 -quad 4 - 1127 1138 1139 1128 -quad 4 - 1128 1139 1140 1129 -quad 4 - 1129 1140 1141 1130 -quad 4 - 1130 1141 1142 1131 -quad 4 - 1131 1142 1143 1132 -quad 4 - 1132 1143 1144 1133 -quad 4 - 1134 1145 1146 1135 -quad 4 - 1135 1146 1147 1136 -quad 4 - 1136 1147 1148 1137 -quad 4 - 1137 1148 1149 1138 -quad 4 - 1138 1149 1150 1139 -quad 4 - 1139 1150 1151 1140 -quad 4 - 1140 1151 1152 1141 -quad 4 - 1141 1152 1153 1142 -quad 4 - 1142 1153 1154 1143 -quad 4 - 1143 1154 1155 1144 -quad 4 - 1145 1156 1157 1146 -quad 4 - 1146 1157 1158 1147 -quad 4 - 1147 1158 1159 1148 -quad 4 - 1148 1159 1160 1149 -quad 4 - 1149 1160 1161 1150 -quad 4 - 1150 1161 1162 1151 -quad 4 - 1151 1162 1163 1152 -quad 4 - 1152 1163 1164 1153 -quad 4 - 1153 1164 1165 1154 -quad 4 - 1154 1165 1166 1155 -quad 4 - 1156 1167 1168 1157 -quad 4 - 1157 1168 1169 1158 -quad 4 - 1158 1169 1170 1159 -quad 4 - 1159 1170 1171 1160 -quad 4 - 1160 1171 1172 1161 -quad 4 - 1161 1172 1173 1162 -quad 4 - 1162 1173 1174 1163 -quad 4 - 1163 1174 1175 1164 -quad 4 - 1164 1175 1176 1165 -quad 4 - 1165 1176 1177 1166 -quad 4 - 1167 1178 1179 1168 -quad 4 - 1168 1179 1180 1169 -quad 4 - 1169 1180 1181 1170 -quad 4 - 1170 1181 1182 1171 -quad 4 - 1171 1182 1183 1172 -quad 4 - 1172 1183 1184 1173 -quad 4 - 1173 1184 1185 1174 -quad 4 - 1174 1185 1186 1175 -quad 4 - 1175 1186 1187 1176 -quad 4 - 1176 1187 1188 1177 -quad 4 - 1178 1189 1190 1179 -quad 4 - 1179 1190 1191 1180 -quad 4 - 1180 1191 1192 1181 -quad 4 - 1181 1192 1193 1182 -quad 4 - 1182 1193 1194 1183 -quad 4 - 1183 1194 1195 1184 -quad 4 - 1184 1195 1196 1185 -quad 4 - 1185 1196 1197 1186 -quad 4 - 1186 1197 1198 1187 -quad 4 - 1187 1198 1199 1188 -quad 4 - 1189 1200 1201 1190 -quad 4 - 1190 1201 1202 1191 -quad 4 - 1191 1202 1203 1192 -quad 4 - 1192 1203 1204 1193 -quad 4 - 1193 1204 1205 1194 -quad 4 - 1194 1205 1206 1195 -quad 4 - 1195 1206 1207 1196 -quad 4 - 1196 1207 1208 1197 -quad 4 - 1197 1208 1209 1198 -quad 4 - 1198 1209 1210 1199 -quad 4 - 1211 1222 1223 1212 -quad 4 - 1212 1223 1224 1213 -quad 4 - 1213 1224 1225 1214 -quad 4 - 1214 1225 1226 1215 -quad 4 - 1215 1226 1227 1216 -quad 4 - 1216 1227 1228 1217 -quad 4 - 1217 1228 1229 1218 -quad 4 - 1218 1229 1230 1219 -quad 4 - 1219 1230 1231 1220 -quad 4 - 1220 1231 1232 1221 -quad 4 - 1222 1233 1234 1223 -quad 4 - 1223 1234 1235 1224 -quad 4 - 1224 1235 1236 1225 -quad 4 - 1225 1236 1237 1226 -quad 4 - 1226 1237 1238 1227 -quad 4 - 1227 1238 1239 1228 -quad 4 - 1228 1239 1240 1229 -quad 4 - 1229 1240 1241 1230 -quad 4 - 1230 1241 1242 1231 -quad 4 - 1231 1242 1243 1232 -quad 4 - 1233 1244 1245 1234 -quad 4 - 1234 1245 1246 1235 -quad 4 - 1235 1246 1247 1236 -quad 4 - 1236 1247 1248 1237 -quad 4 - 1237 1248 1249 1238 -quad 4 - 1238 1249 1250 1239 -quad 4 - 1239 1250 1251 1240 -quad 4 - 1240 1251 1252 1241 -quad 4 - 1241 1252 1253 1242 -quad 4 - 1242 1253 1254 1243 -quad 4 - 1244 1255 1256 1245 -quad 4 - 1245 1256 1257 1246 -quad 4 - 1246 1257 1258 1247 -quad 4 - 1247 1258 1259 1248 -quad 4 - 1248 1259 1260 1249 -quad 4 - 1249 1260 1261 1250 -quad 4 - 1250 1261 1262 1251 -quad 4 - 1251 1262 1263 1252 -quad 4 - 1252 1263 1264 1253 -quad 4 - 1253 1264 1265 1254 -quad 4 - 1255 1266 1267 1256 -quad 4 - 1256 1267 1268 1257 -quad 4 - 1257 1268 1269 1258 -quad 4 - 1258 1269 1270 1259 -quad 4 - 1259 1270 1271 1260 -quad 4 - 1260 1271 1272 1261 -quad 4 - 1261 1272 1273 1262 -quad 4 - 1262 1273 1274 1263 -quad 4 - 1263 1274 1275 1264 -quad 4 - 1264 1275 1276 1265 -quad 4 - 1266 1277 1278 1267 -quad 4 - 1267 1278 1279 1268 -quad 4 - 1268 1279 1280 1269 -quad 4 - 1269 1280 1281 1270 -quad 4 - 1270 1281 1282 1271 -quad 4 - 1271 1282 1283 1272 -quad 4 - 1272 1283 1284 1273 -quad 4 - 1273 1284 1285 1274 -quad 4 - 1274 1285 1286 1275 -quad 4 - 1275 1286 1287 1276 -quad 4 - 1277 1288 1289 1278 -quad 4 - 1278 1289 1290 1279 -quad 4 - 1279 1290 1291 1280 -quad 4 - 1280 1291 1292 1281 -quad 4 - 1281 1292 1293 1282 -quad 4 - 1282 1293 1294 1283 -quad 4 - 1283 1294 1295 1284 -quad 4 - 1284 1295 1296 1285 -quad 4 - 1285 1296 1297 1286 -quad 4 - 1286 1297 1298 1287 -quad 4 - 1288 1299 1300 1289 -quad 4 - 1289 1300 1301 1290 -quad 4 - 1290 1301 1302 1291 -quad 4 - 1291 1302 1303 1292 -quad 4 - 1292 1303 1304 1293 -quad 4 - 1293 1304 1305 1294 -quad 4 - 1294 1305 1306 1295 -quad 4 - 1295 1306 1307 1296 -quad 4 - 1296 1307 1308 1297 -quad 4 - 1297 1308 1309 1298 -quad 4 - 1299 1310 1311 1300 -quad 4 - 1300 1311 1312 1301 -quad 4 - 1301 1312 1313 1302 -quad 4 - 1302 1313 1314 1303 -quad 4 - 1303 1314 1315 1304 -quad 4 - 1304 1315 1316 1305 -quad 4 - 1305 1316 1317 1306 -quad 4 - 1306 1317 1318 1307 -quad 4 - 1307 1318 1319 1308 -quad 4 - 1308 1319 1320 1309 -quad 4 - 1310 1321 1322 1311 -quad 4 - 1311 1322 1323 1312 -quad 4 - 1312 1323 1324 1313 -quad 4 - 1313 1324 1325 1314 -quad 4 - 1314 1325 1326 1315 -quad 4 - 1315 1326 1327 1316 -quad 4 - 1316 1327 1328 1317 -quad 4 - 1317 1328 1329 1318 -quad 4 - 1318 1329 1330 1319 -quad 4 - 1319 1330 1331 1320 -quad 4 - 1332 1343 1344 1333 -quad 4 - 1333 1344 1345 1334 -quad 4 - 1334 1345 1346 1335 -quad 4 - 1335 1346 1347 1336 -quad 4 - 1336 1347 1348 1337 -quad 4 - 1337 1348 1349 1338 -quad 4 - 1338 1349 1350 1339 -quad 4 - 1339 1350 1351 1340 -quad 4 - 1340 1351 1352 1341 -quad 4 - 1341 1352 1353 1342 -quad 4 - 1343 1354 1355 1344 -quad 4 - 1344 1355 1356 1345 -quad 4 - 1345 1356 1357 1346 -quad 4 - 1346 1357 1358 1347 -quad 4 - 1347 1358 1359 1348 -quad 4 - 1348 1359 1360 1349 -quad 4 - 1349 1360 1361 1350 -quad 4 - 1350 1361 1362 1351 -quad 4 - 1351 1362 1363 1352 -quad 4 - 1352 1363 1364 1353 -quad 4 - 1354 1365 1366 1355 -quad 4 - 1355 1366 1367 1356 -quad 4 - 1356 1367 1368 1357 -quad 4 - 1357 1368 1369 1358 -quad 4 - 1358 1369 1370 1359 -quad 4 - 1359 1370 1371 1360 -quad 4 - 1360 1371 1372 1361 -quad 4 - 1361 1372 1373 1362 -quad 4 - 1362 1373 1374 1363 -quad 4 - 1363 1374 1375 1364 -quad 4 - 1365 1376 1377 1366 -quad 4 - 1366 1377 1378 1367 -quad 4 - 1367 1378 1379 1368 -quad 4 - 1368 1379 1380 1369 -quad 4 - 1369 1380 1381 1370 -quad 4 - 1370 1381 1382 1371 -quad 4 - 1371 1382 1383 1372 -quad 4 - 1372 1383 1384 1373 -quad 4 - 1373 1384 1385 1374 -quad 4 - 1374 1385 1386 1375 -quad 4 - 1376 1387 1388 1377 -quad 4 - 1377 1388 1389 1378 -quad 4 - 1378 1389 1390 1379 -quad 4 - 1379 1390 1391 1380 -quad 4 - 1380 1391 1392 1381 -quad 4 - 1381 1392 1393 1382 -quad 4 - 1382 1393 1394 1383 -quad 4 - 1383 1394 1395 1384 -quad 4 - 1384 1395 1396 1385 -quad 4 - 1385 1396 1397 1386 -quad 4 - 1387 1398 1399 1388 -quad 4 - 1388 1399 1400 1389 -quad 4 - 1389 1400 1401 1390 -quad 4 - 1390 1401 1402 1391 -quad 4 - 1391 1402 1403 1392 -quad 4 - 1392 1403 1404 1393 -quad 4 - 1393 1404 1405 1394 -quad 4 - 1394 1405 1406 1395 -quad 4 - 1395 1406 1407 1396 -quad 4 - 1396 1407 1408 1397 -quad 4 - 1398 1409 1410 1399 -quad 4 - 1399 1410 1411 1400 -quad 4 - 1400 1411 1412 1401 -quad 4 - 1401 1412 1413 1402 -quad 4 - 1402 1413 1414 1403 -quad 4 - 1403 1414 1415 1404 -quad 4 - 1404 1415 1416 1405 -quad 4 - 1405 1416 1417 1406 -quad 4 - 1406 1417 1418 1407 -quad 4 - 1407 1418 1419 1408 -quad 4 - 1409 1420 1421 1410 -quad 4 - 1410 1421 1422 1411 -quad 4 - 1411 1422 1423 1412 -quad 4 - 1412 1423 1424 1413 -quad 4 - 1413 1424 1425 1414 -quad 4 - 1414 1425 1426 1415 -quad 4 - 1415 1426 1427 1416 -quad 4 - 1416 1427 1428 1417 -quad 4 - 1417 1428 1429 1418 -quad 4 - 1418 1429 1430 1419 -quad 4 - 1420 1431 1432 1421 -quad 4 - 1421 1432 1433 1422 -quad 4 - 1422 1433 1434 1423 -quad 4 - 1423 1434 1435 1424 -quad 4 - 1424 1435 1436 1425 -quad 4 - 1425 1436 1437 1426 -quad 4 - 1426 1437 1438 1427 -quad 4 - 1427 1438 1439 1428 -quad 4 - 1428 1439 1440 1429 -quad 4 - 1429 1440 1441 1430 -quad 4 - 1431 1442 1443 1432 -quad 4 - 1432 1443 1444 1433 -quad 4 - 1433 1444 1445 1434 -quad 4 - 1434 1445 1446 1435 -quad 4 - 1435 1446 1447 1436 -quad 4 - 1436 1447 1448 1437 -quad 4 - 1437 1448 1449 1438 -quad 4 - 1438 1449 1450 1439 -quad 4 - 1439 1450 1451 1440 -quad 4 - 1440 1451 1452 1441 -quad 4 - 1453 1464 1465 1454 -quad 4 - 1454 1465 1466 1455 -quad 4 - 1455 1466 1467 1456 -quad 4 - 1456 1467 1468 1457 -quad 4 - 1457 1468 1469 1458 -quad 4 - 1458 1469 1470 1459 -quad 4 - 1459 1470 1471 1460 -quad 4 - 1460 1471 1472 1461 -quad 4 - 1461 1472 1473 1462 -quad 4 - 1462 1473 1474 1463 -quad 4 - 1464 1475 1476 1465 -quad 4 - 1465 1476 1477 1466 -quad 4 - 1466 1477 1478 1467 -quad 4 - 1467 1478 1479 1468 -quad 4 - 1468 1479 1480 1469 -quad 4 - 1469 1480 1481 1470 -quad 4 - 1470 1481 1482 1471 -quad 4 - 1471 1482 1483 1472 -quad 4 - 1472 1483 1484 1473 -quad 4 - 1473 1484 1485 1474 -quad 4 - 1475 1486 1487 1476 -quad 4 - 1476 1487 1488 1477 -quad 4 - 1477 1488 1489 1478 -quad 4 - 1478 1489 1490 1479 -quad 4 - 1479 1490 1491 1480 -quad 4 - 1480 1491 1492 1481 -quad 4 - 1481 1492 1493 1482 -quad 4 - 1482 1493 1494 1483 -quad 4 - 1483 1494 1495 1484 -quad 4 - 1484 1495 1496 1485 -quad 4 - 1486 1497 1498 1487 -quad 4 - 1487 1498 1499 1488 -quad 4 - 1488 1499 1500 1489 -quad 4 - 1489 1500 1501 1490 -quad 4 - 1490 1501 1502 1491 -quad 4 - 1491 1502 1503 1492 -quad 4 - 1492 1503 1504 1493 -quad 4 - 1493 1504 1505 1494 -quad 4 - 1494 1505 1506 1495 -quad 4 - 1495 1506 1507 1496 -quad 4 - 1497 1508 1509 1498 -quad 4 - 1498 1509 1510 1499 -quad 4 - 1499 1510 1511 1500 -quad 4 - 1500 1511 1512 1501 -quad 4 - 1501 1512 1513 1502 -quad 4 - 1502 1513 1514 1503 -quad 4 - 1503 1514 1515 1504 -quad 4 - 1504 1515 1516 1505 -quad 4 - 1505 1516 1517 1506 -quad 4 - 1506 1517 1518 1507 -quad 4 - 1508 1519 1520 1509 -quad 4 - 1509 1520 1521 1510 -quad 4 - 1510 1521 1522 1511 -quad 4 - 1511 1522 1523 1512 -quad 4 - 1512 1523 1524 1513 -quad 4 - 1513 1524 1525 1514 -quad 4 - 1514 1525 1526 1515 -quad 4 - 1515 1526 1527 1516 -quad 4 - 1516 1527 1528 1517 -quad 4 - 1517 1528 1529 1518 -quad 4 - 1519 1530 1531 1520 -quad 4 - 1520 1531 1532 1521 -quad 4 - 1521 1532 1533 1522 -quad 4 - 1522 1533 1534 1523 -quad 4 - 1523 1534 1535 1524 -quad 4 - 1524 1535 1536 1525 -quad 4 - 1525 1536 1537 1526 -quad 4 - 1526 1537 1538 1527 -quad 4 - 1527 1538 1539 1528 -quad 4 - 1528 1539 1540 1529 -quad 4 - 1530 1541 1542 1531 -quad 4 - 1531 1542 1543 1532 -quad 4 - 1532 1543 1544 1533 -quad 4 - 1533 1544 1545 1534 -quad 4 - 1534 1545 1546 1535 -quad 4 - 1535 1546 1547 1536 -quad 4 - 1536 1547 1548 1537 -quad 4 - 1537 1548 1549 1538 -quad 4 - 1538 1549 1550 1539 -quad 4 - 1539 1550 1551 1540 -quad 4 - 1541 1552 1553 1542 -quad 4 - 1542 1553 1554 1543 -quad 4 - 1543 1554 1555 1544 -quad 4 - 1544 1555 1556 1545 -quad 4 - 1545 1556 1557 1546 -quad 4 - 1546 1557 1558 1547 -quad 4 - 1547 1558 1559 1548 -quad 4 - 1548 1559 1560 1549 -quad 4 - 1549 1560 1561 1550 -quad 4 - 1550 1561 1562 1551 -quad 4 - 1552 1563 1564 1553 -quad 4 - 1553 1564 1565 1554 -quad 4 - 1554 1565 1566 1555 -quad 4 - 1555 1566 1567 1556 -quad 4 - 1556 1567 1568 1557 -quad 4 - 1557 1568 1569 1558 -quad 4 - 1558 1569 1570 1559 -quad 4 - 1559 1570 1571 1560 -quad 4 - 1560 1571 1572 1561 -quad 4 - 1561 1572 1573 1562 -quad 4 - 1574 1585 1586 1575 -quad 4 - 1575 1586 1587 1576 -quad 4 - 1576 1587 1588 1577 -quad 4 - 1577 1588 1589 1578 -quad 4 - 1578 1589 1590 1579 -quad 4 - 1579 1590 1591 1580 -quad 4 - 1580 1591 1592 1581 -quad 4 - 1581 1592 1593 1582 -quad 4 - 1582 1593 1594 1583 -quad 4 - 1583 1594 1595 1584 -quad 4 - 1585 1596 1597 1586 -quad 4 - 1586 1597 1598 1587 -quad 4 - 1587 1598 1599 1588 -quad 4 - 1588 1599 1600 1589 -quad 4 - 1589 1600 1601 1590 -quad 4 - 1590 1601 1602 1591 -quad 4 - 1591 1602 1603 1592 -quad 4 - 1592 1603 1604 1593 -quad 4 - 1593 1604 1605 1594 -quad 4 - 1594 1605 1606 1595 -quad 4 - 1596 1607 1608 1597 -quad 4 - 1597 1608 1609 1598 -quad 4 - 1598 1609 1610 1599 -quad 4 - 1599 1610 1611 1600 -quad 4 - 1600 1611 1612 1601 -quad 4 - 1601 1612 1613 1602 -quad 4 - 1602 1613 1614 1603 -quad 4 - 1603 1614 1615 1604 -quad 4 - 1604 1615 1616 1605 -quad 4 - 1605 1616 1617 1606 -quad 4 - 1607 1618 1619 1608 -quad 4 - 1608 1619 1620 1609 -quad 4 - 1609 1620 1621 1610 -quad 4 - 1610 1621 1622 1611 -quad 4 - 1611 1622 1623 1612 -quad 4 - 1612 1623 1624 1613 -quad 4 - 1613 1624 1625 1614 -quad 4 - 1614 1625 1626 1615 -quad 4 - 1615 1626 1627 1616 -quad 4 - 1616 1627 1628 1617 -quad 4 - 1618 1629 1630 1619 -quad 4 - 1619 1630 1631 1620 -quad 4 - 1620 1631 1632 1621 -quad 4 - 1621 1632 1633 1622 -quad 4 - 1622 1633 1634 1623 -quad 4 - 1623 1634 1635 1624 -quad 4 - 1624 1635 1636 1625 -quad 4 - 1625 1636 1637 1626 -quad 4 - 1626 1637 1638 1627 -quad 4 - 1627 1638 1639 1628 -quad 4 - 1629 1640 1641 1630 -quad 4 - 1630 1641 1642 1631 -quad 4 - 1631 1642 1643 1632 -quad 4 - 1632 1643 1644 1633 -quad 4 - 1633 1644 1645 1634 -quad 4 - 1634 1645 1646 1635 -quad 4 - 1635 1646 1647 1636 -quad 4 - 1636 1647 1648 1637 -quad 4 - 1637 1648 1649 1638 -quad 4 - 1638 1649 1650 1639 -quad 4 - 1640 1651 1652 1641 -quad 4 - 1641 1652 1653 1642 -quad 4 - 1642 1653 1654 1643 -quad 4 - 1643 1654 1655 1644 -quad 4 - 1644 1655 1656 1645 -quad 4 - 1645 1656 1657 1646 -quad 4 - 1646 1657 1658 1647 -quad 4 - 1647 1658 1659 1648 -quad 4 - 1648 1659 1660 1649 -quad 4 - 1649 1660 1661 1650 -quad 4 - 1651 1662 1663 1652 -quad 4 - 1652 1663 1664 1653 -quad 4 - 1653 1664 1665 1654 -quad 4 - 1654 1665 1666 1655 -quad 4 - 1655 1666 1667 1656 -quad 4 - 1656 1667 1668 1657 -quad 4 - 1657 1668 1669 1658 -quad 4 - 1658 1669 1670 1659 -quad 4 - 1659 1670 1671 1660 -quad 4 - 1660 1671 1672 1661 -quad 4 - 1662 1673 1674 1663 -quad 4 - 1663 1674 1675 1664 -quad 4 - 1664 1675 1676 1665 -quad 4 - 1665 1676 1677 1666 -quad 4 - 1666 1677 1678 1667 -quad 4 - 1667 1678 1679 1668 -quad 4 - 1668 1679 1680 1669 -quad 4 - 1669 1680 1681 1670 -quad 4 - 1670 1681 1682 1671 -quad 4 - 1671 1682 1683 1672 -quad 4 - 1673 1684 1685 1674 -quad 4 - 1674 1685 1686 1675 -quad 4 - 1675 1686 1687 1676 -quad 4 - 1676 1687 1688 1677 -quad 4 - 1677 1688 1689 1678 -quad 4 - 1678 1689 1690 1679 -quad 4 - 1679 1690 1691 1680 -quad 4 - 1680 1691 1692 1681 -quad 4 - 1681 1692 1693 1682 -quad 4 - 1682 1693 1694 1683 -quad 4 - 1695 1706 1707 1696 -quad 4 - 1696 1707 1708 1697 -quad 4 - 1697 1708 1709 1698 -quad 4 - 1698 1709 1710 1699 -quad 4 - 1699 1710 1711 1700 -quad 4 - 1700 1711 1712 1701 -quad 4 - 1701 1712 1713 1702 -quad 4 - 1702 1713 1714 1703 -quad 4 - 1703 1714 1715 1704 -quad 4 - 1704 1715 1716 1705 -quad 4 - 1706 1717 1718 1707 -quad 4 - 1707 1718 1719 1708 -quad 4 - 1708 1719 1720 1709 -quad 4 - 1709 1720 1721 1710 -quad 4 - 1710 1721 1722 1711 -quad 4 - 1711 1722 1723 1712 -quad 4 - 1712 1723 1724 1713 -quad 4 - 1713 1724 1725 1714 -quad 4 - 1714 1725 1726 1715 -quad 4 - 1715 1726 1727 1716 -quad 4 - 1717 1728 1729 1718 -quad 4 - 1718 1729 1730 1719 -quad 4 - 1719 1730 1731 1720 -quad 4 - 1720 1731 1732 1721 -quad 4 - 1721 1732 1733 1722 -quad 4 - 1722 1733 1734 1723 -quad 4 - 1723 1734 1735 1724 -quad 4 - 1724 1735 1736 1725 -quad 4 - 1725 1736 1737 1726 -quad 4 - 1726 1737 1738 1727 -quad 4 - 1728 1739 1740 1729 -quad 4 - 1729 1740 1741 1730 -quad 4 - 1730 1741 1742 1731 -quad 4 - 1731 1742 1743 1732 -quad 4 - 1732 1743 1744 1733 -quad 4 - 1733 1744 1745 1734 -quad 4 - 1734 1745 1746 1735 -quad 4 - 1735 1746 1747 1736 -quad 4 - 1736 1747 1748 1737 -quad 4 - 1737 1748 1749 1738 -quad 4 - 1739 1750 1751 1740 -quad 4 - 1740 1751 1752 1741 -quad 4 - 1741 1752 1753 1742 -quad 4 - 1742 1753 1754 1743 -quad 4 - 1743 1754 1755 1744 -quad 4 - 1744 1755 1756 1745 -quad 4 - 1745 1756 1757 1746 -quad 4 - 1746 1757 1758 1747 -quad 4 - 1747 1758 1759 1748 -quad 4 - 1748 1759 1760 1749 -quad 4 - 1750 1761 1762 1751 -quad 4 - 1751 1762 1763 1752 -quad 4 - 1752 1763 1764 1753 -quad 4 - 1753 1764 1765 1754 -quad 4 - 1754 1765 1766 1755 -quad 4 - 1755 1766 1767 1756 -quad 4 - 1756 1767 1768 1757 -quad 4 - 1757 1768 1769 1758 -quad 4 - 1758 1769 1770 1759 -quad 4 - 1759 1770 1771 1760 -quad 4 - 1761 1772 1773 1762 -quad 4 - 1762 1773 1774 1763 -quad 4 - 1763 1774 1775 1764 -quad 4 - 1764 1775 1776 1765 -quad 4 - 1765 1776 1777 1766 -quad 4 - 1766 1777 1778 1767 -quad 4 - 1767 1778 1779 1768 -quad 4 - 1768 1779 1780 1769 -quad 4 - 1769 1780 1781 1770 -quad 4 - 1770 1781 1782 1771 -quad 4 - 1772 1783 1784 1773 -quad 4 - 1773 1784 1785 1774 -quad 4 - 1774 1785 1786 1775 -quad 4 - 1775 1786 1787 1776 -quad 4 - 1776 1787 1788 1777 -quad 4 - 1777 1788 1789 1778 -quad 4 - 1778 1789 1790 1779 -quad 4 - 1779 1790 1791 1780 -quad 4 - 1780 1791 1792 1781 -quad 4 - 1781 1792 1793 1782 -quad 4 - 1783 1794 1795 1784 -quad 4 - 1784 1795 1796 1785 -quad 4 - 1785 1796 1797 1786 -quad 4 - 1786 1797 1798 1787 -quad 4 - 1787 1798 1799 1788 -quad 4 - 1788 1799 1800 1789 -quad 4 - 1789 1800 1801 1790 -quad 4 - 1790 1801 1802 1791 -quad 4 - 1791 1802 1803 1792 -quad 4 - 1792 1803 1804 1793 -quad 4 - 1794 1805 1806 1795 -quad 4 - 1795 1806 1807 1796 -quad 4 - 1796 1807 1808 1797 -quad 4 - 1797 1808 1809 1798 -quad 4 - 1798 1809 1810 1799 -quad 4 - 1799 1810 1811 1800 -quad 4 - 1800 1811 1812 1801 -quad 4 - 1801 1812 1813 1802 -quad 4 - 1802 1813 1814 1803 -quad 4 - 1803 1814 1815 1804 -quad 4 - 1816 1827 1828 1817 -quad 4 - 1817 1828 1829 1818 -quad 4 - 1818 1829 1830 1819 -quad 4 - 1819 1830 1831 1820 -quad 4 - 1820 1831 1832 1821 -quad 4 - 1821 1832 1833 1822 -quad 4 - 1822 1833 1834 1823 -quad 4 - 1823 1834 1835 1824 -quad 4 - 1824 1835 1836 1825 -quad 4 - 1825 1836 1837 1826 -quad 4 - 1827 1838 1839 1828 -quad 4 - 1828 1839 1840 1829 -quad 4 - 1829 1840 1841 1830 -quad 4 - 1830 1841 1842 1831 -quad 4 - 1831 1842 1843 1832 -quad 4 - 1832 1843 1844 1833 -quad 4 - 1833 1844 1845 1834 -quad 4 - 1834 1845 1846 1835 -quad 4 - 1835 1846 1847 1836 -quad 4 - 1836 1847 1848 1837 -quad 4 - 1838 1849 1850 1839 -quad 4 - 1839 1850 1851 1840 -quad 4 - 1840 1851 1852 1841 -quad 4 - 1841 1852 1853 1842 -quad 4 - 1842 1853 1854 1843 -quad 4 - 1843 1854 1855 1844 -quad 4 - 1844 1855 1856 1845 -quad 4 - 1845 1856 1857 1846 -quad 4 - 1846 1857 1858 1847 -quad 4 - 1847 1858 1859 1848 -quad 4 - 1849 1860 1861 1850 -quad 4 - 1850 1861 1862 1851 -quad 4 - 1851 1862 1863 1852 -quad 4 - 1852 1863 1864 1853 -quad 4 - 1853 1864 1865 1854 -quad 4 - 1854 1865 1866 1855 -quad 4 - 1855 1866 1867 1856 -quad 4 - 1856 1867 1868 1857 -quad 4 - 1857 1868 1869 1858 -quad 4 - 1858 1869 1870 1859 -quad 4 - 1860 1871 1872 1861 -quad 4 - 1861 1872 1873 1862 -quad 4 - 1862 1873 1874 1863 -quad 4 - 1863 1874 1875 1864 -quad 4 - 1864 1875 1876 1865 -quad 4 - 1865 1876 1877 1866 -quad 4 - 1866 1877 1878 1867 -quad 4 - 1867 1878 1879 1868 -quad 4 - 1868 1879 1880 1869 -quad 4 - 1869 1880 1881 1870 -quad 4 - 1871 1882 1883 1872 -quad 4 - 1872 1883 1884 1873 -quad 4 - 1873 1884 1885 1874 -quad 4 - 1874 1885 1886 1875 -quad 4 - 1875 1886 1887 1876 -quad 4 - 1876 1887 1888 1877 -quad 4 - 1877 1888 1889 1878 -quad 4 - 1878 1889 1890 1879 -quad 4 - 1879 1890 1891 1880 -quad 4 - 1880 1891 1892 1881 -quad 4 - 1882 1893 1894 1883 -quad 4 - 1883 1894 1895 1884 -quad 4 - 1884 1895 1896 1885 -quad 4 - 1885 1896 1897 1886 -quad 4 - 1886 1897 1898 1887 -quad 4 - 1887 1898 1899 1888 -quad 4 - 1888 1899 1900 1889 -quad 4 - 1889 1900 1901 1890 -quad 4 - 1890 1901 1902 1891 -quad 4 - 1891 1902 1903 1892 -quad 4 - 1893 1904 1905 1894 -quad 4 - 1894 1905 1906 1895 -quad 4 - 1895 1906 1907 1896 -quad 4 - 1896 1907 1908 1897 -quad 4 - 1897 1908 1909 1898 -quad 4 - 1898 1909 1910 1899 -quad 4 - 1899 1910 1911 1900 -quad 4 - 1900 1911 1912 1901 -quad 4 - 1901 1912 1913 1902 -quad 4 - 1902 1913 1914 1903 -quad 4 - 1904 1915 1916 1905 -quad 4 - 1905 1916 1917 1906 -quad 4 - 1906 1917 1918 1907 -quad 4 - 1907 1918 1919 1908 -quad 4 - 1908 1919 1920 1909 -quad 4 - 1909 1920 1921 1910 -quad 4 - 1910 1921 1922 1911 -quad 4 - 1911 1922 1923 1912 -quad 4 - 1912 1923 1924 1913 -quad 4 - 1913 1924 1925 1914 -quad 4 - 1915 1926 1927 1916 -quad 4 - 1916 1927 1928 1917 -quad 4 - 1917 1928 1929 1918 -quad 4 - 1918 1929 1930 1919 -quad 4 - 1919 1930 1931 1920 -quad 4 - 1920 1931 1932 1921 -quad 4 - 1921 1932 1933 1922 -quad 4 - 1922 1933 1934 1923 -quad 4 - 1923 1934 1935 1924 -quad 4 - 1924 1935 1936 1925 -quad 4 - 1937 1948 1949 1938 -quad 4 - 1938 1949 1950 1939 -quad 4 - 1939 1950 1951 1940 -quad 4 - 1940 1951 1952 1941 -quad 4 - 1941 1952 1953 1942 -quad 4 - 1942 1953 1954 1943 -quad 4 - 1943 1954 1955 1944 -quad 4 - 1944 1955 1956 1945 -quad 4 - 1945 1956 1957 1946 -quad 4 - 1946 1957 1958 1947 -quad 4 - 1948 1959 1960 1949 -quad 4 - 1949 1960 1961 1950 -quad 4 - 1950 1961 1962 1951 -quad 4 - 1951 1962 1963 1952 -quad 4 - 1952 1963 1964 1953 -quad 4 - 1953 1964 1965 1954 -quad 4 - 1954 1965 1966 1955 -quad 4 - 1955 1966 1967 1956 -quad 4 - 1956 1967 1968 1957 -quad 4 - 1957 1968 1969 1958 -quad 4 - 1959 1970 1971 1960 -quad 4 - 1960 1971 1972 1961 -quad 4 - 1961 1972 1973 1962 -quad 4 - 1962 1973 1974 1963 -quad 4 - 1963 1974 1975 1964 -quad 4 - 1964 1975 1976 1965 -quad 4 - 1965 1976 1977 1966 -quad 4 - 1966 1977 1978 1967 -quad 4 - 1967 1978 1979 1968 -quad 4 - 1968 1979 1980 1969 -quad 4 - 1970 1981 1982 1971 -quad 4 - 1971 1982 1983 1972 -quad 4 - 1972 1983 1984 1973 -quad 4 - 1973 1984 1985 1974 -quad 4 - 1974 1985 1986 1975 -quad 4 - 1975 1986 1987 1976 -quad 4 - 1976 1987 1988 1977 -quad 4 - 1977 1988 1989 1978 -quad 4 - 1978 1989 1990 1979 -quad 4 - 1979 1990 1991 1980 -quad 4 - 1981 1992 1993 1982 -quad 4 - 1982 1993 1994 1983 -quad 4 - 1983 1994 1995 1984 -quad 4 - 1984 1995 1996 1985 -quad 4 - 1985 1996 1997 1986 -quad 4 - 1986 1997 1998 1987 -quad 4 - 1987 1998 1999 1988 -quad 4 - 1988 1999 2000 1989 -quad 4 - 1989 2000 2001 1990 -quad 4 - 1990 2001 2002 1991 -quad 4 - 1992 2003 2004 1993 -quad 4 - 1993 2004 2005 1994 -quad 4 - 1994 2005 2006 1995 -quad 4 - 1995 2006 2007 1996 -quad 4 - 1996 2007 2008 1997 -quad 4 - 1997 2008 2009 1998 -quad 4 - 1998 2009 2010 1999 -quad 4 - 1999 2010 2011 2000 -quad 4 - 2000 2011 2012 2001 -quad 4 - 2001 2012 2013 2002 -quad 4 - 2003 2014 2015 2004 -quad 4 - 2004 2015 2016 2005 -quad 4 - 2005 2016 2017 2006 -quad 4 - 2006 2017 2018 2007 -quad 4 - 2007 2018 2019 2008 -quad 4 - 2008 2019 2020 2009 -quad 4 - 2009 2020 2021 2010 -quad 4 - 2010 2021 2022 2011 -quad 4 - 2011 2022 2023 2012 -quad 4 - 2012 2023 2024 2013 -quad 4 - 2014 2025 2026 2015 -quad 4 - 2015 2026 2027 2016 -quad 4 - 2016 2027 2028 2017 -quad 4 - 2017 2028 2029 2018 -quad 4 - 2018 2029 2030 2019 -quad 4 - 2019 2030 2031 2020 -quad 4 - 2020 2031 2032 2021 -quad 4 - 2021 2032 2033 2022 -quad 4 - 2022 2033 2034 2023 -quad 4 - 2023 2034 2035 2024 -quad 4 - 2025 2036 2037 2026 -quad 4 - 2026 2037 2038 2027 -quad 4 - 2027 2038 2039 2028 -quad 4 - 2028 2039 2040 2029 -quad 4 - 2029 2040 2041 2030 -quad 4 - 2030 2041 2042 2031 -quad 4 - 2031 2042 2043 2032 -quad 4 - 2032 2043 2044 2033 -quad 4 - 2033 2044 2045 2034 -quad 4 - 2034 2045 2046 2035 -quad 4 - 2036 2047 2048 2037 -quad 4 - 2037 2048 2049 2038 -quad 4 - 2038 2049 2050 2039 -quad 4 - 2039 2050 2051 2040 -quad 4 - 2040 2051 2052 2041 -quad 4 - 2041 2052 2053 2042 -quad 4 - 2042 2053 2054 2043 -quad 4 - 2043 2054 2055 2044 -quad 4 - 2044 2055 2056 2045 -quad 4 - 2045 2056 2057 2046 -quad 4 - 2058 2069 2070 2059 -quad 4 - 2059 2070 2071 2060 -quad 4 - 2060 2071 2072 2061 -quad 4 - 2061 2072 2073 2062 -quad 4 - 2062 2073 2074 2063 -quad 4 - 2063 2074 2075 2064 -quad 4 - 2064 2075 2076 2065 -quad 4 - 2065 2076 2077 2066 -quad 4 - 2066 2077 2078 2067 -quad 4 - 2067 2078 2079 2068 -quad 4 - 2069 2080 2081 2070 -quad 4 - 2070 2081 2082 2071 -quad 4 - 2071 2082 2083 2072 -quad 4 - 2072 2083 2084 2073 -quad 4 - 2073 2084 2085 2074 -quad 4 - 2074 2085 2086 2075 -quad 4 - 2075 2086 2087 2076 -quad 4 - 2076 2087 2088 2077 -quad 4 - 2077 2088 2089 2078 -quad 4 - 2078 2089 2090 2079 -quad 4 - 2080 2091 2092 2081 -quad 4 - 2081 2092 2093 2082 -quad 4 - 2082 2093 2094 2083 -quad 4 - 2083 2094 2095 2084 -quad 4 - 2084 2095 2096 2085 -quad 4 - 2085 2096 2097 2086 -quad 4 - 2086 2097 2098 2087 -quad 4 - 2087 2098 2099 2088 -quad 4 - 2088 2099 2100 2089 -quad 4 - 2089 2100 2101 2090 -quad 4 - 2091 2102 2103 2092 -quad 4 - 2092 2103 2104 2093 -quad 4 - 2093 2104 2105 2094 -quad 4 - 2094 2105 2106 2095 -quad 4 - 2095 2106 2107 2096 -quad 4 - 2096 2107 2108 2097 -quad 4 - 2097 2108 2109 2098 -quad 4 - 2098 2109 2110 2099 -quad 4 - 2099 2110 2111 2100 -quad 4 - 2100 2111 2112 2101 -quad 4 - 2102 2113 2114 2103 -quad 4 - 2103 2114 2115 2104 -quad 4 - 2104 2115 2116 2105 -quad 4 - 2105 2116 2117 2106 -quad 4 - 2106 2117 2118 2107 -quad 4 - 2107 2118 2119 2108 -quad 4 - 2108 2119 2120 2109 -quad 4 - 2109 2120 2121 2110 -quad 4 - 2110 2121 2122 2111 -quad 4 - 2111 2122 2123 2112 -quad 4 - 2113 2124 2125 2114 -quad 4 - 2114 2125 2126 2115 -quad 4 - 2115 2126 2127 2116 -quad 4 - 2116 2127 2128 2117 -quad 4 - 2117 2128 2129 2118 -quad 4 - 2118 2129 2130 2119 -quad 4 - 2119 2130 2131 2120 -quad 4 - 2120 2131 2132 2121 -quad 4 - 2121 2132 2133 2122 -quad 4 - 2122 2133 2134 2123 -quad 4 - 2124 2135 2136 2125 -quad 4 - 2125 2136 2137 2126 -quad 4 - 2126 2137 2138 2127 -quad 4 - 2127 2138 2139 2128 -quad 4 - 2128 2139 2140 2129 -quad 4 - 2129 2140 2141 2130 -quad 4 - 2130 2141 2142 2131 -quad 4 - 2131 2142 2143 2132 -quad 4 - 2132 2143 2144 2133 -quad 4 - 2133 2144 2145 2134 -quad 4 - 2135 2146 2147 2136 -quad 4 - 2136 2147 2148 2137 -quad 4 - 2137 2148 2149 2138 -quad 4 - 2138 2149 2150 2139 -quad 4 - 2139 2150 2151 2140 -quad 4 - 2140 2151 2152 2141 -quad 4 - 2141 2152 2153 2142 -quad 4 - 2142 2153 2154 2143 -quad 4 - 2143 2154 2155 2144 -quad 4 - 2144 2155 2156 2145 -quad 4 - 2146 2157 2158 2147 -quad 4 - 2147 2158 2159 2148 -quad 4 - 2148 2159 2160 2149 -quad 4 - 2149 2160 2161 2150 -quad 4 - 2150 2161 2162 2151 -quad 4 - 2151 2162 2163 2152 -quad 4 - 2152 2163 2164 2153 -quad 4 - 2153 2164 2165 2154 -quad 4 - 2154 2165 2166 2155 -quad 4 - 2155 2166 2167 2156 -quad 4 - 2157 2168 2169 2158 -quad 4 - 2158 2169 2170 2159 -quad 4 - 2159 2170 2171 2160 -quad 4 - 2160 2171 2172 2161 -quad 4 - 2161 2172 2173 2162 -quad 4 - 2162 2173 2174 2163 -quad 4 - 2163 2174 2175 2164 -quad 4 - 2164 2175 2176 2165 -quad 4 - 2165 2176 2177 2166 -quad 4 - 2166 2177 2178 2167 -quad 4 - 2179 2190 2191 2180 -quad 4 - 2180 2191 2192 2181 -quad 4 - 2181 2192 2193 2182 -quad 4 - 2182 2193 2194 2183 -quad 4 - 2183 2194 2195 2184 -quad 4 - 2184 2195 2196 2185 -quad 4 - 2185 2196 2197 2186 -quad 4 - 2186 2197 2198 2187 -quad 4 - 2187 2198 2199 2188 -quad 4 - 2188 2199 2200 2189 -quad 4 - 2190 2201 2202 2191 -quad 4 - 2191 2202 2203 2192 -quad 4 - 2192 2203 2204 2193 -quad 4 - 2193 2204 2205 2194 -quad 4 - 2194 2205 2206 2195 -quad 4 - 2195 2206 2207 2196 -quad 4 - 2196 2207 2208 2197 -quad 4 - 2197 2208 2209 2198 -quad 4 - 2198 2209 2210 2199 -quad 4 - 2199 2210 2211 2200 -quad 4 - 2201 2212 2213 2202 -quad 4 - 2202 2213 2214 2203 -quad 4 - 2203 2214 2215 2204 -quad 4 - 2204 2215 2216 2205 -quad 4 - 2205 2216 2217 2206 -quad 4 - 2206 2217 2218 2207 -quad 4 - 2207 2218 2219 2208 -quad 4 - 2208 2219 2220 2209 -quad 4 - 2209 2220 2221 2210 -quad 4 - 2210 2221 2222 2211 -quad 4 - 2212 2223 2224 2213 -quad 4 - 2213 2224 2225 2214 -quad 4 - 2214 2225 2226 2215 -quad 4 - 2215 2226 2227 2216 -quad 4 - 2216 2227 2228 2217 -quad 4 - 2217 2228 2229 2218 -quad 4 - 2218 2229 2230 2219 -quad 4 - 2219 2230 2231 2220 -quad 4 - 2220 2231 2232 2221 -quad 4 - 2221 2232 2233 2222 -quad 4 - 2223 2234 2235 2224 -quad 4 - 2224 2235 2236 2225 -quad 4 - 2225 2236 2237 2226 -quad 4 - 2226 2237 2238 2227 -quad 4 - 2227 2238 2239 2228 -quad 4 - 2228 2239 2240 2229 -quad 4 - 2229 2240 2241 2230 -quad 4 - 2230 2241 2242 2231 -quad 4 - 2231 2242 2243 2232 -quad 4 - 2232 2243 2244 2233 -quad 4 - 2234 2245 2246 2235 -quad 4 - 2235 2246 2247 2236 -quad 4 - 2236 2247 2248 2237 -quad 4 - 2237 2248 2249 2238 -quad 4 - 2238 2249 2250 2239 -quad 4 - 2239 2250 2251 2240 -quad 4 - 2240 2251 2252 2241 -quad 4 - 2241 2252 2253 2242 -quad 4 - 2242 2253 2254 2243 -quad 4 - 2243 2254 2255 2244 -quad 4 - 2245 2256 2257 2246 -quad 4 - 2246 2257 2258 2247 -quad 4 - 2247 2258 2259 2248 -quad 4 - 2248 2259 2260 2249 -quad 4 - 2249 2260 2261 2250 -quad 4 - 2250 2261 2262 2251 -quad 4 - 2251 2262 2263 2252 -quad 4 - 2252 2263 2264 2253 -quad 4 - 2253 2264 2265 2254 -quad 4 - 2254 2265 2266 2255 -quad 4 - 2256 2267 2268 2257 -quad 4 - 2257 2268 2269 2258 -quad 4 - 2258 2269 2270 2259 -quad 4 - 2259 2270 2271 2260 -quad 4 - 2260 2271 2272 2261 -quad 4 - 2261 2272 2273 2262 -quad 4 - 2262 2273 2274 2263 -quad 4 - 2263 2274 2275 2264 -quad 4 - 2264 2275 2276 2265 -quad 4 - 2265 2276 2277 2266 -quad 4 - 2267 2278 2279 2268 -quad 4 - 2268 2279 2280 2269 -quad 4 - 2269 2280 2281 2270 -quad 4 - 2270 2281 2282 2271 -quad 4 - 2271 2282 2283 2272 -quad 4 - 2272 2283 2284 2273 -quad 4 - 2273 2284 2285 2274 -quad 4 - 2274 2285 2286 2275 -quad 4 - 2275 2286 2287 2276 -quad 4 - 2276 2287 2288 2277 -quad 4 - 2278 2289 2290 2279 -quad 4 - 2279 2290 2291 2280 -quad 4 - 2280 2291 2292 2281 -quad 4 - 2281 2292 2293 2282 -quad 4 - 2282 2293 2294 2283 -quad 4 - 2283 2294 2295 2284 -quad 4 - 2284 2295 2296 2285 -quad 4 - 2285 2296 2297 2286 -quad 4 - 2286 2297 2298 2287 -quad 4 - 2287 2298 2299 2288 -quad 4 - 2300 2311 2312 2301 -quad 4 - 2301 2312 2313 2302 -quad 4 - 2302 2313 2314 2303 -quad 4 - 2303 2314 2315 2304 -quad 4 - 2304 2315 2316 2305 -quad 4 - 2305 2316 2317 2306 -quad 4 - 2306 2317 2318 2307 -quad 4 - 2307 2318 2319 2308 -quad 4 - 2308 2319 2320 2309 -quad 4 - 2309 2320 2321 2310 -quad 4 - 2311 2322 2323 2312 -quad 4 - 2312 2323 2324 2313 -quad 4 - 2313 2324 2325 2314 -quad 4 - 2314 2325 2326 2315 -quad 4 - 2315 2326 2327 2316 -quad 4 - 2316 2327 2328 2317 -quad 4 - 2317 2328 2329 2318 -quad 4 - 2318 2329 2330 2319 -quad 4 - 2319 2330 2331 2320 -quad 4 - 2320 2331 2332 2321 -quad 4 - 2322 2333 2334 2323 -quad 4 - 2323 2334 2335 2324 -quad 4 - 2324 2335 2336 2325 -quad 4 - 2325 2336 2337 2326 -quad 4 - 2326 2337 2338 2327 -quad 4 - 2327 2338 2339 2328 -quad 4 - 2328 2339 2340 2329 -quad 4 - 2329 2340 2341 2330 -quad 4 - 2330 2341 2342 2331 -quad 4 - 2331 2342 2343 2332 -quad 4 - 2333 2344 2345 2334 -quad 4 - 2334 2345 2346 2335 -quad 4 - 2335 2346 2347 2336 -quad 4 - 2336 2347 2348 2337 -quad 4 - 2337 2348 2349 2338 -quad 4 - 2338 2349 2350 2339 -quad 4 - 2339 2350 2351 2340 -quad 4 - 2340 2351 2352 2341 -quad 4 - 2341 2352 2353 2342 -quad 4 - 2342 2353 2354 2343 -quad 4 - 2344 2355 2356 2345 -quad 4 - 2345 2356 2357 2346 -quad 4 - 2346 2357 2358 2347 -quad 4 - 2347 2358 2359 2348 -quad 4 - 2348 2359 2360 2349 -quad 4 - 2349 2360 2361 2350 -quad 4 - 2350 2361 2362 2351 -quad 4 - 2351 2362 2363 2352 -quad 4 - 2352 2363 2364 2353 -quad 4 - 2353 2364 2365 2354 -quad 4 - 2355 2366 2367 2356 -quad 4 - 2356 2367 2368 2357 -quad 4 - 2357 2368 2369 2358 -quad 4 - 2358 2369 2370 2359 -quad 4 - 2359 2370 2371 2360 -quad 4 - 2360 2371 2372 2361 -quad 4 - 2361 2372 2373 2362 -quad 4 - 2362 2373 2374 2363 -quad 4 - 2363 2374 2375 2364 -quad 4 - 2364 2375 2376 2365 -quad 4 - 2366 2377 2378 2367 -quad 4 - 2367 2378 2379 2368 -quad 4 - 2368 2379 2380 2369 -quad 4 - 2369 2380 2381 2370 -quad 4 - 2370 2381 2382 2371 -quad 4 - 2371 2382 2383 2372 -quad 4 - 2372 2383 2384 2373 -quad 4 - 2373 2384 2385 2374 -quad 4 - 2374 2385 2386 2375 -quad 4 - 2375 2386 2387 2376 -quad 4 - 2377 2388 2389 2378 -quad 4 - 2378 2389 2390 2379 -quad 4 - 2379 2390 2391 2380 -quad 4 - 2380 2391 2392 2381 -quad 4 - 2381 2392 2393 2382 -quad 4 - 2382 2393 2394 2383 -quad 4 - 2383 2394 2395 2384 -quad 4 - 2384 2395 2396 2385 -quad 4 - 2385 2396 2397 2386 -quad 4 - 2386 2397 2398 2387 -quad 4 - 2388 2399 2400 2389 -quad 4 - 2389 2400 2401 2390 -quad 4 - 2390 2401 2402 2391 -quad 4 - 2391 2402 2403 2392 -quad 4 - 2392 2403 2404 2393 -quad 4 - 2393 2404 2405 2394 -quad 4 - 2394 2405 2406 2395 -quad 4 - 2395 2406 2407 2396 -quad 4 - 2396 2407 2408 2397 -quad 4 - 2397 2408 2409 2398 -quad 4 - 2399 2410 2411 2400 -quad 4 - 2400 2411 2412 2401 -quad 4 - 2401 2412 2413 2402 -quad 4 - 2402 2413 2414 2403 -quad 4 - 2403 2414 2415 2404 -quad 4 - 2404 2415 2416 2405 -quad 4 - 2405 2416 2417 2406 -quad 4 - 2406 2417 2418 2407 -quad 4 - 2407 2418 2419 2408 -quad 4 - 2408 2419 2420 2409 -quad 4 - 2421 2432 2433 2422 -quad 4 - 2422 2433 2434 2423 -quad 4 - 2423 2434 2435 2424 -quad 4 - 2424 2435 2436 2425 -quad 4 - 2425 2436 2437 2426 -quad 4 - 2426 2437 2438 2427 -quad 4 - 2427 2438 2439 2428 -quad 4 - 2428 2439 2440 2429 -quad 4 - 2429 2440 2441 2430 -quad 4 - 2430 2441 2442 2431 -quad 4 - 2432 2443 2444 2433 -quad 4 - 2433 2444 2445 2434 -quad 4 - 2434 2445 2446 2435 -quad 4 - 2435 2446 2447 2436 -quad 4 - 2436 2447 2448 2437 -quad 4 - 2437 2448 2449 2438 -quad 4 - 2438 2449 2450 2439 -quad 4 - 2439 2450 2451 2440 -quad 4 - 2440 2451 2452 2441 -quad 4 - 2441 2452 2453 2442 -quad 4 - 2443 2454 2455 2444 -quad 4 - 2444 2455 2456 2445 -quad 4 - 2445 2456 2457 2446 -quad 4 - 2446 2457 2458 2447 -quad 4 - 2447 2458 2459 2448 -quad 4 - 2448 2459 2460 2449 -quad 4 - 2449 2460 2461 2450 -quad 4 - 2450 2461 2462 2451 -quad 4 - 2451 2462 2463 2452 -quad 4 - 2452 2463 2464 2453 -quad 4 - 2454 2465 2466 2455 -quad 4 - 2455 2466 2467 2456 -quad 4 - 2456 2467 2468 2457 -quad 4 - 2457 2468 2469 2458 -quad 4 - 2458 2469 2470 2459 -quad 4 - 2459 2470 2471 2460 -quad 4 - 2460 2471 2472 2461 -quad 4 - 2461 2472 2473 2462 -quad 4 - 2462 2473 2474 2463 -quad 4 - 2463 2474 2475 2464 -quad 4 - 2465 2476 2477 2466 -quad 4 - 2466 2477 2478 2467 -quad 4 - 2467 2478 2479 2468 -quad 4 - 2468 2479 2480 2469 -quad 4 - 2469 2480 2481 2470 -quad 4 - 2470 2481 2482 2471 -quad 4 - 2471 2482 2483 2472 -quad 4 - 2472 2483 2484 2473 -quad 4 - 2473 2484 2485 2474 -quad 4 - 2474 2485 2486 2475 -quad 4 - 2476 2487 2488 2477 -quad 4 - 2477 2488 2489 2478 -quad 4 - 2478 2489 2490 2479 -quad 4 - 2479 2490 2491 2480 -quad 4 - 2480 2491 2492 2481 -quad 4 - 2481 2492 2493 2482 -quad 4 - 2482 2493 2494 2483 -quad 4 - 2483 2494 2495 2484 -quad 4 - 2484 2495 2496 2485 -quad 4 - 2485 2496 2497 2486 -quad 4 - 2487 2498 2499 2488 -quad 4 - 2488 2499 2500 2489 -quad 4 - 2489 2500 2501 2490 -quad 4 - 2490 2501 2502 2491 -quad 4 - 2491 2502 2503 2492 -quad 4 - 2492 2503 2504 2493 -quad 4 - 2493 2504 2505 2494 -quad 4 - 2494 2505 2506 2495 -quad 4 - 2495 2506 2507 2496 -quad 4 - 2496 2507 2508 2497 -quad 4 - 2498 2509 2510 2499 -quad 4 - 2499 2510 2511 2500 -quad 4 - 2500 2511 2512 2501 -quad 4 - 2501 2512 2513 2502 -quad 4 - 2502 2513 2514 2503 -quad 4 - 2503 2514 2515 2504 -quad 4 - 2504 2515 2516 2505 -quad 4 - 2505 2516 2517 2506 -quad 4 - 2506 2517 2518 2507 -quad 4 - 2507 2518 2519 2508 -quad 4 - 2509 2520 2521 2510 -quad 4 - 2510 2521 2522 2511 -quad 4 - 2511 2522 2523 2512 -quad 4 - 2512 2523 2524 2513 -quad 4 - 2513 2524 2525 2514 -quad 4 - 2514 2525 2526 2515 -quad 4 - 2515 2526 2527 2516 -quad 4 - 2516 2527 2528 2517 -quad 4 - 2517 2528 2529 2518 -quad 4 - 2518 2529 2530 2519 -quad 4 - 2520 2531 2532 2521 -quad 4 - 2521 2532 2533 2522 -quad 4 - 2522 2533 2534 2523 -quad 4 - 2523 2534 2535 2524 -quad 4 - 2524 2535 2536 2525 -quad 4 - 2525 2536 2537 2526 -quad 4 - 2526 2537 2538 2527 -quad 4 - 2527 2538 2539 2528 -quad 4 - 2528 2539 2540 2529 -quad 4 - 2529 2540 2541 2530 -quad 4 - 2542 2553 2554 2543 -quad 4 - 2543 2554 2555 2544 -quad 4 - 2544 2555 2556 2545 -quad 4 - 2545 2556 2557 2546 -quad 4 - 2546 2557 2558 2547 -quad 4 - 2547 2558 2559 2548 -quad 4 - 2548 2559 2560 2549 -quad 4 - 2549 2560 2561 2550 -quad 4 - 2550 2561 2562 2551 -quad 4 - 2551 2562 2563 2552 -quad 4 - 2553 2564 2565 2554 -quad 4 - 2554 2565 2566 2555 -quad 4 - 2555 2566 2567 2556 -quad 4 - 2556 2567 2568 2557 -quad 4 - 2557 2568 2569 2558 -quad 4 - 2558 2569 2570 2559 -quad 4 - 2559 2570 2571 2560 -quad 4 - 2560 2571 2572 2561 -quad 4 - 2561 2572 2573 2562 -quad 4 - 2562 2573 2574 2563 -quad 4 - 2564 2575 2576 2565 -quad 4 - 2565 2576 2577 2566 -quad 4 - 2566 2577 2578 2567 -quad 4 - 2567 2578 2579 2568 -quad 4 - 2568 2579 2580 2569 -quad 4 - 2569 2580 2581 2570 -quad 4 - 2570 2581 2582 2571 -quad 4 - 2571 2582 2583 2572 -quad 4 - 2572 2583 2584 2573 -quad 4 - 2573 2584 2585 2574 -quad 4 - 2575 2586 2587 2576 -quad 4 - 2576 2587 2588 2577 -quad 4 - 2577 2588 2589 2578 -quad 4 - 2578 2589 2590 2579 -quad 4 - 2579 2590 2591 2580 -quad 4 - 2580 2591 2592 2581 -quad 4 - 2581 2592 2593 2582 -quad 4 - 2582 2593 2594 2583 -quad 4 - 2583 2594 2595 2584 -quad 4 - 2584 2595 2596 2585 -quad 4 - 2586 2597 2598 2587 -quad 4 - 2587 2598 2599 2588 -quad 4 - 2588 2599 2600 2589 -quad 4 - 2589 2600 2601 2590 -quad 4 - 2590 2601 2602 2591 -quad 4 - 2591 2602 2603 2592 -quad 4 - 2592 2603 2604 2593 -quad 4 - 2593 2604 2605 2594 -quad 4 - 2594 2605 2606 2595 -quad 4 - 2595 2606 2607 2596 -quad 4 - 2597 2608 2609 2598 -quad 4 - 2598 2609 2610 2599 -quad 4 - 2599 2610 2611 2600 -quad 4 - 2600 2611 2612 2601 -quad 4 - 2601 2612 2613 2602 -quad 4 - 2602 2613 2614 2603 -quad 4 - 2603 2614 2615 2604 -quad 4 - 2604 2615 2616 2605 -quad 4 - 2605 2616 2617 2606 -quad 4 - 2606 2617 2618 2607 -quad 4 - 2608 2619 2620 2609 -quad 4 - 2609 2620 2621 2610 -quad 4 - 2610 2621 2622 2611 -quad 4 - 2611 2622 2623 2612 -quad 4 - 2612 2623 2624 2613 -quad 4 - 2613 2624 2625 2614 -quad 4 - 2614 2625 2626 2615 -quad 4 - 2615 2626 2627 2616 -quad 4 - 2616 2627 2628 2617 -quad 4 - 2617 2628 2629 2618 -quad 4 - 2619 2630 2631 2620 -quad 4 - 2620 2631 2632 2621 -quad 4 - 2621 2632 2633 2622 -quad 4 - 2622 2633 2634 2623 -quad 4 - 2623 2634 2635 2624 -quad 4 - 2624 2635 2636 2625 -quad 4 - 2625 2636 2637 2626 -quad 4 - 2626 2637 2638 2627 -quad 4 - 2627 2638 2639 2628 -quad 4 - 2628 2639 2640 2629 -quad 4 - 2630 2641 2642 2631 -quad 4 - 2631 2642 2643 2632 -quad 4 - 2632 2643 2644 2633 -quad 4 - 2633 2644 2645 2634 -quad 4 - 2634 2645 2646 2635 -quad 4 - 2635 2646 2647 2636 -quad 4 - 2636 2647 2648 2637 -quad 4 - 2637 2648 2649 2638 -quad 4 - 2638 2649 2650 2639 -quad 4 - 2639 2650 2651 2640 -quad 4 - 2641 2652 2653 2642 -quad 4 - 2642 2653 2654 2643 -quad 4 - 2643 2654 2655 2644 -quad 4 - 2644 2655 2656 2645 -quad 4 - 2645 2656 2657 2646 -quad 4 - 2646 2657 2658 2647 -quad 4 - 2647 2658 2659 2648 -quad 4 - 2648 2659 2660 2649 -quad 4 - 2649 2660 2661 2650 -quad 4 - 2650 2661 2662 2651 -quad 4 - 2663 2674 2675 2664 -quad 4 - 2664 2675 2676 2665 -quad 4 - 2665 2676 2677 2666 -quad 4 - 2666 2677 2678 2667 -quad 4 - 2667 2678 2679 2668 -quad 4 - 2668 2679 2680 2669 -quad 4 - 2669 2680 2681 2670 -quad 4 - 2670 2681 2682 2671 -quad 4 - 2671 2682 2683 2672 -quad 4 - 2672 2683 2684 2673 -quad 4 - 2674 2685 2686 2675 -quad 4 - 2675 2686 2687 2676 -quad 4 - 2676 2687 2688 2677 -quad 4 - 2677 2688 2689 2678 -quad 4 - 2678 2689 2690 2679 -quad 4 - 2679 2690 2691 2680 -quad 4 - 2680 2691 2692 2681 -quad 4 - 2681 2692 2693 2682 -quad 4 - 2682 2693 2694 2683 -quad 4 - 2683 2694 2695 2684 -quad 4 - 2685 2696 2697 2686 -quad 4 - 2686 2697 2698 2687 -quad 4 - 2687 2698 2699 2688 -quad 4 - 2688 2699 2700 2689 -quad 4 - 2689 2700 2701 2690 -quad 4 - 2690 2701 2702 2691 -quad 4 - 2691 2702 2703 2692 -quad 4 - 2692 2703 2704 2693 -quad 4 - 2693 2704 2705 2694 -quad 4 - 2694 2705 2706 2695 -quad 4 - 2696 2707 2708 2697 -quad 4 - 2697 2708 2709 2698 -quad 4 - 2698 2709 2710 2699 -quad 4 - 2699 2710 2711 2700 -quad 4 - 2700 2711 2712 2701 -quad 4 - 2701 2712 2713 2702 -quad 4 - 2702 2713 2714 2703 -quad 4 - 2703 2714 2715 2704 -quad 4 - 2704 2715 2716 2705 -quad 4 - 2705 2716 2717 2706 -quad 4 - 2707 2718 2719 2708 -quad 4 - 2708 2719 2720 2709 -quad 4 - 2709 2720 2721 2710 -quad 4 - 2710 2721 2722 2711 -quad 4 - 2711 2722 2723 2712 -quad 4 - 2712 2723 2724 2713 -quad 4 - 2713 2724 2725 2714 -quad 4 - 2714 2725 2726 2715 -quad 4 - 2715 2726 2727 2716 -quad 4 - 2716 2727 2728 2717 -quad 4 - 2718 2729 2730 2719 -quad 4 - 2719 2730 2731 2720 -quad 4 - 2720 2731 2732 2721 -quad 4 - 2721 2732 2733 2722 -quad 4 - 2722 2733 2734 2723 -quad 4 - 2723 2734 2735 2724 -quad 4 - 2724 2735 2736 2725 -quad 4 - 2725 2736 2737 2726 -quad 4 - 2726 2737 2738 2727 -quad 4 - 2727 2738 2739 2728 -quad 4 - 2729 2740 2741 2730 -quad 4 - 2730 2741 2742 2731 -quad 4 - 2731 2742 2743 2732 -quad 4 - 2732 2743 2744 2733 -quad 4 - 2733 2744 2745 2734 -quad 4 - 2734 2745 2746 2735 -quad 4 - 2735 2746 2747 2736 -quad 4 - 2736 2747 2748 2737 -quad 4 - 2737 2748 2749 2738 -quad 4 - 2738 2749 2750 2739 -quad 4 - 2740 2751 2752 2741 -quad 4 - 2741 2752 2753 2742 -quad 4 - 2742 2753 2754 2743 -quad 4 - 2743 2754 2755 2744 -quad 4 - 2744 2755 2756 2745 -quad 4 - 2745 2756 2757 2746 -quad 4 - 2746 2757 2758 2747 -quad 4 - 2747 2758 2759 2748 -quad 4 - 2748 2759 2760 2749 -quad 4 - 2749 2760 2761 2750 -quad 4 - 2751 2762 2763 2752 -quad 4 - 2752 2763 2764 2753 -quad 4 - 2753 2764 2765 2754 -quad 4 - 2754 2765 2766 2755 -quad 4 - 2755 2766 2767 2756 -quad 4 - 2756 2767 2768 2757 -quad 4 - 2757 2768 2769 2758 -quad 4 - 2758 2769 2770 2759 -quad 4 - 2759 2770 2771 2760 -quad 4 - 2760 2771 2772 2761 -quad 4 - 2762 2773 2774 2763 -quad 4 - 2763 2774 2775 2764 -quad 4 - 2764 2775 2776 2765 -quad 4 - 2765 2776 2777 2766 -quad 4 - 2766 2777 2778 2767 -quad 4 - 2767 2778 2779 2768 -quad 4 - 2768 2779 2780 2769 -quad 4 - 2769 2780 2781 2770 -quad 4 - 2770 2781 2782 2771 -quad 4 - 2771 2782 2783 2772 -quad 4 - 2784 2795 2796 2785 -quad 4 - 2785 2796 2797 2786 -quad 4 - 2786 2797 2798 2787 -quad 4 - 2787 2798 2799 2788 -quad 4 - 2788 2799 2800 2789 -quad 4 - 2789 2800 2801 2790 -quad 4 - 2790 2801 2802 2791 -quad 4 - 2791 2802 2803 2792 -quad 4 - 2792 2803 2804 2793 -quad 4 - 2793 2804 2805 2794 -quad 4 - 2795 2806 2807 2796 -quad 4 - 2796 2807 2808 2797 -quad 4 - 2797 2808 2809 2798 -quad 4 - 2798 2809 2810 2799 -quad 4 - 2799 2810 2811 2800 -quad 4 - 2800 2811 2812 2801 -quad 4 - 2801 2812 2813 2802 -quad 4 - 2802 2813 2814 2803 -quad 4 - 2803 2814 2815 2804 -quad 4 - 2804 2815 2816 2805 -quad 4 - 2806 2817 2818 2807 -quad 4 - 2807 2818 2819 2808 -quad 4 - 2808 2819 2820 2809 -quad 4 - 2809 2820 2821 2810 -quad 4 - 2810 2821 2822 2811 -quad 4 - 2811 2822 2823 2812 -quad 4 - 2812 2823 2824 2813 -quad 4 - 2813 2824 2825 2814 -quad 4 - 2814 2825 2826 2815 -quad 4 - 2815 2826 2827 2816 -quad 4 - 2817 2828 2829 2818 -quad 4 - 2818 2829 2830 2819 -quad 4 - 2819 2830 2831 2820 -quad 4 - 2820 2831 2832 2821 -quad 4 - 2821 2832 2833 2822 -quad 4 - 2822 2833 2834 2823 -quad 4 - 2823 2834 2835 2824 -quad 4 - 2824 2835 2836 2825 -quad 4 - 2825 2836 2837 2826 -quad 4 - 2826 2837 2838 2827 -quad 4 - 2828 2839 2840 2829 -quad 4 - 2829 2840 2841 2830 -quad 4 - 2830 2841 2842 2831 -quad 4 - 2831 2842 2843 2832 -quad 4 - 2832 2843 2844 2833 -quad 4 - 2833 2844 2845 2834 -quad 4 - 2834 2845 2846 2835 -quad 4 - 2835 2846 2847 2836 -quad 4 - 2836 2847 2848 2837 -quad 4 - 2837 2848 2849 2838 -quad 4 - 2839 2850 2851 2840 -quad 4 - 2840 2851 2852 2841 -quad 4 - 2841 2852 2853 2842 -quad 4 - 2842 2853 2854 2843 -quad 4 - 2843 2854 2855 2844 -quad 4 - 2844 2855 2856 2845 -quad 4 - 2845 2856 2857 2846 -quad 4 - 2846 2857 2858 2847 -quad 4 - 2847 2858 2859 2848 -quad 4 - 2848 2859 2860 2849 -quad 4 - 2850 2861 2862 2851 -quad 4 - 2851 2862 2863 2852 -quad 4 - 2852 2863 2864 2853 -quad 4 - 2853 2864 2865 2854 -quad 4 - 2854 2865 2866 2855 -quad 4 - 2855 2866 2867 2856 -quad 4 - 2856 2867 2868 2857 -quad 4 - 2857 2868 2869 2858 -quad 4 - 2858 2869 2870 2859 -quad 4 - 2859 2870 2871 2860 -quad 4 - 2861 2872 2873 2862 -quad 4 - 2862 2873 2874 2863 -quad 4 - 2863 2874 2875 2864 -quad 4 - 2864 2875 2876 2865 -quad 4 - 2865 2876 2877 2866 -quad 4 - 2866 2877 2878 2867 -quad 4 - 2867 2878 2879 2868 -quad 4 - 2868 2879 2880 2869 -quad 4 - 2869 2880 2881 2870 -quad 4 - 2870 2881 2882 2871 -quad 4 - 2872 2883 2884 2873 -quad 4 - 2873 2884 2885 2874 -quad 4 - 2874 2885 2886 2875 -quad 4 - 2875 2886 2887 2876 -quad 4 - 2876 2887 2888 2877 -quad 4 - 2877 2888 2889 2878 -quad 4 - 2878 2889 2890 2879 -quad 4 - 2879 2890 2891 2880 -quad 4 - 2880 2891 2892 2881 -quad 4 - 2881 2892 2893 2882 -quad 4 - 2883 2894 2895 2884 -quad 4 - 2884 2895 2896 2885 -quad 4 - 2885 2896 2897 2886 -quad 4 - 2886 2897 2898 2887 -quad 4 - 2887 2898 2899 2888 -quad 4 - 2888 2899 2900 2889 -quad 4 - 2889 2900 2901 2890 -quad 4 - 2890 2901 2902 2891 -quad 4 - 2891 2902 2903 2892 -quad 4 - 2892 2903 2904 2893 -quad 4 - 2905 2916 2917 2906 -quad 4 - 2906 2917 2918 2907 -quad 4 - 2907 2918 2919 2908 -quad 4 - 2908 2919 2920 2909 -quad 4 - 2909 2920 2921 2910 -quad 4 - 2910 2921 2922 2911 -quad 4 - 2911 2922 2923 2912 -quad 4 - 2912 2923 2924 2913 -quad 4 - 2913 2924 2925 2914 -quad 4 - 2914 2925 2926 2915 -quad 4 - 2916 2927 2928 2917 -quad 4 - 2917 2928 2929 2918 -quad 4 - 2918 2929 2930 2919 -quad 4 - 2919 2930 2931 2920 -quad 4 - 2920 2931 2932 2921 -quad 4 - 2921 2932 2933 2922 -quad 4 - 2922 2933 2934 2923 -quad 4 - 2923 2934 2935 2924 -quad 4 - 2924 2935 2936 2925 -quad 4 - 2925 2936 2937 2926 -quad 4 - 2927 2938 2939 2928 -quad 4 - 2928 2939 2940 2929 -quad 4 - 2929 2940 2941 2930 -quad 4 - 2930 2941 2942 2931 -quad 4 - 2931 2942 2943 2932 -quad 4 - 2932 2943 2944 2933 -quad 4 - 2933 2944 2945 2934 -quad 4 - 2934 2945 2946 2935 -quad 4 - 2935 2946 2947 2936 -quad 4 - 2936 2947 2948 2937 -quad 4 - 2938 2949 2950 2939 -quad 4 - 2939 2950 2951 2940 -quad 4 - 2940 2951 2952 2941 -quad 4 - 2941 2952 2953 2942 -quad 4 - 2942 2953 2954 2943 -quad 4 - 2943 2954 2955 2944 -quad 4 - 2944 2955 2956 2945 -quad 4 - 2945 2956 2957 2946 -quad 4 - 2946 2957 2958 2947 -quad 4 - 2947 2958 2959 2948 -quad 4 - 2949 2960 2961 2950 -quad 4 - 2950 2961 2962 2951 -quad 4 - 2951 2962 2963 2952 -quad 4 - 2952 2963 2964 2953 -quad 4 - 2953 2964 2965 2954 -quad 4 - 2954 2965 2966 2955 -quad 4 - 2955 2966 2967 2956 -quad 4 - 2956 2967 2968 2957 -quad 4 - 2957 2968 2969 2958 -quad 4 - 2958 2969 2970 2959 -quad 4 - 2960 2971 2972 2961 -quad 4 - 2961 2972 2973 2962 -quad 4 - 2962 2973 2974 2963 -quad 4 - 2963 2974 2975 2964 -quad 4 - 2964 2975 2976 2965 -quad 4 - 2965 2976 2977 2966 -quad 4 - 2966 2977 2978 2967 -quad 4 - 2967 2978 2979 2968 -quad 4 - 2968 2979 2980 2969 -quad 4 - 2969 2980 2981 2970 -quad 4 - 2971 2982 2983 2972 -quad 4 - 2972 2983 2984 2973 -quad 4 - 2973 2984 2985 2974 -quad 4 - 2974 2985 2986 2975 -quad 4 - 2975 2986 2987 2976 -quad 4 - 2976 2987 2988 2977 -quad 4 - 2977 2988 2989 2978 -quad 4 - 2978 2989 2990 2979 -quad 4 - 2979 2990 2991 2980 -quad 4 - 2980 2991 2992 2981 -quad 4 - 2982 2993 2994 2983 -quad 4 - 2983 2994 2995 2984 -quad 4 - 2984 2995 2996 2985 -quad 4 - 2985 2996 2997 2986 -quad 4 - 2986 2997 2998 2987 -quad 4 - 2987 2998 2999 2988 -quad 4 - 2988 2999 3000 2989 -quad 4 - 2989 3000 3001 2990 -quad 4 - 2990 3001 3002 2991 -quad 4 - 2991 3002 3003 2992 -quad 4 - 2993 3004 3005 2994 -quad 4 - 2994 3005 3006 2995 -quad 4 - 2995 3006 3007 2996 -quad 4 - 2996 3007 3008 2997 -quad 4 - 2997 3008 3009 2998 -quad 4 - 2998 3009 3010 2999 -quad 4 - 2999 3010 3011 3000 -quad 4 - 3000 3011 3012 3001 -quad 4 - 3001 3012 3013 3002 -quad 4 - 3002 3013 3014 3003 -quad 4 - 3004 3015 3016 3005 -quad 4 - 3005 3016 3017 3006 -quad 4 - 3006 3017 3018 3007 -quad 4 - 3007 3018 3019 3008 -quad 4 - 3008 3019 3020 3009 -quad 4 - 3009 3020 3021 3010 -quad 4 - 3010 3021 3022 3011 -quad 4 - 3011 3022 3023 3012 -quad 4 - 3012 3023 3024 3013 -quad 4 - 3013 3024 3025 3014 -quad 4 - 3026 3037 3038 3027 -quad 4 - 3027 3038 3039 3028 -quad 4 - 3028 3039 3040 3029 -quad 4 - 3029 3040 3041 3030 -quad 4 - 3030 3041 3042 3031 -quad 4 - 3031 3042 3043 3032 -quad 4 - 3032 3043 3044 3033 -quad 4 - 3033 3044 3045 3034 -quad 4 - 3034 3045 3046 3035 -quad 4 - 3035 3046 3047 3036 -quad 4 - 3037 3048 3049 3038 -quad 4 - 3038 3049 3050 3039 -quad 4 - 3039 3050 3051 3040 -quad 4 - 3040 3051 3052 3041 -quad 4 - 3041 3052 3053 3042 -quad 4 - 3042 3053 3054 3043 -quad 4 - 3043 3054 3055 3044 -quad 4 - 3044 3055 3056 3045 -quad 4 - 3045 3056 3057 3046 -quad 4 - 3046 3057 3058 3047 -quad 4 - 3048 3059 3060 3049 -quad 4 - 3049 3060 3061 3050 -quad 4 - 3050 3061 3062 3051 -quad 4 - 3051 3062 3063 3052 -quad 4 - 3052 3063 3064 3053 -quad 4 - 3053 3064 3065 3054 -quad 4 - 3054 3065 3066 3055 -quad 4 - 3055 3066 3067 3056 -quad 4 - 3056 3067 3068 3057 -quad 4 - 3057 3068 3069 3058 -quad 4 - 3059 3070 3071 3060 -quad 4 - 3060 3071 3072 3061 -quad 4 - 3061 3072 3073 3062 -quad 4 - 3062 3073 3074 3063 -quad 4 - 3063 3074 3075 3064 -quad 4 - 3064 3075 3076 3065 -quad 4 - 3065 3076 3077 3066 -quad 4 - 3066 3077 3078 3067 -quad 4 - 3067 3078 3079 3068 -quad 4 - 3068 3079 3080 3069 -quad 4 - 3070 3081 3082 3071 -quad 4 - 3071 3082 3083 3072 -quad 4 - 3072 3083 3084 3073 -quad 4 - 3073 3084 3085 3074 -quad 4 - 3074 3085 3086 3075 -quad 4 - 3075 3086 3087 3076 -quad 4 - 3076 3087 3088 3077 -quad 4 - 3077 3088 3089 3078 -quad 4 - 3078 3089 3090 3079 -quad 4 - 3079 3090 3091 3080 -quad 4 - 3081 3092 3093 3082 -quad 4 - 3082 3093 3094 3083 -quad 4 - 3083 3094 3095 3084 -quad 4 - 3084 3095 3096 3085 -quad 4 - 3085 3096 3097 3086 -quad 4 - 3086 3097 3098 3087 -quad 4 - 3087 3098 3099 3088 -quad 4 - 3088 3099 3100 3089 -quad 4 - 3089 3100 3101 3090 -quad 4 - 3090 3101 3102 3091 -quad 4 - 3092 3103 3104 3093 -quad 4 - 3093 3104 3105 3094 -quad 4 - 3094 3105 3106 3095 -quad 4 - 3095 3106 3107 3096 -quad 4 - 3096 3107 3108 3097 -quad 4 - 3097 3108 3109 3098 -quad 4 - 3098 3109 3110 3099 -quad 4 - 3099 3110 3111 3100 -quad 4 - 3100 3111 3112 3101 -quad 4 - 3101 3112 3113 3102 -quad 4 - 3103 3114 3115 3104 -quad 4 - 3104 3115 3116 3105 -quad 4 - 3105 3116 3117 3106 -quad 4 - 3106 3117 3118 3107 -quad 4 - 3107 3118 3119 3108 -quad 4 - 3108 3119 3120 3109 -quad 4 - 3109 3120 3121 3110 -quad 4 - 3110 3121 3122 3111 -quad 4 - 3111 3122 3123 3112 -quad 4 - 3112 3123 3124 3113 -quad 4 - 3114 3125 3126 3115 -quad 4 - 3115 3126 3127 3116 -quad 4 - 3116 3127 3128 3117 -quad 4 - 3117 3128 3129 3118 -quad 4 - 3118 3129 3130 3119 -quad 4 - 3119 3130 3131 3120 -quad 4 - 3120 3131 3132 3121 -quad 4 - 3121 3132 3133 3122 -quad 4 - 3122 3133 3134 3123 -quad 4 - 3123 3134 3135 3124 -quad 4 - 3125 3136 3137 3126 -quad 4 - 3126 3137 3138 3127 -quad 4 - 3127 3138 3139 3128 -quad 4 - 3128 3139 3140 3129 -quad 4 - 3129 3140 3141 3130 -quad 4 - 3130 3141 3142 3131 -quad 4 - 3131 3142 3143 3132 -quad 4 - 3132 3143 3144 3133 -quad 4 - 3133 3144 3145 3134 -quad 4 - 3134 3145 3146 3135 -quad 4 - 3147 3158 3159 3148 -quad 4 - 3148 3159 3160 3149 -quad 4 - 3149 3160 3161 3150 -quad 4 - 3150 3161 3162 3151 -quad 4 - 3151 3162 3163 3152 -quad 4 - 3152 3163 3164 3153 -quad 4 - 3153 3164 3165 3154 -quad 4 - 3154 3165 3166 3155 -quad 4 - 3155 3166 3167 3156 -quad 4 - 3156 3167 3168 3157 -quad 4 - 3158 3169 3170 3159 -quad 4 - 3159 3170 3171 3160 -quad 4 - 3160 3171 3172 3161 -quad 4 - 3161 3172 3173 3162 -quad 4 - 3162 3173 3174 3163 -quad 4 - 3163 3174 3175 3164 -quad 4 - 3164 3175 3176 3165 -quad 4 - 3165 3176 3177 3166 -quad 4 - 3166 3177 3178 3167 -quad 4 - 3167 3178 3179 3168 -quad 4 - 3169 3180 3181 3170 -quad 4 - 3170 3181 3182 3171 -quad 4 - 3171 3182 3183 3172 -quad 4 - 3172 3183 3184 3173 -quad 4 - 3173 3184 3185 3174 -quad 4 - 3174 3185 3186 3175 -quad 4 - 3175 3186 3187 3176 -quad 4 - 3176 3187 3188 3177 -quad 4 - 3177 3188 3189 3178 -quad 4 - 3178 3189 3190 3179 -quad 4 - 3180 3191 3192 3181 -quad 4 - 3181 3192 3193 3182 -quad 4 - 3182 3193 3194 3183 -quad 4 - 3183 3194 3195 3184 -quad 4 - 3184 3195 3196 3185 -quad 4 - 3185 3196 3197 3186 -quad 4 - 3186 3197 3198 3187 -quad 4 - 3187 3198 3199 3188 -quad 4 - 3188 3199 3200 3189 -quad 4 - 3189 3200 3201 3190 -quad 4 - 3191 3202 3203 3192 -quad 4 - 3192 3203 3204 3193 -quad 4 - 3193 3204 3205 3194 -quad 4 - 3194 3205 3206 3195 -quad 4 - 3195 3206 3207 3196 -quad 4 - 3196 3207 3208 3197 -quad 4 - 3197 3208 3209 3198 -quad 4 - 3198 3209 3210 3199 -quad 4 - 3199 3210 3211 3200 -quad 4 - 3200 3211 3212 3201 -quad 4 - 3202 3213 3214 3203 -quad 4 - 3203 3214 3215 3204 -quad 4 - 3204 3215 3216 3205 -quad 4 - 3205 3216 3217 3206 -quad 4 - 3206 3217 3218 3207 -quad 4 - 3207 3218 3219 3208 -quad 4 - 3208 3219 3220 3209 -quad 4 - 3209 3220 3221 3210 -quad 4 - 3210 3221 3222 3211 -quad 4 - 3211 3222 3223 3212 -quad 4 - 3213 3224 3225 3214 -quad 4 - 3214 3225 3226 3215 -quad 4 - 3215 3226 3227 3216 -quad 4 - 3216 3227 3228 3217 -quad 4 - 3217 3228 3229 3218 -quad 4 - 3218 3229 3230 3219 -quad 4 - 3219 3230 3231 3220 -quad 4 - 3220 3231 3232 3221 -quad 4 - 3221 3232 3233 3222 -quad 4 - 3222 3233 3234 3223 -quad 4 - 3224 3235 3236 3225 -quad 4 - 3225 3236 3237 3226 -quad 4 - 3226 3237 3238 3227 -quad 4 - 3227 3238 3239 3228 -quad 4 - 3228 3239 3240 3229 -quad 4 - 3229 3240 3241 3230 -quad 4 - 3230 3241 3242 3231 -quad 4 - 3231 3242 3243 3232 -quad 4 - 3232 3243 3244 3233 -quad 4 - 3233 3244 3245 3234 -quad 4 - 3235 3246 3247 3236 -quad 4 - 3236 3247 3248 3237 -quad 4 - 3237 3248 3249 3238 -quad 4 - 3238 3249 3250 3239 -quad 4 - 3239 3250 3251 3240 -quad 4 - 3240 3251 3252 3241 -quad 4 - 3241 3252 3253 3242 -quad 4 - 3242 3253 3254 3243 -quad 4 - 3243 3254 3255 3244 -quad 4 - 3244 3255 3256 3245 -quad 4 - 3246 3257 3258 3247 -quad 4 - 3247 3258 3259 3248 -quad 4 - 3248 3259 3260 3249 -quad 4 - 3249 3260 3261 3250 -quad 4 - 3250 3261 3262 3251 -quad 4 - 3251 3262 3263 3252 -quad 4 - 3252 3263 3264 3253 -quad 4 - 3253 3264 3265 3254 -quad 4 - 3254 3265 3266 3255 -quad 4 - 3255 3266 3267 3256 -quad 4 - 3268 3279 3280 3269 -quad 4 - 3269 3280 3281 3270 -quad 4 - 3270 3281 3282 3271 -quad 4 - 3271 3282 3283 3272 -quad 4 - 3272 3283 3284 3273 -quad 4 - 3273 3284 3285 3274 -quad 4 - 3274 3285 3286 3275 -quad 4 - 3275 3286 3287 3276 -quad 4 - 3276 3287 3288 3277 -quad 4 - 3277 3288 3289 3278 -quad 4 - 3279 3290 3291 3280 -quad 4 - 3280 3291 3292 3281 -quad 4 - 3281 3292 3293 3282 -quad 4 - 3282 3293 3294 3283 -quad 4 - 3283 3294 3295 3284 -quad 4 - 3284 3295 3296 3285 -quad 4 - 3285 3296 3297 3286 -quad 4 - 3286 3297 3298 3287 -quad 4 - 3287 3298 3299 3288 -quad 4 - 3288 3299 3300 3289 -quad 4 - 3290 3301 3302 3291 -quad 4 - 3291 3302 3303 3292 -quad 4 - 3292 3303 3304 3293 -quad 4 - 3293 3304 3305 3294 -quad 4 - 3294 3305 3306 3295 -quad 4 - 3295 3306 3307 3296 -quad 4 - 3296 3307 3308 3297 -quad 4 - 3297 3308 3309 3298 -quad 4 - 3298 3309 3310 3299 -quad 4 - 3299 3310 3311 3300 -quad 4 - 3301 3312 3313 3302 -quad 4 - 3302 3313 3314 3303 -quad 4 - 3303 3314 3315 3304 -quad 4 - 3304 3315 3316 3305 -quad 4 - 3305 3316 3317 3306 -quad 4 - 3306 3317 3318 3307 -quad 4 - 3307 3318 3319 3308 -quad 4 - 3308 3319 3320 3309 -quad 4 - 3309 3320 3321 3310 -quad 4 - 3310 3321 3322 3311 -quad 4 - 3312 3323 3324 3313 -quad 4 - 3313 3324 3325 3314 -quad 4 - 3314 3325 3326 3315 -quad 4 - 3315 3326 3327 3316 -quad 4 - 3316 3327 3328 3317 -quad 4 - 3317 3328 3329 3318 -quad 4 - 3318 3329 3330 3319 -quad 4 - 3319 3330 3331 3320 -quad 4 - 3320 3331 3332 3321 -quad 4 - 3321 3332 3333 3322 -quad 4 - 3323 3334 3335 3324 -quad 4 - 3324 3335 3336 3325 -quad 4 - 3325 3336 3337 3326 -quad 4 - 3326 3337 3338 3327 -quad 4 - 3327 3338 3339 3328 -quad 4 - 3328 3339 3340 3329 -quad 4 - 3329 3340 3341 3330 -quad 4 - 3330 3341 3342 3331 -quad 4 - 3331 3342 3343 3332 -quad 4 - 3332 3343 3344 3333 -quad 4 - 3334 3345 3346 3335 -quad 4 - 3335 3346 3347 3336 -quad 4 - 3336 3347 3348 3337 -quad 4 - 3337 3348 3349 3338 -quad 4 - 3338 3349 3350 3339 -quad 4 - 3339 3350 3351 3340 -quad 4 - 3340 3351 3352 3341 -quad 4 - 3341 3352 3353 3342 -quad 4 - 3342 3353 3354 3343 -quad 4 - 3343 3354 3355 3344 -quad 4 - 3345 3356 3357 3346 -quad 4 - 3346 3357 3358 3347 -quad 4 - 3347 3358 3359 3348 -quad 4 - 3348 3359 3360 3349 -quad 4 - 3349 3360 3361 3350 -quad 4 - 3350 3361 3362 3351 -quad 4 - 3351 3362 3363 3352 -quad 4 - 3352 3363 3364 3353 -quad 4 - 3353 3364 3365 3354 -quad 4 - 3354 3365 3366 3355 -quad 4 - 3356 3367 3368 3357 -quad 4 - 3357 3368 3369 3358 -quad 4 - 3358 3369 3370 3359 -quad 4 - 3359 3370 3371 3360 -quad 4 - 3360 3371 3372 3361 -quad 4 - 3361 3372 3373 3362 -quad 4 - 3362 3373 3374 3363 -quad 4 - 3363 3374 3375 3364 -quad 4 - 3364 3375 3376 3365 -quad 4 - 3365 3376 3377 3366 -quad 4 - 3367 3378 3379 3368 -quad 4 - 3368 3379 3380 3369 -quad 4 - 3369 3380 3381 3370 -quad 4 - 3370 3381 3382 3371 -quad 4 - 3371 3382 3383 3372 -quad 4 - 3372 3383 3384 3373 -quad 4 - 3373 3384 3385 3374 -quad 4 - 3374 3385 3386 3375 -quad 4 - 3375 3386 3387 3376 -quad 4 - 3376 3387 3388 3377 -quad 4 - 3389 3400 3401 3390 -quad 4 - 3390 3401 3402 3391 -quad 4 - 3391 3402 3403 3392 -quad 4 - 3392 3403 3404 3393 -quad 4 - 3393 3404 3405 3394 -quad 4 - 3394 3405 3406 3395 -quad 4 - 3395 3406 3407 3396 -quad 4 - 3396 3407 3408 3397 -quad 4 - 3397 3408 3409 3398 -quad 4 - 3398 3409 3410 3399 -quad 4 - 3400 3411 3412 3401 -quad 4 - 3401 3412 3413 3402 -quad 4 - 3402 3413 3414 3403 -quad 4 - 3403 3414 3415 3404 -quad 4 - 3404 3415 3416 3405 -quad 4 - 3405 3416 3417 3406 -quad 4 - 3406 3417 3418 3407 -quad 4 - 3407 3418 3419 3408 -quad 4 - 3408 3419 3420 3409 -quad 4 - 3409 3420 3421 3410 -quad 4 - 3411 3422 3423 3412 -quad 4 - 3412 3423 3424 3413 -quad 4 - 3413 3424 3425 3414 -quad 4 - 3414 3425 3426 3415 -quad 4 - 3415 3426 3427 3416 -quad 4 - 3416 3427 3428 3417 -quad 4 - 3417 3428 3429 3418 -quad 4 - 3418 3429 3430 3419 -quad 4 - 3419 3430 3431 3420 -quad 4 - 3420 3431 3432 3421 -quad 4 - 3422 3433 3434 3423 -quad 4 - 3423 3434 3435 3424 -quad 4 - 3424 3435 3436 3425 -quad 4 - 3425 3436 3437 3426 -quad 4 - 3426 3437 3438 3427 -quad 4 - 3427 3438 3439 3428 -quad 4 - 3428 3439 3440 3429 -quad 4 - 3429 3440 3441 3430 -quad 4 - 3430 3441 3442 3431 -quad 4 - 3431 3442 3443 3432 -quad 4 - 3433 3444 3445 3434 -quad 4 - 3434 3445 3446 3435 -quad 4 - 3435 3446 3447 3436 -quad 4 - 3436 3447 3448 3437 -quad 4 - 3437 3448 3449 3438 -quad 4 - 3438 3449 3450 3439 -quad 4 - 3439 3450 3451 3440 -quad 4 - 3440 3451 3452 3441 -quad 4 - 3441 3452 3453 3442 -quad 4 - 3442 3453 3454 3443 -quad 4 - 3444 3455 3456 3445 -quad 4 - 3445 3456 3457 3446 -quad 4 - 3446 3457 3458 3447 -quad 4 - 3447 3458 3459 3448 -quad 4 - 3448 3459 3460 3449 -quad 4 - 3449 3460 3461 3450 -quad 4 - 3450 3461 3462 3451 -quad 4 - 3451 3462 3463 3452 -quad 4 - 3452 3463 3464 3453 -quad 4 - 3453 3464 3465 3454 -quad 4 - 3455 3466 3467 3456 -quad 4 - 3456 3467 3468 3457 -quad 4 - 3457 3468 3469 3458 -quad 4 - 3458 3469 3470 3459 -quad 4 - 3459 3470 3471 3460 -quad 4 - 3460 3471 3472 3461 -quad 4 - 3461 3472 3473 3462 -quad 4 - 3462 3473 3474 3463 -quad 4 - 3463 3474 3475 3464 -quad 4 - 3464 3475 3476 3465 -quad 4 - 3466 3477 3478 3467 -quad 4 - 3467 3478 3479 3468 -quad 4 - 3468 3479 3480 3469 -quad 4 - 3469 3480 3481 3470 -quad 4 - 3470 3481 3482 3471 -quad 4 - 3471 3482 3483 3472 -quad 4 - 3472 3483 3484 3473 -quad 4 - 3473 3484 3485 3474 -quad 4 - 3474 3485 3486 3475 -quad 4 - 3475 3486 3487 3476 -quad 4 - 3477 3488 3489 3478 -quad 4 - 3478 3489 3490 3479 -quad 4 - 3479 3490 3491 3480 -quad 4 - 3480 3491 3492 3481 -quad 4 - 3481 3492 3493 3482 -quad 4 - 3482 3493 3494 3483 -quad 4 - 3483 3494 3495 3484 -quad 4 - 3484 3495 3496 3485 -quad 4 - 3485 3496 3497 3486 -quad 4 - 3486 3497 3498 3487 -quad 4 - 3488 3499 3500 3489 -quad 4 - 3489 3500 3501 3490 -quad 4 - 3490 3501 3502 3491 -quad 4 - 3491 3502 3503 3492 -quad 4 - 3492 3503 3504 3493 -quad 4 - 3493 3504 3505 3494 -quad 4 - 3494 3505 3506 3495 -quad 4 - 3495 3506 3507 3496 -quad 4 - 3496 3507 3508 3497 -quad 4 - 3497 3508 3509 3498 -quad 4 - 3510 3521 3522 3511 -quad 4 - 3511 3522 3523 3512 -quad 4 - 3512 3523 3524 3513 -quad 4 - 3513 3524 3525 3514 -quad 4 - 3514 3525 3526 3515 -quad 4 - 3515 3526 3527 3516 -quad 4 - 3516 3527 3528 3517 -quad 4 - 3517 3528 3529 3518 -quad 4 - 3518 3529 3530 3519 -quad 4 - 3519 3530 3531 3520 -quad 4 - 3521 3532 3533 3522 -quad 4 - 3522 3533 3534 3523 -quad 4 - 3523 3534 3535 3524 -quad 4 - 3524 3535 3536 3525 -quad 4 - 3525 3536 3537 3526 -quad 4 - 3526 3537 3538 3527 -quad 4 - 3527 3538 3539 3528 -quad 4 - 3528 3539 3540 3529 -quad 4 - 3529 3540 3541 3530 -quad 4 - 3530 3541 3542 3531 -quad 4 - 3532 3543 3544 3533 -quad 4 - 3533 3544 3545 3534 -quad 4 - 3534 3545 3546 3535 -quad 4 - 3535 3546 3547 3536 -quad 4 - 3536 3547 3548 3537 -quad 4 - 3537 3548 3549 3538 -quad 4 - 3538 3549 3550 3539 -quad 4 - 3539 3550 3551 3540 -quad 4 - 3540 3551 3552 3541 -quad 4 - 3541 3552 3553 3542 -quad 4 - 3543 3554 3555 3544 -quad 4 - 3544 3555 3556 3545 -quad 4 - 3545 3556 3557 3546 -quad 4 - 3546 3557 3558 3547 -quad 4 - 3547 3558 3559 3548 -quad 4 - 3548 3559 3560 3549 -quad 4 - 3549 3560 3561 3550 -quad 4 - 3550 3561 3562 3551 -quad 4 - 3551 3562 3563 3552 -quad 4 - 3552 3563 3564 3553 -quad 4 - 3554 3565 3566 3555 -quad 4 - 3555 3566 3567 3556 -quad 4 - 3556 3567 3568 3557 -quad 4 - 3557 3568 3569 3558 -quad 4 - 3558 3569 3570 3559 -quad 4 - 3559 3570 3571 3560 -quad 4 - 3560 3571 3572 3561 -quad 4 - 3561 3572 3573 3562 -quad 4 - 3562 3573 3574 3563 -quad 4 - 3563 3574 3575 3564 -quad 4 - 3565 3576 3577 3566 -quad 4 - 3566 3577 3578 3567 -quad 4 - 3567 3578 3579 3568 -quad 4 - 3568 3579 3580 3569 -quad 4 - 3569 3580 3581 3570 -quad 4 - 3570 3581 3582 3571 -quad 4 - 3571 3582 3583 3572 -quad 4 - 3572 3583 3584 3573 -quad 4 - 3573 3584 3585 3574 -quad 4 - 3574 3585 3586 3575 -quad 4 - 3576 3587 3588 3577 -quad 4 - 3577 3588 3589 3578 -quad 4 - 3578 3589 3590 3579 -quad 4 - 3579 3590 3591 3580 -quad 4 - 3580 3591 3592 3581 -quad 4 - 3581 3592 3593 3582 -quad 4 - 3582 3593 3594 3583 -quad 4 - 3583 3594 3595 3584 -quad 4 - 3584 3595 3596 3585 -quad 4 - 3585 3596 3597 3586 -quad 4 - 3587 3598 3599 3588 -quad 4 - 3588 3599 3600 3589 -quad 4 - 3589 3600 3601 3590 -quad 4 - 3590 3601 3602 3591 -quad 4 - 3591 3602 3603 3592 -quad 4 - 3592 3603 3604 3593 -quad 4 - 3593 3604 3605 3594 -quad 4 - 3594 3605 3606 3595 -quad 4 - 3595 3606 3607 3596 -quad 4 - 3596 3607 3608 3597 -quad 4 - 3598 3609 3610 3599 -quad 4 - 3599 3610 3611 3600 -quad 4 - 3600 3611 3612 3601 -quad 4 - 3601 3612 3613 3602 -quad 4 - 3602 3613 3614 3603 -quad 4 - 3603 3614 3615 3604 -quad 4 - 3604 3615 3616 3605 -quad 4 - 3605 3616 3617 3606 -quad 4 - 3606 3617 3618 3607 -quad 4 - 3607 3618 3619 3608 -quad 4 - 3609 3620 3621 3610 -quad 4 - 3610 3621 3622 3611 -quad 4 - 3611 3622 3623 3612 -quad 4 - 3612 3623 3624 3613 -quad 4 - 3613 3624 3625 3614 -quad 4 - 3614 3625 3626 3615 -quad 4 - 3615 3626 3627 3616 -quad 4 - 3616 3627 3628 3617 -quad 4 - 3617 3628 3629 3618 -quad 4 - 3618 3629 3630 3619 -quad 4 - 3631 3642 3643 3632 -quad 4 - 3632 3643 3644 3633 -quad 4 - 3633 3644 3645 3634 -quad 4 - 3634 3645 3646 3635 -quad 4 - 3635 3646 3647 3636 -quad 4 - 3636 3647 3648 3637 -quad 4 - 3637 3648 3649 3638 -quad 4 - 3638 3649 3650 3639 -quad 4 - 3639 3650 3651 3640 -quad 4 - 3640 3651 3652 3641 -quad 4 - 3642 3653 3654 3643 -quad 4 - 3643 3654 3655 3644 -quad 4 - 3644 3655 3656 3645 -quad 4 - 3645 3656 3657 3646 -quad 4 - 3646 3657 3658 3647 -quad 4 - 3647 3658 3659 3648 -quad 4 - 3648 3659 3660 3649 -quad 4 - 3649 3660 3661 3650 -quad 4 - 3650 3661 3662 3651 -quad 4 - 3651 3662 3663 3652 -quad 4 - 3653 3664 3665 3654 -quad 4 - 3654 3665 3666 3655 -quad 4 - 3655 3666 3667 3656 -quad 4 - 3656 3667 3668 3657 -quad 4 - 3657 3668 3669 3658 -quad 4 - 3658 3669 3670 3659 -quad 4 - 3659 3670 3671 3660 -quad 4 - 3660 3671 3672 3661 -quad 4 - 3661 3672 3673 3662 -quad 4 - 3662 3673 3674 3663 -quad 4 - 3664 3675 3676 3665 -quad 4 - 3665 3676 3677 3666 -quad 4 - 3666 3677 3678 3667 -quad 4 - 3667 3678 3679 3668 -quad 4 - 3668 3679 3680 3669 -quad 4 - 3669 3680 3681 3670 -quad 4 - 3670 3681 3682 3671 -quad 4 - 3671 3682 3683 3672 -quad 4 - 3672 3683 3684 3673 -quad 4 - 3673 3684 3685 3674 -quad 4 - 3675 3686 3687 3676 -quad 4 - 3676 3687 3688 3677 -quad 4 - 3677 3688 3689 3678 -quad 4 - 3678 3689 3690 3679 -quad 4 - 3679 3690 3691 3680 -quad 4 - 3680 3691 3692 3681 -quad 4 - 3681 3692 3693 3682 -quad 4 - 3682 3693 3694 3683 -quad 4 - 3683 3694 3695 3684 -quad 4 - 3684 3695 3696 3685 -quad 4 - 3686 3697 3698 3687 -quad 4 - 3687 3698 3699 3688 -quad 4 - 3688 3699 3700 3689 -quad 4 - 3689 3700 3701 3690 -quad 4 - 3690 3701 3702 3691 -quad 4 - 3691 3702 3703 3692 -quad 4 - 3692 3703 3704 3693 -quad 4 - 3693 3704 3705 3694 -quad 4 - 3694 3705 3706 3695 -quad 4 - 3695 3706 3707 3696 -quad 4 - 3697 3708 3709 3698 -quad 4 - 3698 3709 3710 3699 -quad 4 - 3699 3710 3711 3700 -quad 4 - 3700 3711 3712 3701 -quad 4 - 3701 3712 3713 3702 -quad 4 - 3702 3713 3714 3703 -quad 4 - 3703 3714 3715 3704 -quad 4 - 3704 3715 3716 3705 -quad 4 - 3705 3716 3717 3706 -quad 4 - 3706 3717 3718 3707 -quad 4 - 3708 3719 3720 3709 -quad 4 - 3709 3720 3721 3710 -quad 4 - 3710 3721 3722 3711 -quad 4 - 3711 3722 3723 3712 -quad 4 - 3712 3723 3724 3713 -quad 4 - 3713 3724 3725 3714 -quad 4 - 3714 3725 3726 3715 -quad 4 - 3715 3726 3727 3716 -quad 4 - 3716 3727 3728 3717 -quad 4 - 3717 3728 3729 3718 -quad 4 - 3719 3730 3731 3720 -quad 4 - 3720 3731 3732 3721 -quad 4 - 3721 3732 3733 3722 -quad 4 - 3722 3733 3734 3723 -quad 4 - 3723 3734 3735 3724 -quad 4 - 3724 3735 3736 3725 -quad 4 - 3725 3736 3737 3726 -quad 4 - 3726 3737 3738 3727 -quad 4 - 3727 3738 3739 3728 -quad 4 - 3728 3739 3740 3729 -quad 4 - 3730 3741 3742 3731 -quad 4 - 3731 3742 3743 3732 -quad 4 - 3732 3743 3744 3733 -quad 4 - 3733 3744 3745 3734 -quad 4 - 3734 3745 3746 3735 -quad 4 - 3735 3746 3747 3736 -quad 4 - 3736 3747 3748 3737 -quad 4 - 3737 3748 3749 3738 -quad 4 - 3738 3749 3750 3739 -quad 4 - 3739 3750 3751 3740 -quad 4 - 3752 3763 3764 3753 -quad 4 - 3753 3764 3765 3754 -quad 4 - 3754 3765 3766 3755 -quad 4 - 3755 3766 3767 3756 -quad 4 - 3756 3767 3768 3757 -quad 4 - 3757 3768 3769 3758 -quad 4 - 3758 3769 3770 3759 -quad 4 - 3759 3770 3771 3760 -quad 4 - 3760 3771 3772 3761 -quad 4 - 3761 3772 3773 3762 -quad 4 - 3763 3774 3775 3764 -quad 4 - 3764 3775 3776 3765 -quad 4 - 3765 3776 3777 3766 -quad 4 - 3766 3777 3778 3767 -quad 4 - 3767 3778 3779 3768 -quad 4 - 3768 3779 3780 3769 -quad 4 - 3769 3780 3781 3770 -quad 4 - 3770 3781 3782 3771 -quad 4 - 3771 3782 3783 3772 -quad 4 - 3772 3783 3784 3773 -quad 4 - 3774 3785 3786 3775 -quad 4 - 3775 3786 3787 3776 -quad 4 - 3776 3787 3788 3777 -quad 4 - 3777 3788 3789 3778 -quad 4 - 3778 3789 3790 3779 -quad 4 - 3779 3790 3791 3780 -quad 4 - 3780 3791 3792 3781 -quad 4 - 3781 3792 3793 3782 -quad 4 - 3782 3793 3794 3783 -quad 4 - 3783 3794 3795 3784 -quad 4 - 3785 3796 3797 3786 -quad 4 - 3786 3797 3798 3787 -quad 4 - 3787 3798 3799 3788 -quad 4 - 3788 3799 3800 3789 -quad 4 - 3789 3800 3801 3790 -quad 4 - 3790 3801 3802 3791 -quad 4 - 3791 3802 3803 3792 -quad 4 - 3792 3803 3804 3793 -quad 4 - 3793 3804 3805 3794 -quad 4 - 3794 3805 3806 3795 -quad 4 - 3796 3807 3808 3797 -quad 4 - 3797 3808 3809 3798 -quad 4 - 3798 3809 3810 3799 -quad 4 - 3799 3810 3811 3800 -quad 4 - 3800 3811 3812 3801 -quad 4 - 3801 3812 3813 3802 -quad 4 - 3802 3813 3814 3803 -quad 4 - 3803 3814 3815 3804 -quad 4 - 3804 3815 3816 3805 -quad 4 - 3805 3816 3817 3806 -quad 4 - 3807 3818 3819 3808 -quad 4 - 3808 3819 3820 3809 -quad 4 - 3809 3820 3821 3810 -quad 4 - 3810 3821 3822 3811 -quad 4 - 3811 3822 3823 3812 -quad 4 - 3812 3823 3824 3813 -quad 4 - 3813 3824 3825 3814 -quad 4 - 3814 3825 3826 3815 -quad 4 - 3815 3826 3827 3816 -quad 4 - 3816 3827 3828 3817 -quad 4 - 3818 3829 3830 3819 -quad 4 - 3819 3830 3831 3820 -quad 4 - 3820 3831 3832 3821 -quad 4 - 3821 3832 3833 3822 -quad 4 - 3822 3833 3834 3823 -quad 4 - 3823 3834 3835 3824 -quad 4 - 3824 3835 3836 3825 -quad 4 - 3825 3836 3837 3826 -quad 4 - 3826 3837 3838 3827 -quad 4 - 3827 3838 3839 3828 -quad 4 - 3829 3840 3841 3830 -quad 4 - 3830 3841 3842 3831 -quad 4 - 3831 3842 3843 3832 -quad 4 - 3832 3843 3844 3833 -quad 4 - 3833 3844 3845 3834 -quad 4 - 3834 3845 3846 3835 -quad 4 - 3835 3846 3847 3836 -quad 4 - 3836 3847 3848 3837 -quad 4 - 3837 3848 3849 3838 -quad 4 - 3838 3849 3850 3839 -quad 4 - 3840 3851 3852 3841 -quad 4 - 3841 3852 3853 3842 -quad 4 - 3842 3853 3854 3843 -quad 4 - 3843 3854 3855 3844 -quad 4 - 3844 3855 3856 3845 -quad 4 - 3845 3856 3857 3846 -quad 4 - 3846 3857 3858 3847 -quad 4 - 3847 3858 3859 3848 -quad 4 - 3848 3859 3860 3849 -quad 4 - 3849 3860 3861 3850 -quad 4 - 3851 3862 3863 3852 -quad 4 - 3852 3863 3864 3853 -quad 4 - 3853 3864 3865 3854 -quad 4 - 3854 3865 3866 3855 -quad 4 - 3855 3866 3867 3856 -quad 4 - 3856 3867 3868 3857 -quad 4 - 3857 3868 3869 3858 -quad 4 - 3858 3869 3870 3859 -quad 4 - 3859 3870 3871 3860 -quad 4 - 3860 3871 3872 3861 -quad 4 - 3873 3884 3885 3874 -quad 4 - 3874 3885 3886 3875 -quad 4 - 3875 3886 3887 3876 -quad 4 - 3876 3887 3888 3877 -quad 4 - 3877 3888 3889 3878 -quad 4 - 3878 3889 3890 3879 -quad 4 - 3879 3890 3891 3880 -quad 4 - 3880 3891 3892 3881 -quad 4 - 3881 3892 3893 3882 -quad 4 - 3882 3893 3894 3883 -quad 4 - 3884 3895 3896 3885 -quad 4 - 3885 3896 3897 3886 -quad 4 - 3886 3897 3898 3887 -quad 4 - 3887 3898 3899 3888 -quad 4 - 3888 3899 3900 3889 -quad 4 - 3889 3900 3901 3890 -quad 4 - 3890 3901 3902 3891 -quad 4 - 3891 3902 3903 3892 -quad 4 - 3892 3903 3904 3893 -quad 4 - 3893 3904 3905 3894 -quad 4 - 3895 3906 3907 3896 -quad 4 - 3896 3907 3908 3897 -quad 4 - 3897 3908 3909 3898 -quad 4 - 3898 3909 3910 3899 -quad 4 - 3899 3910 3911 3900 -quad 4 - 3900 3911 3912 3901 -quad 4 - 3901 3912 3913 3902 -quad 4 - 3902 3913 3914 3903 -quad 4 - 3903 3914 3915 3904 -quad 4 - 3904 3915 3916 3905 -quad 4 - 3906 3917 3918 3907 -quad 4 - 3907 3918 3919 3908 -quad 4 - 3908 3919 3920 3909 -quad 4 - 3909 3920 3921 3910 -quad 4 - 3910 3921 3922 3911 -quad 4 - 3911 3922 3923 3912 -quad 4 - 3912 3923 3924 3913 -quad 4 - 3913 3924 3925 3914 -quad 4 - 3914 3925 3926 3915 -quad 4 - 3915 3926 3927 3916 -quad 4 - 3917 3928 3929 3918 -quad 4 - 3918 3929 3930 3919 -quad 4 - 3919 3930 3931 3920 -quad 4 - 3920 3931 3932 3921 -quad 4 - 3921 3932 3933 3922 -quad 4 - 3922 3933 3934 3923 -quad 4 - 3923 3934 3935 3924 -quad 4 - 3924 3935 3936 3925 -quad 4 - 3925 3936 3937 3926 -quad 4 - 3926 3937 3938 3927 -quad 4 - 3928 3939 3940 3929 -quad 4 - 3929 3940 3941 3930 -quad 4 - 3930 3941 3942 3931 -quad 4 - 3931 3942 3943 3932 -quad 4 - 3932 3943 3944 3933 -quad 4 - 3933 3944 3945 3934 -quad 4 - 3934 3945 3946 3935 -quad 4 - 3935 3946 3947 3936 -quad 4 - 3936 3947 3948 3937 -quad 4 - 3937 3948 3949 3938 -quad 4 - 3939 3950 3951 3940 -quad 4 - 3940 3951 3952 3941 -quad 4 - 3941 3952 3953 3942 -quad 4 - 3942 3953 3954 3943 -quad 4 - 3943 3954 3955 3944 -quad 4 - 3944 3955 3956 3945 -quad 4 - 3945 3956 3957 3946 -quad 4 - 3946 3957 3958 3947 -quad 4 - 3947 3958 3959 3948 -quad 4 - 3948 3959 3960 3949 -quad 4 - 3950 3961 3962 3951 -quad 4 - 3951 3962 3963 3952 -quad 4 - 3952 3963 3964 3953 -quad 4 - 3953 3964 3965 3954 -quad 4 - 3954 3965 3966 3955 -quad 4 - 3955 3966 3967 3956 -quad 4 - 3956 3967 3968 3957 -quad 4 - 3957 3968 3969 3958 -quad 4 - 3958 3969 3970 3959 -quad 4 - 3959 3970 3971 3960 -quad 4 - 3961 3972 3973 3962 -quad 4 - 3962 3973 3974 3963 -quad 4 - 3963 3974 3975 3964 -quad 4 - 3964 3975 3976 3965 -quad 4 - 3965 3976 3977 3966 -quad 4 - 3966 3977 3978 3967 -quad 4 - 3967 3978 3979 3968 -quad 4 - 3968 3979 3980 3969 -quad 4 - 3969 3980 3981 3970 -quad 4 - 3970 3981 3982 3971 -quad 4 - 3972 3983 3984 3973 -quad 4 - 3973 3984 3985 3974 -quad 4 - 3974 3985 3986 3975 -quad 4 - 3975 3986 3987 3976 -quad 4 - 3976 3987 3988 3977 -quad 4 - 3977 3988 3989 3978 -quad 4 - 3978 3989 3990 3979 -quad 4 - 3979 3990 3991 3980 -quad 4 - 3980 3991 3992 3981 -quad 4 - 3981 3992 3993 3982 -quad 4 - 3994 4005 4006 3995 -quad 4 - 3995 4006 4007 3996 -quad 4 - 3996 4007 4008 3997 -quad 4 - 3997 4008 4009 3998 -quad 4 - 3998 4009 4010 3999 -quad 4 - 3999 4010 4011 4000 -quad 4 - 4000 4011 4012 4001 -quad 4 - 4001 4012 4013 4002 -quad 4 - 4002 4013 4014 4003 -quad 4 - 4003 4014 4015 4004 -quad 4 - 4005 4016 4017 4006 -quad 4 - 4006 4017 4018 4007 -quad 4 - 4007 4018 4019 4008 -quad 4 - 4008 4019 4020 4009 -quad 4 - 4009 4020 4021 4010 -quad 4 - 4010 4021 4022 4011 -quad 4 - 4011 4022 4023 4012 -quad 4 - 4012 4023 4024 4013 -quad 4 - 4013 4024 4025 4014 -quad 4 - 4014 4025 4026 4015 -quad 4 - 4016 4027 4028 4017 -quad 4 - 4017 4028 4029 4018 -quad 4 - 4018 4029 4030 4019 -quad 4 - 4019 4030 4031 4020 -quad 4 - 4020 4031 4032 4021 -quad 4 - 4021 4032 4033 4022 -quad 4 - 4022 4033 4034 4023 -quad 4 - 4023 4034 4035 4024 -quad 4 - 4024 4035 4036 4025 -quad 4 - 4025 4036 4037 4026 -quad 4 - 4027 4038 4039 4028 -quad 4 - 4028 4039 4040 4029 -quad 4 - 4029 4040 4041 4030 -quad 4 - 4030 4041 4042 4031 -quad 4 - 4031 4042 4043 4032 -quad 4 - 4032 4043 4044 4033 -quad 4 - 4033 4044 4045 4034 -quad 4 - 4034 4045 4046 4035 -quad 4 - 4035 4046 4047 4036 -quad 4 - 4036 4047 4048 4037 -quad 4 - 4038 4049 4050 4039 -quad 4 - 4039 4050 4051 4040 -quad 4 - 4040 4051 4052 4041 -quad 4 - 4041 4052 4053 4042 -quad 4 - 4042 4053 4054 4043 -quad 4 - 4043 4054 4055 4044 -quad 4 - 4044 4055 4056 4045 -quad 4 - 4045 4056 4057 4046 -quad 4 - 4046 4057 4058 4047 -quad 4 - 4047 4058 4059 4048 -quad 4 - 4049 4060 4061 4050 -quad 4 - 4050 4061 4062 4051 -quad 4 - 4051 4062 4063 4052 -quad 4 - 4052 4063 4064 4053 -quad 4 - 4053 4064 4065 4054 -quad 4 - 4054 4065 4066 4055 -quad 4 - 4055 4066 4067 4056 -quad 4 - 4056 4067 4068 4057 -quad 4 - 4057 4068 4069 4058 -quad 4 - 4058 4069 4070 4059 -quad 4 - 4060 4071 4072 4061 -quad 4 - 4061 4072 4073 4062 -quad 4 - 4062 4073 4074 4063 -quad 4 - 4063 4074 4075 4064 -quad 4 - 4064 4075 4076 4065 -quad 4 - 4065 4076 4077 4066 -quad 4 - 4066 4077 4078 4067 -quad 4 - 4067 4078 4079 4068 -quad 4 - 4068 4079 4080 4069 -quad 4 - 4069 4080 4081 4070 -quad 4 - 4071 4082 4083 4072 -quad 4 - 4072 4083 4084 4073 -quad 4 - 4073 4084 4085 4074 -quad 4 - 4074 4085 4086 4075 -quad 4 - 4075 4086 4087 4076 -quad 4 - 4076 4087 4088 4077 -quad 4 - 4077 4088 4089 4078 -quad 4 - 4078 4089 4090 4079 -quad 4 - 4079 4090 4091 4080 -quad 4 - 4080 4091 4092 4081 -quad 4 - 4082 4093 4094 4083 -quad 4 - 4083 4094 4095 4084 -quad 4 - 4084 4095 4096 4085 -quad 4 - 4085 4096 4097 4086 -quad 4 - 4086 4097 4098 4087 -quad 4 - 4087 4098 4099 4088 -quad 4 - 4088 4099 4100 4089 -quad 4 - 4089 4100 4101 4090 -quad 4 - 4090 4101 4102 4091 -quad 4 - 4091 4102 4103 4092 -quad 4 - 4093 4104 4105 4094 -quad 4 - 4094 4105 4106 4095 -quad 4 - 4095 4106 4107 4096 -quad 4 - 4096 4107 4108 4097 -quad 4 - 4097 4108 4109 4098 -quad 4 - 4098 4109 4110 4099 -quad 4 - 4099 4110 4111 4100 -quad 4 - 4100 4111 4112 4101 -quad 4 - 4101 4112 4113 4102 -quad 4 - 4102 4113 4114 4103 -quad 4 - 4115 4126 4127 4116 -quad 4 - 4116 4127 4128 4117 -quad 4 - 4117 4128 4129 4118 -quad 4 - 4118 4129 4130 4119 -quad 4 - 4119 4130 4131 4120 -quad 4 - 4120 4131 4132 4121 -quad 4 - 4121 4132 4133 4122 -quad 4 - 4122 4133 4134 4123 -quad 4 - 4123 4134 4135 4124 -quad 4 - 4124 4135 4136 4125 -quad 4 - 4126 4137 4138 4127 -quad 4 - 4127 4138 4139 4128 -quad 4 - 4128 4139 4140 4129 -quad 4 - 4129 4140 4141 4130 -quad 4 - 4130 4141 4142 4131 -quad 4 - 4131 4142 4143 4132 -quad 4 - 4132 4143 4144 4133 -quad 4 - 4133 4144 4145 4134 -quad 4 - 4134 4145 4146 4135 -quad 4 - 4135 4146 4147 4136 -quad 4 - 4137 4148 4149 4138 -quad 4 - 4138 4149 4150 4139 -quad 4 - 4139 4150 4151 4140 -quad 4 - 4140 4151 4152 4141 -quad 4 - 4141 4152 4153 4142 -quad 4 - 4142 4153 4154 4143 -quad 4 - 4143 4154 4155 4144 -quad 4 - 4144 4155 4156 4145 -quad 4 - 4145 4156 4157 4146 -quad 4 - 4146 4157 4158 4147 -quad 4 - 4148 4159 4160 4149 -quad 4 - 4149 4160 4161 4150 -quad 4 - 4150 4161 4162 4151 -quad 4 - 4151 4162 4163 4152 -quad 4 - 4152 4163 4164 4153 -quad 4 - 4153 4164 4165 4154 -quad 4 - 4154 4165 4166 4155 -quad 4 - 4155 4166 4167 4156 -quad 4 - 4156 4167 4168 4157 -quad 4 - 4157 4168 4169 4158 -quad 4 - 4159 4170 4171 4160 -quad 4 - 4160 4171 4172 4161 -quad 4 - 4161 4172 4173 4162 -quad 4 - 4162 4173 4174 4163 -quad 4 - 4163 4174 4175 4164 -quad 4 - 4164 4175 4176 4165 -quad 4 - 4165 4176 4177 4166 -quad 4 - 4166 4177 4178 4167 -quad 4 - 4167 4178 4179 4168 -quad 4 - 4168 4179 4180 4169 -quad 4 - 4170 4181 4182 4171 -quad 4 - 4171 4182 4183 4172 -quad 4 - 4172 4183 4184 4173 -quad 4 - 4173 4184 4185 4174 -quad 4 - 4174 4185 4186 4175 -quad 4 - 4175 4186 4187 4176 -quad 4 - 4176 4187 4188 4177 -quad 4 - 4177 4188 4189 4178 -quad 4 - 4178 4189 4190 4179 -quad 4 - 4179 4190 4191 4180 -quad 4 - 4181 4192 4193 4182 -quad 4 - 4182 4193 4194 4183 -quad 4 - 4183 4194 4195 4184 -quad 4 - 4184 4195 4196 4185 -quad 4 - 4185 4196 4197 4186 -quad 4 - 4186 4197 4198 4187 -quad 4 - 4187 4198 4199 4188 -quad 4 - 4188 4199 4200 4189 -quad 4 - 4189 4200 4201 4190 -quad 4 - 4190 4201 4202 4191 -quad 4 - 4192 4203 4204 4193 -quad 4 - 4193 4204 4205 4194 -quad 4 - 4194 4205 4206 4195 -quad 4 - 4195 4206 4207 4196 -quad 4 - 4196 4207 4208 4197 -quad 4 - 4197 4208 4209 4198 -quad 4 - 4198 4209 4210 4199 -quad 4 - 4199 4210 4211 4200 -quad 4 - 4200 4211 4212 4201 -quad 4 - 4201 4212 4213 4202 -quad 4 - 4203 4214 4215 4204 -quad 4 - 4204 4215 4216 4205 -quad 4 - 4205 4216 4217 4206 -quad 4 - 4206 4217 4218 4207 -quad 4 - 4207 4218 4219 4208 -quad 4 - 4208 4219 4220 4209 -quad 4 - 4209 4220 4221 4210 -quad 4 - 4210 4221 4222 4211 -quad 4 - 4211 4222 4223 4212 -quad 4 - 4212 4223 4224 4213 -quad 4 - 4214 4225 4226 4215 -quad 4 - 4215 4226 4227 4216 -quad 4 - 4216 4227 4228 4217 -quad 4 - 4217 4228 4229 4218 -quad 4 - 4218 4229 4230 4219 -quad 4 - 4219 4230 4231 4220 -quad 4 - 4220 4231 4232 4221 -quad 4 - 4221 4232 4233 4222 -quad 4 - 4222 4233 4234 4223 -quad 4 - 4223 4234 4235 4224 -quad 4 - 4236 4247 4248 4237 -quad 4 - 4237 4248 4249 4238 -quad 4 - 4238 4249 4250 4239 -quad 4 - 4239 4250 4251 4240 -quad 4 - 4240 4251 4252 4241 -quad 4 - 4241 4252 4253 4242 -quad 4 - 4242 4253 4254 4243 -quad 4 - 4243 4254 4255 4244 -quad 4 - 4244 4255 4256 4245 -quad 4 - 4245 4256 4257 4246 -quad 4 - 4247 4258 4259 4248 -quad 4 - 4248 4259 4260 4249 -quad 4 - 4249 4260 4261 4250 -quad 4 - 4250 4261 4262 4251 -quad 4 - 4251 4262 4263 4252 -quad 4 - 4252 4263 4264 4253 -quad 4 - 4253 4264 4265 4254 -quad 4 - 4254 4265 4266 4255 -quad 4 - 4255 4266 4267 4256 -quad 4 - 4256 4267 4268 4257 -quad 4 - 4258 4269 4270 4259 -quad 4 - 4259 4270 4271 4260 -quad 4 - 4260 4271 4272 4261 -quad 4 - 4261 4272 4273 4262 -quad 4 - 4262 4273 4274 4263 -quad 4 - 4263 4274 4275 4264 -quad 4 - 4264 4275 4276 4265 -quad 4 - 4265 4276 4277 4266 -quad 4 - 4266 4277 4278 4267 -quad 4 - 4267 4278 4279 4268 -quad 4 - 4269 4280 4281 4270 -quad 4 - 4270 4281 4282 4271 -quad 4 - 4271 4282 4283 4272 -quad 4 - 4272 4283 4284 4273 -quad 4 - 4273 4284 4285 4274 -quad 4 - 4274 4285 4286 4275 -quad 4 - 4275 4286 4287 4276 -quad 4 - 4276 4287 4288 4277 -quad 4 - 4277 4288 4289 4278 -quad 4 - 4278 4289 4290 4279 -quad 4 - 4280 4291 4292 4281 -quad 4 - 4281 4292 4293 4282 -quad 4 - 4282 4293 4294 4283 -quad 4 - 4283 4294 4295 4284 -quad 4 - 4284 4295 4296 4285 -quad 4 - 4285 4296 4297 4286 -quad 4 - 4286 4297 4298 4287 -quad 4 - 4287 4298 4299 4288 -quad 4 - 4288 4299 4300 4289 -quad 4 - 4289 4300 4301 4290 -quad 4 - 4291 4302 4303 4292 -quad 4 - 4292 4303 4304 4293 -quad 4 - 4293 4304 4305 4294 -quad 4 - 4294 4305 4306 4295 -quad 4 - 4295 4306 4307 4296 -quad 4 - 4296 4307 4308 4297 -quad 4 - 4297 4308 4309 4298 -quad 4 - 4298 4309 4310 4299 -quad 4 - 4299 4310 4311 4300 -quad 4 - 4300 4311 4312 4301 -quad 4 - 4302 4313 4314 4303 -quad 4 - 4303 4314 4315 4304 -quad 4 - 4304 4315 4316 4305 -quad 4 - 4305 4316 4317 4306 -quad 4 - 4306 4317 4318 4307 -quad 4 - 4307 4318 4319 4308 -quad 4 - 4308 4319 4320 4309 -quad 4 - 4309 4320 4321 4310 -quad 4 - 4310 4321 4322 4311 -quad 4 - 4311 4322 4323 4312 -quad 4 - 4313 4324 4325 4314 -quad 4 - 4314 4325 4326 4315 -quad 4 - 4315 4326 4327 4316 -quad 4 - 4316 4327 4328 4317 -quad 4 - 4317 4328 4329 4318 -quad 4 - 4318 4329 4330 4319 -quad 4 - 4319 4330 4331 4320 -quad 4 - 4320 4331 4332 4321 -quad 4 - 4321 4332 4333 4322 -quad 4 - 4322 4333 4334 4323 -quad 4 - 4324 4335 4336 4325 -quad 4 - 4325 4336 4337 4326 -quad 4 - 4326 4337 4338 4327 -quad 4 - 4327 4338 4339 4328 -quad 4 - 4328 4339 4340 4329 -quad 4 - 4329 4340 4341 4330 -quad 4 - 4330 4341 4342 4331 -quad 4 - 4331 4342 4343 4332 -quad 4 - 4332 4343 4344 4333 -quad 4 - 4333 4344 4345 4334 -quad 4 - 4335 4346 4347 4336 -quad 4 - 4336 4347 4348 4337 -quad 4 - 4337 4348 4349 4338 -quad 4 - 4338 4349 4350 4339 -quad 4 - 4339 4350 4351 4340 -quad 4 - 4340 4351 4352 4341 -quad 4 - 4341 4352 4353 4342 -quad 4 - 4342 4353 4354 4343 -quad 4 - 4343 4354 4355 4344 -quad 4 - 4344 4355 4356 4345 -quad 4 - 4357 4368 4369 4358 -quad 4 - 4358 4369 4370 4359 -quad 4 - 4359 4370 4371 4360 -quad 4 - 4360 4371 4372 4361 -quad 4 - 4361 4372 4373 4362 -quad 4 - 4362 4373 4374 4363 -quad 4 - 4363 4374 4375 4364 -quad 4 - 4364 4375 4376 4365 -quad 4 - 4365 4376 4377 4366 -quad 4 - 4366 4377 4378 4367 -quad 4 - 4368 4379 4380 4369 -quad 4 - 4369 4380 4381 4370 -quad 4 - 4370 4381 4382 4371 -quad 4 - 4371 4382 4383 4372 -quad 4 - 4372 4383 4384 4373 -quad 4 - 4373 4384 4385 4374 -quad 4 - 4374 4385 4386 4375 -quad 4 - 4375 4386 4387 4376 -quad 4 - 4376 4387 4388 4377 -quad 4 - 4377 4388 4389 4378 -quad 4 - 4379 4390 4391 4380 -quad 4 - 4380 4391 4392 4381 -quad 4 - 4381 4392 4393 4382 -quad 4 - 4382 4393 4394 4383 -quad 4 - 4383 4394 4395 4384 -quad 4 - 4384 4395 4396 4385 -quad 4 - 4385 4396 4397 4386 -quad 4 - 4386 4397 4398 4387 -quad 4 - 4387 4398 4399 4388 -quad 4 - 4388 4399 4400 4389 -quad 4 - 4390 4401 4402 4391 -quad 4 - 4391 4402 4403 4392 -quad 4 - 4392 4403 4404 4393 -quad 4 - 4393 4404 4405 4394 -quad 4 - 4394 4405 4406 4395 -quad 4 - 4395 4406 4407 4396 -quad 4 - 4396 4407 4408 4397 -quad 4 - 4397 4408 4409 4398 -quad 4 - 4398 4409 4410 4399 -quad 4 - 4399 4410 4411 4400 -quad 4 - 4401 4412 4413 4402 -quad 4 - 4402 4413 4414 4403 -quad 4 - 4403 4414 4415 4404 -quad 4 - 4404 4415 4416 4405 -quad 4 - 4405 4416 4417 4406 -quad 4 - 4406 4417 4418 4407 -quad 4 - 4407 4418 4419 4408 -quad 4 - 4408 4419 4420 4409 -quad 4 - 4409 4420 4421 4410 -quad 4 - 4410 4421 4422 4411 -quad 4 - 4412 4423 4424 4413 -quad 4 - 4413 4424 4425 4414 -quad 4 - 4414 4425 4426 4415 -quad 4 - 4415 4426 4427 4416 -quad 4 - 4416 4427 4428 4417 -quad 4 - 4417 4428 4429 4418 -quad 4 - 4418 4429 4430 4419 -quad 4 - 4419 4430 4431 4420 -quad 4 - 4420 4431 4432 4421 -quad 4 - 4421 4432 4433 4422 -quad 4 - 4423 4434 4435 4424 -quad 4 - 4424 4435 4436 4425 -quad 4 - 4425 4436 4437 4426 -quad 4 - 4426 4437 4438 4427 -quad 4 - 4427 4438 4439 4428 -quad 4 - 4428 4439 4440 4429 -quad 4 - 4429 4440 4441 4430 -quad 4 - 4430 4441 4442 4431 -quad 4 - 4431 4442 4443 4432 -quad 4 - 4432 4443 4444 4433 -quad 4 - 4434 4445 4446 4435 -quad 4 - 4435 4446 4447 4436 -quad 4 - 4436 4447 4448 4437 -quad 4 - 4437 4448 4449 4438 -quad 4 - 4438 4449 4450 4439 -quad 4 - 4439 4450 4451 4440 -quad 4 - 4440 4451 4452 4441 -quad 4 - 4441 4452 4453 4442 -quad 4 - 4442 4453 4454 4443 -quad 4 - 4443 4454 4455 4444 -quad 4 - 4445 4456 4457 4446 -quad 4 - 4446 4457 4458 4447 -quad 4 - 4447 4458 4459 4448 -quad 4 - 4448 4459 4460 4449 -quad 4 - 4449 4460 4461 4450 -quad 4 - 4450 4461 4462 4451 -quad 4 - 4451 4462 4463 4452 -quad 4 - 4452 4463 4464 4453 -quad 4 - 4453 4464 4465 4454 -quad 4 - 4454 4465 4466 4455 -quad 4 - 4456 4467 4468 4457 -quad 4 - 4457 4468 4469 4458 -quad 4 - 4458 4469 4470 4459 -quad 4 - 4459 4470 4471 4460 -quad 4 - 4460 4471 4472 4461 -quad 4 - 4461 4472 4473 4462 -quad 4 - 4462 4473 4474 4463 -quad 4 - 4463 4474 4475 4464 -quad 4 - 4464 4475 4476 4465 -quad 4 - 4465 4476 4477 4466 -quad 4 - 4478 4489 4490 4479 -quad 4 - 4479 4490 4491 4480 -quad 4 - 4480 4491 4492 4481 -quad 4 - 4481 4492 4493 4482 -quad 4 - 4482 4493 4494 4483 -quad 4 - 4483 4494 4495 4484 -quad 4 - 4484 4495 4496 4485 -quad 4 - 4485 4496 4497 4486 -quad 4 - 4486 4497 4498 4487 -quad 4 - 4487 4498 4499 4488 -quad 4 - 4489 4500 4501 4490 -quad 4 - 4490 4501 4502 4491 -quad 4 - 4491 4502 4503 4492 -quad 4 - 4492 4503 4504 4493 -quad 4 - 4493 4504 4505 4494 -quad 4 - 4494 4505 4506 4495 -quad 4 - 4495 4506 4507 4496 -quad 4 - 4496 4507 4508 4497 -quad 4 - 4497 4508 4509 4498 -quad 4 - 4498 4509 4510 4499 -quad 4 - 4500 4511 4512 4501 -quad 4 - 4501 4512 4513 4502 -quad 4 - 4502 4513 4514 4503 -quad 4 - 4503 4514 4515 4504 -quad 4 - 4504 4515 4516 4505 -quad 4 - 4505 4516 4517 4506 -quad 4 - 4506 4517 4518 4507 -quad 4 - 4507 4518 4519 4508 -quad 4 - 4508 4519 4520 4509 -quad 4 - 4509 4520 4521 4510 -quad 4 - 4511 4522 4523 4512 -quad 4 - 4512 4523 4524 4513 -quad 4 - 4513 4524 4525 4514 -quad 4 - 4514 4525 4526 4515 -quad 4 - 4515 4526 4527 4516 -quad 4 - 4516 4527 4528 4517 -quad 4 - 4517 4528 4529 4518 -quad 4 - 4518 4529 4530 4519 -quad 4 - 4519 4530 4531 4520 -quad 4 - 4520 4531 4532 4521 -quad 4 - 4522 4533 4534 4523 -quad 4 - 4523 4534 4535 4524 -quad 4 - 4524 4535 4536 4525 -quad 4 - 4525 4536 4537 4526 -quad 4 - 4526 4537 4538 4527 -quad 4 - 4527 4538 4539 4528 -quad 4 - 4528 4539 4540 4529 -quad 4 - 4529 4540 4541 4530 -quad 4 - 4530 4541 4542 4531 -quad 4 - 4531 4542 4543 4532 -quad 4 - 4533 4544 4545 4534 -quad 4 - 4534 4545 4546 4535 -quad 4 - 4535 4546 4547 4536 -quad 4 - 4536 4547 4548 4537 -quad 4 - 4537 4548 4549 4538 -quad 4 - 4538 4549 4550 4539 -quad 4 - 4539 4550 4551 4540 -quad 4 - 4540 4551 4552 4541 -quad 4 - 4541 4552 4553 4542 -quad 4 - 4542 4553 4554 4543 -quad 4 - 4544 4555 4556 4545 -quad 4 - 4545 4556 4557 4546 -quad 4 - 4546 4557 4558 4547 -quad 4 - 4547 4558 4559 4548 -quad 4 - 4548 4559 4560 4549 -quad 4 - 4549 4560 4561 4550 -quad 4 - 4550 4561 4562 4551 -quad 4 - 4551 4562 4563 4552 -quad 4 - 4552 4563 4564 4553 -quad 4 - 4553 4564 4565 4554 -quad 4 - 4555 4566 4567 4556 -quad 4 - 4556 4567 4568 4557 -quad 4 - 4557 4568 4569 4558 -quad 4 - 4558 4569 4570 4559 -quad 4 - 4559 4570 4571 4560 -quad 4 - 4560 4571 4572 4561 -quad 4 - 4561 4572 4573 4562 -quad 4 - 4562 4573 4574 4563 -quad 4 - 4563 4574 4575 4564 -quad 4 - 4564 4575 4576 4565 -quad 4 - 4566 4577 4578 4567 -quad 4 - 4567 4578 4579 4568 -quad 4 - 4568 4579 4580 4569 -quad 4 - 4569 4580 4581 4570 -quad 4 - 4570 4581 4582 4571 -quad 4 - 4571 4582 4583 4572 -quad 4 - 4572 4583 4584 4573 -quad 4 - 4573 4584 4585 4574 -quad 4 - 4574 4585 4586 4575 -quad 4 - 4575 4586 4587 4576 -quad 4 - 4577 4588 4589 4578 -quad 4 - 4578 4589 4590 4579 -quad 4 - 4579 4590 4591 4580 -quad 4 - 4580 4591 4592 4581 -quad 4 - 4581 4592 4593 4582 -quad 4 - 4582 4593 4594 4583 -quad 4 - 4583 4594 4595 4584 -quad 4 - 4584 4595 4596 4585 -quad 4 - 4585 4596 4597 4586 -quad 4 - 4586 4597 4598 4587 -quad 4 - 4599 4610 4611 4600 -quad 4 - 4600 4611 4612 4601 -quad 4 - 4601 4612 4613 4602 -quad 4 - 4602 4613 4614 4603 -quad 4 - 4603 4614 4615 4604 -quad 4 - 4604 4615 4616 4605 -quad 4 - 4605 4616 4617 4606 -quad 4 - 4606 4617 4618 4607 -quad 4 - 4607 4618 4619 4608 -quad 4 - 4608 4619 4620 4609 -quad 4 - 4610 4621 4622 4611 -quad 4 - 4611 4622 4623 4612 -quad 4 - 4612 4623 4624 4613 -quad 4 - 4613 4624 4625 4614 -quad 4 - 4614 4625 4626 4615 -quad 4 - 4615 4626 4627 4616 -quad 4 - 4616 4627 4628 4617 -quad 4 - 4617 4628 4629 4618 -quad 4 - 4618 4629 4630 4619 -quad 4 - 4619 4630 4631 4620 -quad 4 - 4621 4632 4633 4622 -quad 4 - 4622 4633 4634 4623 -quad 4 - 4623 4634 4635 4624 -quad 4 - 4624 4635 4636 4625 -quad 4 - 4625 4636 4637 4626 -quad 4 - 4626 4637 4638 4627 -quad 4 - 4627 4638 4639 4628 -quad 4 - 4628 4639 4640 4629 -quad 4 - 4629 4640 4641 4630 -quad 4 - 4630 4641 4642 4631 -quad 4 - 4632 4643 4644 4633 -quad 4 - 4633 4644 4645 4634 -quad 4 - 4634 4645 4646 4635 -quad 4 - 4635 4646 4647 4636 -quad 4 - 4636 4647 4648 4637 -quad 4 - 4637 4648 4649 4638 -quad 4 - 4638 4649 4650 4639 -quad 4 - 4639 4650 4651 4640 -quad 4 - 4640 4651 4652 4641 -quad 4 - 4641 4652 4653 4642 -quad 4 - 4643 4654 4655 4644 -quad 4 - 4644 4655 4656 4645 -quad 4 - 4645 4656 4657 4646 -quad 4 - 4646 4657 4658 4647 -quad 4 - 4647 4658 4659 4648 -quad 4 - 4648 4659 4660 4649 -quad 4 - 4649 4660 4661 4650 -quad 4 - 4650 4661 4662 4651 -quad 4 - 4651 4662 4663 4652 -quad 4 - 4652 4663 4664 4653 -quad 4 - 4654 4665 4666 4655 -quad 4 - 4655 4666 4667 4656 -quad 4 - 4656 4667 4668 4657 -quad 4 - 4657 4668 4669 4658 -quad 4 - 4658 4669 4670 4659 -quad 4 - 4659 4670 4671 4660 -quad 4 - 4660 4671 4672 4661 -quad 4 - 4661 4672 4673 4662 -quad 4 - 4662 4673 4674 4663 -quad 4 - 4663 4674 4675 4664 -quad 4 - 4665 4676 4677 4666 -quad 4 - 4666 4677 4678 4667 -quad 4 - 4667 4678 4679 4668 -quad 4 - 4668 4679 4680 4669 -quad 4 - 4669 4680 4681 4670 -quad 4 - 4670 4681 4682 4671 -quad 4 - 4671 4682 4683 4672 -quad 4 - 4672 4683 4684 4673 -quad 4 - 4673 4684 4685 4674 -quad 4 - 4674 4685 4686 4675 -quad 4 - 4676 4687 4688 4677 -quad 4 - 4677 4688 4689 4678 -quad 4 - 4678 4689 4690 4679 -quad 4 - 4679 4690 4691 4680 -quad 4 - 4680 4691 4692 4681 -quad 4 - 4681 4692 4693 4682 -quad 4 - 4682 4693 4694 4683 -quad 4 - 4683 4694 4695 4684 -quad 4 - 4684 4695 4696 4685 -quad 4 - 4685 4696 4697 4686 -quad 4 - 4687 4698 4699 4688 -quad 4 - 4688 4699 4700 4689 -quad 4 - 4689 4700 4701 4690 -quad 4 - 4690 4701 4702 4691 -quad 4 - 4691 4702 4703 4692 -quad 4 - 4692 4703 4704 4693 -quad 4 - 4693 4704 4705 4694 -quad 4 - 4694 4705 4706 4695 -quad 4 - 4695 4706 4707 4696 -quad 4 - 4696 4707 4708 4697 -quad 4 - 4698 4709 4710 4699 -quad 4 - 4699 4710 4711 4700 -quad 4 - 4700 4711 4712 4701 -quad 4 - 4701 4712 4713 4702 -quad 4 - 4702 4713 4714 4703 -quad 4 - 4703 4714 4715 4704 -quad 4 - 4704 4715 4716 4705 -quad 4 - 4705 4716 4717 4706 -quad 4 - 4706 4717 4718 4707 -quad 4 - 4707 4718 4719 4708 -quad 4 - 4720 4731 4732 4721 -quad 4 - 4721 4732 4733 4722 -quad 4 - 4722 4733 4734 4723 -quad 4 - 4723 4734 4735 4724 -quad 4 - 4724 4735 4736 4725 -quad 4 - 4725 4736 4737 4726 -quad 4 - 4726 4737 4738 4727 -quad 4 - 4727 4738 4739 4728 -quad 4 - 4728 4739 4740 4729 -quad 4 - 4729 4740 4741 4730 -quad 4 - 4731 4742 4743 4732 -quad 4 - 4732 4743 4744 4733 -quad 4 - 4733 4744 4745 4734 -quad 4 - 4734 4745 4746 4735 -quad 4 - 4735 4746 4747 4736 -quad 4 - 4736 4747 4748 4737 -quad 4 - 4737 4748 4749 4738 -quad 4 - 4738 4749 4750 4739 -quad 4 - 4739 4750 4751 4740 -quad 4 - 4740 4751 4752 4741 -quad 4 - 4742 4753 4754 4743 -quad 4 - 4743 4754 4755 4744 -quad 4 - 4744 4755 4756 4745 -quad 4 - 4745 4756 4757 4746 -quad 4 - 4746 4757 4758 4747 -quad 4 - 4747 4758 4759 4748 -quad 4 - 4748 4759 4760 4749 -quad 4 - 4749 4760 4761 4750 -quad 4 - 4750 4761 4762 4751 -quad 4 - 4751 4762 4763 4752 -quad 4 - 4753 4764 4765 4754 -quad 4 - 4754 4765 4766 4755 -quad 4 - 4755 4766 4767 4756 -quad 4 - 4756 4767 4768 4757 -quad 4 - 4757 4768 4769 4758 -quad 4 - 4758 4769 4770 4759 -quad 4 - 4759 4770 4771 4760 -quad 4 - 4760 4771 4772 4761 -quad 4 - 4761 4772 4773 4762 -quad 4 - 4762 4773 4774 4763 -quad 4 - 4764 4775 4776 4765 -quad 4 - 4765 4776 4777 4766 -quad 4 - 4766 4777 4778 4767 -quad 4 - 4767 4778 4779 4768 -quad 4 - 4768 4779 4780 4769 -quad 4 - 4769 4780 4781 4770 -quad 4 - 4770 4781 4782 4771 -quad 4 - 4771 4782 4783 4772 -quad 4 - 4772 4783 4784 4773 -quad 4 - 4773 4784 4785 4774 -quad 4 - 4775 4786 4787 4776 -quad 4 - 4776 4787 4788 4777 -quad 4 - 4777 4788 4789 4778 -quad 4 - 4778 4789 4790 4779 -quad 4 - 4779 4790 4791 4780 -quad 4 - 4780 4791 4792 4781 -quad 4 - 4781 4792 4793 4782 -quad 4 - 4782 4793 4794 4783 -quad 4 - 4783 4794 4795 4784 -quad 4 - 4784 4795 4796 4785 -quad 4 - 4786 4797 4798 4787 -quad 4 - 4787 4798 4799 4788 -quad 4 - 4788 4799 4800 4789 -quad 4 - 4789 4800 4801 4790 -quad 4 - 4790 4801 4802 4791 -quad 4 - 4791 4802 4803 4792 -quad 4 - 4792 4803 4804 4793 -quad 4 - 4793 4804 4805 4794 -quad 4 - 4794 4805 4806 4795 -quad 4 - 4795 4806 4807 4796 -quad 4 - 4797 4808 4809 4798 -quad 4 - 4798 4809 4810 4799 -quad 4 - 4799 4810 4811 4800 -quad 4 - 4800 4811 4812 4801 -quad 4 - 4801 4812 4813 4802 -quad 4 - 4802 4813 4814 4803 -quad 4 - 4803 4814 4815 4804 -quad 4 - 4804 4815 4816 4805 -quad 4 - 4805 4816 4817 4806 -quad 4 - 4806 4817 4818 4807 -quad 4 - 4808 4819 4820 4809 -quad 4 - 4809 4820 4821 4810 -quad 4 - 4810 4821 4822 4811 -quad 4 - 4811 4822 4823 4812 -quad 4 - 4812 4823 4824 4813 -quad 4 - 4813 4824 4825 4814 -quad 4 - 4814 4825 4826 4815 -quad 4 - 4815 4826 4827 4816 -quad 4 - 4816 4827 4828 4817 -quad 4 - 4817 4828 4829 4818 -quad 4 - 4819 4830 4831 4820 -quad 4 - 4820 4831 4832 4821 -quad 4 - 4821 4832 4833 4822 -quad 4 - 4822 4833 4834 4823 -quad 4 - 4823 4834 4835 4824 -quad 4 - 4824 4835 4836 4825 -quad 4 - 4825 4836 4837 4826 -quad 4 - 4826 4837 4838 4827 -quad 4 - 4827 4838 4839 4828 -quad 4 - 4828 4839 4840 4829 -quad 4 - 4841 4852 4853 4842 -quad 4 - 4842 4853 4854 4843 -quad 4 - 4843 4854 4855 4844 -quad 4 - 4844 4855 4856 4845 -quad 4 - 4845 4856 4857 4846 -quad 4 - 4846 4857 4858 4847 -quad 4 - 4847 4858 4859 4848 -quad 4 - 4848 4859 4860 4849 -quad 4 - 4849 4860 4861 4850 -quad 4 - 4850 4861 4862 4851 -quad 4 - 4852 4863 4864 4853 -quad 4 - 4853 4864 4865 4854 -quad 4 - 4854 4865 4866 4855 -quad 4 - 4855 4866 4867 4856 -quad 4 - 4856 4867 4868 4857 -quad 4 - 4857 4868 4869 4858 -quad 4 - 4858 4869 4870 4859 -quad 4 - 4859 4870 4871 4860 -quad 4 - 4860 4871 4872 4861 -quad 4 - 4861 4872 4873 4862 -quad 4 - 4863 4874 4875 4864 -quad 4 - 4864 4875 4876 4865 -quad 4 - 4865 4876 4877 4866 -quad 4 - 4866 4877 4878 4867 -quad 4 - 4867 4878 4879 4868 -quad 4 - 4868 4879 4880 4869 -quad 4 - 4869 4880 4881 4870 -quad 4 - 4870 4881 4882 4871 -quad 4 - 4871 4882 4883 4872 -quad 4 - 4872 4883 4884 4873 -quad 4 - 4874 4885 4886 4875 -quad 4 - 4875 4886 4887 4876 -quad 4 - 4876 4887 4888 4877 -quad 4 - 4877 4888 4889 4878 -quad 4 - 4878 4889 4890 4879 -quad 4 - 4879 4890 4891 4880 -quad 4 - 4880 4891 4892 4881 -quad 4 - 4881 4892 4893 4882 -quad 4 - 4882 4893 4894 4883 -quad 4 - 4883 4894 4895 4884 -quad 4 - 4885 4896 4897 4886 -quad 4 - 4886 4897 4898 4887 -quad 4 - 4887 4898 4899 4888 -quad 4 - 4888 4899 4900 4889 -quad 4 - 4889 4900 4901 4890 -quad 4 - 4890 4901 4902 4891 -quad 4 - 4891 4902 4903 4892 -quad 4 - 4892 4903 4904 4893 -quad 4 - 4893 4904 4905 4894 -quad 4 - 4894 4905 4906 4895 -quad 4 - 4896 4907 4908 4897 -quad 4 - 4897 4908 4909 4898 -quad 4 - 4898 4909 4910 4899 -quad 4 - 4899 4910 4911 4900 -quad 4 - 4900 4911 4912 4901 -quad 4 - 4901 4912 4913 4902 -quad 4 - 4902 4913 4914 4903 -quad 4 - 4903 4914 4915 4904 -quad 4 - 4904 4915 4916 4905 -quad 4 - 4905 4916 4917 4906 -quad 4 - 4907 4918 4919 4908 -quad 4 - 4908 4919 4920 4909 -quad 4 - 4909 4920 4921 4910 -quad 4 - 4910 4921 4922 4911 -quad 4 - 4911 4922 4923 4912 -quad 4 - 4912 4923 4924 4913 -quad 4 - 4913 4924 4925 4914 -quad 4 - 4914 4925 4926 4915 -quad 4 - 4915 4926 4927 4916 -quad 4 - 4916 4927 4928 4917 -quad 4 - 4918 4929 4930 4919 -quad 4 - 4919 4930 4931 4920 -quad 4 - 4920 4931 4932 4921 -quad 4 - 4921 4932 4933 4922 -quad 4 - 4922 4933 4934 4923 -quad 4 - 4923 4934 4935 4924 -quad 4 - 4924 4935 4936 4925 -quad 4 - 4925 4936 4937 4926 -quad 4 - 4926 4937 4938 4927 -quad 4 - 4927 4938 4939 4928 -quad 4 - 4929 4940 4941 4930 -quad 4 - 4930 4941 4942 4931 -quad 4 - 4931 4942 4943 4932 -quad 4 - 4932 4943 4944 4933 -quad 4 - 4933 4944 4945 4934 -quad 4 - 4934 4945 4946 4935 -quad 4 - 4935 4946 4947 4936 -quad 4 - 4936 4947 4948 4937 -quad 4 - 4937 4948 4949 4938 -quad 4 - 4938 4949 4950 4939 -quad 4 - 4940 4951 4952 4941 -quad 4 - 4941 4952 4953 4942 -quad 4 - 4942 4953 4954 4943 -quad 4 - 4943 4954 4955 4944 -quad 4 - 4944 4955 4956 4945 -quad 4 - 4945 4956 4957 4946 -quad 4 - 4946 4957 4958 4947 -quad 4 - 4947 4958 4959 4948 -quad 4 - 4948 4959 4960 4949 -quad 4 - 4949 4960 4961 4950 -quad 4 - 4962 4973 4974 4963 -quad 4 - 4963 4974 4975 4964 -quad 4 - 4964 4975 4976 4965 -quad 4 - 4965 4976 4977 4966 -quad 4 - 4966 4977 4978 4967 -quad 4 - 4967 4978 4979 4968 -quad 4 - 4968 4979 4980 4969 -quad 4 - 4969 4980 4981 4970 -quad 4 - 4970 4981 4982 4971 -quad 4 - 4971 4982 4983 4972 -quad 4 - 4973 4984 4985 4974 -quad 4 - 4974 4985 4986 4975 -quad 4 - 4975 4986 4987 4976 -quad 4 - 4976 4987 4988 4977 -quad 4 - 4977 4988 4989 4978 -quad 4 - 4978 4989 4990 4979 -quad 4 - 4979 4990 4991 4980 -quad 4 - 4980 4991 4992 4981 -quad 4 - 4981 4992 4993 4982 -quad 4 - 4982 4993 4994 4983 -quad 4 - 4984 4995 4996 4985 -quad 4 - 4985 4996 4997 4986 -quad 4 - 4986 4997 4998 4987 -quad 4 - 4987 4998 4999 4988 -quad 4 - 4988 4999 5000 4989 -quad 4 - 4989 5000 5001 4990 -quad 4 - 4990 5001 5002 4991 -quad 4 - 4991 5002 5003 4992 -quad 4 - 4992 5003 5004 4993 -quad 4 - 4993 5004 5005 4994 -quad 4 - 4995 5006 5007 4996 -quad 4 - 4996 5007 5008 4997 -quad 4 - 4997 5008 5009 4998 -quad 4 - 4998 5009 5010 4999 -quad 4 - 4999 5010 5011 5000 -quad 4 - 5000 5011 5012 5001 -quad 4 - 5001 5012 5013 5002 -quad 4 - 5002 5013 5014 5003 -quad 4 - 5003 5014 5015 5004 -quad 4 - 5004 5015 5016 5005 -quad 4 - 5006 5017 5018 5007 -quad 4 - 5007 5018 5019 5008 -quad 4 - 5008 5019 5020 5009 -quad 4 - 5009 5020 5021 5010 -quad 4 - 5010 5021 5022 5011 -quad 4 - 5011 5022 5023 5012 -quad 4 - 5012 5023 5024 5013 -quad 4 - 5013 5024 5025 5014 -quad 4 - 5014 5025 5026 5015 -quad 4 - 5015 5026 5027 5016 -quad 4 - 5017 5028 5029 5018 -quad 4 - 5018 5029 5030 5019 -quad 4 - 5019 5030 5031 5020 -quad 4 - 5020 5031 5032 5021 -quad 4 - 5021 5032 5033 5022 -quad 4 - 5022 5033 5034 5023 -quad 4 - 5023 5034 5035 5024 -quad 4 - 5024 5035 5036 5025 -quad 4 - 5025 5036 5037 5026 -quad 4 - 5026 5037 5038 5027 -quad 4 - 5028 5039 5040 5029 -quad 4 - 5029 5040 5041 5030 -quad 4 - 5030 5041 5042 5031 -quad 4 - 5031 5042 5043 5032 -quad 4 - 5032 5043 5044 5033 -quad 4 - 5033 5044 5045 5034 -quad 4 - 5034 5045 5046 5035 -quad 4 - 5035 5046 5047 5036 -quad 4 - 5036 5047 5048 5037 -quad 4 - 5037 5048 5049 5038 -quad 4 - 5039 5050 5051 5040 -quad 4 - 5040 5051 5052 5041 -quad 4 - 5041 5052 5053 5042 -quad 4 - 5042 5053 5054 5043 -quad 4 - 5043 5054 5055 5044 -quad 4 - 5044 5055 5056 5045 -quad 4 - 5045 5056 5057 5046 -quad 4 - 5046 5057 5058 5047 -quad 4 - 5047 5058 5059 5048 -quad 4 - 5048 5059 5060 5049 -quad 4 - 5050 5061 5062 5051 -quad 4 - 5051 5062 5063 5052 -quad 4 - 5052 5063 5064 5053 -quad 4 - 5053 5064 5065 5054 -quad 4 - 5054 5065 5066 5055 -quad 4 - 5055 5066 5067 5056 -quad 4 - 5056 5067 5068 5057 -quad 4 - 5057 5068 5069 5058 -quad 4 - 5058 5069 5070 5059 -quad 4 - 5059 5070 5071 5060 -quad 4 - 5061 5072 5073 5062 -quad 4 - 5062 5073 5074 5063 -quad 4 - 5063 5074 5075 5064 -quad 4 - 5064 5075 5076 5065 -quad 4 - 5065 5076 5077 5066 -quad 4 - 5066 5077 5078 5067 -quad 4 - 5067 5078 5079 5068 -quad 4 - 5068 5079 5080 5069 -quad 4 - 5069 5080 5081 5070 -quad 4 - 5070 5081 5082 5071 - -variable -solution 1 -0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 0.1 0.38 0.66 0.94 1.22 1.5 1.78 2.06 2.34 2.62 2.9 0.2 0.46 0.72 0.98 1.24 1.5 1.76 2.02 2.28 2.54 2.8 0.3 0.54 0.78 1.02 1.26 1.5 1.74 1.98 2.22 2.46 2.7 0.4 0.62 0.84 1.06 1.28 1.5 1.72 1.94 2.16 2.38 2.6 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 0.6 0.78 0.96 1.14 1.32 1.5 1.68 1.86 2.04 2.22 2.4 0.7 0.86 1.02 1.18 1.34 1.5 1.66 1.82 1.98 2.14 2.3 0.8 0.94 1.08 1.22 1.36 1.5 1.64 1.78 1.92 2.06 2.2 0.9 1.02 1.14 1.26 1.38 1.5 1.62 1.74 1.86 1.98 2.1 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6 3 3.4 3.8 4.2 4.6 5 5.4 5.8 6.2 6.6 7 2.9 3.3 3.7 4.1 4.5 4.9 5.3 5.7 6.1 6.5 6.9 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 6.8 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 5.9 6.3 6.7 2.6 3 3.4 3.8 4.2 4.6 5 5.4 5.8 6.2 6.6 2.5 2.9 3.3 3.7 4.1 4.5 4.9 5.3 5.7 6.1 6.5 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 2.3 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 5.9 6.3 2.2 2.6 3 3.4 3.8 4.2 4.6 5 5.4 5.8 6.2 2.1 2.5 2.9 3.3 3.7 4.1 4.5 4.9 5.3 5.7 6.1 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9 7.2 7.32 7.44 7.56 7.68 7.8 7.92 8.04 8.16 8.28 8.4 6.4 6.54 6.68 6.82 6.96 7.1 7.24 7.38 7.52 7.66 7.8 5.6 5.76 5.92 6.08 6.24 6.4 6.56 6.72 6.88 7.04 7.2 4.8 4.98 5.16 5.34 5.52 5.7 5.88 6.06 6.24 6.42 6.6 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 3.2 3.42 3.64 3.86 4.08 4.3 4.52 4.74 4.96 5.18 5.4 2.4 2.64 2.88 3.12 3.36 3.6 3.84 4.08 4.32 4.56 4.8 1.6 1.86 2.12 2.38 2.64 2.9 3.16 3.42 3.68 3.94 4.2 0.8 1.08 1.36 1.64 1.92 2.2 2.48 2.76 3.04 3.32 3.6 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 10.8 11 8.4 8.62 8.84 9.06 9.28 9.5 9.72 9.94 10.16 10.38 10.6 7.8 8.04 8.28 8.52 8.76 9 9.24 9.48 9.72 9.96 10.2 7.2 7.46 7.72 7.98 8.24 8.5 8.76 9.02 9.28 9.54 9.8 6.6 6.88 7.16 7.44 7.72 8 8.28 8.56 8.84 9.12 9.4 6 6.3 6.6 6.9 7.2 7.5 7.8 8.1 8.4 8.7 9 5.4 5.72 6.04 6.36 6.68 7 7.32 7.64 7.96 8.28 8.6 4.8 5.14 5.48 5.82 6.16 6.5 6.84 7.18 7.52 7.86 8.2 4.2 4.56 4.92 5.28 5.64 6 6.36 6.72 7.08 7.44 7.8 3.6 3.98 4.36 4.74 5.12 5.5 5.88 6.26 6.64 7.02 7.4 3 3.4 3.8 4.2 4.6 5 5.4 5.8 6.2 6.6 7 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9 9.1 9.2 8.4 8.5 8.6 8.7 8.8 8.9 9 9.1 9.2 9.3 9.4 8.6 8.7 8.8 8.9 9 9.1 9.2 9.3 9.4 9.5 9.6 8.8 8.9 9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2 9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 10.4 9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 10.4 10.5 10.6 9.8 9.9 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11 14 14.3 14.6 14.9 15.2 15.5 15.8 16.1 16.4 16.7 17 14.1 14.38 14.66 14.94 15.22 15.5 15.78 16.06 16.34 16.62 16.9 14.2 14.46 14.72 14.98 15.24 15.5 15.76 16.02 16.28 16.54 16.8 14.3 14.54 14.78 15.02 15.26 15.5 15.74 15.98 16.22 16.46 16.7 14.4 14.62 14.84 15.06 15.28 15.5 15.72 15.94 16.16 16.38 16.6 14.5 14.7 14.9 15.1 15.3 15.5 15.7 15.9 16.1 16.3 16.5 14.6 14.78 14.96 15.14 15.32 15.5 15.68 15.86 16.04 16.22 16.4 14.7 14.86 15.02 15.18 15.34 15.5 15.66 15.82 15.98 16.14 16.3 14.8 14.94 15.08 15.22 15.36 15.5 15.64 15.78 15.92 16.06 16.2 14.9 15.02 15.14 15.26 15.38 15.5 15.62 15.74 15.86 15.98 16.1 15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 12 12.2 12.4 12.6 12.8 13 13.2 13.4 13.6 13.8 14 12.1 12.3 12.5 12.7 12.9 13.1 13.3 13.5 13.7 13.9 14.1 12.2 12.4 12.6 12.8 13 13.2 13.4 13.6 13.8 14 14.2 12.3 12.5 12.7 12.9 13.1 13.3 13.5 13.7 13.9 14.1 14.3 12.4 12.6 12.8 13 13.2 13.4 13.6 13.8 14 14.2 14.4 12.5 12.7 12.9 13.1 13.3 13.5 13.7 13.9 14.1 14.3 14.5 12.6 12.8 13 13.2 13.4 13.6 13.8 14 14.2 14.4 14.6 12.7 12.9 13.1 13.3 13.5 13.7 13.9 14.1 14.3 14.5 14.7 12.8 13 13.2 13.4 13.6 13.8 14 14.2 14.4 14.6 14.8 12.9 13.1 13.3 13.5 13.7 13.9 14.1 14.3 14.5 14.7 14.9 13 13.2 13.4 13.6 13.8 14 14.2 14.4 14.6 14.8 15 12 11.8 11.6 11.4 11.2 11 10.8 10.6 10.4 10.2 10 12.2 12.05 11.9 11.75 11.6 11.45 11.3 11.15 11 10.85 10.7 12.4 12.3 12.2 12.1 12 11.9 11.8 11.7 11.6 11.5 11.4 12.6 12.55 12.5 12.45 12.4 12.35 12.3 12.25 12.2 12.15 12.1 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 13 13.05 13.1 13.15 13.2 13.25 13.3 13.35 13.4 13.45 13.5 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14 14.1 14.2 13.4 13.55 13.7 13.85 14 14.15 14.3 14.45 14.6 14.75 14.9 13.6 13.8 14 14.2 14.4 14.6 14.8 15 15.2 15.4 15.6 13.8 14.05 14.3 14.55 14.8 15.05 15.3 15.55 15.8 16.05 16.3 14 14.3 14.6 14.9 15.2 15.5 15.8 16.1 16.4 16.7 17 15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 15.4 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3 16.4 15.8 15.9 16 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17 17.1 17.2 16.6 16.7 16.8 16.9 17 17.1 17.2 17.3 17.4 17.5 17.6 17 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 18 17.4 17.5 17.6 17.7 17.8 17.9 18 18.1 18.2 18.3 18.4 17.8 17.9 18 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 19 19.1 19.2 18.6 18.7 18.8 18.9 19 19.1 19.2 19.3 19.4 19.5 19.6 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20 13 13.2 13.4 13.6 13.8 14 14.2 14.4 14.6 14.8 15 13.5 13.69 13.88 14.07 14.26 14.45 14.64 14.83 15.02 15.21 15.4 14 14.18 14.36 14.54 14.72 14.9 15.08 15.26 15.44 15.62 15.8 14.5 14.67 14.84 15.01 15.18 15.35 15.52 15.69 15.86 16.03 16.2 15 15.16 15.32 15.48 15.64 15.8 15.96 16.12 16.28 16.44 16.6 15.5 15.65 15.8 15.95 16.1 16.25 16.4 16.55 16.7 16.85 17 16 16.14 16.28 16.42 16.56 16.7 16.84 16.98 17.12 17.26 17.4 16.5 16.63 16.76 16.89 17.02 17.15 17.28 17.41 17.54 17.67 17.8 17 17.12 17.24 17.36 17.48 17.6 17.72 17.84 17.96 18.08 18.2 17.5 17.61 17.72 17.83 17.94 18.05 18.16 18.27 18.38 18.49 18.6 18 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 19 18 16.7 15.4 14.1 12.8 11.5 10.2 8.9 7.6 6.3 5 18.1 16.94 15.78 14.62 13.46 12.3 11.14 9.98 8.82 7.66 6.5 18.2 17.18 16.16 15.14 14.12 13.1 12.08 11.06 10.04 9.02 8 18.3 17.42 16.54 15.66 14.78 13.9 13.02 12.14 11.26 10.38 9.5 18.4 17.66 16.92 16.18 15.44 14.7 13.96 13.22 12.48 11.74 11 18.5 17.9 17.3 16.7 16.1 15.5 14.9 14.3 13.7 13.1 12.5 18.6 18.14 17.68 17.22 16.76 16.3 15.84 15.38 14.92 14.46 14 18.7 18.38 18.06 17.74 17.42 17.1 16.78 16.46 16.14 15.82 15.5 18.8 18.62 18.44 18.26 18.08 17.9 17.72 17.54 17.36 17.18 17 18.9 18.86 18.82 18.78 18.74 18.7 18.66 18.62 18.58 18.54 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20 16 16.6 17.2 17.8 18.4 19 19.6 20.2 20.8 21.4 22 16.4 16.95 17.5 18.05 18.6 19.15 19.7 20.25 20.8 21.35 21.9 16.8 17.3 17.8 18.3 18.8 19.3 19.8 20.3 20.8 21.3 21.8 17.2 17.65 18.1 18.55 19 19.45 19.9 20.35 20.8 21.25 21.7 17.6 18 18.4 18.8 19.2 19.6 20 20.4 20.8 21.2 21.6 18 18.35 18.7 19.05 19.4 19.75 20.1 20.45 20.8 21.15 21.5 18.4 18.7 19 19.3 19.6 19.9 20.2 20.5 20.8 21.1 21.4 18.8 19.05 19.3 19.55 19.8 20.05 20.3 20.55 20.8 21.05 21.3 19.2 19.4 19.6 19.8 20 20.2 20.4 20.6 20.8 21 21.2 19.6 19.75 19.9 20.05 20.2 20.35 20.5 20.65 20.8 20.95 21.1 20 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 21 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3 7.4 7.5 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 10.4 10.5 11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12 12.5 12.6 12.7 12.8 12.9 13 13.1 13.2 13.3 13.4 13.5 14 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 15 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3 16.4 16.5 17 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 18 18.5 18.6 18.7 18.8 18.9 19 19.1 19.2 19.3 19.4 19.5 20 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 21 7 8.5 10 11.5 13 14.5 16 17.5 19 20.5 22 6.9 8.4 9.9 11.4 12.9 14.4 15.9 17.4 18.9 20.4 21.9 6.8 8.3 9.8 11.3 12.8 14.3 15.8 17.3 18.8 20.3 21.8 6.7 8.2 9.7 11.2 12.7 14.2 15.7 17.2 18.7 20.2 21.7 6.6 8.1 9.6 11.1 12.6 14.1 15.6 17.1 18.6 20.1 21.6 6.5 8 9.5 11 12.5 14 15.5 17 18.5 20 21.5 6.4 7.9 9.4 10.9 12.4 13.9 15.4 16.9 18.4 19.9 21.4 6.3 7.8 9.3 10.8 12.3 13.8 15.3 16.8 18.3 19.8 21.3 6.2 7.7 9.2 10.7 12.2 13.7 15.2 16.7 18.2 19.7 21.2 6.1 7.6 9.1 10.6 12.1 13.6 15.1 16.6 18.1 19.6 21.1 6 7.5 9 10.5 12 13.5 15 16.5 18 19.5 21 17 17.6 18.2 18.8 19.4 20 20.6 21.2 21.8 22.4 23 16.9 17.5 18.1 18.7 19.3 19.9 20.5 21.1 21.7 22.3 22.9 16.8 17.4 18 18.6 19.2 19.8 20.4 21 21.6 22.2 22.8 16.7 17.3 17.9 18.5 19.1 19.7 20.3 20.9 21.5 22.1 22.7 16.6 17.2 17.8 18.4 19 19.6 20.2 20.8 21.4 22 22.6 16.5 17.1 17.7 18.3 18.9 19.5 20.1 20.7 21.3 21.9 22.5 16.4 17 17.6 18.2 18.8 19.4 20 20.6 21.2 21.8 22.4 16.3 16.9 17.5 18.1 18.7 19.3 19.9 20.5 21.1 21.7 22.3 16.2 16.8 17.4 18 18.6 19.2 19.8 20.4 21 21.6 22.2 16.1 16.7 17.3 17.9 18.5 19.1 19.7 20.3 20.9 21.5 22.1 16 16.6 17.2 17.8 18.4 19 19.6 20.2 20.8 21.4 22 11 12.2 13.4 14.6 15.8 17 18.2 19.4 20.6 21.8 23 10.6 11.83 13.06 14.29 15.52 16.75 17.98 19.21 20.44 21.67 22.9 10.2 11.46 12.72 13.98 15.24 16.5 17.76 19.02 20.28 21.54 22.8 9.8 11.09 12.38 13.67 14.96 16.25 17.54 18.83 20.12 21.41 22.7 9.4 10.72 12.04 13.36 14.68 16 17.32 18.64 19.96 21.28 22.6 9 10.35 11.7 13.05 14.4 15.75 17.1 18.45 19.8 21.15 22.5 8.6 9.98 11.36 12.74 14.12 15.5 16.88 18.26 19.64 21.02 22.4 8.2 9.61 11.02 12.43 13.84 15.25 16.66 18.07 19.48 20.89 22.3 7.8 9.24 10.68 12.12 13.56 15 16.44 17.88 19.32 20.76 22.2 7.4 8.87 10.34 11.81 13.28 14.75 16.22 17.69 19.16 20.63 22.1 7 8.5 10 11.5 13 14.5 16 17.5 19 20.5 22 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11 10.7 10.85 11 11.15 11.3 11.45 11.6 11.75 11.9 12.05 12.2 11.4 11.6 11.8 12 12.2 12.4 12.6 12.8 13 13.2 13.4 12.1 12.35 12.6 12.85 13.1 13.35 13.6 13.85 14.1 14.35 14.6 12.8 13.1 13.4 13.7 14 14.3 14.6 14.9 15.2 15.5 15.8 13.5 13.85 14.2 14.55 14.9 15.25 15.6 15.95 16.3 16.65 17 14.2 14.6 15 15.4 15.8 16.2 16.6 17 17.4 17.8 18.2 14.9 15.35 15.8 16.25 16.7 17.15 17.6 18.05 18.5 18.95 19.4 15.6 16.1 16.6 17.1 17.6 18.1 18.6 19.1 19.6 20.1 20.6 16.3 16.85 17.4 17.95 18.5 19.05 19.6 20.15 20.7 21.25 21.8 17 17.6 18.2 18.8 19.4 20 20.6 21.2 21.8 22.4 23 24 24.3 24.6 24.9 25.2 25.5 25.8 26.1 26.4 26.7 27 24.1 24.38 24.66 24.94 25.22 25.5 25.78 26.06 26.34 26.62 26.9 24.2 24.46 24.72 24.98 25.24 25.5 25.76 26.02 26.28 26.54 26.8 24.3 24.54 24.78 25.02 25.26 25.5 25.74 25.98 26.22 26.46 26.7 24.4 24.62 24.84 25.06 25.28 25.5 25.72 25.94 26.16 26.38 26.6 24.5 24.7 24.9 25.1 25.3 25.5 25.7 25.9 26.1 26.3 26.5 24.6 24.78 24.96 25.14 25.32 25.5 25.68 25.86 26.04 26.22 26.4 24.7 24.86 25.02 25.18 25.34 25.5 25.66 25.82 25.98 26.14 26.3 24.8 24.94 25.08 25.22 25.36 25.5 25.64 25.78 25.92 26.06 26.2 24.9 25.02 25.14 25.26 25.38 25.5 25.62 25.74 25.86 25.98 26.1 25 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 26 24 24.4 24.8 25.2 25.6 26 26.4 26.8 27.2 27.6 28 24.1 24.5 24.9 25.3 25.7 26.1 26.5 26.9 27.3 27.7 28.1 24.2 24.6 25 25.4 25.8 26.2 26.6 27 27.4 27.8 28.2 24.3 24.7 25.1 25.5 25.9 26.3 26.7 27.1 27.5 27.9 28.3 24.4 24.8 25.2 25.6 26 26.4 26.8 27.2 27.6 28 28.4 24.5 24.9 25.3 25.7 26.1 26.5 26.9 27.3 27.7 28.1 28.5 24.6 25 25.4 25.8 26.2 26.6 27 27.4 27.8 28.2 28.6 24.7 25.1 25.5 25.9 26.3 26.7 27.1 27.5 27.9 28.3 28.7 24.8 25.2 25.6 26 26.4 26.8 27.2 27.6 28 28.4 28.8 24.9 25.3 25.7 26.1 26.5 26.9 27.3 27.7 28.1 28.5 28.9 25 25.4 25.8 26.2 26.6 27 27.4 27.8 28.2 28.6 29 24 24.3 24.6 24.9 25.2 25.5 25.8 26.1 26.4 26.7 27 24.4 24.7 25 25.3 25.6 25.9 26.2 26.5 26.8 27.1 27.4 24.8 25.1 25.4 25.7 26 26.3 26.6 26.9 27.2 27.5 27.8 25.2 25.5 25.8 26.1 26.4 26.7 27 27.3 27.6 27.9 28.2 25.6 25.9 26.2 26.5 26.8 27.1 27.4 27.7 28 28.3 28.6 26 26.3 26.6 26.9 27.2 27.5 27.8 28.1 28.4 28.7 29 26.4 26.7 27 27.3 27.6 27.9 28.2 28.5 28.8 29.1 29.4 26.8 27.1 27.4 27.7 28 28.3 28.6 28.9 29.2 29.5 29.8 27.2 27.5 27.8 28.1 28.4 28.7 29 29.3 29.6 29.9 30.2 27.6 27.9 28.2 28.5 28.8 29.1 29.4 29.7 30 30.3 30.6 28 28.3 28.6 28.9 29.2 29.5 29.8 30.1 30.4 30.7 31 25 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 26 25.7 25.8 25.9 26 26.1 26.2 26.3 26.4 26.5 26.6 26.7 26.4 26.5 26.6 26.7 26.8 26.9 27 27.1 27.2 27.3 27.4 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 27.9 28 28.1 27.8 27.9 28 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.5 28.6 28.7 28.8 28.9 29 29.1 29.2 29.3 29.4 29.5 29.2 29.3 29.4 29.5 29.6 29.7 29.8 29.9 30 30.1 30.2 29.9 30 30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8 30.9 30.6 30.7 30.8 30.9 31 31.1 31.2 31.3 31.4 31.5 31.6 31.3 31.4 31.5 31.6 31.7 31.8 31.9 32 32.1 32.2 32.3 32 32.1 32.2 32.3 32.4 32.5 32.6 32.7 32.8 32.9 33 25 25.4 25.8 26.2 26.6 27 27.4 27.8 28.2 28.6 29 25.7 26.08 26.46 26.84 27.22 27.6 27.98 28.36 28.74 29.12 29.5 26.4 26.76 27.12 27.48 27.84 28.2 28.56 28.92 29.28 29.64 30 27.1 27.44 27.78 28.12 28.46 28.8 29.14 29.48 29.82 30.16 30.5 27.8 28.12 28.44 28.76 29.08 29.4 29.72 30.04 30.36 30.68 31 28.5 28.8 29.1 29.4 29.7 30 30.3 30.6 30.9 31.2 31.5 29.2 29.48 29.76 30.04 30.32 30.6 30.88 31.16 31.44 31.72 32 29.9 30.16 30.42 30.68 30.94 31.2 31.46 31.72 31.98 32.24 32.5 30.6 30.84 31.08 31.32 31.56 31.8 32.04 32.28 32.52 32.76 33 31.3 31.52 31.74 31.96 32.18 32.4 32.62 32.84 33.06 33.28 33.5 32 32.2 32.4 32.6 32.8 33 33.2 33.4 33.6 33.8 34 26 27 28 29 30 31 32 33 34 35 36 26.7 27.27 27.84 28.41 28.98 29.55 30.12 30.69 31.26 31.83 32.4 27.4 27.54 27.68 27.82 27.96 28.1 28.24 28.38 28.52 28.66 28.8 28.1 27.81 27.52 27.23 26.94 26.65 26.36 26.07 25.78 25.49 25.2 28.8 28.08 27.36 26.64 25.92 25.2 24.48 23.76 23.04 22.32 21.6 29.5 28.35 27.2 26.05 24.9 23.75 22.6 21.45 20.3 19.15 18 30.2 28.62 27.04 25.46 23.88 22.3 20.72 19.14 17.56 15.98 14.4 30.9 28.89 26.88 24.87 22.86 20.85 18.84 16.83 14.82 12.81 10.8 31.6 29.16 26.72 24.28 21.84 19.4 16.96 14.52 12.08 9.64 7.2 32.3 29.43 26.56 23.69 20.82 17.95 15.08 12.21 9.34 6.47 3.6 33 29.7 26.4 23.1 19.8 16.5 13.2 9.9 6.6 3.3 0 27 25.1 23.2 21.3 19.4 17.5 15.6 13.7 11.8 9.9 8 26.9 25.29 23.68 22.07 20.46 18.85 17.24 15.63 14.02 12.41 10.8 26.8 25.48 24.16 22.84 21.52 20.2 18.88 17.56 16.24 14.92 13.6 26.7 25.67 24.64 23.61 22.58 21.55 20.52 19.49 18.46 17.43 16.4 26.6 25.86 25.12 24.38 23.64 22.9 22.16 21.42 20.68 19.94 19.2 26.5 26.05 25.6 25.15 24.7 24.25 23.8 23.35 22.9 22.45 22 26.4 26.24 26.08 25.92 25.76 25.6 25.44 25.28 25.12 24.96 24.8 26.3 26.43 26.56 26.69 26.82 26.95 27.08 27.21 27.34 27.47 27.6 26.2 26.62 27.04 27.46 27.88 28.3 28.72 29.14 29.56 29.98 30.4 26.1 26.81 27.52 28.23 28.94 29.65 30.36 31.07 31.78 32.49 33.2 26 27 28 29 30 31 32 33 34 35 36 27 25.1 23.2 21.3 19.4 17.5 15.6 13.7 11.8 9.9 8 27.4 25.77 24.14 22.51 20.88 19.25 17.62 15.99 14.36 12.73 11.1 27.8 26.44 25.08 23.72 22.36 21 19.64 18.28 16.92 15.56 14.2 28.2 27.11 26.02 24.93 23.84 22.75 21.66 20.57 19.48 18.39 17.3 28.6 27.78 26.96 26.14 25.32 24.5 23.68 22.86 22.04 21.22 20.4 29 28.45 27.9 27.35 26.8 26.25 25.7 25.15 24.6 24.05 23.5 29.4 29.12 28.84 28.56 28.28 28 27.72 27.44 27.16 26.88 26.6 29.8 29.79 29.78 29.77 29.76 29.75 29.74 29.73 29.72 29.71 29.7 30.2 30.46 30.72 30.98 31.24 31.5 31.76 32.02 32.28 32.54 32.8 30.6 31.13 31.66 32.19 32.72 33.25 33.78 34.31 34.84 35.37 35.9 31 31.8 32.6 33.4 34.2 35 35.8 36.6 37.4 38.2 39 28 26.4 24.8 23.2 21.6 20 18.4 16.8 15.2 13.6 12 28.1 26.77 25.44 24.11 22.78 21.45 20.12 18.79 17.46 16.13 14.8 28.2 27.14 26.08 25.02 23.96 22.9 21.84 20.78 19.72 18.66 17.6 28.3 27.51 26.72 25.93 25.14 24.35 23.56 22.77 21.98 21.19 20.4 28.4 27.88 27.36 26.84 26.32 25.8 25.28 24.76 24.24 23.72 23.2 28.5 28.25 28 27.75 27.5 27.25 27 26.75 26.5 26.25 26 28.6 28.62 28.64 28.66 28.68 28.7 28.72 28.74 28.76 28.78 28.8 28.7 28.99 29.28 29.57 29.86 30.15 30.44 30.73 31.02 31.31 31.6 28.8 29.36 29.92 30.48 31.04 31.6 32.16 32.72 33.28 33.84 34.4 28.9 29.73 30.56 31.39 32.22 33.05 33.88 34.71 35.54 36.37 37.2 29 30.1 31.2 32.3 33.4 34.5 35.6 36.7 37.8 38.9 40 28 28.3 28.6 28.9 29.2 29.5 29.8 30.1 30.4 30.7 31 26.4 26.97 27.54 28.11 28.68 29.25 29.82 30.39 30.96 31.53 32.1 24.8 25.64 26.48 27.32 28.16 29 29.84 30.68 31.52 32.36 33.2 23.2 24.31 25.42 26.53 27.64 28.75 29.86 30.97 32.08 33.19 34.3 21.6 22.98 24.36 25.74 27.12 28.5 29.88 31.26 32.64 34.02 35.4 20 21.65 23.3 24.95 26.6 28.25 29.9 31.55 33.2 34.85 36.5 18.4 20.32 22.24 24.16 26.08 28 29.92 31.84 33.76 35.68 37.6 16.8 18.99 21.18 23.37 25.56 27.75 29.94 32.13 34.32 36.51 38.7 15.2 17.66 20.12 22.58 25.04 27.5 29.96 32.42 34.88 37.34 39.8 13.6 16.33 19.06 21.79 24.52 27.25 29.98 32.71 35.44 38.17 40.9 12 15 18 21 24 27 30 33 36 39 42 29 30.1 31.2 32.3 33.4 34.5 35.6 36.7 37.8 38.9 40 29.5 30.28 31.06 31.84 32.62 33.4 34.18 34.96 35.74 36.52 37.3 30 30.46 30.92 31.38 31.84 32.3 32.76 33.22 33.68 34.14 34.6 30.5 30.64 30.78 30.92 31.06 31.2 31.34 31.48 31.62 31.76 31.9 31 30.82 30.64 30.46 30.28 30.1 29.92 29.74 29.56 29.38 29.2 31.5 31 30.5 30 29.5 29 28.5 28 27.5 27 26.5 32 31.18 30.36 29.54 28.72 27.9 27.08 26.26 25.44 24.62 23.8 32.5 31.36 30.22 29.08 27.94 26.8 25.66 24.52 23.38 22.24 21.1 33 31.54 30.08 28.62 27.16 25.7 24.24 22.78 21.32 19.86 18.4 33.5 31.72 29.94 28.16 26.38 24.6 22.82 21.04 19.26 17.48 15.7 34 31.9 29.8 27.7 25.6 23.5 21.4 19.3 17.2 15.1 13 31 31.8 32.6 33.4 34.2 35 35.8 36.6 37.4 38.2 39 32.1 32.5 32.9 33.3 33.7 34.1 34.5 34.9 35.3 35.7 36.1 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 34.3 33.9 33.5 33.1 32.7 32.3 31.9 31.5 31.1 30.7 30.3 35.4 34.6 33.8 33 32.2 31.4 30.6 29.8 29 28.2 27.4 36.5 35.3 34.1 32.9 31.7 30.5 29.3 28.1 26.9 25.7 24.5 37.6 36 34.4 32.8 31.2 29.6 28 26.4 24.8 23.2 21.6 38.7 36.7 34.7 32.7 30.7 28.7 26.7 24.7 22.7 20.7 18.7 39.8 37.4 35 32.6 30.2 27.8 25.4 23 20.6 18.2 15.8 40.9 38.1 35.3 32.5 29.7 26.9 24.1 21.3 18.5 15.7 12.9 42 38.8 35.6 32.4 29.2 26 22.8 19.6 16.4 13.2 10 32 32.1 32.2 32.3 32.4 32.5 32.6 32.7 32.8 32.9 33 33.3 33.4 33.5 33.6 33.7 33.8 33.9 34 34.1 34.2 34.3 34.6 34.7 34.8 34.9 35 35.1 35.2 35.3 35.4 35.5 35.6 35.9 36 36.1 36.2 36.3 36.4 36.5 36.6 36.7 36.8 36.9 37.2 37.3 37.4 37.5 37.6 37.7 37.8 37.9 38 38.1 38.2 38.5 38.6 38.7 38.8 38.9 39 39.1 39.2 39.3 39.4 39.5 39.8 39.9 40 40.1 40.2 40.3 40.4 40.5 40.6 40.7 40.8 41.1 41.2 41.3 41.4 41.5 41.6 41.7 41.8 41.9 42 42.1 42.4 42.5 42.6 42.7 42.8 42.9 43 43.1 43.2 43.3 43.4 43.7 43.8 43.9 44 44.1 44.2 44.3 44.4 44.5 44.6 44.7 45 45.1 45.2 45.3 45.4 45.5 45.6 45.7 45.8 45.9 46 32 32.2 32.4 32.6 32.8 33 33.2 33.4 33.6 33.8 34 33.3 33.5 33.7 33.9 34.1 34.3 34.5 34.7 34.9 35.1 35.3 34.6 34.8 35 35.2 35.4 35.6 35.8 36 36.2 36.4 36.6 35.9 36.1 36.3 36.5 36.7 36.9 37.1 37.3 37.5 37.7 37.9 37.2 37.4 37.6 37.8 38 38.2 38.4 38.6 38.8 39 39.2 38.5 38.7 38.9 39.1 39.3 39.5 39.7 39.9 40.1 40.3 40.5 39.8 40 40.2 40.4 40.6 40.8 41 41.2 41.4 41.6 41.8 41.1 41.3 41.5 41.7 41.9 42.1 42.3 42.5 42.7 42.9 43.1 42.4 42.6 42.8 43 43.2 43.4 43.6 43.8 44 44.2 44.4 43.7 43.9 44.1 44.3 44.5 44.7 44.9 45.1 45.3 45.5 45.7 45 45.2 45.4 45.6 45.8 46 46.2 46.4 46.6 46.8 47 45 45.1 45.2 45.3 45.4 45.5 45.6 45.7 45.8 45.9 46 45.4 45.5 45.6 45.7 45.8 45.9 46 46.1 46.2 46.3 46.4 45.8 45.9 46 46.1 46.2 46.3 46.4 46.5 46.6 46.7 46.8 46.2 46.3 46.4 46.5 46.6 46.7 46.8 46.9 47 47.1 47.2 46.6 46.7 46.8 46.9 47 47.1 47.2 47.3 47.4 47.5 47.6 47 47.1 47.2 47.3 47.4 47.5 47.6 47.7 47.8 47.9 48 47.4 47.5 47.6 47.7 47.8 47.9 48 48.1 48.2 48.3 48.4 47.8 47.9 48 48.1 48.2 48.3 48.4 48.5 48.6 48.7 48.8 48.2 48.3 48.4 48.5 48.6 48.7 48.8 48.9 49 49.1 49.2 48.6 48.7 48.8 48.9 49 49.1 49.2 49.3 49.4 49.5 49.6 49 49.1 49.2 49.3 49.4 49.5 49.6 49.7 49.8 49.9 50 45 45.2 45.4 45.6 45.8 46 46.2 46.4 46.6 46.8 47 45.4 45.6 45.8 46 46.2 46.4 46.6 46.8 47 47.2 47.4 45.8 46 46.2 46.4 46.6 46.8 47 47.2 47.4 47.6 47.8 46.2 46.4 46.6 46.8 47 47.2 47.4 47.6 47.8 48 48.2 46.6 46.8 47 47.2 47.4 47.6 47.8 48 48.2 48.4 48.6 47 47.2 47.4 47.6 47.8 48 48.2 48.4 48.6 48.8 49 47.4 47.6 47.8 48 48.2 48.4 48.6 48.8 49 49.2 49.4 47.8 48 48.2 48.4 48.6 48.8 49 49.2 49.4 49.6 49.8 48.2 48.4 48.6 48.8 49 49.2 49.4 49.6 49.8 50 50.2 48.6 48.8 49 49.2 49.4 49.6 49.8 50 50.2 50.4 50.6 49 49.2 49.4 49.6 49.8 50 50.2 50.4 50.6 50.8 51 49 49.1 49.2 49.3 49.4 49.5 49.6 49.7 49.8 49.9 50 49.2 49.3 49.4 49.5 49.6 49.7 49.8 49.9 50 50.1 50.2 49.4 49.5 49.6 49.7 49.8 49.9 50 50.1 50.2 50.3 50.4 49.6 49.7 49.8 49.9 50 50.1 50.2 50.3 50.4 50.5 50.6 49.8 49.9 50 50.1 50.2 50.3 50.4 50.5 50.6 50.7 50.8 50 50.1 50.2 50.3 50.4 50.5 50.6 50.7 50.8 50.9 51 50.2 50.3 50.4 50.5 50.6 50.7 50.8 50.9 51 51.1 51.2 50.4 50.5 50.6 50.7 50.8 50.9 51 51.1 51.2 51.3 51.4 50.6 50.7 50.8 50.9 51 51.1 51.2 51.3 51.4 51.5 51.6 50.8 50.9 51 51.1 51.2 51.3 51.4 51.5 51.6 51.7 51.8 51 51.1 51.2 51.3 51.4 51.5 51.6 51.7 51.8 51.9 52 46 46.7 47.4 48.1 48.8 49.5 50.2 50.9 51.6 52.3 53 46.4 46.54 46.68 46.82 46.96 47.1 47.24 47.38 47.52 47.66 47.8 46.8 46.38 45.96 45.54 45.12 44.7 44.28 43.86 43.44 43.02 42.6 47.2 46.22 45.24 44.26 43.28 42.3 41.32 40.34 39.36 38.38 37.4 47.6 46.06 44.52 42.98 41.44 39.9 38.36 36.82 35.28 33.74 32.2 48 45.9 43.8 41.7 39.6 37.5 35.4 33.3 31.2 29.1 27 48.4 45.74 43.08 40.42 37.76 35.1 32.44 29.78 27.12 24.46 21.8 48.8 45.58 42.36 39.14 35.92 32.7 29.48 26.26 23.04 19.82 16.6 49.2 45.42 41.64 37.86 34.08 30.3 26.52 22.74 18.96 15.18 11.4 49.6 45.26 40.92 36.58 32.24 27.9 23.56 19.22 14.88 10.54 6.2 50 45.1 40.2 35.3 30.4 25.5 20.6 15.7 10.8 5.9 1 50 45.1 40.2 35.3 30.4 25.5 20.6 15.7 10.8 5.9 1 50.2 45.81 41.42 37.03 32.64 28.25 23.86 19.47 15.08 10.69 6.3 50.4 46.52 42.64 38.76 34.88 31 27.12 23.24 19.36 15.48 11.6 50.6 47.23 43.86 40.49 37.12 33.75 30.38 27.01 23.64 20.27 16.9 50.8 47.94 45.08 42.22 39.36 36.5 33.64 30.78 27.92 25.06 22.2 51 48.65 46.3 43.95 41.6 39.25 36.9 34.55 32.2 29.85 27.5 51.2 49.36 47.52 45.68 43.84 42 40.16 38.32 36.48 34.64 32.8 51.4 50.07 48.74 47.41 46.08 44.75 43.42 42.09 40.76 39.43 38.1 51.6 50.78 49.96 49.14 48.32 47.5 46.68 45.86 45.04 44.22 43.4 51.8 51.49 51.18 50.87 50.56 50.25 49.94 49.63 49.32 49.01 48.7 52 52.2 52.4 52.6 52.8 53 53.2 53.4 53.6 53.8 54 33 29.7 26.4 23.1 19.8 16.5 13.2 9.9 6.6 3.3 0 34.3 31.4 28.5 25.6 22.7 19.8 16.9 14 11.1 8.2 5.3 35.6 33.1 30.6 28.1 25.6 23.1 20.6 18.1 15.6 13.1 10.6 36.9 34.8 32.7 30.6 28.5 26.4 24.3 22.2 20.1 18 15.9 38.2 36.5 34.8 33.1 31.4 29.7 28 26.3 24.6 22.9 21.2 39.5 38.2 36.9 35.6 34.3 33 31.7 30.4 29.1 27.8 26.5 40.8 39.9 39 38.1 37.2 36.3 35.4 34.5 33.6 32.7 31.8 42.1 41.6 41.1 40.6 40.1 39.6 39.1 38.6 38.1 37.6 37.1 43.4 43.3 43.2 43.1 43 42.9 42.8 42.7 42.6 42.5 42.4 44.7 45 45.3 45.6 45.9 46.2 46.5 46.8 47.1 47.4 47.7 46 46.7 47.4 48.1 48.8 49.5 50.2 50.9 51.6 52.3 53 34 31.9 29.8 27.7 25.6 23.5 21.4 19.3 17.2 15.1 13 35.3 33.5 31.7 29.9 28.1 26.3 24.5 22.7 20.9 19.1 17.3 36.6 35.1 33.6 32.1 30.6 29.1 27.6 26.1 24.6 23.1 21.6 37.9 36.7 35.5 34.3 33.1 31.9 30.7 29.5 28.3 27.1 25.9 39.2 38.3 37.4 36.5 35.6 34.7 33.8 32.9 32 31.1 30.2 40.5 39.9 39.3 38.7 38.1 37.5 36.9 36.3 35.7 35.1 34.5 41.8 41.5 41.2 40.9 40.6 40.3 40 39.7 39.4 39.1 38.8 43.1 43.1 43.1 43.1 43.1 43.1 43.1 43.1 43.1 43.1 43.1 44.4 44.7 45 45.3 45.6 45.9 46.2 46.5 46.8 47.1 47.4 45.7 46.3 46.9 47.5 48.1 48.7 49.3 49.9 50.5 51.1 51.7 47 47.9 48.8 49.7 50.6 51.5 52.4 53.3 54.2 55.1 56 47 47.9 48.8 49.7 50.6 51.5 52.4 53.3 54.2 55.1 56 47.4 47.88 48.36 48.84 49.32 49.8 50.28 50.76 51.24 51.72 52.2 47.8 47.86 47.92 47.98 48.04 48.1 48.16 48.22 48.28 48.34 48.4 48.2 47.84 47.48 47.12 46.76 46.4 46.04 45.68 45.32 44.96 44.6 48.6 47.82 47.04 46.26 45.48 44.7 43.92 43.14 42.36 41.58 40.8 49 47.8 46.6 45.4 44.2 43 41.8 40.6 39.4 38.2 37 49.4 47.78 46.16 44.54 42.92 41.3 39.68 38.06 36.44 34.82 33.2 49.8 47.76 45.72 43.68 41.64 39.6 37.56 35.52 33.48 31.44 29.4 50.2 47.74 45.28 42.82 40.36 37.9 35.44 32.98 30.52 28.06 25.6 50.6 47.72 44.84 41.96 39.08 36.2 33.32 30.44 27.56 24.68 21.8 51 47.7 44.4 41.1 37.8 34.5 31.2 27.9 24.6 21.3 18 51 51.1 51.2 51.3 51.4 51.5 51.6 51.7 51.8 51.9 52 47.7 48.19 48.68 49.17 49.66 50.15 50.64 51.13 51.62 52.11 52.6 44.4 45.28 46.16 47.04 47.92 48.8 49.68 50.56 51.44 52.32 53.2 41.1 42.37 43.64 44.91 46.18 47.45 48.72 49.99 51.26 52.53 53.8 37.8 39.46 41.12 42.78 44.44 46.1 47.76 49.42 51.08 52.74 54.4 34.5 36.55 38.6 40.65 42.7 44.75 46.8 48.85 50.9 52.95 55 31.2 33.64 36.08 38.52 40.96 43.4 45.84 48.28 50.72 53.16 55.6 27.9 30.73 33.56 36.39 39.22 42.05 44.88 47.71 50.54 53.37 56.2 24.6 27.82 31.04 34.26 37.48 40.7 43.92 47.14 50.36 53.58 56.8 21.3 24.91 28.52 32.13 35.74 39.35 42.96 46.57 50.18 53.79 57.4 18 22 26 30 34 38 42 46 50 54 58 52 52.2 52.4 52.6 52.8 53 53.2 53.4 53.6 53.8 54 52.6 52.25 51.9 51.55 51.2 50.85 50.5 50.15 49.8 49.45 49.1 53.2 52.3 51.4 50.5 49.6 48.7 47.8 46.9 46 45.1 44.2 53.8 52.35 50.9 49.45 48 46.55 45.1 43.65 42.2 40.75 39.3 54.4 52.4 50.4 48.4 46.4 44.4 42.4 40.4 38.4 36.4 34.4 55 52.45 49.9 47.35 44.8 42.25 39.7 37.15 34.6 32.05 29.5 55.6 52.5 49.4 46.3 43.2 40.1 37 33.9 30.8 27.7 24.6 56.2 52.55 48.9 45.25 41.6 37.95 34.3 30.65 27 23.35 19.7 56.8 52.6 48.4 44.2 40 35.8 31.6 27.4 23.2 19 14.8 57.4 52.65 47.9 43.15 38.4 33.65 28.9 24.15 19.4 14.65 9.9 58 52.7 47.4 42.1 36.8 31.5 26.2 20.9 15.6 10.3 5 - -endvars -endgmv -# This file was generated by the deal.II library. -# Date = 2000/9/19 - -# -# For a description of the GNUPLOT format see the GNUPLOT manual. -# -# -0.5 0 0.5 0 -0.5 0 0.55 0.3 -0.5 0 0.6 0.6 -0.5 0 0.65 0.9 -0.5 0 0.7 1.2 -0.5 0 0.75 1.5 -0.5 0 0.8 1.8 -0.5 0 0.85 2.1 -0.5 0 0.9 2.4 -0.5 0 0.95 2.7 -0.5 0 1 3 - -0.55 0 0.5 0.1 -0.55 0 0.55 0.38 -0.55 0 0.6 0.66 -0.55 0 0.65 0.94 -0.55 0 0.7 1.22 -0.55 0 0.75 1.5 -0.55 0 0.8 1.78 -0.55 0 0.85 2.06 -0.55 0 0.9 2.34 -0.55 0 0.95 2.62 -0.55 0 1 2.9 - -0.6 0 0.5 0.2 -0.6 0 0.55 0.46 -0.6 0 0.6 0.72 -0.6 0 0.65 0.98 -0.6 0 0.7 1.24 -0.6 0 0.75 1.5 -0.6 0 0.8 1.76 -0.6 0 0.85 2.02 -0.6 0 0.9 2.28 -0.6 0 0.95 2.54 -0.6 0 1 2.8 - -0.65 0 0.5 0.3 -0.65 0 0.55 0.54 -0.65 0 0.6 0.78 -0.65 0 0.65 1.02 -0.65 0 0.7 1.26 -0.65 0 0.75 1.5 -0.65 0 0.8 1.74 -0.65 0 0.85 1.98 -0.65 0 0.9 2.22 -0.65 0 0.95 2.46 -0.65 0 1 2.7 - -0.7 0 0.5 0.4 -0.7 0 0.55 0.62 -0.7 0 0.6 0.84 -0.7 0 0.65 1.06 -0.7 0 0.7 1.28 -0.7 0 0.75 1.5 -0.7 0 0.8 1.72 -0.7 0 0.85 1.94 -0.7 0 0.9 2.16 -0.7 0 0.95 2.38 -0.7 0 1 2.6 - -0.75 0 0.5 0.5 -0.75 0 0.55 0.7 -0.75 0 0.6 0.9 -0.75 0 0.65 1.1 -0.75 0 0.7 1.3 -0.75 0 0.75 1.5 -0.75 0 0.8 1.7 -0.75 0 0.85 1.9 -0.75 0 0.9 2.1 -0.75 0 0.95 2.3 -0.75 0 1 2.5 - -0.8 0 0.5 0.6 -0.8 0 0.55 0.78 -0.8 0 0.6 0.96 -0.8 0 0.65 1.14 -0.8 0 0.7 1.32 -0.8 0 0.75 1.5 -0.8 0 0.8 1.68 -0.8 0 0.85 1.86 -0.8 0 0.9 2.04 -0.8 0 0.95 2.22 -0.8 0 1 2.4 - -0.85 0 0.5 0.7 -0.85 0 0.55 0.86 -0.85 0 0.6 1.02 -0.85 0 0.65 1.18 -0.85 0 0.7 1.34 -0.85 0 0.75 1.5 -0.85 0 0.8 1.66 -0.85 0 0.85 1.82 -0.85 0 0.9 1.98 -0.85 0 0.95 2.14 -0.85 0 1 2.3 - -0.9 0 0.5 0.8 -0.9 0 0.55 0.94 -0.9 0 0.6 1.08 -0.9 0 0.65 1.22 -0.9 0 0.7 1.36 -0.9 0 0.75 1.5 -0.9 0 0.8 1.64 -0.9 0 0.85 1.78 -0.9 0 0.9 1.92 -0.9 0 0.95 2.06 -0.9 0 1 2.2 - -0.95 0 0.5 0.9 -0.95 0 0.55 1.02 -0.95 0 0.6 1.14 -0.95 0 0.65 1.26 -0.95 0 0.7 1.38 -0.95 0 0.75 1.5 -0.95 0 0.8 1.62 -0.95 0 0.85 1.74 -0.95 0 0.9 1.86 -0.95 0 0.95 1.98 -0.95 0 1 2.1 - -1 0 0.5 1 -1 0 0.55 1.1 -1 0 0.6 1.2 -1 0 0.65 1.3 -1 0 0.7 1.4 -1 0 0.75 1.5 -1 0 0.8 1.6 -1 0 0.85 1.7 -1 0 0.9 1.8 -1 0 0.95 1.9 -1 0 1 2 - - -1 0 0.5 1 -1 0 0.55 1.1 -1 0 0.6 1.2 -1 0 0.65 1.3 -1 0 0.7 1.4 -1 0 0.75 1.5 -1 0 0.8 1.6 -1 0 0.85 1.7 -1 0 0.9 1.8 -1 0 0.95 1.9 -1 0 1 2 - -1 0.05 0.5 1.4 -1 0.05 0.55 1.5 -1 0.05 0.6 1.6 -1 0.05 0.65 1.7 -1 0.05 0.7 1.8 -1 0.05 0.75 1.9 -1 0.05 0.8 2 -1 0.05 0.85 2.1 -1 0.05 0.9 2.2 -1 0.05 0.95 2.3 -1 0.05 1 2.4 - -1 0.1 0.5 1.8 -1 0.1 0.55 1.9 -1 0.1 0.6 2 -1 0.1 0.65 2.1 -1 0.1 0.7 2.2 -1 0.1 0.75 2.3 -1 0.1 0.8 2.4 -1 0.1 0.85 2.5 -1 0.1 0.9 2.6 -1 0.1 0.95 2.7 -1 0.1 1 2.8 - -1 0.15 0.5 2.2 -1 0.15 0.55 2.3 -1 0.15 0.6 2.4 -1 0.15 0.65 2.5 -1 0.15 0.7 2.6 -1 0.15 0.75 2.7 -1 0.15 0.8 2.8 -1 0.15 0.85 2.9 -1 0.15 0.9 3 -1 0.15 0.95 3.1 -1 0.15 1 3.2 - -1 0.2 0.5 2.6 -1 0.2 0.55 2.7 -1 0.2 0.6 2.8 -1 0.2 0.65 2.9 -1 0.2 0.7 3 -1 0.2 0.75 3.1 -1 0.2 0.8 3.2 -1 0.2 0.85 3.3 -1 0.2 0.9 3.4 -1 0.2 0.95 3.5 -1 0.2 1 3.6 - -1 0.25 0.5 3 -1 0.25 0.55 3.1 -1 0.25 0.6 3.2 -1 0.25 0.65 3.3 -1 0.25 0.7 3.4 -1 0.25 0.75 3.5 -1 0.25 0.8 3.6 -1 0.25 0.85 3.7 -1 0.25 0.9 3.8 -1 0.25 0.95 3.9 -1 0.25 1 4 - -1 0.3 0.5 3.4 -1 0.3 0.55 3.5 -1 0.3 0.6 3.6 -1 0.3 0.65 3.7 -1 0.3 0.7 3.8 -1 0.3 0.75 3.9 -1 0.3 0.8 4 -1 0.3 0.85 4.1 -1 0.3 0.9 4.2 -1 0.3 0.95 4.3 -1 0.3 1 4.4 - -1 0.35 0.5 3.8 -1 0.35 0.55 3.9 -1 0.35 0.6 4 -1 0.35 0.65 4.1 -1 0.35 0.7 4.2 -1 0.35 0.75 4.3 -1 0.35 0.8 4.4 -1 0.35 0.85 4.5 -1 0.35 0.9 4.6 -1 0.35 0.95 4.7 -1 0.35 1 4.8 - -1 0.4 0.5 4.2 -1 0.4 0.55 4.3 -1 0.4 0.6 4.4 -1 0.4 0.65 4.5 -1 0.4 0.7 4.6 -1 0.4 0.75 4.7 -1 0.4 0.8 4.8 -1 0.4 0.85 4.9 -1 0.4 0.9 5 -1 0.4 0.95 5.1 -1 0.4 1 5.2 - -1 0.45 0.5 4.6 -1 0.45 0.55 4.7 -1 0.45 0.6 4.8 -1 0.45 0.65 4.9 -1 0.45 0.7 5 -1 0.45 0.75 5.1 -1 0.45 0.8 5.2 -1 0.45 0.85 5.3 -1 0.45 0.9 5.4 -1 0.45 0.95 5.5 -1 0.45 1 5.6 - -1 0.5 0.5 5 -1 0.5 0.55 5.1 -1 0.5 0.6 5.2 -1 0.5 0.65 5.3 -1 0.5 0.7 5.4 -1 0.5 0.75 5.5 -1 0.5 0.8 5.6 -1 0.5 0.85 5.7 -1 0.5 0.9 5.8 -1 0.5 0.95 5.9 -1 0.5 1 6 - - -0.5 0 1 3 -0.5 0.05 1 3.4 -0.5 0.1 1 3.8 -0.5 0.15 1 4.2 -0.5 0.2 1 4.6 -0.5 0.25 1 5 -0.5 0.3 1 5.4 -0.5 0.35 1 5.8 -0.5 0.4 1 6.2 -0.5 0.45 1 6.6 -0.5 0.5 1 7 - -0.55 0 1 2.9 -0.55 0.05 1 3.3 -0.55 0.1 1 3.7 -0.55 0.15 1 4.1 -0.55 0.2 1 4.5 -0.55 0.25 1 4.9 -0.55 0.3 1 5.3 -0.55 0.35 1 5.7 -0.55 0.4 1 6.1 -0.55 0.45 1 6.5 -0.55 0.5 1 6.9 - -0.6 0 1 2.8 -0.6 0.05 1 3.2 -0.6 0.1 1 3.6 -0.6 0.15 1 4 -0.6 0.2 1 4.4 -0.6 0.25 1 4.8 -0.6 0.3 1 5.2 -0.6 0.35 1 5.6 -0.6 0.4 1 6 -0.6 0.45 1 6.4 -0.6 0.5 1 6.8 - -0.65 0 1 2.7 -0.65 0.05 1 3.1 -0.65 0.1 1 3.5 -0.65 0.15 1 3.9 -0.65 0.2 1 4.3 -0.65 0.25 1 4.7 -0.65 0.3 1 5.1 -0.65 0.35 1 5.5 -0.65 0.4 1 5.9 -0.65 0.45 1 6.3 -0.65 0.5 1 6.7 - -0.7 0 1 2.6 -0.7 0.05 1 3 -0.7 0.1 1 3.4 -0.7 0.15 1 3.8 -0.7 0.2 1 4.2 -0.7 0.25 1 4.6 -0.7 0.3 1 5 -0.7 0.35 1 5.4 -0.7 0.4 1 5.8 -0.7 0.45 1 6.2 -0.7 0.5 1 6.6 - -0.75 0 1 2.5 -0.75 0.05 1 2.9 -0.75 0.1 1 3.3 -0.75 0.15 1 3.7 -0.75 0.2 1 4.1 -0.75 0.25 1 4.5 -0.75 0.3 1 4.9 -0.75 0.35 1 5.3 -0.75 0.4 1 5.7 -0.75 0.45 1 6.1 -0.75 0.5 1 6.5 - -0.8 0 1 2.4 -0.8 0.05 1 2.8 -0.8 0.1 1 3.2 -0.8 0.15 1 3.6 -0.8 0.2 1 4 -0.8 0.25 1 4.4 -0.8 0.3 1 4.8 -0.8 0.35 1 5.2 -0.8 0.4 1 5.6 -0.8 0.45 1 6 -0.8 0.5 1 6.4 - -0.85 0 1 2.3 -0.85 0.05 1 2.7 -0.85 0.1 1 3.1 -0.85 0.15 1 3.5 -0.85 0.2 1 3.9 -0.85 0.25 1 4.3 -0.85 0.3 1 4.7 -0.85 0.35 1 5.1 -0.85 0.4 1 5.5 -0.85 0.45 1 5.9 -0.85 0.5 1 6.3 - -0.9 0 1 2.2 -0.9 0.05 1 2.6 -0.9 0.1 1 3 -0.9 0.15 1 3.4 -0.9 0.2 1 3.8 -0.9 0.25 1 4.2 -0.9 0.3 1 4.6 -0.9 0.35 1 5 -0.9 0.4 1 5.4 -0.9 0.45 1 5.8 -0.9 0.5 1 6.2 - -0.95 0 1 2.1 -0.95 0.05 1 2.5 -0.95 0.1 1 2.9 -0.95 0.15 1 3.3 -0.95 0.2 1 3.7 -0.95 0.25 1 4.1 -0.95 0.3 1 4.5 -0.95 0.35 1 4.9 -0.95 0.4 1 5.3 -0.95 0.45 1 5.7 -0.95 0.5 1 6.1 - -1 0 1 2 -1 0.05 1 2.4 -1 0.1 1 2.8 -1 0.15 1 3.2 -1 0.2 1 3.6 -1 0.25 1 4 -1 0.3 1 4.4 -1 0.35 1 4.8 -1 0.4 1 5.2 -1 0.45 1 5.6 -1 0.5 1 6 - - -0 0 0.5 8 -0 0 0.55 8.1 -0 0 0.6 8.2 -0 0 0.65 8.3 -0 0 0.7 8.4 -0 0 0.75 8.5 -0 0 0.8 8.6 -0 0 0.85 8.7 -0 0 0.9 8.8 -0 0 0.95 8.9 -0 0 1 9 - -0.05 0 0.5 7.2 -0.05 0 0.55 7.32 -0.05 0 0.6 7.44 -0.05 0 0.65 7.56 -0.05 0 0.7 7.68 -0.05 0 0.75 7.8 -0.05 0 0.8 7.92 -0.05 0 0.85 8.04 -0.05 0 0.9 8.16 -0.05 0 0.95 8.28 -0.05 0 1 8.4 - -0.1 0 0.5 6.4 -0.1 0 0.55 6.54 -0.1 0 0.6 6.68 -0.1 0 0.65 6.82 -0.1 0 0.7 6.96 -0.1 0 0.75 7.1 -0.1 0 0.8 7.24 -0.1 0 0.85 7.38 -0.1 0 0.9 7.52 -0.1 0 0.95 7.66 -0.1 0 1 7.8 - -0.15 0 0.5 5.6 -0.15 0 0.55 5.76 -0.15 0 0.6 5.92 -0.15 0 0.65 6.08 -0.15 0 0.7 6.24 -0.15 0 0.75 6.4 -0.15 0 0.8 6.56 -0.15 0 0.85 6.72 -0.15 0 0.9 6.88 -0.15 0 0.95 7.04 -0.15 0 1 7.2 - -0.2 0 0.5 4.8 -0.2 0 0.55 4.98 -0.2 0 0.6 5.16 -0.2 0 0.65 5.34 -0.2 0 0.7 5.52 -0.2 0 0.75 5.7 -0.2 0 0.8 5.88 -0.2 0 0.85 6.06 -0.2 0 0.9 6.24 -0.2 0 0.95 6.42 -0.2 0 1 6.6 - -0.25 0 0.5 4 -0.25 0 0.55 4.2 -0.25 0 0.6 4.4 -0.25 0 0.65 4.6 -0.25 0 0.7 4.8 -0.25 0 0.75 5 -0.25 0 0.8 5.2 -0.25 0 0.85 5.4 -0.25 0 0.9 5.6 -0.25 0 0.95 5.8 -0.25 0 1 6 - -0.3 0 0.5 3.2 -0.3 0 0.55 3.42 -0.3 0 0.6 3.64 -0.3 0 0.65 3.86 -0.3 0 0.7 4.08 -0.3 0 0.75 4.3 -0.3 0 0.8 4.52 -0.3 0 0.85 4.74 -0.3 0 0.9 4.96 -0.3 0 0.95 5.18 -0.3 0 1 5.4 - -0.35 0 0.5 2.4 -0.35 0 0.55 2.64 -0.35 0 0.6 2.88 -0.35 0 0.65 3.12 -0.35 0 0.7 3.36 -0.35 0 0.75 3.6 -0.35 0 0.8 3.84 -0.35 0 0.85 4.08 -0.35 0 0.9 4.32 -0.35 0 0.95 4.56 -0.35 0 1 4.8 - -0.4 0 0.5 1.6 -0.4 0 0.55 1.86 -0.4 0 0.6 2.12 -0.4 0 0.65 2.38 -0.4 0 0.7 2.64 -0.4 0 0.75 2.9 -0.4 0 0.8 3.16 -0.4 0 0.85 3.42 -0.4 0 0.9 3.68 -0.4 0 0.95 3.94 -0.4 0 1 4.2 - -0.45 0 0.5 0.8 -0.45 0 0.55 1.08 -0.45 0 0.6 1.36 -0.45 0 0.65 1.64 -0.45 0 0.7 1.92 -0.45 0 0.75 2.2 -0.45 0 0.8 2.48 -0.45 0 0.85 2.76 -0.45 0 0.9 3.04 -0.45 0 0.95 3.32 -0.45 0 1 3.6 - -0.5 0 0.5 0 -0.5 0 0.55 0.3 -0.5 0 0.6 0.6 -0.5 0 0.65 0.9 -0.5 0 0.7 1.2 -0.5 0 0.75 1.5 -0.5 0 0.8 1.8 -0.5 0 0.85 2.1 -0.5 0 0.9 2.4 -0.5 0 0.95 2.7 -0.5 0 1 3 - - -0 0 1 9 -0 0.05 1 9.2 -0 0.1 1 9.4 -0 0.15 1 9.6 -0 0.2 1 9.8 -0 0.25 1 10 -0 0.3 1 10.2 -0 0.35 1 10.4 -0 0.4 1 10.6 -0 0.45 1 10.8 -0 0.5 1 11 - -0.05 0 1 8.4 -0.05 0.05 1 8.62 -0.05 0.1 1 8.84 -0.05 0.15 1 9.06 -0.05 0.2 1 9.28 -0.05 0.25 1 9.5 -0.05 0.3 1 9.72 -0.05 0.35 1 9.94 -0.05 0.4 1 10.16 -0.05 0.45 1 10.38 -0.05 0.5 1 10.6 - -0.1 0 1 7.8 -0.1 0.05 1 8.04 -0.1 0.1 1 8.28 -0.1 0.15 1 8.52 -0.1 0.2 1 8.76 -0.1 0.25 1 9 -0.1 0.3 1 9.24 -0.1 0.35 1 9.48 -0.1 0.4 1 9.72 -0.1 0.45 1 9.96 -0.1 0.5 1 10.2 - -0.15 0 1 7.2 -0.15 0.05 1 7.46 -0.15 0.1 1 7.72 -0.15 0.15 1 7.98 -0.15 0.2 1 8.24 -0.15 0.25 1 8.5 -0.15 0.3 1 8.76 -0.15 0.35 1 9.02 -0.15 0.4 1 9.28 -0.15 0.45 1 9.54 -0.15 0.5 1 9.8 - -0.2 0 1 6.6 -0.2 0.05 1 6.88 -0.2 0.1 1 7.16 -0.2 0.15 1 7.44 -0.2 0.2 1 7.72 -0.2 0.25 1 8 -0.2 0.3 1 8.28 -0.2 0.35 1 8.56 -0.2 0.4 1 8.84 -0.2 0.45 1 9.12 -0.2 0.5 1 9.4 - -0.25 0 1 6 -0.25 0.05 1 6.3 -0.25 0.1 1 6.6 -0.25 0.15 1 6.9 -0.25 0.2 1 7.2 -0.25 0.25 1 7.5 -0.25 0.3 1 7.8 -0.25 0.35 1 8.1 -0.25 0.4 1 8.4 -0.25 0.45 1 8.7 -0.25 0.5 1 9 - -0.3 0 1 5.4 -0.3 0.05 1 5.72 -0.3 0.1 1 6.04 -0.3 0.15 1 6.36 -0.3 0.2 1 6.68 -0.3 0.25 1 7 -0.3 0.3 1 7.32 -0.3 0.35 1 7.64 -0.3 0.4 1 7.96 -0.3 0.45 1 8.28 -0.3 0.5 1 8.6 - -0.35 0 1 4.8 -0.35 0.05 1 5.14 -0.35 0.1 1 5.48 -0.35 0.15 1 5.82 -0.35 0.2 1 6.16 -0.35 0.25 1 6.5 -0.35 0.3 1 6.84 -0.35 0.35 1 7.18 -0.35 0.4 1 7.52 -0.35 0.45 1 7.86 -0.35 0.5 1 8.2 - -0.4 0 1 4.2 -0.4 0.05 1 4.56 -0.4 0.1 1 4.92 -0.4 0.15 1 5.28 -0.4 0.2 1 5.64 -0.4 0.25 1 6 -0.4 0.3 1 6.36 -0.4 0.35 1 6.72 -0.4 0.4 1 7.08 -0.4 0.45 1 7.44 -0.4 0.5 1 7.8 - -0.45 0 1 3.6 -0.45 0.05 1 3.98 -0.45 0.1 1 4.36 -0.45 0.15 1 4.74 -0.45 0.2 1 5.12 -0.45 0.25 1 5.5 -0.45 0.3 1 5.88 -0.45 0.35 1 6.26 -0.45 0.4 1 6.64 -0.45 0.45 1 7.02 -0.45 0.5 1 7.4 - -0.5 0 1 3 -0.5 0.05 1 3.4 -0.5 0.1 1 3.8 -0.5 0.15 1 4.2 -0.5 0.2 1 4.6 -0.5 0.25 1 5 -0.5 0.3 1 5.4 -0.5 0.35 1 5.8 -0.5 0.4 1 6.2 -0.5 0.45 1 6.6 -0.5 0.5 1 7 - - -0 0 0.5 8 -0 0 0.55 8.1 -0 0 0.6 8.2 -0 0 0.65 8.3 -0 0 0.7 8.4 -0 0 0.75 8.5 -0 0 0.8 8.6 -0 0 0.85 8.7 -0 0 0.9 8.8 -0 0 0.95 8.9 -0 0 1 9 - -0 0.05 0.5 8.2 -0 0.05 0.55 8.3 -0 0.05 0.6 8.4 -0 0.05 0.65 8.5 -0 0.05 0.7 8.6 -0 0.05 0.75 8.7 -0 0.05 0.8 8.8 -0 0.05 0.85 8.9 -0 0.05 0.9 9 -0 0.05 0.95 9.1 -0 0.05 1 9.2 - -0 0.1 0.5 8.4 -0 0.1 0.55 8.5 -0 0.1 0.6 8.6 -0 0.1 0.65 8.7 -0 0.1 0.7 8.8 -0 0.1 0.75 8.9 -0 0.1 0.8 9 -0 0.1 0.85 9.1 -0 0.1 0.9 9.2 -0 0.1 0.95 9.3 -0 0.1 1 9.4 - -0 0.15 0.5 8.6 -0 0.15 0.55 8.7 -0 0.15 0.6 8.8 -0 0.15 0.65 8.9 -0 0.15 0.7 9 -0 0.15 0.75 9.1 -0 0.15 0.8 9.2 -0 0.15 0.85 9.3 -0 0.15 0.9 9.4 -0 0.15 0.95 9.5 -0 0.15 1 9.6 - -0 0.2 0.5 8.8 -0 0.2 0.55 8.9 -0 0.2 0.6 9 -0 0.2 0.65 9.1 -0 0.2 0.7 9.2 -0 0.2 0.75 9.3 -0 0.2 0.8 9.4 -0 0.2 0.85 9.5 -0 0.2 0.9 9.6 -0 0.2 0.95 9.7 -0 0.2 1 9.8 - -0 0.25 0.5 9 -0 0.25 0.55 9.1 -0 0.25 0.6 9.2 -0 0.25 0.65 9.3 -0 0.25 0.7 9.4 -0 0.25 0.75 9.5 -0 0.25 0.8 9.6 -0 0.25 0.85 9.7 -0 0.25 0.9 9.8 -0 0.25 0.95 9.9 -0 0.25 1 10 - -0 0.3 0.5 9.2 -0 0.3 0.55 9.3 -0 0.3 0.6 9.4 -0 0.3 0.65 9.5 -0 0.3 0.7 9.6 -0 0.3 0.75 9.7 -0 0.3 0.8 9.8 -0 0.3 0.85 9.9 -0 0.3 0.9 10 -0 0.3 0.95 10.1 -0 0.3 1 10.2 - -0 0.35 0.5 9.4 -0 0.35 0.55 9.5 -0 0.35 0.6 9.6 -0 0.35 0.65 9.7 -0 0.35 0.7 9.8 -0 0.35 0.75 9.9 -0 0.35 0.8 10 -0 0.35 0.85 10.1 -0 0.35 0.9 10.2 -0 0.35 0.95 10.3 -0 0.35 1 10.4 - -0 0.4 0.5 9.6 -0 0.4 0.55 9.7 -0 0.4 0.6 9.8 -0 0.4 0.65 9.9 -0 0.4 0.7 10 -0 0.4 0.75 10.1 -0 0.4 0.8 10.2 -0 0.4 0.85 10.3 -0 0.4 0.9 10.4 -0 0.4 0.95 10.5 -0 0.4 1 10.6 - -0 0.45 0.5 9.8 -0 0.45 0.55 9.9 -0 0.45 0.6 10 -0 0.45 0.65 10.1 -0 0.45 0.7 10.2 -0 0.45 0.75 10.3 -0 0.45 0.8 10.4 -0 0.45 0.85 10.5 -0 0.45 0.9 10.6 -0 0.45 0.95 10.7 -0 0.45 1 10.8 - -0 0.5 0.5 10 -0 0.5 0.55 10.1 -0 0.5 0.6 10.2 -0 0.5 0.65 10.3 -0 0.5 0.7 10.4 -0 0.5 0.75 10.5 -0 0.5 0.8 10.6 -0 0.5 0.85 10.7 -0 0.5 0.9 10.8 -0 0.5 0.95 10.9 -0 0.5 1 11 - - -0 1 0 14 -0 1 0.05 14.3 -0 1 0.1 14.6 -0 1 0.15 14.9 -0 1 0.2 15.2 -0 1 0.25 15.5 -0 1 0.3 15.8 -0 1 0.35 16.1 -0 1 0.4 16.4 -0 1 0.45 16.7 -0 1 0.5 17 - -0.05 1 0 14.1 -0.05 1 0.05 14.38 -0.05 1 0.1 14.66 -0.05 1 0.15 14.94 -0.05 1 0.2 15.22 -0.05 1 0.25 15.5 -0.05 1 0.3 15.78 -0.05 1 0.35 16.06 -0.05 1 0.4 16.34 -0.05 1 0.45 16.62 -0.05 1 0.5 16.9 - -0.1 1 0 14.2 -0.1 1 0.05 14.46 -0.1 1 0.1 14.72 -0.1 1 0.15 14.98 -0.1 1 0.2 15.24 -0.1 1 0.25 15.5 -0.1 1 0.3 15.76 -0.1 1 0.35 16.02 -0.1 1 0.4 16.28 -0.1 1 0.45 16.54 -0.1 1 0.5 16.8 - -0.15 1 0 14.3 -0.15 1 0.05 14.54 -0.15 1 0.1 14.78 -0.15 1 0.15 15.02 -0.15 1 0.2 15.26 -0.15 1 0.25 15.5 -0.15 1 0.3 15.74 -0.15 1 0.35 15.98 -0.15 1 0.4 16.22 -0.15 1 0.45 16.46 -0.15 1 0.5 16.7 - -0.2 1 0 14.4 -0.2 1 0.05 14.62 -0.2 1 0.1 14.84 -0.2 1 0.15 15.06 -0.2 1 0.2 15.28 -0.2 1 0.25 15.5 -0.2 1 0.3 15.72 -0.2 1 0.35 15.94 -0.2 1 0.4 16.16 -0.2 1 0.45 16.38 -0.2 1 0.5 16.6 - -0.25 1 0 14.5 -0.25 1 0.05 14.7 -0.25 1 0.1 14.9 -0.25 1 0.15 15.1 -0.25 1 0.2 15.3 -0.25 1 0.25 15.5 -0.25 1 0.3 15.7 -0.25 1 0.35 15.9 -0.25 1 0.4 16.1 -0.25 1 0.45 16.3 -0.25 1 0.5 16.5 - -0.3 1 0 14.6 -0.3 1 0.05 14.78 -0.3 1 0.1 14.96 -0.3 1 0.15 15.14 -0.3 1 0.2 15.32 -0.3 1 0.25 15.5 -0.3 1 0.3 15.68 -0.3 1 0.35 15.86 -0.3 1 0.4 16.04 -0.3 1 0.45 16.22 -0.3 1 0.5 16.4 - -0.35 1 0 14.7 -0.35 1 0.05 14.86 -0.35 1 0.1 15.02 -0.35 1 0.15 15.18 -0.35 1 0.2 15.34 -0.35 1 0.25 15.5 -0.35 1 0.3 15.66 -0.35 1 0.35 15.82 -0.35 1 0.4 15.98 -0.35 1 0.45 16.14 -0.35 1 0.5 16.3 - -0.4 1 0 14.8 -0.4 1 0.05 14.94 -0.4 1 0.1 15.08 -0.4 1 0.15 15.22 -0.4 1 0.2 15.36 -0.4 1 0.25 15.5 -0.4 1 0.3 15.64 -0.4 1 0.35 15.78 -0.4 1 0.4 15.92 -0.4 1 0.45 16.06 -0.4 1 0.5 16.2 - -0.45 1 0 14.9 -0.45 1 0.05 15.02 -0.45 1 0.1 15.14 -0.45 1 0.15 15.26 -0.45 1 0.2 15.38 -0.45 1 0.25 15.5 -0.45 1 0.3 15.62 -0.45 1 0.35 15.74 -0.45 1 0.4 15.86 -0.45 1 0.45 15.98 -0.45 1 0.5 16.1 - -0.5 1 0 15 -0.5 1 0.05 15.1 -0.5 1 0.1 15.2 -0.5 1 0.15 15.3 -0.5 1 0.2 15.4 -0.5 1 0.25 15.5 -0.5 1 0.3 15.6 -0.5 1 0.35 15.7 -0.5 1 0.4 15.8 -0.5 1 0.45 15.9 -0.5 1 0.5 16 - - -0 0.5 0 12 -0 0.55 0 12.2 -0 0.6 0 12.4 -0 0.65 0 12.6 -0 0.7 0 12.8 -0 0.75 0 13 -0 0.8 0 13.2 -0 0.85 0 13.4 -0 0.9 0 13.6 -0 0.95 0 13.8 -0 1 0 14 - -0.05 0.5 0 12.1 -0.05 0.55 0 12.3 -0.05 0.6 0 12.5 -0.05 0.65 0 12.7 -0.05 0.7 0 12.9 -0.05 0.75 0 13.1 -0.05 0.8 0 13.3 -0.05 0.85 0 13.5 -0.05 0.9 0 13.7 -0.05 0.95 0 13.9 -0.05 1 0 14.1 - -0.1 0.5 0 12.2 -0.1 0.55 0 12.4 -0.1 0.6 0 12.6 -0.1 0.65 0 12.8 -0.1 0.7 0 13 -0.1 0.75 0 13.2 -0.1 0.8 0 13.4 -0.1 0.85 0 13.6 -0.1 0.9 0 13.8 -0.1 0.95 0 14 -0.1 1 0 14.2 - -0.15 0.5 0 12.3 -0.15 0.55 0 12.5 -0.15 0.6 0 12.7 -0.15 0.65 0 12.9 -0.15 0.7 0 13.1 -0.15 0.75 0 13.3 -0.15 0.8 0 13.5 -0.15 0.85 0 13.7 -0.15 0.9 0 13.9 -0.15 0.95 0 14.1 -0.15 1 0 14.3 - -0.2 0.5 0 12.4 -0.2 0.55 0 12.6 -0.2 0.6 0 12.8 -0.2 0.65 0 13 -0.2 0.7 0 13.2 -0.2 0.75 0 13.4 -0.2 0.8 0 13.6 -0.2 0.85 0 13.8 -0.2 0.9 0 14 -0.2 0.95 0 14.2 -0.2 1 0 14.4 - -0.25 0.5 0 12.5 -0.25 0.55 0 12.7 -0.25 0.6 0 12.9 -0.25 0.65 0 13.1 -0.25 0.7 0 13.3 -0.25 0.75 0 13.5 -0.25 0.8 0 13.7 -0.25 0.85 0 13.9 -0.25 0.9 0 14.1 -0.25 0.95 0 14.3 -0.25 1 0 14.5 - -0.3 0.5 0 12.6 -0.3 0.55 0 12.8 -0.3 0.6 0 13 -0.3 0.65 0 13.2 -0.3 0.7 0 13.4 -0.3 0.75 0 13.6 -0.3 0.8 0 13.8 -0.3 0.85 0 14 -0.3 0.9 0 14.2 -0.3 0.95 0 14.4 -0.3 1 0 14.6 - -0.35 0.5 0 12.7 -0.35 0.55 0 12.9 -0.35 0.6 0 13.1 -0.35 0.65 0 13.3 -0.35 0.7 0 13.5 -0.35 0.75 0 13.7 -0.35 0.8 0 13.9 -0.35 0.85 0 14.1 -0.35 0.9 0 14.3 -0.35 0.95 0 14.5 -0.35 1 0 14.7 - -0.4 0.5 0 12.8 -0.4 0.55 0 13 -0.4 0.6 0 13.2 -0.4 0.65 0 13.4 -0.4 0.7 0 13.6 -0.4 0.75 0 13.8 -0.4 0.8 0 14 -0.4 0.85 0 14.2 -0.4 0.9 0 14.4 -0.4 0.95 0 14.6 -0.4 1 0 14.8 - -0.45 0.5 0 12.9 -0.45 0.55 0 13.1 -0.45 0.6 0 13.3 -0.45 0.65 0 13.5 -0.45 0.7 0 13.7 -0.45 0.75 0 13.9 -0.45 0.8 0 14.1 -0.45 0.85 0 14.3 -0.45 0.9 0 14.5 -0.45 0.95 0 14.7 -0.45 1 0 14.9 - -0.5 0.5 0 13 -0.5 0.55 0 13.2 -0.5 0.6 0 13.4 -0.5 0.65 0 13.6 -0.5 0.7 0 13.8 -0.5 0.75 0 14 -0.5 0.8 0 14.2 -0.5 0.85 0 14.4 -0.5 0.9 0 14.6 -0.5 0.95 0 14.8 -0.5 1 0 15 - - -0 0.5 0 12 -0 0.5 0.05 11.8 -0 0.5 0.1 11.6 -0 0.5 0.15 11.4 -0 0.5 0.2 11.2 -0 0.5 0.25 11 -0 0.5 0.3 10.8 -0 0.5 0.35 10.6 -0 0.5 0.4 10.4 -0 0.5 0.45 10.2 -0 0.5 0.5 10 - -0 0.55 0 12.2 -0 0.55 0.05 12.05 -0 0.55 0.1 11.9 -0 0.55 0.15 11.75 -0 0.55 0.2 11.6 -0 0.55 0.25 11.45 -0 0.55 0.3 11.3 -0 0.55 0.35 11.15 -0 0.55 0.4 11 -0 0.55 0.45 10.85 -0 0.55 0.5 10.7 - -0 0.6 0 12.4 -0 0.6 0.05 12.3 -0 0.6 0.1 12.2 -0 0.6 0.15 12.1 -0 0.6 0.2 12 -0 0.6 0.25 11.9 -0 0.6 0.3 11.8 -0 0.6 0.35 11.7 -0 0.6 0.4 11.6 -0 0.6 0.45 11.5 -0 0.6 0.5 11.4 - -0 0.65 0 12.6 -0 0.65 0.05 12.55 -0 0.65 0.1 12.5 -0 0.65 0.15 12.45 -0 0.65 0.2 12.4 -0 0.65 0.25 12.35 -0 0.65 0.3 12.3 -0 0.65 0.35 12.25 -0 0.65 0.4 12.2 -0 0.65 0.45 12.15 -0 0.65 0.5 12.1 - -0 0.7 0 12.8 -0 0.7 0.05 12.8 -0 0.7 0.1 12.8 -0 0.7 0.15 12.8 -0 0.7 0.2 12.8 -0 0.7 0.25 12.8 -0 0.7 0.3 12.8 -0 0.7 0.35 12.8 -0 0.7 0.4 12.8 -0 0.7 0.45 12.8 -0 0.7 0.5 12.8 - -0 0.75 0 13 -0 0.75 0.05 13.05 -0 0.75 0.1 13.1 -0 0.75 0.15 13.15 -0 0.75 0.2 13.2 -0 0.75 0.25 13.25 -0 0.75 0.3 13.3 -0 0.75 0.35 13.35 -0 0.75 0.4 13.4 -0 0.75 0.45 13.45 -0 0.75 0.5 13.5 - -0 0.8 0 13.2 -0 0.8 0.05 13.3 -0 0.8 0.1 13.4 -0 0.8 0.15 13.5 -0 0.8 0.2 13.6 -0 0.8 0.25 13.7 -0 0.8 0.3 13.8 -0 0.8 0.35 13.9 -0 0.8 0.4 14 -0 0.8 0.45 14.1 -0 0.8 0.5 14.2 - -0 0.85 0 13.4 -0 0.85 0.05 13.55 -0 0.85 0.1 13.7 -0 0.85 0.15 13.85 -0 0.85 0.2 14 -0 0.85 0.25 14.15 -0 0.85 0.3 14.3 -0 0.85 0.35 14.45 -0 0.85 0.4 14.6 -0 0.85 0.45 14.75 -0 0.85 0.5 14.9 - -0 0.9 0 13.6 -0 0.9 0.05 13.8 -0 0.9 0.1 14 -0 0.9 0.15 14.2 -0 0.9 0.2 14.4 -0 0.9 0.25 14.6 -0 0.9 0.3 14.8 -0 0.9 0.35 15 -0 0.9 0.4 15.2 -0 0.9 0.45 15.4 -0 0.9 0.5 15.6 - -0 0.95 0 13.8 -0 0.95 0.05 14.05 -0 0.95 0.1 14.3 -0 0.95 0.15 14.55 -0 0.95 0.2 14.8 -0 0.95 0.25 15.05 -0 0.95 0.3 15.3 -0 0.95 0.35 15.55 -0 0.95 0.4 15.8 -0 0.95 0.45 16.05 -0 0.95 0.5 16.3 - -0 1 0 14 -0 1 0.05 14.3 -0 1 0.1 14.6 -0 1 0.15 14.9 -0 1 0.2 15.2 -0 1 0.25 15.5 -0 1 0.3 15.8 -0 1 0.35 16.1 -0 1 0.4 16.4 -0 1 0.45 16.7 -0 1 0.5 17 - - -0.5 1 0 15 -0.5 1 0.05 15.1 -0.5 1 0.1 15.2 -0.5 1 0.15 15.3 -0.5 1 0.2 15.4 -0.5 1 0.25 15.5 -0.5 1 0.3 15.6 -0.5 1 0.35 15.7 -0.5 1 0.4 15.8 -0.5 1 0.45 15.9 -0.5 1 0.5 16 - -0.55 1 0 15.4 -0.55 1 0.05 15.5 -0.55 1 0.1 15.6 -0.55 1 0.15 15.7 -0.55 1 0.2 15.8 -0.55 1 0.25 15.9 -0.55 1 0.3 16 -0.55 1 0.35 16.1 -0.55 1 0.4 16.2 -0.55 1 0.45 16.3 -0.55 1 0.5 16.4 - -0.6 1 0 15.8 -0.6 1 0.05 15.9 -0.6 1 0.1 16 -0.6 1 0.15 16.1 -0.6 1 0.2 16.2 -0.6 1 0.25 16.3 -0.6 1 0.3 16.4 -0.6 1 0.35 16.5 -0.6 1 0.4 16.6 -0.6 1 0.45 16.7 -0.6 1 0.5 16.8 - -0.65 1 0 16.2 -0.65 1 0.05 16.3 -0.65 1 0.1 16.4 -0.65 1 0.15 16.5 -0.65 1 0.2 16.6 -0.65 1 0.25 16.7 -0.65 1 0.3 16.8 -0.65 1 0.35 16.9 -0.65 1 0.4 17 -0.65 1 0.45 17.1 -0.65 1 0.5 17.2 - -0.7 1 0 16.6 -0.7 1 0.05 16.7 -0.7 1 0.1 16.8 -0.7 1 0.15 16.9 -0.7 1 0.2 17 -0.7 1 0.25 17.1 -0.7 1 0.3 17.2 -0.7 1 0.35 17.3 -0.7 1 0.4 17.4 -0.7 1 0.45 17.5 -0.7 1 0.5 17.6 - -0.75 1 0 17 -0.75 1 0.05 17.1 -0.75 1 0.1 17.2 -0.75 1 0.15 17.3 -0.75 1 0.2 17.4 -0.75 1 0.25 17.5 -0.75 1 0.3 17.6 -0.75 1 0.35 17.7 -0.75 1 0.4 17.8 -0.75 1 0.45 17.9 -0.75 1 0.5 18 - -0.8 1 0 17.4 -0.8 1 0.05 17.5 -0.8 1 0.1 17.6 -0.8 1 0.15 17.7 -0.8 1 0.2 17.8 -0.8 1 0.25 17.9 -0.8 1 0.3 18 -0.8 1 0.35 18.1 -0.8 1 0.4 18.2 -0.8 1 0.45 18.3 -0.8 1 0.5 18.4 - -0.85 1 0 17.8 -0.85 1 0.05 17.9 -0.85 1 0.1 18 -0.85 1 0.15 18.1 -0.85 1 0.2 18.2 -0.85 1 0.25 18.3 -0.85 1 0.3 18.4 -0.85 1 0.35 18.5 -0.85 1 0.4 18.6 -0.85 1 0.45 18.7 -0.85 1 0.5 18.8 - -0.9 1 0 18.2 -0.9 1 0.05 18.3 -0.9 1 0.1 18.4 -0.9 1 0.15 18.5 -0.9 1 0.2 18.6 -0.9 1 0.25 18.7 -0.9 1 0.3 18.8 -0.9 1 0.35 18.9 -0.9 1 0.4 19 -0.9 1 0.45 19.1 -0.9 1 0.5 19.2 - -0.95 1 0 18.6 -0.95 1 0.05 18.7 -0.95 1 0.1 18.8 -0.95 1 0.15 18.9 -0.95 1 0.2 19 -0.95 1 0.25 19.1 -0.95 1 0.3 19.2 -0.95 1 0.35 19.3 -0.95 1 0.4 19.4 -0.95 1 0.45 19.5 -0.95 1 0.5 19.6 - -1 1 0 19 -1 1 0.05 19.1 -1 1 0.1 19.2 -1 1 0.15 19.3 -1 1 0.2 19.4 -1 1 0.25 19.5 -1 1 0.3 19.6 -1 1 0.35 19.7 -1 1 0.4 19.8 -1 1 0.45 19.9 -1 1 0.5 20 - - -0.5 0.5 0 13 -0.5 0.55 0 13.2 -0.5 0.6 0 13.4 -0.5 0.65 0 13.6 -0.5 0.7 0 13.8 -0.5 0.75 0 14 -0.5 0.8 0 14.2 -0.5 0.85 0 14.4 -0.5 0.9 0 14.6 -0.5 0.95 0 14.8 -0.5 1 0 15 - -0.55 0.5 0 13.5 -0.55 0.55 0 13.69 -0.55 0.6 0 13.88 -0.55 0.65 0 14.07 -0.55 0.7 0 14.26 -0.55 0.75 0 14.45 -0.55 0.8 0 14.64 -0.55 0.85 0 14.83 -0.55 0.9 0 15.02 -0.55 0.95 0 15.21 -0.55 1 0 15.4 - -0.6 0.5 0 14 -0.6 0.55 0 14.18 -0.6 0.6 0 14.36 -0.6 0.65 0 14.54 -0.6 0.7 0 14.72 -0.6 0.75 0 14.9 -0.6 0.8 0 15.08 -0.6 0.85 0 15.26 -0.6 0.9 0 15.44 -0.6 0.95 0 15.62 -0.6 1 0 15.8 - -0.65 0.5 0 14.5 -0.65 0.55 0 14.67 -0.65 0.6 0 14.84 -0.65 0.65 0 15.01 -0.65 0.7 0 15.18 -0.65 0.75 0 15.35 -0.65 0.8 0 15.52 -0.65 0.85 0 15.69 -0.65 0.9 0 15.86 -0.65 0.95 0 16.03 -0.65 1 0 16.2 - -0.7 0.5 0 15 -0.7 0.55 0 15.16 -0.7 0.6 0 15.32 -0.7 0.65 0 15.48 -0.7 0.7 0 15.64 -0.7 0.75 0 15.8 -0.7 0.8 0 15.96 -0.7 0.85 0 16.12 -0.7 0.9 0 16.28 -0.7 0.95 0 16.44 -0.7 1 0 16.6 - -0.75 0.5 0 15.5 -0.75 0.55 0 15.65 -0.75 0.6 0 15.8 -0.75 0.65 0 15.95 -0.75 0.7 0 16.1 -0.75 0.75 0 16.25 -0.75 0.8 0 16.4 -0.75 0.85 0 16.55 -0.75 0.9 0 16.7 -0.75 0.95 0 16.85 -0.75 1 0 17 - -0.8 0.5 0 16 -0.8 0.55 0 16.14 -0.8 0.6 0 16.28 -0.8 0.65 0 16.42 -0.8 0.7 0 16.56 -0.8 0.75 0 16.7 -0.8 0.8 0 16.84 -0.8 0.85 0 16.98 -0.8 0.9 0 17.12 -0.8 0.95 0 17.26 -0.8 1 0 17.4 - -0.85 0.5 0 16.5 -0.85 0.55 0 16.63 -0.85 0.6 0 16.76 -0.85 0.65 0 16.89 -0.85 0.7 0 17.02 -0.85 0.75 0 17.15 -0.85 0.8 0 17.28 -0.85 0.85 0 17.41 -0.85 0.9 0 17.54 -0.85 0.95 0 17.67 -0.85 1 0 17.8 - -0.9 0.5 0 17 -0.9 0.55 0 17.12 -0.9 0.6 0 17.24 -0.9 0.65 0 17.36 -0.9 0.7 0 17.48 -0.9 0.75 0 17.6 -0.9 0.8 0 17.72 -0.9 0.85 0 17.84 -0.9 0.9 0 17.96 -0.9 0.95 0 18.08 -0.9 1 0 18.2 - -0.95 0.5 0 17.5 -0.95 0.55 0 17.61 -0.95 0.6 0 17.72 -0.95 0.65 0 17.83 -0.95 0.7 0 17.94 -0.95 0.75 0 18.05 -0.95 0.8 0 18.16 -0.95 0.85 0 18.27 -0.95 0.9 0 18.38 -0.95 0.95 0 18.49 -0.95 1 0 18.6 - -1 0.5 0 18 -1 0.55 0 18.1 -1 0.6 0 18.2 -1 0.65 0 18.3 -1 0.7 0 18.4 -1 0.75 0 18.5 -1 0.8 0 18.6 -1 0.85 0 18.7 -1 0.9 0 18.8 -1 0.95 0 18.9 -1 1 0 19 - - -1 0.5 0 18 -1 0.5 0.05 16.7 -1 0.5 0.1 15.4 -1 0.5 0.15 14.1 -1 0.5 0.2 12.8 -1 0.5 0.25 11.5 -1 0.5 0.3 10.2 -1 0.5 0.35 8.9 -1 0.5 0.4 7.6 -1 0.5 0.45 6.3 -1 0.5 0.5 5 - -1 0.55 0 18.1 -1 0.55 0.05 16.94 -1 0.55 0.1 15.78 -1 0.55 0.15 14.62 -1 0.55 0.2 13.46 -1 0.55 0.25 12.3 -1 0.55 0.3 11.14 -1 0.55 0.35 9.98 -1 0.55 0.4 8.82 -1 0.55 0.45 7.66 -1 0.55 0.5 6.5 - -1 0.6 0 18.2 -1 0.6 0.05 17.18 -1 0.6 0.1 16.16 -1 0.6 0.15 15.14 -1 0.6 0.2 14.12 -1 0.6 0.25 13.1 -1 0.6 0.3 12.08 -1 0.6 0.35 11.06 -1 0.6 0.4 10.04 -1 0.6 0.45 9.02 -1 0.6 0.5 8 - -1 0.65 0 18.3 -1 0.65 0.05 17.42 -1 0.65 0.1 16.54 -1 0.65 0.15 15.66 -1 0.65 0.2 14.78 -1 0.65 0.25 13.9 -1 0.65 0.3 13.02 -1 0.65 0.35 12.14 -1 0.65 0.4 11.26 -1 0.65 0.45 10.38 -1 0.65 0.5 9.5 - -1 0.7 0 18.4 -1 0.7 0.05 17.66 -1 0.7 0.1 16.92 -1 0.7 0.15 16.18 -1 0.7 0.2 15.44 -1 0.7 0.25 14.7 -1 0.7 0.3 13.96 -1 0.7 0.35 13.22 -1 0.7 0.4 12.48 -1 0.7 0.45 11.74 -1 0.7 0.5 11 - -1 0.75 0 18.5 -1 0.75 0.05 17.9 -1 0.75 0.1 17.3 -1 0.75 0.15 16.7 -1 0.75 0.2 16.1 -1 0.75 0.25 15.5 -1 0.75 0.3 14.9 -1 0.75 0.35 14.3 -1 0.75 0.4 13.7 -1 0.75 0.45 13.1 -1 0.75 0.5 12.5 - -1 0.8 0 18.6 -1 0.8 0.05 18.14 -1 0.8 0.1 17.68 -1 0.8 0.15 17.22 -1 0.8 0.2 16.76 -1 0.8 0.25 16.3 -1 0.8 0.3 15.84 -1 0.8 0.35 15.38 -1 0.8 0.4 14.92 -1 0.8 0.45 14.46 -1 0.8 0.5 14 - -1 0.85 0 18.7 -1 0.85 0.05 18.38 -1 0.85 0.1 18.06 -1 0.85 0.15 17.74 -1 0.85 0.2 17.42 -1 0.85 0.25 17.1 -1 0.85 0.3 16.78 -1 0.85 0.35 16.46 -1 0.85 0.4 16.14 -1 0.85 0.45 15.82 -1 0.85 0.5 15.5 - -1 0.9 0 18.8 -1 0.9 0.05 18.62 -1 0.9 0.1 18.44 -1 0.9 0.15 18.26 -1 0.9 0.2 18.08 -1 0.9 0.25 17.9 -1 0.9 0.3 17.72 -1 0.9 0.35 17.54 -1 0.9 0.4 17.36 -1 0.9 0.45 17.18 -1 0.9 0.5 17 - -1 0.95 0 18.9 -1 0.95 0.05 18.86 -1 0.95 0.1 18.82 -1 0.95 0.15 18.78 -1 0.95 0.2 18.74 -1 0.95 0.25 18.7 -1 0.95 0.3 18.66 -1 0.95 0.35 18.62 -1 0.95 0.4 18.58 -1 0.95 0.45 18.54 -1 0.95 0.5 18.5 - -1 1 0 19 -1 1 0.05 19.1 -1 1 0.1 19.2 -1 1 0.15 19.3 -1 1 0.2 19.4 -1 1 0.25 19.5 -1 1 0.3 19.6 -1 1 0.35 19.7 -1 1 0.4 19.8 -1 1 0.45 19.9 -1 1 0.5 20 - - -0.5 1 0.5 16 -0.5 1 0.55 16.6 -0.5 1 0.6 17.2 -0.5 1 0.65 17.8 -0.5 1 0.7 18.4 -0.5 1 0.75 19 -0.5 1 0.8 19.6 -0.5 1 0.85 20.2 -0.5 1 0.9 20.8 -0.5 1 0.95 21.4 -0.5 1 1 22 - -0.55 1 0.5 16.4 -0.55 1 0.55 16.95 -0.55 1 0.6 17.5 -0.55 1 0.65 18.05 -0.55 1 0.7 18.6 -0.55 1 0.75 19.15 -0.55 1 0.8 19.7 -0.55 1 0.85 20.25 -0.55 1 0.9 20.8 -0.55 1 0.95 21.35 -0.55 1 1 21.9 - -0.6 1 0.5 16.8 -0.6 1 0.55 17.3 -0.6 1 0.6 17.8 -0.6 1 0.65 18.3 -0.6 1 0.7 18.8 -0.6 1 0.75 19.3 -0.6 1 0.8 19.8 -0.6 1 0.85 20.3 -0.6 1 0.9 20.8 -0.6 1 0.95 21.3 -0.6 1 1 21.8 - -0.65 1 0.5 17.2 -0.65 1 0.55 17.65 -0.65 1 0.6 18.1 -0.65 1 0.65 18.55 -0.65 1 0.7 19 -0.65 1 0.75 19.45 -0.65 1 0.8 19.9 -0.65 1 0.85 20.35 -0.65 1 0.9 20.8 -0.65 1 0.95 21.25 -0.65 1 1 21.7 - -0.7 1 0.5 17.6 -0.7 1 0.55 18 -0.7 1 0.6 18.4 -0.7 1 0.65 18.8 -0.7 1 0.7 19.2 -0.7 1 0.75 19.6 -0.7 1 0.8 20 -0.7 1 0.85 20.4 -0.7 1 0.9 20.8 -0.7 1 0.95 21.2 -0.7 1 1 21.6 - -0.75 1 0.5 18 -0.75 1 0.55 18.35 -0.75 1 0.6 18.7 -0.75 1 0.65 19.05 -0.75 1 0.7 19.4 -0.75 1 0.75 19.75 -0.75 1 0.8 20.1 -0.75 1 0.85 20.45 -0.75 1 0.9 20.8 -0.75 1 0.95 21.15 -0.75 1 1 21.5 - -0.8 1 0.5 18.4 -0.8 1 0.55 18.7 -0.8 1 0.6 19 -0.8 1 0.65 19.3 -0.8 1 0.7 19.6 -0.8 1 0.75 19.9 -0.8 1 0.8 20.2 -0.8 1 0.85 20.5 -0.8 1 0.9 20.8 -0.8 1 0.95 21.1 -0.8 1 1 21.4 - -0.85 1 0.5 18.8 -0.85 1 0.55 19.05 -0.85 1 0.6 19.3 -0.85 1 0.65 19.55 -0.85 1 0.7 19.8 -0.85 1 0.75 20.05 -0.85 1 0.8 20.3 -0.85 1 0.85 20.55 -0.85 1 0.9 20.8 -0.85 1 0.95 21.05 -0.85 1 1 21.3 - -0.9 1 0.5 19.2 -0.9 1 0.55 19.4 -0.9 1 0.6 19.6 -0.9 1 0.65 19.8 -0.9 1 0.7 20 -0.9 1 0.75 20.2 -0.9 1 0.8 20.4 -0.9 1 0.85 20.6 -0.9 1 0.9 20.8 -0.9 1 0.95 21 -0.9 1 1 21.2 - -0.95 1 0.5 19.6 -0.95 1 0.55 19.75 -0.95 1 0.6 19.9 -0.95 1 0.65 20.05 -0.95 1 0.7 20.2 -0.95 1 0.75 20.35 -0.95 1 0.8 20.5 -0.95 1 0.85 20.65 -0.95 1 0.9 20.8 -0.95 1 0.95 20.95 -0.95 1 1 21.1 - -1 1 0.5 20 -1 1 0.55 20.1 -1 1 0.6 20.2 -1 1 0.65 20.3 -1 1 0.7 20.4 -1 1 0.75 20.5 -1 1 0.8 20.6 -1 1 0.85 20.7 -1 1 0.9 20.8 -1 1 0.95 20.9 -1 1 1 21 - - -1 0.5 0.5 5 -1 0.5 0.55 5.1 -1 0.5 0.6 5.2 -1 0.5 0.65 5.3 -1 0.5 0.7 5.4 -1 0.5 0.75 5.5 -1 0.5 0.8 5.6 -1 0.5 0.85 5.7 -1 0.5 0.9 5.8 -1 0.5 0.95 5.9 -1 0.5 1 6 - -1 0.55 0.5 6.5 -1 0.55 0.55 6.6 -1 0.55 0.6 6.7 -1 0.55 0.65 6.8 -1 0.55 0.7 6.9 -1 0.55 0.75 7 -1 0.55 0.8 7.1 -1 0.55 0.85 7.2 -1 0.55 0.9 7.3 -1 0.55 0.95 7.4 -1 0.55 1 7.5 - -1 0.6 0.5 8 -1 0.6 0.55 8.1 -1 0.6 0.6 8.2 -1 0.6 0.65 8.3 -1 0.6 0.7 8.4 -1 0.6 0.75 8.5 -1 0.6 0.8 8.6 -1 0.6 0.85 8.7 -1 0.6 0.9 8.8 -1 0.6 0.95 8.9 -1 0.6 1 9 - -1 0.65 0.5 9.5 -1 0.65 0.55 9.6 -1 0.65 0.6 9.7 -1 0.65 0.65 9.8 -1 0.65 0.7 9.9 -1 0.65 0.75 10 -1 0.65 0.8 10.1 -1 0.65 0.85 10.2 -1 0.65 0.9 10.3 -1 0.65 0.95 10.4 -1 0.65 1 10.5 - -1 0.7 0.5 11 -1 0.7 0.55 11.1 -1 0.7 0.6 11.2 -1 0.7 0.65 11.3 -1 0.7 0.7 11.4 -1 0.7 0.75 11.5 -1 0.7 0.8 11.6 -1 0.7 0.85 11.7 -1 0.7 0.9 11.8 -1 0.7 0.95 11.9 -1 0.7 1 12 - -1 0.75 0.5 12.5 -1 0.75 0.55 12.6 -1 0.75 0.6 12.7 -1 0.75 0.65 12.8 -1 0.75 0.7 12.9 -1 0.75 0.75 13 -1 0.75 0.8 13.1 -1 0.75 0.85 13.2 -1 0.75 0.9 13.3 -1 0.75 0.95 13.4 -1 0.75 1 13.5 - -1 0.8 0.5 14 -1 0.8 0.55 14.1 -1 0.8 0.6 14.2 -1 0.8 0.65 14.3 -1 0.8 0.7 14.4 -1 0.8 0.75 14.5 -1 0.8 0.8 14.6 -1 0.8 0.85 14.7 -1 0.8 0.9 14.8 -1 0.8 0.95 14.9 -1 0.8 1 15 - -1 0.85 0.5 15.5 -1 0.85 0.55 15.6 -1 0.85 0.6 15.7 -1 0.85 0.65 15.8 -1 0.85 0.7 15.9 -1 0.85 0.75 16 -1 0.85 0.8 16.1 -1 0.85 0.85 16.2 -1 0.85 0.9 16.3 -1 0.85 0.95 16.4 -1 0.85 1 16.5 - -1 0.9 0.5 17 -1 0.9 0.55 17.1 -1 0.9 0.6 17.2 -1 0.9 0.65 17.3 -1 0.9 0.7 17.4 -1 0.9 0.75 17.5 -1 0.9 0.8 17.6 -1 0.9 0.85 17.7 -1 0.9 0.9 17.8 -1 0.9 0.95 17.9 -1 0.9 1 18 - -1 0.95 0.5 18.5 -1 0.95 0.55 18.6 -1 0.95 0.6 18.7 -1 0.95 0.65 18.8 -1 0.95 0.7 18.9 -1 0.95 0.75 19 -1 0.95 0.8 19.1 -1 0.95 0.85 19.2 -1 0.95 0.9 19.3 -1 0.95 0.95 19.4 -1 0.95 1 19.5 - -1 1 0.5 20 -1 1 0.55 20.1 -1 1 0.6 20.2 -1 1 0.65 20.3 -1 1 0.7 20.4 -1 1 0.75 20.5 -1 1 0.8 20.6 -1 1 0.85 20.7 -1 1 0.9 20.8 -1 1 0.95 20.9 -1 1 1 21 - - -0.5 0.5 1 7 -0.5 0.55 1 8.5 -0.5 0.6 1 10 -0.5 0.65 1 11.5 -0.5 0.7 1 13 -0.5 0.75 1 14.5 -0.5 0.8 1 16 -0.5 0.85 1 17.5 -0.5 0.9 1 19 -0.5 0.95 1 20.5 -0.5 1 1 22 - -0.55 0.5 1 6.9 -0.55 0.55 1 8.4 -0.55 0.6 1 9.9 -0.55 0.65 1 11.4 -0.55 0.7 1 12.9 -0.55 0.75 1 14.4 -0.55 0.8 1 15.9 -0.55 0.85 1 17.4 -0.55 0.9 1 18.9 -0.55 0.95 1 20.4 -0.55 1 1 21.9 - -0.6 0.5 1 6.8 -0.6 0.55 1 8.3 -0.6 0.6 1 9.8 -0.6 0.65 1 11.3 -0.6 0.7 1 12.8 -0.6 0.75 1 14.3 -0.6 0.8 1 15.8 -0.6 0.85 1 17.3 -0.6 0.9 1 18.8 -0.6 0.95 1 20.3 -0.6 1 1 21.8 - -0.65 0.5 1 6.7 -0.65 0.55 1 8.2 -0.65 0.6 1 9.7 -0.65 0.65 1 11.2 -0.65 0.7 1 12.7 -0.65 0.75 1 14.2 -0.65 0.8 1 15.7 -0.65 0.85 1 17.2 -0.65 0.9 1 18.7 -0.65 0.95 1 20.2 -0.65 1 1 21.7 - -0.7 0.5 1 6.6 -0.7 0.55 1 8.1 -0.7 0.6 1 9.6 -0.7 0.65 1 11.1 -0.7 0.7 1 12.6 -0.7 0.75 1 14.1 -0.7 0.8 1 15.6 -0.7 0.85 1 17.1 -0.7 0.9 1 18.6 -0.7 0.95 1 20.1 -0.7 1 1 21.6 - -0.75 0.5 1 6.5 -0.75 0.55 1 8 -0.75 0.6 1 9.5 -0.75 0.65 1 11 -0.75 0.7 1 12.5 -0.75 0.75 1 14 -0.75 0.8 1 15.5 -0.75 0.85 1 17 -0.75 0.9 1 18.5 -0.75 0.95 1 20 -0.75 1 1 21.5 - -0.8 0.5 1 6.4 -0.8 0.55 1 7.9 -0.8 0.6 1 9.4 -0.8 0.65 1 10.9 -0.8 0.7 1 12.4 -0.8 0.75 1 13.9 -0.8 0.8 1 15.4 -0.8 0.85 1 16.9 -0.8 0.9 1 18.4 -0.8 0.95 1 19.9 -0.8 1 1 21.4 - -0.85 0.5 1 6.3 -0.85 0.55 1 7.8 -0.85 0.6 1 9.3 -0.85 0.65 1 10.8 -0.85 0.7 1 12.3 -0.85 0.75 1 13.8 -0.85 0.8 1 15.3 -0.85 0.85 1 16.8 -0.85 0.9 1 18.3 -0.85 0.95 1 19.8 -0.85 1 1 21.3 - -0.9 0.5 1 6.2 -0.9 0.55 1 7.7 -0.9 0.6 1 9.2 -0.9 0.65 1 10.7 -0.9 0.7 1 12.2 -0.9 0.75 1 13.7 -0.9 0.8 1 15.2 -0.9 0.85 1 16.7 -0.9 0.9 1 18.2 -0.9 0.95 1 19.7 -0.9 1 1 21.2 - -0.95 0.5 1 6.1 -0.95 0.55 1 7.6 -0.95 0.6 1 9.1 -0.95 0.65 1 10.6 -0.95 0.7 1 12.1 -0.95 0.75 1 13.6 -0.95 0.8 1 15.1 -0.95 0.85 1 16.6 -0.95 0.9 1 18.1 -0.95 0.95 1 19.6 -0.95 1 1 21.1 - -1 0.5 1 6 -1 0.55 1 7.5 -1 0.6 1 9 -1 0.65 1 10.5 -1 0.7 1 12 -1 0.75 1 13.5 -1 0.8 1 15 -1 0.85 1 16.5 -1 0.9 1 18 -1 0.95 1 19.5 -1 1 1 21 - - -0 1 0.5 17 -0 1 0.55 17.6 -0 1 0.6 18.2 -0 1 0.65 18.8 -0 1 0.7 19.4 -0 1 0.75 20 -0 1 0.8 20.6 -0 1 0.85 21.2 -0 1 0.9 21.8 -0 1 0.95 22.4 -0 1 1 23 - -0.05 1 0.5 16.9 -0.05 1 0.55 17.5 -0.05 1 0.6 18.1 -0.05 1 0.65 18.7 -0.05 1 0.7 19.3 -0.05 1 0.75 19.9 -0.05 1 0.8 20.5 -0.05 1 0.85 21.1 -0.05 1 0.9 21.7 -0.05 1 0.95 22.3 -0.05 1 1 22.9 - -0.1 1 0.5 16.8 -0.1 1 0.55 17.4 -0.1 1 0.6 18 -0.1 1 0.65 18.6 -0.1 1 0.7 19.2 -0.1 1 0.75 19.8 -0.1 1 0.8 20.4 -0.1 1 0.85 21 -0.1 1 0.9 21.6 -0.1 1 0.95 22.2 -0.1 1 1 22.8 - -0.15 1 0.5 16.7 -0.15 1 0.55 17.3 -0.15 1 0.6 17.9 -0.15 1 0.65 18.5 -0.15 1 0.7 19.1 -0.15 1 0.75 19.7 -0.15 1 0.8 20.3 -0.15 1 0.85 20.9 -0.15 1 0.9 21.5 -0.15 1 0.95 22.1 -0.15 1 1 22.7 - -0.2 1 0.5 16.6 -0.2 1 0.55 17.2 -0.2 1 0.6 17.8 -0.2 1 0.65 18.4 -0.2 1 0.7 19 -0.2 1 0.75 19.6 -0.2 1 0.8 20.2 -0.2 1 0.85 20.8 -0.2 1 0.9 21.4 -0.2 1 0.95 22 -0.2 1 1 22.6 - -0.25 1 0.5 16.5 -0.25 1 0.55 17.1 -0.25 1 0.6 17.7 -0.25 1 0.65 18.3 -0.25 1 0.7 18.9 -0.25 1 0.75 19.5 -0.25 1 0.8 20.1 -0.25 1 0.85 20.7 -0.25 1 0.9 21.3 -0.25 1 0.95 21.9 -0.25 1 1 22.5 - -0.3 1 0.5 16.4 -0.3 1 0.55 17 -0.3 1 0.6 17.6 -0.3 1 0.65 18.2 -0.3 1 0.7 18.8 -0.3 1 0.75 19.4 -0.3 1 0.8 20 -0.3 1 0.85 20.6 -0.3 1 0.9 21.2 -0.3 1 0.95 21.8 -0.3 1 1 22.4 - -0.35 1 0.5 16.3 -0.35 1 0.55 16.9 -0.35 1 0.6 17.5 -0.35 1 0.65 18.1 -0.35 1 0.7 18.7 -0.35 1 0.75 19.3 -0.35 1 0.8 19.9 -0.35 1 0.85 20.5 -0.35 1 0.9 21.1 -0.35 1 0.95 21.7 -0.35 1 1 22.3 - -0.4 1 0.5 16.2 -0.4 1 0.55 16.8 -0.4 1 0.6 17.4 -0.4 1 0.65 18 -0.4 1 0.7 18.6 -0.4 1 0.75 19.2 -0.4 1 0.8 19.8 -0.4 1 0.85 20.4 -0.4 1 0.9 21 -0.4 1 0.95 21.6 -0.4 1 1 22.2 - -0.45 1 0.5 16.1 -0.45 1 0.55 16.7 -0.45 1 0.6 17.3 -0.45 1 0.65 17.9 -0.45 1 0.7 18.5 -0.45 1 0.75 19.1 -0.45 1 0.8 19.7 -0.45 1 0.85 20.3 -0.45 1 0.9 20.9 -0.45 1 0.95 21.5 -0.45 1 1 22.1 - -0.5 1 0.5 16 -0.5 1 0.55 16.6 -0.5 1 0.6 17.2 -0.5 1 0.65 17.8 -0.5 1 0.7 18.4 -0.5 1 0.75 19 -0.5 1 0.8 19.6 -0.5 1 0.85 20.2 -0.5 1 0.9 20.8 -0.5 1 0.95 21.4 -0.5 1 1 22 - - -0 0.5 1 11 -0 0.55 1 12.2 -0 0.6 1 13.4 -0 0.65 1 14.6 -0 0.7 1 15.8 -0 0.75 1 17 -0 0.8 1 18.2 -0 0.85 1 19.4 -0 0.9 1 20.6 -0 0.95 1 21.8 -0 1 1 23 - -0.05 0.5 1 10.6 -0.05 0.55 1 11.83 -0.05 0.6 1 13.06 -0.05 0.65 1 14.29 -0.05 0.7 1 15.52 -0.05 0.75 1 16.75 -0.05 0.8 1 17.98 -0.05 0.85 1 19.21 -0.05 0.9 1 20.44 -0.05 0.95 1 21.67 -0.05 1 1 22.9 - -0.1 0.5 1 10.2 -0.1 0.55 1 11.46 -0.1 0.6 1 12.72 -0.1 0.65 1 13.98 -0.1 0.7 1 15.24 -0.1 0.75 1 16.5 -0.1 0.8 1 17.76 -0.1 0.85 1 19.02 -0.1 0.9 1 20.28 -0.1 0.95 1 21.54 -0.1 1 1 22.8 - -0.15 0.5 1 9.8 -0.15 0.55 1 11.09 -0.15 0.6 1 12.38 -0.15 0.65 1 13.67 -0.15 0.7 1 14.96 -0.15 0.75 1 16.25 -0.15 0.8 1 17.54 -0.15 0.85 1 18.83 -0.15 0.9 1 20.12 -0.15 0.95 1 21.41 -0.15 1 1 22.7 - -0.2 0.5 1 9.4 -0.2 0.55 1 10.72 -0.2 0.6 1 12.04 -0.2 0.65 1 13.36 -0.2 0.7 1 14.68 -0.2 0.75 1 16 -0.2 0.8 1 17.32 -0.2 0.85 1 18.64 -0.2 0.9 1 19.96 -0.2 0.95 1 21.28 -0.2 1 1 22.6 - -0.25 0.5 1 9 -0.25 0.55 1 10.35 -0.25 0.6 1 11.7 -0.25 0.65 1 13.05 -0.25 0.7 1 14.4 -0.25 0.75 1 15.75 -0.25 0.8 1 17.1 -0.25 0.85 1 18.45 -0.25 0.9 1 19.8 -0.25 0.95 1 21.15 -0.25 1 1 22.5 - -0.3 0.5 1 8.6 -0.3 0.55 1 9.98 -0.3 0.6 1 11.36 -0.3 0.65 1 12.74 -0.3 0.7 1 14.12 -0.3 0.75 1 15.5 -0.3 0.8 1 16.88 -0.3 0.85 1 18.26 -0.3 0.9 1 19.64 -0.3 0.95 1 21.02 -0.3 1 1 22.4 - -0.35 0.5 1 8.2 -0.35 0.55 1 9.61 -0.35 0.6 1 11.02 -0.35 0.65 1 12.43 -0.35 0.7 1 13.84 -0.35 0.75 1 15.25 -0.35 0.8 1 16.66 -0.35 0.85 1 18.07 -0.35 0.9 1 19.48 -0.35 0.95 1 20.89 -0.35 1 1 22.3 - -0.4 0.5 1 7.8 -0.4 0.55 1 9.24 -0.4 0.6 1 10.68 -0.4 0.65 1 12.12 -0.4 0.7 1 13.56 -0.4 0.75 1 15 -0.4 0.8 1 16.44 -0.4 0.85 1 17.88 -0.4 0.9 1 19.32 -0.4 0.95 1 20.76 -0.4 1 1 22.2 - -0.45 0.5 1 7.4 -0.45 0.55 1 8.87 -0.45 0.6 1 10.34 -0.45 0.65 1 11.81 -0.45 0.7 1 13.28 -0.45 0.75 1 14.75 -0.45 0.8 1 16.22 -0.45 0.85 1 17.69 -0.45 0.9 1 19.16 -0.45 0.95 1 20.63 -0.45 1 1 22.1 - -0.5 0.5 1 7 -0.5 0.55 1 8.5 -0.5 0.6 1 10 -0.5 0.65 1 11.5 -0.5 0.7 1 13 -0.5 0.75 1 14.5 -0.5 0.8 1 16 -0.5 0.85 1 17.5 -0.5 0.9 1 19 -0.5 0.95 1 20.5 -0.5 1 1 22 - - -0 0.5 0.5 10 -0 0.5 0.55 10.1 -0 0.5 0.6 10.2 -0 0.5 0.65 10.3 -0 0.5 0.7 10.4 -0 0.5 0.75 10.5 -0 0.5 0.8 10.6 -0 0.5 0.85 10.7 -0 0.5 0.9 10.8 -0 0.5 0.95 10.9 -0 0.5 1 11 - -0 0.55 0.5 10.7 -0 0.55 0.55 10.85 -0 0.55 0.6 11 -0 0.55 0.65 11.15 -0 0.55 0.7 11.3 -0 0.55 0.75 11.45 -0 0.55 0.8 11.6 -0 0.55 0.85 11.75 -0 0.55 0.9 11.9 -0 0.55 0.95 12.05 -0 0.55 1 12.2 - -0 0.6 0.5 11.4 -0 0.6 0.55 11.6 -0 0.6 0.6 11.8 -0 0.6 0.65 12 -0 0.6 0.7 12.2 -0 0.6 0.75 12.4 -0 0.6 0.8 12.6 -0 0.6 0.85 12.8 -0 0.6 0.9 13 -0 0.6 0.95 13.2 -0 0.6 1 13.4 - -0 0.65 0.5 12.1 -0 0.65 0.55 12.35 -0 0.65 0.6 12.6 -0 0.65 0.65 12.85 -0 0.65 0.7 13.1 -0 0.65 0.75 13.35 -0 0.65 0.8 13.6 -0 0.65 0.85 13.85 -0 0.65 0.9 14.1 -0 0.65 0.95 14.35 -0 0.65 1 14.6 - -0 0.7 0.5 12.8 -0 0.7 0.55 13.1 -0 0.7 0.6 13.4 -0 0.7 0.65 13.7 -0 0.7 0.7 14 -0 0.7 0.75 14.3 -0 0.7 0.8 14.6 -0 0.7 0.85 14.9 -0 0.7 0.9 15.2 -0 0.7 0.95 15.5 -0 0.7 1 15.8 - -0 0.75 0.5 13.5 -0 0.75 0.55 13.85 -0 0.75 0.6 14.2 -0 0.75 0.65 14.55 -0 0.75 0.7 14.9 -0 0.75 0.75 15.25 -0 0.75 0.8 15.6 -0 0.75 0.85 15.95 -0 0.75 0.9 16.3 -0 0.75 0.95 16.65 -0 0.75 1 17 - -0 0.8 0.5 14.2 -0 0.8 0.55 14.6 -0 0.8 0.6 15 -0 0.8 0.65 15.4 -0 0.8 0.7 15.8 -0 0.8 0.75 16.2 -0 0.8 0.8 16.6 -0 0.8 0.85 17 -0 0.8 0.9 17.4 -0 0.8 0.95 17.8 -0 0.8 1 18.2 - -0 0.85 0.5 14.9 -0 0.85 0.55 15.35 -0 0.85 0.6 15.8 -0 0.85 0.65 16.25 -0 0.85 0.7 16.7 -0 0.85 0.75 17.15 -0 0.85 0.8 17.6 -0 0.85 0.85 18.05 -0 0.85 0.9 18.5 -0 0.85 0.95 18.95 -0 0.85 1 19.4 - -0 0.9 0.5 15.6 -0 0.9 0.55 16.1 -0 0.9 0.6 16.6 -0 0.9 0.65 17.1 -0 0.9 0.7 17.6 -0 0.9 0.75 18.1 -0 0.9 0.8 18.6 -0 0.9 0.85 19.1 -0 0.9 0.9 19.6 -0 0.9 0.95 20.1 -0 0.9 1 20.6 - -0 0.95 0.5 16.3 -0 0.95 0.55 16.85 -0 0.95 0.6 17.4 -0 0.95 0.65 17.95 -0 0.95 0.7 18.5 -0 0.95 0.75 19.05 -0 0.95 0.8 19.6 -0 0.95 0.85 20.15 -0 0.95 0.9 20.7 -0 0.95 0.95 21.25 -0 0.95 1 21.8 - -0 1 0.5 17 -0 1 0.55 17.6 -0 1 0.6 18.2 -0 1 0.65 18.8 -0 1 0.7 19.4 -0 1 0.75 20 -0 1 0.8 20.6 -0 1 0.85 21.2 -0 1 0.9 21.8 -0 1 0.95 22.4 -0 1 1 23 - - -0 0 0 24 -0 0 0.025 24.3 -0 0 0.05 24.6 -0 0 0.075 24.9 -0 0 0.1 25.2 -0 0 0.125 25.5 -0 0 0.15 25.8 -0 0 0.175 26.1 -0 0 0.2 26.4 -0 0 0.225 26.7 -0 0 0.25 27 - -0.025 0 0 24.1 -0.025 0 0.025 24.38 -0.025 0 0.05 24.66 -0.025 0 0.075 24.94 -0.025 0 0.1 25.22 -0.025 0 0.125 25.5 -0.025 0 0.15 25.78 -0.025 0 0.175 26.06 -0.025 0 0.2 26.34 -0.025 0 0.225 26.62 -0.025 0 0.25 26.9 - -0.05 0 0 24.2 -0.05 0 0.025 24.46 -0.05 0 0.05 24.72 -0.05 0 0.075 24.98 -0.05 0 0.1 25.24 -0.05 0 0.125 25.5 -0.05 0 0.15 25.76 -0.05 0 0.175 26.02 -0.05 0 0.2 26.28 -0.05 0 0.225 26.54 -0.05 0 0.25 26.8 - -0.075 0 0 24.3 -0.075 0 0.025 24.54 -0.075 0 0.05 24.78 -0.075 0 0.075 25.02 -0.075 0 0.1 25.26 -0.075 0 0.125 25.5 -0.075 0 0.15 25.74 -0.075 0 0.175 25.98 -0.075 0 0.2 26.22 -0.075 0 0.225 26.46 -0.075 0 0.25 26.7 - -0.1 0 0 24.4 -0.1 0 0.025 24.62 -0.1 0 0.05 24.84 -0.1 0 0.075 25.06 -0.1 0 0.1 25.28 -0.1 0 0.125 25.5 -0.1 0 0.15 25.72 -0.1 0 0.175 25.94 -0.1 0 0.2 26.16 -0.1 0 0.225 26.38 -0.1 0 0.25 26.6 - -0.125 0 0 24.5 -0.125 0 0.025 24.7 -0.125 0 0.05 24.9 -0.125 0 0.075 25.1 -0.125 0 0.1 25.3 -0.125 0 0.125 25.5 -0.125 0 0.15 25.7 -0.125 0 0.175 25.9 -0.125 0 0.2 26.1 -0.125 0 0.225 26.3 -0.125 0 0.25 26.5 - -0.15 0 0 24.6 -0.15 0 0.025 24.78 -0.15 0 0.05 24.96 -0.15 0 0.075 25.14 -0.15 0 0.1 25.32 -0.15 0 0.125 25.5 -0.15 0 0.15 25.68 -0.15 0 0.175 25.86 -0.15 0 0.2 26.04 -0.15 0 0.225 26.22 -0.15 0 0.25 26.4 - -0.175 0 0 24.7 -0.175 0 0.025 24.86 -0.175 0 0.05 25.02 -0.175 0 0.075 25.18 -0.175 0 0.1 25.34 -0.175 0 0.125 25.5 -0.175 0 0.15 25.66 -0.175 0 0.175 25.82 -0.175 0 0.2 25.98 -0.175 0 0.225 26.14 -0.175 0 0.25 26.3 - -0.2 0 0 24.8 -0.2 0 0.025 24.94 -0.2 0 0.05 25.08 -0.2 0 0.075 25.22 -0.2 0 0.1 25.36 -0.2 0 0.125 25.5 -0.2 0 0.15 25.64 -0.2 0 0.175 25.78 -0.2 0 0.2 25.92 -0.2 0 0.225 26.06 -0.2 0 0.25 26.2 - -0.225 0 0 24.9 -0.225 0 0.025 25.02 -0.225 0 0.05 25.14 -0.225 0 0.075 25.26 -0.225 0 0.1 25.38 -0.225 0 0.125 25.5 -0.225 0 0.15 25.62 -0.225 0 0.175 25.74 -0.225 0 0.2 25.86 -0.225 0 0.225 25.98 -0.225 0 0.25 26.1 - -0.25 0 0 25 -0.25 0 0.025 25.1 -0.25 0 0.05 25.2 -0.25 0 0.075 25.3 -0.25 0 0.1 25.4 -0.25 0 0.125 25.5 -0.25 0 0.15 25.6 -0.25 0 0.175 25.7 -0.25 0 0.2 25.8 -0.25 0 0.225 25.9 -0.25 0 0.25 26 - - -0 0 0 24 -0 0.025 0 24.4 -0 0.05 0 24.8 -0 0.075 0 25.2 -0 0.1 0 25.6 -0 0.125 0 26 -0 0.15 0 26.4 -0 0.175 0 26.8 -0 0.2 0 27.2 -0 0.225 0 27.6 -0 0.25 0 28 - -0.025 0 0 24.1 -0.025 0.025 0 24.5 -0.025 0.05 0 24.9 -0.025 0.075 0 25.3 -0.025 0.1 0 25.7 -0.025 0.125 0 26.1 -0.025 0.15 0 26.5 -0.025 0.175 0 26.9 -0.025 0.2 0 27.3 -0.025 0.225 0 27.7 -0.025 0.25 0 28.1 - -0.05 0 0 24.2 -0.05 0.025 0 24.6 -0.05 0.05 0 25 -0.05 0.075 0 25.4 -0.05 0.1 0 25.8 -0.05 0.125 0 26.2 -0.05 0.15 0 26.6 -0.05 0.175 0 27 -0.05 0.2 0 27.4 -0.05 0.225 0 27.8 -0.05 0.25 0 28.2 - -0.075 0 0 24.3 -0.075 0.025 0 24.7 -0.075 0.05 0 25.1 -0.075 0.075 0 25.5 -0.075 0.1 0 25.9 -0.075 0.125 0 26.3 -0.075 0.15 0 26.7 -0.075 0.175 0 27.1 -0.075 0.2 0 27.5 -0.075 0.225 0 27.9 -0.075 0.25 0 28.3 - -0.1 0 0 24.4 -0.1 0.025 0 24.8 -0.1 0.05 0 25.2 -0.1 0.075 0 25.6 -0.1 0.1 0 26 -0.1 0.125 0 26.4 -0.1 0.15 0 26.8 -0.1 0.175 0 27.2 -0.1 0.2 0 27.6 -0.1 0.225 0 28 -0.1 0.25 0 28.4 - -0.125 0 0 24.5 -0.125 0.025 0 24.9 -0.125 0.05 0 25.3 -0.125 0.075 0 25.7 -0.125 0.1 0 26.1 -0.125 0.125 0 26.5 -0.125 0.15 0 26.9 -0.125 0.175 0 27.3 -0.125 0.2 0 27.7 -0.125 0.225 0 28.1 -0.125 0.25 0 28.5 - -0.15 0 0 24.6 -0.15 0.025 0 25 -0.15 0.05 0 25.4 -0.15 0.075 0 25.8 -0.15 0.1 0 26.2 -0.15 0.125 0 26.6 -0.15 0.15 0 27 -0.15 0.175 0 27.4 -0.15 0.2 0 27.8 -0.15 0.225 0 28.2 -0.15 0.25 0 28.6 - -0.175 0 0 24.7 -0.175 0.025 0 25.1 -0.175 0.05 0 25.5 -0.175 0.075 0 25.9 -0.175 0.1 0 26.3 -0.175 0.125 0 26.7 -0.175 0.15 0 27.1 -0.175 0.175 0 27.5 -0.175 0.2 0 27.9 -0.175 0.225 0 28.3 -0.175 0.25 0 28.7 - -0.2 0 0 24.8 -0.2 0.025 0 25.2 -0.2 0.05 0 25.6 -0.2 0.075 0 26 -0.2 0.1 0 26.4 -0.2 0.125 0 26.8 -0.2 0.15 0 27.2 -0.2 0.175 0 27.6 -0.2 0.2 0 28 -0.2 0.225 0 28.4 -0.2 0.25 0 28.8 - -0.225 0 0 24.9 -0.225 0.025 0 25.3 -0.225 0.05 0 25.7 -0.225 0.075 0 26.1 -0.225 0.1 0 26.5 -0.225 0.125 0 26.9 -0.225 0.15 0 27.3 -0.225 0.175 0 27.7 -0.225 0.2 0 28.1 -0.225 0.225 0 28.5 -0.225 0.25 0 28.9 - -0.25 0 0 25 -0.25 0.025 0 25.4 -0.25 0.05 0 25.8 -0.25 0.075 0 26.2 -0.25 0.1 0 26.6 -0.25 0.125 0 27 -0.25 0.15 0 27.4 -0.25 0.175 0 27.8 -0.25 0.2 0 28.2 -0.25 0.225 0 28.6 -0.25 0.25 0 29 - - -0 0 0 24 -0 0 0.025 24.3 -0 0 0.05 24.6 -0 0 0.075 24.9 -0 0 0.1 25.2 -0 0 0.125 25.5 -0 0 0.15 25.8 -0 0 0.175 26.1 -0 0 0.2 26.4 -0 0 0.225 26.7 -0 0 0.25 27 - -0 0.025 0 24.4 -0 0.025 0.025 24.7 -0 0.025 0.05 25 -0 0.025 0.075 25.3 -0 0.025 0.1 25.6 -0 0.025 0.125 25.9 -0 0.025 0.15 26.2 -0 0.025 0.175 26.5 -0 0.025 0.2 26.8 -0 0.025 0.225 27.1 -0 0.025 0.25 27.4 - -0 0.05 0 24.8 -0 0.05 0.025 25.1 -0 0.05 0.05 25.4 -0 0.05 0.075 25.7 -0 0.05 0.1 26 -0 0.05 0.125 26.3 -0 0.05 0.15 26.6 -0 0.05 0.175 26.9 -0 0.05 0.2 27.2 -0 0.05 0.225 27.5 -0 0.05 0.25 27.8 - -0 0.075 0 25.2 -0 0.075 0.025 25.5 -0 0.075 0.05 25.8 -0 0.075 0.075 26.1 -0 0.075 0.1 26.4 -0 0.075 0.125 26.7 -0 0.075 0.15 27 -0 0.075 0.175 27.3 -0 0.075 0.2 27.6 -0 0.075 0.225 27.9 -0 0.075 0.25 28.2 - -0 0.1 0 25.6 -0 0.1 0.025 25.9 -0 0.1 0.05 26.2 -0 0.1 0.075 26.5 -0 0.1 0.1 26.8 -0 0.1 0.125 27.1 -0 0.1 0.15 27.4 -0 0.1 0.175 27.7 -0 0.1 0.2 28 -0 0.1 0.225 28.3 -0 0.1 0.25 28.6 - -0 0.125 0 26 -0 0.125 0.025 26.3 -0 0.125 0.05 26.6 -0 0.125 0.075 26.9 -0 0.125 0.1 27.2 -0 0.125 0.125 27.5 -0 0.125 0.15 27.8 -0 0.125 0.175 28.1 -0 0.125 0.2 28.4 -0 0.125 0.225 28.7 -0 0.125 0.25 29 - -0 0.15 0 26.4 -0 0.15 0.025 26.7 -0 0.15 0.05 27 -0 0.15 0.075 27.3 -0 0.15 0.1 27.6 -0 0.15 0.125 27.9 -0 0.15 0.15 28.2 -0 0.15 0.175 28.5 -0 0.15 0.2 28.8 -0 0.15 0.225 29.1 -0 0.15 0.25 29.4 - -0 0.175 0 26.8 -0 0.175 0.025 27.1 -0 0.175 0.05 27.4 -0 0.175 0.075 27.7 -0 0.175 0.1 28 -0 0.175 0.125 28.3 -0 0.175 0.15 28.6 -0 0.175 0.175 28.9 -0 0.175 0.2 29.2 -0 0.175 0.225 29.5 -0 0.175 0.25 29.8 - -0 0.2 0 27.2 -0 0.2 0.025 27.5 -0 0.2 0.05 27.8 -0 0.2 0.075 28.1 -0 0.2 0.1 28.4 -0 0.2 0.125 28.7 -0 0.2 0.15 29 -0 0.2 0.175 29.3 -0 0.2 0.2 29.6 -0 0.2 0.225 29.9 -0 0.2 0.25 30.2 - -0 0.225 0 27.6 -0 0.225 0.025 27.9 -0 0.225 0.05 28.2 -0 0.225 0.075 28.5 -0 0.225 0.1 28.8 -0 0.225 0.125 29.1 -0 0.225 0.15 29.4 -0 0.225 0.175 29.7 -0 0.225 0.2 30 -0 0.225 0.225 30.3 -0 0.225 0.25 30.6 - -0 0.25 0 28 -0 0.25 0.025 28.3 -0 0.25 0.05 28.6 -0 0.25 0.075 28.9 -0 0.25 0.1 29.2 -0 0.25 0.125 29.5 -0 0.25 0.15 29.8 -0 0.25 0.175 30.1 -0 0.25 0.2 30.4 -0 0.25 0.225 30.7 -0 0.25 0.25 31 - - -0.25 0 0 25 -0.25 0 0.025 25.1 -0.25 0 0.05 25.2 -0.25 0 0.075 25.3 -0.25 0 0.1 25.4 -0.25 0 0.125 25.5 -0.25 0 0.15 25.6 -0.25 0 0.175 25.7 -0.25 0 0.2 25.8 -0.25 0 0.225 25.9 -0.25 0 0.25 26 - -0.275 0 0 25.7 -0.275 0 0.025 25.8 -0.275 0 0.05 25.9 -0.275 0 0.075 26 -0.275 0 0.1 26.1 -0.275 0 0.125 26.2 -0.275 0 0.15 26.3 -0.275 0 0.175 26.4 -0.275 0 0.2 26.5 -0.275 0 0.225 26.6 -0.275 0 0.25 26.7 - -0.3 0 0 26.4 -0.3 0 0.025 26.5 -0.3 0 0.05 26.6 -0.3 0 0.075 26.7 -0.3 0 0.1 26.8 -0.3 0 0.125 26.9 -0.3 0 0.15 27 -0.3 0 0.175 27.1 -0.3 0 0.2 27.2 -0.3 0 0.225 27.3 -0.3 0 0.25 27.4 - -0.325 0 0 27.1 -0.325 0 0.025 27.2 -0.325 0 0.05 27.3 -0.325 0 0.075 27.4 -0.325 0 0.1 27.5 -0.325 0 0.125 27.6 -0.325 0 0.15 27.7 -0.325 0 0.175 27.8 -0.325 0 0.2 27.9 -0.325 0 0.225 28 -0.325 0 0.25 28.1 - -0.35 0 0 27.8 -0.35 0 0.025 27.9 -0.35 0 0.05 28 -0.35 0 0.075 28.1 -0.35 0 0.1 28.2 -0.35 0 0.125 28.3 -0.35 0 0.15 28.4 -0.35 0 0.175 28.5 -0.35 0 0.2 28.6 -0.35 0 0.225 28.7 -0.35 0 0.25 28.8 - -0.375 0 0 28.5 -0.375 0 0.025 28.6 -0.375 0 0.05 28.7 -0.375 0 0.075 28.8 -0.375 0 0.1 28.9 -0.375 0 0.125 29 -0.375 0 0.15 29.1 -0.375 0 0.175 29.2 -0.375 0 0.2 29.3 -0.375 0 0.225 29.4 -0.375 0 0.25 29.5 - -0.4 0 0 29.2 -0.4 0 0.025 29.3 -0.4 0 0.05 29.4 -0.4 0 0.075 29.5 -0.4 0 0.1 29.6 -0.4 0 0.125 29.7 -0.4 0 0.15 29.8 -0.4 0 0.175 29.9 -0.4 0 0.2 30 -0.4 0 0.225 30.1 -0.4 0 0.25 30.2 - -0.425 0 0 29.9 -0.425 0 0.025 30 -0.425 0 0.05 30.1 -0.425 0 0.075 30.2 -0.425 0 0.1 30.3 -0.425 0 0.125 30.4 -0.425 0 0.15 30.5 -0.425 0 0.175 30.6 -0.425 0 0.2 30.7 -0.425 0 0.225 30.8 -0.425 0 0.25 30.9 - -0.45 0 0 30.6 -0.45 0 0.025 30.7 -0.45 0 0.05 30.8 -0.45 0 0.075 30.9 -0.45 0 0.1 31 -0.45 0 0.125 31.1 -0.45 0 0.15 31.2 -0.45 0 0.175 31.3 -0.45 0 0.2 31.4 -0.45 0 0.225 31.5 -0.45 0 0.25 31.6 - -0.475 0 0 31.3 -0.475 0 0.025 31.4 -0.475 0 0.05 31.5 -0.475 0 0.075 31.6 -0.475 0 0.1 31.7 -0.475 0 0.125 31.8 -0.475 0 0.15 31.9 -0.475 0 0.175 32 -0.475 0 0.2 32.1 -0.475 0 0.225 32.2 -0.475 0 0.25 32.3 - -0.5 0 0 32 -0.5 0 0.025 32.1 -0.5 0 0.05 32.2 -0.5 0 0.075 32.3 -0.5 0 0.1 32.4 -0.5 0 0.125 32.5 -0.5 0 0.15 32.6 -0.5 0 0.175 32.7 -0.5 0 0.2 32.8 -0.5 0 0.225 32.9 -0.5 0 0.25 33 - - -0.25 0 0 25 -0.25 0.025 0 25.4 -0.25 0.05 0 25.8 -0.25 0.075 0 26.2 -0.25 0.1 0 26.6 -0.25 0.125 0 27 -0.25 0.15 0 27.4 -0.25 0.175 0 27.8 -0.25 0.2 0 28.2 -0.25 0.225 0 28.6 -0.25 0.25 0 29 - -0.275 0 0 25.7 -0.275 0.025 0 26.08 -0.275 0.05 0 26.46 -0.275 0.075 0 26.84 -0.275 0.1 0 27.22 -0.275 0.125 0 27.6 -0.275 0.15 0 27.98 -0.275 0.175 0 28.36 -0.275 0.2 0 28.74 -0.275 0.225 0 29.12 -0.275 0.25 0 29.5 - -0.3 0 0 26.4 -0.3 0.025 0 26.76 -0.3 0.05 0 27.12 -0.3 0.075 0 27.48 -0.3 0.1 0 27.84 -0.3 0.125 0 28.2 -0.3 0.15 0 28.56 -0.3 0.175 0 28.92 -0.3 0.2 0 29.28 -0.3 0.225 0 29.64 -0.3 0.25 0 30 - -0.325 0 0 27.1 -0.325 0.025 0 27.44 -0.325 0.05 0 27.78 -0.325 0.075 0 28.12 -0.325 0.1 0 28.46 -0.325 0.125 0 28.8 -0.325 0.15 0 29.14 -0.325 0.175 0 29.48 -0.325 0.2 0 29.82 -0.325 0.225 0 30.16 -0.325 0.25 0 30.5 - -0.35 0 0 27.8 -0.35 0.025 0 28.12 -0.35 0.05 0 28.44 -0.35 0.075 0 28.76 -0.35 0.1 0 29.08 -0.35 0.125 0 29.4 -0.35 0.15 0 29.72 -0.35 0.175 0 30.04 -0.35 0.2 0 30.36 -0.35 0.225 0 30.68 -0.35 0.25 0 31 - -0.375 0 0 28.5 -0.375 0.025 0 28.8 -0.375 0.05 0 29.1 -0.375 0.075 0 29.4 -0.375 0.1 0 29.7 -0.375 0.125 0 30 -0.375 0.15 0 30.3 -0.375 0.175 0 30.6 -0.375 0.2 0 30.9 -0.375 0.225 0 31.2 -0.375 0.25 0 31.5 - -0.4 0 0 29.2 -0.4 0.025 0 29.48 -0.4 0.05 0 29.76 -0.4 0.075 0 30.04 -0.4 0.1 0 30.32 -0.4 0.125 0 30.6 -0.4 0.15 0 30.88 -0.4 0.175 0 31.16 -0.4 0.2 0 31.44 -0.4 0.225 0 31.72 -0.4 0.25 0 32 - -0.425 0 0 29.9 -0.425 0.025 0 30.16 -0.425 0.05 0 30.42 -0.425 0.075 0 30.68 -0.425 0.1 0 30.94 -0.425 0.125 0 31.2 -0.425 0.15 0 31.46 -0.425 0.175 0 31.72 -0.425 0.2 0 31.98 -0.425 0.225 0 32.24 -0.425 0.25 0 32.5 - -0.45 0 0 30.6 -0.45 0.025 0 30.84 -0.45 0.05 0 31.08 -0.45 0.075 0 31.32 -0.45 0.1 0 31.56 -0.45 0.125 0 31.8 -0.45 0.15 0 32.04 -0.45 0.175 0 32.28 -0.45 0.2 0 32.52 -0.45 0.225 0 32.76 -0.45 0.25 0 33 - -0.475 0 0 31.3 -0.475 0.025 0 31.52 -0.475 0.05 0 31.74 -0.475 0.075 0 31.96 -0.475 0.1 0 32.18 -0.475 0.125 0 32.4 -0.475 0.15 0 32.62 -0.475 0.175 0 32.84 -0.475 0.2 0 33.06 -0.475 0.225 0 33.28 -0.475 0.25 0 33.5 - -0.5 0 0 32 -0.5 0.025 0 32.2 -0.5 0.05 0 32.4 -0.5 0.075 0 32.6 -0.5 0.1 0 32.8 -0.5 0.125 0 33 -0.5 0.15 0 33.2 -0.5 0.175 0 33.4 -0.5 0.2 0 33.6 -0.5 0.225 0 33.8 -0.5 0.25 0 34 - - -0.25 0 0.25 26 -0.25 0 0.275 27 -0.25 0 0.3 28 -0.25 0 0.325 29 -0.25 0 0.35 30 -0.25 0 0.375 31 -0.25 0 0.4 32 -0.25 0 0.425 33 -0.25 0 0.45 34 -0.25 0 0.475 35 -0.25 0 0.5 36 - -0.275 0 0.25 26.7 -0.275 0 0.275 27.27 -0.275 0 0.3 27.84 -0.275 0 0.325 28.41 -0.275 0 0.35 28.98 -0.275 0 0.375 29.55 -0.275 0 0.4 30.12 -0.275 0 0.425 30.69 -0.275 0 0.45 31.26 -0.275 0 0.475 31.83 -0.275 0 0.5 32.4 - -0.3 0 0.25 27.4 -0.3 0 0.275 27.54 -0.3 0 0.3 27.68 -0.3 0 0.325 27.82 -0.3 0 0.35 27.96 -0.3 0 0.375 28.1 -0.3 0 0.4 28.24 -0.3 0 0.425 28.38 -0.3 0 0.45 28.52 -0.3 0 0.475 28.66 -0.3 0 0.5 28.8 - -0.325 0 0.25 28.1 -0.325 0 0.275 27.81 -0.325 0 0.3 27.52 -0.325 0 0.325 27.23 -0.325 0 0.35 26.94 -0.325 0 0.375 26.65 -0.325 0 0.4 26.36 -0.325 0 0.425 26.07 -0.325 0 0.45 25.78 -0.325 0 0.475 25.49 -0.325 0 0.5 25.2 - -0.35 0 0.25 28.8 -0.35 0 0.275 28.08 -0.35 0 0.3 27.36 -0.35 0 0.325 26.64 -0.35 0 0.35 25.92 -0.35 0 0.375 25.2 -0.35 0 0.4 24.48 -0.35 0 0.425 23.76 -0.35 0 0.45 23.04 -0.35 0 0.475 22.32 -0.35 0 0.5 21.6 - -0.375 0 0.25 29.5 -0.375 0 0.275 28.35 -0.375 0 0.3 27.2 -0.375 0 0.325 26.05 -0.375 0 0.35 24.9 -0.375 0 0.375 23.75 -0.375 0 0.4 22.6 -0.375 0 0.425 21.45 -0.375 0 0.45 20.3 -0.375 0 0.475 19.15 -0.375 0 0.5 18 - -0.4 0 0.25 30.2 -0.4 0 0.275 28.62 -0.4 0 0.3 27.04 -0.4 0 0.325 25.46 -0.4 0 0.35 23.88 -0.4 0 0.375 22.3 -0.4 0 0.4 20.72 -0.4 0 0.425 19.14 -0.4 0 0.45 17.56 -0.4 0 0.475 15.98 -0.4 0 0.5 14.4 - -0.425 0 0.25 30.9 -0.425 0 0.275 28.89 -0.425 0 0.3 26.88 -0.425 0 0.325 24.87 -0.425 0 0.35 22.86 -0.425 0 0.375 20.85 -0.425 0 0.4 18.84 -0.425 0 0.425 16.83 -0.425 0 0.45 14.82 -0.425 0 0.475 12.81 -0.425 0 0.5 10.8 - -0.45 0 0.25 31.6 -0.45 0 0.275 29.16 -0.45 0 0.3 26.72 -0.45 0 0.325 24.28 -0.45 0 0.35 21.84 -0.45 0 0.375 19.4 -0.45 0 0.4 16.96 -0.45 0 0.425 14.52 -0.45 0 0.45 12.08 -0.45 0 0.475 9.64 -0.45 0 0.5 7.2 - -0.475 0 0.25 32.3 -0.475 0 0.275 29.43 -0.475 0 0.3 26.56 -0.475 0 0.325 23.69 -0.475 0 0.35 20.82 -0.475 0 0.375 17.95 -0.475 0 0.4 15.08 -0.475 0 0.425 12.21 -0.475 0 0.45 9.34 -0.475 0 0.475 6.47 -0.475 0 0.5 3.6 - -0.5 0 0.25 33 -0.5 0 0.275 29.7 -0.5 0 0.3 26.4 -0.5 0 0.325 23.1 -0.5 0 0.35 19.8 -0.5 0 0.375 16.5 -0.5 0 0.4 13.2 -0.5 0 0.425 9.9 -0.5 0 0.45 6.6 -0.5 0 0.475 3.3 -0.5 0 0.5 0 - - -0 0 0.25 27 -0 0 0.275 25.1 -0 0 0.3 23.2 -0 0 0.325 21.3 -0 0 0.35 19.4 -0 0 0.375 17.5 -0 0 0.4 15.6 -0 0 0.425 13.7 -0 0 0.45 11.8 -0 0 0.475 9.9 -0 0 0.5 8 - -0.025 0 0.25 26.9 -0.025 0 0.275 25.29 -0.025 0 0.3 23.68 -0.025 0 0.325 22.07 -0.025 0 0.35 20.46 -0.025 0 0.375 18.85 -0.025 0 0.4 17.24 -0.025 0 0.425 15.63 -0.025 0 0.45 14.02 -0.025 0 0.475 12.41 -0.025 0 0.5 10.8 - -0.05 0 0.25 26.8 -0.05 0 0.275 25.48 -0.05 0 0.3 24.16 -0.05 0 0.325 22.84 -0.05 0 0.35 21.52 -0.05 0 0.375 20.2 -0.05 0 0.4 18.88 -0.05 0 0.425 17.56 -0.05 0 0.45 16.24 -0.05 0 0.475 14.92 -0.05 0 0.5 13.6 - -0.075 0 0.25 26.7 -0.075 0 0.275 25.67 -0.075 0 0.3 24.64 -0.075 0 0.325 23.61 -0.075 0 0.35 22.58 -0.075 0 0.375 21.55 -0.075 0 0.4 20.52 -0.075 0 0.425 19.49 -0.075 0 0.45 18.46 -0.075 0 0.475 17.43 -0.075 0 0.5 16.4 - -0.1 0 0.25 26.6 -0.1 0 0.275 25.86 -0.1 0 0.3 25.12 -0.1 0 0.325 24.38 -0.1 0 0.35 23.64 -0.1 0 0.375 22.9 -0.1 0 0.4 22.16 -0.1 0 0.425 21.42 -0.1 0 0.45 20.68 -0.1 0 0.475 19.94 -0.1 0 0.5 19.2 - -0.125 0 0.25 26.5 -0.125 0 0.275 26.05 -0.125 0 0.3 25.6 -0.125 0 0.325 25.15 -0.125 0 0.35 24.7 -0.125 0 0.375 24.25 -0.125 0 0.4 23.8 -0.125 0 0.425 23.35 -0.125 0 0.45 22.9 -0.125 0 0.475 22.45 -0.125 0 0.5 22 - -0.15 0 0.25 26.4 -0.15 0 0.275 26.24 -0.15 0 0.3 26.08 -0.15 0 0.325 25.92 -0.15 0 0.35 25.76 -0.15 0 0.375 25.6 -0.15 0 0.4 25.44 -0.15 0 0.425 25.28 -0.15 0 0.45 25.12 -0.15 0 0.475 24.96 -0.15 0 0.5 24.8 - -0.175 0 0.25 26.3 -0.175 0 0.275 26.43 -0.175 0 0.3 26.56 -0.175 0 0.325 26.69 -0.175 0 0.35 26.82 -0.175 0 0.375 26.95 -0.175 0 0.4 27.08 -0.175 0 0.425 27.21 -0.175 0 0.45 27.34 -0.175 0 0.475 27.47 -0.175 0 0.5 27.6 - -0.2 0 0.25 26.2 -0.2 0 0.275 26.62 -0.2 0 0.3 27.04 -0.2 0 0.325 27.46 -0.2 0 0.35 27.88 -0.2 0 0.375 28.3 -0.2 0 0.4 28.72 -0.2 0 0.425 29.14 -0.2 0 0.45 29.56 -0.2 0 0.475 29.98 -0.2 0 0.5 30.4 - -0.225 0 0.25 26.1 -0.225 0 0.275 26.81 -0.225 0 0.3 27.52 -0.225 0 0.325 28.23 -0.225 0 0.35 28.94 -0.225 0 0.375 29.65 -0.225 0 0.4 30.36 -0.225 0 0.425 31.07 -0.225 0 0.45 31.78 -0.225 0 0.475 32.49 -0.225 0 0.5 33.2 - -0.25 0 0.25 26 -0.25 0 0.275 27 -0.25 0 0.3 28 -0.25 0 0.325 29 -0.25 0 0.35 30 -0.25 0 0.375 31 -0.25 0 0.4 32 -0.25 0 0.425 33 -0.25 0 0.45 34 -0.25 0 0.475 35 -0.25 0 0.5 36 - - -0 0 0.25 27 -0 0 0.275 25.1 -0 0 0.3 23.2 -0 0 0.325 21.3 -0 0 0.35 19.4 -0 0 0.375 17.5 -0 0 0.4 15.6 -0 0 0.425 13.7 -0 0 0.45 11.8 -0 0 0.475 9.9 -0 0 0.5 8 - -0 0.025 0.25 27.4 -0 0.025 0.275 25.77 -0 0.025 0.3 24.14 -0 0.025 0.325 22.51 -0 0.025 0.35 20.88 -0 0.025 0.375 19.25 -0 0.025 0.4 17.62 -0 0.025 0.425 15.99 -0 0.025 0.45 14.36 -0 0.025 0.475 12.73 -0 0.025 0.5 11.1 - -0 0.05 0.25 27.8 -0 0.05 0.275 26.44 -0 0.05 0.3 25.08 -0 0.05 0.325 23.72 -0 0.05 0.35 22.36 -0 0.05 0.375 21 -0 0.05 0.4 19.64 -0 0.05 0.425 18.28 -0 0.05 0.45 16.92 -0 0.05 0.475 15.56 -0 0.05 0.5 14.2 - -0 0.075 0.25 28.2 -0 0.075 0.275 27.11 -0 0.075 0.3 26.02 -0 0.075 0.325 24.93 -0 0.075 0.35 23.84 -0 0.075 0.375 22.75 -0 0.075 0.4 21.66 -0 0.075 0.425 20.57 -0 0.075 0.45 19.48 -0 0.075 0.475 18.39 -0 0.075 0.5 17.3 - -0 0.1 0.25 28.6 -0 0.1 0.275 27.78 -0 0.1 0.3 26.96 -0 0.1 0.325 26.14 -0 0.1 0.35 25.32 -0 0.1 0.375 24.5 -0 0.1 0.4 23.68 -0 0.1 0.425 22.86 -0 0.1 0.45 22.04 -0 0.1 0.475 21.22 -0 0.1 0.5 20.4 - -0 0.125 0.25 29 -0 0.125 0.275 28.45 -0 0.125 0.3 27.9 -0 0.125 0.325 27.35 -0 0.125 0.35 26.8 -0 0.125 0.375 26.25 -0 0.125 0.4 25.7 -0 0.125 0.425 25.15 -0 0.125 0.45 24.6 -0 0.125 0.475 24.05 -0 0.125 0.5 23.5 - -0 0.15 0.25 29.4 -0 0.15 0.275 29.12 -0 0.15 0.3 28.84 -0 0.15 0.325 28.56 -0 0.15 0.35 28.28 -0 0.15 0.375 28 -0 0.15 0.4 27.72 -0 0.15 0.425 27.44 -0 0.15 0.45 27.16 -0 0.15 0.475 26.88 -0 0.15 0.5 26.6 - -0 0.175 0.25 29.8 -0 0.175 0.275 29.79 -0 0.175 0.3 29.78 -0 0.175 0.325 29.77 -0 0.175 0.35 29.76 -0 0.175 0.375 29.75 -0 0.175 0.4 29.74 -0 0.175 0.425 29.73 -0 0.175 0.45 29.72 -0 0.175 0.475 29.71 -0 0.175 0.5 29.7 - -0 0.2 0.25 30.2 -0 0.2 0.275 30.46 -0 0.2 0.3 30.72 -0 0.2 0.325 30.98 -0 0.2 0.35 31.24 -0 0.2 0.375 31.5 -0 0.2 0.4 31.76 -0 0.2 0.425 32.02 -0 0.2 0.45 32.28 -0 0.2 0.475 32.54 -0 0.2 0.5 32.8 - -0 0.225 0.25 30.6 -0 0.225 0.275 31.13 -0 0.225 0.3 31.66 -0 0.225 0.325 32.19 -0 0.225 0.35 32.72 -0 0.225 0.375 33.25 -0 0.225 0.4 33.78 -0 0.225 0.425 34.31 -0 0.225 0.45 34.84 -0 0.225 0.475 35.37 -0 0.225 0.5 35.9 - -0 0.25 0.25 31 -0 0.25 0.275 31.8 -0 0.25 0.3 32.6 -0 0.25 0.325 33.4 -0 0.25 0.35 34.2 -0 0.25 0.375 35 -0 0.25 0.4 35.8 -0 0.25 0.425 36.6 -0 0.25 0.45 37.4 -0 0.25 0.475 38.2 -0 0.25 0.5 39 - - -0 0.25 0 28 -0 0.275 0 26.4 -0 0.3 0 24.8 -0 0.325 0 23.2 -0 0.35 0 21.6 -0 0.375 0 20 -0 0.4 0 18.4 -0 0.425 0 16.8 -0 0.45 0 15.2 -0 0.475 0 13.6 -0 0.5 0 12 - -0.025 0.25 0 28.1 -0.025 0.275 0 26.77 -0.025 0.3 0 25.44 -0.025 0.325 0 24.11 -0.025 0.35 0 22.78 -0.025 0.375 0 21.45 -0.025 0.4 0 20.12 -0.025 0.425 0 18.79 -0.025 0.45 0 17.46 -0.025 0.475 0 16.13 -0.025 0.5 0 14.8 - -0.05 0.25 0 28.2 -0.05 0.275 0 27.14 -0.05 0.3 0 26.08 -0.05 0.325 0 25.02 -0.05 0.35 0 23.96 -0.05 0.375 0 22.9 -0.05 0.4 0 21.84 -0.05 0.425 0 20.78 -0.05 0.45 0 19.72 -0.05 0.475 0 18.66 -0.05 0.5 0 17.6 - -0.075 0.25 0 28.3 -0.075 0.275 0 27.51 -0.075 0.3 0 26.72 -0.075 0.325 0 25.93 -0.075 0.35 0 25.14 -0.075 0.375 0 24.35 -0.075 0.4 0 23.56 -0.075 0.425 0 22.77 -0.075 0.45 0 21.98 -0.075 0.475 0 21.19 -0.075 0.5 0 20.4 - -0.1 0.25 0 28.4 -0.1 0.275 0 27.88 -0.1 0.3 0 27.36 -0.1 0.325 0 26.84 -0.1 0.35 0 26.32 -0.1 0.375 0 25.8 -0.1 0.4 0 25.28 -0.1 0.425 0 24.76 -0.1 0.45 0 24.24 -0.1 0.475 0 23.72 -0.1 0.5 0 23.2 - -0.125 0.25 0 28.5 -0.125 0.275 0 28.25 -0.125 0.3 0 28 -0.125 0.325 0 27.75 -0.125 0.35 0 27.5 -0.125 0.375 0 27.25 -0.125 0.4 0 27 -0.125 0.425 0 26.75 -0.125 0.45 0 26.5 -0.125 0.475 0 26.25 -0.125 0.5 0 26 - -0.15 0.25 0 28.6 -0.15 0.275 0 28.62 -0.15 0.3 0 28.64 -0.15 0.325 0 28.66 -0.15 0.35 0 28.68 -0.15 0.375 0 28.7 -0.15 0.4 0 28.72 -0.15 0.425 0 28.74 -0.15 0.45 0 28.76 -0.15 0.475 0 28.78 -0.15 0.5 0 28.8 - -0.175 0.25 0 28.7 -0.175 0.275 0 28.99 -0.175 0.3 0 29.28 -0.175 0.325 0 29.57 -0.175 0.35 0 29.86 -0.175 0.375 0 30.15 -0.175 0.4 0 30.44 -0.175 0.425 0 30.73 -0.175 0.45 0 31.02 -0.175 0.475 0 31.31 -0.175 0.5 0 31.6 - -0.2 0.25 0 28.8 -0.2 0.275 0 29.36 -0.2 0.3 0 29.92 -0.2 0.325 0 30.48 -0.2 0.35 0 31.04 -0.2 0.375 0 31.6 -0.2 0.4 0 32.16 -0.2 0.425 0 32.72 -0.2 0.45 0 33.28 -0.2 0.475 0 33.84 -0.2 0.5 0 34.4 - -0.225 0.25 0 28.9 -0.225 0.275 0 29.73 -0.225 0.3 0 30.56 -0.225 0.325 0 31.39 -0.225 0.35 0 32.22 -0.225 0.375 0 33.05 -0.225 0.4 0 33.88 -0.225 0.425 0 34.71 -0.225 0.45 0 35.54 -0.225 0.475 0 36.37 -0.225 0.5 0 37.2 - -0.25 0.25 0 29 -0.25 0.275 0 30.1 -0.25 0.3 0 31.2 -0.25 0.325 0 32.3 -0.25 0.35 0 33.4 -0.25 0.375 0 34.5 -0.25 0.4 0 35.6 -0.25 0.425 0 36.7 -0.25 0.45 0 37.8 -0.25 0.475 0 38.9 -0.25 0.5 0 40 - - -0 0.25 0 28 -0 0.25 0.025 28.3 -0 0.25 0.05 28.6 -0 0.25 0.075 28.9 -0 0.25 0.1 29.2 -0 0.25 0.125 29.5 -0 0.25 0.15 29.8 -0 0.25 0.175 30.1 -0 0.25 0.2 30.4 -0 0.25 0.225 30.7 -0 0.25 0.25 31 - -0 0.275 0 26.4 -0 0.275 0.025 26.97 -0 0.275 0.05 27.54 -0 0.275 0.075 28.11 -0 0.275 0.1 28.68 -0 0.275 0.125 29.25 -0 0.275 0.15 29.82 -0 0.275 0.175 30.39 -0 0.275 0.2 30.96 -0 0.275 0.225 31.53 -0 0.275 0.25 32.1 - -0 0.3 0 24.8 -0 0.3 0.025 25.64 -0 0.3 0.05 26.48 -0 0.3 0.075 27.32 -0 0.3 0.1 28.16 -0 0.3 0.125 29 -0 0.3 0.15 29.84 -0 0.3 0.175 30.68 -0 0.3 0.2 31.52 -0 0.3 0.225 32.36 -0 0.3 0.25 33.2 - -0 0.325 0 23.2 -0 0.325 0.025 24.31 -0 0.325 0.05 25.42 -0 0.325 0.075 26.53 -0 0.325 0.1 27.64 -0 0.325 0.125 28.75 -0 0.325 0.15 29.86 -0 0.325 0.175 30.97 -0 0.325 0.2 32.08 -0 0.325 0.225 33.19 -0 0.325 0.25 34.3 - -0 0.35 0 21.6 -0 0.35 0.025 22.98 -0 0.35 0.05 24.36 -0 0.35 0.075 25.74 -0 0.35 0.1 27.12 -0 0.35 0.125 28.5 -0 0.35 0.15 29.88 -0 0.35 0.175 31.26 -0 0.35 0.2 32.64 -0 0.35 0.225 34.02 -0 0.35 0.25 35.4 - -0 0.375 0 20 -0 0.375 0.025 21.65 -0 0.375 0.05 23.3 -0 0.375 0.075 24.95 -0 0.375 0.1 26.6 -0 0.375 0.125 28.25 -0 0.375 0.15 29.9 -0 0.375 0.175 31.55 -0 0.375 0.2 33.2 -0 0.375 0.225 34.85 -0 0.375 0.25 36.5 - -0 0.4 0 18.4 -0 0.4 0.025 20.32 -0 0.4 0.05 22.24 -0 0.4 0.075 24.16 -0 0.4 0.1 26.08 -0 0.4 0.125 28 -0 0.4 0.15 29.92 -0 0.4 0.175 31.84 -0 0.4 0.2 33.76 -0 0.4 0.225 35.68 -0 0.4 0.25 37.6 - -0 0.425 0 16.8 -0 0.425 0.025 18.99 -0 0.425 0.05 21.18 -0 0.425 0.075 23.37 -0 0.425 0.1 25.56 -0 0.425 0.125 27.75 -0 0.425 0.15 29.94 -0 0.425 0.175 32.13 -0 0.425 0.2 34.32 -0 0.425 0.225 36.51 -0 0.425 0.25 38.7 - -0 0.45 0 15.2 -0 0.45 0.025 17.66 -0 0.45 0.05 20.12 -0 0.45 0.075 22.58 -0 0.45 0.1 25.04 -0 0.45 0.125 27.5 -0 0.45 0.15 29.96 -0 0.45 0.175 32.42 -0 0.45 0.2 34.88 -0 0.45 0.225 37.34 -0 0.45 0.25 39.8 - -0 0.475 0 13.6 -0 0.475 0.025 16.33 -0 0.475 0.05 19.06 -0 0.475 0.075 21.79 -0 0.475 0.1 24.52 -0 0.475 0.125 27.25 -0 0.475 0.15 29.98 -0 0.475 0.175 32.71 -0 0.475 0.2 35.44 -0 0.475 0.225 38.17 -0 0.475 0.25 40.9 - -0 0.5 0 12 -0 0.5 0.025 15 -0 0.5 0.05 18 -0 0.5 0.075 21 -0 0.5 0.1 24 -0 0.5 0.125 27 -0 0.5 0.15 30 -0 0.5 0.175 33 -0 0.5 0.2 36 -0 0.5 0.225 39 -0 0.5 0.25 42 - - -0.25 0.25 0 29 -0.25 0.275 0 30.1 -0.25 0.3 0 31.2 -0.25 0.325 0 32.3 -0.25 0.35 0 33.4 -0.25 0.375 0 34.5 -0.25 0.4 0 35.6 -0.25 0.425 0 36.7 -0.25 0.45 0 37.8 -0.25 0.475 0 38.9 -0.25 0.5 0 40 - -0.275 0.25 0 29.5 -0.275 0.275 0 30.28 -0.275 0.3 0 31.06 -0.275 0.325 0 31.84 -0.275 0.35 0 32.62 -0.275 0.375 0 33.4 -0.275 0.4 0 34.18 -0.275 0.425 0 34.96 -0.275 0.45 0 35.74 -0.275 0.475 0 36.52 -0.275 0.5 0 37.3 - -0.3 0.25 0 30 -0.3 0.275 0 30.46 -0.3 0.3 0 30.92 -0.3 0.325 0 31.38 -0.3 0.35 0 31.84 -0.3 0.375 0 32.3 -0.3 0.4 0 32.76 -0.3 0.425 0 33.22 -0.3 0.45 0 33.68 -0.3 0.475 0 34.14 -0.3 0.5 0 34.6 - -0.325 0.25 0 30.5 -0.325 0.275 0 30.64 -0.325 0.3 0 30.78 -0.325 0.325 0 30.92 -0.325 0.35 0 31.06 -0.325 0.375 0 31.2 -0.325 0.4 0 31.34 -0.325 0.425 0 31.48 -0.325 0.45 0 31.62 -0.325 0.475 0 31.76 -0.325 0.5 0 31.9 - -0.35 0.25 0 31 -0.35 0.275 0 30.82 -0.35 0.3 0 30.64 -0.35 0.325 0 30.46 -0.35 0.35 0 30.28 -0.35 0.375 0 30.1 -0.35 0.4 0 29.92 -0.35 0.425 0 29.74 -0.35 0.45 0 29.56 -0.35 0.475 0 29.38 -0.35 0.5 0 29.2 - -0.375 0.25 0 31.5 -0.375 0.275 0 31 -0.375 0.3 0 30.5 -0.375 0.325 0 30 -0.375 0.35 0 29.5 -0.375 0.375 0 29 -0.375 0.4 0 28.5 -0.375 0.425 0 28 -0.375 0.45 0 27.5 -0.375 0.475 0 27 -0.375 0.5 0 26.5 - -0.4 0.25 0 32 -0.4 0.275 0 31.18 -0.4 0.3 0 30.36 -0.4 0.325 0 29.54 -0.4 0.35 0 28.72 -0.4 0.375 0 27.9 -0.4 0.4 0 27.08 -0.4 0.425 0 26.26 -0.4 0.45 0 25.44 -0.4 0.475 0 24.62 -0.4 0.5 0 23.8 - -0.425 0.25 0 32.5 -0.425 0.275 0 31.36 -0.425 0.3 0 30.22 -0.425 0.325 0 29.08 -0.425 0.35 0 27.94 -0.425 0.375 0 26.8 -0.425 0.4 0 25.66 -0.425 0.425 0 24.52 -0.425 0.45 0 23.38 -0.425 0.475 0 22.24 -0.425 0.5 0 21.1 - -0.45 0.25 0 33 -0.45 0.275 0 31.54 -0.45 0.3 0 30.08 -0.45 0.325 0 28.62 -0.45 0.35 0 27.16 -0.45 0.375 0 25.7 -0.45 0.4 0 24.24 -0.45 0.425 0 22.78 -0.45 0.45 0 21.32 -0.45 0.475 0 19.86 -0.45 0.5 0 18.4 - -0.475 0.25 0 33.5 -0.475 0.275 0 31.72 -0.475 0.3 0 29.94 -0.475 0.325 0 28.16 -0.475 0.35 0 26.38 -0.475 0.375 0 24.6 -0.475 0.4 0 22.82 -0.475 0.425 0 21.04 -0.475 0.45 0 19.26 -0.475 0.475 0 17.48 -0.475 0.5 0 15.7 - -0.5 0.25 0 34 -0.5 0.275 0 31.9 -0.5 0.3 0 29.8 -0.5 0.325 0 27.7 -0.5 0.35 0 25.6 -0.5 0.375 0 23.5 -0.5 0.4 0 21.4 -0.5 0.425 0 19.3 -0.5 0.45 0 17.2 -0.5 0.475 0 15.1 -0.5 0.5 0 13 - - -0 0.25 0.25 31 -0 0.25 0.275 31.8 -0 0.25 0.3 32.6 -0 0.25 0.325 33.4 -0 0.25 0.35 34.2 -0 0.25 0.375 35 -0 0.25 0.4 35.8 -0 0.25 0.425 36.6 -0 0.25 0.45 37.4 -0 0.25 0.475 38.2 -0 0.25 0.5 39 - -0 0.275 0.25 32.1 -0 0.275 0.275 32.5 -0 0.275 0.3 32.9 -0 0.275 0.325 33.3 -0 0.275 0.35 33.7 -0 0.275 0.375 34.1 -0 0.275 0.4 34.5 -0 0.275 0.425 34.9 -0 0.275 0.45 35.3 -0 0.275 0.475 35.7 -0 0.275 0.5 36.1 - -0 0.3 0.25 33.2 -0 0.3 0.275 33.2 -0 0.3 0.3 33.2 -0 0.3 0.325 33.2 -0 0.3 0.35 33.2 -0 0.3 0.375 33.2 -0 0.3 0.4 33.2 -0 0.3 0.425 33.2 -0 0.3 0.45 33.2 -0 0.3 0.475 33.2 -0 0.3 0.5 33.2 - -0 0.325 0.25 34.3 -0 0.325 0.275 33.9 -0 0.325 0.3 33.5 -0 0.325 0.325 33.1 -0 0.325 0.35 32.7 -0 0.325 0.375 32.3 -0 0.325 0.4 31.9 -0 0.325 0.425 31.5 -0 0.325 0.45 31.1 -0 0.325 0.475 30.7 -0 0.325 0.5 30.3 - -0 0.35 0.25 35.4 -0 0.35 0.275 34.6 -0 0.35 0.3 33.8 -0 0.35 0.325 33 -0 0.35 0.35 32.2 -0 0.35 0.375 31.4 -0 0.35 0.4 30.6 -0 0.35 0.425 29.8 -0 0.35 0.45 29 -0 0.35 0.475 28.2 -0 0.35 0.5 27.4 - -0 0.375 0.25 36.5 -0 0.375 0.275 35.3 -0 0.375 0.3 34.1 -0 0.375 0.325 32.9 -0 0.375 0.35 31.7 -0 0.375 0.375 30.5 -0 0.375 0.4 29.3 -0 0.375 0.425 28.1 -0 0.375 0.45 26.9 -0 0.375 0.475 25.7 -0 0.375 0.5 24.5 - -0 0.4 0.25 37.6 -0 0.4 0.275 36 -0 0.4 0.3 34.4 -0 0.4 0.325 32.8 -0 0.4 0.35 31.2 -0 0.4 0.375 29.6 -0 0.4 0.4 28 -0 0.4 0.425 26.4 -0 0.4 0.45 24.8 -0 0.4 0.475 23.2 -0 0.4 0.5 21.6 - -0 0.425 0.25 38.7 -0 0.425 0.275 36.7 -0 0.425 0.3 34.7 -0 0.425 0.325 32.7 -0 0.425 0.35 30.7 -0 0.425 0.375 28.7 -0 0.425 0.4 26.7 -0 0.425 0.425 24.7 -0 0.425 0.45 22.7 -0 0.425 0.475 20.7 -0 0.425 0.5 18.7 - -0 0.45 0.25 39.8 -0 0.45 0.275 37.4 -0 0.45 0.3 35 -0 0.45 0.325 32.6 -0 0.45 0.35 30.2 -0 0.45 0.375 27.8 -0 0.45 0.4 25.4 -0 0.45 0.425 23 -0 0.45 0.45 20.6 -0 0.45 0.475 18.2 -0 0.45 0.5 15.8 - -0 0.475 0.25 40.9 -0 0.475 0.275 38.1 -0 0.475 0.3 35.3 -0 0.475 0.325 32.5 -0 0.475 0.35 29.7 -0 0.475 0.375 26.9 -0 0.475 0.4 24.1 -0 0.475 0.425 21.3 -0 0.475 0.45 18.5 -0 0.475 0.475 15.7 -0 0.475 0.5 12.9 - -0 0.5 0.25 42 -0 0.5 0.275 38.8 -0 0.5 0.3 35.6 -0 0.5 0.325 32.4 -0 0.5 0.35 29.2 -0 0.5 0.375 26 -0 0.5 0.4 22.8 -0 0.5 0.425 19.6 -0 0.5 0.45 16.4 -0 0.5 0.475 13.2 -0 0.5 0.5 10 - - -0.5 0 0 32 -0.5 0 0.025 32.1 -0.5 0 0.05 32.2 -0.5 0 0.075 32.3 -0.5 0 0.1 32.4 -0.5 0 0.125 32.5 -0.5 0 0.15 32.6 -0.5 0 0.175 32.7 -0.5 0 0.2 32.8 -0.5 0 0.225 32.9 -0.5 0 0.25 33 - -0.525 0 0 33.3 -0.525 0 0.025 33.4 -0.525 0 0.05 33.5 -0.525 0 0.075 33.6 -0.525 0 0.1 33.7 -0.525 0 0.125 33.8 -0.525 0 0.15 33.9 -0.525 0 0.175 34 -0.525 0 0.2 34.1 -0.525 0 0.225 34.2 -0.525 0 0.25 34.3 - -0.55 0 0 34.6 -0.55 0 0.025 34.7 -0.55 0 0.05 34.8 -0.55 0 0.075 34.9 -0.55 0 0.1 35 -0.55 0 0.125 35.1 -0.55 0 0.15 35.2 -0.55 0 0.175 35.3 -0.55 0 0.2 35.4 -0.55 0 0.225 35.5 -0.55 0 0.25 35.6 - -0.575 0 0 35.9 -0.575 0 0.025 36 -0.575 0 0.05 36.1 -0.575 0 0.075 36.2 -0.575 0 0.1 36.3 -0.575 0 0.125 36.4 -0.575 0 0.15 36.5 -0.575 0 0.175 36.6 -0.575 0 0.2 36.7 -0.575 0 0.225 36.8 -0.575 0 0.25 36.9 - -0.6 0 0 37.2 -0.6 0 0.025 37.3 -0.6 0 0.05 37.4 -0.6 0 0.075 37.5 -0.6 0 0.1 37.6 -0.6 0 0.125 37.7 -0.6 0 0.15 37.8 -0.6 0 0.175 37.9 -0.6 0 0.2 38 -0.6 0 0.225 38.1 -0.6 0 0.25 38.2 - -0.625 0 0 38.5 -0.625 0 0.025 38.6 -0.625 0 0.05 38.7 -0.625 0 0.075 38.8 -0.625 0 0.1 38.9 -0.625 0 0.125 39 -0.625 0 0.15 39.1 -0.625 0 0.175 39.2 -0.625 0 0.2 39.3 -0.625 0 0.225 39.4 -0.625 0 0.25 39.5 - -0.65 0 0 39.8 -0.65 0 0.025 39.9 -0.65 0 0.05 40 -0.65 0 0.075 40.1 -0.65 0 0.1 40.2 -0.65 0 0.125 40.3 -0.65 0 0.15 40.4 -0.65 0 0.175 40.5 -0.65 0 0.2 40.6 -0.65 0 0.225 40.7 -0.65 0 0.25 40.8 - -0.675 0 0 41.1 -0.675 0 0.025 41.2 -0.675 0 0.05 41.3 -0.675 0 0.075 41.4 -0.675 0 0.1 41.5 -0.675 0 0.125 41.6 -0.675 0 0.15 41.7 -0.675 0 0.175 41.8 -0.675 0 0.2 41.9 -0.675 0 0.225 42 -0.675 0 0.25 42.1 - -0.7 0 0 42.4 -0.7 0 0.025 42.5 -0.7 0 0.05 42.6 -0.7 0 0.075 42.7 -0.7 0 0.1 42.8 -0.7 0 0.125 42.9 -0.7 0 0.15 43 -0.7 0 0.175 43.1 -0.7 0 0.2 43.2 -0.7 0 0.225 43.3 -0.7 0 0.25 43.4 - -0.725 0 0 43.7 -0.725 0 0.025 43.8 -0.725 0 0.05 43.9 -0.725 0 0.075 44 -0.725 0 0.1 44.1 -0.725 0 0.125 44.2 -0.725 0 0.15 44.3 -0.725 0 0.175 44.4 -0.725 0 0.2 44.5 -0.725 0 0.225 44.6 -0.725 0 0.25 44.7 - -0.75 0 0 45 -0.75 0 0.025 45.1 -0.75 0 0.05 45.2 -0.75 0 0.075 45.3 -0.75 0 0.1 45.4 -0.75 0 0.125 45.5 -0.75 0 0.15 45.6 -0.75 0 0.175 45.7 -0.75 0 0.2 45.8 -0.75 0 0.225 45.9 -0.75 0 0.25 46 - - -0.5 0 0 32 -0.5 0.025 0 32.2 -0.5 0.05 0 32.4 -0.5 0.075 0 32.6 -0.5 0.1 0 32.8 -0.5 0.125 0 33 -0.5 0.15 0 33.2 -0.5 0.175 0 33.4 -0.5 0.2 0 33.6 -0.5 0.225 0 33.8 -0.5 0.25 0 34 - -0.525 0 0 33.3 -0.525 0.025 0 33.5 -0.525 0.05 0 33.7 -0.525 0.075 0 33.9 -0.525 0.1 0 34.1 -0.525 0.125 0 34.3 -0.525 0.15 0 34.5 -0.525 0.175 0 34.7 -0.525 0.2 0 34.9 -0.525 0.225 0 35.1 -0.525 0.25 0 35.3 - -0.55 0 0 34.6 -0.55 0.025 0 34.8 -0.55 0.05 0 35 -0.55 0.075 0 35.2 -0.55 0.1 0 35.4 -0.55 0.125 0 35.6 -0.55 0.15 0 35.8 -0.55 0.175 0 36 -0.55 0.2 0 36.2 -0.55 0.225 0 36.4 -0.55 0.25 0 36.6 - -0.575 0 0 35.9 -0.575 0.025 0 36.1 -0.575 0.05 0 36.3 -0.575 0.075 0 36.5 -0.575 0.1 0 36.7 -0.575 0.125 0 36.9 -0.575 0.15 0 37.1 -0.575 0.175 0 37.3 -0.575 0.2 0 37.5 -0.575 0.225 0 37.7 -0.575 0.25 0 37.9 - -0.6 0 0 37.2 -0.6 0.025 0 37.4 -0.6 0.05 0 37.6 -0.6 0.075 0 37.8 -0.6 0.1 0 38 -0.6 0.125 0 38.2 -0.6 0.15 0 38.4 -0.6 0.175 0 38.6 -0.6 0.2 0 38.8 -0.6 0.225 0 39 -0.6 0.25 0 39.2 - -0.625 0 0 38.5 -0.625 0.025 0 38.7 -0.625 0.05 0 38.9 -0.625 0.075 0 39.1 -0.625 0.1 0 39.3 -0.625 0.125 0 39.5 -0.625 0.15 0 39.7 -0.625 0.175 0 39.9 -0.625 0.2 0 40.1 -0.625 0.225 0 40.3 -0.625 0.25 0 40.5 - -0.65 0 0 39.8 -0.65 0.025 0 40 -0.65 0.05 0 40.2 -0.65 0.075 0 40.4 -0.65 0.1 0 40.6 -0.65 0.125 0 40.8 -0.65 0.15 0 41 -0.65 0.175 0 41.2 -0.65 0.2 0 41.4 -0.65 0.225 0 41.6 -0.65 0.25 0 41.8 - -0.675 0 0 41.1 -0.675 0.025 0 41.3 -0.675 0.05 0 41.5 -0.675 0.075 0 41.7 -0.675 0.1 0 41.9 -0.675 0.125 0 42.1 -0.675 0.15 0 42.3 -0.675 0.175 0 42.5 -0.675 0.2 0 42.7 -0.675 0.225 0 42.9 -0.675 0.25 0 43.1 - -0.7 0 0 42.4 -0.7 0.025 0 42.6 -0.7 0.05 0 42.8 -0.7 0.075 0 43 -0.7 0.1 0 43.2 -0.7 0.125 0 43.4 -0.7 0.15 0 43.6 -0.7 0.175 0 43.8 -0.7 0.2 0 44 -0.7 0.225 0 44.2 -0.7 0.25 0 44.4 - -0.725 0 0 43.7 -0.725 0.025 0 43.9 -0.725 0.05 0 44.1 -0.725 0.075 0 44.3 -0.725 0.1 0 44.5 -0.725 0.125 0 44.7 -0.725 0.15 0 44.9 -0.725 0.175 0 45.1 -0.725 0.2 0 45.3 -0.725 0.225 0 45.5 -0.725 0.25 0 45.7 - -0.75 0 0 45 -0.75 0.025 0 45.2 -0.75 0.05 0 45.4 -0.75 0.075 0 45.6 -0.75 0.1 0 45.8 -0.75 0.125 0 46 -0.75 0.15 0 46.2 -0.75 0.175 0 46.4 -0.75 0.2 0 46.6 -0.75 0.225 0 46.8 -0.75 0.25 0 47 - - -0.75 0 0 45 -0.75 0 0.025 45.1 -0.75 0 0.05 45.2 -0.75 0 0.075 45.3 -0.75 0 0.1 45.4 -0.75 0 0.125 45.5 -0.75 0 0.15 45.6 -0.75 0 0.175 45.7 -0.75 0 0.2 45.8 -0.75 0 0.225 45.9 -0.75 0 0.25 46 - -0.775 0 0 45.4 -0.775 0 0.025 45.5 -0.775 0 0.05 45.6 -0.775 0 0.075 45.7 -0.775 0 0.1 45.8 -0.775 0 0.125 45.9 -0.775 0 0.15 46 -0.775 0 0.175 46.1 -0.775 0 0.2 46.2 -0.775 0 0.225 46.3 -0.775 0 0.25 46.4 - -0.8 0 0 45.8 -0.8 0 0.025 45.9 -0.8 0 0.05 46 -0.8 0 0.075 46.1 -0.8 0 0.1 46.2 -0.8 0 0.125 46.3 -0.8 0 0.15 46.4 -0.8 0 0.175 46.5 -0.8 0 0.2 46.6 -0.8 0 0.225 46.7 -0.8 0 0.25 46.8 - -0.825 0 0 46.2 -0.825 0 0.025 46.3 -0.825 0 0.05 46.4 -0.825 0 0.075 46.5 -0.825 0 0.1 46.6 -0.825 0 0.125 46.7 -0.825 0 0.15 46.8 -0.825 0 0.175 46.9 -0.825 0 0.2 47 -0.825 0 0.225 47.1 -0.825 0 0.25 47.2 - -0.85 0 0 46.6 -0.85 0 0.025 46.7 -0.85 0 0.05 46.8 -0.85 0 0.075 46.9 -0.85 0 0.1 47 -0.85 0 0.125 47.1 -0.85 0 0.15 47.2 -0.85 0 0.175 47.3 -0.85 0 0.2 47.4 -0.85 0 0.225 47.5 -0.85 0 0.25 47.6 - -0.875 0 0 47 -0.875 0 0.025 47.1 -0.875 0 0.05 47.2 -0.875 0 0.075 47.3 -0.875 0 0.1 47.4 -0.875 0 0.125 47.5 -0.875 0 0.15 47.6 -0.875 0 0.175 47.7 -0.875 0 0.2 47.8 -0.875 0 0.225 47.9 -0.875 0 0.25 48 - -0.9 0 0 47.4 -0.9 0 0.025 47.5 -0.9 0 0.05 47.6 -0.9 0 0.075 47.7 -0.9 0 0.1 47.8 -0.9 0 0.125 47.9 -0.9 0 0.15 48 -0.9 0 0.175 48.1 -0.9 0 0.2 48.2 -0.9 0 0.225 48.3 -0.9 0 0.25 48.4 - -0.925 0 0 47.8 -0.925 0 0.025 47.9 -0.925 0 0.05 48 -0.925 0 0.075 48.1 -0.925 0 0.1 48.2 -0.925 0 0.125 48.3 -0.925 0 0.15 48.4 -0.925 0 0.175 48.5 -0.925 0 0.2 48.6 -0.925 0 0.225 48.7 -0.925 0 0.25 48.8 - -0.95 0 0 48.2 -0.95 0 0.025 48.3 -0.95 0 0.05 48.4 -0.95 0 0.075 48.5 -0.95 0 0.1 48.6 -0.95 0 0.125 48.7 -0.95 0 0.15 48.8 -0.95 0 0.175 48.9 -0.95 0 0.2 49 -0.95 0 0.225 49.1 -0.95 0 0.25 49.2 - -0.975 0 0 48.6 -0.975 0 0.025 48.7 -0.975 0 0.05 48.8 -0.975 0 0.075 48.9 -0.975 0 0.1 49 -0.975 0 0.125 49.1 -0.975 0 0.15 49.2 -0.975 0 0.175 49.3 -0.975 0 0.2 49.4 -0.975 0 0.225 49.5 -0.975 0 0.25 49.6 - -1 0 0 49 -1 0 0.025 49.1 -1 0 0.05 49.2 -1 0 0.075 49.3 -1 0 0.1 49.4 -1 0 0.125 49.5 -1 0 0.15 49.6 -1 0 0.175 49.7 -1 0 0.2 49.8 -1 0 0.225 49.9 -1 0 0.25 50 - - -0.75 0 0 45 -0.75 0.025 0 45.2 -0.75 0.05 0 45.4 -0.75 0.075 0 45.6 -0.75 0.1 0 45.8 -0.75 0.125 0 46 -0.75 0.15 0 46.2 -0.75 0.175 0 46.4 -0.75 0.2 0 46.6 -0.75 0.225 0 46.8 -0.75 0.25 0 47 - -0.775 0 0 45.4 -0.775 0.025 0 45.6 -0.775 0.05 0 45.8 -0.775 0.075 0 46 -0.775 0.1 0 46.2 -0.775 0.125 0 46.4 -0.775 0.15 0 46.6 -0.775 0.175 0 46.8 -0.775 0.2 0 47 -0.775 0.225 0 47.2 -0.775 0.25 0 47.4 - -0.8 0 0 45.8 -0.8 0.025 0 46 -0.8 0.05 0 46.2 -0.8 0.075 0 46.4 -0.8 0.1 0 46.6 -0.8 0.125 0 46.8 -0.8 0.15 0 47 -0.8 0.175 0 47.2 -0.8 0.2 0 47.4 -0.8 0.225 0 47.6 -0.8 0.25 0 47.8 - -0.825 0 0 46.2 -0.825 0.025 0 46.4 -0.825 0.05 0 46.6 -0.825 0.075 0 46.8 -0.825 0.1 0 47 -0.825 0.125 0 47.2 -0.825 0.15 0 47.4 -0.825 0.175 0 47.6 -0.825 0.2 0 47.8 -0.825 0.225 0 48 -0.825 0.25 0 48.2 - -0.85 0 0 46.6 -0.85 0.025 0 46.8 -0.85 0.05 0 47 -0.85 0.075 0 47.2 -0.85 0.1 0 47.4 -0.85 0.125 0 47.6 -0.85 0.15 0 47.8 -0.85 0.175 0 48 -0.85 0.2 0 48.2 -0.85 0.225 0 48.4 -0.85 0.25 0 48.6 - -0.875 0 0 47 -0.875 0.025 0 47.2 -0.875 0.05 0 47.4 -0.875 0.075 0 47.6 -0.875 0.1 0 47.8 -0.875 0.125 0 48 -0.875 0.15 0 48.2 -0.875 0.175 0 48.4 -0.875 0.2 0 48.6 -0.875 0.225 0 48.8 -0.875 0.25 0 49 - -0.9 0 0 47.4 -0.9 0.025 0 47.6 -0.9 0.05 0 47.8 -0.9 0.075 0 48 -0.9 0.1 0 48.2 -0.9 0.125 0 48.4 -0.9 0.15 0 48.6 -0.9 0.175 0 48.8 -0.9 0.2 0 49 -0.9 0.225 0 49.2 -0.9 0.25 0 49.4 - -0.925 0 0 47.8 -0.925 0.025 0 48 -0.925 0.05 0 48.2 -0.925 0.075 0 48.4 -0.925 0.1 0 48.6 -0.925 0.125 0 48.8 -0.925 0.15 0 49 -0.925 0.175 0 49.2 -0.925 0.2 0 49.4 -0.925 0.225 0 49.6 -0.925 0.25 0 49.8 - -0.95 0 0 48.2 -0.95 0.025 0 48.4 -0.95 0.05 0 48.6 -0.95 0.075 0 48.8 -0.95 0.1 0 49 -0.95 0.125 0 49.2 -0.95 0.15 0 49.4 -0.95 0.175 0 49.6 -0.95 0.2 0 49.8 -0.95 0.225 0 50 -0.95 0.25 0 50.2 - -0.975 0 0 48.6 -0.975 0.025 0 48.8 -0.975 0.05 0 49 -0.975 0.075 0 49.2 -0.975 0.1 0 49.4 -0.975 0.125 0 49.6 -0.975 0.15 0 49.8 -0.975 0.175 0 50 -0.975 0.2 0 50.2 -0.975 0.225 0 50.4 -0.975 0.25 0 50.6 - -1 0 0 49 -1 0.025 0 49.2 -1 0.05 0 49.4 -1 0.075 0 49.6 -1 0.1 0 49.8 -1 0.125 0 50 -1 0.15 0 50.2 -1 0.175 0 50.4 -1 0.2 0 50.6 -1 0.225 0 50.8 -1 0.25 0 51 - - -1 0 0 49 -1 0 0.025 49.1 -1 0 0.05 49.2 -1 0 0.075 49.3 -1 0 0.1 49.4 -1 0 0.125 49.5 -1 0 0.15 49.6 -1 0 0.175 49.7 -1 0 0.2 49.8 -1 0 0.225 49.9 -1 0 0.25 50 - -1 0.025 0 49.2 -1 0.025 0.025 49.3 -1 0.025 0.05 49.4 -1 0.025 0.075 49.5 -1 0.025 0.1 49.6 -1 0.025 0.125 49.7 -1 0.025 0.15 49.8 -1 0.025 0.175 49.9 -1 0.025 0.2 50 -1 0.025 0.225 50.1 -1 0.025 0.25 50.2 - -1 0.05 0 49.4 -1 0.05 0.025 49.5 -1 0.05 0.05 49.6 -1 0.05 0.075 49.7 -1 0.05 0.1 49.8 -1 0.05 0.125 49.9 -1 0.05 0.15 50 -1 0.05 0.175 50.1 -1 0.05 0.2 50.2 -1 0.05 0.225 50.3 -1 0.05 0.25 50.4 - -1 0.075 0 49.6 -1 0.075 0.025 49.7 -1 0.075 0.05 49.8 -1 0.075 0.075 49.9 -1 0.075 0.1 50 -1 0.075 0.125 50.1 -1 0.075 0.15 50.2 -1 0.075 0.175 50.3 -1 0.075 0.2 50.4 -1 0.075 0.225 50.5 -1 0.075 0.25 50.6 - -1 0.1 0 49.8 -1 0.1 0.025 49.9 -1 0.1 0.05 50 -1 0.1 0.075 50.1 -1 0.1 0.1 50.2 -1 0.1 0.125 50.3 -1 0.1 0.15 50.4 -1 0.1 0.175 50.5 -1 0.1 0.2 50.6 -1 0.1 0.225 50.7 -1 0.1 0.25 50.8 - -1 0.125 0 50 -1 0.125 0.025 50.1 -1 0.125 0.05 50.2 -1 0.125 0.075 50.3 -1 0.125 0.1 50.4 -1 0.125 0.125 50.5 -1 0.125 0.15 50.6 -1 0.125 0.175 50.7 -1 0.125 0.2 50.8 -1 0.125 0.225 50.9 -1 0.125 0.25 51 - -1 0.15 0 50.2 -1 0.15 0.025 50.3 -1 0.15 0.05 50.4 -1 0.15 0.075 50.5 -1 0.15 0.1 50.6 -1 0.15 0.125 50.7 -1 0.15 0.15 50.8 -1 0.15 0.175 50.9 -1 0.15 0.2 51 -1 0.15 0.225 51.1 -1 0.15 0.25 51.2 - -1 0.175 0 50.4 -1 0.175 0.025 50.5 -1 0.175 0.05 50.6 -1 0.175 0.075 50.7 -1 0.175 0.1 50.8 -1 0.175 0.125 50.9 -1 0.175 0.15 51 -1 0.175 0.175 51.1 -1 0.175 0.2 51.2 -1 0.175 0.225 51.3 -1 0.175 0.25 51.4 - -1 0.2 0 50.6 -1 0.2 0.025 50.7 -1 0.2 0.05 50.8 -1 0.2 0.075 50.9 -1 0.2 0.1 51 -1 0.2 0.125 51.1 -1 0.2 0.15 51.2 -1 0.2 0.175 51.3 -1 0.2 0.2 51.4 -1 0.2 0.225 51.5 -1 0.2 0.25 51.6 - -1 0.225 0 50.8 -1 0.225 0.025 50.9 -1 0.225 0.05 51 -1 0.225 0.075 51.1 -1 0.225 0.1 51.2 -1 0.225 0.125 51.3 -1 0.225 0.15 51.4 -1 0.225 0.175 51.5 -1 0.225 0.2 51.6 -1 0.225 0.225 51.7 -1 0.225 0.25 51.8 - -1 0.25 0 51 -1 0.25 0.025 51.1 -1 0.25 0.05 51.2 -1 0.25 0.075 51.3 -1 0.25 0.1 51.4 -1 0.25 0.125 51.5 -1 0.25 0.15 51.6 -1 0.25 0.175 51.7 -1 0.25 0.2 51.8 -1 0.25 0.225 51.9 -1 0.25 0.25 52 - - -0.75 0 0.25 46 -0.75 0 0.275 46.7 -0.75 0 0.3 47.4 -0.75 0 0.325 48.1 -0.75 0 0.35 48.8 -0.75 0 0.375 49.5 -0.75 0 0.4 50.2 -0.75 0 0.425 50.9 -0.75 0 0.45 51.6 -0.75 0 0.475 52.3 -0.75 0 0.5 53 - -0.775 0 0.25 46.4 -0.775 0 0.275 46.54 -0.775 0 0.3 46.68 -0.775 0 0.325 46.82 -0.775 0 0.35 46.96 -0.775 0 0.375 47.1 -0.775 0 0.4 47.24 -0.775 0 0.425 47.38 -0.775 0 0.45 47.52 -0.775 0 0.475 47.66 -0.775 0 0.5 47.8 - -0.8 0 0.25 46.8 -0.8 0 0.275 46.38 -0.8 0 0.3 45.96 -0.8 0 0.325 45.54 -0.8 0 0.35 45.12 -0.8 0 0.375 44.7 -0.8 0 0.4 44.28 -0.8 0 0.425 43.86 -0.8 0 0.45 43.44 -0.8 0 0.475 43.02 -0.8 0 0.5 42.6 - -0.825 0 0.25 47.2 -0.825 0 0.275 46.22 -0.825 0 0.3 45.24 -0.825 0 0.325 44.26 -0.825 0 0.35 43.28 -0.825 0 0.375 42.3 -0.825 0 0.4 41.32 -0.825 0 0.425 40.34 -0.825 0 0.45 39.36 -0.825 0 0.475 38.38 -0.825 0 0.5 37.4 - -0.85 0 0.25 47.6 -0.85 0 0.275 46.06 -0.85 0 0.3 44.52 -0.85 0 0.325 42.98 -0.85 0 0.35 41.44 -0.85 0 0.375 39.9 -0.85 0 0.4 38.36 -0.85 0 0.425 36.82 -0.85 0 0.45 35.28 -0.85 0 0.475 33.74 -0.85 0 0.5 32.2 - -0.875 0 0.25 48 -0.875 0 0.275 45.9 -0.875 0 0.3 43.8 -0.875 0 0.325 41.7 -0.875 0 0.35 39.6 -0.875 0 0.375 37.5 -0.875 0 0.4 35.4 -0.875 0 0.425 33.3 -0.875 0 0.45 31.2 -0.875 0 0.475 29.1 -0.875 0 0.5 27 - -0.9 0 0.25 48.4 -0.9 0 0.275 45.74 -0.9 0 0.3 43.08 -0.9 0 0.325 40.42 -0.9 0 0.35 37.76 -0.9 0 0.375 35.1 -0.9 0 0.4 32.44 -0.9 0 0.425 29.78 -0.9 0 0.45 27.12 -0.9 0 0.475 24.46 -0.9 0 0.5 21.8 - -0.925 0 0.25 48.8 -0.925 0 0.275 45.58 -0.925 0 0.3 42.36 -0.925 0 0.325 39.14 -0.925 0 0.35 35.92 -0.925 0 0.375 32.7 -0.925 0 0.4 29.48 -0.925 0 0.425 26.26 -0.925 0 0.45 23.04 -0.925 0 0.475 19.82 -0.925 0 0.5 16.6 - -0.95 0 0.25 49.2 -0.95 0 0.275 45.42 -0.95 0 0.3 41.64 -0.95 0 0.325 37.86 -0.95 0 0.35 34.08 -0.95 0 0.375 30.3 -0.95 0 0.4 26.52 -0.95 0 0.425 22.74 -0.95 0 0.45 18.96 -0.95 0 0.475 15.18 -0.95 0 0.5 11.4 - -0.975 0 0.25 49.6 -0.975 0 0.275 45.26 -0.975 0 0.3 40.92 -0.975 0 0.325 36.58 -0.975 0 0.35 32.24 -0.975 0 0.375 27.9 -0.975 0 0.4 23.56 -0.975 0 0.425 19.22 -0.975 0 0.45 14.88 -0.975 0 0.475 10.54 -0.975 0 0.5 6.2 - -1 0 0.25 50 -1 0 0.275 45.1 -1 0 0.3 40.2 -1 0 0.325 35.3 -1 0 0.35 30.4 -1 0 0.375 25.5 -1 0 0.4 20.6 -1 0 0.425 15.7 -1 0 0.45 10.8 -1 0 0.475 5.9 -1 0 0.5 1 - - -1 0 0.25 50 -1 0 0.275 45.1 -1 0 0.3 40.2 -1 0 0.325 35.3 -1 0 0.35 30.4 -1 0 0.375 25.5 -1 0 0.4 20.6 -1 0 0.425 15.7 -1 0 0.45 10.8 -1 0 0.475 5.9 -1 0 0.5 1 - -1 0.025 0.25 50.2 -1 0.025 0.275 45.81 -1 0.025 0.3 41.42 -1 0.025 0.325 37.03 -1 0.025 0.35 32.64 -1 0.025 0.375 28.25 -1 0.025 0.4 23.86 -1 0.025 0.425 19.47 -1 0.025 0.45 15.08 -1 0.025 0.475 10.69 -1 0.025 0.5 6.3 - -1 0.05 0.25 50.4 -1 0.05 0.275 46.52 -1 0.05 0.3 42.64 -1 0.05 0.325 38.76 -1 0.05 0.35 34.88 -1 0.05 0.375 31 -1 0.05 0.4 27.12 -1 0.05 0.425 23.24 -1 0.05 0.45 19.36 -1 0.05 0.475 15.48 -1 0.05 0.5 11.6 - -1 0.075 0.25 50.6 -1 0.075 0.275 47.23 -1 0.075 0.3 43.86 -1 0.075 0.325 40.49 -1 0.075 0.35 37.12 -1 0.075 0.375 33.75 -1 0.075 0.4 30.38 -1 0.075 0.425 27.01 -1 0.075 0.45 23.64 -1 0.075 0.475 20.27 -1 0.075 0.5 16.9 - -1 0.1 0.25 50.8 -1 0.1 0.275 47.94 -1 0.1 0.3 45.08 -1 0.1 0.325 42.22 -1 0.1 0.35 39.36 -1 0.1 0.375 36.5 -1 0.1 0.4 33.64 -1 0.1 0.425 30.78 -1 0.1 0.45 27.92 -1 0.1 0.475 25.06 -1 0.1 0.5 22.2 - -1 0.125 0.25 51 -1 0.125 0.275 48.65 -1 0.125 0.3 46.3 -1 0.125 0.325 43.95 -1 0.125 0.35 41.6 -1 0.125 0.375 39.25 -1 0.125 0.4 36.9 -1 0.125 0.425 34.55 -1 0.125 0.45 32.2 -1 0.125 0.475 29.85 -1 0.125 0.5 27.5 - -1 0.15 0.25 51.2 -1 0.15 0.275 49.36 -1 0.15 0.3 47.52 -1 0.15 0.325 45.68 -1 0.15 0.35 43.84 -1 0.15 0.375 42 -1 0.15 0.4 40.16 -1 0.15 0.425 38.32 -1 0.15 0.45 36.48 -1 0.15 0.475 34.64 -1 0.15 0.5 32.8 - -1 0.175 0.25 51.4 -1 0.175 0.275 50.07 -1 0.175 0.3 48.74 -1 0.175 0.325 47.41 -1 0.175 0.35 46.08 -1 0.175 0.375 44.75 -1 0.175 0.4 43.42 -1 0.175 0.425 42.09 -1 0.175 0.45 40.76 -1 0.175 0.475 39.43 -1 0.175 0.5 38.1 - -1 0.2 0.25 51.6 -1 0.2 0.275 50.78 -1 0.2 0.3 49.96 -1 0.2 0.325 49.14 -1 0.2 0.35 48.32 -1 0.2 0.375 47.5 -1 0.2 0.4 46.68 -1 0.2 0.425 45.86 -1 0.2 0.45 45.04 -1 0.2 0.475 44.22 -1 0.2 0.5 43.4 - -1 0.225 0.25 51.8 -1 0.225 0.275 51.49 -1 0.225 0.3 51.18 -1 0.225 0.325 50.87 -1 0.225 0.35 50.56 -1 0.225 0.375 50.25 -1 0.225 0.4 49.94 -1 0.225 0.425 49.63 -1 0.225 0.45 49.32 -1 0.225 0.475 49.01 -1 0.225 0.5 48.7 - -1 0.25 0.25 52 -1 0.25 0.275 52.2 -1 0.25 0.3 52.4 -1 0.25 0.325 52.6 -1 0.25 0.35 52.8 -1 0.25 0.375 53 -1 0.25 0.4 53.2 -1 0.25 0.425 53.4 -1 0.25 0.45 53.6 -1 0.25 0.475 53.8 -1 0.25 0.5 54 - - -0.5 0 0.25 33 -0.5 0 0.275 29.7 -0.5 0 0.3 26.4 -0.5 0 0.325 23.1 -0.5 0 0.35 19.8 -0.5 0 0.375 16.5 -0.5 0 0.4 13.2 -0.5 0 0.425 9.9 -0.5 0 0.45 6.6 -0.5 0 0.475 3.3 -0.5 0 0.5 0 - -0.525 0 0.25 34.3 -0.525 0 0.275 31.4 -0.525 0 0.3 28.5 -0.525 0 0.325 25.6 -0.525 0 0.35 22.7 -0.525 0 0.375 19.8 -0.525 0 0.4 16.9 -0.525 0 0.425 14 -0.525 0 0.45 11.1 -0.525 0 0.475 8.2 -0.525 0 0.5 5.3 - -0.55 0 0.25 35.6 -0.55 0 0.275 33.1 -0.55 0 0.3 30.6 -0.55 0 0.325 28.1 -0.55 0 0.35 25.6 -0.55 0 0.375 23.1 -0.55 0 0.4 20.6 -0.55 0 0.425 18.1 -0.55 0 0.45 15.6 -0.55 0 0.475 13.1 -0.55 0 0.5 10.6 - -0.575 0 0.25 36.9 -0.575 0 0.275 34.8 -0.575 0 0.3 32.7 -0.575 0 0.325 30.6 -0.575 0 0.35 28.5 -0.575 0 0.375 26.4 -0.575 0 0.4 24.3 -0.575 0 0.425 22.2 -0.575 0 0.45 20.1 -0.575 0 0.475 18 -0.575 0 0.5 15.9 - -0.6 0 0.25 38.2 -0.6 0 0.275 36.5 -0.6 0 0.3 34.8 -0.6 0 0.325 33.1 -0.6 0 0.35 31.4 -0.6 0 0.375 29.7 -0.6 0 0.4 28 -0.6 0 0.425 26.3 -0.6 0 0.45 24.6 -0.6 0 0.475 22.9 -0.6 0 0.5 21.2 - -0.625 0 0.25 39.5 -0.625 0 0.275 38.2 -0.625 0 0.3 36.9 -0.625 0 0.325 35.6 -0.625 0 0.35 34.3 -0.625 0 0.375 33 -0.625 0 0.4 31.7 -0.625 0 0.425 30.4 -0.625 0 0.45 29.1 -0.625 0 0.475 27.8 -0.625 0 0.5 26.5 - -0.65 0 0.25 40.8 -0.65 0 0.275 39.9 -0.65 0 0.3 39 -0.65 0 0.325 38.1 -0.65 0 0.35 37.2 -0.65 0 0.375 36.3 -0.65 0 0.4 35.4 -0.65 0 0.425 34.5 -0.65 0 0.45 33.6 -0.65 0 0.475 32.7 -0.65 0 0.5 31.8 - -0.675 0 0.25 42.1 -0.675 0 0.275 41.6 -0.675 0 0.3 41.1 -0.675 0 0.325 40.6 -0.675 0 0.35 40.1 -0.675 0 0.375 39.6 -0.675 0 0.4 39.1 -0.675 0 0.425 38.6 -0.675 0 0.45 38.1 -0.675 0 0.475 37.6 -0.675 0 0.5 37.1 - -0.7 0 0.25 43.4 -0.7 0 0.275 43.3 -0.7 0 0.3 43.2 -0.7 0 0.325 43.1 -0.7 0 0.35 43 -0.7 0 0.375 42.9 -0.7 0 0.4 42.8 -0.7 0 0.425 42.7 -0.7 0 0.45 42.6 -0.7 0 0.475 42.5 -0.7 0 0.5 42.4 - -0.725 0 0.25 44.7 -0.725 0 0.275 45 -0.725 0 0.3 45.3 -0.725 0 0.325 45.6 -0.725 0 0.35 45.9 -0.725 0 0.375 46.2 -0.725 0 0.4 46.5 -0.725 0 0.425 46.8 -0.725 0 0.45 47.1 -0.725 0 0.475 47.4 -0.725 0 0.5 47.7 - -0.75 0 0.25 46 -0.75 0 0.275 46.7 -0.75 0 0.3 47.4 -0.75 0 0.325 48.1 -0.75 0 0.35 48.8 -0.75 0 0.375 49.5 -0.75 0 0.4 50.2 -0.75 0 0.425 50.9 -0.75 0 0.45 51.6 -0.75 0 0.475 52.3 -0.75 0 0.5 53 - - -0.5 0.25 0 34 -0.5 0.275 0 31.9 -0.5 0.3 0 29.8 -0.5 0.325 0 27.7 -0.5 0.35 0 25.6 -0.5 0.375 0 23.5 -0.5 0.4 0 21.4 -0.5 0.425 0 19.3 -0.5 0.45 0 17.2 -0.5 0.475 0 15.1 -0.5 0.5 0 13 - -0.525 0.25 0 35.3 -0.525 0.275 0 33.5 -0.525 0.3 0 31.7 -0.525 0.325 0 29.9 -0.525 0.35 0 28.1 -0.525 0.375 0 26.3 -0.525 0.4 0 24.5 -0.525 0.425 0 22.7 -0.525 0.45 0 20.9 -0.525 0.475 0 19.1 -0.525 0.5 0 17.3 - -0.55 0.25 0 36.6 -0.55 0.275 0 35.1 -0.55 0.3 0 33.6 -0.55 0.325 0 32.1 -0.55 0.35 0 30.6 -0.55 0.375 0 29.1 -0.55 0.4 0 27.6 -0.55 0.425 0 26.1 -0.55 0.45 0 24.6 -0.55 0.475 0 23.1 -0.55 0.5 0 21.6 - -0.575 0.25 0 37.9 -0.575 0.275 0 36.7 -0.575 0.3 0 35.5 -0.575 0.325 0 34.3 -0.575 0.35 0 33.1 -0.575 0.375 0 31.9 -0.575 0.4 0 30.7 -0.575 0.425 0 29.5 -0.575 0.45 0 28.3 -0.575 0.475 0 27.1 -0.575 0.5 0 25.9 - -0.6 0.25 0 39.2 -0.6 0.275 0 38.3 -0.6 0.3 0 37.4 -0.6 0.325 0 36.5 -0.6 0.35 0 35.6 -0.6 0.375 0 34.7 -0.6 0.4 0 33.8 -0.6 0.425 0 32.9 -0.6 0.45 0 32 -0.6 0.475 0 31.1 -0.6 0.5 0 30.2 - -0.625 0.25 0 40.5 -0.625 0.275 0 39.9 -0.625 0.3 0 39.3 -0.625 0.325 0 38.7 -0.625 0.35 0 38.1 -0.625 0.375 0 37.5 -0.625 0.4 0 36.9 -0.625 0.425 0 36.3 -0.625 0.45 0 35.7 -0.625 0.475 0 35.1 -0.625 0.5 0 34.5 - -0.65 0.25 0 41.8 -0.65 0.275 0 41.5 -0.65 0.3 0 41.2 -0.65 0.325 0 40.9 -0.65 0.35 0 40.6 -0.65 0.375 0 40.3 -0.65 0.4 0 40 -0.65 0.425 0 39.7 -0.65 0.45 0 39.4 -0.65 0.475 0 39.1 -0.65 0.5 0 38.8 - -0.675 0.25 0 43.1 -0.675 0.275 0 43.1 -0.675 0.3 0 43.1 -0.675 0.325 0 43.1 -0.675 0.35 0 43.1 -0.675 0.375 0 43.1 -0.675 0.4 0 43.1 -0.675 0.425 0 43.1 -0.675 0.45 0 43.1 -0.675 0.475 0 43.1 -0.675 0.5 0 43.1 - -0.7 0.25 0 44.4 -0.7 0.275 0 44.7 -0.7 0.3 0 45 -0.7 0.325 0 45.3 -0.7 0.35 0 45.6 -0.7 0.375 0 45.9 -0.7 0.4 0 46.2 -0.7 0.425 0 46.5 -0.7 0.45 0 46.8 -0.7 0.475 0 47.1 -0.7 0.5 0 47.4 - -0.725 0.25 0 45.7 -0.725 0.275 0 46.3 -0.725 0.3 0 46.9 -0.725 0.325 0 47.5 -0.725 0.35 0 48.1 -0.725 0.375 0 48.7 -0.725 0.4 0 49.3 -0.725 0.425 0 49.9 -0.725 0.45 0 50.5 -0.725 0.475 0 51.1 -0.725 0.5 0 51.7 - -0.75 0.25 0 47 -0.75 0.275 0 47.9 -0.75 0.3 0 48.8 -0.75 0.325 0 49.7 -0.75 0.35 0 50.6 -0.75 0.375 0 51.5 -0.75 0.4 0 52.4 -0.75 0.425 0 53.3 -0.75 0.45 0 54.2 -0.75 0.475 0 55.1 -0.75 0.5 0 56 - - -0.75 0.25 0 47 -0.75 0.275 0 47.9 -0.75 0.3 0 48.8 -0.75 0.325 0 49.7 -0.75 0.35 0 50.6 -0.75 0.375 0 51.5 -0.75 0.4 0 52.4 -0.75 0.425 0 53.3 -0.75 0.45 0 54.2 -0.75 0.475 0 55.1 -0.75 0.5 0 56 - -0.775 0.25 0 47.4 -0.775 0.275 0 47.88 -0.775 0.3 0 48.36 -0.775 0.325 0 48.84 -0.775 0.35 0 49.32 -0.775 0.375 0 49.8 -0.775 0.4 0 50.28 -0.775 0.425 0 50.76 -0.775 0.45 0 51.24 -0.775 0.475 0 51.72 -0.775 0.5 0 52.2 - -0.8 0.25 0 47.8 -0.8 0.275 0 47.86 -0.8 0.3 0 47.92 -0.8 0.325 0 47.98 -0.8 0.35 0 48.04 -0.8 0.375 0 48.1 -0.8 0.4 0 48.16 -0.8 0.425 0 48.22 -0.8 0.45 0 48.28 -0.8 0.475 0 48.34 -0.8 0.5 0 48.4 - -0.825 0.25 0 48.2 -0.825 0.275 0 47.84 -0.825 0.3 0 47.48 -0.825 0.325 0 47.12 -0.825 0.35 0 46.76 -0.825 0.375 0 46.4 -0.825 0.4 0 46.04 -0.825 0.425 0 45.68 -0.825 0.45 0 45.32 -0.825 0.475 0 44.96 -0.825 0.5 0 44.6 - -0.85 0.25 0 48.6 -0.85 0.275 0 47.82 -0.85 0.3 0 47.04 -0.85 0.325 0 46.26 -0.85 0.35 0 45.48 -0.85 0.375 0 44.7 -0.85 0.4 0 43.92 -0.85 0.425 0 43.14 -0.85 0.45 0 42.36 -0.85 0.475 0 41.58 -0.85 0.5 0 40.8 - -0.875 0.25 0 49 -0.875 0.275 0 47.8 -0.875 0.3 0 46.6 -0.875 0.325 0 45.4 -0.875 0.35 0 44.2 -0.875 0.375 0 43 -0.875 0.4 0 41.8 -0.875 0.425 0 40.6 -0.875 0.45 0 39.4 -0.875 0.475 0 38.2 -0.875 0.5 0 37 - -0.9 0.25 0 49.4 -0.9 0.275 0 47.78 -0.9 0.3 0 46.16 -0.9 0.325 0 44.54 -0.9 0.35 0 42.92 -0.9 0.375 0 41.3 -0.9 0.4 0 39.68 -0.9 0.425 0 38.06 -0.9 0.45 0 36.44 -0.9 0.475 0 34.82 -0.9 0.5 0 33.2 - -0.925 0.25 0 49.8 -0.925 0.275 0 47.76 -0.925 0.3 0 45.72 -0.925 0.325 0 43.68 -0.925 0.35 0 41.64 -0.925 0.375 0 39.6 -0.925 0.4 0 37.56 -0.925 0.425 0 35.52 -0.925 0.45 0 33.48 -0.925 0.475 0 31.44 -0.925 0.5 0 29.4 - -0.95 0.25 0 50.2 -0.95 0.275 0 47.74 -0.95 0.3 0 45.28 -0.95 0.325 0 42.82 -0.95 0.35 0 40.36 -0.95 0.375 0 37.9 -0.95 0.4 0 35.44 -0.95 0.425 0 32.98 -0.95 0.45 0 30.52 -0.95 0.475 0 28.06 -0.95 0.5 0 25.6 - -0.975 0.25 0 50.6 -0.975 0.275 0 47.72 -0.975 0.3 0 44.84 -0.975 0.325 0 41.96 -0.975 0.35 0 39.08 -0.975 0.375 0 36.2 -0.975 0.4 0 33.32 -0.975 0.425 0 30.44 -0.975 0.45 0 27.56 -0.975 0.475 0 24.68 -0.975 0.5 0 21.8 - -1 0.25 0 51 -1 0.275 0 47.7 -1 0.3 0 44.4 -1 0.325 0 41.1 -1 0.35 0 37.8 -1 0.375 0 34.5 -1 0.4 0 31.2 -1 0.425 0 27.9 -1 0.45 0 24.6 -1 0.475 0 21.3 -1 0.5 0 18 - - -1 0.25 0 51 -1 0.25 0.025 51.1 -1 0.25 0.05 51.2 -1 0.25 0.075 51.3 -1 0.25 0.1 51.4 -1 0.25 0.125 51.5 -1 0.25 0.15 51.6 -1 0.25 0.175 51.7 -1 0.25 0.2 51.8 -1 0.25 0.225 51.9 -1 0.25 0.25 52 - -1 0.275 0 47.7 -1 0.275 0.025 48.19 -1 0.275 0.05 48.68 -1 0.275 0.075 49.17 -1 0.275 0.1 49.66 -1 0.275 0.125 50.15 -1 0.275 0.15 50.64 -1 0.275 0.175 51.13 -1 0.275 0.2 51.62 -1 0.275 0.225 52.11 -1 0.275 0.25 52.6 - -1 0.3 0 44.4 -1 0.3 0.025 45.28 -1 0.3 0.05 46.16 -1 0.3 0.075 47.04 -1 0.3 0.1 47.92 -1 0.3 0.125 48.8 -1 0.3 0.15 49.68 -1 0.3 0.175 50.56 -1 0.3 0.2 51.44 -1 0.3 0.225 52.32 -1 0.3 0.25 53.2 - -1 0.325 0 41.1 -1 0.325 0.025 42.37 -1 0.325 0.05 43.64 -1 0.325 0.075 44.91 -1 0.325 0.1 46.18 -1 0.325 0.125 47.45 -1 0.325 0.15 48.72 -1 0.325 0.175 49.99 -1 0.325 0.2 51.26 -1 0.325 0.225 52.53 -1 0.325 0.25 53.8 - -1 0.35 0 37.8 -1 0.35 0.025 39.46 -1 0.35 0.05 41.12 -1 0.35 0.075 42.78 -1 0.35 0.1 44.44 -1 0.35 0.125 46.1 -1 0.35 0.15 47.76 -1 0.35 0.175 49.42 -1 0.35 0.2 51.08 -1 0.35 0.225 52.74 -1 0.35 0.25 54.4 - -1 0.375 0 34.5 -1 0.375 0.025 36.55 -1 0.375 0.05 38.6 -1 0.375 0.075 40.65 -1 0.375 0.1 42.7 -1 0.375 0.125 44.75 -1 0.375 0.15 46.8 -1 0.375 0.175 48.85 -1 0.375 0.2 50.9 -1 0.375 0.225 52.95 -1 0.375 0.25 55 - -1 0.4 0 31.2 -1 0.4 0.025 33.64 -1 0.4 0.05 36.08 -1 0.4 0.075 38.52 -1 0.4 0.1 40.96 -1 0.4 0.125 43.4 -1 0.4 0.15 45.84 -1 0.4 0.175 48.28 -1 0.4 0.2 50.72 -1 0.4 0.225 53.16 -1 0.4 0.25 55.6 - -1 0.425 0 27.9 -1 0.425 0.025 30.73 -1 0.425 0.05 33.56 -1 0.425 0.075 36.39 -1 0.425 0.1 39.22 -1 0.425 0.125 42.05 -1 0.425 0.15 44.88 -1 0.425 0.175 47.71 -1 0.425 0.2 50.54 -1 0.425 0.225 53.37 -1 0.425 0.25 56.2 - -1 0.45 0 24.6 -1 0.45 0.025 27.82 -1 0.45 0.05 31.04 -1 0.45 0.075 34.26 -1 0.45 0.1 37.48 -1 0.45 0.125 40.7 -1 0.45 0.15 43.92 -1 0.45 0.175 47.14 -1 0.45 0.2 50.36 -1 0.45 0.225 53.58 -1 0.45 0.25 56.8 - -1 0.475 0 21.3 -1 0.475 0.025 24.91 -1 0.475 0.05 28.52 -1 0.475 0.075 32.13 -1 0.475 0.1 35.74 -1 0.475 0.125 39.35 -1 0.475 0.15 42.96 -1 0.475 0.175 46.57 -1 0.475 0.2 50.18 -1 0.475 0.225 53.79 -1 0.475 0.25 57.4 - -1 0.5 0 18 -1 0.5 0.025 22 -1 0.5 0.05 26 -1 0.5 0.075 30 -1 0.5 0.1 34 -1 0.5 0.125 38 -1 0.5 0.15 42 -1 0.5 0.175 46 -1 0.5 0.2 50 -1 0.5 0.225 54 -1 0.5 0.25 58 - - -1 0.25 0.25 52 -1 0.25 0.275 52.2 -1 0.25 0.3 52.4 -1 0.25 0.325 52.6 -1 0.25 0.35 52.8 -1 0.25 0.375 53 -1 0.25 0.4 53.2 -1 0.25 0.425 53.4 -1 0.25 0.45 53.6 -1 0.25 0.475 53.8 -1 0.25 0.5 54 - -1 0.275 0.25 52.6 -1 0.275 0.275 52.25 -1 0.275 0.3 51.9 -1 0.275 0.325 51.55 -1 0.275 0.35 51.2 -1 0.275 0.375 50.85 -1 0.275 0.4 50.5 -1 0.275 0.425 50.15 -1 0.275 0.45 49.8 -1 0.275 0.475 49.45 -1 0.275 0.5 49.1 - -1 0.3 0.25 53.2 -1 0.3 0.275 52.3 -1 0.3 0.3 51.4 -1 0.3 0.325 50.5 -1 0.3 0.35 49.6 -1 0.3 0.375 48.7 -1 0.3 0.4 47.8 -1 0.3 0.425 46.9 -1 0.3 0.45 46 -1 0.3 0.475 45.1 -1 0.3 0.5 44.2 - -1 0.325 0.25 53.8 -1 0.325 0.275 52.35 -1 0.325 0.3 50.9 -1 0.325 0.325 49.45 -1 0.325 0.35 48 -1 0.325 0.375 46.55 -1 0.325 0.4 45.1 -1 0.325 0.425 43.65 -1 0.325 0.45 42.2 -1 0.325 0.475 40.75 -1 0.325 0.5 39.3 - -1 0.35 0.25 54.4 -1 0.35 0.275 52.4 -1 0.35 0.3 50.4 -1 0.35 0.325 48.4 -1 0.35 0.35 46.4 -1 0.35 0.375 44.4 -1 0.35 0.4 42.4 -1 0.35 0.425 40.4 -1 0.35 0.45 38.4 -1 0.35 0.475 36.4 -1 0.35 0.5 34.4 - -1 0.375 0.25 55 -1 0.375 0.275 52.45 -1 0.375 0.3 49.9 -1 0.375 0.325 47.35 -1 0.375 0.35 44.8 -1 0.375 0.375 42.25 -1 0.375 0.4 39.7 -1 0.375 0.425 37.15 -1 0.375 0.45 34.6 -1 0.375 0.475 32.05 -1 0.375 0.5 29.5 - -1 0.4 0.25 55.6 -1 0.4 0.275 52.5 -1 0.4 0.3 49.4 -1 0.4 0.325 46.3 -1 0.4 0.35 43.2 -1 0.4 0.375 40.1 -1 0.4 0.4 37 -1 0.4 0.425 33.9 -1 0.4 0.45 30.8 -1 0.4 0.475 27.7 -1 0.4 0.5 24.6 - -1 0.425 0.25 56.2 -1 0.425 0.275 52.55 -1 0.425 0.3 48.9 -1 0.425 0.325 45.25 -1 0.425 0.35 41.6 -1 0.425 0.375 37.95 -1 0.425 0.4 34.3 -1 0.425 0.425 30.65 -1 0.425 0.45 27 -1 0.425 0.475 23.35 -1 0.425 0.5 19.7 - -1 0.45 0.25 56.8 -1 0.45 0.275 52.6 -1 0.45 0.3 48.4 -1 0.45 0.325 44.2 -1 0.45 0.35 40 -1 0.45 0.375 35.8 -1 0.45 0.4 31.6 -1 0.45 0.425 27.4 -1 0.45 0.45 23.2 -1 0.45 0.475 19 -1 0.45 0.5 14.8 - -1 0.475 0.25 57.4 -1 0.475 0.275 52.65 -1 0.475 0.3 47.9 -1 0.475 0.325 43.15 -1 0.475 0.35 38.4 -1 0.475 0.375 33.65 -1 0.475 0.4 28.9 -1 0.475 0.425 24.15 -1 0.475 0.45 19.4 -1 0.475 0.475 14.65 -1 0.475 0.5 9.9 - -1 0.5 0.25 58 -1 0.5 0.275 52.7 -1 0.5 0.3 47.4 -1 0.5 0.325 42.1 -1 0.5 0.35 36.8 -1 0.5 0.375 31.5 -1 0.5 0.4 26.2 -1 0.5 0.425 20.9 -1 0.5 0.45 15.6 -1 0.5 0.475 10.3 -1 0.5 0.5 5 - - -# This file was generated by the deal.II library. -# Date = 2000/9/19 - -# -# For a description of the UCD format see the AVS Developer's guide. -# -5082 4200 1 0 0 -1 0.5 0 0.5 -2 0.5 0 0.55 -3 0.5 0 0.6 -4 0.5 0 0.65 -5 0.5 0 0.7 -6 0.5 0 0.75 -7 0.5 0 0.8 -8 0.5 0 0.85 -9 0.5 0 0.9 -10 0.5 0 0.95 -11 0.5 0 1 -12 0.55 0 0.5 -13 0.55 0 0.55 -14 0.55 0 0.6 -15 0.55 0 0.65 -16 0.55 0 0.7 -17 0.55 0 0.75 -18 0.55 0 0.8 -19 0.55 0 0.85 -20 0.55 0 0.9 -21 0.55 0 0.95 -22 0.55 0 1 -23 0.6 0 0.5 -24 0.6 0 0.55 -25 0.6 0 0.6 -26 0.6 0 0.65 -27 0.6 0 0.7 -28 0.6 0 0.75 -29 0.6 0 0.8 -30 0.6 0 0.85 -31 0.6 0 0.9 -32 0.6 0 0.95 -33 0.6 0 1 -34 0.65 0 0.5 -35 0.65 0 0.55 -36 0.65 0 0.6 -37 0.65 0 0.65 -38 0.65 0 0.7 -39 0.65 0 0.75 -40 0.65 0 0.8 -41 0.65 0 0.85 -42 0.65 0 0.9 -43 0.65 0 0.95 -44 0.65 0 1 -45 0.7 0 0.5 -46 0.7 0 0.55 -47 0.7 0 0.6 -48 0.7 0 0.65 -49 0.7 0 0.7 -50 0.7 0 0.75 -51 0.7 0 0.8 -52 0.7 0 0.85 -53 0.7 0 0.9 -54 0.7 0 0.95 -55 0.7 0 1 -56 0.75 0 0.5 -57 0.75 0 0.55 -58 0.75 0 0.6 -59 0.75 0 0.65 -60 0.75 0 0.7 -61 0.75 0 0.75 -62 0.75 0 0.8 -63 0.75 0 0.85 -64 0.75 0 0.9 -65 0.75 0 0.95 -66 0.75 0 1 -67 0.8 0 0.5 -68 0.8 0 0.55 -69 0.8 0 0.6 -70 0.8 0 0.65 -71 0.8 0 0.7 -72 0.8 0 0.75 -73 0.8 0 0.8 -74 0.8 0 0.85 -75 0.8 0 0.9 -76 0.8 0 0.95 -77 0.8 0 1 -78 0.85 0 0.5 -79 0.85 0 0.55 -80 0.85 0 0.6 -81 0.85 0 0.65 -82 0.85 0 0.7 -83 0.85 0 0.75 -84 0.85 0 0.8 -85 0.85 0 0.85 -86 0.85 0 0.9 -87 0.85 0 0.95 -88 0.85 0 1 -89 0.9 0 0.5 -90 0.9 0 0.55 -91 0.9 0 0.6 -92 0.9 0 0.65 -93 0.9 0 0.7 -94 0.9 0 0.75 -95 0.9 0 0.8 -96 0.9 0 0.85 -97 0.9 0 0.9 -98 0.9 0 0.95 -99 0.9 0 1 -100 0.95 0 0.5 -101 0.95 0 0.55 -102 0.95 0 0.6 -103 0.95 0 0.65 -104 0.95 0 0.7 -105 0.95 0 0.75 -106 0.95 0 0.8 -107 0.95 0 0.85 -108 0.95 0 0.9 -109 0.95 0 0.95 -110 0.95 0 1 -111 1 0 0.5 -112 1 0 0.55 -113 1 0 0.6 -114 1 0 0.65 -115 1 0 0.7 -116 1 0 0.75 -117 1 0 0.8 -118 1 0 0.85 -119 1 0 0.9 -120 1 0 0.95 -121 1 0 1 -122 1 0 0.5 -123 1 0 0.55 -124 1 0 0.6 -125 1 0 0.65 -126 1 0 0.7 -127 1 0 0.75 -128 1 0 0.8 -129 1 0 0.85 -130 1 0 0.9 -131 1 0 0.95 -132 1 0 1 -133 1 0.05 0.5 -134 1 0.05 0.55 -135 1 0.05 0.6 -136 1 0.05 0.65 -137 1 0.05 0.7 -138 1 0.05 0.75 -139 1 0.05 0.8 -140 1 0.05 0.85 -141 1 0.05 0.9 -142 1 0.05 0.95 -143 1 0.05 1 -144 1 0.1 0.5 -145 1 0.1 0.55 -146 1 0.1 0.6 -147 1 0.1 0.65 -148 1 0.1 0.7 -149 1 0.1 0.75 -150 1 0.1 0.8 -151 1 0.1 0.85 -152 1 0.1 0.9 -153 1 0.1 0.95 -154 1 0.1 1 -155 1 0.15 0.5 -156 1 0.15 0.55 -157 1 0.15 0.6 -158 1 0.15 0.65 -159 1 0.15 0.7 -160 1 0.15 0.75 -161 1 0.15 0.8 -162 1 0.15 0.85 -163 1 0.15 0.9 -164 1 0.15 0.95 -165 1 0.15 1 -166 1 0.2 0.5 -167 1 0.2 0.55 -168 1 0.2 0.6 -169 1 0.2 0.65 -170 1 0.2 0.7 -171 1 0.2 0.75 -172 1 0.2 0.8 -173 1 0.2 0.85 -174 1 0.2 0.9 -175 1 0.2 0.95 -176 1 0.2 1 -177 1 0.25 0.5 -178 1 0.25 0.55 -179 1 0.25 0.6 -180 1 0.25 0.65 -181 1 0.25 0.7 -182 1 0.25 0.75 -183 1 0.25 0.8 -184 1 0.25 0.85 -185 1 0.25 0.9 -186 1 0.25 0.95 -187 1 0.25 1 -188 1 0.3 0.5 -189 1 0.3 0.55 -190 1 0.3 0.6 -191 1 0.3 0.65 -192 1 0.3 0.7 -193 1 0.3 0.75 -194 1 0.3 0.8 -195 1 0.3 0.85 -196 1 0.3 0.9 -197 1 0.3 0.95 -198 1 0.3 1 -199 1 0.35 0.5 -200 1 0.35 0.55 -201 1 0.35 0.6 -202 1 0.35 0.65 -203 1 0.35 0.7 -204 1 0.35 0.75 -205 1 0.35 0.8 -206 1 0.35 0.85 -207 1 0.35 0.9 -208 1 0.35 0.95 -209 1 0.35 1 -210 1 0.4 0.5 -211 1 0.4 0.55 -212 1 0.4 0.6 -213 1 0.4 0.65 -214 1 0.4 0.7 -215 1 0.4 0.75 -216 1 0.4 0.8 -217 1 0.4 0.85 -218 1 0.4 0.9 -219 1 0.4 0.95 -220 1 0.4 1 -221 1 0.45 0.5 -222 1 0.45 0.55 -223 1 0.45 0.6 -224 1 0.45 0.65 -225 1 0.45 0.7 -226 1 0.45 0.75 -227 1 0.45 0.8 -228 1 0.45 0.85 -229 1 0.45 0.9 -230 1 0.45 0.95 -231 1 0.45 1 -232 1 0.5 0.5 -233 1 0.5 0.55 -234 1 0.5 0.6 -235 1 0.5 0.65 -236 1 0.5 0.7 -237 1 0.5 0.75 -238 1 0.5 0.8 -239 1 0.5 0.85 -240 1 0.5 0.9 -241 1 0.5 0.95 -242 1 0.5 1 -243 0.5 0 1 -244 0.5 0.05 1 -245 0.5 0.1 1 -246 0.5 0.15 1 -247 0.5 0.2 1 -248 0.5 0.25 1 -249 0.5 0.3 1 -250 0.5 0.35 1 -251 0.5 0.4 1 -252 0.5 0.45 1 -253 0.5 0.5 1 -254 0.55 0 1 -255 0.55 0.05 1 -256 0.55 0.1 1 -257 0.55 0.15 1 -258 0.55 0.2 1 -259 0.55 0.25 1 -260 0.55 0.3 1 -261 0.55 0.35 1 -262 0.55 0.4 1 -263 0.55 0.45 1 -264 0.55 0.5 1 -265 0.6 0 1 -266 0.6 0.05 1 -267 0.6 0.1 1 -268 0.6 0.15 1 -269 0.6 0.2 1 -270 0.6 0.25 1 -271 0.6 0.3 1 -272 0.6 0.35 1 -273 0.6 0.4 1 -274 0.6 0.45 1 -275 0.6 0.5 1 -276 0.65 0 1 -277 0.65 0.05 1 -278 0.65 0.1 1 -279 0.65 0.15 1 -280 0.65 0.2 1 -281 0.65 0.25 1 -282 0.65 0.3 1 -283 0.65 0.35 1 -284 0.65 0.4 1 -285 0.65 0.45 1 -286 0.65 0.5 1 -287 0.7 0 1 -288 0.7 0.05 1 -289 0.7 0.1 1 -290 0.7 0.15 1 -291 0.7 0.2 1 -292 0.7 0.25 1 -293 0.7 0.3 1 -294 0.7 0.35 1 -295 0.7 0.4 1 -296 0.7 0.45 1 -297 0.7 0.5 1 -298 0.75 0 1 -299 0.75 0.05 1 -300 0.75 0.1 1 -301 0.75 0.15 1 -302 0.75 0.2 1 -303 0.75 0.25 1 -304 0.75 0.3 1 -305 0.75 0.35 1 -306 0.75 0.4 1 -307 0.75 0.45 1 -308 0.75 0.5 1 -309 0.8 0 1 -310 0.8 0.05 1 -311 0.8 0.1 1 -312 0.8 0.15 1 -313 0.8 0.2 1 -314 0.8 0.25 1 -315 0.8 0.3 1 -316 0.8 0.35 1 -317 0.8 0.4 1 -318 0.8 0.45 1 -319 0.8 0.5 1 -320 0.85 0 1 -321 0.85 0.05 1 -322 0.85 0.1 1 -323 0.85 0.15 1 -324 0.85 0.2 1 -325 0.85 0.25 1 -326 0.85 0.3 1 -327 0.85 0.35 1 -328 0.85 0.4 1 -329 0.85 0.45 1 -330 0.85 0.5 1 -331 0.9 0 1 -332 0.9 0.05 1 -333 0.9 0.1 1 -334 0.9 0.15 1 -335 0.9 0.2 1 -336 0.9 0.25 1 -337 0.9 0.3 1 -338 0.9 0.35 1 -339 0.9 0.4 1 -340 0.9 0.45 1 -341 0.9 0.5 1 -342 0.95 0 1 -343 0.95 0.05 1 -344 0.95 0.1 1 -345 0.95 0.15 1 -346 0.95 0.2 1 -347 0.95 0.25 1 -348 0.95 0.3 1 -349 0.95 0.35 1 -350 0.95 0.4 1 -351 0.95 0.45 1 -352 0.95 0.5 1 -353 1 0 1 -354 1 0.05 1 -355 1 0.1 1 -356 1 0.15 1 -357 1 0.2 1 -358 1 0.25 1 -359 1 0.3 1 -360 1 0.35 1 -361 1 0.4 1 -362 1 0.45 1 -363 1 0.5 1 -364 0 0 0.5 -365 0 0 0.55 -366 0 0 0.6 -367 0 0 0.65 -368 0 0 0.7 -369 0 0 0.75 -370 0 0 0.8 -371 0 0 0.85 -372 0 0 0.9 -373 0 0 0.95 -374 0 0 1 -375 0.05 0 0.5 -376 0.05 0 0.55 -377 0.05 0 0.6 -378 0.05 0 0.65 -379 0.05 0 0.7 -380 0.05 0 0.75 -381 0.05 0 0.8 -382 0.05 0 0.85 -383 0.05 0 0.9 -384 0.05 0 0.95 -385 0.05 0 1 -386 0.1 0 0.5 -387 0.1 0 0.55 -388 0.1 0 0.6 -389 0.1 0 0.65 -390 0.1 0 0.7 -391 0.1 0 0.75 -392 0.1 0 0.8 -393 0.1 0 0.85 -394 0.1 0 0.9 -395 0.1 0 0.95 -396 0.1 0 1 -397 0.15 0 0.5 -398 0.15 0 0.55 -399 0.15 0 0.6 -400 0.15 0 0.65 -401 0.15 0 0.7 -402 0.15 0 0.75 -403 0.15 0 0.8 -404 0.15 0 0.85 -405 0.15 0 0.9 -406 0.15 0 0.95 -407 0.15 0 1 -408 0.2 0 0.5 -409 0.2 0 0.55 -410 0.2 0 0.6 -411 0.2 0 0.65 -412 0.2 0 0.7 -413 0.2 0 0.75 -414 0.2 0 0.8 -415 0.2 0 0.85 -416 0.2 0 0.9 -417 0.2 0 0.95 -418 0.2 0 1 -419 0.25 0 0.5 -420 0.25 0 0.55 -421 0.25 0 0.6 -422 0.25 0 0.65 -423 0.25 0 0.7 -424 0.25 0 0.75 -425 0.25 0 0.8 -426 0.25 0 0.85 -427 0.25 0 0.9 -428 0.25 0 0.95 -429 0.25 0 1 -430 0.3 0 0.5 -431 0.3 0 0.55 -432 0.3 0 0.6 -433 0.3 0 0.65 -434 0.3 0 0.7 -435 0.3 0 0.75 -436 0.3 0 0.8 -437 0.3 0 0.85 -438 0.3 0 0.9 -439 0.3 0 0.95 -440 0.3 0 1 -441 0.35 0 0.5 -442 0.35 0 0.55 -443 0.35 0 0.6 -444 0.35 0 0.65 -445 0.35 0 0.7 -446 0.35 0 0.75 -447 0.35 0 0.8 -448 0.35 0 0.85 -449 0.35 0 0.9 -450 0.35 0 0.95 -451 0.35 0 1 -452 0.4 0 0.5 -453 0.4 0 0.55 -454 0.4 0 0.6 -455 0.4 0 0.65 -456 0.4 0 0.7 -457 0.4 0 0.75 -458 0.4 0 0.8 -459 0.4 0 0.85 -460 0.4 0 0.9 -461 0.4 0 0.95 -462 0.4 0 1 -463 0.45 0 0.5 -464 0.45 0 0.55 -465 0.45 0 0.6 -466 0.45 0 0.65 -467 0.45 0 0.7 -468 0.45 0 0.75 -469 0.45 0 0.8 -470 0.45 0 0.85 -471 0.45 0 0.9 -472 0.45 0 0.95 -473 0.45 0 1 -474 0.5 0 0.5 -475 0.5 0 0.55 -476 0.5 0 0.6 -477 0.5 0 0.65 -478 0.5 0 0.7 -479 0.5 0 0.75 -480 0.5 0 0.8 -481 0.5 0 0.85 -482 0.5 0 0.9 -483 0.5 0 0.95 -484 0.5 0 1 -485 0 0 1 -486 0 0.05 1 -487 0 0.1 1 -488 0 0.15 1 -489 0 0.2 1 -490 0 0.25 1 -491 0 0.3 1 -492 0 0.35 1 -493 0 0.4 1 -494 0 0.45 1 -495 0 0.5 1 -496 0.05 0 1 -497 0.05 0.05 1 -498 0.05 0.1 1 -499 0.05 0.15 1 -500 0.05 0.2 1 -501 0.05 0.25 1 -502 0.05 0.3 1 -503 0.05 0.35 1 -504 0.05 0.4 1 -505 0.05 0.45 1 -506 0.05 0.5 1 -507 0.1 0 1 -508 0.1 0.05 1 -509 0.1 0.1 1 -510 0.1 0.15 1 -511 0.1 0.2 1 -512 0.1 0.25 1 -513 0.1 0.3 1 -514 0.1 0.35 1 -515 0.1 0.4 1 -516 0.1 0.45 1 -517 0.1 0.5 1 -518 0.15 0 1 -519 0.15 0.05 1 -520 0.15 0.1 1 -521 0.15 0.15 1 -522 0.15 0.2 1 -523 0.15 0.25 1 -524 0.15 0.3 1 -525 0.15 0.35 1 -526 0.15 0.4 1 -527 0.15 0.45 1 -528 0.15 0.5 1 -529 0.2 0 1 -530 0.2 0.05 1 -531 0.2 0.1 1 -532 0.2 0.15 1 -533 0.2 0.2 1 -534 0.2 0.25 1 -535 0.2 0.3 1 -536 0.2 0.35 1 -537 0.2 0.4 1 -538 0.2 0.45 1 -539 0.2 0.5 1 -540 0.25 0 1 -541 0.25 0.05 1 -542 0.25 0.1 1 -543 0.25 0.15 1 -544 0.25 0.2 1 -545 0.25 0.25 1 -546 0.25 0.3 1 -547 0.25 0.35 1 -548 0.25 0.4 1 -549 0.25 0.45 1 -550 0.25 0.5 1 -551 0.3 0 1 -552 0.3 0.05 1 -553 0.3 0.1 1 -554 0.3 0.15 1 -555 0.3 0.2 1 -556 0.3 0.25 1 -557 0.3 0.3 1 -558 0.3 0.35 1 -559 0.3 0.4 1 -560 0.3 0.45 1 -561 0.3 0.5 1 -562 0.35 0 1 -563 0.35 0.05 1 -564 0.35 0.1 1 -565 0.35 0.15 1 -566 0.35 0.2 1 -567 0.35 0.25 1 -568 0.35 0.3 1 -569 0.35 0.35 1 -570 0.35 0.4 1 -571 0.35 0.45 1 -572 0.35 0.5 1 -573 0.4 0 1 -574 0.4 0.05 1 -575 0.4 0.1 1 -576 0.4 0.15 1 -577 0.4 0.2 1 -578 0.4 0.25 1 -579 0.4 0.3 1 -580 0.4 0.35 1 -581 0.4 0.4 1 -582 0.4 0.45 1 -583 0.4 0.5 1 -584 0.45 0 1 -585 0.45 0.05 1 -586 0.45 0.1 1 -587 0.45 0.15 1 -588 0.45 0.2 1 -589 0.45 0.25 1 -590 0.45 0.3 1 -591 0.45 0.35 1 -592 0.45 0.4 1 -593 0.45 0.45 1 -594 0.45 0.5 1 -595 0.5 0 1 -596 0.5 0.05 1 -597 0.5 0.1 1 -598 0.5 0.15 1 -599 0.5 0.2 1 -600 0.5 0.25 1 -601 0.5 0.3 1 -602 0.5 0.35 1 -603 0.5 0.4 1 -604 0.5 0.45 1 -605 0.5 0.5 1 -606 0 0 0.5 -607 0 0 0.55 -608 0 0 0.6 -609 0 0 0.65 -610 0 0 0.7 -611 0 0 0.75 -612 0 0 0.8 -613 0 0 0.85 -614 0 0 0.9 -615 0 0 0.95 -616 0 0 1 -617 0 0.05 0.5 -618 0 0.05 0.55 -619 0 0.05 0.6 -620 0 0.05 0.65 -621 0 0.05 0.7 -622 0 0.05 0.75 -623 0 0.05 0.8 -624 0 0.05 0.85 -625 0 0.05 0.9 -626 0 0.05 0.95 -627 0 0.05 1 -628 0 0.1 0.5 -629 0 0.1 0.55 -630 0 0.1 0.6 -631 0 0.1 0.65 -632 0 0.1 0.7 -633 0 0.1 0.75 -634 0 0.1 0.8 -635 0 0.1 0.85 -636 0 0.1 0.9 -637 0 0.1 0.95 -638 0 0.1 1 -639 0 0.15 0.5 -640 0 0.15 0.55 -641 0 0.15 0.6 -642 0 0.15 0.65 -643 0 0.15 0.7 -644 0 0.15 0.75 -645 0 0.15 0.8 -646 0 0.15 0.85 -647 0 0.15 0.9 -648 0 0.15 0.95 -649 0 0.15 1 -650 0 0.2 0.5 -651 0 0.2 0.55 -652 0 0.2 0.6 -653 0 0.2 0.65 -654 0 0.2 0.7 -655 0 0.2 0.75 -656 0 0.2 0.8 -657 0 0.2 0.85 -658 0 0.2 0.9 -659 0 0.2 0.95 -660 0 0.2 1 -661 0 0.25 0.5 -662 0 0.25 0.55 -663 0 0.25 0.6 -664 0 0.25 0.65 -665 0 0.25 0.7 -666 0 0.25 0.75 -667 0 0.25 0.8 -668 0 0.25 0.85 -669 0 0.25 0.9 -670 0 0.25 0.95 -671 0 0.25 1 -672 0 0.3 0.5 -673 0 0.3 0.55 -674 0 0.3 0.6 -675 0 0.3 0.65 -676 0 0.3 0.7 -677 0 0.3 0.75 -678 0 0.3 0.8 -679 0 0.3 0.85 -680 0 0.3 0.9 -681 0 0.3 0.95 -682 0 0.3 1 -683 0 0.35 0.5 -684 0 0.35 0.55 -685 0 0.35 0.6 -686 0 0.35 0.65 -687 0 0.35 0.7 -688 0 0.35 0.75 -689 0 0.35 0.8 -690 0 0.35 0.85 -691 0 0.35 0.9 -692 0 0.35 0.95 -693 0 0.35 1 -694 0 0.4 0.5 -695 0 0.4 0.55 -696 0 0.4 0.6 -697 0 0.4 0.65 -698 0 0.4 0.7 -699 0 0.4 0.75 -700 0 0.4 0.8 -701 0 0.4 0.85 -702 0 0.4 0.9 -703 0 0.4 0.95 -704 0 0.4 1 -705 0 0.45 0.5 -706 0 0.45 0.55 -707 0 0.45 0.6 -708 0 0.45 0.65 -709 0 0.45 0.7 -710 0 0.45 0.75 -711 0 0.45 0.8 -712 0 0.45 0.85 -713 0 0.45 0.9 -714 0 0.45 0.95 -715 0 0.45 1 -716 0 0.5 0.5 -717 0 0.5 0.55 -718 0 0.5 0.6 -719 0 0.5 0.65 -720 0 0.5 0.7 -721 0 0.5 0.75 -722 0 0.5 0.8 -723 0 0.5 0.85 -724 0 0.5 0.9 -725 0 0.5 0.95 -726 0 0.5 1 -727 0 1 0 -728 0 1 0.05 -729 0 1 0.1 -730 0 1 0.15 -731 0 1 0.2 -732 0 1 0.25 -733 0 1 0.3 -734 0 1 0.35 -735 0 1 0.4 -736 0 1 0.45 -737 0 1 0.5 -738 0.05 1 0 -739 0.05 1 0.05 -740 0.05 1 0.1 -741 0.05 1 0.15 -742 0.05 1 0.2 -743 0.05 1 0.25 -744 0.05 1 0.3 -745 0.05 1 0.35 -746 0.05 1 0.4 -747 0.05 1 0.45 -748 0.05 1 0.5 -749 0.1 1 0 -750 0.1 1 0.05 -751 0.1 1 0.1 -752 0.1 1 0.15 -753 0.1 1 0.2 -754 0.1 1 0.25 -755 0.1 1 0.3 -756 0.1 1 0.35 -757 0.1 1 0.4 -758 0.1 1 0.45 -759 0.1 1 0.5 -760 0.15 1 0 -761 0.15 1 0.05 -762 0.15 1 0.1 -763 0.15 1 0.15 -764 0.15 1 0.2 -765 0.15 1 0.25 -766 0.15 1 0.3 -767 0.15 1 0.35 -768 0.15 1 0.4 -769 0.15 1 0.45 -770 0.15 1 0.5 -771 0.2 1 0 -772 0.2 1 0.05 -773 0.2 1 0.1 -774 0.2 1 0.15 -775 0.2 1 0.2 -776 0.2 1 0.25 -777 0.2 1 0.3 -778 0.2 1 0.35 -779 0.2 1 0.4 -780 0.2 1 0.45 -781 0.2 1 0.5 -782 0.25 1 0 -783 0.25 1 0.05 -784 0.25 1 0.1 -785 0.25 1 0.15 -786 0.25 1 0.2 -787 0.25 1 0.25 -788 0.25 1 0.3 -789 0.25 1 0.35 -790 0.25 1 0.4 -791 0.25 1 0.45 -792 0.25 1 0.5 -793 0.3 1 0 -794 0.3 1 0.05 -795 0.3 1 0.1 -796 0.3 1 0.15 -797 0.3 1 0.2 -798 0.3 1 0.25 -799 0.3 1 0.3 -800 0.3 1 0.35 -801 0.3 1 0.4 -802 0.3 1 0.45 -803 0.3 1 0.5 -804 0.35 1 0 -805 0.35 1 0.05 -806 0.35 1 0.1 -807 0.35 1 0.15 -808 0.35 1 0.2 -809 0.35 1 0.25 -810 0.35 1 0.3 -811 0.35 1 0.35 -812 0.35 1 0.4 -813 0.35 1 0.45 -814 0.35 1 0.5 -815 0.4 1 0 -816 0.4 1 0.05 -817 0.4 1 0.1 -818 0.4 1 0.15 -819 0.4 1 0.2 -820 0.4 1 0.25 -821 0.4 1 0.3 -822 0.4 1 0.35 -823 0.4 1 0.4 -824 0.4 1 0.45 -825 0.4 1 0.5 -826 0.45 1 0 -827 0.45 1 0.05 -828 0.45 1 0.1 -829 0.45 1 0.15 -830 0.45 1 0.2 -831 0.45 1 0.25 -832 0.45 1 0.3 -833 0.45 1 0.35 -834 0.45 1 0.4 -835 0.45 1 0.45 -836 0.45 1 0.5 -837 0.5 1 0 -838 0.5 1 0.05 -839 0.5 1 0.1 -840 0.5 1 0.15 -841 0.5 1 0.2 -842 0.5 1 0.25 -843 0.5 1 0.3 -844 0.5 1 0.35 -845 0.5 1 0.4 -846 0.5 1 0.45 -847 0.5 1 0.5 -848 0 0.5 0 -849 0 0.55 0 -850 0 0.6 0 -851 0 0.65 0 -852 0 0.7 0 -853 0 0.75 0 -854 0 0.8 0 -855 0 0.85 0 -856 0 0.9 0 -857 0 0.95 0 -858 0 1 0 -859 0.05 0.5 0 -860 0.05 0.55 0 -861 0.05 0.6 0 -862 0.05 0.65 0 -863 0.05 0.7 0 -864 0.05 0.75 0 -865 0.05 0.8 0 -866 0.05 0.85 0 -867 0.05 0.9 0 -868 0.05 0.95 0 -869 0.05 1 0 -870 0.1 0.5 0 -871 0.1 0.55 0 -872 0.1 0.6 0 -873 0.1 0.65 0 -874 0.1 0.7 0 -875 0.1 0.75 0 -876 0.1 0.8 0 -877 0.1 0.85 0 -878 0.1 0.9 0 -879 0.1 0.95 0 -880 0.1 1 0 -881 0.15 0.5 0 -882 0.15 0.55 0 -883 0.15 0.6 0 -884 0.15 0.65 0 -885 0.15 0.7 0 -886 0.15 0.75 0 -887 0.15 0.8 0 -888 0.15 0.85 0 -889 0.15 0.9 0 -890 0.15 0.95 0 -891 0.15 1 0 -892 0.2 0.5 0 -893 0.2 0.55 0 -894 0.2 0.6 0 -895 0.2 0.65 0 -896 0.2 0.7 0 -897 0.2 0.75 0 -898 0.2 0.8 0 -899 0.2 0.85 0 -900 0.2 0.9 0 -901 0.2 0.95 0 -902 0.2 1 0 -903 0.25 0.5 0 -904 0.25 0.55 0 -905 0.25 0.6 0 -906 0.25 0.65 0 -907 0.25 0.7 0 -908 0.25 0.75 0 -909 0.25 0.8 0 -910 0.25 0.85 0 -911 0.25 0.9 0 -912 0.25 0.95 0 -913 0.25 1 0 -914 0.3 0.5 0 -915 0.3 0.55 0 -916 0.3 0.6 0 -917 0.3 0.65 0 -918 0.3 0.7 0 -919 0.3 0.75 0 -920 0.3 0.8 0 -921 0.3 0.85 0 -922 0.3 0.9 0 -923 0.3 0.95 0 -924 0.3 1 0 -925 0.35 0.5 0 -926 0.35 0.55 0 -927 0.35 0.6 0 -928 0.35 0.65 0 -929 0.35 0.7 0 -930 0.35 0.75 0 -931 0.35 0.8 0 -932 0.35 0.85 0 -933 0.35 0.9 0 -934 0.35 0.95 0 -935 0.35 1 0 -936 0.4 0.5 0 -937 0.4 0.55 0 -938 0.4 0.6 0 -939 0.4 0.65 0 -940 0.4 0.7 0 -941 0.4 0.75 0 -942 0.4 0.8 0 -943 0.4 0.85 0 -944 0.4 0.9 0 -945 0.4 0.95 0 -946 0.4 1 0 -947 0.45 0.5 0 -948 0.45 0.55 0 -949 0.45 0.6 0 -950 0.45 0.65 0 -951 0.45 0.7 0 -952 0.45 0.75 0 -953 0.45 0.8 0 -954 0.45 0.85 0 -955 0.45 0.9 0 -956 0.45 0.95 0 -957 0.45 1 0 -958 0.5 0.5 0 -959 0.5 0.55 0 -960 0.5 0.6 0 -961 0.5 0.65 0 -962 0.5 0.7 0 -963 0.5 0.75 0 -964 0.5 0.8 0 -965 0.5 0.85 0 -966 0.5 0.9 0 -967 0.5 0.95 0 -968 0.5 1 0 -969 0 0.5 0 -970 0 0.5 0.05 -971 0 0.5 0.1 -972 0 0.5 0.15 -973 0 0.5 0.2 -974 0 0.5 0.25 -975 0 0.5 0.3 -976 0 0.5 0.35 -977 0 0.5 0.4 -978 0 0.5 0.45 -979 0 0.5 0.5 -980 0 0.55 0 -981 0 0.55 0.05 -982 0 0.55 0.1 -983 0 0.55 0.15 -984 0 0.55 0.2 -985 0 0.55 0.25 -986 0 0.55 0.3 -987 0 0.55 0.35 -988 0 0.55 0.4 -989 0 0.55 0.45 -990 0 0.55 0.5 -991 0 0.6 0 -992 0 0.6 0.05 -993 0 0.6 0.1 -994 0 0.6 0.15 -995 0 0.6 0.2 -996 0 0.6 0.25 -997 0 0.6 0.3 -998 0 0.6 0.35 -999 0 0.6 0.4 -1000 0 0.6 0.45 -1001 0 0.6 0.5 -1002 0 0.65 0 -1003 0 0.65 0.05 -1004 0 0.65 0.1 -1005 0 0.65 0.15 -1006 0 0.65 0.2 -1007 0 0.65 0.25 -1008 0 0.65 0.3 -1009 0 0.65 0.35 -1010 0 0.65 0.4 -1011 0 0.65 0.45 -1012 0 0.65 0.5 -1013 0 0.7 0 -1014 0 0.7 0.05 -1015 0 0.7 0.1 -1016 0 0.7 0.15 -1017 0 0.7 0.2 -1018 0 0.7 0.25 -1019 0 0.7 0.3 -1020 0 0.7 0.35 -1021 0 0.7 0.4 -1022 0 0.7 0.45 -1023 0 0.7 0.5 -1024 0 0.75 0 -1025 0 0.75 0.05 -1026 0 0.75 0.1 -1027 0 0.75 0.15 -1028 0 0.75 0.2 -1029 0 0.75 0.25 -1030 0 0.75 0.3 -1031 0 0.75 0.35 -1032 0 0.75 0.4 -1033 0 0.75 0.45 -1034 0 0.75 0.5 -1035 0 0.8 0 -1036 0 0.8 0.05 -1037 0 0.8 0.1 -1038 0 0.8 0.15 -1039 0 0.8 0.2 -1040 0 0.8 0.25 -1041 0 0.8 0.3 -1042 0 0.8 0.35 -1043 0 0.8 0.4 -1044 0 0.8 0.45 -1045 0 0.8 0.5 -1046 0 0.85 0 -1047 0 0.85 0.05 -1048 0 0.85 0.1 -1049 0 0.85 0.15 -1050 0 0.85 0.2 -1051 0 0.85 0.25 -1052 0 0.85 0.3 -1053 0 0.85 0.35 -1054 0 0.85 0.4 -1055 0 0.85 0.45 -1056 0 0.85 0.5 -1057 0 0.9 0 -1058 0 0.9 0.05 -1059 0 0.9 0.1 -1060 0 0.9 0.15 -1061 0 0.9 0.2 -1062 0 0.9 0.25 -1063 0 0.9 0.3 -1064 0 0.9 0.35 -1065 0 0.9 0.4 -1066 0 0.9 0.45 -1067 0 0.9 0.5 -1068 0 0.95 0 -1069 0 0.95 0.05 -1070 0 0.95 0.1 -1071 0 0.95 0.15 -1072 0 0.95 0.2 -1073 0 0.95 0.25 -1074 0 0.95 0.3 -1075 0 0.95 0.35 -1076 0 0.95 0.4 -1077 0 0.95 0.45 -1078 0 0.95 0.5 -1079 0 1 0 -1080 0 1 0.05 -1081 0 1 0.1 -1082 0 1 0.15 -1083 0 1 0.2 -1084 0 1 0.25 -1085 0 1 0.3 -1086 0 1 0.35 -1087 0 1 0.4 -1088 0 1 0.45 -1089 0 1 0.5 -1090 0.5 1 0 -1091 0.5 1 0.05 -1092 0.5 1 0.1 -1093 0.5 1 0.15 -1094 0.5 1 0.2 -1095 0.5 1 0.25 -1096 0.5 1 0.3 -1097 0.5 1 0.35 -1098 0.5 1 0.4 -1099 0.5 1 0.45 -1100 0.5 1 0.5 -1101 0.55 1 0 -1102 0.55 1 0.05 -1103 0.55 1 0.1 -1104 0.55 1 0.15 -1105 0.55 1 0.2 -1106 0.55 1 0.25 -1107 0.55 1 0.3 -1108 0.55 1 0.35 -1109 0.55 1 0.4 -1110 0.55 1 0.45 -1111 0.55 1 0.5 -1112 0.6 1 0 -1113 0.6 1 0.05 -1114 0.6 1 0.1 -1115 0.6 1 0.15 -1116 0.6 1 0.2 -1117 0.6 1 0.25 -1118 0.6 1 0.3 -1119 0.6 1 0.35 -1120 0.6 1 0.4 -1121 0.6 1 0.45 -1122 0.6 1 0.5 -1123 0.65 1 0 -1124 0.65 1 0.05 -1125 0.65 1 0.1 -1126 0.65 1 0.15 -1127 0.65 1 0.2 -1128 0.65 1 0.25 -1129 0.65 1 0.3 -1130 0.65 1 0.35 -1131 0.65 1 0.4 -1132 0.65 1 0.45 -1133 0.65 1 0.5 -1134 0.7 1 0 -1135 0.7 1 0.05 -1136 0.7 1 0.1 -1137 0.7 1 0.15 -1138 0.7 1 0.2 -1139 0.7 1 0.25 -1140 0.7 1 0.3 -1141 0.7 1 0.35 -1142 0.7 1 0.4 -1143 0.7 1 0.45 -1144 0.7 1 0.5 -1145 0.75 1 0 -1146 0.75 1 0.05 -1147 0.75 1 0.1 -1148 0.75 1 0.15 -1149 0.75 1 0.2 -1150 0.75 1 0.25 -1151 0.75 1 0.3 -1152 0.75 1 0.35 -1153 0.75 1 0.4 -1154 0.75 1 0.45 -1155 0.75 1 0.5 -1156 0.8 1 0 -1157 0.8 1 0.05 -1158 0.8 1 0.1 -1159 0.8 1 0.15 -1160 0.8 1 0.2 -1161 0.8 1 0.25 -1162 0.8 1 0.3 -1163 0.8 1 0.35 -1164 0.8 1 0.4 -1165 0.8 1 0.45 -1166 0.8 1 0.5 -1167 0.85 1 0 -1168 0.85 1 0.05 -1169 0.85 1 0.1 -1170 0.85 1 0.15 -1171 0.85 1 0.2 -1172 0.85 1 0.25 -1173 0.85 1 0.3 -1174 0.85 1 0.35 -1175 0.85 1 0.4 -1176 0.85 1 0.45 -1177 0.85 1 0.5 -1178 0.9 1 0 -1179 0.9 1 0.05 -1180 0.9 1 0.1 -1181 0.9 1 0.15 -1182 0.9 1 0.2 -1183 0.9 1 0.25 -1184 0.9 1 0.3 -1185 0.9 1 0.35 -1186 0.9 1 0.4 -1187 0.9 1 0.45 -1188 0.9 1 0.5 -1189 0.95 1 0 -1190 0.95 1 0.05 -1191 0.95 1 0.1 -1192 0.95 1 0.15 -1193 0.95 1 0.2 -1194 0.95 1 0.25 -1195 0.95 1 0.3 -1196 0.95 1 0.35 -1197 0.95 1 0.4 -1198 0.95 1 0.45 -1199 0.95 1 0.5 -1200 1 1 0 -1201 1 1 0.05 -1202 1 1 0.1 -1203 1 1 0.15 -1204 1 1 0.2 -1205 1 1 0.25 -1206 1 1 0.3 -1207 1 1 0.35 -1208 1 1 0.4 -1209 1 1 0.45 -1210 1 1 0.5 -1211 0.5 0.5 0 -1212 0.5 0.55 0 -1213 0.5 0.6 0 -1214 0.5 0.65 0 -1215 0.5 0.7 0 -1216 0.5 0.75 0 -1217 0.5 0.8 0 -1218 0.5 0.85 0 -1219 0.5 0.9 0 -1220 0.5 0.95 0 -1221 0.5 1 0 -1222 0.55 0.5 0 -1223 0.55 0.55 0 -1224 0.55 0.6 0 -1225 0.55 0.65 0 -1226 0.55 0.7 0 -1227 0.55 0.75 0 -1228 0.55 0.8 0 -1229 0.55 0.85 0 -1230 0.55 0.9 0 -1231 0.55 0.95 0 -1232 0.55 1 0 -1233 0.6 0.5 0 -1234 0.6 0.55 0 -1235 0.6 0.6 0 -1236 0.6 0.65 0 -1237 0.6 0.7 0 -1238 0.6 0.75 0 -1239 0.6 0.8 0 -1240 0.6 0.85 0 -1241 0.6 0.9 0 -1242 0.6 0.95 0 -1243 0.6 1 0 -1244 0.65 0.5 0 -1245 0.65 0.55 0 -1246 0.65 0.6 0 -1247 0.65 0.65 0 -1248 0.65 0.7 0 -1249 0.65 0.75 0 -1250 0.65 0.8 0 -1251 0.65 0.85 0 -1252 0.65 0.9 0 -1253 0.65 0.95 0 -1254 0.65 1 0 -1255 0.7 0.5 0 -1256 0.7 0.55 0 -1257 0.7 0.6 0 -1258 0.7 0.65 0 -1259 0.7 0.7 0 -1260 0.7 0.75 0 -1261 0.7 0.8 0 -1262 0.7 0.85 0 -1263 0.7 0.9 0 -1264 0.7 0.95 0 -1265 0.7 1 0 -1266 0.75 0.5 0 -1267 0.75 0.55 0 -1268 0.75 0.6 0 -1269 0.75 0.65 0 -1270 0.75 0.7 0 -1271 0.75 0.75 0 -1272 0.75 0.8 0 -1273 0.75 0.85 0 -1274 0.75 0.9 0 -1275 0.75 0.95 0 -1276 0.75 1 0 -1277 0.8 0.5 0 -1278 0.8 0.55 0 -1279 0.8 0.6 0 -1280 0.8 0.65 0 -1281 0.8 0.7 0 -1282 0.8 0.75 0 -1283 0.8 0.8 0 -1284 0.8 0.85 0 -1285 0.8 0.9 0 -1286 0.8 0.95 0 -1287 0.8 1 0 -1288 0.85 0.5 0 -1289 0.85 0.55 0 -1290 0.85 0.6 0 -1291 0.85 0.65 0 -1292 0.85 0.7 0 -1293 0.85 0.75 0 -1294 0.85 0.8 0 -1295 0.85 0.85 0 -1296 0.85 0.9 0 -1297 0.85 0.95 0 -1298 0.85 1 0 -1299 0.9 0.5 0 -1300 0.9 0.55 0 -1301 0.9 0.6 0 -1302 0.9 0.65 0 -1303 0.9 0.7 0 -1304 0.9 0.75 0 -1305 0.9 0.8 0 -1306 0.9 0.85 0 -1307 0.9 0.9 0 -1308 0.9 0.95 0 -1309 0.9 1 0 -1310 0.95 0.5 0 -1311 0.95 0.55 0 -1312 0.95 0.6 0 -1313 0.95 0.65 0 -1314 0.95 0.7 0 -1315 0.95 0.75 0 -1316 0.95 0.8 0 -1317 0.95 0.85 0 -1318 0.95 0.9 0 -1319 0.95 0.95 0 -1320 0.95 1 0 -1321 1 0.5 0 -1322 1 0.55 0 -1323 1 0.6 0 -1324 1 0.65 0 -1325 1 0.7 0 -1326 1 0.75 0 -1327 1 0.8 0 -1328 1 0.85 0 -1329 1 0.9 0 -1330 1 0.95 0 -1331 1 1 0 -1332 1 0.5 0 -1333 1 0.5 0.05 -1334 1 0.5 0.1 -1335 1 0.5 0.15 -1336 1 0.5 0.2 -1337 1 0.5 0.25 -1338 1 0.5 0.3 -1339 1 0.5 0.35 -1340 1 0.5 0.4 -1341 1 0.5 0.45 -1342 1 0.5 0.5 -1343 1 0.55 0 -1344 1 0.55 0.05 -1345 1 0.55 0.1 -1346 1 0.55 0.15 -1347 1 0.55 0.2 -1348 1 0.55 0.25 -1349 1 0.55 0.3 -1350 1 0.55 0.35 -1351 1 0.55 0.4 -1352 1 0.55 0.45 -1353 1 0.55 0.5 -1354 1 0.6 0 -1355 1 0.6 0.05 -1356 1 0.6 0.1 -1357 1 0.6 0.15 -1358 1 0.6 0.2 -1359 1 0.6 0.25 -1360 1 0.6 0.3 -1361 1 0.6 0.35 -1362 1 0.6 0.4 -1363 1 0.6 0.45 -1364 1 0.6 0.5 -1365 1 0.65 0 -1366 1 0.65 0.05 -1367 1 0.65 0.1 -1368 1 0.65 0.15 -1369 1 0.65 0.2 -1370 1 0.65 0.25 -1371 1 0.65 0.3 -1372 1 0.65 0.35 -1373 1 0.65 0.4 -1374 1 0.65 0.45 -1375 1 0.65 0.5 -1376 1 0.7 0 -1377 1 0.7 0.05 -1378 1 0.7 0.1 -1379 1 0.7 0.15 -1380 1 0.7 0.2 -1381 1 0.7 0.25 -1382 1 0.7 0.3 -1383 1 0.7 0.35 -1384 1 0.7 0.4 -1385 1 0.7 0.45 -1386 1 0.7 0.5 -1387 1 0.75 0 -1388 1 0.75 0.05 -1389 1 0.75 0.1 -1390 1 0.75 0.15 -1391 1 0.75 0.2 -1392 1 0.75 0.25 -1393 1 0.75 0.3 -1394 1 0.75 0.35 -1395 1 0.75 0.4 -1396 1 0.75 0.45 -1397 1 0.75 0.5 -1398 1 0.8 0 -1399 1 0.8 0.05 -1400 1 0.8 0.1 -1401 1 0.8 0.15 -1402 1 0.8 0.2 -1403 1 0.8 0.25 -1404 1 0.8 0.3 -1405 1 0.8 0.35 -1406 1 0.8 0.4 -1407 1 0.8 0.45 -1408 1 0.8 0.5 -1409 1 0.85 0 -1410 1 0.85 0.05 -1411 1 0.85 0.1 -1412 1 0.85 0.15 -1413 1 0.85 0.2 -1414 1 0.85 0.25 -1415 1 0.85 0.3 -1416 1 0.85 0.35 -1417 1 0.85 0.4 -1418 1 0.85 0.45 -1419 1 0.85 0.5 -1420 1 0.9 0 -1421 1 0.9 0.05 -1422 1 0.9 0.1 -1423 1 0.9 0.15 -1424 1 0.9 0.2 -1425 1 0.9 0.25 -1426 1 0.9 0.3 -1427 1 0.9 0.35 -1428 1 0.9 0.4 -1429 1 0.9 0.45 -1430 1 0.9 0.5 -1431 1 0.95 0 -1432 1 0.95 0.05 -1433 1 0.95 0.1 -1434 1 0.95 0.15 -1435 1 0.95 0.2 -1436 1 0.95 0.25 -1437 1 0.95 0.3 -1438 1 0.95 0.35 -1439 1 0.95 0.4 -1440 1 0.95 0.45 -1441 1 0.95 0.5 -1442 1 1 0 -1443 1 1 0.05 -1444 1 1 0.1 -1445 1 1 0.15 -1446 1 1 0.2 -1447 1 1 0.25 -1448 1 1 0.3 -1449 1 1 0.35 -1450 1 1 0.4 -1451 1 1 0.45 -1452 1 1 0.5 -1453 0.5 1 0.5 -1454 0.5 1 0.55 -1455 0.5 1 0.6 -1456 0.5 1 0.65 -1457 0.5 1 0.7 -1458 0.5 1 0.75 -1459 0.5 1 0.8 -1460 0.5 1 0.85 -1461 0.5 1 0.9 -1462 0.5 1 0.95 -1463 0.5 1 1 -1464 0.55 1 0.5 -1465 0.55 1 0.55 -1466 0.55 1 0.6 -1467 0.55 1 0.65 -1468 0.55 1 0.7 -1469 0.55 1 0.75 -1470 0.55 1 0.8 -1471 0.55 1 0.85 -1472 0.55 1 0.9 -1473 0.55 1 0.95 -1474 0.55 1 1 -1475 0.6 1 0.5 -1476 0.6 1 0.55 -1477 0.6 1 0.6 -1478 0.6 1 0.65 -1479 0.6 1 0.7 -1480 0.6 1 0.75 -1481 0.6 1 0.8 -1482 0.6 1 0.85 -1483 0.6 1 0.9 -1484 0.6 1 0.95 -1485 0.6 1 1 -1486 0.65 1 0.5 -1487 0.65 1 0.55 -1488 0.65 1 0.6 -1489 0.65 1 0.65 -1490 0.65 1 0.7 -1491 0.65 1 0.75 -1492 0.65 1 0.8 -1493 0.65 1 0.85 -1494 0.65 1 0.9 -1495 0.65 1 0.95 -1496 0.65 1 1 -1497 0.7 1 0.5 -1498 0.7 1 0.55 -1499 0.7 1 0.6 -1500 0.7 1 0.65 -1501 0.7 1 0.7 -1502 0.7 1 0.75 -1503 0.7 1 0.8 -1504 0.7 1 0.85 -1505 0.7 1 0.9 -1506 0.7 1 0.95 -1507 0.7 1 1 -1508 0.75 1 0.5 -1509 0.75 1 0.55 -1510 0.75 1 0.6 -1511 0.75 1 0.65 -1512 0.75 1 0.7 -1513 0.75 1 0.75 -1514 0.75 1 0.8 -1515 0.75 1 0.85 -1516 0.75 1 0.9 -1517 0.75 1 0.95 -1518 0.75 1 1 -1519 0.8 1 0.5 -1520 0.8 1 0.55 -1521 0.8 1 0.6 -1522 0.8 1 0.65 -1523 0.8 1 0.7 -1524 0.8 1 0.75 -1525 0.8 1 0.8 -1526 0.8 1 0.85 -1527 0.8 1 0.9 -1528 0.8 1 0.95 -1529 0.8 1 1 -1530 0.85 1 0.5 -1531 0.85 1 0.55 -1532 0.85 1 0.6 -1533 0.85 1 0.65 -1534 0.85 1 0.7 -1535 0.85 1 0.75 -1536 0.85 1 0.8 -1537 0.85 1 0.85 -1538 0.85 1 0.9 -1539 0.85 1 0.95 -1540 0.85 1 1 -1541 0.9 1 0.5 -1542 0.9 1 0.55 -1543 0.9 1 0.6 -1544 0.9 1 0.65 -1545 0.9 1 0.7 -1546 0.9 1 0.75 -1547 0.9 1 0.8 -1548 0.9 1 0.85 -1549 0.9 1 0.9 -1550 0.9 1 0.95 -1551 0.9 1 1 -1552 0.95 1 0.5 -1553 0.95 1 0.55 -1554 0.95 1 0.6 -1555 0.95 1 0.65 -1556 0.95 1 0.7 -1557 0.95 1 0.75 -1558 0.95 1 0.8 -1559 0.95 1 0.85 -1560 0.95 1 0.9 -1561 0.95 1 0.95 -1562 0.95 1 1 -1563 1 1 0.5 -1564 1 1 0.55 -1565 1 1 0.6 -1566 1 1 0.65 -1567 1 1 0.7 -1568 1 1 0.75 -1569 1 1 0.8 -1570 1 1 0.85 -1571 1 1 0.9 -1572 1 1 0.95 -1573 1 1 1 -1574 1 0.5 0.5 -1575 1 0.5 0.55 -1576 1 0.5 0.6 -1577 1 0.5 0.65 -1578 1 0.5 0.7 -1579 1 0.5 0.75 -1580 1 0.5 0.8 -1581 1 0.5 0.85 -1582 1 0.5 0.9 -1583 1 0.5 0.95 -1584 1 0.5 1 -1585 1 0.55 0.5 -1586 1 0.55 0.55 -1587 1 0.55 0.6 -1588 1 0.55 0.65 -1589 1 0.55 0.7 -1590 1 0.55 0.75 -1591 1 0.55 0.8 -1592 1 0.55 0.85 -1593 1 0.55 0.9 -1594 1 0.55 0.95 -1595 1 0.55 1 -1596 1 0.6 0.5 -1597 1 0.6 0.55 -1598 1 0.6 0.6 -1599 1 0.6 0.65 -1600 1 0.6 0.7 -1601 1 0.6 0.75 -1602 1 0.6 0.8 -1603 1 0.6 0.85 -1604 1 0.6 0.9 -1605 1 0.6 0.95 -1606 1 0.6 1 -1607 1 0.65 0.5 -1608 1 0.65 0.55 -1609 1 0.65 0.6 -1610 1 0.65 0.65 -1611 1 0.65 0.7 -1612 1 0.65 0.75 -1613 1 0.65 0.8 -1614 1 0.65 0.85 -1615 1 0.65 0.9 -1616 1 0.65 0.95 -1617 1 0.65 1 -1618 1 0.7 0.5 -1619 1 0.7 0.55 -1620 1 0.7 0.6 -1621 1 0.7 0.65 -1622 1 0.7 0.7 -1623 1 0.7 0.75 -1624 1 0.7 0.8 -1625 1 0.7 0.85 -1626 1 0.7 0.9 -1627 1 0.7 0.95 -1628 1 0.7 1 -1629 1 0.75 0.5 -1630 1 0.75 0.55 -1631 1 0.75 0.6 -1632 1 0.75 0.65 -1633 1 0.75 0.7 -1634 1 0.75 0.75 -1635 1 0.75 0.8 -1636 1 0.75 0.85 -1637 1 0.75 0.9 -1638 1 0.75 0.95 -1639 1 0.75 1 -1640 1 0.8 0.5 -1641 1 0.8 0.55 -1642 1 0.8 0.6 -1643 1 0.8 0.65 -1644 1 0.8 0.7 -1645 1 0.8 0.75 -1646 1 0.8 0.8 -1647 1 0.8 0.85 -1648 1 0.8 0.9 -1649 1 0.8 0.95 -1650 1 0.8 1 -1651 1 0.85 0.5 -1652 1 0.85 0.55 -1653 1 0.85 0.6 -1654 1 0.85 0.65 -1655 1 0.85 0.7 -1656 1 0.85 0.75 -1657 1 0.85 0.8 -1658 1 0.85 0.85 -1659 1 0.85 0.9 -1660 1 0.85 0.95 -1661 1 0.85 1 -1662 1 0.9 0.5 -1663 1 0.9 0.55 -1664 1 0.9 0.6 -1665 1 0.9 0.65 -1666 1 0.9 0.7 -1667 1 0.9 0.75 -1668 1 0.9 0.8 -1669 1 0.9 0.85 -1670 1 0.9 0.9 -1671 1 0.9 0.95 -1672 1 0.9 1 -1673 1 0.95 0.5 -1674 1 0.95 0.55 -1675 1 0.95 0.6 -1676 1 0.95 0.65 -1677 1 0.95 0.7 -1678 1 0.95 0.75 -1679 1 0.95 0.8 -1680 1 0.95 0.85 -1681 1 0.95 0.9 -1682 1 0.95 0.95 -1683 1 0.95 1 -1684 1 1 0.5 -1685 1 1 0.55 -1686 1 1 0.6 -1687 1 1 0.65 -1688 1 1 0.7 -1689 1 1 0.75 -1690 1 1 0.8 -1691 1 1 0.85 -1692 1 1 0.9 -1693 1 1 0.95 -1694 1 1 1 -1695 0.5 0.5 1 -1696 0.5 0.55 1 -1697 0.5 0.6 1 -1698 0.5 0.65 1 -1699 0.5 0.7 1 -1700 0.5 0.75 1 -1701 0.5 0.8 1 -1702 0.5 0.85 1 -1703 0.5 0.9 1 -1704 0.5 0.95 1 -1705 0.5 1 1 -1706 0.55 0.5 1 -1707 0.55 0.55 1 -1708 0.55 0.6 1 -1709 0.55 0.65 1 -1710 0.55 0.7 1 -1711 0.55 0.75 1 -1712 0.55 0.8 1 -1713 0.55 0.85 1 -1714 0.55 0.9 1 -1715 0.55 0.95 1 -1716 0.55 1 1 -1717 0.6 0.5 1 -1718 0.6 0.55 1 -1719 0.6 0.6 1 -1720 0.6 0.65 1 -1721 0.6 0.7 1 -1722 0.6 0.75 1 -1723 0.6 0.8 1 -1724 0.6 0.85 1 -1725 0.6 0.9 1 -1726 0.6 0.95 1 -1727 0.6 1 1 -1728 0.65 0.5 1 -1729 0.65 0.55 1 -1730 0.65 0.6 1 -1731 0.65 0.65 1 -1732 0.65 0.7 1 -1733 0.65 0.75 1 -1734 0.65 0.8 1 -1735 0.65 0.85 1 -1736 0.65 0.9 1 -1737 0.65 0.95 1 -1738 0.65 1 1 -1739 0.7 0.5 1 -1740 0.7 0.55 1 -1741 0.7 0.6 1 -1742 0.7 0.65 1 -1743 0.7 0.7 1 -1744 0.7 0.75 1 -1745 0.7 0.8 1 -1746 0.7 0.85 1 -1747 0.7 0.9 1 -1748 0.7 0.95 1 -1749 0.7 1 1 -1750 0.75 0.5 1 -1751 0.75 0.55 1 -1752 0.75 0.6 1 -1753 0.75 0.65 1 -1754 0.75 0.7 1 -1755 0.75 0.75 1 -1756 0.75 0.8 1 -1757 0.75 0.85 1 -1758 0.75 0.9 1 -1759 0.75 0.95 1 -1760 0.75 1 1 -1761 0.8 0.5 1 -1762 0.8 0.55 1 -1763 0.8 0.6 1 -1764 0.8 0.65 1 -1765 0.8 0.7 1 -1766 0.8 0.75 1 -1767 0.8 0.8 1 -1768 0.8 0.85 1 -1769 0.8 0.9 1 -1770 0.8 0.95 1 -1771 0.8 1 1 -1772 0.85 0.5 1 -1773 0.85 0.55 1 -1774 0.85 0.6 1 -1775 0.85 0.65 1 -1776 0.85 0.7 1 -1777 0.85 0.75 1 -1778 0.85 0.8 1 -1779 0.85 0.85 1 -1780 0.85 0.9 1 -1781 0.85 0.95 1 -1782 0.85 1 1 -1783 0.9 0.5 1 -1784 0.9 0.55 1 -1785 0.9 0.6 1 -1786 0.9 0.65 1 -1787 0.9 0.7 1 -1788 0.9 0.75 1 -1789 0.9 0.8 1 -1790 0.9 0.85 1 -1791 0.9 0.9 1 -1792 0.9 0.95 1 -1793 0.9 1 1 -1794 0.95 0.5 1 -1795 0.95 0.55 1 -1796 0.95 0.6 1 -1797 0.95 0.65 1 -1798 0.95 0.7 1 -1799 0.95 0.75 1 -1800 0.95 0.8 1 -1801 0.95 0.85 1 -1802 0.95 0.9 1 -1803 0.95 0.95 1 -1804 0.95 1 1 -1805 1 0.5 1 -1806 1 0.55 1 -1807 1 0.6 1 -1808 1 0.65 1 -1809 1 0.7 1 -1810 1 0.75 1 -1811 1 0.8 1 -1812 1 0.85 1 -1813 1 0.9 1 -1814 1 0.95 1 -1815 1 1 1 -1816 0 1 0.5 -1817 0 1 0.55 -1818 0 1 0.6 -1819 0 1 0.65 -1820 0 1 0.7 -1821 0 1 0.75 -1822 0 1 0.8 -1823 0 1 0.85 -1824 0 1 0.9 -1825 0 1 0.95 -1826 0 1 1 -1827 0.05 1 0.5 -1828 0.05 1 0.55 -1829 0.05 1 0.6 -1830 0.05 1 0.65 -1831 0.05 1 0.7 -1832 0.05 1 0.75 -1833 0.05 1 0.8 -1834 0.05 1 0.85 -1835 0.05 1 0.9 -1836 0.05 1 0.95 -1837 0.05 1 1 -1838 0.1 1 0.5 -1839 0.1 1 0.55 -1840 0.1 1 0.6 -1841 0.1 1 0.65 -1842 0.1 1 0.7 -1843 0.1 1 0.75 -1844 0.1 1 0.8 -1845 0.1 1 0.85 -1846 0.1 1 0.9 -1847 0.1 1 0.95 -1848 0.1 1 1 -1849 0.15 1 0.5 -1850 0.15 1 0.55 -1851 0.15 1 0.6 -1852 0.15 1 0.65 -1853 0.15 1 0.7 -1854 0.15 1 0.75 -1855 0.15 1 0.8 -1856 0.15 1 0.85 -1857 0.15 1 0.9 -1858 0.15 1 0.95 -1859 0.15 1 1 -1860 0.2 1 0.5 -1861 0.2 1 0.55 -1862 0.2 1 0.6 -1863 0.2 1 0.65 -1864 0.2 1 0.7 -1865 0.2 1 0.75 -1866 0.2 1 0.8 -1867 0.2 1 0.85 -1868 0.2 1 0.9 -1869 0.2 1 0.95 -1870 0.2 1 1 -1871 0.25 1 0.5 -1872 0.25 1 0.55 -1873 0.25 1 0.6 -1874 0.25 1 0.65 -1875 0.25 1 0.7 -1876 0.25 1 0.75 -1877 0.25 1 0.8 -1878 0.25 1 0.85 -1879 0.25 1 0.9 -1880 0.25 1 0.95 -1881 0.25 1 1 -1882 0.3 1 0.5 -1883 0.3 1 0.55 -1884 0.3 1 0.6 -1885 0.3 1 0.65 -1886 0.3 1 0.7 -1887 0.3 1 0.75 -1888 0.3 1 0.8 -1889 0.3 1 0.85 -1890 0.3 1 0.9 -1891 0.3 1 0.95 -1892 0.3 1 1 -1893 0.35 1 0.5 -1894 0.35 1 0.55 -1895 0.35 1 0.6 -1896 0.35 1 0.65 -1897 0.35 1 0.7 -1898 0.35 1 0.75 -1899 0.35 1 0.8 -1900 0.35 1 0.85 -1901 0.35 1 0.9 -1902 0.35 1 0.95 -1903 0.35 1 1 -1904 0.4 1 0.5 -1905 0.4 1 0.55 -1906 0.4 1 0.6 -1907 0.4 1 0.65 -1908 0.4 1 0.7 -1909 0.4 1 0.75 -1910 0.4 1 0.8 -1911 0.4 1 0.85 -1912 0.4 1 0.9 -1913 0.4 1 0.95 -1914 0.4 1 1 -1915 0.45 1 0.5 -1916 0.45 1 0.55 -1917 0.45 1 0.6 -1918 0.45 1 0.65 -1919 0.45 1 0.7 -1920 0.45 1 0.75 -1921 0.45 1 0.8 -1922 0.45 1 0.85 -1923 0.45 1 0.9 -1924 0.45 1 0.95 -1925 0.45 1 1 -1926 0.5 1 0.5 -1927 0.5 1 0.55 -1928 0.5 1 0.6 -1929 0.5 1 0.65 -1930 0.5 1 0.7 -1931 0.5 1 0.75 -1932 0.5 1 0.8 -1933 0.5 1 0.85 -1934 0.5 1 0.9 -1935 0.5 1 0.95 -1936 0.5 1 1 -1937 0 0.5 1 -1938 0 0.55 1 -1939 0 0.6 1 -1940 0 0.65 1 -1941 0 0.7 1 -1942 0 0.75 1 -1943 0 0.8 1 -1944 0 0.85 1 -1945 0 0.9 1 -1946 0 0.95 1 -1947 0 1 1 -1948 0.05 0.5 1 -1949 0.05 0.55 1 -1950 0.05 0.6 1 -1951 0.05 0.65 1 -1952 0.05 0.7 1 -1953 0.05 0.75 1 -1954 0.05 0.8 1 -1955 0.05 0.85 1 -1956 0.05 0.9 1 -1957 0.05 0.95 1 -1958 0.05 1 1 -1959 0.1 0.5 1 -1960 0.1 0.55 1 -1961 0.1 0.6 1 -1962 0.1 0.65 1 -1963 0.1 0.7 1 -1964 0.1 0.75 1 -1965 0.1 0.8 1 -1966 0.1 0.85 1 -1967 0.1 0.9 1 -1968 0.1 0.95 1 -1969 0.1 1 1 -1970 0.15 0.5 1 -1971 0.15 0.55 1 -1972 0.15 0.6 1 -1973 0.15 0.65 1 -1974 0.15 0.7 1 -1975 0.15 0.75 1 -1976 0.15 0.8 1 -1977 0.15 0.85 1 -1978 0.15 0.9 1 -1979 0.15 0.95 1 -1980 0.15 1 1 -1981 0.2 0.5 1 -1982 0.2 0.55 1 -1983 0.2 0.6 1 -1984 0.2 0.65 1 -1985 0.2 0.7 1 -1986 0.2 0.75 1 -1987 0.2 0.8 1 -1988 0.2 0.85 1 -1989 0.2 0.9 1 -1990 0.2 0.95 1 -1991 0.2 1 1 -1992 0.25 0.5 1 -1993 0.25 0.55 1 -1994 0.25 0.6 1 -1995 0.25 0.65 1 -1996 0.25 0.7 1 -1997 0.25 0.75 1 -1998 0.25 0.8 1 -1999 0.25 0.85 1 -2000 0.25 0.9 1 -2001 0.25 0.95 1 -2002 0.25 1 1 -2003 0.3 0.5 1 -2004 0.3 0.55 1 -2005 0.3 0.6 1 -2006 0.3 0.65 1 -2007 0.3 0.7 1 -2008 0.3 0.75 1 -2009 0.3 0.8 1 -2010 0.3 0.85 1 -2011 0.3 0.9 1 -2012 0.3 0.95 1 -2013 0.3 1 1 -2014 0.35 0.5 1 -2015 0.35 0.55 1 -2016 0.35 0.6 1 -2017 0.35 0.65 1 -2018 0.35 0.7 1 -2019 0.35 0.75 1 -2020 0.35 0.8 1 -2021 0.35 0.85 1 -2022 0.35 0.9 1 -2023 0.35 0.95 1 -2024 0.35 1 1 -2025 0.4 0.5 1 -2026 0.4 0.55 1 -2027 0.4 0.6 1 -2028 0.4 0.65 1 -2029 0.4 0.7 1 -2030 0.4 0.75 1 -2031 0.4 0.8 1 -2032 0.4 0.85 1 -2033 0.4 0.9 1 -2034 0.4 0.95 1 -2035 0.4 1 1 -2036 0.45 0.5 1 -2037 0.45 0.55 1 -2038 0.45 0.6 1 -2039 0.45 0.65 1 -2040 0.45 0.7 1 -2041 0.45 0.75 1 -2042 0.45 0.8 1 -2043 0.45 0.85 1 -2044 0.45 0.9 1 -2045 0.45 0.95 1 -2046 0.45 1 1 -2047 0.5 0.5 1 -2048 0.5 0.55 1 -2049 0.5 0.6 1 -2050 0.5 0.65 1 -2051 0.5 0.7 1 -2052 0.5 0.75 1 -2053 0.5 0.8 1 -2054 0.5 0.85 1 -2055 0.5 0.9 1 -2056 0.5 0.95 1 -2057 0.5 1 1 -2058 0 0.5 0.5 -2059 0 0.5 0.55 -2060 0 0.5 0.6 -2061 0 0.5 0.65 -2062 0 0.5 0.7 -2063 0 0.5 0.75 -2064 0 0.5 0.8 -2065 0 0.5 0.85 -2066 0 0.5 0.9 -2067 0 0.5 0.95 -2068 0 0.5 1 -2069 0 0.55 0.5 -2070 0 0.55 0.55 -2071 0 0.55 0.6 -2072 0 0.55 0.65 -2073 0 0.55 0.7 -2074 0 0.55 0.75 -2075 0 0.55 0.8 -2076 0 0.55 0.85 -2077 0 0.55 0.9 -2078 0 0.55 0.95 -2079 0 0.55 1 -2080 0 0.6 0.5 -2081 0 0.6 0.55 -2082 0 0.6 0.6 -2083 0 0.6 0.65 -2084 0 0.6 0.7 -2085 0 0.6 0.75 -2086 0 0.6 0.8 -2087 0 0.6 0.85 -2088 0 0.6 0.9 -2089 0 0.6 0.95 -2090 0 0.6 1 -2091 0 0.65 0.5 -2092 0 0.65 0.55 -2093 0 0.65 0.6 -2094 0 0.65 0.65 -2095 0 0.65 0.7 -2096 0 0.65 0.75 -2097 0 0.65 0.8 -2098 0 0.65 0.85 -2099 0 0.65 0.9 -2100 0 0.65 0.95 -2101 0 0.65 1 -2102 0 0.7 0.5 -2103 0 0.7 0.55 -2104 0 0.7 0.6 -2105 0 0.7 0.65 -2106 0 0.7 0.7 -2107 0 0.7 0.75 -2108 0 0.7 0.8 -2109 0 0.7 0.85 -2110 0 0.7 0.9 -2111 0 0.7 0.95 -2112 0 0.7 1 -2113 0 0.75 0.5 -2114 0 0.75 0.55 -2115 0 0.75 0.6 -2116 0 0.75 0.65 -2117 0 0.75 0.7 -2118 0 0.75 0.75 -2119 0 0.75 0.8 -2120 0 0.75 0.85 -2121 0 0.75 0.9 -2122 0 0.75 0.95 -2123 0 0.75 1 -2124 0 0.8 0.5 -2125 0 0.8 0.55 -2126 0 0.8 0.6 -2127 0 0.8 0.65 -2128 0 0.8 0.7 -2129 0 0.8 0.75 -2130 0 0.8 0.8 -2131 0 0.8 0.85 -2132 0 0.8 0.9 -2133 0 0.8 0.95 -2134 0 0.8 1 -2135 0 0.85 0.5 -2136 0 0.85 0.55 -2137 0 0.85 0.6 -2138 0 0.85 0.65 -2139 0 0.85 0.7 -2140 0 0.85 0.75 -2141 0 0.85 0.8 -2142 0 0.85 0.85 -2143 0 0.85 0.9 -2144 0 0.85 0.95 -2145 0 0.85 1 -2146 0 0.9 0.5 -2147 0 0.9 0.55 -2148 0 0.9 0.6 -2149 0 0.9 0.65 -2150 0 0.9 0.7 -2151 0 0.9 0.75 -2152 0 0.9 0.8 -2153 0 0.9 0.85 -2154 0 0.9 0.9 -2155 0 0.9 0.95 -2156 0 0.9 1 -2157 0 0.95 0.5 -2158 0 0.95 0.55 -2159 0 0.95 0.6 -2160 0 0.95 0.65 -2161 0 0.95 0.7 -2162 0 0.95 0.75 -2163 0 0.95 0.8 -2164 0 0.95 0.85 -2165 0 0.95 0.9 -2166 0 0.95 0.95 -2167 0 0.95 1 -2168 0 1 0.5 -2169 0 1 0.55 -2170 0 1 0.6 -2171 0 1 0.65 -2172 0 1 0.7 -2173 0 1 0.75 -2174 0 1 0.8 -2175 0 1 0.85 -2176 0 1 0.9 -2177 0 1 0.95 -2178 0 1 1 -2179 0 0 0 -2180 0 0 0.025 -2181 0 0 0.05 -2182 0 0 0.075 -2183 0 0 0.1 -2184 0 0 0.125 -2185 0 0 0.15 -2186 0 0 0.175 -2187 0 0 0.2 -2188 0 0 0.225 -2189 0 0 0.25 -2190 0.025 0 0 -2191 0.025 0 0.025 -2192 0.025 0 0.05 -2193 0.025 0 0.075 -2194 0.025 0 0.1 -2195 0.025 0 0.125 -2196 0.025 0 0.15 -2197 0.025 0 0.175 -2198 0.025 0 0.2 -2199 0.025 0 0.225 -2200 0.025 0 0.25 -2201 0.05 0 0 -2202 0.05 0 0.025 -2203 0.05 0 0.05 -2204 0.05 0 0.075 -2205 0.05 0 0.1 -2206 0.05 0 0.125 -2207 0.05 0 0.15 -2208 0.05 0 0.175 -2209 0.05 0 0.2 -2210 0.05 0 0.225 -2211 0.05 0 0.25 -2212 0.075 0 0 -2213 0.075 0 0.025 -2214 0.075 0 0.05 -2215 0.075 0 0.075 -2216 0.075 0 0.1 -2217 0.075 0 0.125 -2218 0.075 0 0.15 -2219 0.075 0 0.175 -2220 0.075 0 0.2 -2221 0.075 0 0.225 -2222 0.075 0 0.25 -2223 0.1 0 0 -2224 0.1 0 0.025 -2225 0.1 0 0.05 -2226 0.1 0 0.075 -2227 0.1 0 0.1 -2228 0.1 0 0.125 -2229 0.1 0 0.15 -2230 0.1 0 0.175 -2231 0.1 0 0.2 -2232 0.1 0 0.225 -2233 0.1 0 0.25 -2234 0.125 0 0 -2235 0.125 0 0.025 -2236 0.125 0 0.05 -2237 0.125 0 0.075 -2238 0.125 0 0.1 -2239 0.125 0 0.125 -2240 0.125 0 0.15 -2241 0.125 0 0.175 -2242 0.125 0 0.2 -2243 0.125 0 0.225 -2244 0.125 0 0.25 -2245 0.15 0 0 -2246 0.15 0 0.025 -2247 0.15 0 0.05 -2248 0.15 0 0.075 -2249 0.15 0 0.1 -2250 0.15 0 0.125 -2251 0.15 0 0.15 -2252 0.15 0 0.175 -2253 0.15 0 0.2 -2254 0.15 0 0.225 -2255 0.15 0 0.25 -2256 0.175 0 0 -2257 0.175 0 0.025 -2258 0.175 0 0.05 -2259 0.175 0 0.075 -2260 0.175 0 0.1 -2261 0.175 0 0.125 -2262 0.175 0 0.15 -2263 0.175 0 0.175 -2264 0.175 0 0.2 -2265 0.175 0 0.225 -2266 0.175 0 0.25 -2267 0.2 0 0 -2268 0.2 0 0.025 -2269 0.2 0 0.05 -2270 0.2 0 0.075 -2271 0.2 0 0.1 -2272 0.2 0 0.125 -2273 0.2 0 0.15 -2274 0.2 0 0.175 -2275 0.2 0 0.2 -2276 0.2 0 0.225 -2277 0.2 0 0.25 -2278 0.225 0 0 -2279 0.225 0 0.025 -2280 0.225 0 0.05 -2281 0.225 0 0.075 -2282 0.225 0 0.1 -2283 0.225 0 0.125 -2284 0.225 0 0.15 -2285 0.225 0 0.175 -2286 0.225 0 0.2 -2287 0.225 0 0.225 -2288 0.225 0 0.25 -2289 0.25 0 0 -2290 0.25 0 0.025 -2291 0.25 0 0.05 -2292 0.25 0 0.075 -2293 0.25 0 0.1 -2294 0.25 0 0.125 -2295 0.25 0 0.15 -2296 0.25 0 0.175 -2297 0.25 0 0.2 -2298 0.25 0 0.225 -2299 0.25 0 0.25 -2300 0 0 0 -2301 0 0.025 0 -2302 0 0.05 0 -2303 0 0.075 0 -2304 0 0.1 0 -2305 0 0.125 0 -2306 0 0.15 0 -2307 0 0.175 0 -2308 0 0.2 0 -2309 0 0.225 0 -2310 0 0.25 0 -2311 0.025 0 0 -2312 0.025 0.025 0 -2313 0.025 0.05 0 -2314 0.025 0.075 0 -2315 0.025 0.1 0 -2316 0.025 0.125 0 -2317 0.025 0.15 0 -2318 0.025 0.175 0 -2319 0.025 0.2 0 -2320 0.025 0.225 0 -2321 0.025 0.25 0 -2322 0.05 0 0 -2323 0.05 0.025 0 -2324 0.05 0.05 0 -2325 0.05 0.075 0 -2326 0.05 0.1 0 -2327 0.05 0.125 0 -2328 0.05 0.15 0 -2329 0.05 0.175 0 -2330 0.05 0.2 0 -2331 0.05 0.225 0 -2332 0.05 0.25 0 -2333 0.075 0 0 -2334 0.075 0.025 0 -2335 0.075 0.05 0 -2336 0.075 0.075 0 -2337 0.075 0.1 0 -2338 0.075 0.125 0 -2339 0.075 0.15 0 -2340 0.075 0.175 0 -2341 0.075 0.2 0 -2342 0.075 0.225 0 -2343 0.075 0.25 0 -2344 0.1 0 0 -2345 0.1 0.025 0 -2346 0.1 0.05 0 -2347 0.1 0.075 0 -2348 0.1 0.1 0 -2349 0.1 0.125 0 -2350 0.1 0.15 0 -2351 0.1 0.175 0 -2352 0.1 0.2 0 -2353 0.1 0.225 0 -2354 0.1 0.25 0 -2355 0.125 0 0 -2356 0.125 0.025 0 -2357 0.125 0.05 0 -2358 0.125 0.075 0 -2359 0.125 0.1 0 -2360 0.125 0.125 0 -2361 0.125 0.15 0 -2362 0.125 0.175 0 -2363 0.125 0.2 0 -2364 0.125 0.225 0 -2365 0.125 0.25 0 -2366 0.15 0 0 -2367 0.15 0.025 0 -2368 0.15 0.05 0 -2369 0.15 0.075 0 -2370 0.15 0.1 0 -2371 0.15 0.125 0 -2372 0.15 0.15 0 -2373 0.15 0.175 0 -2374 0.15 0.2 0 -2375 0.15 0.225 0 -2376 0.15 0.25 0 -2377 0.175 0 0 -2378 0.175 0.025 0 -2379 0.175 0.05 0 -2380 0.175 0.075 0 -2381 0.175 0.1 0 -2382 0.175 0.125 0 -2383 0.175 0.15 0 -2384 0.175 0.175 0 -2385 0.175 0.2 0 -2386 0.175 0.225 0 -2387 0.175 0.25 0 -2388 0.2 0 0 -2389 0.2 0.025 0 -2390 0.2 0.05 0 -2391 0.2 0.075 0 -2392 0.2 0.1 0 -2393 0.2 0.125 0 -2394 0.2 0.15 0 -2395 0.2 0.175 0 -2396 0.2 0.2 0 -2397 0.2 0.225 0 -2398 0.2 0.25 0 -2399 0.225 0 0 -2400 0.225 0.025 0 -2401 0.225 0.05 0 -2402 0.225 0.075 0 -2403 0.225 0.1 0 -2404 0.225 0.125 0 -2405 0.225 0.15 0 -2406 0.225 0.175 0 -2407 0.225 0.2 0 -2408 0.225 0.225 0 -2409 0.225 0.25 0 -2410 0.25 0 0 -2411 0.25 0.025 0 -2412 0.25 0.05 0 -2413 0.25 0.075 0 -2414 0.25 0.1 0 -2415 0.25 0.125 0 -2416 0.25 0.15 0 -2417 0.25 0.175 0 -2418 0.25 0.2 0 -2419 0.25 0.225 0 -2420 0.25 0.25 0 -2421 0 0 0 -2422 0 0 0.025 -2423 0 0 0.05 -2424 0 0 0.075 -2425 0 0 0.1 -2426 0 0 0.125 -2427 0 0 0.15 -2428 0 0 0.175 -2429 0 0 0.2 -2430 0 0 0.225 -2431 0 0 0.25 -2432 0 0.025 0 -2433 0 0.025 0.025 -2434 0 0.025 0.05 -2435 0 0.025 0.075 -2436 0 0.025 0.1 -2437 0 0.025 0.125 -2438 0 0.025 0.15 -2439 0 0.025 0.175 -2440 0 0.025 0.2 -2441 0 0.025 0.225 -2442 0 0.025 0.25 -2443 0 0.05 0 -2444 0 0.05 0.025 -2445 0 0.05 0.05 -2446 0 0.05 0.075 -2447 0 0.05 0.1 -2448 0 0.05 0.125 -2449 0 0.05 0.15 -2450 0 0.05 0.175 -2451 0 0.05 0.2 -2452 0 0.05 0.225 -2453 0 0.05 0.25 -2454 0 0.075 0 -2455 0 0.075 0.025 -2456 0 0.075 0.05 -2457 0 0.075 0.075 -2458 0 0.075 0.1 -2459 0 0.075 0.125 -2460 0 0.075 0.15 -2461 0 0.075 0.175 -2462 0 0.075 0.2 -2463 0 0.075 0.225 -2464 0 0.075 0.25 -2465 0 0.1 0 -2466 0 0.1 0.025 -2467 0 0.1 0.05 -2468 0 0.1 0.075 -2469 0 0.1 0.1 -2470 0 0.1 0.125 -2471 0 0.1 0.15 -2472 0 0.1 0.175 -2473 0 0.1 0.2 -2474 0 0.1 0.225 -2475 0 0.1 0.25 -2476 0 0.125 0 -2477 0 0.125 0.025 -2478 0 0.125 0.05 -2479 0 0.125 0.075 -2480 0 0.125 0.1 -2481 0 0.125 0.125 -2482 0 0.125 0.15 -2483 0 0.125 0.175 -2484 0 0.125 0.2 -2485 0 0.125 0.225 -2486 0 0.125 0.25 -2487 0 0.15 0 -2488 0 0.15 0.025 -2489 0 0.15 0.05 -2490 0 0.15 0.075 -2491 0 0.15 0.1 -2492 0 0.15 0.125 -2493 0 0.15 0.15 -2494 0 0.15 0.175 -2495 0 0.15 0.2 -2496 0 0.15 0.225 -2497 0 0.15 0.25 -2498 0 0.175 0 -2499 0 0.175 0.025 -2500 0 0.175 0.05 -2501 0 0.175 0.075 -2502 0 0.175 0.1 -2503 0 0.175 0.125 -2504 0 0.175 0.15 -2505 0 0.175 0.175 -2506 0 0.175 0.2 -2507 0 0.175 0.225 -2508 0 0.175 0.25 -2509 0 0.2 0 -2510 0 0.2 0.025 -2511 0 0.2 0.05 -2512 0 0.2 0.075 -2513 0 0.2 0.1 -2514 0 0.2 0.125 -2515 0 0.2 0.15 -2516 0 0.2 0.175 -2517 0 0.2 0.2 -2518 0 0.2 0.225 -2519 0 0.2 0.25 -2520 0 0.225 0 -2521 0 0.225 0.025 -2522 0 0.225 0.05 -2523 0 0.225 0.075 -2524 0 0.225 0.1 -2525 0 0.225 0.125 -2526 0 0.225 0.15 -2527 0 0.225 0.175 -2528 0 0.225 0.2 -2529 0 0.225 0.225 -2530 0 0.225 0.25 -2531 0 0.25 0 -2532 0 0.25 0.025 -2533 0 0.25 0.05 -2534 0 0.25 0.075 -2535 0 0.25 0.1 -2536 0 0.25 0.125 -2537 0 0.25 0.15 -2538 0 0.25 0.175 -2539 0 0.25 0.2 -2540 0 0.25 0.225 -2541 0 0.25 0.25 -2542 0.25 0 0 -2543 0.25 0 0.025 -2544 0.25 0 0.05 -2545 0.25 0 0.075 -2546 0.25 0 0.1 -2547 0.25 0 0.125 -2548 0.25 0 0.15 -2549 0.25 0 0.175 -2550 0.25 0 0.2 -2551 0.25 0 0.225 -2552 0.25 0 0.25 -2553 0.275 0 0 -2554 0.275 0 0.025 -2555 0.275 0 0.05 -2556 0.275 0 0.075 -2557 0.275 0 0.1 -2558 0.275 0 0.125 -2559 0.275 0 0.15 -2560 0.275 0 0.175 -2561 0.275 0 0.2 -2562 0.275 0 0.225 -2563 0.275 0 0.25 -2564 0.3 0 0 -2565 0.3 0 0.025 -2566 0.3 0 0.05 -2567 0.3 0 0.075 -2568 0.3 0 0.1 -2569 0.3 0 0.125 -2570 0.3 0 0.15 -2571 0.3 0 0.175 -2572 0.3 0 0.2 -2573 0.3 0 0.225 -2574 0.3 0 0.25 -2575 0.325 0 0 -2576 0.325 0 0.025 -2577 0.325 0 0.05 -2578 0.325 0 0.075 -2579 0.325 0 0.1 -2580 0.325 0 0.125 -2581 0.325 0 0.15 -2582 0.325 0 0.175 -2583 0.325 0 0.2 -2584 0.325 0 0.225 -2585 0.325 0 0.25 -2586 0.35 0 0 -2587 0.35 0 0.025 -2588 0.35 0 0.05 -2589 0.35 0 0.075 -2590 0.35 0 0.1 -2591 0.35 0 0.125 -2592 0.35 0 0.15 -2593 0.35 0 0.175 -2594 0.35 0 0.2 -2595 0.35 0 0.225 -2596 0.35 0 0.25 -2597 0.375 0 0 -2598 0.375 0 0.025 -2599 0.375 0 0.05 -2600 0.375 0 0.075 -2601 0.375 0 0.1 -2602 0.375 0 0.125 -2603 0.375 0 0.15 -2604 0.375 0 0.175 -2605 0.375 0 0.2 -2606 0.375 0 0.225 -2607 0.375 0 0.25 -2608 0.4 0 0 -2609 0.4 0 0.025 -2610 0.4 0 0.05 -2611 0.4 0 0.075 -2612 0.4 0 0.1 -2613 0.4 0 0.125 -2614 0.4 0 0.15 -2615 0.4 0 0.175 -2616 0.4 0 0.2 -2617 0.4 0 0.225 -2618 0.4 0 0.25 -2619 0.425 0 0 -2620 0.425 0 0.025 -2621 0.425 0 0.05 -2622 0.425 0 0.075 -2623 0.425 0 0.1 -2624 0.425 0 0.125 -2625 0.425 0 0.15 -2626 0.425 0 0.175 -2627 0.425 0 0.2 -2628 0.425 0 0.225 -2629 0.425 0 0.25 -2630 0.45 0 0 -2631 0.45 0 0.025 -2632 0.45 0 0.05 -2633 0.45 0 0.075 -2634 0.45 0 0.1 -2635 0.45 0 0.125 -2636 0.45 0 0.15 -2637 0.45 0 0.175 -2638 0.45 0 0.2 -2639 0.45 0 0.225 -2640 0.45 0 0.25 -2641 0.475 0 0 -2642 0.475 0 0.025 -2643 0.475 0 0.05 -2644 0.475 0 0.075 -2645 0.475 0 0.1 -2646 0.475 0 0.125 -2647 0.475 0 0.15 -2648 0.475 0 0.175 -2649 0.475 0 0.2 -2650 0.475 0 0.225 -2651 0.475 0 0.25 -2652 0.5 0 0 -2653 0.5 0 0.025 -2654 0.5 0 0.05 -2655 0.5 0 0.075 -2656 0.5 0 0.1 -2657 0.5 0 0.125 -2658 0.5 0 0.15 -2659 0.5 0 0.175 -2660 0.5 0 0.2 -2661 0.5 0 0.225 -2662 0.5 0 0.25 -2663 0.25 0 0 -2664 0.25 0.025 0 -2665 0.25 0.05 0 -2666 0.25 0.075 0 -2667 0.25 0.1 0 -2668 0.25 0.125 0 -2669 0.25 0.15 0 -2670 0.25 0.175 0 -2671 0.25 0.2 0 -2672 0.25 0.225 0 -2673 0.25 0.25 0 -2674 0.275 0 0 -2675 0.275 0.025 0 -2676 0.275 0.05 0 -2677 0.275 0.075 0 -2678 0.275 0.1 0 -2679 0.275 0.125 0 -2680 0.275 0.15 0 -2681 0.275 0.175 0 -2682 0.275 0.2 0 -2683 0.275 0.225 0 -2684 0.275 0.25 0 -2685 0.3 0 0 -2686 0.3 0.025 0 -2687 0.3 0.05 0 -2688 0.3 0.075 0 -2689 0.3 0.1 0 -2690 0.3 0.125 0 -2691 0.3 0.15 0 -2692 0.3 0.175 0 -2693 0.3 0.2 0 -2694 0.3 0.225 0 -2695 0.3 0.25 0 -2696 0.325 0 0 -2697 0.325 0.025 0 -2698 0.325 0.05 0 -2699 0.325 0.075 0 -2700 0.325 0.1 0 -2701 0.325 0.125 0 -2702 0.325 0.15 0 -2703 0.325 0.175 0 -2704 0.325 0.2 0 -2705 0.325 0.225 0 -2706 0.325 0.25 0 -2707 0.35 0 0 -2708 0.35 0.025 0 -2709 0.35 0.05 0 -2710 0.35 0.075 0 -2711 0.35 0.1 0 -2712 0.35 0.125 0 -2713 0.35 0.15 0 -2714 0.35 0.175 0 -2715 0.35 0.2 0 -2716 0.35 0.225 0 -2717 0.35 0.25 0 -2718 0.375 0 0 -2719 0.375 0.025 0 -2720 0.375 0.05 0 -2721 0.375 0.075 0 -2722 0.375 0.1 0 -2723 0.375 0.125 0 -2724 0.375 0.15 0 -2725 0.375 0.175 0 -2726 0.375 0.2 0 -2727 0.375 0.225 0 -2728 0.375 0.25 0 -2729 0.4 0 0 -2730 0.4 0.025 0 -2731 0.4 0.05 0 -2732 0.4 0.075 0 -2733 0.4 0.1 0 -2734 0.4 0.125 0 -2735 0.4 0.15 0 -2736 0.4 0.175 0 -2737 0.4 0.2 0 -2738 0.4 0.225 0 -2739 0.4 0.25 0 -2740 0.425 0 0 -2741 0.425 0.025 0 -2742 0.425 0.05 0 -2743 0.425 0.075 0 -2744 0.425 0.1 0 -2745 0.425 0.125 0 -2746 0.425 0.15 0 -2747 0.425 0.175 0 -2748 0.425 0.2 0 -2749 0.425 0.225 0 -2750 0.425 0.25 0 -2751 0.45 0 0 -2752 0.45 0.025 0 -2753 0.45 0.05 0 -2754 0.45 0.075 0 -2755 0.45 0.1 0 -2756 0.45 0.125 0 -2757 0.45 0.15 0 -2758 0.45 0.175 0 -2759 0.45 0.2 0 -2760 0.45 0.225 0 -2761 0.45 0.25 0 -2762 0.475 0 0 -2763 0.475 0.025 0 -2764 0.475 0.05 0 -2765 0.475 0.075 0 -2766 0.475 0.1 0 -2767 0.475 0.125 0 -2768 0.475 0.15 0 -2769 0.475 0.175 0 -2770 0.475 0.2 0 -2771 0.475 0.225 0 -2772 0.475 0.25 0 -2773 0.5 0 0 -2774 0.5 0.025 0 -2775 0.5 0.05 0 -2776 0.5 0.075 0 -2777 0.5 0.1 0 -2778 0.5 0.125 0 -2779 0.5 0.15 0 -2780 0.5 0.175 0 -2781 0.5 0.2 0 -2782 0.5 0.225 0 -2783 0.5 0.25 0 -2784 0.25 0 0.25 -2785 0.25 0 0.275 -2786 0.25 0 0.3 -2787 0.25 0 0.325 -2788 0.25 0 0.35 -2789 0.25 0 0.375 -2790 0.25 0 0.4 -2791 0.25 0 0.425 -2792 0.25 0 0.45 -2793 0.25 0 0.475 -2794 0.25 0 0.5 -2795 0.275 0 0.25 -2796 0.275 0 0.275 -2797 0.275 0 0.3 -2798 0.275 0 0.325 -2799 0.275 0 0.35 -2800 0.275 0 0.375 -2801 0.275 0 0.4 -2802 0.275 0 0.425 -2803 0.275 0 0.45 -2804 0.275 0 0.475 -2805 0.275 0 0.5 -2806 0.3 0 0.25 -2807 0.3 0 0.275 -2808 0.3 0 0.3 -2809 0.3 0 0.325 -2810 0.3 0 0.35 -2811 0.3 0 0.375 -2812 0.3 0 0.4 -2813 0.3 0 0.425 -2814 0.3 0 0.45 -2815 0.3 0 0.475 -2816 0.3 0 0.5 -2817 0.325 0 0.25 -2818 0.325 0 0.275 -2819 0.325 0 0.3 -2820 0.325 0 0.325 -2821 0.325 0 0.35 -2822 0.325 0 0.375 -2823 0.325 0 0.4 -2824 0.325 0 0.425 -2825 0.325 0 0.45 -2826 0.325 0 0.475 -2827 0.325 0 0.5 -2828 0.35 0 0.25 -2829 0.35 0 0.275 -2830 0.35 0 0.3 -2831 0.35 0 0.325 -2832 0.35 0 0.35 -2833 0.35 0 0.375 -2834 0.35 0 0.4 -2835 0.35 0 0.425 -2836 0.35 0 0.45 -2837 0.35 0 0.475 -2838 0.35 0 0.5 -2839 0.375 0 0.25 -2840 0.375 0 0.275 -2841 0.375 0 0.3 -2842 0.375 0 0.325 -2843 0.375 0 0.35 -2844 0.375 0 0.375 -2845 0.375 0 0.4 -2846 0.375 0 0.425 -2847 0.375 0 0.45 -2848 0.375 0 0.475 -2849 0.375 0 0.5 -2850 0.4 0 0.25 -2851 0.4 0 0.275 -2852 0.4 0 0.3 -2853 0.4 0 0.325 -2854 0.4 0 0.35 -2855 0.4 0 0.375 -2856 0.4 0 0.4 -2857 0.4 0 0.425 -2858 0.4 0 0.45 -2859 0.4 0 0.475 -2860 0.4 0 0.5 -2861 0.425 0 0.25 -2862 0.425 0 0.275 -2863 0.425 0 0.3 -2864 0.425 0 0.325 -2865 0.425 0 0.35 -2866 0.425 0 0.375 -2867 0.425 0 0.4 -2868 0.425 0 0.425 -2869 0.425 0 0.45 -2870 0.425 0 0.475 -2871 0.425 0 0.5 -2872 0.45 0 0.25 -2873 0.45 0 0.275 -2874 0.45 0 0.3 -2875 0.45 0 0.325 -2876 0.45 0 0.35 -2877 0.45 0 0.375 -2878 0.45 0 0.4 -2879 0.45 0 0.425 -2880 0.45 0 0.45 -2881 0.45 0 0.475 -2882 0.45 0 0.5 -2883 0.475 0 0.25 -2884 0.475 0 0.275 -2885 0.475 0 0.3 -2886 0.475 0 0.325 -2887 0.475 0 0.35 -2888 0.475 0 0.375 -2889 0.475 0 0.4 -2890 0.475 0 0.425 -2891 0.475 0 0.45 -2892 0.475 0 0.475 -2893 0.475 0 0.5 -2894 0.5 0 0.25 -2895 0.5 0 0.275 -2896 0.5 0 0.3 -2897 0.5 0 0.325 -2898 0.5 0 0.35 -2899 0.5 0 0.375 -2900 0.5 0 0.4 -2901 0.5 0 0.425 -2902 0.5 0 0.45 -2903 0.5 0 0.475 -2904 0.5 0 0.5 -2905 0 0 0.25 -2906 0 0 0.275 -2907 0 0 0.3 -2908 0 0 0.325 -2909 0 0 0.35 -2910 0 0 0.375 -2911 0 0 0.4 -2912 0 0 0.425 -2913 0 0 0.45 -2914 0 0 0.475 -2915 0 0 0.5 -2916 0.025 0 0.25 -2917 0.025 0 0.275 -2918 0.025 0 0.3 -2919 0.025 0 0.325 -2920 0.025 0 0.35 -2921 0.025 0 0.375 -2922 0.025 0 0.4 -2923 0.025 0 0.425 -2924 0.025 0 0.45 -2925 0.025 0 0.475 -2926 0.025 0 0.5 -2927 0.05 0 0.25 -2928 0.05 0 0.275 -2929 0.05 0 0.3 -2930 0.05 0 0.325 -2931 0.05 0 0.35 -2932 0.05 0 0.375 -2933 0.05 0 0.4 -2934 0.05 0 0.425 -2935 0.05 0 0.45 -2936 0.05 0 0.475 -2937 0.05 0 0.5 -2938 0.075 0 0.25 -2939 0.075 0 0.275 -2940 0.075 0 0.3 -2941 0.075 0 0.325 -2942 0.075 0 0.35 -2943 0.075 0 0.375 -2944 0.075 0 0.4 -2945 0.075 0 0.425 -2946 0.075 0 0.45 -2947 0.075 0 0.475 -2948 0.075 0 0.5 -2949 0.1 0 0.25 -2950 0.1 0 0.275 -2951 0.1 0 0.3 -2952 0.1 0 0.325 -2953 0.1 0 0.35 -2954 0.1 0 0.375 -2955 0.1 0 0.4 -2956 0.1 0 0.425 -2957 0.1 0 0.45 -2958 0.1 0 0.475 -2959 0.1 0 0.5 -2960 0.125 0 0.25 -2961 0.125 0 0.275 -2962 0.125 0 0.3 -2963 0.125 0 0.325 -2964 0.125 0 0.35 -2965 0.125 0 0.375 -2966 0.125 0 0.4 -2967 0.125 0 0.425 -2968 0.125 0 0.45 -2969 0.125 0 0.475 -2970 0.125 0 0.5 -2971 0.15 0 0.25 -2972 0.15 0 0.275 -2973 0.15 0 0.3 -2974 0.15 0 0.325 -2975 0.15 0 0.35 -2976 0.15 0 0.375 -2977 0.15 0 0.4 -2978 0.15 0 0.425 -2979 0.15 0 0.45 -2980 0.15 0 0.475 -2981 0.15 0 0.5 -2982 0.175 0 0.25 -2983 0.175 0 0.275 -2984 0.175 0 0.3 -2985 0.175 0 0.325 -2986 0.175 0 0.35 -2987 0.175 0 0.375 -2988 0.175 0 0.4 -2989 0.175 0 0.425 -2990 0.175 0 0.45 -2991 0.175 0 0.475 -2992 0.175 0 0.5 -2993 0.2 0 0.25 -2994 0.2 0 0.275 -2995 0.2 0 0.3 -2996 0.2 0 0.325 -2997 0.2 0 0.35 -2998 0.2 0 0.375 -2999 0.2 0 0.4 -3000 0.2 0 0.425 -3001 0.2 0 0.45 -3002 0.2 0 0.475 -3003 0.2 0 0.5 -3004 0.225 0 0.25 -3005 0.225 0 0.275 -3006 0.225 0 0.3 -3007 0.225 0 0.325 -3008 0.225 0 0.35 -3009 0.225 0 0.375 -3010 0.225 0 0.4 -3011 0.225 0 0.425 -3012 0.225 0 0.45 -3013 0.225 0 0.475 -3014 0.225 0 0.5 -3015 0.25 0 0.25 -3016 0.25 0 0.275 -3017 0.25 0 0.3 -3018 0.25 0 0.325 -3019 0.25 0 0.35 -3020 0.25 0 0.375 -3021 0.25 0 0.4 -3022 0.25 0 0.425 -3023 0.25 0 0.45 -3024 0.25 0 0.475 -3025 0.25 0 0.5 -3026 0 0 0.25 -3027 0 0 0.275 -3028 0 0 0.3 -3029 0 0 0.325 -3030 0 0 0.35 -3031 0 0 0.375 -3032 0 0 0.4 -3033 0 0 0.425 -3034 0 0 0.45 -3035 0 0 0.475 -3036 0 0 0.5 -3037 0 0.025 0.25 -3038 0 0.025 0.275 -3039 0 0.025 0.3 -3040 0 0.025 0.325 -3041 0 0.025 0.35 -3042 0 0.025 0.375 -3043 0 0.025 0.4 -3044 0 0.025 0.425 -3045 0 0.025 0.45 -3046 0 0.025 0.475 -3047 0 0.025 0.5 -3048 0 0.05 0.25 -3049 0 0.05 0.275 -3050 0 0.05 0.3 -3051 0 0.05 0.325 -3052 0 0.05 0.35 -3053 0 0.05 0.375 -3054 0 0.05 0.4 -3055 0 0.05 0.425 -3056 0 0.05 0.45 -3057 0 0.05 0.475 -3058 0 0.05 0.5 -3059 0 0.075 0.25 -3060 0 0.075 0.275 -3061 0 0.075 0.3 -3062 0 0.075 0.325 -3063 0 0.075 0.35 -3064 0 0.075 0.375 -3065 0 0.075 0.4 -3066 0 0.075 0.425 -3067 0 0.075 0.45 -3068 0 0.075 0.475 -3069 0 0.075 0.5 -3070 0 0.1 0.25 -3071 0 0.1 0.275 -3072 0 0.1 0.3 -3073 0 0.1 0.325 -3074 0 0.1 0.35 -3075 0 0.1 0.375 -3076 0 0.1 0.4 -3077 0 0.1 0.425 -3078 0 0.1 0.45 -3079 0 0.1 0.475 -3080 0 0.1 0.5 -3081 0 0.125 0.25 -3082 0 0.125 0.275 -3083 0 0.125 0.3 -3084 0 0.125 0.325 -3085 0 0.125 0.35 -3086 0 0.125 0.375 -3087 0 0.125 0.4 -3088 0 0.125 0.425 -3089 0 0.125 0.45 -3090 0 0.125 0.475 -3091 0 0.125 0.5 -3092 0 0.15 0.25 -3093 0 0.15 0.275 -3094 0 0.15 0.3 -3095 0 0.15 0.325 -3096 0 0.15 0.35 -3097 0 0.15 0.375 -3098 0 0.15 0.4 -3099 0 0.15 0.425 -3100 0 0.15 0.45 -3101 0 0.15 0.475 -3102 0 0.15 0.5 -3103 0 0.175 0.25 -3104 0 0.175 0.275 -3105 0 0.175 0.3 -3106 0 0.175 0.325 -3107 0 0.175 0.35 -3108 0 0.175 0.375 -3109 0 0.175 0.4 -3110 0 0.175 0.425 -3111 0 0.175 0.45 -3112 0 0.175 0.475 -3113 0 0.175 0.5 -3114 0 0.2 0.25 -3115 0 0.2 0.275 -3116 0 0.2 0.3 -3117 0 0.2 0.325 -3118 0 0.2 0.35 -3119 0 0.2 0.375 -3120 0 0.2 0.4 -3121 0 0.2 0.425 -3122 0 0.2 0.45 -3123 0 0.2 0.475 -3124 0 0.2 0.5 -3125 0 0.225 0.25 -3126 0 0.225 0.275 -3127 0 0.225 0.3 -3128 0 0.225 0.325 -3129 0 0.225 0.35 -3130 0 0.225 0.375 -3131 0 0.225 0.4 -3132 0 0.225 0.425 -3133 0 0.225 0.45 -3134 0 0.225 0.475 -3135 0 0.225 0.5 -3136 0 0.25 0.25 -3137 0 0.25 0.275 -3138 0 0.25 0.3 -3139 0 0.25 0.325 -3140 0 0.25 0.35 -3141 0 0.25 0.375 -3142 0 0.25 0.4 -3143 0 0.25 0.425 -3144 0 0.25 0.45 -3145 0 0.25 0.475 -3146 0 0.25 0.5 -3147 0 0.25 0 -3148 0 0.275 0 -3149 0 0.3 0 -3150 0 0.325 0 -3151 0 0.35 0 -3152 0 0.375 0 -3153 0 0.4 0 -3154 0 0.425 0 -3155 0 0.45 0 -3156 0 0.475 0 -3157 0 0.5 0 -3158 0.025 0.25 0 -3159 0.025 0.275 0 -3160 0.025 0.3 0 -3161 0.025 0.325 0 -3162 0.025 0.35 0 -3163 0.025 0.375 0 -3164 0.025 0.4 0 -3165 0.025 0.425 0 -3166 0.025 0.45 0 -3167 0.025 0.475 0 -3168 0.025 0.5 0 -3169 0.05 0.25 0 -3170 0.05 0.275 0 -3171 0.05 0.3 0 -3172 0.05 0.325 0 -3173 0.05 0.35 0 -3174 0.05 0.375 0 -3175 0.05 0.4 0 -3176 0.05 0.425 0 -3177 0.05 0.45 0 -3178 0.05 0.475 0 -3179 0.05 0.5 0 -3180 0.075 0.25 0 -3181 0.075 0.275 0 -3182 0.075 0.3 0 -3183 0.075 0.325 0 -3184 0.075 0.35 0 -3185 0.075 0.375 0 -3186 0.075 0.4 0 -3187 0.075 0.425 0 -3188 0.075 0.45 0 -3189 0.075 0.475 0 -3190 0.075 0.5 0 -3191 0.1 0.25 0 -3192 0.1 0.275 0 -3193 0.1 0.3 0 -3194 0.1 0.325 0 -3195 0.1 0.35 0 -3196 0.1 0.375 0 -3197 0.1 0.4 0 -3198 0.1 0.425 0 -3199 0.1 0.45 0 -3200 0.1 0.475 0 -3201 0.1 0.5 0 -3202 0.125 0.25 0 -3203 0.125 0.275 0 -3204 0.125 0.3 0 -3205 0.125 0.325 0 -3206 0.125 0.35 0 -3207 0.125 0.375 0 -3208 0.125 0.4 0 -3209 0.125 0.425 0 -3210 0.125 0.45 0 -3211 0.125 0.475 0 -3212 0.125 0.5 0 -3213 0.15 0.25 0 -3214 0.15 0.275 0 -3215 0.15 0.3 0 -3216 0.15 0.325 0 -3217 0.15 0.35 0 -3218 0.15 0.375 0 -3219 0.15 0.4 0 -3220 0.15 0.425 0 -3221 0.15 0.45 0 -3222 0.15 0.475 0 -3223 0.15 0.5 0 -3224 0.175 0.25 0 -3225 0.175 0.275 0 -3226 0.175 0.3 0 -3227 0.175 0.325 0 -3228 0.175 0.35 0 -3229 0.175 0.375 0 -3230 0.175 0.4 0 -3231 0.175 0.425 0 -3232 0.175 0.45 0 -3233 0.175 0.475 0 -3234 0.175 0.5 0 -3235 0.2 0.25 0 -3236 0.2 0.275 0 -3237 0.2 0.3 0 -3238 0.2 0.325 0 -3239 0.2 0.35 0 -3240 0.2 0.375 0 -3241 0.2 0.4 0 -3242 0.2 0.425 0 -3243 0.2 0.45 0 -3244 0.2 0.475 0 -3245 0.2 0.5 0 -3246 0.225 0.25 0 -3247 0.225 0.275 0 -3248 0.225 0.3 0 -3249 0.225 0.325 0 -3250 0.225 0.35 0 -3251 0.225 0.375 0 -3252 0.225 0.4 0 -3253 0.225 0.425 0 -3254 0.225 0.45 0 -3255 0.225 0.475 0 -3256 0.225 0.5 0 -3257 0.25 0.25 0 -3258 0.25 0.275 0 -3259 0.25 0.3 0 -3260 0.25 0.325 0 -3261 0.25 0.35 0 -3262 0.25 0.375 0 -3263 0.25 0.4 0 -3264 0.25 0.425 0 -3265 0.25 0.45 0 -3266 0.25 0.475 0 -3267 0.25 0.5 0 -3268 0 0.25 0 -3269 0 0.25 0.025 -3270 0 0.25 0.05 -3271 0 0.25 0.075 -3272 0 0.25 0.1 -3273 0 0.25 0.125 -3274 0 0.25 0.15 -3275 0 0.25 0.175 -3276 0 0.25 0.2 -3277 0 0.25 0.225 -3278 0 0.25 0.25 -3279 0 0.275 0 -3280 0 0.275 0.025 -3281 0 0.275 0.05 -3282 0 0.275 0.075 -3283 0 0.275 0.1 -3284 0 0.275 0.125 -3285 0 0.275 0.15 -3286 0 0.275 0.175 -3287 0 0.275 0.2 -3288 0 0.275 0.225 -3289 0 0.275 0.25 -3290 0 0.3 0 -3291 0 0.3 0.025 -3292 0 0.3 0.05 -3293 0 0.3 0.075 -3294 0 0.3 0.1 -3295 0 0.3 0.125 -3296 0 0.3 0.15 -3297 0 0.3 0.175 -3298 0 0.3 0.2 -3299 0 0.3 0.225 -3300 0 0.3 0.25 -3301 0 0.325 0 -3302 0 0.325 0.025 -3303 0 0.325 0.05 -3304 0 0.325 0.075 -3305 0 0.325 0.1 -3306 0 0.325 0.125 -3307 0 0.325 0.15 -3308 0 0.325 0.175 -3309 0 0.325 0.2 -3310 0 0.325 0.225 -3311 0 0.325 0.25 -3312 0 0.35 0 -3313 0 0.35 0.025 -3314 0 0.35 0.05 -3315 0 0.35 0.075 -3316 0 0.35 0.1 -3317 0 0.35 0.125 -3318 0 0.35 0.15 -3319 0 0.35 0.175 -3320 0 0.35 0.2 -3321 0 0.35 0.225 -3322 0 0.35 0.25 -3323 0 0.375 0 -3324 0 0.375 0.025 -3325 0 0.375 0.05 -3326 0 0.375 0.075 -3327 0 0.375 0.1 -3328 0 0.375 0.125 -3329 0 0.375 0.15 -3330 0 0.375 0.175 -3331 0 0.375 0.2 -3332 0 0.375 0.225 -3333 0 0.375 0.25 -3334 0 0.4 0 -3335 0 0.4 0.025 -3336 0 0.4 0.05 -3337 0 0.4 0.075 -3338 0 0.4 0.1 -3339 0 0.4 0.125 -3340 0 0.4 0.15 -3341 0 0.4 0.175 -3342 0 0.4 0.2 -3343 0 0.4 0.225 -3344 0 0.4 0.25 -3345 0 0.425 0 -3346 0 0.425 0.025 -3347 0 0.425 0.05 -3348 0 0.425 0.075 -3349 0 0.425 0.1 -3350 0 0.425 0.125 -3351 0 0.425 0.15 -3352 0 0.425 0.175 -3353 0 0.425 0.2 -3354 0 0.425 0.225 -3355 0 0.425 0.25 -3356 0 0.45 0 -3357 0 0.45 0.025 -3358 0 0.45 0.05 -3359 0 0.45 0.075 -3360 0 0.45 0.1 -3361 0 0.45 0.125 -3362 0 0.45 0.15 -3363 0 0.45 0.175 -3364 0 0.45 0.2 -3365 0 0.45 0.225 -3366 0 0.45 0.25 -3367 0 0.475 0 -3368 0 0.475 0.025 -3369 0 0.475 0.05 -3370 0 0.475 0.075 -3371 0 0.475 0.1 -3372 0 0.475 0.125 -3373 0 0.475 0.15 -3374 0 0.475 0.175 -3375 0 0.475 0.2 -3376 0 0.475 0.225 -3377 0 0.475 0.25 -3378 0 0.5 0 -3379 0 0.5 0.025 -3380 0 0.5 0.05 -3381 0 0.5 0.075 -3382 0 0.5 0.1 -3383 0 0.5 0.125 -3384 0 0.5 0.15 -3385 0 0.5 0.175 -3386 0 0.5 0.2 -3387 0 0.5 0.225 -3388 0 0.5 0.25 -3389 0.25 0.25 0 -3390 0.25 0.275 0 -3391 0.25 0.3 0 -3392 0.25 0.325 0 -3393 0.25 0.35 0 -3394 0.25 0.375 0 -3395 0.25 0.4 0 -3396 0.25 0.425 0 -3397 0.25 0.45 0 -3398 0.25 0.475 0 -3399 0.25 0.5 0 -3400 0.275 0.25 0 -3401 0.275 0.275 0 -3402 0.275 0.3 0 -3403 0.275 0.325 0 -3404 0.275 0.35 0 -3405 0.275 0.375 0 -3406 0.275 0.4 0 -3407 0.275 0.425 0 -3408 0.275 0.45 0 -3409 0.275 0.475 0 -3410 0.275 0.5 0 -3411 0.3 0.25 0 -3412 0.3 0.275 0 -3413 0.3 0.3 0 -3414 0.3 0.325 0 -3415 0.3 0.35 0 -3416 0.3 0.375 0 -3417 0.3 0.4 0 -3418 0.3 0.425 0 -3419 0.3 0.45 0 -3420 0.3 0.475 0 -3421 0.3 0.5 0 -3422 0.325 0.25 0 -3423 0.325 0.275 0 -3424 0.325 0.3 0 -3425 0.325 0.325 0 -3426 0.325 0.35 0 -3427 0.325 0.375 0 -3428 0.325 0.4 0 -3429 0.325 0.425 0 -3430 0.325 0.45 0 -3431 0.325 0.475 0 -3432 0.325 0.5 0 -3433 0.35 0.25 0 -3434 0.35 0.275 0 -3435 0.35 0.3 0 -3436 0.35 0.325 0 -3437 0.35 0.35 0 -3438 0.35 0.375 0 -3439 0.35 0.4 0 -3440 0.35 0.425 0 -3441 0.35 0.45 0 -3442 0.35 0.475 0 -3443 0.35 0.5 0 -3444 0.375 0.25 0 -3445 0.375 0.275 0 -3446 0.375 0.3 0 -3447 0.375 0.325 0 -3448 0.375 0.35 0 -3449 0.375 0.375 0 -3450 0.375 0.4 0 -3451 0.375 0.425 0 -3452 0.375 0.45 0 -3453 0.375 0.475 0 -3454 0.375 0.5 0 -3455 0.4 0.25 0 -3456 0.4 0.275 0 -3457 0.4 0.3 0 -3458 0.4 0.325 0 -3459 0.4 0.35 0 -3460 0.4 0.375 0 -3461 0.4 0.4 0 -3462 0.4 0.425 0 -3463 0.4 0.45 0 -3464 0.4 0.475 0 -3465 0.4 0.5 0 -3466 0.425 0.25 0 -3467 0.425 0.275 0 -3468 0.425 0.3 0 -3469 0.425 0.325 0 -3470 0.425 0.35 0 -3471 0.425 0.375 0 -3472 0.425 0.4 0 -3473 0.425 0.425 0 -3474 0.425 0.45 0 -3475 0.425 0.475 0 -3476 0.425 0.5 0 -3477 0.45 0.25 0 -3478 0.45 0.275 0 -3479 0.45 0.3 0 -3480 0.45 0.325 0 -3481 0.45 0.35 0 -3482 0.45 0.375 0 -3483 0.45 0.4 0 -3484 0.45 0.425 0 -3485 0.45 0.45 0 -3486 0.45 0.475 0 -3487 0.45 0.5 0 -3488 0.475 0.25 0 -3489 0.475 0.275 0 -3490 0.475 0.3 0 -3491 0.475 0.325 0 -3492 0.475 0.35 0 -3493 0.475 0.375 0 -3494 0.475 0.4 0 -3495 0.475 0.425 0 -3496 0.475 0.45 0 -3497 0.475 0.475 0 -3498 0.475 0.5 0 -3499 0.5 0.25 0 -3500 0.5 0.275 0 -3501 0.5 0.3 0 -3502 0.5 0.325 0 -3503 0.5 0.35 0 -3504 0.5 0.375 0 -3505 0.5 0.4 0 -3506 0.5 0.425 0 -3507 0.5 0.45 0 -3508 0.5 0.475 0 -3509 0.5 0.5 0 -3510 0 0.25 0.25 -3511 0 0.25 0.275 -3512 0 0.25 0.3 -3513 0 0.25 0.325 -3514 0 0.25 0.35 -3515 0 0.25 0.375 -3516 0 0.25 0.4 -3517 0 0.25 0.425 -3518 0 0.25 0.45 -3519 0 0.25 0.475 -3520 0 0.25 0.5 -3521 0 0.275 0.25 -3522 0 0.275 0.275 -3523 0 0.275 0.3 -3524 0 0.275 0.325 -3525 0 0.275 0.35 -3526 0 0.275 0.375 -3527 0 0.275 0.4 -3528 0 0.275 0.425 -3529 0 0.275 0.45 -3530 0 0.275 0.475 -3531 0 0.275 0.5 -3532 0 0.3 0.25 -3533 0 0.3 0.275 -3534 0 0.3 0.3 -3535 0 0.3 0.325 -3536 0 0.3 0.35 -3537 0 0.3 0.375 -3538 0 0.3 0.4 -3539 0 0.3 0.425 -3540 0 0.3 0.45 -3541 0 0.3 0.475 -3542 0 0.3 0.5 -3543 0 0.325 0.25 -3544 0 0.325 0.275 -3545 0 0.325 0.3 -3546 0 0.325 0.325 -3547 0 0.325 0.35 -3548 0 0.325 0.375 -3549 0 0.325 0.4 -3550 0 0.325 0.425 -3551 0 0.325 0.45 -3552 0 0.325 0.475 -3553 0 0.325 0.5 -3554 0 0.35 0.25 -3555 0 0.35 0.275 -3556 0 0.35 0.3 -3557 0 0.35 0.325 -3558 0 0.35 0.35 -3559 0 0.35 0.375 -3560 0 0.35 0.4 -3561 0 0.35 0.425 -3562 0 0.35 0.45 -3563 0 0.35 0.475 -3564 0 0.35 0.5 -3565 0 0.375 0.25 -3566 0 0.375 0.275 -3567 0 0.375 0.3 -3568 0 0.375 0.325 -3569 0 0.375 0.35 -3570 0 0.375 0.375 -3571 0 0.375 0.4 -3572 0 0.375 0.425 -3573 0 0.375 0.45 -3574 0 0.375 0.475 -3575 0 0.375 0.5 -3576 0 0.4 0.25 -3577 0 0.4 0.275 -3578 0 0.4 0.3 -3579 0 0.4 0.325 -3580 0 0.4 0.35 -3581 0 0.4 0.375 -3582 0 0.4 0.4 -3583 0 0.4 0.425 -3584 0 0.4 0.45 -3585 0 0.4 0.475 -3586 0 0.4 0.5 -3587 0 0.425 0.25 -3588 0 0.425 0.275 -3589 0 0.425 0.3 -3590 0 0.425 0.325 -3591 0 0.425 0.35 -3592 0 0.425 0.375 -3593 0 0.425 0.4 -3594 0 0.425 0.425 -3595 0 0.425 0.45 -3596 0 0.425 0.475 -3597 0 0.425 0.5 -3598 0 0.45 0.25 -3599 0 0.45 0.275 -3600 0 0.45 0.3 -3601 0 0.45 0.325 -3602 0 0.45 0.35 -3603 0 0.45 0.375 -3604 0 0.45 0.4 -3605 0 0.45 0.425 -3606 0 0.45 0.45 -3607 0 0.45 0.475 -3608 0 0.45 0.5 -3609 0 0.475 0.25 -3610 0 0.475 0.275 -3611 0 0.475 0.3 -3612 0 0.475 0.325 -3613 0 0.475 0.35 -3614 0 0.475 0.375 -3615 0 0.475 0.4 -3616 0 0.475 0.425 -3617 0 0.475 0.45 -3618 0 0.475 0.475 -3619 0 0.475 0.5 -3620 0 0.5 0.25 -3621 0 0.5 0.275 -3622 0 0.5 0.3 -3623 0 0.5 0.325 -3624 0 0.5 0.35 -3625 0 0.5 0.375 -3626 0 0.5 0.4 -3627 0 0.5 0.425 -3628 0 0.5 0.45 -3629 0 0.5 0.475 -3630 0 0.5 0.5 -3631 0.5 0 0 -3632 0.5 0 0.025 -3633 0.5 0 0.05 -3634 0.5 0 0.075 -3635 0.5 0 0.1 -3636 0.5 0 0.125 -3637 0.5 0 0.15 -3638 0.5 0 0.175 -3639 0.5 0 0.2 -3640 0.5 0 0.225 -3641 0.5 0 0.25 -3642 0.525 0 0 -3643 0.525 0 0.025 -3644 0.525 0 0.05 -3645 0.525 0 0.075 -3646 0.525 0 0.1 -3647 0.525 0 0.125 -3648 0.525 0 0.15 -3649 0.525 0 0.175 -3650 0.525 0 0.2 -3651 0.525 0 0.225 -3652 0.525 0 0.25 -3653 0.55 0 0 -3654 0.55 0 0.025 -3655 0.55 0 0.05 -3656 0.55 0 0.075 -3657 0.55 0 0.1 -3658 0.55 0 0.125 -3659 0.55 0 0.15 -3660 0.55 0 0.175 -3661 0.55 0 0.2 -3662 0.55 0 0.225 -3663 0.55 0 0.25 -3664 0.575 0 0 -3665 0.575 0 0.025 -3666 0.575 0 0.05 -3667 0.575 0 0.075 -3668 0.575 0 0.1 -3669 0.575 0 0.125 -3670 0.575 0 0.15 -3671 0.575 0 0.175 -3672 0.575 0 0.2 -3673 0.575 0 0.225 -3674 0.575 0 0.25 -3675 0.6 0 0 -3676 0.6 0 0.025 -3677 0.6 0 0.05 -3678 0.6 0 0.075 -3679 0.6 0 0.1 -3680 0.6 0 0.125 -3681 0.6 0 0.15 -3682 0.6 0 0.175 -3683 0.6 0 0.2 -3684 0.6 0 0.225 -3685 0.6 0 0.25 -3686 0.625 0 0 -3687 0.625 0 0.025 -3688 0.625 0 0.05 -3689 0.625 0 0.075 -3690 0.625 0 0.1 -3691 0.625 0 0.125 -3692 0.625 0 0.15 -3693 0.625 0 0.175 -3694 0.625 0 0.2 -3695 0.625 0 0.225 -3696 0.625 0 0.25 -3697 0.65 0 0 -3698 0.65 0 0.025 -3699 0.65 0 0.05 -3700 0.65 0 0.075 -3701 0.65 0 0.1 -3702 0.65 0 0.125 -3703 0.65 0 0.15 -3704 0.65 0 0.175 -3705 0.65 0 0.2 -3706 0.65 0 0.225 -3707 0.65 0 0.25 -3708 0.675 0 0 -3709 0.675 0 0.025 -3710 0.675 0 0.05 -3711 0.675 0 0.075 -3712 0.675 0 0.1 -3713 0.675 0 0.125 -3714 0.675 0 0.15 -3715 0.675 0 0.175 -3716 0.675 0 0.2 -3717 0.675 0 0.225 -3718 0.675 0 0.25 -3719 0.7 0 0 -3720 0.7 0 0.025 -3721 0.7 0 0.05 -3722 0.7 0 0.075 -3723 0.7 0 0.1 -3724 0.7 0 0.125 -3725 0.7 0 0.15 -3726 0.7 0 0.175 -3727 0.7 0 0.2 -3728 0.7 0 0.225 -3729 0.7 0 0.25 -3730 0.725 0 0 -3731 0.725 0 0.025 -3732 0.725 0 0.05 -3733 0.725 0 0.075 -3734 0.725 0 0.1 -3735 0.725 0 0.125 -3736 0.725 0 0.15 -3737 0.725 0 0.175 -3738 0.725 0 0.2 -3739 0.725 0 0.225 -3740 0.725 0 0.25 -3741 0.75 0 0 -3742 0.75 0 0.025 -3743 0.75 0 0.05 -3744 0.75 0 0.075 -3745 0.75 0 0.1 -3746 0.75 0 0.125 -3747 0.75 0 0.15 -3748 0.75 0 0.175 -3749 0.75 0 0.2 -3750 0.75 0 0.225 -3751 0.75 0 0.25 -3752 0.5 0 0 -3753 0.5 0.025 0 -3754 0.5 0.05 0 -3755 0.5 0.075 0 -3756 0.5 0.1 0 -3757 0.5 0.125 0 -3758 0.5 0.15 0 -3759 0.5 0.175 0 -3760 0.5 0.2 0 -3761 0.5 0.225 0 -3762 0.5 0.25 0 -3763 0.525 0 0 -3764 0.525 0.025 0 -3765 0.525 0.05 0 -3766 0.525 0.075 0 -3767 0.525 0.1 0 -3768 0.525 0.125 0 -3769 0.525 0.15 0 -3770 0.525 0.175 0 -3771 0.525 0.2 0 -3772 0.525 0.225 0 -3773 0.525 0.25 0 -3774 0.55 0 0 -3775 0.55 0.025 0 -3776 0.55 0.05 0 -3777 0.55 0.075 0 -3778 0.55 0.1 0 -3779 0.55 0.125 0 -3780 0.55 0.15 0 -3781 0.55 0.175 0 -3782 0.55 0.2 0 -3783 0.55 0.225 0 -3784 0.55 0.25 0 -3785 0.575 0 0 -3786 0.575 0.025 0 -3787 0.575 0.05 0 -3788 0.575 0.075 0 -3789 0.575 0.1 0 -3790 0.575 0.125 0 -3791 0.575 0.15 0 -3792 0.575 0.175 0 -3793 0.575 0.2 0 -3794 0.575 0.225 0 -3795 0.575 0.25 0 -3796 0.6 0 0 -3797 0.6 0.025 0 -3798 0.6 0.05 0 -3799 0.6 0.075 0 -3800 0.6 0.1 0 -3801 0.6 0.125 0 -3802 0.6 0.15 0 -3803 0.6 0.175 0 -3804 0.6 0.2 0 -3805 0.6 0.225 0 -3806 0.6 0.25 0 -3807 0.625 0 0 -3808 0.625 0.025 0 -3809 0.625 0.05 0 -3810 0.625 0.075 0 -3811 0.625 0.1 0 -3812 0.625 0.125 0 -3813 0.625 0.15 0 -3814 0.625 0.175 0 -3815 0.625 0.2 0 -3816 0.625 0.225 0 -3817 0.625 0.25 0 -3818 0.65 0 0 -3819 0.65 0.025 0 -3820 0.65 0.05 0 -3821 0.65 0.075 0 -3822 0.65 0.1 0 -3823 0.65 0.125 0 -3824 0.65 0.15 0 -3825 0.65 0.175 0 -3826 0.65 0.2 0 -3827 0.65 0.225 0 -3828 0.65 0.25 0 -3829 0.675 0 0 -3830 0.675 0.025 0 -3831 0.675 0.05 0 -3832 0.675 0.075 0 -3833 0.675 0.1 0 -3834 0.675 0.125 0 -3835 0.675 0.15 0 -3836 0.675 0.175 0 -3837 0.675 0.2 0 -3838 0.675 0.225 0 -3839 0.675 0.25 0 -3840 0.7 0 0 -3841 0.7 0.025 0 -3842 0.7 0.05 0 -3843 0.7 0.075 0 -3844 0.7 0.1 0 -3845 0.7 0.125 0 -3846 0.7 0.15 0 -3847 0.7 0.175 0 -3848 0.7 0.2 0 -3849 0.7 0.225 0 -3850 0.7 0.25 0 -3851 0.725 0 0 -3852 0.725 0.025 0 -3853 0.725 0.05 0 -3854 0.725 0.075 0 -3855 0.725 0.1 0 -3856 0.725 0.125 0 -3857 0.725 0.15 0 -3858 0.725 0.175 0 -3859 0.725 0.2 0 -3860 0.725 0.225 0 -3861 0.725 0.25 0 -3862 0.75 0 0 -3863 0.75 0.025 0 -3864 0.75 0.05 0 -3865 0.75 0.075 0 -3866 0.75 0.1 0 -3867 0.75 0.125 0 -3868 0.75 0.15 0 -3869 0.75 0.175 0 -3870 0.75 0.2 0 -3871 0.75 0.225 0 -3872 0.75 0.25 0 -3873 0.75 0 0 -3874 0.75 0 0.025 -3875 0.75 0 0.05 -3876 0.75 0 0.075 -3877 0.75 0 0.1 -3878 0.75 0 0.125 -3879 0.75 0 0.15 -3880 0.75 0 0.175 -3881 0.75 0 0.2 -3882 0.75 0 0.225 -3883 0.75 0 0.25 -3884 0.775 0 0 -3885 0.775 0 0.025 -3886 0.775 0 0.05 -3887 0.775 0 0.075 -3888 0.775 0 0.1 -3889 0.775 0 0.125 -3890 0.775 0 0.15 -3891 0.775 0 0.175 -3892 0.775 0 0.2 -3893 0.775 0 0.225 -3894 0.775 0 0.25 -3895 0.8 0 0 -3896 0.8 0 0.025 -3897 0.8 0 0.05 -3898 0.8 0 0.075 -3899 0.8 0 0.1 -3900 0.8 0 0.125 -3901 0.8 0 0.15 -3902 0.8 0 0.175 -3903 0.8 0 0.2 -3904 0.8 0 0.225 -3905 0.8 0 0.25 -3906 0.825 0 0 -3907 0.825 0 0.025 -3908 0.825 0 0.05 -3909 0.825 0 0.075 -3910 0.825 0 0.1 -3911 0.825 0 0.125 -3912 0.825 0 0.15 -3913 0.825 0 0.175 -3914 0.825 0 0.2 -3915 0.825 0 0.225 -3916 0.825 0 0.25 -3917 0.85 0 0 -3918 0.85 0 0.025 -3919 0.85 0 0.05 -3920 0.85 0 0.075 -3921 0.85 0 0.1 -3922 0.85 0 0.125 -3923 0.85 0 0.15 -3924 0.85 0 0.175 -3925 0.85 0 0.2 -3926 0.85 0 0.225 -3927 0.85 0 0.25 -3928 0.875 0 0 -3929 0.875 0 0.025 -3930 0.875 0 0.05 -3931 0.875 0 0.075 -3932 0.875 0 0.1 -3933 0.875 0 0.125 -3934 0.875 0 0.15 -3935 0.875 0 0.175 -3936 0.875 0 0.2 -3937 0.875 0 0.225 -3938 0.875 0 0.25 -3939 0.9 0 0 -3940 0.9 0 0.025 -3941 0.9 0 0.05 -3942 0.9 0 0.075 -3943 0.9 0 0.1 -3944 0.9 0 0.125 -3945 0.9 0 0.15 -3946 0.9 0 0.175 -3947 0.9 0 0.2 -3948 0.9 0 0.225 -3949 0.9 0 0.25 -3950 0.925 0 0 -3951 0.925 0 0.025 -3952 0.925 0 0.05 -3953 0.925 0 0.075 -3954 0.925 0 0.1 -3955 0.925 0 0.125 -3956 0.925 0 0.15 -3957 0.925 0 0.175 -3958 0.925 0 0.2 -3959 0.925 0 0.225 -3960 0.925 0 0.25 -3961 0.95 0 0 -3962 0.95 0 0.025 -3963 0.95 0 0.05 -3964 0.95 0 0.075 -3965 0.95 0 0.1 -3966 0.95 0 0.125 -3967 0.95 0 0.15 -3968 0.95 0 0.175 -3969 0.95 0 0.2 -3970 0.95 0 0.225 -3971 0.95 0 0.25 -3972 0.975 0 0 -3973 0.975 0 0.025 -3974 0.975 0 0.05 -3975 0.975 0 0.075 -3976 0.975 0 0.1 -3977 0.975 0 0.125 -3978 0.975 0 0.15 -3979 0.975 0 0.175 -3980 0.975 0 0.2 -3981 0.975 0 0.225 -3982 0.975 0 0.25 -3983 1 0 0 -3984 1 0 0.025 -3985 1 0 0.05 -3986 1 0 0.075 -3987 1 0 0.1 -3988 1 0 0.125 -3989 1 0 0.15 -3990 1 0 0.175 -3991 1 0 0.2 -3992 1 0 0.225 -3993 1 0 0.25 -3994 0.75 0 0 -3995 0.75 0.025 0 -3996 0.75 0.05 0 -3997 0.75 0.075 0 -3998 0.75 0.1 0 -3999 0.75 0.125 0 -4000 0.75 0.15 0 -4001 0.75 0.175 0 -4002 0.75 0.2 0 -4003 0.75 0.225 0 -4004 0.75 0.25 0 -4005 0.775 0 0 -4006 0.775 0.025 0 -4007 0.775 0.05 0 -4008 0.775 0.075 0 -4009 0.775 0.1 0 -4010 0.775 0.125 0 -4011 0.775 0.15 0 -4012 0.775 0.175 0 -4013 0.775 0.2 0 -4014 0.775 0.225 0 -4015 0.775 0.25 0 -4016 0.8 0 0 -4017 0.8 0.025 0 -4018 0.8 0.05 0 -4019 0.8 0.075 0 -4020 0.8 0.1 0 -4021 0.8 0.125 0 -4022 0.8 0.15 0 -4023 0.8 0.175 0 -4024 0.8 0.2 0 -4025 0.8 0.225 0 -4026 0.8 0.25 0 -4027 0.825 0 0 -4028 0.825 0.025 0 -4029 0.825 0.05 0 -4030 0.825 0.075 0 -4031 0.825 0.1 0 -4032 0.825 0.125 0 -4033 0.825 0.15 0 -4034 0.825 0.175 0 -4035 0.825 0.2 0 -4036 0.825 0.225 0 -4037 0.825 0.25 0 -4038 0.85 0 0 -4039 0.85 0.025 0 -4040 0.85 0.05 0 -4041 0.85 0.075 0 -4042 0.85 0.1 0 -4043 0.85 0.125 0 -4044 0.85 0.15 0 -4045 0.85 0.175 0 -4046 0.85 0.2 0 -4047 0.85 0.225 0 -4048 0.85 0.25 0 -4049 0.875 0 0 -4050 0.875 0.025 0 -4051 0.875 0.05 0 -4052 0.875 0.075 0 -4053 0.875 0.1 0 -4054 0.875 0.125 0 -4055 0.875 0.15 0 -4056 0.875 0.175 0 -4057 0.875 0.2 0 -4058 0.875 0.225 0 -4059 0.875 0.25 0 -4060 0.9 0 0 -4061 0.9 0.025 0 -4062 0.9 0.05 0 -4063 0.9 0.075 0 -4064 0.9 0.1 0 -4065 0.9 0.125 0 -4066 0.9 0.15 0 -4067 0.9 0.175 0 -4068 0.9 0.2 0 -4069 0.9 0.225 0 -4070 0.9 0.25 0 -4071 0.925 0 0 -4072 0.925 0.025 0 -4073 0.925 0.05 0 -4074 0.925 0.075 0 -4075 0.925 0.1 0 -4076 0.925 0.125 0 -4077 0.925 0.15 0 -4078 0.925 0.175 0 -4079 0.925 0.2 0 -4080 0.925 0.225 0 -4081 0.925 0.25 0 -4082 0.95 0 0 -4083 0.95 0.025 0 -4084 0.95 0.05 0 -4085 0.95 0.075 0 -4086 0.95 0.1 0 -4087 0.95 0.125 0 -4088 0.95 0.15 0 -4089 0.95 0.175 0 -4090 0.95 0.2 0 -4091 0.95 0.225 0 -4092 0.95 0.25 0 -4093 0.975 0 0 -4094 0.975 0.025 0 -4095 0.975 0.05 0 -4096 0.975 0.075 0 -4097 0.975 0.1 0 -4098 0.975 0.125 0 -4099 0.975 0.15 0 -4100 0.975 0.175 0 -4101 0.975 0.2 0 -4102 0.975 0.225 0 -4103 0.975 0.25 0 -4104 1 0 0 -4105 1 0.025 0 -4106 1 0.05 0 -4107 1 0.075 0 -4108 1 0.1 0 -4109 1 0.125 0 -4110 1 0.15 0 -4111 1 0.175 0 -4112 1 0.2 0 -4113 1 0.225 0 -4114 1 0.25 0 -4115 1 0 0 -4116 1 0 0.025 -4117 1 0 0.05 -4118 1 0 0.075 -4119 1 0 0.1 -4120 1 0 0.125 -4121 1 0 0.15 -4122 1 0 0.175 -4123 1 0 0.2 -4124 1 0 0.225 -4125 1 0 0.25 -4126 1 0.025 0 -4127 1 0.025 0.025 -4128 1 0.025 0.05 -4129 1 0.025 0.075 -4130 1 0.025 0.1 -4131 1 0.025 0.125 -4132 1 0.025 0.15 -4133 1 0.025 0.175 -4134 1 0.025 0.2 -4135 1 0.025 0.225 -4136 1 0.025 0.25 -4137 1 0.05 0 -4138 1 0.05 0.025 -4139 1 0.05 0.05 -4140 1 0.05 0.075 -4141 1 0.05 0.1 -4142 1 0.05 0.125 -4143 1 0.05 0.15 -4144 1 0.05 0.175 -4145 1 0.05 0.2 -4146 1 0.05 0.225 -4147 1 0.05 0.25 -4148 1 0.075 0 -4149 1 0.075 0.025 -4150 1 0.075 0.05 -4151 1 0.075 0.075 -4152 1 0.075 0.1 -4153 1 0.075 0.125 -4154 1 0.075 0.15 -4155 1 0.075 0.175 -4156 1 0.075 0.2 -4157 1 0.075 0.225 -4158 1 0.075 0.25 -4159 1 0.1 0 -4160 1 0.1 0.025 -4161 1 0.1 0.05 -4162 1 0.1 0.075 -4163 1 0.1 0.1 -4164 1 0.1 0.125 -4165 1 0.1 0.15 -4166 1 0.1 0.175 -4167 1 0.1 0.2 -4168 1 0.1 0.225 -4169 1 0.1 0.25 -4170 1 0.125 0 -4171 1 0.125 0.025 -4172 1 0.125 0.05 -4173 1 0.125 0.075 -4174 1 0.125 0.1 -4175 1 0.125 0.125 -4176 1 0.125 0.15 -4177 1 0.125 0.175 -4178 1 0.125 0.2 -4179 1 0.125 0.225 -4180 1 0.125 0.25 -4181 1 0.15 0 -4182 1 0.15 0.025 -4183 1 0.15 0.05 -4184 1 0.15 0.075 -4185 1 0.15 0.1 -4186 1 0.15 0.125 -4187 1 0.15 0.15 -4188 1 0.15 0.175 -4189 1 0.15 0.2 -4190 1 0.15 0.225 -4191 1 0.15 0.25 -4192 1 0.175 0 -4193 1 0.175 0.025 -4194 1 0.175 0.05 -4195 1 0.175 0.075 -4196 1 0.175 0.1 -4197 1 0.175 0.125 -4198 1 0.175 0.15 -4199 1 0.175 0.175 -4200 1 0.175 0.2 -4201 1 0.175 0.225 -4202 1 0.175 0.25 -4203 1 0.2 0 -4204 1 0.2 0.025 -4205 1 0.2 0.05 -4206 1 0.2 0.075 -4207 1 0.2 0.1 -4208 1 0.2 0.125 -4209 1 0.2 0.15 -4210 1 0.2 0.175 -4211 1 0.2 0.2 -4212 1 0.2 0.225 -4213 1 0.2 0.25 -4214 1 0.225 0 -4215 1 0.225 0.025 -4216 1 0.225 0.05 -4217 1 0.225 0.075 -4218 1 0.225 0.1 -4219 1 0.225 0.125 -4220 1 0.225 0.15 -4221 1 0.225 0.175 -4222 1 0.225 0.2 -4223 1 0.225 0.225 -4224 1 0.225 0.25 -4225 1 0.25 0 -4226 1 0.25 0.025 -4227 1 0.25 0.05 -4228 1 0.25 0.075 -4229 1 0.25 0.1 -4230 1 0.25 0.125 -4231 1 0.25 0.15 -4232 1 0.25 0.175 -4233 1 0.25 0.2 -4234 1 0.25 0.225 -4235 1 0.25 0.25 -4236 0.75 0 0.25 -4237 0.75 0 0.275 -4238 0.75 0 0.3 -4239 0.75 0 0.325 -4240 0.75 0 0.35 -4241 0.75 0 0.375 -4242 0.75 0 0.4 -4243 0.75 0 0.425 -4244 0.75 0 0.45 -4245 0.75 0 0.475 -4246 0.75 0 0.5 -4247 0.775 0 0.25 -4248 0.775 0 0.275 -4249 0.775 0 0.3 -4250 0.775 0 0.325 -4251 0.775 0 0.35 -4252 0.775 0 0.375 -4253 0.775 0 0.4 -4254 0.775 0 0.425 -4255 0.775 0 0.45 -4256 0.775 0 0.475 -4257 0.775 0 0.5 -4258 0.8 0 0.25 -4259 0.8 0 0.275 -4260 0.8 0 0.3 -4261 0.8 0 0.325 -4262 0.8 0 0.35 -4263 0.8 0 0.375 -4264 0.8 0 0.4 -4265 0.8 0 0.425 -4266 0.8 0 0.45 -4267 0.8 0 0.475 -4268 0.8 0 0.5 -4269 0.825 0 0.25 -4270 0.825 0 0.275 -4271 0.825 0 0.3 -4272 0.825 0 0.325 -4273 0.825 0 0.35 -4274 0.825 0 0.375 -4275 0.825 0 0.4 -4276 0.825 0 0.425 -4277 0.825 0 0.45 -4278 0.825 0 0.475 -4279 0.825 0 0.5 -4280 0.85 0 0.25 -4281 0.85 0 0.275 -4282 0.85 0 0.3 -4283 0.85 0 0.325 -4284 0.85 0 0.35 -4285 0.85 0 0.375 -4286 0.85 0 0.4 -4287 0.85 0 0.425 -4288 0.85 0 0.45 -4289 0.85 0 0.475 -4290 0.85 0 0.5 -4291 0.875 0 0.25 -4292 0.875 0 0.275 -4293 0.875 0 0.3 -4294 0.875 0 0.325 -4295 0.875 0 0.35 -4296 0.875 0 0.375 -4297 0.875 0 0.4 -4298 0.875 0 0.425 -4299 0.875 0 0.45 -4300 0.875 0 0.475 -4301 0.875 0 0.5 -4302 0.9 0 0.25 -4303 0.9 0 0.275 -4304 0.9 0 0.3 -4305 0.9 0 0.325 -4306 0.9 0 0.35 -4307 0.9 0 0.375 -4308 0.9 0 0.4 -4309 0.9 0 0.425 -4310 0.9 0 0.45 -4311 0.9 0 0.475 -4312 0.9 0 0.5 -4313 0.925 0 0.25 -4314 0.925 0 0.275 -4315 0.925 0 0.3 -4316 0.925 0 0.325 -4317 0.925 0 0.35 -4318 0.925 0 0.375 -4319 0.925 0 0.4 -4320 0.925 0 0.425 -4321 0.925 0 0.45 -4322 0.925 0 0.475 -4323 0.925 0 0.5 -4324 0.95 0 0.25 -4325 0.95 0 0.275 -4326 0.95 0 0.3 -4327 0.95 0 0.325 -4328 0.95 0 0.35 -4329 0.95 0 0.375 -4330 0.95 0 0.4 -4331 0.95 0 0.425 -4332 0.95 0 0.45 -4333 0.95 0 0.475 -4334 0.95 0 0.5 -4335 0.975 0 0.25 -4336 0.975 0 0.275 -4337 0.975 0 0.3 -4338 0.975 0 0.325 -4339 0.975 0 0.35 -4340 0.975 0 0.375 -4341 0.975 0 0.4 -4342 0.975 0 0.425 -4343 0.975 0 0.45 -4344 0.975 0 0.475 -4345 0.975 0 0.5 -4346 1 0 0.25 -4347 1 0 0.275 -4348 1 0 0.3 -4349 1 0 0.325 -4350 1 0 0.35 -4351 1 0 0.375 -4352 1 0 0.4 -4353 1 0 0.425 -4354 1 0 0.45 -4355 1 0 0.475 -4356 1 0 0.5 -4357 1 0 0.25 -4358 1 0 0.275 -4359 1 0 0.3 -4360 1 0 0.325 -4361 1 0 0.35 -4362 1 0 0.375 -4363 1 0 0.4 -4364 1 0 0.425 -4365 1 0 0.45 -4366 1 0 0.475 -4367 1 0 0.5 -4368 1 0.025 0.25 -4369 1 0.025 0.275 -4370 1 0.025 0.3 -4371 1 0.025 0.325 -4372 1 0.025 0.35 -4373 1 0.025 0.375 -4374 1 0.025 0.4 -4375 1 0.025 0.425 -4376 1 0.025 0.45 -4377 1 0.025 0.475 -4378 1 0.025 0.5 -4379 1 0.05 0.25 -4380 1 0.05 0.275 -4381 1 0.05 0.3 -4382 1 0.05 0.325 -4383 1 0.05 0.35 -4384 1 0.05 0.375 -4385 1 0.05 0.4 -4386 1 0.05 0.425 -4387 1 0.05 0.45 -4388 1 0.05 0.475 -4389 1 0.05 0.5 -4390 1 0.075 0.25 -4391 1 0.075 0.275 -4392 1 0.075 0.3 -4393 1 0.075 0.325 -4394 1 0.075 0.35 -4395 1 0.075 0.375 -4396 1 0.075 0.4 -4397 1 0.075 0.425 -4398 1 0.075 0.45 -4399 1 0.075 0.475 -4400 1 0.075 0.5 -4401 1 0.1 0.25 -4402 1 0.1 0.275 -4403 1 0.1 0.3 -4404 1 0.1 0.325 -4405 1 0.1 0.35 -4406 1 0.1 0.375 -4407 1 0.1 0.4 -4408 1 0.1 0.425 -4409 1 0.1 0.45 -4410 1 0.1 0.475 -4411 1 0.1 0.5 -4412 1 0.125 0.25 -4413 1 0.125 0.275 -4414 1 0.125 0.3 -4415 1 0.125 0.325 -4416 1 0.125 0.35 -4417 1 0.125 0.375 -4418 1 0.125 0.4 -4419 1 0.125 0.425 -4420 1 0.125 0.45 -4421 1 0.125 0.475 -4422 1 0.125 0.5 -4423 1 0.15 0.25 -4424 1 0.15 0.275 -4425 1 0.15 0.3 -4426 1 0.15 0.325 -4427 1 0.15 0.35 -4428 1 0.15 0.375 -4429 1 0.15 0.4 -4430 1 0.15 0.425 -4431 1 0.15 0.45 -4432 1 0.15 0.475 -4433 1 0.15 0.5 -4434 1 0.175 0.25 -4435 1 0.175 0.275 -4436 1 0.175 0.3 -4437 1 0.175 0.325 -4438 1 0.175 0.35 -4439 1 0.175 0.375 -4440 1 0.175 0.4 -4441 1 0.175 0.425 -4442 1 0.175 0.45 -4443 1 0.175 0.475 -4444 1 0.175 0.5 -4445 1 0.2 0.25 -4446 1 0.2 0.275 -4447 1 0.2 0.3 -4448 1 0.2 0.325 -4449 1 0.2 0.35 -4450 1 0.2 0.375 -4451 1 0.2 0.4 -4452 1 0.2 0.425 -4453 1 0.2 0.45 -4454 1 0.2 0.475 -4455 1 0.2 0.5 -4456 1 0.225 0.25 -4457 1 0.225 0.275 -4458 1 0.225 0.3 -4459 1 0.225 0.325 -4460 1 0.225 0.35 -4461 1 0.225 0.375 -4462 1 0.225 0.4 -4463 1 0.225 0.425 -4464 1 0.225 0.45 -4465 1 0.225 0.475 -4466 1 0.225 0.5 -4467 1 0.25 0.25 -4468 1 0.25 0.275 -4469 1 0.25 0.3 -4470 1 0.25 0.325 -4471 1 0.25 0.35 -4472 1 0.25 0.375 -4473 1 0.25 0.4 -4474 1 0.25 0.425 -4475 1 0.25 0.45 -4476 1 0.25 0.475 -4477 1 0.25 0.5 -4478 0.5 0 0.25 -4479 0.5 0 0.275 -4480 0.5 0 0.3 -4481 0.5 0 0.325 -4482 0.5 0 0.35 -4483 0.5 0 0.375 -4484 0.5 0 0.4 -4485 0.5 0 0.425 -4486 0.5 0 0.45 -4487 0.5 0 0.475 -4488 0.5 0 0.5 -4489 0.525 0 0.25 -4490 0.525 0 0.275 -4491 0.525 0 0.3 -4492 0.525 0 0.325 -4493 0.525 0 0.35 -4494 0.525 0 0.375 -4495 0.525 0 0.4 -4496 0.525 0 0.425 -4497 0.525 0 0.45 -4498 0.525 0 0.475 -4499 0.525 0 0.5 -4500 0.55 0 0.25 -4501 0.55 0 0.275 -4502 0.55 0 0.3 -4503 0.55 0 0.325 -4504 0.55 0 0.35 -4505 0.55 0 0.375 -4506 0.55 0 0.4 -4507 0.55 0 0.425 -4508 0.55 0 0.45 -4509 0.55 0 0.475 -4510 0.55 0 0.5 -4511 0.575 0 0.25 -4512 0.575 0 0.275 -4513 0.575 0 0.3 -4514 0.575 0 0.325 -4515 0.575 0 0.35 -4516 0.575 0 0.375 -4517 0.575 0 0.4 -4518 0.575 0 0.425 -4519 0.575 0 0.45 -4520 0.575 0 0.475 -4521 0.575 0 0.5 -4522 0.6 0 0.25 -4523 0.6 0 0.275 -4524 0.6 0 0.3 -4525 0.6 0 0.325 -4526 0.6 0 0.35 -4527 0.6 0 0.375 -4528 0.6 0 0.4 -4529 0.6 0 0.425 -4530 0.6 0 0.45 -4531 0.6 0 0.475 -4532 0.6 0 0.5 -4533 0.625 0 0.25 -4534 0.625 0 0.275 -4535 0.625 0 0.3 -4536 0.625 0 0.325 -4537 0.625 0 0.35 -4538 0.625 0 0.375 -4539 0.625 0 0.4 -4540 0.625 0 0.425 -4541 0.625 0 0.45 -4542 0.625 0 0.475 -4543 0.625 0 0.5 -4544 0.65 0 0.25 -4545 0.65 0 0.275 -4546 0.65 0 0.3 -4547 0.65 0 0.325 -4548 0.65 0 0.35 -4549 0.65 0 0.375 -4550 0.65 0 0.4 -4551 0.65 0 0.425 -4552 0.65 0 0.45 -4553 0.65 0 0.475 -4554 0.65 0 0.5 -4555 0.675 0 0.25 -4556 0.675 0 0.275 -4557 0.675 0 0.3 -4558 0.675 0 0.325 -4559 0.675 0 0.35 -4560 0.675 0 0.375 -4561 0.675 0 0.4 -4562 0.675 0 0.425 -4563 0.675 0 0.45 -4564 0.675 0 0.475 -4565 0.675 0 0.5 -4566 0.7 0 0.25 -4567 0.7 0 0.275 -4568 0.7 0 0.3 -4569 0.7 0 0.325 -4570 0.7 0 0.35 -4571 0.7 0 0.375 -4572 0.7 0 0.4 -4573 0.7 0 0.425 -4574 0.7 0 0.45 -4575 0.7 0 0.475 -4576 0.7 0 0.5 -4577 0.725 0 0.25 -4578 0.725 0 0.275 -4579 0.725 0 0.3 -4580 0.725 0 0.325 -4581 0.725 0 0.35 -4582 0.725 0 0.375 -4583 0.725 0 0.4 -4584 0.725 0 0.425 -4585 0.725 0 0.45 -4586 0.725 0 0.475 -4587 0.725 0 0.5 -4588 0.75 0 0.25 -4589 0.75 0 0.275 -4590 0.75 0 0.3 -4591 0.75 0 0.325 -4592 0.75 0 0.35 -4593 0.75 0 0.375 -4594 0.75 0 0.4 -4595 0.75 0 0.425 -4596 0.75 0 0.45 -4597 0.75 0 0.475 -4598 0.75 0 0.5 -4599 0.5 0.25 0 -4600 0.5 0.275 0 -4601 0.5 0.3 0 -4602 0.5 0.325 0 -4603 0.5 0.35 0 -4604 0.5 0.375 0 -4605 0.5 0.4 0 -4606 0.5 0.425 0 -4607 0.5 0.45 0 -4608 0.5 0.475 0 -4609 0.5 0.5 0 -4610 0.525 0.25 0 -4611 0.525 0.275 0 -4612 0.525 0.3 0 -4613 0.525 0.325 0 -4614 0.525 0.35 0 -4615 0.525 0.375 0 -4616 0.525 0.4 0 -4617 0.525 0.425 0 -4618 0.525 0.45 0 -4619 0.525 0.475 0 -4620 0.525 0.5 0 -4621 0.55 0.25 0 -4622 0.55 0.275 0 -4623 0.55 0.3 0 -4624 0.55 0.325 0 -4625 0.55 0.35 0 -4626 0.55 0.375 0 -4627 0.55 0.4 0 -4628 0.55 0.425 0 -4629 0.55 0.45 0 -4630 0.55 0.475 0 -4631 0.55 0.5 0 -4632 0.575 0.25 0 -4633 0.575 0.275 0 -4634 0.575 0.3 0 -4635 0.575 0.325 0 -4636 0.575 0.35 0 -4637 0.575 0.375 0 -4638 0.575 0.4 0 -4639 0.575 0.425 0 -4640 0.575 0.45 0 -4641 0.575 0.475 0 -4642 0.575 0.5 0 -4643 0.6 0.25 0 -4644 0.6 0.275 0 -4645 0.6 0.3 0 -4646 0.6 0.325 0 -4647 0.6 0.35 0 -4648 0.6 0.375 0 -4649 0.6 0.4 0 -4650 0.6 0.425 0 -4651 0.6 0.45 0 -4652 0.6 0.475 0 -4653 0.6 0.5 0 -4654 0.625 0.25 0 -4655 0.625 0.275 0 -4656 0.625 0.3 0 -4657 0.625 0.325 0 -4658 0.625 0.35 0 -4659 0.625 0.375 0 -4660 0.625 0.4 0 -4661 0.625 0.425 0 -4662 0.625 0.45 0 -4663 0.625 0.475 0 -4664 0.625 0.5 0 -4665 0.65 0.25 0 -4666 0.65 0.275 0 -4667 0.65 0.3 0 -4668 0.65 0.325 0 -4669 0.65 0.35 0 -4670 0.65 0.375 0 -4671 0.65 0.4 0 -4672 0.65 0.425 0 -4673 0.65 0.45 0 -4674 0.65 0.475 0 -4675 0.65 0.5 0 -4676 0.675 0.25 0 -4677 0.675 0.275 0 -4678 0.675 0.3 0 -4679 0.675 0.325 0 -4680 0.675 0.35 0 -4681 0.675 0.375 0 -4682 0.675 0.4 0 -4683 0.675 0.425 0 -4684 0.675 0.45 0 -4685 0.675 0.475 0 -4686 0.675 0.5 0 -4687 0.7 0.25 0 -4688 0.7 0.275 0 -4689 0.7 0.3 0 -4690 0.7 0.325 0 -4691 0.7 0.35 0 -4692 0.7 0.375 0 -4693 0.7 0.4 0 -4694 0.7 0.425 0 -4695 0.7 0.45 0 -4696 0.7 0.475 0 -4697 0.7 0.5 0 -4698 0.725 0.25 0 -4699 0.725 0.275 0 -4700 0.725 0.3 0 -4701 0.725 0.325 0 -4702 0.725 0.35 0 -4703 0.725 0.375 0 -4704 0.725 0.4 0 -4705 0.725 0.425 0 -4706 0.725 0.45 0 -4707 0.725 0.475 0 -4708 0.725 0.5 0 -4709 0.75 0.25 0 -4710 0.75 0.275 0 -4711 0.75 0.3 0 -4712 0.75 0.325 0 -4713 0.75 0.35 0 -4714 0.75 0.375 0 -4715 0.75 0.4 0 -4716 0.75 0.425 0 -4717 0.75 0.45 0 -4718 0.75 0.475 0 -4719 0.75 0.5 0 -4720 0.75 0.25 0 -4721 0.75 0.275 0 -4722 0.75 0.3 0 -4723 0.75 0.325 0 -4724 0.75 0.35 0 -4725 0.75 0.375 0 -4726 0.75 0.4 0 -4727 0.75 0.425 0 -4728 0.75 0.45 0 -4729 0.75 0.475 0 -4730 0.75 0.5 0 -4731 0.775 0.25 0 -4732 0.775 0.275 0 -4733 0.775 0.3 0 -4734 0.775 0.325 0 -4735 0.775 0.35 0 -4736 0.775 0.375 0 -4737 0.775 0.4 0 -4738 0.775 0.425 0 -4739 0.775 0.45 0 -4740 0.775 0.475 0 -4741 0.775 0.5 0 -4742 0.8 0.25 0 -4743 0.8 0.275 0 -4744 0.8 0.3 0 -4745 0.8 0.325 0 -4746 0.8 0.35 0 -4747 0.8 0.375 0 -4748 0.8 0.4 0 -4749 0.8 0.425 0 -4750 0.8 0.45 0 -4751 0.8 0.475 0 -4752 0.8 0.5 0 -4753 0.825 0.25 0 -4754 0.825 0.275 0 -4755 0.825 0.3 0 -4756 0.825 0.325 0 -4757 0.825 0.35 0 -4758 0.825 0.375 0 -4759 0.825 0.4 0 -4760 0.825 0.425 0 -4761 0.825 0.45 0 -4762 0.825 0.475 0 -4763 0.825 0.5 0 -4764 0.85 0.25 0 -4765 0.85 0.275 0 -4766 0.85 0.3 0 -4767 0.85 0.325 0 -4768 0.85 0.35 0 -4769 0.85 0.375 0 -4770 0.85 0.4 0 -4771 0.85 0.425 0 -4772 0.85 0.45 0 -4773 0.85 0.475 0 -4774 0.85 0.5 0 -4775 0.875 0.25 0 -4776 0.875 0.275 0 -4777 0.875 0.3 0 -4778 0.875 0.325 0 -4779 0.875 0.35 0 -4780 0.875 0.375 0 -4781 0.875 0.4 0 -4782 0.875 0.425 0 -4783 0.875 0.45 0 -4784 0.875 0.475 0 -4785 0.875 0.5 0 -4786 0.9 0.25 0 -4787 0.9 0.275 0 -4788 0.9 0.3 0 -4789 0.9 0.325 0 -4790 0.9 0.35 0 -4791 0.9 0.375 0 -4792 0.9 0.4 0 -4793 0.9 0.425 0 -4794 0.9 0.45 0 -4795 0.9 0.475 0 -4796 0.9 0.5 0 -4797 0.925 0.25 0 -4798 0.925 0.275 0 -4799 0.925 0.3 0 -4800 0.925 0.325 0 -4801 0.925 0.35 0 -4802 0.925 0.375 0 -4803 0.925 0.4 0 -4804 0.925 0.425 0 -4805 0.925 0.45 0 -4806 0.925 0.475 0 -4807 0.925 0.5 0 -4808 0.95 0.25 0 -4809 0.95 0.275 0 -4810 0.95 0.3 0 -4811 0.95 0.325 0 -4812 0.95 0.35 0 -4813 0.95 0.375 0 -4814 0.95 0.4 0 -4815 0.95 0.425 0 -4816 0.95 0.45 0 -4817 0.95 0.475 0 -4818 0.95 0.5 0 -4819 0.975 0.25 0 -4820 0.975 0.275 0 -4821 0.975 0.3 0 -4822 0.975 0.325 0 -4823 0.975 0.35 0 -4824 0.975 0.375 0 -4825 0.975 0.4 0 -4826 0.975 0.425 0 -4827 0.975 0.45 0 -4828 0.975 0.475 0 -4829 0.975 0.5 0 -4830 1 0.25 0 -4831 1 0.275 0 -4832 1 0.3 0 -4833 1 0.325 0 -4834 1 0.35 0 -4835 1 0.375 0 -4836 1 0.4 0 -4837 1 0.425 0 -4838 1 0.45 0 -4839 1 0.475 0 -4840 1 0.5 0 -4841 1 0.25 0 -4842 1 0.25 0.025 -4843 1 0.25 0.05 -4844 1 0.25 0.075 -4845 1 0.25 0.1 -4846 1 0.25 0.125 -4847 1 0.25 0.15 -4848 1 0.25 0.175 -4849 1 0.25 0.2 -4850 1 0.25 0.225 -4851 1 0.25 0.25 -4852 1 0.275 0 -4853 1 0.275 0.025 -4854 1 0.275 0.05 -4855 1 0.275 0.075 -4856 1 0.275 0.1 -4857 1 0.275 0.125 -4858 1 0.275 0.15 -4859 1 0.275 0.175 -4860 1 0.275 0.2 -4861 1 0.275 0.225 -4862 1 0.275 0.25 -4863 1 0.3 0 -4864 1 0.3 0.025 -4865 1 0.3 0.05 -4866 1 0.3 0.075 -4867 1 0.3 0.1 -4868 1 0.3 0.125 -4869 1 0.3 0.15 -4870 1 0.3 0.175 -4871 1 0.3 0.2 -4872 1 0.3 0.225 -4873 1 0.3 0.25 -4874 1 0.325 0 -4875 1 0.325 0.025 -4876 1 0.325 0.05 -4877 1 0.325 0.075 -4878 1 0.325 0.1 -4879 1 0.325 0.125 -4880 1 0.325 0.15 -4881 1 0.325 0.175 -4882 1 0.325 0.2 -4883 1 0.325 0.225 -4884 1 0.325 0.25 -4885 1 0.35 0 -4886 1 0.35 0.025 -4887 1 0.35 0.05 -4888 1 0.35 0.075 -4889 1 0.35 0.1 -4890 1 0.35 0.125 -4891 1 0.35 0.15 -4892 1 0.35 0.175 -4893 1 0.35 0.2 -4894 1 0.35 0.225 -4895 1 0.35 0.25 -4896 1 0.375 0 -4897 1 0.375 0.025 -4898 1 0.375 0.05 -4899 1 0.375 0.075 -4900 1 0.375 0.1 -4901 1 0.375 0.125 -4902 1 0.375 0.15 -4903 1 0.375 0.175 -4904 1 0.375 0.2 -4905 1 0.375 0.225 -4906 1 0.375 0.25 -4907 1 0.4 0 -4908 1 0.4 0.025 -4909 1 0.4 0.05 -4910 1 0.4 0.075 -4911 1 0.4 0.1 -4912 1 0.4 0.125 -4913 1 0.4 0.15 -4914 1 0.4 0.175 -4915 1 0.4 0.2 -4916 1 0.4 0.225 -4917 1 0.4 0.25 -4918 1 0.425 0 -4919 1 0.425 0.025 -4920 1 0.425 0.05 -4921 1 0.425 0.075 -4922 1 0.425 0.1 -4923 1 0.425 0.125 -4924 1 0.425 0.15 -4925 1 0.425 0.175 -4926 1 0.425 0.2 -4927 1 0.425 0.225 -4928 1 0.425 0.25 -4929 1 0.45 0 -4930 1 0.45 0.025 -4931 1 0.45 0.05 -4932 1 0.45 0.075 -4933 1 0.45 0.1 -4934 1 0.45 0.125 -4935 1 0.45 0.15 -4936 1 0.45 0.175 -4937 1 0.45 0.2 -4938 1 0.45 0.225 -4939 1 0.45 0.25 -4940 1 0.475 0 -4941 1 0.475 0.025 -4942 1 0.475 0.05 -4943 1 0.475 0.075 -4944 1 0.475 0.1 -4945 1 0.475 0.125 -4946 1 0.475 0.15 -4947 1 0.475 0.175 -4948 1 0.475 0.2 -4949 1 0.475 0.225 -4950 1 0.475 0.25 -4951 1 0.5 0 -4952 1 0.5 0.025 -4953 1 0.5 0.05 -4954 1 0.5 0.075 -4955 1 0.5 0.1 -4956 1 0.5 0.125 -4957 1 0.5 0.15 -4958 1 0.5 0.175 -4959 1 0.5 0.2 -4960 1 0.5 0.225 -4961 1 0.5 0.25 -4962 1 0.25 0.25 -4963 1 0.25 0.275 -4964 1 0.25 0.3 -4965 1 0.25 0.325 -4966 1 0.25 0.35 -4967 1 0.25 0.375 -4968 1 0.25 0.4 -4969 1 0.25 0.425 -4970 1 0.25 0.45 -4971 1 0.25 0.475 -4972 1 0.25 0.5 -4973 1 0.275 0.25 -4974 1 0.275 0.275 -4975 1 0.275 0.3 -4976 1 0.275 0.325 -4977 1 0.275 0.35 -4978 1 0.275 0.375 -4979 1 0.275 0.4 -4980 1 0.275 0.425 -4981 1 0.275 0.45 -4982 1 0.275 0.475 -4983 1 0.275 0.5 -4984 1 0.3 0.25 -4985 1 0.3 0.275 -4986 1 0.3 0.3 -4987 1 0.3 0.325 -4988 1 0.3 0.35 -4989 1 0.3 0.375 -4990 1 0.3 0.4 -4991 1 0.3 0.425 -4992 1 0.3 0.45 -4993 1 0.3 0.475 -4994 1 0.3 0.5 -4995 1 0.325 0.25 -4996 1 0.325 0.275 -4997 1 0.325 0.3 -4998 1 0.325 0.325 -4999 1 0.325 0.35 -5000 1 0.325 0.375 -5001 1 0.325 0.4 -5002 1 0.325 0.425 -5003 1 0.325 0.45 -5004 1 0.325 0.475 -5005 1 0.325 0.5 -5006 1 0.35 0.25 -5007 1 0.35 0.275 -5008 1 0.35 0.3 -5009 1 0.35 0.325 -5010 1 0.35 0.35 -5011 1 0.35 0.375 -5012 1 0.35 0.4 -5013 1 0.35 0.425 -5014 1 0.35 0.45 -5015 1 0.35 0.475 -5016 1 0.35 0.5 -5017 1 0.375 0.25 -5018 1 0.375 0.275 -5019 1 0.375 0.3 -5020 1 0.375 0.325 -5021 1 0.375 0.35 -5022 1 0.375 0.375 -5023 1 0.375 0.4 -5024 1 0.375 0.425 -5025 1 0.375 0.45 -5026 1 0.375 0.475 -5027 1 0.375 0.5 -5028 1 0.4 0.25 -5029 1 0.4 0.275 -5030 1 0.4 0.3 -5031 1 0.4 0.325 -5032 1 0.4 0.35 -5033 1 0.4 0.375 -5034 1 0.4 0.4 -5035 1 0.4 0.425 -5036 1 0.4 0.45 -5037 1 0.4 0.475 -5038 1 0.4 0.5 -5039 1 0.425 0.25 -5040 1 0.425 0.275 -5041 1 0.425 0.3 -5042 1 0.425 0.325 -5043 1 0.425 0.35 -5044 1 0.425 0.375 -5045 1 0.425 0.4 -5046 1 0.425 0.425 -5047 1 0.425 0.45 -5048 1 0.425 0.475 -5049 1 0.425 0.5 -5050 1 0.45 0.25 -5051 1 0.45 0.275 -5052 1 0.45 0.3 -5053 1 0.45 0.325 -5054 1 0.45 0.35 -5055 1 0.45 0.375 -5056 1 0.45 0.4 -5057 1 0.45 0.425 -5058 1 0.45 0.45 -5059 1 0.45 0.475 -5060 1 0.45 0.5 -5061 1 0.475 0.25 -5062 1 0.475 0.275 -5063 1 0.475 0.3 -5064 1 0.475 0.325 -5065 1 0.475 0.35 -5066 1 0.475 0.375 -5067 1 0.475 0.4 -5068 1 0.475 0.425 -5069 1 0.475 0.45 -5070 1 0.475 0.475 -5071 1 0.475 0.5 -5072 1 0.5 0.25 -5073 1 0.5 0.275 -5074 1 0.5 0.3 -5075 1 0.5 0.325 -5076 1 0.5 0.35 -5077 1 0.5 0.375 -5078 1 0.5 0.4 -5079 1 0.5 0.425 -5080 1 0.5 0.45 -5081 1 0.5 0.475 -5082 1 0.5 0.5 -1 0 quad 1 12 13 2 -2 0 quad 2 13 14 3 -3 0 quad 3 14 15 4 -4 0 quad 4 15 16 5 -5 0 quad 5 16 17 6 -6 0 quad 6 17 18 7 -7 0 quad 7 18 19 8 -8 0 quad 8 19 20 9 -9 0 quad 9 20 21 10 -10 0 quad 10 21 22 11 -11 0 quad 12 23 24 13 -12 0 quad 13 24 25 14 -13 0 quad 14 25 26 15 -14 0 quad 15 26 27 16 -15 0 quad 16 27 28 17 -16 0 quad 17 28 29 18 -17 0 quad 18 29 30 19 -18 0 quad 19 30 31 20 -19 0 quad 20 31 32 21 -20 0 quad 21 32 33 22 -21 0 quad 23 34 35 24 -22 0 quad 24 35 36 25 -23 0 quad 25 36 37 26 -24 0 quad 26 37 38 27 -25 0 quad 27 38 39 28 -26 0 quad 28 39 40 29 -27 0 quad 29 40 41 30 -28 0 quad 30 41 42 31 -29 0 quad 31 42 43 32 -30 0 quad 32 43 44 33 -31 0 quad 34 45 46 35 -32 0 quad 35 46 47 36 -33 0 quad 36 47 48 37 -34 0 quad 37 48 49 38 -35 0 quad 38 49 50 39 -36 0 quad 39 50 51 40 -37 0 quad 40 51 52 41 -38 0 quad 41 52 53 42 -39 0 quad 42 53 54 43 -40 0 quad 43 54 55 44 -41 0 quad 45 56 57 46 -42 0 quad 46 57 58 47 -43 0 quad 47 58 59 48 -44 0 quad 48 59 60 49 -45 0 quad 49 60 61 50 -46 0 quad 50 61 62 51 -47 0 quad 51 62 63 52 -48 0 quad 52 63 64 53 -49 0 quad 53 64 65 54 -50 0 quad 54 65 66 55 -51 0 quad 56 67 68 57 -52 0 quad 57 68 69 58 -53 0 quad 58 69 70 59 -54 0 quad 59 70 71 60 -55 0 quad 60 71 72 61 -56 0 quad 61 72 73 62 -57 0 quad 62 73 74 63 -58 0 quad 63 74 75 64 -59 0 quad 64 75 76 65 -60 0 quad 65 76 77 66 -61 0 quad 67 78 79 68 -62 0 quad 68 79 80 69 -63 0 quad 69 80 81 70 -64 0 quad 70 81 82 71 -65 0 quad 71 82 83 72 -66 0 quad 72 83 84 73 -67 0 quad 73 84 85 74 -68 0 quad 74 85 86 75 -69 0 quad 75 86 87 76 -70 0 quad 76 87 88 77 -71 0 quad 78 89 90 79 -72 0 quad 79 90 91 80 -73 0 quad 80 91 92 81 -74 0 quad 81 92 93 82 -75 0 quad 82 93 94 83 -76 0 quad 83 94 95 84 -77 0 quad 84 95 96 85 -78 0 quad 85 96 97 86 -79 0 quad 86 97 98 87 -80 0 quad 87 98 99 88 -81 0 quad 89 100 101 90 -82 0 quad 90 101 102 91 -83 0 quad 91 102 103 92 -84 0 quad 92 103 104 93 -85 0 quad 93 104 105 94 -86 0 quad 94 105 106 95 -87 0 quad 95 106 107 96 -88 0 quad 96 107 108 97 -89 0 quad 97 108 109 98 -90 0 quad 98 109 110 99 -91 0 quad 100 111 112 101 -92 0 quad 101 112 113 102 -93 0 quad 102 113 114 103 -94 0 quad 103 114 115 104 -95 0 quad 104 115 116 105 -96 0 quad 105 116 117 106 -97 0 quad 106 117 118 107 -98 0 quad 107 118 119 108 -99 0 quad 108 119 120 109 -100 0 quad 109 120 121 110 -101 0 quad 122 133 134 123 -102 0 quad 123 134 135 124 -103 0 quad 124 135 136 125 -104 0 quad 125 136 137 126 -105 0 quad 126 137 138 127 -106 0 quad 127 138 139 128 -107 0 quad 128 139 140 129 -108 0 quad 129 140 141 130 -109 0 quad 130 141 142 131 -110 0 quad 131 142 143 132 -111 0 quad 133 144 145 134 -112 0 quad 134 145 146 135 -113 0 quad 135 146 147 136 -114 0 quad 136 147 148 137 -115 0 quad 137 148 149 138 -116 0 quad 138 149 150 139 -117 0 quad 139 150 151 140 -118 0 quad 140 151 152 141 -119 0 quad 141 152 153 142 -120 0 quad 142 153 154 143 -121 0 quad 144 155 156 145 -122 0 quad 145 156 157 146 -123 0 quad 146 157 158 147 -124 0 quad 147 158 159 148 -125 0 quad 148 159 160 149 -126 0 quad 149 160 161 150 -127 0 quad 150 161 162 151 -128 0 quad 151 162 163 152 -129 0 quad 152 163 164 153 -130 0 quad 153 164 165 154 -131 0 quad 155 166 167 156 -132 0 quad 156 167 168 157 -133 0 quad 157 168 169 158 -134 0 quad 158 169 170 159 -135 0 quad 159 170 171 160 -136 0 quad 160 171 172 161 -137 0 quad 161 172 173 162 -138 0 quad 162 173 174 163 -139 0 quad 163 174 175 164 -140 0 quad 164 175 176 165 -141 0 quad 166 177 178 167 -142 0 quad 167 178 179 168 -143 0 quad 168 179 180 169 -144 0 quad 169 180 181 170 -145 0 quad 170 181 182 171 -146 0 quad 171 182 183 172 -147 0 quad 172 183 184 173 -148 0 quad 173 184 185 174 -149 0 quad 174 185 186 175 -150 0 quad 175 186 187 176 -151 0 quad 177 188 189 178 -152 0 quad 178 189 190 179 -153 0 quad 179 190 191 180 -154 0 quad 180 191 192 181 -155 0 quad 181 192 193 182 -156 0 quad 182 193 194 183 -157 0 quad 183 194 195 184 -158 0 quad 184 195 196 185 -159 0 quad 185 196 197 186 -160 0 quad 186 197 198 187 -161 0 quad 188 199 200 189 -162 0 quad 189 200 201 190 -163 0 quad 190 201 202 191 -164 0 quad 191 202 203 192 -165 0 quad 192 203 204 193 -166 0 quad 193 204 205 194 -167 0 quad 194 205 206 195 -168 0 quad 195 206 207 196 -169 0 quad 196 207 208 197 -170 0 quad 197 208 209 198 -171 0 quad 199 210 211 200 -172 0 quad 200 211 212 201 -173 0 quad 201 212 213 202 -174 0 quad 202 213 214 203 -175 0 quad 203 214 215 204 -176 0 quad 204 215 216 205 -177 0 quad 205 216 217 206 -178 0 quad 206 217 218 207 -179 0 quad 207 218 219 208 -180 0 quad 208 219 220 209 -181 0 quad 210 221 222 211 -182 0 quad 211 222 223 212 -183 0 quad 212 223 224 213 -184 0 quad 213 224 225 214 -185 0 quad 214 225 226 215 -186 0 quad 215 226 227 216 -187 0 quad 216 227 228 217 -188 0 quad 217 228 229 218 -189 0 quad 218 229 230 219 -190 0 quad 219 230 231 220 -191 0 quad 221 232 233 222 -192 0 quad 222 233 234 223 -193 0 quad 223 234 235 224 -194 0 quad 224 235 236 225 -195 0 quad 225 236 237 226 -196 0 quad 226 237 238 227 -197 0 quad 227 238 239 228 -198 0 quad 228 239 240 229 -199 0 quad 229 240 241 230 -200 0 quad 230 241 242 231 -201 0 quad 243 254 255 244 -202 0 quad 244 255 256 245 -203 0 quad 245 256 257 246 -204 0 quad 246 257 258 247 -205 0 quad 247 258 259 248 -206 0 quad 248 259 260 249 -207 0 quad 249 260 261 250 -208 0 quad 250 261 262 251 -209 0 quad 251 262 263 252 -210 0 quad 252 263 264 253 -211 0 quad 254 265 266 255 -212 0 quad 255 266 267 256 -213 0 quad 256 267 268 257 -214 0 quad 257 268 269 258 -215 0 quad 258 269 270 259 -216 0 quad 259 270 271 260 -217 0 quad 260 271 272 261 -218 0 quad 261 272 273 262 -219 0 quad 262 273 274 263 -220 0 quad 263 274 275 264 -221 0 quad 265 276 277 266 -222 0 quad 266 277 278 267 -223 0 quad 267 278 279 268 -224 0 quad 268 279 280 269 -225 0 quad 269 280 281 270 -226 0 quad 270 281 282 271 -227 0 quad 271 282 283 272 -228 0 quad 272 283 284 273 -229 0 quad 273 284 285 274 -230 0 quad 274 285 286 275 -231 0 quad 276 287 288 277 -232 0 quad 277 288 289 278 -233 0 quad 278 289 290 279 -234 0 quad 279 290 291 280 -235 0 quad 280 291 292 281 -236 0 quad 281 292 293 282 -237 0 quad 282 293 294 283 -238 0 quad 283 294 295 284 -239 0 quad 284 295 296 285 -240 0 quad 285 296 297 286 -241 0 quad 287 298 299 288 -242 0 quad 288 299 300 289 -243 0 quad 289 300 301 290 -244 0 quad 290 301 302 291 -245 0 quad 291 302 303 292 -246 0 quad 292 303 304 293 -247 0 quad 293 304 305 294 -248 0 quad 294 305 306 295 -249 0 quad 295 306 307 296 -250 0 quad 296 307 308 297 -251 0 quad 298 309 310 299 -252 0 quad 299 310 311 300 -253 0 quad 300 311 312 301 -254 0 quad 301 312 313 302 -255 0 quad 302 313 314 303 -256 0 quad 303 314 315 304 -257 0 quad 304 315 316 305 -258 0 quad 305 316 317 306 -259 0 quad 306 317 318 307 -260 0 quad 307 318 319 308 -261 0 quad 309 320 321 310 -262 0 quad 310 321 322 311 -263 0 quad 311 322 323 312 -264 0 quad 312 323 324 313 -265 0 quad 313 324 325 314 -266 0 quad 314 325 326 315 -267 0 quad 315 326 327 316 -268 0 quad 316 327 328 317 -269 0 quad 317 328 329 318 -270 0 quad 318 329 330 319 -271 0 quad 320 331 332 321 -272 0 quad 321 332 333 322 -273 0 quad 322 333 334 323 -274 0 quad 323 334 335 324 -275 0 quad 324 335 336 325 -276 0 quad 325 336 337 326 -277 0 quad 326 337 338 327 -278 0 quad 327 338 339 328 -279 0 quad 328 339 340 329 -280 0 quad 329 340 341 330 -281 0 quad 331 342 343 332 -282 0 quad 332 343 344 333 -283 0 quad 333 344 345 334 -284 0 quad 334 345 346 335 -285 0 quad 335 346 347 336 -286 0 quad 336 347 348 337 -287 0 quad 337 348 349 338 -288 0 quad 338 349 350 339 -289 0 quad 339 350 351 340 -290 0 quad 340 351 352 341 -291 0 quad 342 353 354 343 -292 0 quad 343 354 355 344 -293 0 quad 344 355 356 345 -294 0 quad 345 356 357 346 -295 0 quad 346 357 358 347 -296 0 quad 347 358 359 348 -297 0 quad 348 359 360 349 -298 0 quad 349 360 361 350 -299 0 quad 350 361 362 351 -300 0 quad 351 362 363 352 -301 0 quad 364 375 376 365 -302 0 quad 365 376 377 366 -303 0 quad 366 377 378 367 -304 0 quad 367 378 379 368 -305 0 quad 368 379 380 369 -306 0 quad 369 380 381 370 -307 0 quad 370 381 382 371 -308 0 quad 371 382 383 372 -309 0 quad 372 383 384 373 -310 0 quad 373 384 385 374 -311 0 quad 375 386 387 376 -312 0 quad 376 387 388 377 -313 0 quad 377 388 389 378 -314 0 quad 378 389 390 379 -315 0 quad 379 390 391 380 -316 0 quad 380 391 392 381 -317 0 quad 381 392 393 382 -318 0 quad 382 393 394 383 -319 0 quad 383 394 395 384 -320 0 quad 384 395 396 385 -321 0 quad 386 397 398 387 -322 0 quad 387 398 399 388 -323 0 quad 388 399 400 389 -324 0 quad 389 400 401 390 -325 0 quad 390 401 402 391 -326 0 quad 391 402 403 392 -327 0 quad 392 403 404 393 -328 0 quad 393 404 405 394 -329 0 quad 394 405 406 395 -330 0 quad 395 406 407 396 -331 0 quad 397 408 409 398 -332 0 quad 398 409 410 399 -333 0 quad 399 410 411 400 -334 0 quad 400 411 412 401 -335 0 quad 401 412 413 402 -336 0 quad 402 413 414 403 -337 0 quad 403 414 415 404 -338 0 quad 404 415 416 405 -339 0 quad 405 416 417 406 -340 0 quad 406 417 418 407 -341 0 quad 408 419 420 409 -342 0 quad 409 420 421 410 -343 0 quad 410 421 422 411 -344 0 quad 411 422 423 412 -345 0 quad 412 423 424 413 -346 0 quad 413 424 425 414 -347 0 quad 414 425 426 415 -348 0 quad 415 426 427 416 -349 0 quad 416 427 428 417 -350 0 quad 417 428 429 418 -351 0 quad 419 430 431 420 -352 0 quad 420 431 432 421 -353 0 quad 421 432 433 422 -354 0 quad 422 433 434 423 -355 0 quad 423 434 435 424 -356 0 quad 424 435 436 425 -357 0 quad 425 436 437 426 -358 0 quad 426 437 438 427 -359 0 quad 427 438 439 428 -360 0 quad 428 439 440 429 -361 0 quad 430 441 442 431 -362 0 quad 431 442 443 432 -363 0 quad 432 443 444 433 -364 0 quad 433 444 445 434 -365 0 quad 434 445 446 435 -366 0 quad 435 446 447 436 -367 0 quad 436 447 448 437 -368 0 quad 437 448 449 438 -369 0 quad 438 449 450 439 -370 0 quad 439 450 451 440 -371 0 quad 441 452 453 442 -372 0 quad 442 453 454 443 -373 0 quad 443 454 455 444 -374 0 quad 444 455 456 445 -375 0 quad 445 456 457 446 -376 0 quad 446 457 458 447 -377 0 quad 447 458 459 448 -378 0 quad 448 459 460 449 -379 0 quad 449 460 461 450 -380 0 quad 450 461 462 451 -381 0 quad 452 463 464 453 -382 0 quad 453 464 465 454 -383 0 quad 454 465 466 455 -384 0 quad 455 466 467 456 -385 0 quad 456 467 468 457 -386 0 quad 457 468 469 458 -387 0 quad 458 469 470 459 -388 0 quad 459 470 471 460 -389 0 quad 460 471 472 461 -390 0 quad 461 472 473 462 -391 0 quad 463 474 475 464 -392 0 quad 464 475 476 465 -393 0 quad 465 476 477 466 -394 0 quad 466 477 478 467 -395 0 quad 467 478 479 468 -396 0 quad 468 479 480 469 -397 0 quad 469 480 481 470 -398 0 quad 470 481 482 471 -399 0 quad 471 482 483 472 -400 0 quad 472 483 484 473 -401 0 quad 485 496 497 486 -402 0 quad 486 497 498 487 -403 0 quad 487 498 499 488 -404 0 quad 488 499 500 489 -405 0 quad 489 500 501 490 -406 0 quad 490 501 502 491 -407 0 quad 491 502 503 492 -408 0 quad 492 503 504 493 -409 0 quad 493 504 505 494 -410 0 quad 494 505 506 495 -411 0 quad 496 507 508 497 -412 0 quad 497 508 509 498 -413 0 quad 498 509 510 499 -414 0 quad 499 510 511 500 -415 0 quad 500 511 512 501 -416 0 quad 501 512 513 502 -417 0 quad 502 513 514 503 -418 0 quad 503 514 515 504 -419 0 quad 504 515 516 505 -420 0 quad 505 516 517 506 -421 0 quad 507 518 519 508 -422 0 quad 508 519 520 509 -423 0 quad 509 520 521 510 -424 0 quad 510 521 522 511 -425 0 quad 511 522 523 512 -426 0 quad 512 523 524 513 -427 0 quad 513 524 525 514 -428 0 quad 514 525 526 515 -429 0 quad 515 526 527 516 -430 0 quad 516 527 528 517 -431 0 quad 518 529 530 519 -432 0 quad 519 530 531 520 -433 0 quad 520 531 532 521 -434 0 quad 521 532 533 522 -435 0 quad 522 533 534 523 -436 0 quad 523 534 535 524 -437 0 quad 524 535 536 525 -438 0 quad 525 536 537 526 -439 0 quad 526 537 538 527 -440 0 quad 527 538 539 528 -441 0 quad 529 540 541 530 -442 0 quad 530 541 542 531 -443 0 quad 531 542 543 532 -444 0 quad 532 543 544 533 -445 0 quad 533 544 545 534 -446 0 quad 534 545 546 535 -447 0 quad 535 546 547 536 -448 0 quad 536 547 548 537 -449 0 quad 537 548 549 538 -450 0 quad 538 549 550 539 -451 0 quad 540 551 552 541 -452 0 quad 541 552 553 542 -453 0 quad 542 553 554 543 -454 0 quad 543 554 555 544 -455 0 quad 544 555 556 545 -456 0 quad 545 556 557 546 -457 0 quad 546 557 558 547 -458 0 quad 547 558 559 548 -459 0 quad 548 559 560 549 -460 0 quad 549 560 561 550 -461 0 quad 551 562 563 552 -462 0 quad 552 563 564 553 -463 0 quad 553 564 565 554 -464 0 quad 554 565 566 555 -465 0 quad 555 566 567 556 -466 0 quad 556 567 568 557 -467 0 quad 557 568 569 558 -468 0 quad 558 569 570 559 -469 0 quad 559 570 571 560 -470 0 quad 560 571 572 561 -471 0 quad 562 573 574 563 -472 0 quad 563 574 575 564 -473 0 quad 564 575 576 565 -474 0 quad 565 576 577 566 -475 0 quad 566 577 578 567 -476 0 quad 567 578 579 568 -477 0 quad 568 579 580 569 -478 0 quad 569 580 581 570 -479 0 quad 570 581 582 571 -480 0 quad 571 582 583 572 -481 0 quad 573 584 585 574 -482 0 quad 574 585 586 575 -483 0 quad 575 586 587 576 -484 0 quad 576 587 588 577 -485 0 quad 577 588 589 578 -486 0 quad 578 589 590 579 -487 0 quad 579 590 591 580 -488 0 quad 580 591 592 581 -489 0 quad 581 592 593 582 -490 0 quad 582 593 594 583 -491 0 quad 584 595 596 585 -492 0 quad 585 596 597 586 -493 0 quad 586 597 598 587 -494 0 quad 587 598 599 588 -495 0 quad 588 599 600 589 -496 0 quad 589 600 601 590 -497 0 quad 590 601 602 591 -498 0 quad 591 602 603 592 -499 0 quad 592 603 604 593 -500 0 quad 593 604 605 594 -501 0 quad 606 617 618 607 -502 0 quad 607 618 619 608 -503 0 quad 608 619 620 609 -504 0 quad 609 620 621 610 -505 0 quad 610 621 622 611 -506 0 quad 611 622 623 612 -507 0 quad 612 623 624 613 -508 0 quad 613 624 625 614 -509 0 quad 614 625 626 615 -510 0 quad 615 626 627 616 -511 0 quad 617 628 629 618 -512 0 quad 618 629 630 619 -513 0 quad 619 630 631 620 -514 0 quad 620 631 632 621 -515 0 quad 621 632 633 622 -516 0 quad 622 633 634 623 -517 0 quad 623 634 635 624 -518 0 quad 624 635 636 625 -519 0 quad 625 636 637 626 -520 0 quad 626 637 638 627 -521 0 quad 628 639 640 629 -522 0 quad 629 640 641 630 -523 0 quad 630 641 642 631 -524 0 quad 631 642 643 632 -525 0 quad 632 643 644 633 -526 0 quad 633 644 645 634 -527 0 quad 634 645 646 635 -528 0 quad 635 646 647 636 -529 0 quad 636 647 648 637 -530 0 quad 637 648 649 638 -531 0 quad 639 650 651 640 -532 0 quad 640 651 652 641 -533 0 quad 641 652 653 642 -534 0 quad 642 653 654 643 -535 0 quad 643 654 655 644 -536 0 quad 644 655 656 645 -537 0 quad 645 656 657 646 -538 0 quad 646 657 658 647 -539 0 quad 647 658 659 648 -540 0 quad 648 659 660 649 -541 0 quad 650 661 662 651 -542 0 quad 651 662 663 652 -543 0 quad 652 663 664 653 -544 0 quad 653 664 665 654 -545 0 quad 654 665 666 655 -546 0 quad 655 666 667 656 -547 0 quad 656 667 668 657 -548 0 quad 657 668 669 658 -549 0 quad 658 669 670 659 -550 0 quad 659 670 671 660 -551 0 quad 661 672 673 662 -552 0 quad 662 673 674 663 -553 0 quad 663 674 675 664 -554 0 quad 664 675 676 665 -555 0 quad 665 676 677 666 -556 0 quad 666 677 678 667 -557 0 quad 667 678 679 668 -558 0 quad 668 679 680 669 -559 0 quad 669 680 681 670 -560 0 quad 670 681 682 671 -561 0 quad 672 683 684 673 -562 0 quad 673 684 685 674 -563 0 quad 674 685 686 675 -564 0 quad 675 686 687 676 -565 0 quad 676 687 688 677 -566 0 quad 677 688 689 678 -567 0 quad 678 689 690 679 -568 0 quad 679 690 691 680 -569 0 quad 680 691 692 681 -570 0 quad 681 692 693 682 -571 0 quad 683 694 695 684 -572 0 quad 684 695 696 685 -573 0 quad 685 696 697 686 -574 0 quad 686 697 698 687 -575 0 quad 687 698 699 688 -576 0 quad 688 699 700 689 -577 0 quad 689 700 701 690 -578 0 quad 690 701 702 691 -579 0 quad 691 702 703 692 -580 0 quad 692 703 704 693 -581 0 quad 694 705 706 695 -582 0 quad 695 706 707 696 -583 0 quad 696 707 708 697 -584 0 quad 697 708 709 698 -585 0 quad 698 709 710 699 -586 0 quad 699 710 711 700 -587 0 quad 700 711 712 701 -588 0 quad 701 712 713 702 -589 0 quad 702 713 714 703 -590 0 quad 703 714 715 704 -591 0 quad 705 716 717 706 -592 0 quad 706 717 718 707 -593 0 quad 707 718 719 708 -594 0 quad 708 719 720 709 -595 0 quad 709 720 721 710 -596 0 quad 710 721 722 711 -597 0 quad 711 722 723 712 -598 0 quad 712 723 724 713 -599 0 quad 713 724 725 714 -600 0 quad 714 725 726 715 -601 0 quad 727 738 739 728 -602 0 quad 728 739 740 729 -603 0 quad 729 740 741 730 -604 0 quad 730 741 742 731 -605 0 quad 731 742 743 732 -606 0 quad 732 743 744 733 -607 0 quad 733 744 745 734 -608 0 quad 734 745 746 735 -609 0 quad 735 746 747 736 -610 0 quad 736 747 748 737 -611 0 quad 738 749 750 739 -612 0 quad 739 750 751 740 -613 0 quad 740 751 752 741 -614 0 quad 741 752 753 742 -615 0 quad 742 753 754 743 -616 0 quad 743 754 755 744 -617 0 quad 744 755 756 745 -618 0 quad 745 756 757 746 -619 0 quad 746 757 758 747 -620 0 quad 747 758 759 748 -621 0 quad 749 760 761 750 -622 0 quad 750 761 762 751 -623 0 quad 751 762 763 752 -624 0 quad 752 763 764 753 -625 0 quad 753 764 765 754 -626 0 quad 754 765 766 755 -627 0 quad 755 766 767 756 -628 0 quad 756 767 768 757 -629 0 quad 757 768 769 758 -630 0 quad 758 769 770 759 -631 0 quad 760 771 772 761 -632 0 quad 761 772 773 762 -633 0 quad 762 773 774 763 -634 0 quad 763 774 775 764 -635 0 quad 764 775 776 765 -636 0 quad 765 776 777 766 -637 0 quad 766 777 778 767 -638 0 quad 767 778 779 768 -639 0 quad 768 779 780 769 -640 0 quad 769 780 781 770 -641 0 quad 771 782 783 772 -642 0 quad 772 783 784 773 -643 0 quad 773 784 785 774 -644 0 quad 774 785 786 775 -645 0 quad 775 786 787 776 -646 0 quad 776 787 788 777 -647 0 quad 777 788 789 778 -648 0 quad 778 789 790 779 -649 0 quad 779 790 791 780 -650 0 quad 780 791 792 781 -651 0 quad 782 793 794 783 -652 0 quad 783 794 795 784 -653 0 quad 784 795 796 785 -654 0 quad 785 796 797 786 -655 0 quad 786 797 798 787 -656 0 quad 787 798 799 788 -657 0 quad 788 799 800 789 -658 0 quad 789 800 801 790 -659 0 quad 790 801 802 791 -660 0 quad 791 802 803 792 -661 0 quad 793 804 805 794 -662 0 quad 794 805 806 795 -663 0 quad 795 806 807 796 -664 0 quad 796 807 808 797 -665 0 quad 797 808 809 798 -666 0 quad 798 809 810 799 -667 0 quad 799 810 811 800 -668 0 quad 800 811 812 801 -669 0 quad 801 812 813 802 -670 0 quad 802 813 814 803 -671 0 quad 804 815 816 805 -672 0 quad 805 816 817 806 -673 0 quad 806 817 818 807 -674 0 quad 807 818 819 808 -675 0 quad 808 819 820 809 -676 0 quad 809 820 821 810 -677 0 quad 810 821 822 811 -678 0 quad 811 822 823 812 -679 0 quad 812 823 824 813 -680 0 quad 813 824 825 814 -681 0 quad 815 826 827 816 -682 0 quad 816 827 828 817 -683 0 quad 817 828 829 818 -684 0 quad 818 829 830 819 -685 0 quad 819 830 831 820 -686 0 quad 820 831 832 821 -687 0 quad 821 832 833 822 -688 0 quad 822 833 834 823 -689 0 quad 823 834 835 824 -690 0 quad 824 835 836 825 -691 0 quad 826 837 838 827 -692 0 quad 827 838 839 828 -693 0 quad 828 839 840 829 -694 0 quad 829 840 841 830 -695 0 quad 830 841 842 831 -696 0 quad 831 842 843 832 -697 0 quad 832 843 844 833 -698 0 quad 833 844 845 834 -699 0 quad 834 845 846 835 -700 0 quad 835 846 847 836 -701 0 quad 848 859 860 849 -702 0 quad 849 860 861 850 -703 0 quad 850 861 862 851 -704 0 quad 851 862 863 852 -705 0 quad 852 863 864 853 -706 0 quad 853 864 865 854 -707 0 quad 854 865 866 855 -708 0 quad 855 866 867 856 -709 0 quad 856 867 868 857 -710 0 quad 857 868 869 858 -711 0 quad 859 870 871 860 -712 0 quad 860 871 872 861 -713 0 quad 861 872 873 862 -714 0 quad 862 873 874 863 -715 0 quad 863 874 875 864 -716 0 quad 864 875 876 865 -717 0 quad 865 876 877 866 -718 0 quad 866 877 878 867 -719 0 quad 867 878 879 868 -720 0 quad 868 879 880 869 -721 0 quad 870 881 882 871 -722 0 quad 871 882 883 872 -723 0 quad 872 883 884 873 -724 0 quad 873 884 885 874 -725 0 quad 874 885 886 875 -726 0 quad 875 886 887 876 -727 0 quad 876 887 888 877 -728 0 quad 877 888 889 878 -729 0 quad 878 889 890 879 -730 0 quad 879 890 891 880 -731 0 quad 881 892 893 882 -732 0 quad 882 893 894 883 -733 0 quad 883 894 895 884 -734 0 quad 884 895 896 885 -735 0 quad 885 896 897 886 -736 0 quad 886 897 898 887 -737 0 quad 887 898 899 888 -738 0 quad 888 899 900 889 -739 0 quad 889 900 901 890 -740 0 quad 890 901 902 891 -741 0 quad 892 903 904 893 -742 0 quad 893 904 905 894 -743 0 quad 894 905 906 895 -744 0 quad 895 906 907 896 -745 0 quad 896 907 908 897 -746 0 quad 897 908 909 898 -747 0 quad 898 909 910 899 -748 0 quad 899 910 911 900 -749 0 quad 900 911 912 901 -750 0 quad 901 912 913 902 -751 0 quad 903 914 915 904 -752 0 quad 904 915 916 905 -753 0 quad 905 916 917 906 -754 0 quad 906 917 918 907 -755 0 quad 907 918 919 908 -756 0 quad 908 919 920 909 -757 0 quad 909 920 921 910 -758 0 quad 910 921 922 911 -759 0 quad 911 922 923 912 -760 0 quad 912 923 924 913 -761 0 quad 914 925 926 915 -762 0 quad 915 926 927 916 -763 0 quad 916 927 928 917 -764 0 quad 917 928 929 918 -765 0 quad 918 929 930 919 -766 0 quad 919 930 931 920 -767 0 quad 920 931 932 921 -768 0 quad 921 932 933 922 -769 0 quad 922 933 934 923 -770 0 quad 923 934 935 924 -771 0 quad 925 936 937 926 -772 0 quad 926 937 938 927 -773 0 quad 927 938 939 928 -774 0 quad 928 939 940 929 -775 0 quad 929 940 941 930 -776 0 quad 930 941 942 931 -777 0 quad 931 942 943 932 -778 0 quad 932 943 944 933 -779 0 quad 933 944 945 934 -780 0 quad 934 945 946 935 -781 0 quad 936 947 948 937 -782 0 quad 937 948 949 938 -783 0 quad 938 949 950 939 -784 0 quad 939 950 951 940 -785 0 quad 940 951 952 941 -786 0 quad 941 952 953 942 -787 0 quad 942 953 954 943 -788 0 quad 943 954 955 944 -789 0 quad 944 955 956 945 -790 0 quad 945 956 957 946 -791 0 quad 947 958 959 948 -792 0 quad 948 959 960 949 -793 0 quad 949 960 961 950 -794 0 quad 950 961 962 951 -795 0 quad 951 962 963 952 -796 0 quad 952 963 964 953 -797 0 quad 953 964 965 954 -798 0 quad 954 965 966 955 -799 0 quad 955 966 967 956 -800 0 quad 956 967 968 957 -801 0 quad 969 980 981 970 -802 0 quad 970 981 982 971 -803 0 quad 971 982 983 972 -804 0 quad 972 983 984 973 -805 0 quad 973 984 985 974 -806 0 quad 974 985 986 975 -807 0 quad 975 986 987 976 -808 0 quad 976 987 988 977 -809 0 quad 977 988 989 978 -810 0 quad 978 989 990 979 -811 0 quad 980 991 992 981 -812 0 quad 981 992 993 982 -813 0 quad 982 993 994 983 -814 0 quad 983 994 995 984 -815 0 quad 984 995 996 985 -816 0 quad 985 996 997 986 -817 0 quad 986 997 998 987 -818 0 quad 987 998 999 988 -819 0 quad 988 999 1000 989 -820 0 quad 989 1000 1001 990 -821 0 quad 991 1002 1003 992 -822 0 quad 992 1003 1004 993 -823 0 quad 993 1004 1005 994 -824 0 quad 994 1005 1006 995 -825 0 quad 995 1006 1007 996 -826 0 quad 996 1007 1008 997 -827 0 quad 997 1008 1009 998 -828 0 quad 998 1009 1010 999 -829 0 quad 999 1010 1011 1000 -830 0 quad 1000 1011 1012 1001 -831 0 quad 1002 1013 1014 1003 -832 0 quad 1003 1014 1015 1004 -833 0 quad 1004 1015 1016 1005 -834 0 quad 1005 1016 1017 1006 -835 0 quad 1006 1017 1018 1007 -836 0 quad 1007 1018 1019 1008 -837 0 quad 1008 1019 1020 1009 -838 0 quad 1009 1020 1021 1010 -839 0 quad 1010 1021 1022 1011 -840 0 quad 1011 1022 1023 1012 -841 0 quad 1013 1024 1025 1014 -842 0 quad 1014 1025 1026 1015 -843 0 quad 1015 1026 1027 1016 -844 0 quad 1016 1027 1028 1017 -845 0 quad 1017 1028 1029 1018 -846 0 quad 1018 1029 1030 1019 -847 0 quad 1019 1030 1031 1020 -848 0 quad 1020 1031 1032 1021 -849 0 quad 1021 1032 1033 1022 -850 0 quad 1022 1033 1034 1023 -851 0 quad 1024 1035 1036 1025 -852 0 quad 1025 1036 1037 1026 -853 0 quad 1026 1037 1038 1027 -854 0 quad 1027 1038 1039 1028 -855 0 quad 1028 1039 1040 1029 -856 0 quad 1029 1040 1041 1030 -857 0 quad 1030 1041 1042 1031 -858 0 quad 1031 1042 1043 1032 -859 0 quad 1032 1043 1044 1033 -860 0 quad 1033 1044 1045 1034 -861 0 quad 1035 1046 1047 1036 -862 0 quad 1036 1047 1048 1037 -863 0 quad 1037 1048 1049 1038 -864 0 quad 1038 1049 1050 1039 -865 0 quad 1039 1050 1051 1040 -866 0 quad 1040 1051 1052 1041 -867 0 quad 1041 1052 1053 1042 -868 0 quad 1042 1053 1054 1043 -869 0 quad 1043 1054 1055 1044 -870 0 quad 1044 1055 1056 1045 -871 0 quad 1046 1057 1058 1047 -872 0 quad 1047 1058 1059 1048 -873 0 quad 1048 1059 1060 1049 -874 0 quad 1049 1060 1061 1050 -875 0 quad 1050 1061 1062 1051 -876 0 quad 1051 1062 1063 1052 -877 0 quad 1052 1063 1064 1053 -878 0 quad 1053 1064 1065 1054 -879 0 quad 1054 1065 1066 1055 -880 0 quad 1055 1066 1067 1056 -881 0 quad 1057 1068 1069 1058 -882 0 quad 1058 1069 1070 1059 -883 0 quad 1059 1070 1071 1060 -884 0 quad 1060 1071 1072 1061 -885 0 quad 1061 1072 1073 1062 -886 0 quad 1062 1073 1074 1063 -887 0 quad 1063 1074 1075 1064 -888 0 quad 1064 1075 1076 1065 -889 0 quad 1065 1076 1077 1066 -890 0 quad 1066 1077 1078 1067 -891 0 quad 1068 1079 1080 1069 -892 0 quad 1069 1080 1081 1070 -893 0 quad 1070 1081 1082 1071 -894 0 quad 1071 1082 1083 1072 -895 0 quad 1072 1083 1084 1073 -896 0 quad 1073 1084 1085 1074 -897 0 quad 1074 1085 1086 1075 -898 0 quad 1075 1086 1087 1076 -899 0 quad 1076 1087 1088 1077 -900 0 quad 1077 1088 1089 1078 -901 0 quad 1090 1101 1102 1091 -902 0 quad 1091 1102 1103 1092 -903 0 quad 1092 1103 1104 1093 -904 0 quad 1093 1104 1105 1094 -905 0 quad 1094 1105 1106 1095 -906 0 quad 1095 1106 1107 1096 -907 0 quad 1096 1107 1108 1097 -908 0 quad 1097 1108 1109 1098 -909 0 quad 1098 1109 1110 1099 -910 0 quad 1099 1110 1111 1100 -911 0 quad 1101 1112 1113 1102 -912 0 quad 1102 1113 1114 1103 -913 0 quad 1103 1114 1115 1104 -914 0 quad 1104 1115 1116 1105 -915 0 quad 1105 1116 1117 1106 -916 0 quad 1106 1117 1118 1107 -917 0 quad 1107 1118 1119 1108 -918 0 quad 1108 1119 1120 1109 -919 0 quad 1109 1120 1121 1110 -920 0 quad 1110 1121 1122 1111 -921 0 quad 1112 1123 1124 1113 -922 0 quad 1113 1124 1125 1114 -923 0 quad 1114 1125 1126 1115 -924 0 quad 1115 1126 1127 1116 -925 0 quad 1116 1127 1128 1117 -926 0 quad 1117 1128 1129 1118 -927 0 quad 1118 1129 1130 1119 -928 0 quad 1119 1130 1131 1120 -929 0 quad 1120 1131 1132 1121 -930 0 quad 1121 1132 1133 1122 -931 0 quad 1123 1134 1135 1124 -932 0 quad 1124 1135 1136 1125 -933 0 quad 1125 1136 1137 1126 -934 0 quad 1126 1137 1138 1127 -935 0 quad 1127 1138 1139 1128 -936 0 quad 1128 1139 1140 1129 -937 0 quad 1129 1140 1141 1130 -938 0 quad 1130 1141 1142 1131 -939 0 quad 1131 1142 1143 1132 -940 0 quad 1132 1143 1144 1133 -941 0 quad 1134 1145 1146 1135 -942 0 quad 1135 1146 1147 1136 -943 0 quad 1136 1147 1148 1137 -944 0 quad 1137 1148 1149 1138 -945 0 quad 1138 1149 1150 1139 -946 0 quad 1139 1150 1151 1140 -947 0 quad 1140 1151 1152 1141 -948 0 quad 1141 1152 1153 1142 -949 0 quad 1142 1153 1154 1143 -950 0 quad 1143 1154 1155 1144 -951 0 quad 1145 1156 1157 1146 -952 0 quad 1146 1157 1158 1147 -953 0 quad 1147 1158 1159 1148 -954 0 quad 1148 1159 1160 1149 -955 0 quad 1149 1160 1161 1150 -956 0 quad 1150 1161 1162 1151 -957 0 quad 1151 1162 1163 1152 -958 0 quad 1152 1163 1164 1153 -959 0 quad 1153 1164 1165 1154 -960 0 quad 1154 1165 1166 1155 -961 0 quad 1156 1167 1168 1157 -962 0 quad 1157 1168 1169 1158 -963 0 quad 1158 1169 1170 1159 -964 0 quad 1159 1170 1171 1160 -965 0 quad 1160 1171 1172 1161 -966 0 quad 1161 1172 1173 1162 -967 0 quad 1162 1173 1174 1163 -968 0 quad 1163 1174 1175 1164 -969 0 quad 1164 1175 1176 1165 -970 0 quad 1165 1176 1177 1166 -971 0 quad 1167 1178 1179 1168 -972 0 quad 1168 1179 1180 1169 -973 0 quad 1169 1180 1181 1170 -974 0 quad 1170 1181 1182 1171 -975 0 quad 1171 1182 1183 1172 -976 0 quad 1172 1183 1184 1173 -977 0 quad 1173 1184 1185 1174 -978 0 quad 1174 1185 1186 1175 -979 0 quad 1175 1186 1187 1176 -980 0 quad 1176 1187 1188 1177 -981 0 quad 1178 1189 1190 1179 -982 0 quad 1179 1190 1191 1180 -983 0 quad 1180 1191 1192 1181 -984 0 quad 1181 1192 1193 1182 -985 0 quad 1182 1193 1194 1183 -986 0 quad 1183 1194 1195 1184 -987 0 quad 1184 1195 1196 1185 -988 0 quad 1185 1196 1197 1186 -989 0 quad 1186 1197 1198 1187 -990 0 quad 1187 1198 1199 1188 -991 0 quad 1189 1200 1201 1190 -992 0 quad 1190 1201 1202 1191 -993 0 quad 1191 1202 1203 1192 -994 0 quad 1192 1203 1204 1193 -995 0 quad 1193 1204 1205 1194 -996 0 quad 1194 1205 1206 1195 -997 0 quad 1195 1206 1207 1196 -998 0 quad 1196 1207 1208 1197 -999 0 quad 1197 1208 1209 1198 -1000 0 quad 1198 1209 1210 1199 -1001 0 quad 1211 1222 1223 1212 -1002 0 quad 1212 1223 1224 1213 -1003 0 quad 1213 1224 1225 1214 -1004 0 quad 1214 1225 1226 1215 -1005 0 quad 1215 1226 1227 1216 -1006 0 quad 1216 1227 1228 1217 -1007 0 quad 1217 1228 1229 1218 -1008 0 quad 1218 1229 1230 1219 -1009 0 quad 1219 1230 1231 1220 -1010 0 quad 1220 1231 1232 1221 -1011 0 quad 1222 1233 1234 1223 -1012 0 quad 1223 1234 1235 1224 -1013 0 quad 1224 1235 1236 1225 -1014 0 quad 1225 1236 1237 1226 -1015 0 quad 1226 1237 1238 1227 -1016 0 quad 1227 1238 1239 1228 -1017 0 quad 1228 1239 1240 1229 -1018 0 quad 1229 1240 1241 1230 -1019 0 quad 1230 1241 1242 1231 -1020 0 quad 1231 1242 1243 1232 -1021 0 quad 1233 1244 1245 1234 -1022 0 quad 1234 1245 1246 1235 -1023 0 quad 1235 1246 1247 1236 -1024 0 quad 1236 1247 1248 1237 -1025 0 quad 1237 1248 1249 1238 -1026 0 quad 1238 1249 1250 1239 -1027 0 quad 1239 1250 1251 1240 -1028 0 quad 1240 1251 1252 1241 -1029 0 quad 1241 1252 1253 1242 -1030 0 quad 1242 1253 1254 1243 -1031 0 quad 1244 1255 1256 1245 -1032 0 quad 1245 1256 1257 1246 -1033 0 quad 1246 1257 1258 1247 -1034 0 quad 1247 1258 1259 1248 -1035 0 quad 1248 1259 1260 1249 -1036 0 quad 1249 1260 1261 1250 -1037 0 quad 1250 1261 1262 1251 -1038 0 quad 1251 1262 1263 1252 -1039 0 quad 1252 1263 1264 1253 -1040 0 quad 1253 1264 1265 1254 -1041 0 quad 1255 1266 1267 1256 -1042 0 quad 1256 1267 1268 1257 -1043 0 quad 1257 1268 1269 1258 -1044 0 quad 1258 1269 1270 1259 -1045 0 quad 1259 1270 1271 1260 -1046 0 quad 1260 1271 1272 1261 -1047 0 quad 1261 1272 1273 1262 -1048 0 quad 1262 1273 1274 1263 -1049 0 quad 1263 1274 1275 1264 -1050 0 quad 1264 1275 1276 1265 -1051 0 quad 1266 1277 1278 1267 -1052 0 quad 1267 1278 1279 1268 -1053 0 quad 1268 1279 1280 1269 -1054 0 quad 1269 1280 1281 1270 -1055 0 quad 1270 1281 1282 1271 -1056 0 quad 1271 1282 1283 1272 -1057 0 quad 1272 1283 1284 1273 -1058 0 quad 1273 1284 1285 1274 -1059 0 quad 1274 1285 1286 1275 -1060 0 quad 1275 1286 1287 1276 -1061 0 quad 1277 1288 1289 1278 -1062 0 quad 1278 1289 1290 1279 -1063 0 quad 1279 1290 1291 1280 -1064 0 quad 1280 1291 1292 1281 -1065 0 quad 1281 1292 1293 1282 -1066 0 quad 1282 1293 1294 1283 -1067 0 quad 1283 1294 1295 1284 -1068 0 quad 1284 1295 1296 1285 -1069 0 quad 1285 1296 1297 1286 -1070 0 quad 1286 1297 1298 1287 -1071 0 quad 1288 1299 1300 1289 -1072 0 quad 1289 1300 1301 1290 -1073 0 quad 1290 1301 1302 1291 -1074 0 quad 1291 1302 1303 1292 -1075 0 quad 1292 1303 1304 1293 -1076 0 quad 1293 1304 1305 1294 -1077 0 quad 1294 1305 1306 1295 -1078 0 quad 1295 1306 1307 1296 -1079 0 quad 1296 1307 1308 1297 -1080 0 quad 1297 1308 1309 1298 -1081 0 quad 1299 1310 1311 1300 -1082 0 quad 1300 1311 1312 1301 -1083 0 quad 1301 1312 1313 1302 -1084 0 quad 1302 1313 1314 1303 -1085 0 quad 1303 1314 1315 1304 -1086 0 quad 1304 1315 1316 1305 -1087 0 quad 1305 1316 1317 1306 -1088 0 quad 1306 1317 1318 1307 -1089 0 quad 1307 1318 1319 1308 -1090 0 quad 1308 1319 1320 1309 -1091 0 quad 1310 1321 1322 1311 -1092 0 quad 1311 1322 1323 1312 -1093 0 quad 1312 1323 1324 1313 -1094 0 quad 1313 1324 1325 1314 -1095 0 quad 1314 1325 1326 1315 -1096 0 quad 1315 1326 1327 1316 -1097 0 quad 1316 1327 1328 1317 -1098 0 quad 1317 1328 1329 1318 -1099 0 quad 1318 1329 1330 1319 -1100 0 quad 1319 1330 1331 1320 -1101 0 quad 1332 1343 1344 1333 -1102 0 quad 1333 1344 1345 1334 -1103 0 quad 1334 1345 1346 1335 -1104 0 quad 1335 1346 1347 1336 -1105 0 quad 1336 1347 1348 1337 -1106 0 quad 1337 1348 1349 1338 -1107 0 quad 1338 1349 1350 1339 -1108 0 quad 1339 1350 1351 1340 -1109 0 quad 1340 1351 1352 1341 -1110 0 quad 1341 1352 1353 1342 -1111 0 quad 1343 1354 1355 1344 -1112 0 quad 1344 1355 1356 1345 -1113 0 quad 1345 1356 1357 1346 -1114 0 quad 1346 1357 1358 1347 -1115 0 quad 1347 1358 1359 1348 -1116 0 quad 1348 1359 1360 1349 -1117 0 quad 1349 1360 1361 1350 -1118 0 quad 1350 1361 1362 1351 -1119 0 quad 1351 1362 1363 1352 -1120 0 quad 1352 1363 1364 1353 -1121 0 quad 1354 1365 1366 1355 -1122 0 quad 1355 1366 1367 1356 -1123 0 quad 1356 1367 1368 1357 -1124 0 quad 1357 1368 1369 1358 -1125 0 quad 1358 1369 1370 1359 -1126 0 quad 1359 1370 1371 1360 -1127 0 quad 1360 1371 1372 1361 -1128 0 quad 1361 1372 1373 1362 -1129 0 quad 1362 1373 1374 1363 -1130 0 quad 1363 1374 1375 1364 -1131 0 quad 1365 1376 1377 1366 -1132 0 quad 1366 1377 1378 1367 -1133 0 quad 1367 1378 1379 1368 -1134 0 quad 1368 1379 1380 1369 -1135 0 quad 1369 1380 1381 1370 -1136 0 quad 1370 1381 1382 1371 -1137 0 quad 1371 1382 1383 1372 -1138 0 quad 1372 1383 1384 1373 -1139 0 quad 1373 1384 1385 1374 -1140 0 quad 1374 1385 1386 1375 -1141 0 quad 1376 1387 1388 1377 -1142 0 quad 1377 1388 1389 1378 -1143 0 quad 1378 1389 1390 1379 -1144 0 quad 1379 1390 1391 1380 -1145 0 quad 1380 1391 1392 1381 -1146 0 quad 1381 1392 1393 1382 -1147 0 quad 1382 1393 1394 1383 -1148 0 quad 1383 1394 1395 1384 -1149 0 quad 1384 1395 1396 1385 -1150 0 quad 1385 1396 1397 1386 -1151 0 quad 1387 1398 1399 1388 -1152 0 quad 1388 1399 1400 1389 -1153 0 quad 1389 1400 1401 1390 -1154 0 quad 1390 1401 1402 1391 -1155 0 quad 1391 1402 1403 1392 -1156 0 quad 1392 1403 1404 1393 -1157 0 quad 1393 1404 1405 1394 -1158 0 quad 1394 1405 1406 1395 -1159 0 quad 1395 1406 1407 1396 -1160 0 quad 1396 1407 1408 1397 -1161 0 quad 1398 1409 1410 1399 -1162 0 quad 1399 1410 1411 1400 -1163 0 quad 1400 1411 1412 1401 -1164 0 quad 1401 1412 1413 1402 -1165 0 quad 1402 1413 1414 1403 -1166 0 quad 1403 1414 1415 1404 -1167 0 quad 1404 1415 1416 1405 -1168 0 quad 1405 1416 1417 1406 -1169 0 quad 1406 1417 1418 1407 -1170 0 quad 1407 1418 1419 1408 -1171 0 quad 1409 1420 1421 1410 -1172 0 quad 1410 1421 1422 1411 -1173 0 quad 1411 1422 1423 1412 -1174 0 quad 1412 1423 1424 1413 -1175 0 quad 1413 1424 1425 1414 -1176 0 quad 1414 1425 1426 1415 -1177 0 quad 1415 1426 1427 1416 -1178 0 quad 1416 1427 1428 1417 -1179 0 quad 1417 1428 1429 1418 -1180 0 quad 1418 1429 1430 1419 -1181 0 quad 1420 1431 1432 1421 -1182 0 quad 1421 1432 1433 1422 -1183 0 quad 1422 1433 1434 1423 -1184 0 quad 1423 1434 1435 1424 -1185 0 quad 1424 1435 1436 1425 -1186 0 quad 1425 1436 1437 1426 -1187 0 quad 1426 1437 1438 1427 -1188 0 quad 1427 1438 1439 1428 -1189 0 quad 1428 1439 1440 1429 -1190 0 quad 1429 1440 1441 1430 -1191 0 quad 1431 1442 1443 1432 -1192 0 quad 1432 1443 1444 1433 -1193 0 quad 1433 1444 1445 1434 -1194 0 quad 1434 1445 1446 1435 -1195 0 quad 1435 1446 1447 1436 -1196 0 quad 1436 1447 1448 1437 -1197 0 quad 1437 1448 1449 1438 -1198 0 quad 1438 1449 1450 1439 -1199 0 quad 1439 1450 1451 1440 -1200 0 quad 1440 1451 1452 1441 -1201 0 quad 1453 1464 1465 1454 -1202 0 quad 1454 1465 1466 1455 -1203 0 quad 1455 1466 1467 1456 -1204 0 quad 1456 1467 1468 1457 -1205 0 quad 1457 1468 1469 1458 -1206 0 quad 1458 1469 1470 1459 -1207 0 quad 1459 1470 1471 1460 -1208 0 quad 1460 1471 1472 1461 -1209 0 quad 1461 1472 1473 1462 -1210 0 quad 1462 1473 1474 1463 -1211 0 quad 1464 1475 1476 1465 -1212 0 quad 1465 1476 1477 1466 -1213 0 quad 1466 1477 1478 1467 -1214 0 quad 1467 1478 1479 1468 -1215 0 quad 1468 1479 1480 1469 -1216 0 quad 1469 1480 1481 1470 -1217 0 quad 1470 1481 1482 1471 -1218 0 quad 1471 1482 1483 1472 -1219 0 quad 1472 1483 1484 1473 -1220 0 quad 1473 1484 1485 1474 -1221 0 quad 1475 1486 1487 1476 -1222 0 quad 1476 1487 1488 1477 -1223 0 quad 1477 1488 1489 1478 -1224 0 quad 1478 1489 1490 1479 -1225 0 quad 1479 1490 1491 1480 -1226 0 quad 1480 1491 1492 1481 -1227 0 quad 1481 1492 1493 1482 -1228 0 quad 1482 1493 1494 1483 -1229 0 quad 1483 1494 1495 1484 -1230 0 quad 1484 1495 1496 1485 -1231 0 quad 1486 1497 1498 1487 -1232 0 quad 1487 1498 1499 1488 -1233 0 quad 1488 1499 1500 1489 -1234 0 quad 1489 1500 1501 1490 -1235 0 quad 1490 1501 1502 1491 -1236 0 quad 1491 1502 1503 1492 -1237 0 quad 1492 1503 1504 1493 -1238 0 quad 1493 1504 1505 1494 -1239 0 quad 1494 1505 1506 1495 -1240 0 quad 1495 1506 1507 1496 -1241 0 quad 1497 1508 1509 1498 -1242 0 quad 1498 1509 1510 1499 -1243 0 quad 1499 1510 1511 1500 -1244 0 quad 1500 1511 1512 1501 -1245 0 quad 1501 1512 1513 1502 -1246 0 quad 1502 1513 1514 1503 -1247 0 quad 1503 1514 1515 1504 -1248 0 quad 1504 1515 1516 1505 -1249 0 quad 1505 1516 1517 1506 -1250 0 quad 1506 1517 1518 1507 -1251 0 quad 1508 1519 1520 1509 -1252 0 quad 1509 1520 1521 1510 -1253 0 quad 1510 1521 1522 1511 -1254 0 quad 1511 1522 1523 1512 -1255 0 quad 1512 1523 1524 1513 -1256 0 quad 1513 1524 1525 1514 -1257 0 quad 1514 1525 1526 1515 -1258 0 quad 1515 1526 1527 1516 -1259 0 quad 1516 1527 1528 1517 -1260 0 quad 1517 1528 1529 1518 -1261 0 quad 1519 1530 1531 1520 -1262 0 quad 1520 1531 1532 1521 -1263 0 quad 1521 1532 1533 1522 -1264 0 quad 1522 1533 1534 1523 -1265 0 quad 1523 1534 1535 1524 -1266 0 quad 1524 1535 1536 1525 -1267 0 quad 1525 1536 1537 1526 -1268 0 quad 1526 1537 1538 1527 -1269 0 quad 1527 1538 1539 1528 -1270 0 quad 1528 1539 1540 1529 -1271 0 quad 1530 1541 1542 1531 -1272 0 quad 1531 1542 1543 1532 -1273 0 quad 1532 1543 1544 1533 -1274 0 quad 1533 1544 1545 1534 -1275 0 quad 1534 1545 1546 1535 -1276 0 quad 1535 1546 1547 1536 -1277 0 quad 1536 1547 1548 1537 -1278 0 quad 1537 1548 1549 1538 -1279 0 quad 1538 1549 1550 1539 -1280 0 quad 1539 1550 1551 1540 -1281 0 quad 1541 1552 1553 1542 -1282 0 quad 1542 1553 1554 1543 -1283 0 quad 1543 1554 1555 1544 -1284 0 quad 1544 1555 1556 1545 -1285 0 quad 1545 1556 1557 1546 -1286 0 quad 1546 1557 1558 1547 -1287 0 quad 1547 1558 1559 1548 -1288 0 quad 1548 1559 1560 1549 -1289 0 quad 1549 1560 1561 1550 -1290 0 quad 1550 1561 1562 1551 -1291 0 quad 1552 1563 1564 1553 -1292 0 quad 1553 1564 1565 1554 -1293 0 quad 1554 1565 1566 1555 -1294 0 quad 1555 1566 1567 1556 -1295 0 quad 1556 1567 1568 1557 -1296 0 quad 1557 1568 1569 1558 -1297 0 quad 1558 1569 1570 1559 -1298 0 quad 1559 1570 1571 1560 -1299 0 quad 1560 1571 1572 1561 -1300 0 quad 1561 1572 1573 1562 -1301 0 quad 1574 1585 1586 1575 -1302 0 quad 1575 1586 1587 1576 -1303 0 quad 1576 1587 1588 1577 -1304 0 quad 1577 1588 1589 1578 -1305 0 quad 1578 1589 1590 1579 -1306 0 quad 1579 1590 1591 1580 -1307 0 quad 1580 1591 1592 1581 -1308 0 quad 1581 1592 1593 1582 -1309 0 quad 1582 1593 1594 1583 -1310 0 quad 1583 1594 1595 1584 -1311 0 quad 1585 1596 1597 1586 -1312 0 quad 1586 1597 1598 1587 -1313 0 quad 1587 1598 1599 1588 -1314 0 quad 1588 1599 1600 1589 -1315 0 quad 1589 1600 1601 1590 -1316 0 quad 1590 1601 1602 1591 -1317 0 quad 1591 1602 1603 1592 -1318 0 quad 1592 1603 1604 1593 -1319 0 quad 1593 1604 1605 1594 -1320 0 quad 1594 1605 1606 1595 -1321 0 quad 1596 1607 1608 1597 -1322 0 quad 1597 1608 1609 1598 -1323 0 quad 1598 1609 1610 1599 -1324 0 quad 1599 1610 1611 1600 -1325 0 quad 1600 1611 1612 1601 -1326 0 quad 1601 1612 1613 1602 -1327 0 quad 1602 1613 1614 1603 -1328 0 quad 1603 1614 1615 1604 -1329 0 quad 1604 1615 1616 1605 -1330 0 quad 1605 1616 1617 1606 -1331 0 quad 1607 1618 1619 1608 -1332 0 quad 1608 1619 1620 1609 -1333 0 quad 1609 1620 1621 1610 -1334 0 quad 1610 1621 1622 1611 -1335 0 quad 1611 1622 1623 1612 -1336 0 quad 1612 1623 1624 1613 -1337 0 quad 1613 1624 1625 1614 -1338 0 quad 1614 1625 1626 1615 -1339 0 quad 1615 1626 1627 1616 -1340 0 quad 1616 1627 1628 1617 -1341 0 quad 1618 1629 1630 1619 -1342 0 quad 1619 1630 1631 1620 -1343 0 quad 1620 1631 1632 1621 -1344 0 quad 1621 1632 1633 1622 -1345 0 quad 1622 1633 1634 1623 -1346 0 quad 1623 1634 1635 1624 -1347 0 quad 1624 1635 1636 1625 -1348 0 quad 1625 1636 1637 1626 -1349 0 quad 1626 1637 1638 1627 -1350 0 quad 1627 1638 1639 1628 -1351 0 quad 1629 1640 1641 1630 -1352 0 quad 1630 1641 1642 1631 -1353 0 quad 1631 1642 1643 1632 -1354 0 quad 1632 1643 1644 1633 -1355 0 quad 1633 1644 1645 1634 -1356 0 quad 1634 1645 1646 1635 -1357 0 quad 1635 1646 1647 1636 -1358 0 quad 1636 1647 1648 1637 -1359 0 quad 1637 1648 1649 1638 -1360 0 quad 1638 1649 1650 1639 -1361 0 quad 1640 1651 1652 1641 -1362 0 quad 1641 1652 1653 1642 -1363 0 quad 1642 1653 1654 1643 -1364 0 quad 1643 1654 1655 1644 -1365 0 quad 1644 1655 1656 1645 -1366 0 quad 1645 1656 1657 1646 -1367 0 quad 1646 1657 1658 1647 -1368 0 quad 1647 1658 1659 1648 -1369 0 quad 1648 1659 1660 1649 -1370 0 quad 1649 1660 1661 1650 -1371 0 quad 1651 1662 1663 1652 -1372 0 quad 1652 1663 1664 1653 -1373 0 quad 1653 1664 1665 1654 -1374 0 quad 1654 1665 1666 1655 -1375 0 quad 1655 1666 1667 1656 -1376 0 quad 1656 1667 1668 1657 -1377 0 quad 1657 1668 1669 1658 -1378 0 quad 1658 1669 1670 1659 -1379 0 quad 1659 1670 1671 1660 -1380 0 quad 1660 1671 1672 1661 -1381 0 quad 1662 1673 1674 1663 -1382 0 quad 1663 1674 1675 1664 -1383 0 quad 1664 1675 1676 1665 -1384 0 quad 1665 1676 1677 1666 -1385 0 quad 1666 1677 1678 1667 -1386 0 quad 1667 1678 1679 1668 -1387 0 quad 1668 1679 1680 1669 -1388 0 quad 1669 1680 1681 1670 -1389 0 quad 1670 1681 1682 1671 -1390 0 quad 1671 1682 1683 1672 -1391 0 quad 1673 1684 1685 1674 -1392 0 quad 1674 1685 1686 1675 -1393 0 quad 1675 1686 1687 1676 -1394 0 quad 1676 1687 1688 1677 -1395 0 quad 1677 1688 1689 1678 -1396 0 quad 1678 1689 1690 1679 -1397 0 quad 1679 1690 1691 1680 -1398 0 quad 1680 1691 1692 1681 -1399 0 quad 1681 1692 1693 1682 -1400 0 quad 1682 1693 1694 1683 -1401 0 quad 1695 1706 1707 1696 -1402 0 quad 1696 1707 1708 1697 -1403 0 quad 1697 1708 1709 1698 -1404 0 quad 1698 1709 1710 1699 -1405 0 quad 1699 1710 1711 1700 -1406 0 quad 1700 1711 1712 1701 -1407 0 quad 1701 1712 1713 1702 -1408 0 quad 1702 1713 1714 1703 -1409 0 quad 1703 1714 1715 1704 -1410 0 quad 1704 1715 1716 1705 -1411 0 quad 1706 1717 1718 1707 -1412 0 quad 1707 1718 1719 1708 -1413 0 quad 1708 1719 1720 1709 -1414 0 quad 1709 1720 1721 1710 -1415 0 quad 1710 1721 1722 1711 -1416 0 quad 1711 1722 1723 1712 -1417 0 quad 1712 1723 1724 1713 -1418 0 quad 1713 1724 1725 1714 -1419 0 quad 1714 1725 1726 1715 -1420 0 quad 1715 1726 1727 1716 -1421 0 quad 1717 1728 1729 1718 -1422 0 quad 1718 1729 1730 1719 -1423 0 quad 1719 1730 1731 1720 -1424 0 quad 1720 1731 1732 1721 -1425 0 quad 1721 1732 1733 1722 -1426 0 quad 1722 1733 1734 1723 -1427 0 quad 1723 1734 1735 1724 -1428 0 quad 1724 1735 1736 1725 -1429 0 quad 1725 1736 1737 1726 -1430 0 quad 1726 1737 1738 1727 -1431 0 quad 1728 1739 1740 1729 -1432 0 quad 1729 1740 1741 1730 -1433 0 quad 1730 1741 1742 1731 -1434 0 quad 1731 1742 1743 1732 -1435 0 quad 1732 1743 1744 1733 -1436 0 quad 1733 1744 1745 1734 -1437 0 quad 1734 1745 1746 1735 -1438 0 quad 1735 1746 1747 1736 -1439 0 quad 1736 1747 1748 1737 -1440 0 quad 1737 1748 1749 1738 -1441 0 quad 1739 1750 1751 1740 -1442 0 quad 1740 1751 1752 1741 -1443 0 quad 1741 1752 1753 1742 -1444 0 quad 1742 1753 1754 1743 -1445 0 quad 1743 1754 1755 1744 -1446 0 quad 1744 1755 1756 1745 -1447 0 quad 1745 1756 1757 1746 -1448 0 quad 1746 1757 1758 1747 -1449 0 quad 1747 1758 1759 1748 -1450 0 quad 1748 1759 1760 1749 -1451 0 quad 1750 1761 1762 1751 -1452 0 quad 1751 1762 1763 1752 -1453 0 quad 1752 1763 1764 1753 -1454 0 quad 1753 1764 1765 1754 -1455 0 quad 1754 1765 1766 1755 -1456 0 quad 1755 1766 1767 1756 -1457 0 quad 1756 1767 1768 1757 -1458 0 quad 1757 1768 1769 1758 -1459 0 quad 1758 1769 1770 1759 -1460 0 quad 1759 1770 1771 1760 -1461 0 quad 1761 1772 1773 1762 -1462 0 quad 1762 1773 1774 1763 -1463 0 quad 1763 1774 1775 1764 -1464 0 quad 1764 1775 1776 1765 -1465 0 quad 1765 1776 1777 1766 -1466 0 quad 1766 1777 1778 1767 -1467 0 quad 1767 1778 1779 1768 -1468 0 quad 1768 1779 1780 1769 -1469 0 quad 1769 1780 1781 1770 -1470 0 quad 1770 1781 1782 1771 -1471 0 quad 1772 1783 1784 1773 -1472 0 quad 1773 1784 1785 1774 -1473 0 quad 1774 1785 1786 1775 -1474 0 quad 1775 1786 1787 1776 -1475 0 quad 1776 1787 1788 1777 -1476 0 quad 1777 1788 1789 1778 -1477 0 quad 1778 1789 1790 1779 -1478 0 quad 1779 1790 1791 1780 -1479 0 quad 1780 1791 1792 1781 -1480 0 quad 1781 1792 1793 1782 -1481 0 quad 1783 1794 1795 1784 -1482 0 quad 1784 1795 1796 1785 -1483 0 quad 1785 1796 1797 1786 -1484 0 quad 1786 1797 1798 1787 -1485 0 quad 1787 1798 1799 1788 -1486 0 quad 1788 1799 1800 1789 -1487 0 quad 1789 1800 1801 1790 -1488 0 quad 1790 1801 1802 1791 -1489 0 quad 1791 1802 1803 1792 -1490 0 quad 1792 1803 1804 1793 -1491 0 quad 1794 1805 1806 1795 -1492 0 quad 1795 1806 1807 1796 -1493 0 quad 1796 1807 1808 1797 -1494 0 quad 1797 1808 1809 1798 -1495 0 quad 1798 1809 1810 1799 -1496 0 quad 1799 1810 1811 1800 -1497 0 quad 1800 1811 1812 1801 -1498 0 quad 1801 1812 1813 1802 -1499 0 quad 1802 1813 1814 1803 -1500 0 quad 1803 1814 1815 1804 -1501 0 quad 1816 1827 1828 1817 -1502 0 quad 1817 1828 1829 1818 -1503 0 quad 1818 1829 1830 1819 -1504 0 quad 1819 1830 1831 1820 -1505 0 quad 1820 1831 1832 1821 -1506 0 quad 1821 1832 1833 1822 -1507 0 quad 1822 1833 1834 1823 -1508 0 quad 1823 1834 1835 1824 -1509 0 quad 1824 1835 1836 1825 -1510 0 quad 1825 1836 1837 1826 -1511 0 quad 1827 1838 1839 1828 -1512 0 quad 1828 1839 1840 1829 -1513 0 quad 1829 1840 1841 1830 -1514 0 quad 1830 1841 1842 1831 -1515 0 quad 1831 1842 1843 1832 -1516 0 quad 1832 1843 1844 1833 -1517 0 quad 1833 1844 1845 1834 -1518 0 quad 1834 1845 1846 1835 -1519 0 quad 1835 1846 1847 1836 -1520 0 quad 1836 1847 1848 1837 -1521 0 quad 1838 1849 1850 1839 -1522 0 quad 1839 1850 1851 1840 -1523 0 quad 1840 1851 1852 1841 -1524 0 quad 1841 1852 1853 1842 -1525 0 quad 1842 1853 1854 1843 -1526 0 quad 1843 1854 1855 1844 -1527 0 quad 1844 1855 1856 1845 -1528 0 quad 1845 1856 1857 1846 -1529 0 quad 1846 1857 1858 1847 -1530 0 quad 1847 1858 1859 1848 -1531 0 quad 1849 1860 1861 1850 -1532 0 quad 1850 1861 1862 1851 -1533 0 quad 1851 1862 1863 1852 -1534 0 quad 1852 1863 1864 1853 -1535 0 quad 1853 1864 1865 1854 -1536 0 quad 1854 1865 1866 1855 -1537 0 quad 1855 1866 1867 1856 -1538 0 quad 1856 1867 1868 1857 -1539 0 quad 1857 1868 1869 1858 -1540 0 quad 1858 1869 1870 1859 -1541 0 quad 1860 1871 1872 1861 -1542 0 quad 1861 1872 1873 1862 -1543 0 quad 1862 1873 1874 1863 -1544 0 quad 1863 1874 1875 1864 -1545 0 quad 1864 1875 1876 1865 -1546 0 quad 1865 1876 1877 1866 -1547 0 quad 1866 1877 1878 1867 -1548 0 quad 1867 1878 1879 1868 -1549 0 quad 1868 1879 1880 1869 -1550 0 quad 1869 1880 1881 1870 -1551 0 quad 1871 1882 1883 1872 -1552 0 quad 1872 1883 1884 1873 -1553 0 quad 1873 1884 1885 1874 -1554 0 quad 1874 1885 1886 1875 -1555 0 quad 1875 1886 1887 1876 -1556 0 quad 1876 1887 1888 1877 -1557 0 quad 1877 1888 1889 1878 -1558 0 quad 1878 1889 1890 1879 -1559 0 quad 1879 1890 1891 1880 -1560 0 quad 1880 1891 1892 1881 -1561 0 quad 1882 1893 1894 1883 -1562 0 quad 1883 1894 1895 1884 -1563 0 quad 1884 1895 1896 1885 -1564 0 quad 1885 1896 1897 1886 -1565 0 quad 1886 1897 1898 1887 -1566 0 quad 1887 1898 1899 1888 -1567 0 quad 1888 1899 1900 1889 -1568 0 quad 1889 1900 1901 1890 -1569 0 quad 1890 1901 1902 1891 -1570 0 quad 1891 1902 1903 1892 -1571 0 quad 1893 1904 1905 1894 -1572 0 quad 1894 1905 1906 1895 -1573 0 quad 1895 1906 1907 1896 -1574 0 quad 1896 1907 1908 1897 -1575 0 quad 1897 1908 1909 1898 -1576 0 quad 1898 1909 1910 1899 -1577 0 quad 1899 1910 1911 1900 -1578 0 quad 1900 1911 1912 1901 -1579 0 quad 1901 1912 1913 1902 -1580 0 quad 1902 1913 1914 1903 -1581 0 quad 1904 1915 1916 1905 -1582 0 quad 1905 1916 1917 1906 -1583 0 quad 1906 1917 1918 1907 -1584 0 quad 1907 1918 1919 1908 -1585 0 quad 1908 1919 1920 1909 -1586 0 quad 1909 1920 1921 1910 -1587 0 quad 1910 1921 1922 1911 -1588 0 quad 1911 1922 1923 1912 -1589 0 quad 1912 1923 1924 1913 -1590 0 quad 1913 1924 1925 1914 -1591 0 quad 1915 1926 1927 1916 -1592 0 quad 1916 1927 1928 1917 -1593 0 quad 1917 1928 1929 1918 -1594 0 quad 1918 1929 1930 1919 -1595 0 quad 1919 1930 1931 1920 -1596 0 quad 1920 1931 1932 1921 -1597 0 quad 1921 1932 1933 1922 -1598 0 quad 1922 1933 1934 1923 -1599 0 quad 1923 1934 1935 1924 -1600 0 quad 1924 1935 1936 1925 -1601 0 quad 1937 1948 1949 1938 -1602 0 quad 1938 1949 1950 1939 -1603 0 quad 1939 1950 1951 1940 -1604 0 quad 1940 1951 1952 1941 -1605 0 quad 1941 1952 1953 1942 -1606 0 quad 1942 1953 1954 1943 -1607 0 quad 1943 1954 1955 1944 -1608 0 quad 1944 1955 1956 1945 -1609 0 quad 1945 1956 1957 1946 -1610 0 quad 1946 1957 1958 1947 -1611 0 quad 1948 1959 1960 1949 -1612 0 quad 1949 1960 1961 1950 -1613 0 quad 1950 1961 1962 1951 -1614 0 quad 1951 1962 1963 1952 -1615 0 quad 1952 1963 1964 1953 -1616 0 quad 1953 1964 1965 1954 -1617 0 quad 1954 1965 1966 1955 -1618 0 quad 1955 1966 1967 1956 -1619 0 quad 1956 1967 1968 1957 -1620 0 quad 1957 1968 1969 1958 -1621 0 quad 1959 1970 1971 1960 -1622 0 quad 1960 1971 1972 1961 -1623 0 quad 1961 1972 1973 1962 -1624 0 quad 1962 1973 1974 1963 -1625 0 quad 1963 1974 1975 1964 -1626 0 quad 1964 1975 1976 1965 -1627 0 quad 1965 1976 1977 1966 -1628 0 quad 1966 1977 1978 1967 -1629 0 quad 1967 1978 1979 1968 -1630 0 quad 1968 1979 1980 1969 -1631 0 quad 1970 1981 1982 1971 -1632 0 quad 1971 1982 1983 1972 -1633 0 quad 1972 1983 1984 1973 -1634 0 quad 1973 1984 1985 1974 -1635 0 quad 1974 1985 1986 1975 -1636 0 quad 1975 1986 1987 1976 -1637 0 quad 1976 1987 1988 1977 -1638 0 quad 1977 1988 1989 1978 -1639 0 quad 1978 1989 1990 1979 -1640 0 quad 1979 1990 1991 1980 -1641 0 quad 1981 1992 1993 1982 -1642 0 quad 1982 1993 1994 1983 -1643 0 quad 1983 1994 1995 1984 -1644 0 quad 1984 1995 1996 1985 -1645 0 quad 1985 1996 1997 1986 -1646 0 quad 1986 1997 1998 1987 -1647 0 quad 1987 1998 1999 1988 -1648 0 quad 1988 1999 2000 1989 -1649 0 quad 1989 2000 2001 1990 -1650 0 quad 1990 2001 2002 1991 -1651 0 quad 1992 2003 2004 1993 -1652 0 quad 1993 2004 2005 1994 -1653 0 quad 1994 2005 2006 1995 -1654 0 quad 1995 2006 2007 1996 -1655 0 quad 1996 2007 2008 1997 -1656 0 quad 1997 2008 2009 1998 -1657 0 quad 1998 2009 2010 1999 -1658 0 quad 1999 2010 2011 2000 -1659 0 quad 2000 2011 2012 2001 -1660 0 quad 2001 2012 2013 2002 -1661 0 quad 2003 2014 2015 2004 -1662 0 quad 2004 2015 2016 2005 -1663 0 quad 2005 2016 2017 2006 -1664 0 quad 2006 2017 2018 2007 -1665 0 quad 2007 2018 2019 2008 -1666 0 quad 2008 2019 2020 2009 -1667 0 quad 2009 2020 2021 2010 -1668 0 quad 2010 2021 2022 2011 -1669 0 quad 2011 2022 2023 2012 -1670 0 quad 2012 2023 2024 2013 -1671 0 quad 2014 2025 2026 2015 -1672 0 quad 2015 2026 2027 2016 -1673 0 quad 2016 2027 2028 2017 -1674 0 quad 2017 2028 2029 2018 -1675 0 quad 2018 2029 2030 2019 -1676 0 quad 2019 2030 2031 2020 -1677 0 quad 2020 2031 2032 2021 -1678 0 quad 2021 2032 2033 2022 -1679 0 quad 2022 2033 2034 2023 -1680 0 quad 2023 2034 2035 2024 -1681 0 quad 2025 2036 2037 2026 -1682 0 quad 2026 2037 2038 2027 -1683 0 quad 2027 2038 2039 2028 -1684 0 quad 2028 2039 2040 2029 -1685 0 quad 2029 2040 2041 2030 -1686 0 quad 2030 2041 2042 2031 -1687 0 quad 2031 2042 2043 2032 -1688 0 quad 2032 2043 2044 2033 -1689 0 quad 2033 2044 2045 2034 -1690 0 quad 2034 2045 2046 2035 -1691 0 quad 2036 2047 2048 2037 -1692 0 quad 2037 2048 2049 2038 -1693 0 quad 2038 2049 2050 2039 -1694 0 quad 2039 2050 2051 2040 -1695 0 quad 2040 2051 2052 2041 -1696 0 quad 2041 2052 2053 2042 -1697 0 quad 2042 2053 2054 2043 -1698 0 quad 2043 2054 2055 2044 -1699 0 quad 2044 2055 2056 2045 -1700 0 quad 2045 2056 2057 2046 -1701 0 quad 2058 2069 2070 2059 -1702 0 quad 2059 2070 2071 2060 -1703 0 quad 2060 2071 2072 2061 -1704 0 quad 2061 2072 2073 2062 -1705 0 quad 2062 2073 2074 2063 -1706 0 quad 2063 2074 2075 2064 -1707 0 quad 2064 2075 2076 2065 -1708 0 quad 2065 2076 2077 2066 -1709 0 quad 2066 2077 2078 2067 -1710 0 quad 2067 2078 2079 2068 -1711 0 quad 2069 2080 2081 2070 -1712 0 quad 2070 2081 2082 2071 -1713 0 quad 2071 2082 2083 2072 -1714 0 quad 2072 2083 2084 2073 -1715 0 quad 2073 2084 2085 2074 -1716 0 quad 2074 2085 2086 2075 -1717 0 quad 2075 2086 2087 2076 -1718 0 quad 2076 2087 2088 2077 -1719 0 quad 2077 2088 2089 2078 -1720 0 quad 2078 2089 2090 2079 -1721 0 quad 2080 2091 2092 2081 -1722 0 quad 2081 2092 2093 2082 -1723 0 quad 2082 2093 2094 2083 -1724 0 quad 2083 2094 2095 2084 -1725 0 quad 2084 2095 2096 2085 -1726 0 quad 2085 2096 2097 2086 -1727 0 quad 2086 2097 2098 2087 -1728 0 quad 2087 2098 2099 2088 -1729 0 quad 2088 2099 2100 2089 -1730 0 quad 2089 2100 2101 2090 -1731 0 quad 2091 2102 2103 2092 -1732 0 quad 2092 2103 2104 2093 -1733 0 quad 2093 2104 2105 2094 -1734 0 quad 2094 2105 2106 2095 -1735 0 quad 2095 2106 2107 2096 -1736 0 quad 2096 2107 2108 2097 -1737 0 quad 2097 2108 2109 2098 -1738 0 quad 2098 2109 2110 2099 -1739 0 quad 2099 2110 2111 2100 -1740 0 quad 2100 2111 2112 2101 -1741 0 quad 2102 2113 2114 2103 -1742 0 quad 2103 2114 2115 2104 -1743 0 quad 2104 2115 2116 2105 -1744 0 quad 2105 2116 2117 2106 -1745 0 quad 2106 2117 2118 2107 -1746 0 quad 2107 2118 2119 2108 -1747 0 quad 2108 2119 2120 2109 -1748 0 quad 2109 2120 2121 2110 -1749 0 quad 2110 2121 2122 2111 -1750 0 quad 2111 2122 2123 2112 -1751 0 quad 2113 2124 2125 2114 -1752 0 quad 2114 2125 2126 2115 -1753 0 quad 2115 2126 2127 2116 -1754 0 quad 2116 2127 2128 2117 -1755 0 quad 2117 2128 2129 2118 -1756 0 quad 2118 2129 2130 2119 -1757 0 quad 2119 2130 2131 2120 -1758 0 quad 2120 2131 2132 2121 -1759 0 quad 2121 2132 2133 2122 -1760 0 quad 2122 2133 2134 2123 -1761 0 quad 2124 2135 2136 2125 -1762 0 quad 2125 2136 2137 2126 -1763 0 quad 2126 2137 2138 2127 -1764 0 quad 2127 2138 2139 2128 -1765 0 quad 2128 2139 2140 2129 -1766 0 quad 2129 2140 2141 2130 -1767 0 quad 2130 2141 2142 2131 -1768 0 quad 2131 2142 2143 2132 -1769 0 quad 2132 2143 2144 2133 -1770 0 quad 2133 2144 2145 2134 -1771 0 quad 2135 2146 2147 2136 -1772 0 quad 2136 2147 2148 2137 -1773 0 quad 2137 2148 2149 2138 -1774 0 quad 2138 2149 2150 2139 -1775 0 quad 2139 2150 2151 2140 -1776 0 quad 2140 2151 2152 2141 -1777 0 quad 2141 2152 2153 2142 -1778 0 quad 2142 2153 2154 2143 -1779 0 quad 2143 2154 2155 2144 -1780 0 quad 2144 2155 2156 2145 -1781 0 quad 2146 2157 2158 2147 -1782 0 quad 2147 2158 2159 2148 -1783 0 quad 2148 2159 2160 2149 -1784 0 quad 2149 2160 2161 2150 -1785 0 quad 2150 2161 2162 2151 -1786 0 quad 2151 2162 2163 2152 -1787 0 quad 2152 2163 2164 2153 -1788 0 quad 2153 2164 2165 2154 -1789 0 quad 2154 2165 2166 2155 -1790 0 quad 2155 2166 2167 2156 -1791 0 quad 2157 2168 2169 2158 -1792 0 quad 2158 2169 2170 2159 -1793 0 quad 2159 2170 2171 2160 -1794 0 quad 2160 2171 2172 2161 -1795 0 quad 2161 2172 2173 2162 -1796 0 quad 2162 2173 2174 2163 -1797 0 quad 2163 2174 2175 2164 -1798 0 quad 2164 2175 2176 2165 -1799 0 quad 2165 2176 2177 2166 -1800 0 quad 2166 2177 2178 2167 -1801 0 quad 2179 2190 2191 2180 -1802 0 quad 2180 2191 2192 2181 -1803 0 quad 2181 2192 2193 2182 -1804 0 quad 2182 2193 2194 2183 -1805 0 quad 2183 2194 2195 2184 -1806 0 quad 2184 2195 2196 2185 -1807 0 quad 2185 2196 2197 2186 -1808 0 quad 2186 2197 2198 2187 -1809 0 quad 2187 2198 2199 2188 -1810 0 quad 2188 2199 2200 2189 -1811 0 quad 2190 2201 2202 2191 -1812 0 quad 2191 2202 2203 2192 -1813 0 quad 2192 2203 2204 2193 -1814 0 quad 2193 2204 2205 2194 -1815 0 quad 2194 2205 2206 2195 -1816 0 quad 2195 2206 2207 2196 -1817 0 quad 2196 2207 2208 2197 -1818 0 quad 2197 2208 2209 2198 -1819 0 quad 2198 2209 2210 2199 -1820 0 quad 2199 2210 2211 2200 -1821 0 quad 2201 2212 2213 2202 -1822 0 quad 2202 2213 2214 2203 -1823 0 quad 2203 2214 2215 2204 -1824 0 quad 2204 2215 2216 2205 -1825 0 quad 2205 2216 2217 2206 -1826 0 quad 2206 2217 2218 2207 -1827 0 quad 2207 2218 2219 2208 -1828 0 quad 2208 2219 2220 2209 -1829 0 quad 2209 2220 2221 2210 -1830 0 quad 2210 2221 2222 2211 -1831 0 quad 2212 2223 2224 2213 -1832 0 quad 2213 2224 2225 2214 -1833 0 quad 2214 2225 2226 2215 -1834 0 quad 2215 2226 2227 2216 -1835 0 quad 2216 2227 2228 2217 -1836 0 quad 2217 2228 2229 2218 -1837 0 quad 2218 2229 2230 2219 -1838 0 quad 2219 2230 2231 2220 -1839 0 quad 2220 2231 2232 2221 -1840 0 quad 2221 2232 2233 2222 -1841 0 quad 2223 2234 2235 2224 -1842 0 quad 2224 2235 2236 2225 -1843 0 quad 2225 2236 2237 2226 -1844 0 quad 2226 2237 2238 2227 -1845 0 quad 2227 2238 2239 2228 -1846 0 quad 2228 2239 2240 2229 -1847 0 quad 2229 2240 2241 2230 -1848 0 quad 2230 2241 2242 2231 -1849 0 quad 2231 2242 2243 2232 -1850 0 quad 2232 2243 2244 2233 -1851 0 quad 2234 2245 2246 2235 -1852 0 quad 2235 2246 2247 2236 -1853 0 quad 2236 2247 2248 2237 -1854 0 quad 2237 2248 2249 2238 -1855 0 quad 2238 2249 2250 2239 -1856 0 quad 2239 2250 2251 2240 -1857 0 quad 2240 2251 2252 2241 -1858 0 quad 2241 2252 2253 2242 -1859 0 quad 2242 2253 2254 2243 -1860 0 quad 2243 2254 2255 2244 -1861 0 quad 2245 2256 2257 2246 -1862 0 quad 2246 2257 2258 2247 -1863 0 quad 2247 2258 2259 2248 -1864 0 quad 2248 2259 2260 2249 -1865 0 quad 2249 2260 2261 2250 -1866 0 quad 2250 2261 2262 2251 -1867 0 quad 2251 2262 2263 2252 -1868 0 quad 2252 2263 2264 2253 -1869 0 quad 2253 2264 2265 2254 -1870 0 quad 2254 2265 2266 2255 -1871 0 quad 2256 2267 2268 2257 -1872 0 quad 2257 2268 2269 2258 -1873 0 quad 2258 2269 2270 2259 -1874 0 quad 2259 2270 2271 2260 -1875 0 quad 2260 2271 2272 2261 -1876 0 quad 2261 2272 2273 2262 -1877 0 quad 2262 2273 2274 2263 -1878 0 quad 2263 2274 2275 2264 -1879 0 quad 2264 2275 2276 2265 -1880 0 quad 2265 2276 2277 2266 -1881 0 quad 2267 2278 2279 2268 -1882 0 quad 2268 2279 2280 2269 -1883 0 quad 2269 2280 2281 2270 -1884 0 quad 2270 2281 2282 2271 -1885 0 quad 2271 2282 2283 2272 -1886 0 quad 2272 2283 2284 2273 -1887 0 quad 2273 2284 2285 2274 -1888 0 quad 2274 2285 2286 2275 -1889 0 quad 2275 2286 2287 2276 -1890 0 quad 2276 2287 2288 2277 -1891 0 quad 2278 2289 2290 2279 -1892 0 quad 2279 2290 2291 2280 -1893 0 quad 2280 2291 2292 2281 -1894 0 quad 2281 2292 2293 2282 -1895 0 quad 2282 2293 2294 2283 -1896 0 quad 2283 2294 2295 2284 -1897 0 quad 2284 2295 2296 2285 -1898 0 quad 2285 2296 2297 2286 -1899 0 quad 2286 2297 2298 2287 -1900 0 quad 2287 2298 2299 2288 -1901 0 quad 2300 2311 2312 2301 -1902 0 quad 2301 2312 2313 2302 -1903 0 quad 2302 2313 2314 2303 -1904 0 quad 2303 2314 2315 2304 -1905 0 quad 2304 2315 2316 2305 -1906 0 quad 2305 2316 2317 2306 -1907 0 quad 2306 2317 2318 2307 -1908 0 quad 2307 2318 2319 2308 -1909 0 quad 2308 2319 2320 2309 -1910 0 quad 2309 2320 2321 2310 -1911 0 quad 2311 2322 2323 2312 -1912 0 quad 2312 2323 2324 2313 -1913 0 quad 2313 2324 2325 2314 -1914 0 quad 2314 2325 2326 2315 -1915 0 quad 2315 2326 2327 2316 -1916 0 quad 2316 2327 2328 2317 -1917 0 quad 2317 2328 2329 2318 -1918 0 quad 2318 2329 2330 2319 -1919 0 quad 2319 2330 2331 2320 -1920 0 quad 2320 2331 2332 2321 -1921 0 quad 2322 2333 2334 2323 -1922 0 quad 2323 2334 2335 2324 -1923 0 quad 2324 2335 2336 2325 -1924 0 quad 2325 2336 2337 2326 -1925 0 quad 2326 2337 2338 2327 -1926 0 quad 2327 2338 2339 2328 -1927 0 quad 2328 2339 2340 2329 -1928 0 quad 2329 2340 2341 2330 -1929 0 quad 2330 2341 2342 2331 -1930 0 quad 2331 2342 2343 2332 -1931 0 quad 2333 2344 2345 2334 -1932 0 quad 2334 2345 2346 2335 -1933 0 quad 2335 2346 2347 2336 -1934 0 quad 2336 2347 2348 2337 -1935 0 quad 2337 2348 2349 2338 -1936 0 quad 2338 2349 2350 2339 -1937 0 quad 2339 2350 2351 2340 -1938 0 quad 2340 2351 2352 2341 -1939 0 quad 2341 2352 2353 2342 -1940 0 quad 2342 2353 2354 2343 -1941 0 quad 2344 2355 2356 2345 -1942 0 quad 2345 2356 2357 2346 -1943 0 quad 2346 2357 2358 2347 -1944 0 quad 2347 2358 2359 2348 -1945 0 quad 2348 2359 2360 2349 -1946 0 quad 2349 2360 2361 2350 -1947 0 quad 2350 2361 2362 2351 -1948 0 quad 2351 2362 2363 2352 -1949 0 quad 2352 2363 2364 2353 -1950 0 quad 2353 2364 2365 2354 -1951 0 quad 2355 2366 2367 2356 -1952 0 quad 2356 2367 2368 2357 -1953 0 quad 2357 2368 2369 2358 -1954 0 quad 2358 2369 2370 2359 -1955 0 quad 2359 2370 2371 2360 -1956 0 quad 2360 2371 2372 2361 -1957 0 quad 2361 2372 2373 2362 -1958 0 quad 2362 2373 2374 2363 -1959 0 quad 2363 2374 2375 2364 -1960 0 quad 2364 2375 2376 2365 -1961 0 quad 2366 2377 2378 2367 -1962 0 quad 2367 2378 2379 2368 -1963 0 quad 2368 2379 2380 2369 -1964 0 quad 2369 2380 2381 2370 -1965 0 quad 2370 2381 2382 2371 -1966 0 quad 2371 2382 2383 2372 -1967 0 quad 2372 2383 2384 2373 -1968 0 quad 2373 2384 2385 2374 -1969 0 quad 2374 2385 2386 2375 -1970 0 quad 2375 2386 2387 2376 -1971 0 quad 2377 2388 2389 2378 -1972 0 quad 2378 2389 2390 2379 -1973 0 quad 2379 2390 2391 2380 -1974 0 quad 2380 2391 2392 2381 -1975 0 quad 2381 2392 2393 2382 -1976 0 quad 2382 2393 2394 2383 -1977 0 quad 2383 2394 2395 2384 -1978 0 quad 2384 2395 2396 2385 -1979 0 quad 2385 2396 2397 2386 -1980 0 quad 2386 2397 2398 2387 -1981 0 quad 2388 2399 2400 2389 -1982 0 quad 2389 2400 2401 2390 -1983 0 quad 2390 2401 2402 2391 -1984 0 quad 2391 2402 2403 2392 -1985 0 quad 2392 2403 2404 2393 -1986 0 quad 2393 2404 2405 2394 -1987 0 quad 2394 2405 2406 2395 -1988 0 quad 2395 2406 2407 2396 -1989 0 quad 2396 2407 2408 2397 -1990 0 quad 2397 2408 2409 2398 -1991 0 quad 2399 2410 2411 2400 -1992 0 quad 2400 2411 2412 2401 -1993 0 quad 2401 2412 2413 2402 -1994 0 quad 2402 2413 2414 2403 -1995 0 quad 2403 2414 2415 2404 -1996 0 quad 2404 2415 2416 2405 -1997 0 quad 2405 2416 2417 2406 -1998 0 quad 2406 2417 2418 2407 -1999 0 quad 2407 2418 2419 2408 -2000 0 quad 2408 2419 2420 2409 -2001 0 quad 2421 2432 2433 2422 -2002 0 quad 2422 2433 2434 2423 -2003 0 quad 2423 2434 2435 2424 -2004 0 quad 2424 2435 2436 2425 -2005 0 quad 2425 2436 2437 2426 -2006 0 quad 2426 2437 2438 2427 -2007 0 quad 2427 2438 2439 2428 -2008 0 quad 2428 2439 2440 2429 -2009 0 quad 2429 2440 2441 2430 -2010 0 quad 2430 2441 2442 2431 -2011 0 quad 2432 2443 2444 2433 -2012 0 quad 2433 2444 2445 2434 -2013 0 quad 2434 2445 2446 2435 -2014 0 quad 2435 2446 2447 2436 -2015 0 quad 2436 2447 2448 2437 -2016 0 quad 2437 2448 2449 2438 -2017 0 quad 2438 2449 2450 2439 -2018 0 quad 2439 2450 2451 2440 -2019 0 quad 2440 2451 2452 2441 -2020 0 quad 2441 2452 2453 2442 -2021 0 quad 2443 2454 2455 2444 -2022 0 quad 2444 2455 2456 2445 -2023 0 quad 2445 2456 2457 2446 -2024 0 quad 2446 2457 2458 2447 -2025 0 quad 2447 2458 2459 2448 -2026 0 quad 2448 2459 2460 2449 -2027 0 quad 2449 2460 2461 2450 -2028 0 quad 2450 2461 2462 2451 -2029 0 quad 2451 2462 2463 2452 -2030 0 quad 2452 2463 2464 2453 -2031 0 quad 2454 2465 2466 2455 -2032 0 quad 2455 2466 2467 2456 -2033 0 quad 2456 2467 2468 2457 -2034 0 quad 2457 2468 2469 2458 -2035 0 quad 2458 2469 2470 2459 -2036 0 quad 2459 2470 2471 2460 -2037 0 quad 2460 2471 2472 2461 -2038 0 quad 2461 2472 2473 2462 -2039 0 quad 2462 2473 2474 2463 -2040 0 quad 2463 2474 2475 2464 -2041 0 quad 2465 2476 2477 2466 -2042 0 quad 2466 2477 2478 2467 -2043 0 quad 2467 2478 2479 2468 -2044 0 quad 2468 2479 2480 2469 -2045 0 quad 2469 2480 2481 2470 -2046 0 quad 2470 2481 2482 2471 -2047 0 quad 2471 2482 2483 2472 -2048 0 quad 2472 2483 2484 2473 -2049 0 quad 2473 2484 2485 2474 -2050 0 quad 2474 2485 2486 2475 -2051 0 quad 2476 2487 2488 2477 -2052 0 quad 2477 2488 2489 2478 -2053 0 quad 2478 2489 2490 2479 -2054 0 quad 2479 2490 2491 2480 -2055 0 quad 2480 2491 2492 2481 -2056 0 quad 2481 2492 2493 2482 -2057 0 quad 2482 2493 2494 2483 -2058 0 quad 2483 2494 2495 2484 -2059 0 quad 2484 2495 2496 2485 -2060 0 quad 2485 2496 2497 2486 -2061 0 quad 2487 2498 2499 2488 -2062 0 quad 2488 2499 2500 2489 -2063 0 quad 2489 2500 2501 2490 -2064 0 quad 2490 2501 2502 2491 -2065 0 quad 2491 2502 2503 2492 -2066 0 quad 2492 2503 2504 2493 -2067 0 quad 2493 2504 2505 2494 -2068 0 quad 2494 2505 2506 2495 -2069 0 quad 2495 2506 2507 2496 -2070 0 quad 2496 2507 2508 2497 -2071 0 quad 2498 2509 2510 2499 -2072 0 quad 2499 2510 2511 2500 -2073 0 quad 2500 2511 2512 2501 -2074 0 quad 2501 2512 2513 2502 -2075 0 quad 2502 2513 2514 2503 -2076 0 quad 2503 2514 2515 2504 -2077 0 quad 2504 2515 2516 2505 -2078 0 quad 2505 2516 2517 2506 -2079 0 quad 2506 2517 2518 2507 -2080 0 quad 2507 2518 2519 2508 -2081 0 quad 2509 2520 2521 2510 -2082 0 quad 2510 2521 2522 2511 -2083 0 quad 2511 2522 2523 2512 -2084 0 quad 2512 2523 2524 2513 -2085 0 quad 2513 2524 2525 2514 -2086 0 quad 2514 2525 2526 2515 -2087 0 quad 2515 2526 2527 2516 -2088 0 quad 2516 2527 2528 2517 -2089 0 quad 2517 2528 2529 2518 -2090 0 quad 2518 2529 2530 2519 -2091 0 quad 2520 2531 2532 2521 -2092 0 quad 2521 2532 2533 2522 -2093 0 quad 2522 2533 2534 2523 -2094 0 quad 2523 2534 2535 2524 -2095 0 quad 2524 2535 2536 2525 -2096 0 quad 2525 2536 2537 2526 -2097 0 quad 2526 2537 2538 2527 -2098 0 quad 2527 2538 2539 2528 -2099 0 quad 2528 2539 2540 2529 -2100 0 quad 2529 2540 2541 2530 -2101 0 quad 2542 2553 2554 2543 -2102 0 quad 2543 2554 2555 2544 -2103 0 quad 2544 2555 2556 2545 -2104 0 quad 2545 2556 2557 2546 -2105 0 quad 2546 2557 2558 2547 -2106 0 quad 2547 2558 2559 2548 -2107 0 quad 2548 2559 2560 2549 -2108 0 quad 2549 2560 2561 2550 -2109 0 quad 2550 2561 2562 2551 -2110 0 quad 2551 2562 2563 2552 -2111 0 quad 2553 2564 2565 2554 -2112 0 quad 2554 2565 2566 2555 -2113 0 quad 2555 2566 2567 2556 -2114 0 quad 2556 2567 2568 2557 -2115 0 quad 2557 2568 2569 2558 -2116 0 quad 2558 2569 2570 2559 -2117 0 quad 2559 2570 2571 2560 -2118 0 quad 2560 2571 2572 2561 -2119 0 quad 2561 2572 2573 2562 -2120 0 quad 2562 2573 2574 2563 -2121 0 quad 2564 2575 2576 2565 -2122 0 quad 2565 2576 2577 2566 -2123 0 quad 2566 2577 2578 2567 -2124 0 quad 2567 2578 2579 2568 -2125 0 quad 2568 2579 2580 2569 -2126 0 quad 2569 2580 2581 2570 -2127 0 quad 2570 2581 2582 2571 -2128 0 quad 2571 2582 2583 2572 -2129 0 quad 2572 2583 2584 2573 -2130 0 quad 2573 2584 2585 2574 -2131 0 quad 2575 2586 2587 2576 -2132 0 quad 2576 2587 2588 2577 -2133 0 quad 2577 2588 2589 2578 -2134 0 quad 2578 2589 2590 2579 -2135 0 quad 2579 2590 2591 2580 -2136 0 quad 2580 2591 2592 2581 -2137 0 quad 2581 2592 2593 2582 -2138 0 quad 2582 2593 2594 2583 -2139 0 quad 2583 2594 2595 2584 -2140 0 quad 2584 2595 2596 2585 -2141 0 quad 2586 2597 2598 2587 -2142 0 quad 2587 2598 2599 2588 -2143 0 quad 2588 2599 2600 2589 -2144 0 quad 2589 2600 2601 2590 -2145 0 quad 2590 2601 2602 2591 -2146 0 quad 2591 2602 2603 2592 -2147 0 quad 2592 2603 2604 2593 -2148 0 quad 2593 2604 2605 2594 -2149 0 quad 2594 2605 2606 2595 -2150 0 quad 2595 2606 2607 2596 -2151 0 quad 2597 2608 2609 2598 -2152 0 quad 2598 2609 2610 2599 -2153 0 quad 2599 2610 2611 2600 -2154 0 quad 2600 2611 2612 2601 -2155 0 quad 2601 2612 2613 2602 -2156 0 quad 2602 2613 2614 2603 -2157 0 quad 2603 2614 2615 2604 -2158 0 quad 2604 2615 2616 2605 -2159 0 quad 2605 2616 2617 2606 -2160 0 quad 2606 2617 2618 2607 -2161 0 quad 2608 2619 2620 2609 -2162 0 quad 2609 2620 2621 2610 -2163 0 quad 2610 2621 2622 2611 -2164 0 quad 2611 2622 2623 2612 -2165 0 quad 2612 2623 2624 2613 -2166 0 quad 2613 2624 2625 2614 -2167 0 quad 2614 2625 2626 2615 -2168 0 quad 2615 2626 2627 2616 -2169 0 quad 2616 2627 2628 2617 -2170 0 quad 2617 2628 2629 2618 -2171 0 quad 2619 2630 2631 2620 -2172 0 quad 2620 2631 2632 2621 -2173 0 quad 2621 2632 2633 2622 -2174 0 quad 2622 2633 2634 2623 -2175 0 quad 2623 2634 2635 2624 -2176 0 quad 2624 2635 2636 2625 -2177 0 quad 2625 2636 2637 2626 -2178 0 quad 2626 2637 2638 2627 -2179 0 quad 2627 2638 2639 2628 -2180 0 quad 2628 2639 2640 2629 -2181 0 quad 2630 2641 2642 2631 -2182 0 quad 2631 2642 2643 2632 -2183 0 quad 2632 2643 2644 2633 -2184 0 quad 2633 2644 2645 2634 -2185 0 quad 2634 2645 2646 2635 -2186 0 quad 2635 2646 2647 2636 -2187 0 quad 2636 2647 2648 2637 -2188 0 quad 2637 2648 2649 2638 -2189 0 quad 2638 2649 2650 2639 -2190 0 quad 2639 2650 2651 2640 -2191 0 quad 2641 2652 2653 2642 -2192 0 quad 2642 2653 2654 2643 -2193 0 quad 2643 2654 2655 2644 -2194 0 quad 2644 2655 2656 2645 -2195 0 quad 2645 2656 2657 2646 -2196 0 quad 2646 2657 2658 2647 -2197 0 quad 2647 2658 2659 2648 -2198 0 quad 2648 2659 2660 2649 -2199 0 quad 2649 2660 2661 2650 -2200 0 quad 2650 2661 2662 2651 -2201 0 quad 2663 2674 2675 2664 -2202 0 quad 2664 2675 2676 2665 -2203 0 quad 2665 2676 2677 2666 -2204 0 quad 2666 2677 2678 2667 -2205 0 quad 2667 2678 2679 2668 -2206 0 quad 2668 2679 2680 2669 -2207 0 quad 2669 2680 2681 2670 -2208 0 quad 2670 2681 2682 2671 -2209 0 quad 2671 2682 2683 2672 -2210 0 quad 2672 2683 2684 2673 -2211 0 quad 2674 2685 2686 2675 -2212 0 quad 2675 2686 2687 2676 -2213 0 quad 2676 2687 2688 2677 -2214 0 quad 2677 2688 2689 2678 -2215 0 quad 2678 2689 2690 2679 -2216 0 quad 2679 2690 2691 2680 -2217 0 quad 2680 2691 2692 2681 -2218 0 quad 2681 2692 2693 2682 -2219 0 quad 2682 2693 2694 2683 -2220 0 quad 2683 2694 2695 2684 -2221 0 quad 2685 2696 2697 2686 -2222 0 quad 2686 2697 2698 2687 -2223 0 quad 2687 2698 2699 2688 -2224 0 quad 2688 2699 2700 2689 -2225 0 quad 2689 2700 2701 2690 -2226 0 quad 2690 2701 2702 2691 -2227 0 quad 2691 2702 2703 2692 -2228 0 quad 2692 2703 2704 2693 -2229 0 quad 2693 2704 2705 2694 -2230 0 quad 2694 2705 2706 2695 -2231 0 quad 2696 2707 2708 2697 -2232 0 quad 2697 2708 2709 2698 -2233 0 quad 2698 2709 2710 2699 -2234 0 quad 2699 2710 2711 2700 -2235 0 quad 2700 2711 2712 2701 -2236 0 quad 2701 2712 2713 2702 -2237 0 quad 2702 2713 2714 2703 -2238 0 quad 2703 2714 2715 2704 -2239 0 quad 2704 2715 2716 2705 -2240 0 quad 2705 2716 2717 2706 -2241 0 quad 2707 2718 2719 2708 -2242 0 quad 2708 2719 2720 2709 -2243 0 quad 2709 2720 2721 2710 -2244 0 quad 2710 2721 2722 2711 -2245 0 quad 2711 2722 2723 2712 -2246 0 quad 2712 2723 2724 2713 -2247 0 quad 2713 2724 2725 2714 -2248 0 quad 2714 2725 2726 2715 -2249 0 quad 2715 2726 2727 2716 -2250 0 quad 2716 2727 2728 2717 -2251 0 quad 2718 2729 2730 2719 -2252 0 quad 2719 2730 2731 2720 -2253 0 quad 2720 2731 2732 2721 -2254 0 quad 2721 2732 2733 2722 -2255 0 quad 2722 2733 2734 2723 -2256 0 quad 2723 2734 2735 2724 -2257 0 quad 2724 2735 2736 2725 -2258 0 quad 2725 2736 2737 2726 -2259 0 quad 2726 2737 2738 2727 -2260 0 quad 2727 2738 2739 2728 -2261 0 quad 2729 2740 2741 2730 -2262 0 quad 2730 2741 2742 2731 -2263 0 quad 2731 2742 2743 2732 -2264 0 quad 2732 2743 2744 2733 -2265 0 quad 2733 2744 2745 2734 -2266 0 quad 2734 2745 2746 2735 -2267 0 quad 2735 2746 2747 2736 -2268 0 quad 2736 2747 2748 2737 -2269 0 quad 2737 2748 2749 2738 -2270 0 quad 2738 2749 2750 2739 -2271 0 quad 2740 2751 2752 2741 -2272 0 quad 2741 2752 2753 2742 -2273 0 quad 2742 2753 2754 2743 -2274 0 quad 2743 2754 2755 2744 -2275 0 quad 2744 2755 2756 2745 -2276 0 quad 2745 2756 2757 2746 -2277 0 quad 2746 2757 2758 2747 -2278 0 quad 2747 2758 2759 2748 -2279 0 quad 2748 2759 2760 2749 -2280 0 quad 2749 2760 2761 2750 -2281 0 quad 2751 2762 2763 2752 -2282 0 quad 2752 2763 2764 2753 -2283 0 quad 2753 2764 2765 2754 -2284 0 quad 2754 2765 2766 2755 -2285 0 quad 2755 2766 2767 2756 -2286 0 quad 2756 2767 2768 2757 -2287 0 quad 2757 2768 2769 2758 -2288 0 quad 2758 2769 2770 2759 -2289 0 quad 2759 2770 2771 2760 -2290 0 quad 2760 2771 2772 2761 -2291 0 quad 2762 2773 2774 2763 -2292 0 quad 2763 2774 2775 2764 -2293 0 quad 2764 2775 2776 2765 -2294 0 quad 2765 2776 2777 2766 -2295 0 quad 2766 2777 2778 2767 -2296 0 quad 2767 2778 2779 2768 -2297 0 quad 2768 2779 2780 2769 -2298 0 quad 2769 2780 2781 2770 -2299 0 quad 2770 2781 2782 2771 -2300 0 quad 2771 2782 2783 2772 -2301 0 quad 2784 2795 2796 2785 -2302 0 quad 2785 2796 2797 2786 -2303 0 quad 2786 2797 2798 2787 -2304 0 quad 2787 2798 2799 2788 -2305 0 quad 2788 2799 2800 2789 -2306 0 quad 2789 2800 2801 2790 -2307 0 quad 2790 2801 2802 2791 -2308 0 quad 2791 2802 2803 2792 -2309 0 quad 2792 2803 2804 2793 -2310 0 quad 2793 2804 2805 2794 -2311 0 quad 2795 2806 2807 2796 -2312 0 quad 2796 2807 2808 2797 -2313 0 quad 2797 2808 2809 2798 -2314 0 quad 2798 2809 2810 2799 -2315 0 quad 2799 2810 2811 2800 -2316 0 quad 2800 2811 2812 2801 -2317 0 quad 2801 2812 2813 2802 -2318 0 quad 2802 2813 2814 2803 -2319 0 quad 2803 2814 2815 2804 -2320 0 quad 2804 2815 2816 2805 -2321 0 quad 2806 2817 2818 2807 -2322 0 quad 2807 2818 2819 2808 -2323 0 quad 2808 2819 2820 2809 -2324 0 quad 2809 2820 2821 2810 -2325 0 quad 2810 2821 2822 2811 -2326 0 quad 2811 2822 2823 2812 -2327 0 quad 2812 2823 2824 2813 -2328 0 quad 2813 2824 2825 2814 -2329 0 quad 2814 2825 2826 2815 -2330 0 quad 2815 2826 2827 2816 -2331 0 quad 2817 2828 2829 2818 -2332 0 quad 2818 2829 2830 2819 -2333 0 quad 2819 2830 2831 2820 -2334 0 quad 2820 2831 2832 2821 -2335 0 quad 2821 2832 2833 2822 -2336 0 quad 2822 2833 2834 2823 -2337 0 quad 2823 2834 2835 2824 -2338 0 quad 2824 2835 2836 2825 -2339 0 quad 2825 2836 2837 2826 -2340 0 quad 2826 2837 2838 2827 -2341 0 quad 2828 2839 2840 2829 -2342 0 quad 2829 2840 2841 2830 -2343 0 quad 2830 2841 2842 2831 -2344 0 quad 2831 2842 2843 2832 -2345 0 quad 2832 2843 2844 2833 -2346 0 quad 2833 2844 2845 2834 -2347 0 quad 2834 2845 2846 2835 -2348 0 quad 2835 2846 2847 2836 -2349 0 quad 2836 2847 2848 2837 -2350 0 quad 2837 2848 2849 2838 -2351 0 quad 2839 2850 2851 2840 -2352 0 quad 2840 2851 2852 2841 -2353 0 quad 2841 2852 2853 2842 -2354 0 quad 2842 2853 2854 2843 -2355 0 quad 2843 2854 2855 2844 -2356 0 quad 2844 2855 2856 2845 -2357 0 quad 2845 2856 2857 2846 -2358 0 quad 2846 2857 2858 2847 -2359 0 quad 2847 2858 2859 2848 -2360 0 quad 2848 2859 2860 2849 -2361 0 quad 2850 2861 2862 2851 -2362 0 quad 2851 2862 2863 2852 -2363 0 quad 2852 2863 2864 2853 -2364 0 quad 2853 2864 2865 2854 -2365 0 quad 2854 2865 2866 2855 -2366 0 quad 2855 2866 2867 2856 -2367 0 quad 2856 2867 2868 2857 -2368 0 quad 2857 2868 2869 2858 -2369 0 quad 2858 2869 2870 2859 -2370 0 quad 2859 2870 2871 2860 -2371 0 quad 2861 2872 2873 2862 -2372 0 quad 2862 2873 2874 2863 -2373 0 quad 2863 2874 2875 2864 -2374 0 quad 2864 2875 2876 2865 -2375 0 quad 2865 2876 2877 2866 -2376 0 quad 2866 2877 2878 2867 -2377 0 quad 2867 2878 2879 2868 -2378 0 quad 2868 2879 2880 2869 -2379 0 quad 2869 2880 2881 2870 -2380 0 quad 2870 2881 2882 2871 -2381 0 quad 2872 2883 2884 2873 -2382 0 quad 2873 2884 2885 2874 -2383 0 quad 2874 2885 2886 2875 -2384 0 quad 2875 2886 2887 2876 -2385 0 quad 2876 2887 2888 2877 -2386 0 quad 2877 2888 2889 2878 -2387 0 quad 2878 2889 2890 2879 -2388 0 quad 2879 2890 2891 2880 -2389 0 quad 2880 2891 2892 2881 -2390 0 quad 2881 2892 2893 2882 -2391 0 quad 2883 2894 2895 2884 -2392 0 quad 2884 2895 2896 2885 -2393 0 quad 2885 2896 2897 2886 -2394 0 quad 2886 2897 2898 2887 -2395 0 quad 2887 2898 2899 2888 -2396 0 quad 2888 2899 2900 2889 -2397 0 quad 2889 2900 2901 2890 -2398 0 quad 2890 2901 2902 2891 -2399 0 quad 2891 2902 2903 2892 -2400 0 quad 2892 2903 2904 2893 -2401 0 quad 2905 2916 2917 2906 -2402 0 quad 2906 2917 2918 2907 -2403 0 quad 2907 2918 2919 2908 -2404 0 quad 2908 2919 2920 2909 -2405 0 quad 2909 2920 2921 2910 -2406 0 quad 2910 2921 2922 2911 -2407 0 quad 2911 2922 2923 2912 -2408 0 quad 2912 2923 2924 2913 -2409 0 quad 2913 2924 2925 2914 -2410 0 quad 2914 2925 2926 2915 -2411 0 quad 2916 2927 2928 2917 -2412 0 quad 2917 2928 2929 2918 -2413 0 quad 2918 2929 2930 2919 -2414 0 quad 2919 2930 2931 2920 -2415 0 quad 2920 2931 2932 2921 -2416 0 quad 2921 2932 2933 2922 -2417 0 quad 2922 2933 2934 2923 -2418 0 quad 2923 2934 2935 2924 -2419 0 quad 2924 2935 2936 2925 -2420 0 quad 2925 2936 2937 2926 -2421 0 quad 2927 2938 2939 2928 -2422 0 quad 2928 2939 2940 2929 -2423 0 quad 2929 2940 2941 2930 -2424 0 quad 2930 2941 2942 2931 -2425 0 quad 2931 2942 2943 2932 -2426 0 quad 2932 2943 2944 2933 -2427 0 quad 2933 2944 2945 2934 -2428 0 quad 2934 2945 2946 2935 -2429 0 quad 2935 2946 2947 2936 -2430 0 quad 2936 2947 2948 2937 -2431 0 quad 2938 2949 2950 2939 -2432 0 quad 2939 2950 2951 2940 -2433 0 quad 2940 2951 2952 2941 -2434 0 quad 2941 2952 2953 2942 -2435 0 quad 2942 2953 2954 2943 -2436 0 quad 2943 2954 2955 2944 -2437 0 quad 2944 2955 2956 2945 -2438 0 quad 2945 2956 2957 2946 -2439 0 quad 2946 2957 2958 2947 -2440 0 quad 2947 2958 2959 2948 -2441 0 quad 2949 2960 2961 2950 -2442 0 quad 2950 2961 2962 2951 -2443 0 quad 2951 2962 2963 2952 -2444 0 quad 2952 2963 2964 2953 -2445 0 quad 2953 2964 2965 2954 -2446 0 quad 2954 2965 2966 2955 -2447 0 quad 2955 2966 2967 2956 -2448 0 quad 2956 2967 2968 2957 -2449 0 quad 2957 2968 2969 2958 -2450 0 quad 2958 2969 2970 2959 -2451 0 quad 2960 2971 2972 2961 -2452 0 quad 2961 2972 2973 2962 -2453 0 quad 2962 2973 2974 2963 -2454 0 quad 2963 2974 2975 2964 -2455 0 quad 2964 2975 2976 2965 -2456 0 quad 2965 2976 2977 2966 -2457 0 quad 2966 2977 2978 2967 -2458 0 quad 2967 2978 2979 2968 -2459 0 quad 2968 2979 2980 2969 -2460 0 quad 2969 2980 2981 2970 -2461 0 quad 2971 2982 2983 2972 -2462 0 quad 2972 2983 2984 2973 -2463 0 quad 2973 2984 2985 2974 -2464 0 quad 2974 2985 2986 2975 -2465 0 quad 2975 2986 2987 2976 -2466 0 quad 2976 2987 2988 2977 -2467 0 quad 2977 2988 2989 2978 -2468 0 quad 2978 2989 2990 2979 -2469 0 quad 2979 2990 2991 2980 -2470 0 quad 2980 2991 2992 2981 -2471 0 quad 2982 2993 2994 2983 -2472 0 quad 2983 2994 2995 2984 -2473 0 quad 2984 2995 2996 2985 -2474 0 quad 2985 2996 2997 2986 -2475 0 quad 2986 2997 2998 2987 -2476 0 quad 2987 2998 2999 2988 -2477 0 quad 2988 2999 3000 2989 -2478 0 quad 2989 3000 3001 2990 -2479 0 quad 2990 3001 3002 2991 -2480 0 quad 2991 3002 3003 2992 -2481 0 quad 2993 3004 3005 2994 -2482 0 quad 2994 3005 3006 2995 -2483 0 quad 2995 3006 3007 2996 -2484 0 quad 2996 3007 3008 2997 -2485 0 quad 2997 3008 3009 2998 -2486 0 quad 2998 3009 3010 2999 -2487 0 quad 2999 3010 3011 3000 -2488 0 quad 3000 3011 3012 3001 -2489 0 quad 3001 3012 3013 3002 -2490 0 quad 3002 3013 3014 3003 -2491 0 quad 3004 3015 3016 3005 -2492 0 quad 3005 3016 3017 3006 -2493 0 quad 3006 3017 3018 3007 -2494 0 quad 3007 3018 3019 3008 -2495 0 quad 3008 3019 3020 3009 -2496 0 quad 3009 3020 3021 3010 -2497 0 quad 3010 3021 3022 3011 -2498 0 quad 3011 3022 3023 3012 -2499 0 quad 3012 3023 3024 3013 -2500 0 quad 3013 3024 3025 3014 -2501 0 quad 3026 3037 3038 3027 -2502 0 quad 3027 3038 3039 3028 -2503 0 quad 3028 3039 3040 3029 -2504 0 quad 3029 3040 3041 3030 -2505 0 quad 3030 3041 3042 3031 -2506 0 quad 3031 3042 3043 3032 -2507 0 quad 3032 3043 3044 3033 -2508 0 quad 3033 3044 3045 3034 -2509 0 quad 3034 3045 3046 3035 -2510 0 quad 3035 3046 3047 3036 -2511 0 quad 3037 3048 3049 3038 -2512 0 quad 3038 3049 3050 3039 -2513 0 quad 3039 3050 3051 3040 -2514 0 quad 3040 3051 3052 3041 -2515 0 quad 3041 3052 3053 3042 -2516 0 quad 3042 3053 3054 3043 -2517 0 quad 3043 3054 3055 3044 -2518 0 quad 3044 3055 3056 3045 -2519 0 quad 3045 3056 3057 3046 -2520 0 quad 3046 3057 3058 3047 -2521 0 quad 3048 3059 3060 3049 -2522 0 quad 3049 3060 3061 3050 -2523 0 quad 3050 3061 3062 3051 -2524 0 quad 3051 3062 3063 3052 -2525 0 quad 3052 3063 3064 3053 -2526 0 quad 3053 3064 3065 3054 -2527 0 quad 3054 3065 3066 3055 -2528 0 quad 3055 3066 3067 3056 -2529 0 quad 3056 3067 3068 3057 -2530 0 quad 3057 3068 3069 3058 -2531 0 quad 3059 3070 3071 3060 -2532 0 quad 3060 3071 3072 3061 -2533 0 quad 3061 3072 3073 3062 -2534 0 quad 3062 3073 3074 3063 -2535 0 quad 3063 3074 3075 3064 -2536 0 quad 3064 3075 3076 3065 -2537 0 quad 3065 3076 3077 3066 -2538 0 quad 3066 3077 3078 3067 -2539 0 quad 3067 3078 3079 3068 -2540 0 quad 3068 3079 3080 3069 -2541 0 quad 3070 3081 3082 3071 -2542 0 quad 3071 3082 3083 3072 -2543 0 quad 3072 3083 3084 3073 -2544 0 quad 3073 3084 3085 3074 -2545 0 quad 3074 3085 3086 3075 -2546 0 quad 3075 3086 3087 3076 -2547 0 quad 3076 3087 3088 3077 -2548 0 quad 3077 3088 3089 3078 -2549 0 quad 3078 3089 3090 3079 -2550 0 quad 3079 3090 3091 3080 -2551 0 quad 3081 3092 3093 3082 -2552 0 quad 3082 3093 3094 3083 -2553 0 quad 3083 3094 3095 3084 -2554 0 quad 3084 3095 3096 3085 -2555 0 quad 3085 3096 3097 3086 -2556 0 quad 3086 3097 3098 3087 -2557 0 quad 3087 3098 3099 3088 -2558 0 quad 3088 3099 3100 3089 -2559 0 quad 3089 3100 3101 3090 -2560 0 quad 3090 3101 3102 3091 -2561 0 quad 3092 3103 3104 3093 -2562 0 quad 3093 3104 3105 3094 -2563 0 quad 3094 3105 3106 3095 -2564 0 quad 3095 3106 3107 3096 -2565 0 quad 3096 3107 3108 3097 -2566 0 quad 3097 3108 3109 3098 -2567 0 quad 3098 3109 3110 3099 -2568 0 quad 3099 3110 3111 3100 -2569 0 quad 3100 3111 3112 3101 -2570 0 quad 3101 3112 3113 3102 -2571 0 quad 3103 3114 3115 3104 -2572 0 quad 3104 3115 3116 3105 -2573 0 quad 3105 3116 3117 3106 -2574 0 quad 3106 3117 3118 3107 -2575 0 quad 3107 3118 3119 3108 -2576 0 quad 3108 3119 3120 3109 -2577 0 quad 3109 3120 3121 3110 -2578 0 quad 3110 3121 3122 3111 -2579 0 quad 3111 3122 3123 3112 -2580 0 quad 3112 3123 3124 3113 -2581 0 quad 3114 3125 3126 3115 -2582 0 quad 3115 3126 3127 3116 -2583 0 quad 3116 3127 3128 3117 -2584 0 quad 3117 3128 3129 3118 -2585 0 quad 3118 3129 3130 3119 -2586 0 quad 3119 3130 3131 3120 -2587 0 quad 3120 3131 3132 3121 -2588 0 quad 3121 3132 3133 3122 -2589 0 quad 3122 3133 3134 3123 -2590 0 quad 3123 3134 3135 3124 -2591 0 quad 3125 3136 3137 3126 -2592 0 quad 3126 3137 3138 3127 -2593 0 quad 3127 3138 3139 3128 -2594 0 quad 3128 3139 3140 3129 -2595 0 quad 3129 3140 3141 3130 -2596 0 quad 3130 3141 3142 3131 -2597 0 quad 3131 3142 3143 3132 -2598 0 quad 3132 3143 3144 3133 -2599 0 quad 3133 3144 3145 3134 -2600 0 quad 3134 3145 3146 3135 -2601 0 quad 3147 3158 3159 3148 -2602 0 quad 3148 3159 3160 3149 -2603 0 quad 3149 3160 3161 3150 -2604 0 quad 3150 3161 3162 3151 -2605 0 quad 3151 3162 3163 3152 -2606 0 quad 3152 3163 3164 3153 -2607 0 quad 3153 3164 3165 3154 -2608 0 quad 3154 3165 3166 3155 -2609 0 quad 3155 3166 3167 3156 -2610 0 quad 3156 3167 3168 3157 -2611 0 quad 3158 3169 3170 3159 -2612 0 quad 3159 3170 3171 3160 -2613 0 quad 3160 3171 3172 3161 -2614 0 quad 3161 3172 3173 3162 -2615 0 quad 3162 3173 3174 3163 -2616 0 quad 3163 3174 3175 3164 -2617 0 quad 3164 3175 3176 3165 -2618 0 quad 3165 3176 3177 3166 -2619 0 quad 3166 3177 3178 3167 -2620 0 quad 3167 3178 3179 3168 -2621 0 quad 3169 3180 3181 3170 -2622 0 quad 3170 3181 3182 3171 -2623 0 quad 3171 3182 3183 3172 -2624 0 quad 3172 3183 3184 3173 -2625 0 quad 3173 3184 3185 3174 -2626 0 quad 3174 3185 3186 3175 -2627 0 quad 3175 3186 3187 3176 -2628 0 quad 3176 3187 3188 3177 -2629 0 quad 3177 3188 3189 3178 -2630 0 quad 3178 3189 3190 3179 -2631 0 quad 3180 3191 3192 3181 -2632 0 quad 3181 3192 3193 3182 -2633 0 quad 3182 3193 3194 3183 -2634 0 quad 3183 3194 3195 3184 -2635 0 quad 3184 3195 3196 3185 -2636 0 quad 3185 3196 3197 3186 -2637 0 quad 3186 3197 3198 3187 -2638 0 quad 3187 3198 3199 3188 -2639 0 quad 3188 3199 3200 3189 -2640 0 quad 3189 3200 3201 3190 -2641 0 quad 3191 3202 3203 3192 -2642 0 quad 3192 3203 3204 3193 -2643 0 quad 3193 3204 3205 3194 -2644 0 quad 3194 3205 3206 3195 -2645 0 quad 3195 3206 3207 3196 -2646 0 quad 3196 3207 3208 3197 -2647 0 quad 3197 3208 3209 3198 -2648 0 quad 3198 3209 3210 3199 -2649 0 quad 3199 3210 3211 3200 -2650 0 quad 3200 3211 3212 3201 -2651 0 quad 3202 3213 3214 3203 -2652 0 quad 3203 3214 3215 3204 -2653 0 quad 3204 3215 3216 3205 -2654 0 quad 3205 3216 3217 3206 -2655 0 quad 3206 3217 3218 3207 -2656 0 quad 3207 3218 3219 3208 -2657 0 quad 3208 3219 3220 3209 -2658 0 quad 3209 3220 3221 3210 -2659 0 quad 3210 3221 3222 3211 -2660 0 quad 3211 3222 3223 3212 -2661 0 quad 3213 3224 3225 3214 -2662 0 quad 3214 3225 3226 3215 -2663 0 quad 3215 3226 3227 3216 -2664 0 quad 3216 3227 3228 3217 -2665 0 quad 3217 3228 3229 3218 -2666 0 quad 3218 3229 3230 3219 -2667 0 quad 3219 3230 3231 3220 -2668 0 quad 3220 3231 3232 3221 -2669 0 quad 3221 3232 3233 3222 -2670 0 quad 3222 3233 3234 3223 -2671 0 quad 3224 3235 3236 3225 -2672 0 quad 3225 3236 3237 3226 -2673 0 quad 3226 3237 3238 3227 -2674 0 quad 3227 3238 3239 3228 -2675 0 quad 3228 3239 3240 3229 -2676 0 quad 3229 3240 3241 3230 -2677 0 quad 3230 3241 3242 3231 -2678 0 quad 3231 3242 3243 3232 -2679 0 quad 3232 3243 3244 3233 -2680 0 quad 3233 3244 3245 3234 -2681 0 quad 3235 3246 3247 3236 -2682 0 quad 3236 3247 3248 3237 -2683 0 quad 3237 3248 3249 3238 -2684 0 quad 3238 3249 3250 3239 -2685 0 quad 3239 3250 3251 3240 -2686 0 quad 3240 3251 3252 3241 -2687 0 quad 3241 3252 3253 3242 -2688 0 quad 3242 3253 3254 3243 -2689 0 quad 3243 3254 3255 3244 -2690 0 quad 3244 3255 3256 3245 -2691 0 quad 3246 3257 3258 3247 -2692 0 quad 3247 3258 3259 3248 -2693 0 quad 3248 3259 3260 3249 -2694 0 quad 3249 3260 3261 3250 -2695 0 quad 3250 3261 3262 3251 -2696 0 quad 3251 3262 3263 3252 -2697 0 quad 3252 3263 3264 3253 -2698 0 quad 3253 3264 3265 3254 -2699 0 quad 3254 3265 3266 3255 -2700 0 quad 3255 3266 3267 3256 -2701 0 quad 3268 3279 3280 3269 -2702 0 quad 3269 3280 3281 3270 -2703 0 quad 3270 3281 3282 3271 -2704 0 quad 3271 3282 3283 3272 -2705 0 quad 3272 3283 3284 3273 -2706 0 quad 3273 3284 3285 3274 -2707 0 quad 3274 3285 3286 3275 -2708 0 quad 3275 3286 3287 3276 -2709 0 quad 3276 3287 3288 3277 -2710 0 quad 3277 3288 3289 3278 -2711 0 quad 3279 3290 3291 3280 -2712 0 quad 3280 3291 3292 3281 -2713 0 quad 3281 3292 3293 3282 -2714 0 quad 3282 3293 3294 3283 -2715 0 quad 3283 3294 3295 3284 -2716 0 quad 3284 3295 3296 3285 -2717 0 quad 3285 3296 3297 3286 -2718 0 quad 3286 3297 3298 3287 -2719 0 quad 3287 3298 3299 3288 -2720 0 quad 3288 3299 3300 3289 -2721 0 quad 3290 3301 3302 3291 -2722 0 quad 3291 3302 3303 3292 -2723 0 quad 3292 3303 3304 3293 -2724 0 quad 3293 3304 3305 3294 -2725 0 quad 3294 3305 3306 3295 -2726 0 quad 3295 3306 3307 3296 -2727 0 quad 3296 3307 3308 3297 -2728 0 quad 3297 3308 3309 3298 -2729 0 quad 3298 3309 3310 3299 -2730 0 quad 3299 3310 3311 3300 -2731 0 quad 3301 3312 3313 3302 -2732 0 quad 3302 3313 3314 3303 -2733 0 quad 3303 3314 3315 3304 -2734 0 quad 3304 3315 3316 3305 -2735 0 quad 3305 3316 3317 3306 -2736 0 quad 3306 3317 3318 3307 -2737 0 quad 3307 3318 3319 3308 -2738 0 quad 3308 3319 3320 3309 -2739 0 quad 3309 3320 3321 3310 -2740 0 quad 3310 3321 3322 3311 -2741 0 quad 3312 3323 3324 3313 -2742 0 quad 3313 3324 3325 3314 -2743 0 quad 3314 3325 3326 3315 -2744 0 quad 3315 3326 3327 3316 -2745 0 quad 3316 3327 3328 3317 -2746 0 quad 3317 3328 3329 3318 -2747 0 quad 3318 3329 3330 3319 -2748 0 quad 3319 3330 3331 3320 -2749 0 quad 3320 3331 3332 3321 -2750 0 quad 3321 3332 3333 3322 -2751 0 quad 3323 3334 3335 3324 -2752 0 quad 3324 3335 3336 3325 -2753 0 quad 3325 3336 3337 3326 -2754 0 quad 3326 3337 3338 3327 -2755 0 quad 3327 3338 3339 3328 -2756 0 quad 3328 3339 3340 3329 -2757 0 quad 3329 3340 3341 3330 -2758 0 quad 3330 3341 3342 3331 -2759 0 quad 3331 3342 3343 3332 -2760 0 quad 3332 3343 3344 3333 -2761 0 quad 3334 3345 3346 3335 -2762 0 quad 3335 3346 3347 3336 -2763 0 quad 3336 3347 3348 3337 -2764 0 quad 3337 3348 3349 3338 -2765 0 quad 3338 3349 3350 3339 -2766 0 quad 3339 3350 3351 3340 -2767 0 quad 3340 3351 3352 3341 -2768 0 quad 3341 3352 3353 3342 -2769 0 quad 3342 3353 3354 3343 -2770 0 quad 3343 3354 3355 3344 -2771 0 quad 3345 3356 3357 3346 -2772 0 quad 3346 3357 3358 3347 -2773 0 quad 3347 3358 3359 3348 -2774 0 quad 3348 3359 3360 3349 -2775 0 quad 3349 3360 3361 3350 -2776 0 quad 3350 3361 3362 3351 -2777 0 quad 3351 3362 3363 3352 -2778 0 quad 3352 3363 3364 3353 -2779 0 quad 3353 3364 3365 3354 -2780 0 quad 3354 3365 3366 3355 -2781 0 quad 3356 3367 3368 3357 -2782 0 quad 3357 3368 3369 3358 -2783 0 quad 3358 3369 3370 3359 -2784 0 quad 3359 3370 3371 3360 -2785 0 quad 3360 3371 3372 3361 -2786 0 quad 3361 3372 3373 3362 -2787 0 quad 3362 3373 3374 3363 -2788 0 quad 3363 3374 3375 3364 -2789 0 quad 3364 3375 3376 3365 -2790 0 quad 3365 3376 3377 3366 -2791 0 quad 3367 3378 3379 3368 -2792 0 quad 3368 3379 3380 3369 -2793 0 quad 3369 3380 3381 3370 -2794 0 quad 3370 3381 3382 3371 -2795 0 quad 3371 3382 3383 3372 -2796 0 quad 3372 3383 3384 3373 -2797 0 quad 3373 3384 3385 3374 -2798 0 quad 3374 3385 3386 3375 -2799 0 quad 3375 3386 3387 3376 -2800 0 quad 3376 3387 3388 3377 -2801 0 quad 3389 3400 3401 3390 -2802 0 quad 3390 3401 3402 3391 -2803 0 quad 3391 3402 3403 3392 -2804 0 quad 3392 3403 3404 3393 -2805 0 quad 3393 3404 3405 3394 -2806 0 quad 3394 3405 3406 3395 -2807 0 quad 3395 3406 3407 3396 -2808 0 quad 3396 3407 3408 3397 -2809 0 quad 3397 3408 3409 3398 -2810 0 quad 3398 3409 3410 3399 -2811 0 quad 3400 3411 3412 3401 -2812 0 quad 3401 3412 3413 3402 -2813 0 quad 3402 3413 3414 3403 -2814 0 quad 3403 3414 3415 3404 -2815 0 quad 3404 3415 3416 3405 -2816 0 quad 3405 3416 3417 3406 -2817 0 quad 3406 3417 3418 3407 -2818 0 quad 3407 3418 3419 3408 -2819 0 quad 3408 3419 3420 3409 -2820 0 quad 3409 3420 3421 3410 -2821 0 quad 3411 3422 3423 3412 -2822 0 quad 3412 3423 3424 3413 -2823 0 quad 3413 3424 3425 3414 -2824 0 quad 3414 3425 3426 3415 -2825 0 quad 3415 3426 3427 3416 -2826 0 quad 3416 3427 3428 3417 -2827 0 quad 3417 3428 3429 3418 -2828 0 quad 3418 3429 3430 3419 -2829 0 quad 3419 3430 3431 3420 -2830 0 quad 3420 3431 3432 3421 -2831 0 quad 3422 3433 3434 3423 -2832 0 quad 3423 3434 3435 3424 -2833 0 quad 3424 3435 3436 3425 -2834 0 quad 3425 3436 3437 3426 -2835 0 quad 3426 3437 3438 3427 -2836 0 quad 3427 3438 3439 3428 -2837 0 quad 3428 3439 3440 3429 -2838 0 quad 3429 3440 3441 3430 -2839 0 quad 3430 3441 3442 3431 -2840 0 quad 3431 3442 3443 3432 -2841 0 quad 3433 3444 3445 3434 -2842 0 quad 3434 3445 3446 3435 -2843 0 quad 3435 3446 3447 3436 -2844 0 quad 3436 3447 3448 3437 -2845 0 quad 3437 3448 3449 3438 -2846 0 quad 3438 3449 3450 3439 -2847 0 quad 3439 3450 3451 3440 -2848 0 quad 3440 3451 3452 3441 -2849 0 quad 3441 3452 3453 3442 -2850 0 quad 3442 3453 3454 3443 -2851 0 quad 3444 3455 3456 3445 -2852 0 quad 3445 3456 3457 3446 -2853 0 quad 3446 3457 3458 3447 -2854 0 quad 3447 3458 3459 3448 -2855 0 quad 3448 3459 3460 3449 -2856 0 quad 3449 3460 3461 3450 -2857 0 quad 3450 3461 3462 3451 -2858 0 quad 3451 3462 3463 3452 -2859 0 quad 3452 3463 3464 3453 -2860 0 quad 3453 3464 3465 3454 -2861 0 quad 3455 3466 3467 3456 -2862 0 quad 3456 3467 3468 3457 -2863 0 quad 3457 3468 3469 3458 -2864 0 quad 3458 3469 3470 3459 -2865 0 quad 3459 3470 3471 3460 -2866 0 quad 3460 3471 3472 3461 -2867 0 quad 3461 3472 3473 3462 -2868 0 quad 3462 3473 3474 3463 -2869 0 quad 3463 3474 3475 3464 -2870 0 quad 3464 3475 3476 3465 -2871 0 quad 3466 3477 3478 3467 -2872 0 quad 3467 3478 3479 3468 -2873 0 quad 3468 3479 3480 3469 -2874 0 quad 3469 3480 3481 3470 -2875 0 quad 3470 3481 3482 3471 -2876 0 quad 3471 3482 3483 3472 -2877 0 quad 3472 3483 3484 3473 -2878 0 quad 3473 3484 3485 3474 -2879 0 quad 3474 3485 3486 3475 -2880 0 quad 3475 3486 3487 3476 -2881 0 quad 3477 3488 3489 3478 -2882 0 quad 3478 3489 3490 3479 -2883 0 quad 3479 3490 3491 3480 -2884 0 quad 3480 3491 3492 3481 -2885 0 quad 3481 3492 3493 3482 -2886 0 quad 3482 3493 3494 3483 -2887 0 quad 3483 3494 3495 3484 -2888 0 quad 3484 3495 3496 3485 -2889 0 quad 3485 3496 3497 3486 -2890 0 quad 3486 3497 3498 3487 -2891 0 quad 3488 3499 3500 3489 -2892 0 quad 3489 3500 3501 3490 -2893 0 quad 3490 3501 3502 3491 -2894 0 quad 3491 3502 3503 3492 -2895 0 quad 3492 3503 3504 3493 -2896 0 quad 3493 3504 3505 3494 -2897 0 quad 3494 3505 3506 3495 -2898 0 quad 3495 3506 3507 3496 -2899 0 quad 3496 3507 3508 3497 -2900 0 quad 3497 3508 3509 3498 -2901 0 quad 3510 3521 3522 3511 -2902 0 quad 3511 3522 3523 3512 -2903 0 quad 3512 3523 3524 3513 -2904 0 quad 3513 3524 3525 3514 -2905 0 quad 3514 3525 3526 3515 -2906 0 quad 3515 3526 3527 3516 -2907 0 quad 3516 3527 3528 3517 -2908 0 quad 3517 3528 3529 3518 -2909 0 quad 3518 3529 3530 3519 -2910 0 quad 3519 3530 3531 3520 -2911 0 quad 3521 3532 3533 3522 -2912 0 quad 3522 3533 3534 3523 -2913 0 quad 3523 3534 3535 3524 -2914 0 quad 3524 3535 3536 3525 -2915 0 quad 3525 3536 3537 3526 -2916 0 quad 3526 3537 3538 3527 -2917 0 quad 3527 3538 3539 3528 -2918 0 quad 3528 3539 3540 3529 -2919 0 quad 3529 3540 3541 3530 -2920 0 quad 3530 3541 3542 3531 -2921 0 quad 3532 3543 3544 3533 -2922 0 quad 3533 3544 3545 3534 -2923 0 quad 3534 3545 3546 3535 -2924 0 quad 3535 3546 3547 3536 -2925 0 quad 3536 3547 3548 3537 -2926 0 quad 3537 3548 3549 3538 -2927 0 quad 3538 3549 3550 3539 -2928 0 quad 3539 3550 3551 3540 -2929 0 quad 3540 3551 3552 3541 -2930 0 quad 3541 3552 3553 3542 -2931 0 quad 3543 3554 3555 3544 -2932 0 quad 3544 3555 3556 3545 -2933 0 quad 3545 3556 3557 3546 -2934 0 quad 3546 3557 3558 3547 -2935 0 quad 3547 3558 3559 3548 -2936 0 quad 3548 3559 3560 3549 -2937 0 quad 3549 3560 3561 3550 -2938 0 quad 3550 3561 3562 3551 -2939 0 quad 3551 3562 3563 3552 -2940 0 quad 3552 3563 3564 3553 -2941 0 quad 3554 3565 3566 3555 -2942 0 quad 3555 3566 3567 3556 -2943 0 quad 3556 3567 3568 3557 -2944 0 quad 3557 3568 3569 3558 -2945 0 quad 3558 3569 3570 3559 -2946 0 quad 3559 3570 3571 3560 -2947 0 quad 3560 3571 3572 3561 -2948 0 quad 3561 3572 3573 3562 -2949 0 quad 3562 3573 3574 3563 -2950 0 quad 3563 3574 3575 3564 -2951 0 quad 3565 3576 3577 3566 -2952 0 quad 3566 3577 3578 3567 -2953 0 quad 3567 3578 3579 3568 -2954 0 quad 3568 3579 3580 3569 -2955 0 quad 3569 3580 3581 3570 -2956 0 quad 3570 3581 3582 3571 -2957 0 quad 3571 3582 3583 3572 -2958 0 quad 3572 3583 3584 3573 -2959 0 quad 3573 3584 3585 3574 -2960 0 quad 3574 3585 3586 3575 -2961 0 quad 3576 3587 3588 3577 -2962 0 quad 3577 3588 3589 3578 -2963 0 quad 3578 3589 3590 3579 -2964 0 quad 3579 3590 3591 3580 -2965 0 quad 3580 3591 3592 3581 -2966 0 quad 3581 3592 3593 3582 -2967 0 quad 3582 3593 3594 3583 -2968 0 quad 3583 3594 3595 3584 -2969 0 quad 3584 3595 3596 3585 -2970 0 quad 3585 3596 3597 3586 -2971 0 quad 3587 3598 3599 3588 -2972 0 quad 3588 3599 3600 3589 -2973 0 quad 3589 3600 3601 3590 -2974 0 quad 3590 3601 3602 3591 -2975 0 quad 3591 3602 3603 3592 -2976 0 quad 3592 3603 3604 3593 -2977 0 quad 3593 3604 3605 3594 -2978 0 quad 3594 3605 3606 3595 -2979 0 quad 3595 3606 3607 3596 -2980 0 quad 3596 3607 3608 3597 -2981 0 quad 3598 3609 3610 3599 -2982 0 quad 3599 3610 3611 3600 -2983 0 quad 3600 3611 3612 3601 -2984 0 quad 3601 3612 3613 3602 -2985 0 quad 3602 3613 3614 3603 -2986 0 quad 3603 3614 3615 3604 -2987 0 quad 3604 3615 3616 3605 -2988 0 quad 3605 3616 3617 3606 -2989 0 quad 3606 3617 3618 3607 -2990 0 quad 3607 3618 3619 3608 -2991 0 quad 3609 3620 3621 3610 -2992 0 quad 3610 3621 3622 3611 -2993 0 quad 3611 3622 3623 3612 -2994 0 quad 3612 3623 3624 3613 -2995 0 quad 3613 3624 3625 3614 -2996 0 quad 3614 3625 3626 3615 -2997 0 quad 3615 3626 3627 3616 -2998 0 quad 3616 3627 3628 3617 -2999 0 quad 3617 3628 3629 3618 -3000 0 quad 3618 3629 3630 3619 -3001 0 quad 3631 3642 3643 3632 -3002 0 quad 3632 3643 3644 3633 -3003 0 quad 3633 3644 3645 3634 -3004 0 quad 3634 3645 3646 3635 -3005 0 quad 3635 3646 3647 3636 -3006 0 quad 3636 3647 3648 3637 -3007 0 quad 3637 3648 3649 3638 -3008 0 quad 3638 3649 3650 3639 -3009 0 quad 3639 3650 3651 3640 -3010 0 quad 3640 3651 3652 3641 -3011 0 quad 3642 3653 3654 3643 -3012 0 quad 3643 3654 3655 3644 -3013 0 quad 3644 3655 3656 3645 -3014 0 quad 3645 3656 3657 3646 -3015 0 quad 3646 3657 3658 3647 -3016 0 quad 3647 3658 3659 3648 -3017 0 quad 3648 3659 3660 3649 -3018 0 quad 3649 3660 3661 3650 -3019 0 quad 3650 3661 3662 3651 -3020 0 quad 3651 3662 3663 3652 -3021 0 quad 3653 3664 3665 3654 -3022 0 quad 3654 3665 3666 3655 -3023 0 quad 3655 3666 3667 3656 -3024 0 quad 3656 3667 3668 3657 -3025 0 quad 3657 3668 3669 3658 -3026 0 quad 3658 3669 3670 3659 -3027 0 quad 3659 3670 3671 3660 -3028 0 quad 3660 3671 3672 3661 -3029 0 quad 3661 3672 3673 3662 -3030 0 quad 3662 3673 3674 3663 -3031 0 quad 3664 3675 3676 3665 -3032 0 quad 3665 3676 3677 3666 -3033 0 quad 3666 3677 3678 3667 -3034 0 quad 3667 3678 3679 3668 -3035 0 quad 3668 3679 3680 3669 -3036 0 quad 3669 3680 3681 3670 -3037 0 quad 3670 3681 3682 3671 -3038 0 quad 3671 3682 3683 3672 -3039 0 quad 3672 3683 3684 3673 -3040 0 quad 3673 3684 3685 3674 -3041 0 quad 3675 3686 3687 3676 -3042 0 quad 3676 3687 3688 3677 -3043 0 quad 3677 3688 3689 3678 -3044 0 quad 3678 3689 3690 3679 -3045 0 quad 3679 3690 3691 3680 -3046 0 quad 3680 3691 3692 3681 -3047 0 quad 3681 3692 3693 3682 -3048 0 quad 3682 3693 3694 3683 -3049 0 quad 3683 3694 3695 3684 -3050 0 quad 3684 3695 3696 3685 -3051 0 quad 3686 3697 3698 3687 -3052 0 quad 3687 3698 3699 3688 -3053 0 quad 3688 3699 3700 3689 -3054 0 quad 3689 3700 3701 3690 -3055 0 quad 3690 3701 3702 3691 -3056 0 quad 3691 3702 3703 3692 -3057 0 quad 3692 3703 3704 3693 -3058 0 quad 3693 3704 3705 3694 -3059 0 quad 3694 3705 3706 3695 -3060 0 quad 3695 3706 3707 3696 -3061 0 quad 3697 3708 3709 3698 -3062 0 quad 3698 3709 3710 3699 -3063 0 quad 3699 3710 3711 3700 -3064 0 quad 3700 3711 3712 3701 -3065 0 quad 3701 3712 3713 3702 -3066 0 quad 3702 3713 3714 3703 -3067 0 quad 3703 3714 3715 3704 -3068 0 quad 3704 3715 3716 3705 -3069 0 quad 3705 3716 3717 3706 -3070 0 quad 3706 3717 3718 3707 -3071 0 quad 3708 3719 3720 3709 -3072 0 quad 3709 3720 3721 3710 -3073 0 quad 3710 3721 3722 3711 -3074 0 quad 3711 3722 3723 3712 -3075 0 quad 3712 3723 3724 3713 -3076 0 quad 3713 3724 3725 3714 -3077 0 quad 3714 3725 3726 3715 -3078 0 quad 3715 3726 3727 3716 -3079 0 quad 3716 3727 3728 3717 -3080 0 quad 3717 3728 3729 3718 -3081 0 quad 3719 3730 3731 3720 -3082 0 quad 3720 3731 3732 3721 -3083 0 quad 3721 3732 3733 3722 -3084 0 quad 3722 3733 3734 3723 -3085 0 quad 3723 3734 3735 3724 -3086 0 quad 3724 3735 3736 3725 -3087 0 quad 3725 3736 3737 3726 -3088 0 quad 3726 3737 3738 3727 -3089 0 quad 3727 3738 3739 3728 -3090 0 quad 3728 3739 3740 3729 -3091 0 quad 3730 3741 3742 3731 -3092 0 quad 3731 3742 3743 3732 -3093 0 quad 3732 3743 3744 3733 -3094 0 quad 3733 3744 3745 3734 -3095 0 quad 3734 3745 3746 3735 -3096 0 quad 3735 3746 3747 3736 -3097 0 quad 3736 3747 3748 3737 -3098 0 quad 3737 3748 3749 3738 -3099 0 quad 3738 3749 3750 3739 -3100 0 quad 3739 3750 3751 3740 -3101 0 quad 3752 3763 3764 3753 -3102 0 quad 3753 3764 3765 3754 -3103 0 quad 3754 3765 3766 3755 -3104 0 quad 3755 3766 3767 3756 -3105 0 quad 3756 3767 3768 3757 -3106 0 quad 3757 3768 3769 3758 -3107 0 quad 3758 3769 3770 3759 -3108 0 quad 3759 3770 3771 3760 -3109 0 quad 3760 3771 3772 3761 -3110 0 quad 3761 3772 3773 3762 -3111 0 quad 3763 3774 3775 3764 -3112 0 quad 3764 3775 3776 3765 -3113 0 quad 3765 3776 3777 3766 -3114 0 quad 3766 3777 3778 3767 -3115 0 quad 3767 3778 3779 3768 -3116 0 quad 3768 3779 3780 3769 -3117 0 quad 3769 3780 3781 3770 -3118 0 quad 3770 3781 3782 3771 -3119 0 quad 3771 3782 3783 3772 -3120 0 quad 3772 3783 3784 3773 -3121 0 quad 3774 3785 3786 3775 -3122 0 quad 3775 3786 3787 3776 -3123 0 quad 3776 3787 3788 3777 -3124 0 quad 3777 3788 3789 3778 -3125 0 quad 3778 3789 3790 3779 -3126 0 quad 3779 3790 3791 3780 -3127 0 quad 3780 3791 3792 3781 -3128 0 quad 3781 3792 3793 3782 -3129 0 quad 3782 3793 3794 3783 -3130 0 quad 3783 3794 3795 3784 -3131 0 quad 3785 3796 3797 3786 -3132 0 quad 3786 3797 3798 3787 -3133 0 quad 3787 3798 3799 3788 -3134 0 quad 3788 3799 3800 3789 -3135 0 quad 3789 3800 3801 3790 -3136 0 quad 3790 3801 3802 3791 -3137 0 quad 3791 3802 3803 3792 -3138 0 quad 3792 3803 3804 3793 -3139 0 quad 3793 3804 3805 3794 -3140 0 quad 3794 3805 3806 3795 -3141 0 quad 3796 3807 3808 3797 -3142 0 quad 3797 3808 3809 3798 -3143 0 quad 3798 3809 3810 3799 -3144 0 quad 3799 3810 3811 3800 -3145 0 quad 3800 3811 3812 3801 -3146 0 quad 3801 3812 3813 3802 -3147 0 quad 3802 3813 3814 3803 -3148 0 quad 3803 3814 3815 3804 -3149 0 quad 3804 3815 3816 3805 -3150 0 quad 3805 3816 3817 3806 -3151 0 quad 3807 3818 3819 3808 -3152 0 quad 3808 3819 3820 3809 -3153 0 quad 3809 3820 3821 3810 -3154 0 quad 3810 3821 3822 3811 -3155 0 quad 3811 3822 3823 3812 -3156 0 quad 3812 3823 3824 3813 -3157 0 quad 3813 3824 3825 3814 -3158 0 quad 3814 3825 3826 3815 -3159 0 quad 3815 3826 3827 3816 -3160 0 quad 3816 3827 3828 3817 -3161 0 quad 3818 3829 3830 3819 -3162 0 quad 3819 3830 3831 3820 -3163 0 quad 3820 3831 3832 3821 -3164 0 quad 3821 3832 3833 3822 -3165 0 quad 3822 3833 3834 3823 -3166 0 quad 3823 3834 3835 3824 -3167 0 quad 3824 3835 3836 3825 -3168 0 quad 3825 3836 3837 3826 -3169 0 quad 3826 3837 3838 3827 -3170 0 quad 3827 3838 3839 3828 -3171 0 quad 3829 3840 3841 3830 -3172 0 quad 3830 3841 3842 3831 -3173 0 quad 3831 3842 3843 3832 -3174 0 quad 3832 3843 3844 3833 -3175 0 quad 3833 3844 3845 3834 -3176 0 quad 3834 3845 3846 3835 -3177 0 quad 3835 3846 3847 3836 -3178 0 quad 3836 3847 3848 3837 -3179 0 quad 3837 3848 3849 3838 -3180 0 quad 3838 3849 3850 3839 -3181 0 quad 3840 3851 3852 3841 -3182 0 quad 3841 3852 3853 3842 -3183 0 quad 3842 3853 3854 3843 -3184 0 quad 3843 3854 3855 3844 -3185 0 quad 3844 3855 3856 3845 -3186 0 quad 3845 3856 3857 3846 -3187 0 quad 3846 3857 3858 3847 -3188 0 quad 3847 3858 3859 3848 -3189 0 quad 3848 3859 3860 3849 -3190 0 quad 3849 3860 3861 3850 -3191 0 quad 3851 3862 3863 3852 -3192 0 quad 3852 3863 3864 3853 -3193 0 quad 3853 3864 3865 3854 -3194 0 quad 3854 3865 3866 3855 -3195 0 quad 3855 3866 3867 3856 -3196 0 quad 3856 3867 3868 3857 -3197 0 quad 3857 3868 3869 3858 -3198 0 quad 3858 3869 3870 3859 -3199 0 quad 3859 3870 3871 3860 -3200 0 quad 3860 3871 3872 3861 -3201 0 quad 3873 3884 3885 3874 -3202 0 quad 3874 3885 3886 3875 -3203 0 quad 3875 3886 3887 3876 -3204 0 quad 3876 3887 3888 3877 -3205 0 quad 3877 3888 3889 3878 -3206 0 quad 3878 3889 3890 3879 -3207 0 quad 3879 3890 3891 3880 -3208 0 quad 3880 3891 3892 3881 -3209 0 quad 3881 3892 3893 3882 -3210 0 quad 3882 3893 3894 3883 -3211 0 quad 3884 3895 3896 3885 -3212 0 quad 3885 3896 3897 3886 -3213 0 quad 3886 3897 3898 3887 -3214 0 quad 3887 3898 3899 3888 -3215 0 quad 3888 3899 3900 3889 -3216 0 quad 3889 3900 3901 3890 -3217 0 quad 3890 3901 3902 3891 -3218 0 quad 3891 3902 3903 3892 -3219 0 quad 3892 3903 3904 3893 -3220 0 quad 3893 3904 3905 3894 -3221 0 quad 3895 3906 3907 3896 -3222 0 quad 3896 3907 3908 3897 -3223 0 quad 3897 3908 3909 3898 -3224 0 quad 3898 3909 3910 3899 -3225 0 quad 3899 3910 3911 3900 -3226 0 quad 3900 3911 3912 3901 -3227 0 quad 3901 3912 3913 3902 -3228 0 quad 3902 3913 3914 3903 -3229 0 quad 3903 3914 3915 3904 -3230 0 quad 3904 3915 3916 3905 -3231 0 quad 3906 3917 3918 3907 -3232 0 quad 3907 3918 3919 3908 -3233 0 quad 3908 3919 3920 3909 -3234 0 quad 3909 3920 3921 3910 -3235 0 quad 3910 3921 3922 3911 -3236 0 quad 3911 3922 3923 3912 -3237 0 quad 3912 3923 3924 3913 -3238 0 quad 3913 3924 3925 3914 -3239 0 quad 3914 3925 3926 3915 -3240 0 quad 3915 3926 3927 3916 -3241 0 quad 3917 3928 3929 3918 -3242 0 quad 3918 3929 3930 3919 -3243 0 quad 3919 3930 3931 3920 -3244 0 quad 3920 3931 3932 3921 -3245 0 quad 3921 3932 3933 3922 -3246 0 quad 3922 3933 3934 3923 -3247 0 quad 3923 3934 3935 3924 -3248 0 quad 3924 3935 3936 3925 -3249 0 quad 3925 3936 3937 3926 -3250 0 quad 3926 3937 3938 3927 -3251 0 quad 3928 3939 3940 3929 -3252 0 quad 3929 3940 3941 3930 -3253 0 quad 3930 3941 3942 3931 -3254 0 quad 3931 3942 3943 3932 -3255 0 quad 3932 3943 3944 3933 -3256 0 quad 3933 3944 3945 3934 -3257 0 quad 3934 3945 3946 3935 -3258 0 quad 3935 3946 3947 3936 -3259 0 quad 3936 3947 3948 3937 -3260 0 quad 3937 3948 3949 3938 -3261 0 quad 3939 3950 3951 3940 -3262 0 quad 3940 3951 3952 3941 -3263 0 quad 3941 3952 3953 3942 -3264 0 quad 3942 3953 3954 3943 -3265 0 quad 3943 3954 3955 3944 -3266 0 quad 3944 3955 3956 3945 -3267 0 quad 3945 3956 3957 3946 -3268 0 quad 3946 3957 3958 3947 -3269 0 quad 3947 3958 3959 3948 -3270 0 quad 3948 3959 3960 3949 -3271 0 quad 3950 3961 3962 3951 -3272 0 quad 3951 3962 3963 3952 -3273 0 quad 3952 3963 3964 3953 -3274 0 quad 3953 3964 3965 3954 -3275 0 quad 3954 3965 3966 3955 -3276 0 quad 3955 3966 3967 3956 -3277 0 quad 3956 3967 3968 3957 -3278 0 quad 3957 3968 3969 3958 -3279 0 quad 3958 3969 3970 3959 -3280 0 quad 3959 3970 3971 3960 -3281 0 quad 3961 3972 3973 3962 -3282 0 quad 3962 3973 3974 3963 -3283 0 quad 3963 3974 3975 3964 -3284 0 quad 3964 3975 3976 3965 -3285 0 quad 3965 3976 3977 3966 -3286 0 quad 3966 3977 3978 3967 -3287 0 quad 3967 3978 3979 3968 -3288 0 quad 3968 3979 3980 3969 -3289 0 quad 3969 3980 3981 3970 -3290 0 quad 3970 3981 3982 3971 -3291 0 quad 3972 3983 3984 3973 -3292 0 quad 3973 3984 3985 3974 -3293 0 quad 3974 3985 3986 3975 -3294 0 quad 3975 3986 3987 3976 -3295 0 quad 3976 3987 3988 3977 -3296 0 quad 3977 3988 3989 3978 -3297 0 quad 3978 3989 3990 3979 -3298 0 quad 3979 3990 3991 3980 -3299 0 quad 3980 3991 3992 3981 -3300 0 quad 3981 3992 3993 3982 -3301 0 quad 3994 4005 4006 3995 -3302 0 quad 3995 4006 4007 3996 -3303 0 quad 3996 4007 4008 3997 -3304 0 quad 3997 4008 4009 3998 -3305 0 quad 3998 4009 4010 3999 -3306 0 quad 3999 4010 4011 4000 -3307 0 quad 4000 4011 4012 4001 -3308 0 quad 4001 4012 4013 4002 -3309 0 quad 4002 4013 4014 4003 -3310 0 quad 4003 4014 4015 4004 -3311 0 quad 4005 4016 4017 4006 -3312 0 quad 4006 4017 4018 4007 -3313 0 quad 4007 4018 4019 4008 -3314 0 quad 4008 4019 4020 4009 -3315 0 quad 4009 4020 4021 4010 -3316 0 quad 4010 4021 4022 4011 -3317 0 quad 4011 4022 4023 4012 -3318 0 quad 4012 4023 4024 4013 -3319 0 quad 4013 4024 4025 4014 -3320 0 quad 4014 4025 4026 4015 -3321 0 quad 4016 4027 4028 4017 -3322 0 quad 4017 4028 4029 4018 -3323 0 quad 4018 4029 4030 4019 -3324 0 quad 4019 4030 4031 4020 -3325 0 quad 4020 4031 4032 4021 -3326 0 quad 4021 4032 4033 4022 -3327 0 quad 4022 4033 4034 4023 -3328 0 quad 4023 4034 4035 4024 -3329 0 quad 4024 4035 4036 4025 -3330 0 quad 4025 4036 4037 4026 -3331 0 quad 4027 4038 4039 4028 -3332 0 quad 4028 4039 4040 4029 -3333 0 quad 4029 4040 4041 4030 -3334 0 quad 4030 4041 4042 4031 -3335 0 quad 4031 4042 4043 4032 -3336 0 quad 4032 4043 4044 4033 -3337 0 quad 4033 4044 4045 4034 -3338 0 quad 4034 4045 4046 4035 -3339 0 quad 4035 4046 4047 4036 -3340 0 quad 4036 4047 4048 4037 -3341 0 quad 4038 4049 4050 4039 -3342 0 quad 4039 4050 4051 4040 -3343 0 quad 4040 4051 4052 4041 -3344 0 quad 4041 4052 4053 4042 -3345 0 quad 4042 4053 4054 4043 -3346 0 quad 4043 4054 4055 4044 -3347 0 quad 4044 4055 4056 4045 -3348 0 quad 4045 4056 4057 4046 -3349 0 quad 4046 4057 4058 4047 -3350 0 quad 4047 4058 4059 4048 -3351 0 quad 4049 4060 4061 4050 -3352 0 quad 4050 4061 4062 4051 -3353 0 quad 4051 4062 4063 4052 -3354 0 quad 4052 4063 4064 4053 -3355 0 quad 4053 4064 4065 4054 -3356 0 quad 4054 4065 4066 4055 -3357 0 quad 4055 4066 4067 4056 -3358 0 quad 4056 4067 4068 4057 -3359 0 quad 4057 4068 4069 4058 -3360 0 quad 4058 4069 4070 4059 -3361 0 quad 4060 4071 4072 4061 -3362 0 quad 4061 4072 4073 4062 -3363 0 quad 4062 4073 4074 4063 -3364 0 quad 4063 4074 4075 4064 -3365 0 quad 4064 4075 4076 4065 -3366 0 quad 4065 4076 4077 4066 -3367 0 quad 4066 4077 4078 4067 -3368 0 quad 4067 4078 4079 4068 -3369 0 quad 4068 4079 4080 4069 -3370 0 quad 4069 4080 4081 4070 -3371 0 quad 4071 4082 4083 4072 -3372 0 quad 4072 4083 4084 4073 -3373 0 quad 4073 4084 4085 4074 -3374 0 quad 4074 4085 4086 4075 -3375 0 quad 4075 4086 4087 4076 -3376 0 quad 4076 4087 4088 4077 -3377 0 quad 4077 4088 4089 4078 -3378 0 quad 4078 4089 4090 4079 -3379 0 quad 4079 4090 4091 4080 -3380 0 quad 4080 4091 4092 4081 -3381 0 quad 4082 4093 4094 4083 -3382 0 quad 4083 4094 4095 4084 -3383 0 quad 4084 4095 4096 4085 -3384 0 quad 4085 4096 4097 4086 -3385 0 quad 4086 4097 4098 4087 -3386 0 quad 4087 4098 4099 4088 -3387 0 quad 4088 4099 4100 4089 -3388 0 quad 4089 4100 4101 4090 -3389 0 quad 4090 4101 4102 4091 -3390 0 quad 4091 4102 4103 4092 -3391 0 quad 4093 4104 4105 4094 -3392 0 quad 4094 4105 4106 4095 -3393 0 quad 4095 4106 4107 4096 -3394 0 quad 4096 4107 4108 4097 -3395 0 quad 4097 4108 4109 4098 -3396 0 quad 4098 4109 4110 4099 -3397 0 quad 4099 4110 4111 4100 -3398 0 quad 4100 4111 4112 4101 -3399 0 quad 4101 4112 4113 4102 -3400 0 quad 4102 4113 4114 4103 -3401 0 quad 4115 4126 4127 4116 -3402 0 quad 4116 4127 4128 4117 -3403 0 quad 4117 4128 4129 4118 -3404 0 quad 4118 4129 4130 4119 -3405 0 quad 4119 4130 4131 4120 -3406 0 quad 4120 4131 4132 4121 -3407 0 quad 4121 4132 4133 4122 -3408 0 quad 4122 4133 4134 4123 -3409 0 quad 4123 4134 4135 4124 -3410 0 quad 4124 4135 4136 4125 -3411 0 quad 4126 4137 4138 4127 -3412 0 quad 4127 4138 4139 4128 -3413 0 quad 4128 4139 4140 4129 -3414 0 quad 4129 4140 4141 4130 -3415 0 quad 4130 4141 4142 4131 -3416 0 quad 4131 4142 4143 4132 -3417 0 quad 4132 4143 4144 4133 -3418 0 quad 4133 4144 4145 4134 -3419 0 quad 4134 4145 4146 4135 -3420 0 quad 4135 4146 4147 4136 -3421 0 quad 4137 4148 4149 4138 -3422 0 quad 4138 4149 4150 4139 -3423 0 quad 4139 4150 4151 4140 -3424 0 quad 4140 4151 4152 4141 -3425 0 quad 4141 4152 4153 4142 -3426 0 quad 4142 4153 4154 4143 -3427 0 quad 4143 4154 4155 4144 -3428 0 quad 4144 4155 4156 4145 -3429 0 quad 4145 4156 4157 4146 -3430 0 quad 4146 4157 4158 4147 -3431 0 quad 4148 4159 4160 4149 -3432 0 quad 4149 4160 4161 4150 -3433 0 quad 4150 4161 4162 4151 -3434 0 quad 4151 4162 4163 4152 -3435 0 quad 4152 4163 4164 4153 -3436 0 quad 4153 4164 4165 4154 -3437 0 quad 4154 4165 4166 4155 -3438 0 quad 4155 4166 4167 4156 -3439 0 quad 4156 4167 4168 4157 -3440 0 quad 4157 4168 4169 4158 -3441 0 quad 4159 4170 4171 4160 -3442 0 quad 4160 4171 4172 4161 -3443 0 quad 4161 4172 4173 4162 -3444 0 quad 4162 4173 4174 4163 -3445 0 quad 4163 4174 4175 4164 -3446 0 quad 4164 4175 4176 4165 -3447 0 quad 4165 4176 4177 4166 -3448 0 quad 4166 4177 4178 4167 -3449 0 quad 4167 4178 4179 4168 -3450 0 quad 4168 4179 4180 4169 -3451 0 quad 4170 4181 4182 4171 -3452 0 quad 4171 4182 4183 4172 -3453 0 quad 4172 4183 4184 4173 -3454 0 quad 4173 4184 4185 4174 -3455 0 quad 4174 4185 4186 4175 -3456 0 quad 4175 4186 4187 4176 -3457 0 quad 4176 4187 4188 4177 -3458 0 quad 4177 4188 4189 4178 -3459 0 quad 4178 4189 4190 4179 -3460 0 quad 4179 4190 4191 4180 -3461 0 quad 4181 4192 4193 4182 -3462 0 quad 4182 4193 4194 4183 -3463 0 quad 4183 4194 4195 4184 -3464 0 quad 4184 4195 4196 4185 -3465 0 quad 4185 4196 4197 4186 -3466 0 quad 4186 4197 4198 4187 -3467 0 quad 4187 4198 4199 4188 -3468 0 quad 4188 4199 4200 4189 -3469 0 quad 4189 4200 4201 4190 -3470 0 quad 4190 4201 4202 4191 -3471 0 quad 4192 4203 4204 4193 -3472 0 quad 4193 4204 4205 4194 -3473 0 quad 4194 4205 4206 4195 -3474 0 quad 4195 4206 4207 4196 -3475 0 quad 4196 4207 4208 4197 -3476 0 quad 4197 4208 4209 4198 -3477 0 quad 4198 4209 4210 4199 -3478 0 quad 4199 4210 4211 4200 -3479 0 quad 4200 4211 4212 4201 -3480 0 quad 4201 4212 4213 4202 -3481 0 quad 4203 4214 4215 4204 -3482 0 quad 4204 4215 4216 4205 -3483 0 quad 4205 4216 4217 4206 -3484 0 quad 4206 4217 4218 4207 -3485 0 quad 4207 4218 4219 4208 -3486 0 quad 4208 4219 4220 4209 -3487 0 quad 4209 4220 4221 4210 -3488 0 quad 4210 4221 4222 4211 -3489 0 quad 4211 4222 4223 4212 -3490 0 quad 4212 4223 4224 4213 -3491 0 quad 4214 4225 4226 4215 -3492 0 quad 4215 4226 4227 4216 -3493 0 quad 4216 4227 4228 4217 -3494 0 quad 4217 4228 4229 4218 -3495 0 quad 4218 4229 4230 4219 -3496 0 quad 4219 4230 4231 4220 -3497 0 quad 4220 4231 4232 4221 -3498 0 quad 4221 4232 4233 4222 -3499 0 quad 4222 4233 4234 4223 -3500 0 quad 4223 4234 4235 4224 -3501 0 quad 4236 4247 4248 4237 -3502 0 quad 4237 4248 4249 4238 -3503 0 quad 4238 4249 4250 4239 -3504 0 quad 4239 4250 4251 4240 -3505 0 quad 4240 4251 4252 4241 -3506 0 quad 4241 4252 4253 4242 -3507 0 quad 4242 4253 4254 4243 -3508 0 quad 4243 4254 4255 4244 -3509 0 quad 4244 4255 4256 4245 -3510 0 quad 4245 4256 4257 4246 -3511 0 quad 4247 4258 4259 4248 -3512 0 quad 4248 4259 4260 4249 -3513 0 quad 4249 4260 4261 4250 -3514 0 quad 4250 4261 4262 4251 -3515 0 quad 4251 4262 4263 4252 -3516 0 quad 4252 4263 4264 4253 -3517 0 quad 4253 4264 4265 4254 -3518 0 quad 4254 4265 4266 4255 -3519 0 quad 4255 4266 4267 4256 -3520 0 quad 4256 4267 4268 4257 -3521 0 quad 4258 4269 4270 4259 -3522 0 quad 4259 4270 4271 4260 -3523 0 quad 4260 4271 4272 4261 -3524 0 quad 4261 4272 4273 4262 -3525 0 quad 4262 4273 4274 4263 -3526 0 quad 4263 4274 4275 4264 -3527 0 quad 4264 4275 4276 4265 -3528 0 quad 4265 4276 4277 4266 -3529 0 quad 4266 4277 4278 4267 -3530 0 quad 4267 4278 4279 4268 -3531 0 quad 4269 4280 4281 4270 -3532 0 quad 4270 4281 4282 4271 -3533 0 quad 4271 4282 4283 4272 -3534 0 quad 4272 4283 4284 4273 -3535 0 quad 4273 4284 4285 4274 -3536 0 quad 4274 4285 4286 4275 -3537 0 quad 4275 4286 4287 4276 -3538 0 quad 4276 4287 4288 4277 -3539 0 quad 4277 4288 4289 4278 -3540 0 quad 4278 4289 4290 4279 -3541 0 quad 4280 4291 4292 4281 -3542 0 quad 4281 4292 4293 4282 -3543 0 quad 4282 4293 4294 4283 -3544 0 quad 4283 4294 4295 4284 -3545 0 quad 4284 4295 4296 4285 -3546 0 quad 4285 4296 4297 4286 -3547 0 quad 4286 4297 4298 4287 -3548 0 quad 4287 4298 4299 4288 -3549 0 quad 4288 4299 4300 4289 -3550 0 quad 4289 4300 4301 4290 -3551 0 quad 4291 4302 4303 4292 -3552 0 quad 4292 4303 4304 4293 -3553 0 quad 4293 4304 4305 4294 -3554 0 quad 4294 4305 4306 4295 -3555 0 quad 4295 4306 4307 4296 -3556 0 quad 4296 4307 4308 4297 -3557 0 quad 4297 4308 4309 4298 -3558 0 quad 4298 4309 4310 4299 -3559 0 quad 4299 4310 4311 4300 -3560 0 quad 4300 4311 4312 4301 -3561 0 quad 4302 4313 4314 4303 -3562 0 quad 4303 4314 4315 4304 -3563 0 quad 4304 4315 4316 4305 -3564 0 quad 4305 4316 4317 4306 -3565 0 quad 4306 4317 4318 4307 -3566 0 quad 4307 4318 4319 4308 -3567 0 quad 4308 4319 4320 4309 -3568 0 quad 4309 4320 4321 4310 -3569 0 quad 4310 4321 4322 4311 -3570 0 quad 4311 4322 4323 4312 -3571 0 quad 4313 4324 4325 4314 -3572 0 quad 4314 4325 4326 4315 -3573 0 quad 4315 4326 4327 4316 -3574 0 quad 4316 4327 4328 4317 -3575 0 quad 4317 4328 4329 4318 -3576 0 quad 4318 4329 4330 4319 -3577 0 quad 4319 4330 4331 4320 -3578 0 quad 4320 4331 4332 4321 -3579 0 quad 4321 4332 4333 4322 -3580 0 quad 4322 4333 4334 4323 -3581 0 quad 4324 4335 4336 4325 -3582 0 quad 4325 4336 4337 4326 -3583 0 quad 4326 4337 4338 4327 -3584 0 quad 4327 4338 4339 4328 -3585 0 quad 4328 4339 4340 4329 -3586 0 quad 4329 4340 4341 4330 -3587 0 quad 4330 4341 4342 4331 -3588 0 quad 4331 4342 4343 4332 -3589 0 quad 4332 4343 4344 4333 -3590 0 quad 4333 4344 4345 4334 -3591 0 quad 4335 4346 4347 4336 -3592 0 quad 4336 4347 4348 4337 -3593 0 quad 4337 4348 4349 4338 -3594 0 quad 4338 4349 4350 4339 -3595 0 quad 4339 4350 4351 4340 -3596 0 quad 4340 4351 4352 4341 -3597 0 quad 4341 4352 4353 4342 -3598 0 quad 4342 4353 4354 4343 -3599 0 quad 4343 4354 4355 4344 -3600 0 quad 4344 4355 4356 4345 -3601 0 quad 4357 4368 4369 4358 -3602 0 quad 4358 4369 4370 4359 -3603 0 quad 4359 4370 4371 4360 -3604 0 quad 4360 4371 4372 4361 -3605 0 quad 4361 4372 4373 4362 -3606 0 quad 4362 4373 4374 4363 -3607 0 quad 4363 4374 4375 4364 -3608 0 quad 4364 4375 4376 4365 -3609 0 quad 4365 4376 4377 4366 -3610 0 quad 4366 4377 4378 4367 -3611 0 quad 4368 4379 4380 4369 -3612 0 quad 4369 4380 4381 4370 -3613 0 quad 4370 4381 4382 4371 -3614 0 quad 4371 4382 4383 4372 -3615 0 quad 4372 4383 4384 4373 -3616 0 quad 4373 4384 4385 4374 -3617 0 quad 4374 4385 4386 4375 -3618 0 quad 4375 4386 4387 4376 -3619 0 quad 4376 4387 4388 4377 -3620 0 quad 4377 4388 4389 4378 -3621 0 quad 4379 4390 4391 4380 -3622 0 quad 4380 4391 4392 4381 -3623 0 quad 4381 4392 4393 4382 -3624 0 quad 4382 4393 4394 4383 -3625 0 quad 4383 4394 4395 4384 -3626 0 quad 4384 4395 4396 4385 -3627 0 quad 4385 4396 4397 4386 -3628 0 quad 4386 4397 4398 4387 -3629 0 quad 4387 4398 4399 4388 -3630 0 quad 4388 4399 4400 4389 -3631 0 quad 4390 4401 4402 4391 -3632 0 quad 4391 4402 4403 4392 -3633 0 quad 4392 4403 4404 4393 -3634 0 quad 4393 4404 4405 4394 -3635 0 quad 4394 4405 4406 4395 -3636 0 quad 4395 4406 4407 4396 -3637 0 quad 4396 4407 4408 4397 -3638 0 quad 4397 4408 4409 4398 -3639 0 quad 4398 4409 4410 4399 -3640 0 quad 4399 4410 4411 4400 -3641 0 quad 4401 4412 4413 4402 -3642 0 quad 4402 4413 4414 4403 -3643 0 quad 4403 4414 4415 4404 -3644 0 quad 4404 4415 4416 4405 -3645 0 quad 4405 4416 4417 4406 -3646 0 quad 4406 4417 4418 4407 -3647 0 quad 4407 4418 4419 4408 -3648 0 quad 4408 4419 4420 4409 -3649 0 quad 4409 4420 4421 4410 -3650 0 quad 4410 4421 4422 4411 -3651 0 quad 4412 4423 4424 4413 -3652 0 quad 4413 4424 4425 4414 -3653 0 quad 4414 4425 4426 4415 -3654 0 quad 4415 4426 4427 4416 -3655 0 quad 4416 4427 4428 4417 -3656 0 quad 4417 4428 4429 4418 -3657 0 quad 4418 4429 4430 4419 -3658 0 quad 4419 4430 4431 4420 -3659 0 quad 4420 4431 4432 4421 -3660 0 quad 4421 4432 4433 4422 -3661 0 quad 4423 4434 4435 4424 -3662 0 quad 4424 4435 4436 4425 -3663 0 quad 4425 4436 4437 4426 -3664 0 quad 4426 4437 4438 4427 -3665 0 quad 4427 4438 4439 4428 -3666 0 quad 4428 4439 4440 4429 -3667 0 quad 4429 4440 4441 4430 -3668 0 quad 4430 4441 4442 4431 -3669 0 quad 4431 4442 4443 4432 -3670 0 quad 4432 4443 4444 4433 -3671 0 quad 4434 4445 4446 4435 -3672 0 quad 4435 4446 4447 4436 -3673 0 quad 4436 4447 4448 4437 -3674 0 quad 4437 4448 4449 4438 -3675 0 quad 4438 4449 4450 4439 -3676 0 quad 4439 4450 4451 4440 -3677 0 quad 4440 4451 4452 4441 -3678 0 quad 4441 4452 4453 4442 -3679 0 quad 4442 4453 4454 4443 -3680 0 quad 4443 4454 4455 4444 -3681 0 quad 4445 4456 4457 4446 -3682 0 quad 4446 4457 4458 4447 -3683 0 quad 4447 4458 4459 4448 -3684 0 quad 4448 4459 4460 4449 -3685 0 quad 4449 4460 4461 4450 -3686 0 quad 4450 4461 4462 4451 -3687 0 quad 4451 4462 4463 4452 -3688 0 quad 4452 4463 4464 4453 -3689 0 quad 4453 4464 4465 4454 -3690 0 quad 4454 4465 4466 4455 -3691 0 quad 4456 4467 4468 4457 -3692 0 quad 4457 4468 4469 4458 -3693 0 quad 4458 4469 4470 4459 -3694 0 quad 4459 4470 4471 4460 -3695 0 quad 4460 4471 4472 4461 -3696 0 quad 4461 4472 4473 4462 -3697 0 quad 4462 4473 4474 4463 -3698 0 quad 4463 4474 4475 4464 -3699 0 quad 4464 4475 4476 4465 -3700 0 quad 4465 4476 4477 4466 -3701 0 quad 4478 4489 4490 4479 -3702 0 quad 4479 4490 4491 4480 -3703 0 quad 4480 4491 4492 4481 -3704 0 quad 4481 4492 4493 4482 -3705 0 quad 4482 4493 4494 4483 -3706 0 quad 4483 4494 4495 4484 -3707 0 quad 4484 4495 4496 4485 -3708 0 quad 4485 4496 4497 4486 -3709 0 quad 4486 4497 4498 4487 -3710 0 quad 4487 4498 4499 4488 -3711 0 quad 4489 4500 4501 4490 -3712 0 quad 4490 4501 4502 4491 -3713 0 quad 4491 4502 4503 4492 -3714 0 quad 4492 4503 4504 4493 -3715 0 quad 4493 4504 4505 4494 -3716 0 quad 4494 4505 4506 4495 -3717 0 quad 4495 4506 4507 4496 -3718 0 quad 4496 4507 4508 4497 -3719 0 quad 4497 4508 4509 4498 -3720 0 quad 4498 4509 4510 4499 -3721 0 quad 4500 4511 4512 4501 -3722 0 quad 4501 4512 4513 4502 -3723 0 quad 4502 4513 4514 4503 -3724 0 quad 4503 4514 4515 4504 -3725 0 quad 4504 4515 4516 4505 -3726 0 quad 4505 4516 4517 4506 -3727 0 quad 4506 4517 4518 4507 -3728 0 quad 4507 4518 4519 4508 -3729 0 quad 4508 4519 4520 4509 -3730 0 quad 4509 4520 4521 4510 -3731 0 quad 4511 4522 4523 4512 -3732 0 quad 4512 4523 4524 4513 -3733 0 quad 4513 4524 4525 4514 -3734 0 quad 4514 4525 4526 4515 -3735 0 quad 4515 4526 4527 4516 -3736 0 quad 4516 4527 4528 4517 -3737 0 quad 4517 4528 4529 4518 -3738 0 quad 4518 4529 4530 4519 -3739 0 quad 4519 4530 4531 4520 -3740 0 quad 4520 4531 4532 4521 -3741 0 quad 4522 4533 4534 4523 -3742 0 quad 4523 4534 4535 4524 -3743 0 quad 4524 4535 4536 4525 -3744 0 quad 4525 4536 4537 4526 -3745 0 quad 4526 4537 4538 4527 -3746 0 quad 4527 4538 4539 4528 -3747 0 quad 4528 4539 4540 4529 -3748 0 quad 4529 4540 4541 4530 -3749 0 quad 4530 4541 4542 4531 -3750 0 quad 4531 4542 4543 4532 -3751 0 quad 4533 4544 4545 4534 -3752 0 quad 4534 4545 4546 4535 -3753 0 quad 4535 4546 4547 4536 -3754 0 quad 4536 4547 4548 4537 -3755 0 quad 4537 4548 4549 4538 -3756 0 quad 4538 4549 4550 4539 -3757 0 quad 4539 4550 4551 4540 -3758 0 quad 4540 4551 4552 4541 -3759 0 quad 4541 4552 4553 4542 -3760 0 quad 4542 4553 4554 4543 -3761 0 quad 4544 4555 4556 4545 -3762 0 quad 4545 4556 4557 4546 -3763 0 quad 4546 4557 4558 4547 -3764 0 quad 4547 4558 4559 4548 -3765 0 quad 4548 4559 4560 4549 -3766 0 quad 4549 4560 4561 4550 -3767 0 quad 4550 4561 4562 4551 -3768 0 quad 4551 4562 4563 4552 -3769 0 quad 4552 4563 4564 4553 -3770 0 quad 4553 4564 4565 4554 -3771 0 quad 4555 4566 4567 4556 -3772 0 quad 4556 4567 4568 4557 -3773 0 quad 4557 4568 4569 4558 -3774 0 quad 4558 4569 4570 4559 -3775 0 quad 4559 4570 4571 4560 -3776 0 quad 4560 4571 4572 4561 -3777 0 quad 4561 4572 4573 4562 -3778 0 quad 4562 4573 4574 4563 -3779 0 quad 4563 4574 4575 4564 -3780 0 quad 4564 4575 4576 4565 -3781 0 quad 4566 4577 4578 4567 -3782 0 quad 4567 4578 4579 4568 -3783 0 quad 4568 4579 4580 4569 -3784 0 quad 4569 4580 4581 4570 -3785 0 quad 4570 4581 4582 4571 -3786 0 quad 4571 4582 4583 4572 -3787 0 quad 4572 4583 4584 4573 -3788 0 quad 4573 4584 4585 4574 -3789 0 quad 4574 4585 4586 4575 -3790 0 quad 4575 4586 4587 4576 -3791 0 quad 4577 4588 4589 4578 -3792 0 quad 4578 4589 4590 4579 -3793 0 quad 4579 4590 4591 4580 -3794 0 quad 4580 4591 4592 4581 -3795 0 quad 4581 4592 4593 4582 -3796 0 quad 4582 4593 4594 4583 -3797 0 quad 4583 4594 4595 4584 -3798 0 quad 4584 4595 4596 4585 -3799 0 quad 4585 4596 4597 4586 -3800 0 quad 4586 4597 4598 4587 -3801 0 quad 4599 4610 4611 4600 -3802 0 quad 4600 4611 4612 4601 -3803 0 quad 4601 4612 4613 4602 -3804 0 quad 4602 4613 4614 4603 -3805 0 quad 4603 4614 4615 4604 -3806 0 quad 4604 4615 4616 4605 -3807 0 quad 4605 4616 4617 4606 -3808 0 quad 4606 4617 4618 4607 -3809 0 quad 4607 4618 4619 4608 -3810 0 quad 4608 4619 4620 4609 -3811 0 quad 4610 4621 4622 4611 -3812 0 quad 4611 4622 4623 4612 -3813 0 quad 4612 4623 4624 4613 -3814 0 quad 4613 4624 4625 4614 -3815 0 quad 4614 4625 4626 4615 -3816 0 quad 4615 4626 4627 4616 -3817 0 quad 4616 4627 4628 4617 -3818 0 quad 4617 4628 4629 4618 -3819 0 quad 4618 4629 4630 4619 -3820 0 quad 4619 4630 4631 4620 -3821 0 quad 4621 4632 4633 4622 -3822 0 quad 4622 4633 4634 4623 -3823 0 quad 4623 4634 4635 4624 -3824 0 quad 4624 4635 4636 4625 -3825 0 quad 4625 4636 4637 4626 -3826 0 quad 4626 4637 4638 4627 -3827 0 quad 4627 4638 4639 4628 -3828 0 quad 4628 4639 4640 4629 -3829 0 quad 4629 4640 4641 4630 -3830 0 quad 4630 4641 4642 4631 -3831 0 quad 4632 4643 4644 4633 -3832 0 quad 4633 4644 4645 4634 -3833 0 quad 4634 4645 4646 4635 -3834 0 quad 4635 4646 4647 4636 -3835 0 quad 4636 4647 4648 4637 -3836 0 quad 4637 4648 4649 4638 -3837 0 quad 4638 4649 4650 4639 -3838 0 quad 4639 4650 4651 4640 -3839 0 quad 4640 4651 4652 4641 -3840 0 quad 4641 4652 4653 4642 -3841 0 quad 4643 4654 4655 4644 -3842 0 quad 4644 4655 4656 4645 -3843 0 quad 4645 4656 4657 4646 -3844 0 quad 4646 4657 4658 4647 -3845 0 quad 4647 4658 4659 4648 -3846 0 quad 4648 4659 4660 4649 -3847 0 quad 4649 4660 4661 4650 -3848 0 quad 4650 4661 4662 4651 -3849 0 quad 4651 4662 4663 4652 -3850 0 quad 4652 4663 4664 4653 -3851 0 quad 4654 4665 4666 4655 -3852 0 quad 4655 4666 4667 4656 -3853 0 quad 4656 4667 4668 4657 -3854 0 quad 4657 4668 4669 4658 -3855 0 quad 4658 4669 4670 4659 -3856 0 quad 4659 4670 4671 4660 -3857 0 quad 4660 4671 4672 4661 -3858 0 quad 4661 4672 4673 4662 -3859 0 quad 4662 4673 4674 4663 -3860 0 quad 4663 4674 4675 4664 -3861 0 quad 4665 4676 4677 4666 -3862 0 quad 4666 4677 4678 4667 -3863 0 quad 4667 4678 4679 4668 -3864 0 quad 4668 4679 4680 4669 -3865 0 quad 4669 4680 4681 4670 -3866 0 quad 4670 4681 4682 4671 -3867 0 quad 4671 4682 4683 4672 -3868 0 quad 4672 4683 4684 4673 -3869 0 quad 4673 4684 4685 4674 -3870 0 quad 4674 4685 4686 4675 -3871 0 quad 4676 4687 4688 4677 -3872 0 quad 4677 4688 4689 4678 -3873 0 quad 4678 4689 4690 4679 -3874 0 quad 4679 4690 4691 4680 -3875 0 quad 4680 4691 4692 4681 -3876 0 quad 4681 4692 4693 4682 -3877 0 quad 4682 4693 4694 4683 -3878 0 quad 4683 4694 4695 4684 -3879 0 quad 4684 4695 4696 4685 -3880 0 quad 4685 4696 4697 4686 -3881 0 quad 4687 4698 4699 4688 -3882 0 quad 4688 4699 4700 4689 -3883 0 quad 4689 4700 4701 4690 -3884 0 quad 4690 4701 4702 4691 -3885 0 quad 4691 4702 4703 4692 -3886 0 quad 4692 4703 4704 4693 -3887 0 quad 4693 4704 4705 4694 -3888 0 quad 4694 4705 4706 4695 -3889 0 quad 4695 4706 4707 4696 -3890 0 quad 4696 4707 4708 4697 -3891 0 quad 4698 4709 4710 4699 -3892 0 quad 4699 4710 4711 4700 -3893 0 quad 4700 4711 4712 4701 -3894 0 quad 4701 4712 4713 4702 -3895 0 quad 4702 4713 4714 4703 -3896 0 quad 4703 4714 4715 4704 -3897 0 quad 4704 4715 4716 4705 -3898 0 quad 4705 4716 4717 4706 -3899 0 quad 4706 4717 4718 4707 -3900 0 quad 4707 4718 4719 4708 -3901 0 quad 4720 4731 4732 4721 -3902 0 quad 4721 4732 4733 4722 -3903 0 quad 4722 4733 4734 4723 -3904 0 quad 4723 4734 4735 4724 -3905 0 quad 4724 4735 4736 4725 -3906 0 quad 4725 4736 4737 4726 -3907 0 quad 4726 4737 4738 4727 -3908 0 quad 4727 4738 4739 4728 -3909 0 quad 4728 4739 4740 4729 -3910 0 quad 4729 4740 4741 4730 -3911 0 quad 4731 4742 4743 4732 -3912 0 quad 4732 4743 4744 4733 -3913 0 quad 4733 4744 4745 4734 -3914 0 quad 4734 4745 4746 4735 -3915 0 quad 4735 4746 4747 4736 -3916 0 quad 4736 4747 4748 4737 -3917 0 quad 4737 4748 4749 4738 -3918 0 quad 4738 4749 4750 4739 -3919 0 quad 4739 4750 4751 4740 -3920 0 quad 4740 4751 4752 4741 -3921 0 quad 4742 4753 4754 4743 -3922 0 quad 4743 4754 4755 4744 -3923 0 quad 4744 4755 4756 4745 -3924 0 quad 4745 4756 4757 4746 -3925 0 quad 4746 4757 4758 4747 -3926 0 quad 4747 4758 4759 4748 -3927 0 quad 4748 4759 4760 4749 -3928 0 quad 4749 4760 4761 4750 -3929 0 quad 4750 4761 4762 4751 -3930 0 quad 4751 4762 4763 4752 -3931 0 quad 4753 4764 4765 4754 -3932 0 quad 4754 4765 4766 4755 -3933 0 quad 4755 4766 4767 4756 -3934 0 quad 4756 4767 4768 4757 -3935 0 quad 4757 4768 4769 4758 -3936 0 quad 4758 4769 4770 4759 -3937 0 quad 4759 4770 4771 4760 -3938 0 quad 4760 4771 4772 4761 -3939 0 quad 4761 4772 4773 4762 -3940 0 quad 4762 4773 4774 4763 -3941 0 quad 4764 4775 4776 4765 -3942 0 quad 4765 4776 4777 4766 -3943 0 quad 4766 4777 4778 4767 -3944 0 quad 4767 4778 4779 4768 -3945 0 quad 4768 4779 4780 4769 -3946 0 quad 4769 4780 4781 4770 -3947 0 quad 4770 4781 4782 4771 -3948 0 quad 4771 4782 4783 4772 -3949 0 quad 4772 4783 4784 4773 -3950 0 quad 4773 4784 4785 4774 -3951 0 quad 4775 4786 4787 4776 -3952 0 quad 4776 4787 4788 4777 -3953 0 quad 4777 4788 4789 4778 -3954 0 quad 4778 4789 4790 4779 -3955 0 quad 4779 4790 4791 4780 -3956 0 quad 4780 4791 4792 4781 -3957 0 quad 4781 4792 4793 4782 -3958 0 quad 4782 4793 4794 4783 -3959 0 quad 4783 4794 4795 4784 -3960 0 quad 4784 4795 4796 4785 -3961 0 quad 4786 4797 4798 4787 -3962 0 quad 4787 4798 4799 4788 -3963 0 quad 4788 4799 4800 4789 -3964 0 quad 4789 4800 4801 4790 -3965 0 quad 4790 4801 4802 4791 -3966 0 quad 4791 4802 4803 4792 -3967 0 quad 4792 4803 4804 4793 -3968 0 quad 4793 4804 4805 4794 -3969 0 quad 4794 4805 4806 4795 -3970 0 quad 4795 4806 4807 4796 -3971 0 quad 4797 4808 4809 4798 -3972 0 quad 4798 4809 4810 4799 -3973 0 quad 4799 4810 4811 4800 -3974 0 quad 4800 4811 4812 4801 -3975 0 quad 4801 4812 4813 4802 -3976 0 quad 4802 4813 4814 4803 -3977 0 quad 4803 4814 4815 4804 -3978 0 quad 4804 4815 4816 4805 -3979 0 quad 4805 4816 4817 4806 -3980 0 quad 4806 4817 4818 4807 -3981 0 quad 4808 4819 4820 4809 -3982 0 quad 4809 4820 4821 4810 -3983 0 quad 4810 4821 4822 4811 -3984 0 quad 4811 4822 4823 4812 -3985 0 quad 4812 4823 4824 4813 -3986 0 quad 4813 4824 4825 4814 -3987 0 quad 4814 4825 4826 4815 -3988 0 quad 4815 4826 4827 4816 -3989 0 quad 4816 4827 4828 4817 -3990 0 quad 4817 4828 4829 4818 -3991 0 quad 4819 4830 4831 4820 -3992 0 quad 4820 4831 4832 4821 -3993 0 quad 4821 4832 4833 4822 -3994 0 quad 4822 4833 4834 4823 -3995 0 quad 4823 4834 4835 4824 -3996 0 quad 4824 4835 4836 4825 -3997 0 quad 4825 4836 4837 4826 -3998 0 quad 4826 4837 4838 4827 -3999 0 quad 4827 4838 4839 4828 -4000 0 quad 4828 4839 4840 4829 -4001 0 quad 4841 4852 4853 4842 -4002 0 quad 4842 4853 4854 4843 -4003 0 quad 4843 4854 4855 4844 -4004 0 quad 4844 4855 4856 4845 -4005 0 quad 4845 4856 4857 4846 -4006 0 quad 4846 4857 4858 4847 -4007 0 quad 4847 4858 4859 4848 -4008 0 quad 4848 4859 4860 4849 -4009 0 quad 4849 4860 4861 4850 -4010 0 quad 4850 4861 4862 4851 -4011 0 quad 4852 4863 4864 4853 -4012 0 quad 4853 4864 4865 4854 -4013 0 quad 4854 4865 4866 4855 -4014 0 quad 4855 4866 4867 4856 -4015 0 quad 4856 4867 4868 4857 -4016 0 quad 4857 4868 4869 4858 -4017 0 quad 4858 4869 4870 4859 -4018 0 quad 4859 4870 4871 4860 -4019 0 quad 4860 4871 4872 4861 -4020 0 quad 4861 4872 4873 4862 -4021 0 quad 4863 4874 4875 4864 -4022 0 quad 4864 4875 4876 4865 -4023 0 quad 4865 4876 4877 4866 -4024 0 quad 4866 4877 4878 4867 -4025 0 quad 4867 4878 4879 4868 -4026 0 quad 4868 4879 4880 4869 -4027 0 quad 4869 4880 4881 4870 -4028 0 quad 4870 4881 4882 4871 -4029 0 quad 4871 4882 4883 4872 -4030 0 quad 4872 4883 4884 4873 -4031 0 quad 4874 4885 4886 4875 -4032 0 quad 4875 4886 4887 4876 -4033 0 quad 4876 4887 4888 4877 -4034 0 quad 4877 4888 4889 4878 -4035 0 quad 4878 4889 4890 4879 -4036 0 quad 4879 4890 4891 4880 -4037 0 quad 4880 4891 4892 4881 -4038 0 quad 4881 4892 4893 4882 -4039 0 quad 4882 4893 4894 4883 -4040 0 quad 4883 4894 4895 4884 -4041 0 quad 4885 4896 4897 4886 -4042 0 quad 4886 4897 4898 4887 -4043 0 quad 4887 4898 4899 4888 -4044 0 quad 4888 4899 4900 4889 -4045 0 quad 4889 4900 4901 4890 -4046 0 quad 4890 4901 4902 4891 -4047 0 quad 4891 4902 4903 4892 -4048 0 quad 4892 4903 4904 4893 -4049 0 quad 4893 4904 4905 4894 -4050 0 quad 4894 4905 4906 4895 -4051 0 quad 4896 4907 4908 4897 -4052 0 quad 4897 4908 4909 4898 -4053 0 quad 4898 4909 4910 4899 -4054 0 quad 4899 4910 4911 4900 -4055 0 quad 4900 4911 4912 4901 -4056 0 quad 4901 4912 4913 4902 -4057 0 quad 4902 4913 4914 4903 -4058 0 quad 4903 4914 4915 4904 -4059 0 quad 4904 4915 4916 4905 -4060 0 quad 4905 4916 4917 4906 -4061 0 quad 4907 4918 4919 4908 -4062 0 quad 4908 4919 4920 4909 -4063 0 quad 4909 4920 4921 4910 -4064 0 quad 4910 4921 4922 4911 -4065 0 quad 4911 4922 4923 4912 -4066 0 quad 4912 4923 4924 4913 -4067 0 quad 4913 4924 4925 4914 -4068 0 quad 4914 4925 4926 4915 -4069 0 quad 4915 4926 4927 4916 -4070 0 quad 4916 4927 4928 4917 -4071 0 quad 4918 4929 4930 4919 -4072 0 quad 4919 4930 4931 4920 -4073 0 quad 4920 4931 4932 4921 -4074 0 quad 4921 4932 4933 4922 -4075 0 quad 4922 4933 4934 4923 -4076 0 quad 4923 4934 4935 4924 -4077 0 quad 4924 4935 4936 4925 -4078 0 quad 4925 4936 4937 4926 -4079 0 quad 4926 4937 4938 4927 -4080 0 quad 4927 4938 4939 4928 -4081 0 quad 4929 4940 4941 4930 -4082 0 quad 4930 4941 4942 4931 -4083 0 quad 4931 4942 4943 4932 -4084 0 quad 4932 4943 4944 4933 -4085 0 quad 4933 4944 4945 4934 -4086 0 quad 4934 4945 4946 4935 -4087 0 quad 4935 4946 4947 4936 -4088 0 quad 4936 4947 4948 4937 -4089 0 quad 4937 4948 4949 4938 -4090 0 quad 4938 4949 4950 4939 -4091 0 quad 4940 4951 4952 4941 -4092 0 quad 4941 4952 4953 4942 -4093 0 quad 4942 4953 4954 4943 -4094 0 quad 4943 4954 4955 4944 -4095 0 quad 4944 4955 4956 4945 -4096 0 quad 4945 4956 4957 4946 -4097 0 quad 4946 4957 4958 4947 -4098 0 quad 4947 4958 4959 4948 -4099 0 quad 4948 4959 4960 4949 -4100 0 quad 4949 4960 4961 4950 -4101 0 quad 4962 4973 4974 4963 -4102 0 quad 4963 4974 4975 4964 -4103 0 quad 4964 4975 4976 4965 -4104 0 quad 4965 4976 4977 4966 -4105 0 quad 4966 4977 4978 4967 -4106 0 quad 4967 4978 4979 4968 -4107 0 quad 4968 4979 4980 4969 -4108 0 quad 4969 4980 4981 4970 -4109 0 quad 4970 4981 4982 4971 -4110 0 quad 4971 4982 4983 4972 -4111 0 quad 4973 4984 4985 4974 -4112 0 quad 4974 4985 4986 4975 -4113 0 quad 4975 4986 4987 4976 -4114 0 quad 4976 4987 4988 4977 -4115 0 quad 4977 4988 4989 4978 -4116 0 quad 4978 4989 4990 4979 -4117 0 quad 4979 4990 4991 4980 -4118 0 quad 4980 4991 4992 4981 -4119 0 quad 4981 4992 4993 4982 -4120 0 quad 4982 4993 4994 4983 -4121 0 quad 4984 4995 4996 4985 -4122 0 quad 4985 4996 4997 4986 -4123 0 quad 4986 4997 4998 4987 -4124 0 quad 4987 4998 4999 4988 -4125 0 quad 4988 4999 5000 4989 -4126 0 quad 4989 5000 5001 4990 -4127 0 quad 4990 5001 5002 4991 -4128 0 quad 4991 5002 5003 4992 -4129 0 quad 4992 5003 5004 4993 -4130 0 quad 4993 5004 5005 4994 -4131 0 quad 4995 5006 5007 4996 -4132 0 quad 4996 5007 5008 4997 -4133 0 quad 4997 5008 5009 4998 -4134 0 quad 4998 5009 5010 4999 -4135 0 quad 4999 5010 5011 5000 -4136 0 quad 5000 5011 5012 5001 -4137 0 quad 5001 5012 5013 5002 -4138 0 quad 5002 5013 5014 5003 -4139 0 quad 5003 5014 5015 5004 -4140 0 quad 5004 5015 5016 5005 -4141 0 quad 5006 5017 5018 5007 -4142 0 quad 5007 5018 5019 5008 -4143 0 quad 5008 5019 5020 5009 -4144 0 quad 5009 5020 5021 5010 -4145 0 quad 5010 5021 5022 5011 -4146 0 quad 5011 5022 5023 5012 -4147 0 quad 5012 5023 5024 5013 -4148 0 quad 5013 5024 5025 5014 -4149 0 quad 5014 5025 5026 5015 -4150 0 quad 5015 5026 5027 5016 -4151 0 quad 5017 5028 5029 5018 -4152 0 quad 5018 5029 5030 5019 -4153 0 quad 5019 5030 5031 5020 -4154 0 quad 5020 5031 5032 5021 -4155 0 quad 5021 5032 5033 5022 -4156 0 quad 5022 5033 5034 5023 -4157 0 quad 5023 5034 5035 5024 -4158 0 quad 5024 5035 5036 5025 -4159 0 quad 5025 5036 5037 5026 -4160 0 quad 5026 5037 5038 5027 -4161 0 quad 5028 5039 5040 5029 -4162 0 quad 5029 5040 5041 5030 -4163 0 quad 5030 5041 5042 5031 -4164 0 quad 5031 5042 5043 5032 -4165 0 quad 5032 5043 5044 5033 -4166 0 quad 5033 5044 5045 5034 -4167 0 quad 5034 5045 5046 5035 -4168 0 quad 5035 5046 5047 5036 -4169 0 quad 5036 5047 5048 5037 -4170 0 quad 5037 5048 5049 5038 -4171 0 quad 5039 5050 5051 5040 -4172 0 quad 5040 5051 5052 5041 -4173 0 quad 5041 5052 5053 5042 -4174 0 quad 5042 5053 5054 5043 -4175 0 quad 5043 5054 5055 5044 -4176 0 quad 5044 5055 5056 5045 -4177 0 quad 5045 5056 5057 5046 -4178 0 quad 5046 5057 5058 5047 -4179 0 quad 5047 5058 5059 5048 -4180 0 quad 5048 5059 5060 5049 -4181 0 quad 5050 5061 5062 5051 -4182 0 quad 5051 5062 5063 5052 -4183 0 quad 5052 5063 5064 5053 -4184 0 quad 5053 5064 5065 5054 -4185 0 quad 5054 5065 5066 5055 -4186 0 quad 5055 5066 5067 5056 -4187 0 quad 5056 5067 5068 5057 -4188 0 quad 5057 5068 5069 5058 -4189 0 quad 5058 5069 5070 5059 -4190 0 quad 5059 5070 5071 5060 -4191 0 quad 5061 5072 5073 5062 -4192 0 quad 5062 5073 5074 5063 -4193 0 quad 5063 5074 5075 5064 -4194 0 quad 5064 5075 5076 5065 -4195 0 quad 5065 5076 5077 5066 -4196 0 quad 5066 5077 5078 5067 -4197 0 quad 5067 5078 5079 5068 -4198 0 quad 5068 5079 5080 5069 -4199 0 quad 5069 5080 5081 5070 -4200 0 quad 5070 5081 5082 5071 - -1 1 -solution,dimensionless -1 0 -2 0.3 -3 0.6 -4 0.9 -5 1.2 -6 1.5 -7 1.8 -8 2.1 -9 2.4 -10 2.7 -11 3 -12 0.1 -13 0.38 -14 0.66 -15 0.94 -16 1.22 -17 1.5 -18 1.78 -19 2.06 -20 2.34 -21 2.62 -22 2.9 -23 0.2 -24 0.46 -25 0.72 -26 0.98 -27 1.24 -28 1.5 -29 1.76 -30 2.02 -31 2.28 -32 2.54 -33 2.8 -34 0.3 -35 0.54 -36 0.78 -37 1.02 -38 1.26 -39 1.5 -40 1.74 -41 1.98 -42 2.22 -43 2.46 -44 2.7 -45 0.4 -46 0.62 -47 0.84 -48 1.06 -49 1.28 -50 1.5 -51 1.72 -52 1.94 -53 2.16 -54 2.38 -55 2.6 -56 0.5 -57 0.7 -58 0.9 -59 1.1 -60 1.3 -61 1.5 -62 1.7 -63 1.9 -64 2.1 -65 2.3 -66 2.5 -67 0.6 -68 0.78 -69 0.96 -70 1.14 -71 1.32 -72 1.5 -73 1.68 -74 1.86 -75 2.04 -76 2.22 -77 2.4 -78 0.7 -79 0.86 -80 1.02 -81 1.18 -82 1.34 -83 1.5 -84 1.66 -85 1.82 -86 1.98 -87 2.14 -88 2.3 -89 0.8 -90 0.94 -91 1.08 -92 1.22 -93 1.36 -94 1.5 -95 1.64 -96 1.78 -97 1.92 -98 2.06 -99 2.2 -100 0.9 -101 1.02 -102 1.14 -103 1.26 -104 1.38 -105 1.5 -106 1.62 -107 1.74 -108 1.86 -109 1.98 -110 2.1 -111 1 -112 1.1 -113 1.2 -114 1.3 -115 1.4 -116 1.5 -117 1.6 -118 1.7 -119 1.8 -120 1.9 -121 2 -122 1 -123 1.1 -124 1.2 -125 1.3 -126 1.4 -127 1.5 -128 1.6 -129 1.7 -130 1.8 -131 1.9 -132 2 -133 1.4 -134 1.5 -135 1.6 -136 1.7 -137 1.8 -138 1.9 -139 2 -140 2.1 -141 2.2 -142 2.3 -143 2.4 -144 1.8 -145 1.9 -146 2 -147 2.1 -148 2.2 -149 2.3 -150 2.4 -151 2.5 -152 2.6 -153 2.7 -154 2.8 -155 2.2 -156 2.3 -157 2.4 -158 2.5 -159 2.6 -160 2.7 -161 2.8 -162 2.9 -163 3 -164 3.1 -165 3.2 -166 2.6 -167 2.7 -168 2.8 -169 2.9 -170 3 -171 3.1 -172 3.2 -173 3.3 -174 3.4 -175 3.5 -176 3.6 -177 3 -178 3.1 -179 3.2 -180 3.3 -181 3.4 -182 3.5 -183 3.6 -184 3.7 -185 3.8 -186 3.9 -187 4 -188 3.4 -189 3.5 -190 3.6 -191 3.7 -192 3.8 -193 3.9 -194 4 -195 4.1 -196 4.2 -197 4.3 -198 4.4 -199 3.8 -200 3.9 -201 4 -202 4.1 -203 4.2 -204 4.3 -205 4.4 -206 4.5 -207 4.6 -208 4.7 -209 4.8 -210 4.2 -211 4.3 -212 4.4 -213 4.5 -214 4.6 -215 4.7 -216 4.8 -217 4.9 -218 5 -219 5.1 -220 5.2 -221 4.6 -222 4.7 -223 4.8 -224 4.9 -225 5 -226 5.1 -227 5.2 -228 5.3 -229 5.4 -230 5.5 -231 5.6 -232 5 -233 5.1 -234 5.2 -235 5.3 -236 5.4 -237 5.5 -238 5.6 -239 5.7 -240 5.8 -241 5.9 -242 6 -243 3 -244 3.4 -245 3.8 -246 4.2 -247 4.6 -248 5 -249 5.4 -250 5.8 -251 6.2 -252 6.6 -253 7 -254 2.9 -255 3.3 -256 3.7 -257 4.1 -258 4.5 -259 4.9 -260 5.3 -261 5.7 -262 6.1 -263 6.5 -264 6.9 -265 2.8 -266 3.2 -267 3.6 -268 4 -269 4.4 -270 4.8 -271 5.2 -272 5.6 -273 6 -274 6.4 -275 6.8 -276 2.7 -277 3.1 -278 3.5 -279 3.9 -280 4.3 -281 4.7 -282 5.1 -283 5.5 -284 5.9 -285 6.3 -286 6.7 -287 2.6 -288 3 -289 3.4 -290 3.8 -291 4.2 -292 4.6 -293 5 -294 5.4 -295 5.8 -296 6.2 -297 6.6 -298 2.5 -299 2.9 -300 3.3 -301 3.7 -302 4.1 -303 4.5 -304 4.9 -305 5.3 -306 5.7 -307 6.1 -308 6.5 -309 2.4 -310 2.8 -311 3.2 -312 3.6 -313 4 -314 4.4 -315 4.8 -316 5.2 -317 5.6 -318 6 -319 6.4 -320 2.3 -321 2.7 -322 3.1 -323 3.5 -324 3.9 -325 4.3 -326 4.7 -327 5.1 -328 5.5 -329 5.9 -330 6.3 -331 2.2 -332 2.6 -333 3 -334 3.4 -335 3.8 -336 4.2 -337 4.6 -338 5 -339 5.4 -340 5.8 -341 6.2 -342 2.1 -343 2.5 -344 2.9 -345 3.3 -346 3.7 -347 4.1 -348 4.5 -349 4.9 -350 5.3 -351 5.7 -352 6.1 -353 2 -354 2.4 -355 2.8 -356 3.2 -357 3.6 -358 4 -359 4.4 -360 4.8 -361 5.2 -362 5.6 -363 6 -364 8 -365 8.1 -366 8.2 -367 8.3 -368 8.4 -369 8.5 -370 8.6 -371 8.7 -372 8.8 -373 8.9 -374 9 -375 7.2 -376 7.32 -377 7.44 -378 7.56 -379 7.68 -380 7.8 -381 7.92 -382 8.04 -383 8.16 -384 8.28 -385 8.4 -386 6.4 -387 6.54 -388 6.68 -389 6.82 -390 6.96 -391 7.1 -392 7.24 -393 7.38 -394 7.52 -395 7.66 -396 7.8 -397 5.6 -398 5.76 -399 5.92 -400 6.08 -401 6.24 -402 6.4 -403 6.56 -404 6.72 -405 6.88 -406 7.04 -407 7.2 -408 4.8 -409 4.98 -410 5.16 -411 5.34 -412 5.52 -413 5.7 -414 5.88 -415 6.06 -416 6.24 -417 6.42 -418 6.6 -419 4 -420 4.2 -421 4.4 -422 4.6 -423 4.8 -424 5 -425 5.2 -426 5.4 -427 5.6 -428 5.8 -429 6 -430 3.2 -431 3.42 -432 3.64 -433 3.86 -434 4.08 -435 4.3 -436 4.52 -437 4.74 -438 4.96 -439 5.18 -440 5.4 -441 2.4 -442 2.64 -443 2.88 -444 3.12 -445 3.36 -446 3.6 -447 3.84 -448 4.08 -449 4.32 -450 4.56 -451 4.8 -452 1.6 -453 1.86 -454 2.12 -455 2.38 -456 2.64 -457 2.9 -458 3.16 -459 3.42 -460 3.68 -461 3.94 -462 4.2 -463 0.8 -464 1.08 -465 1.36 -466 1.64 -467 1.92 -468 2.2 -469 2.48 -470 2.76 -471 3.04 -472 3.32 -473 3.6 -474 0 -475 0.3 -476 0.6 -477 0.9 -478 1.2 -479 1.5 -480 1.8 -481 2.1 -482 2.4 -483 2.7 -484 3 -485 9 -486 9.2 -487 9.4 -488 9.6 -489 9.8 -490 10 -491 10.2 -492 10.4 -493 10.6 -494 10.8 -495 11 -496 8.4 -497 8.62 -498 8.84 -499 9.06 -500 9.28 -501 9.5 -502 9.72 -503 9.94 -504 10.16 -505 10.38 -506 10.6 -507 7.8 -508 8.04 -509 8.28 -510 8.52 -511 8.76 -512 9 -513 9.24 -514 9.48 -515 9.72 -516 9.96 -517 10.2 -518 7.2 -519 7.46 -520 7.72 -521 7.98 -522 8.24 -523 8.5 -524 8.76 -525 9.02 -526 9.28 -527 9.54 -528 9.8 -529 6.6 -530 6.88 -531 7.16 -532 7.44 -533 7.72 -534 8 -535 8.28 -536 8.56 -537 8.84 -538 9.12 -539 9.4 -540 6 -541 6.3 -542 6.6 -543 6.9 -544 7.2 -545 7.5 -546 7.8 -547 8.1 -548 8.4 -549 8.7 -550 9 -551 5.4 -552 5.72 -553 6.04 -554 6.36 -555 6.68 -556 7 -557 7.32 -558 7.64 -559 7.96 -560 8.28 -561 8.6 -562 4.8 -563 5.14 -564 5.48 -565 5.82 -566 6.16 -567 6.5 -568 6.84 -569 7.18 -570 7.52 -571 7.86 -572 8.2 -573 4.2 -574 4.56 -575 4.92 -576 5.28 -577 5.64 -578 6 -579 6.36 -580 6.72 -581 7.08 -582 7.44 -583 7.8 -584 3.6 -585 3.98 -586 4.36 -587 4.74 -588 5.12 -589 5.5 -590 5.88 -591 6.26 -592 6.64 -593 7.02 -594 7.4 -595 3 -596 3.4 -597 3.8 -598 4.2 -599 4.6 -600 5 -601 5.4 -602 5.8 -603 6.2 -604 6.6 -605 7 -606 8 -607 8.1 -608 8.2 -609 8.3 -610 8.4 -611 8.5 -612 8.6 -613 8.7 -614 8.8 -615 8.9 -616 9 -617 8.2 -618 8.3 -619 8.4 -620 8.5 -621 8.6 -622 8.7 -623 8.8 -624 8.9 -625 9 -626 9.1 -627 9.2 -628 8.4 -629 8.5 -630 8.6 -631 8.7 -632 8.8 -633 8.9 -634 9 -635 9.1 -636 9.2 -637 9.3 -638 9.4 -639 8.6 -640 8.7 -641 8.8 -642 8.9 -643 9 -644 9.1 -645 9.2 -646 9.3 -647 9.4 -648 9.5 -649 9.6 -650 8.8 -651 8.9 -652 9 -653 9.1 -654 9.2 -655 9.3 -656 9.4 -657 9.5 -658 9.6 -659 9.7 -660 9.8 -661 9 -662 9.1 -663 9.2 -664 9.3 -665 9.4 -666 9.5 -667 9.6 -668 9.7 -669 9.8 -670 9.9 -671 10 -672 9.2 -673 9.3 -674 9.4 -675 9.5 -676 9.6 -677 9.7 -678 9.8 -679 9.9 -680 10 -681 10.1 -682 10.2 -683 9.4 -684 9.5 -685 9.6 -686 9.7 -687 9.8 -688 9.9 -689 10 -690 10.1 -691 10.2 -692 10.3 -693 10.4 -694 9.6 -695 9.7 -696 9.8 -697 9.9 -698 10 -699 10.1 -700 10.2 -701 10.3 -702 10.4 -703 10.5 -704 10.6 -705 9.8 -706 9.9 -707 10 -708 10.1 -709 10.2 -710 10.3 -711 10.4 -712 10.5 -713 10.6 -714 10.7 -715 10.8 -716 10 -717 10.1 -718 10.2 -719 10.3 -720 10.4 -721 10.5 -722 10.6 -723 10.7 -724 10.8 -725 10.9 -726 11 -727 14 -728 14.3 -729 14.6 -730 14.9 -731 15.2 -732 15.5 -733 15.8 -734 16.1 -735 16.4 -736 16.7 -737 17 -738 14.1 -739 14.38 -740 14.66 -741 14.94 -742 15.22 -743 15.5 -744 15.78 -745 16.06 -746 16.34 -747 16.62 -748 16.9 -749 14.2 -750 14.46 -751 14.72 -752 14.98 -753 15.24 -754 15.5 -755 15.76 -756 16.02 -757 16.28 -758 16.54 -759 16.8 -760 14.3 -761 14.54 -762 14.78 -763 15.02 -764 15.26 -765 15.5 -766 15.74 -767 15.98 -768 16.22 -769 16.46 -770 16.7 -771 14.4 -772 14.62 -773 14.84 -774 15.06 -775 15.28 -776 15.5 -777 15.72 -778 15.94 -779 16.16 -780 16.38 -781 16.6 -782 14.5 -783 14.7 -784 14.9 -785 15.1 -786 15.3 -787 15.5 -788 15.7 -789 15.9 -790 16.1 -791 16.3 -792 16.5 -793 14.6 -794 14.78 -795 14.96 -796 15.14 -797 15.32 -798 15.5 -799 15.68 -800 15.86 -801 16.04 -802 16.22 -803 16.4 -804 14.7 -805 14.86 -806 15.02 -807 15.18 -808 15.34 -809 15.5 -810 15.66 -811 15.82 -812 15.98 -813 16.14 -814 16.3 -815 14.8 -816 14.94 -817 15.08 -818 15.22 -819 15.36 -820 15.5 -821 15.64 -822 15.78 -823 15.92 -824 16.06 -825 16.2 -826 14.9 -827 15.02 -828 15.14 -829 15.26 -830 15.38 -831 15.5 -832 15.62 -833 15.74 -834 15.86 -835 15.98 -836 16.1 -837 15 -838 15.1 -839 15.2 -840 15.3 -841 15.4 -842 15.5 -843 15.6 -844 15.7 -845 15.8 -846 15.9 -847 16 -848 12 -849 12.2 -850 12.4 -851 12.6 -852 12.8 -853 13 -854 13.2 -855 13.4 -856 13.6 -857 13.8 -858 14 -859 12.1 -860 12.3 -861 12.5 -862 12.7 -863 12.9 -864 13.1 -865 13.3 -866 13.5 -867 13.7 -868 13.9 -869 14.1 -870 12.2 -871 12.4 -872 12.6 -873 12.8 -874 13 -875 13.2 -876 13.4 -877 13.6 -878 13.8 -879 14 -880 14.2 -881 12.3 -882 12.5 -883 12.7 -884 12.9 -885 13.1 -886 13.3 -887 13.5 -888 13.7 -889 13.9 -890 14.1 -891 14.3 -892 12.4 -893 12.6 -894 12.8 -895 13 -896 13.2 -897 13.4 -898 13.6 -899 13.8 -900 14 -901 14.2 -902 14.4 -903 12.5 -904 12.7 -905 12.9 -906 13.1 -907 13.3 -908 13.5 -909 13.7 -910 13.9 -911 14.1 -912 14.3 -913 14.5 -914 12.6 -915 12.8 -916 13 -917 13.2 -918 13.4 -919 13.6 -920 13.8 -921 14 -922 14.2 -923 14.4 -924 14.6 -925 12.7 -926 12.9 -927 13.1 -928 13.3 -929 13.5 -930 13.7 -931 13.9 -932 14.1 -933 14.3 -934 14.5 -935 14.7 -936 12.8 -937 13 -938 13.2 -939 13.4 -940 13.6 -941 13.8 -942 14 -943 14.2 -944 14.4 -945 14.6 -946 14.8 -947 12.9 -948 13.1 -949 13.3 -950 13.5 -951 13.7 -952 13.9 -953 14.1 -954 14.3 -955 14.5 -956 14.7 -957 14.9 -958 13 -959 13.2 -960 13.4 -961 13.6 -962 13.8 -963 14 -964 14.2 -965 14.4 -966 14.6 -967 14.8 -968 15 -969 12 -970 11.8 -971 11.6 -972 11.4 -973 11.2 -974 11 -975 10.8 -976 10.6 -977 10.4 -978 10.2 -979 10 -980 12.2 -981 12.05 -982 11.9 -983 11.75 -984 11.6 -985 11.45 -986 11.3 -987 11.15 -988 11 -989 10.85 -990 10.7 -991 12.4 -992 12.3 -993 12.2 -994 12.1 -995 12 -996 11.9 -997 11.8 -998 11.7 -999 11.6 -1000 11.5 -1001 11.4 -1002 12.6 -1003 12.55 -1004 12.5 -1005 12.45 -1006 12.4 -1007 12.35 -1008 12.3 -1009 12.25 -1010 12.2 -1011 12.15 -1012 12.1 -1013 12.8 -1014 12.8 -1015 12.8 -1016 12.8 -1017 12.8 -1018 12.8 -1019 12.8 -1020 12.8 -1021 12.8 -1022 12.8 -1023 12.8 -1024 13 -1025 13.05 -1026 13.1 -1027 13.15 -1028 13.2 -1029 13.25 -1030 13.3 -1031 13.35 -1032 13.4 -1033 13.45 -1034 13.5 -1035 13.2 -1036 13.3 -1037 13.4 -1038 13.5 -1039 13.6 -1040 13.7 -1041 13.8 -1042 13.9 -1043 14 -1044 14.1 -1045 14.2 -1046 13.4 -1047 13.55 -1048 13.7 -1049 13.85 -1050 14 -1051 14.15 -1052 14.3 -1053 14.45 -1054 14.6 -1055 14.75 -1056 14.9 -1057 13.6 -1058 13.8 -1059 14 -1060 14.2 -1061 14.4 -1062 14.6 -1063 14.8 -1064 15 -1065 15.2 -1066 15.4 -1067 15.6 -1068 13.8 -1069 14.05 -1070 14.3 -1071 14.55 -1072 14.8 -1073 15.05 -1074 15.3 -1075 15.55 -1076 15.8 -1077 16.05 -1078 16.3 -1079 14 -1080 14.3 -1081 14.6 -1082 14.9 -1083 15.2 -1084 15.5 -1085 15.8 -1086 16.1 -1087 16.4 -1088 16.7 -1089 17 -1090 15 -1091 15.1 -1092 15.2 -1093 15.3 -1094 15.4 -1095 15.5 -1096 15.6 -1097 15.7 -1098 15.8 -1099 15.9 -1100 16 -1101 15.4 -1102 15.5 -1103 15.6 -1104 15.7 -1105 15.8 -1106 15.9 -1107 16 -1108 16.1 -1109 16.2 -1110 16.3 -1111 16.4 -1112 15.8 -1113 15.9 -1114 16 -1115 16.1 -1116 16.2 -1117 16.3 -1118 16.4 -1119 16.5 -1120 16.6 -1121 16.7 -1122 16.8 -1123 16.2 -1124 16.3 -1125 16.4 -1126 16.5 -1127 16.6 -1128 16.7 -1129 16.8 -1130 16.9 -1131 17 -1132 17.1 -1133 17.2 -1134 16.6 -1135 16.7 -1136 16.8 -1137 16.9 -1138 17 -1139 17.1 -1140 17.2 -1141 17.3 -1142 17.4 -1143 17.5 -1144 17.6 -1145 17 -1146 17.1 -1147 17.2 -1148 17.3 -1149 17.4 -1150 17.5 -1151 17.6 -1152 17.7 -1153 17.8 -1154 17.9 -1155 18 -1156 17.4 -1157 17.5 -1158 17.6 -1159 17.7 -1160 17.8 -1161 17.9 -1162 18 -1163 18.1 -1164 18.2 -1165 18.3 -1166 18.4 -1167 17.8 -1168 17.9 -1169 18 -1170 18.1 -1171 18.2 -1172 18.3 -1173 18.4 -1174 18.5 -1175 18.6 -1176 18.7 -1177 18.8 -1178 18.2 -1179 18.3 -1180 18.4 -1181 18.5 -1182 18.6 -1183 18.7 -1184 18.8 -1185 18.9 -1186 19 -1187 19.1 -1188 19.2 -1189 18.6 -1190 18.7 -1191 18.8 -1192 18.9 -1193 19 -1194 19.1 -1195 19.2 -1196 19.3 -1197 19.4 -1198 19.5 -1199 19.6 -1200 19 -1201 19.1 -1202 19.2 -1203 19.3 -1204 19.4 -1205 19.5 -1206 19.6 -1207 19.7 -1208 19.8 -1209 19.9 -1210 20 -1211 13 -1212 13.2 -1213 13.4 -1214 13.6 -1215 13.8 -1216 14 -1217 14.2 -1218 14.4 -1219 14.6 -1220 14.8 -1221 15 -1222 13.5 -1223 13.69 -1224 13.88 -1225 14.07 -1226 14.26 -1227 14.45 -1228 14.64 -1229 14.83 -1230 15.02 -1231 15.21 -1232 15.4 -1233 14 -1234 14.18 -1235 14.36 -1236 14.54 -1237 14.72 -1238 14.9 -1239 15.08 -1240 15.26 -1241 15.44 -1242 15.62 -1243 15.8 -1244 14.5 -1245 14.67 -1246 14.84 -1247 15.01 -1248 15.18 -1249 15.35 -1250 15.52 -1251 15.69 -1252 15.86 -1253 16.03 -1254 16.2 -1255 15 -1256 15.16 -1257 15.32 -1258 15.48 -1259 15.64 -1260 15.8 -1261 15.96 -1262 16.12 -1263 16.28 -1264 16.44 -1265 16.6 -1266 15.5 -1267 15.65 -1268 15.8 -1269 15.95 -1270 16.1 -1271 16.25 -1272 16.4 -1273 16.55 -1274 16.7 -1275 16.85 -1276 17 -1277 16 -1278 16.14 -1279 16.28 -1280 16.42 -1281 16.56 -1282 16.7 -1283 16.84 -1284 16.98 -1285 17.12 -1286 17.26 -1287 17.4 -1288 16.5 -1289 16.63 -1290 16.76 -1291 16.89 -1292 17.02 -1293 17.15 -1294 17.28 -1295 17.41 -1296 17.54 -1297 17.67 -1298 17.8 -1299 17 -1300 17.12 -1301 17.24 -1302 17.36 -1303 17.48 -1304 17.6 -1305 17.72 -1306 17.84 -1307 17.96 -1308 18.08 -1309 18.2 -1310 17.5 -1311 17.61 -1312 17.72 -1313 17.83 -1314 17.94 -1315 18.05 -1316 18.16 -1317 18.27 -1318 18.38 -1319 18.49 -1320 18.6 -1321 18 -1322 18.1 -1323 18.2 -1324 18.3 -1325 18.4 -1326 18.5 -1327 18.6 -1328 18.7 -1329 18.8 -1330 18.9 -1331 19 -1332 18 -1333 16.7 -1334 15.4 -1335 14.1 -1336 12.8 -1337 11.5 -1338 10.2 -1339 8.9 -1340 7.6 -1341 6.3 -1342 5 -1343 18.1 -1344 16.94 -1345 15.78 -1346 14.62 -1347 13.46 -1348 12.3 -1349 11.14 -1350 9.98 -1351 8.82 -1352 7.66 -1353 6.5 -1354 18.2 -1355 17.18 -1356 16.16 -1357 15.14 -1358 14.12 -1359 13.1 -1360 12.08 -1361 11.06 -1362 10.04 -1363 9.02 -1364 8 -1365 18.3 -1366 17.42 -1367 16.54 -1368 15.66 -1369 14.78 -1370 13.9 -1371 13.02 -1372 12.14 -1373 11.26 -1374 10.38 -1375 9.5 -1376 18.4 -1377 17.66 -1378 16.92 -1379 16.18 -1380 15.44 -1381 14.7 -1382 13.96 -1383 13.22 -1384 12.48 -1385 11.74 -1386 11 -1387 18.5 -1388 17.9 -1389 17.3 -1390 16.7 -1391 16.1 -1392 15.5 -1393 14.9 -1394 14.3 -1395 13.7 -1396 13.1 -1397 12.5 -1398 18.6 -1399 18.14 -1400 17.68 -1401 17.22 -1402 16.76 -1403 16.3 -1404 15.84 -1405 15.38 -1406 14.92 -1407 14.46 -1408 14 -1409 18.7 -1410 18.38 -1411 18.06 -1412 17.74 -1413 17.42 -1414 17.1 -1415 16.78 -1416 16.46 -1417 16.14 -1418 15.82 -1419 15.5 -1420 18.8 -1421 18.62 -1422 18.44 -1423 18.26 -1424 18.08 -1425 17.9 -1426 17.72 -1427 17.54 -1428 17.36 -1429 17.18 -1430 17 -1431 18.9 -1432 18.86 -1433 18.82 -1434 18.78 -1435 18.74 -1436 18.7 -1437 18.66 -1438 18.62 -1439 18.58 -1440 18.54 -1441 18.5 -1442 19 -1443 19.1 -1444 19.2 -1445 19.3 -1446 19.4 -1447 19.5 -1448 19.6 -1449 19.7 -1450 19.8 -1451 19.9 -1452 20 -1453 16 -1454 16.6 -1455 17.2 -1456 17.8 -1457 18.4 -1458 19 -1459 19.6 -1460 20.2 -1461 20.8 -1462 21.4 -1463 22 -1464 16.4 -1465 16.95 -1466 17.5 -1467 18.05 -1468 18.6 -1469 19.15 -1470 19.7 -1471 20.25 -1472 20.8 -1473 21.35 -1474 21.9 -1475 16.8 -1476 17.3 -1477 17.8 -1478 18.3 -1479 18.8 -1480 19.3 -1481 19.8 -1482 20.3 -1483 20.8 -1484 21.3 -1485 21.8 -1486 17.2 -1487 17.65 -1488 18.1 -1489 18.55 -1490 19 -1491 19.45 -1492 19.9 -1493 20.35 -1494 20.8 -1495 21.25 -1496 21.7 -1497 17.6 -1498 18 -1499 18.4 -1500 18.8 -1501 19.2 -1502 19.6 -1503 20 -1504 20.4 -1505 20.8 -1506 21.2 -1507 21.6 -1508 18 -1509 18.35 -1510 18.7 -1511 19.05 -1512 19.4 -1513 19.75 -1514 20.1 -1515 20.45 -1516 20.8 -1517 21.15 -1518 21.5 -1519 18.4 -1520 18.7 -1521 19 -1522 19.3 -1523 19.6 -1524 19.9 -1525 20.2 -1526 20.5 -1527 20.8 -1528 21.1 -1529 21.4 -1530 18.8 -1531 19.05 -1532 19.3 -1533 19.55 -1534 19.8 -1535 20.05 -1536 20.3 -1537 20.55 -1538 20.8 -1539 21.05 -1540 21.3 -1541 19.2 -1542 19.4 -1543 19.6 -1544 19.8 -1545 20 -1546 20.2 -1547 20.4 -1548 20.6 -1549 20.8 -1550 21 -1551 21.2 -1552 19.6 -1553 19.75 -1554 19.9 -1555 20.05 -1556 20.2 -1557 20.35 -1558 20.5 -1559 20.65 -1560 20.8 -1561 20.95 -1562 21.1 -1563 20 -1564 20.1 -1565 20.2 -1566 20.3 -1567 20.4 -1568 20.5 -1569 20.6 -1570 20.7 -1571 20.8 -1572 20.9 -1573 21 -1574 5 -1575 5.1 -1576 5.2 -1577 5.3 -1578 5.4 -1579 5.5 -1580 5.6 -1581 5.7 -1582 5.8 -1583 5.9 -1584 6 -1585 6.5 -1586 6.6 -1587 6.7 -1588 6.8 -1589 6.9 -1590 7 -1591 7.1 -1592 7.2 -1593 7.3 -1594 7.4 -1595 7.5 -1596 8 -1597 8.1 -1598 8.2 -1599 8.3 -1600 8.4 -1601 8.5 -1602 8.6 -1603 8.7 -1604 8.8 -1605 8.9 -1606 9 -1607 9.5 -1608 9.6 -1609 9.7 -1610 9.8 -1611 9.9 -1612 10 -1613 10.1 -1614 10.2 -1615 10.3 -1616 10.4 -1617 10.5 -1618 11 -1619 11.1 -1620 11.2 -1621 11.3 -1622 11.4 -1623 11.5 -1624 11.6 -1625 11.7 -1626 11.8 -1627 11.9 -1628 12 -1629 12.5 -1630 12.6 -1631 12.7 -1632 12.8 -1633 12.9 -1634 13 -1635 13.1 -1636 13.2 -1637 13.3 -1638 13.4 -1639 13.5 -1640 14 -1641 14.1 -1642 14.2 -1643 14.3 -1644 14.4 -1645 14.5 -1646 14.6 -1647 14.7 -1648 14.8 -1649 14.9 -1650 15 -1651 15.5 -1652 15.6 -1653 15.7 -1654 15.8 -1655 15.9 -1656 16 -1657 16.1 -1658 16.2 -1659 16.3 -1660 16.4 -1661 16.5 -1662 17 -1663 17.1 -1664 17.2 -1665 17.3 -1666 17.4 -1667 17.5 -1668 17.6 -1669 17.7 -1670 17.8 -1671 17.9 -1672 18 -1673 18.5 -1674 18.6 -1675 18.7 -1676 18.8 -1677 18.9 -1678 19 -1679 19.1 -1680 19.2 -1681 19.3 -1682 19.4 -1683 19.5 -1684 20 -1685 20.1 -1686 20.2 -1687 20.3 -1688 20.4 -1689 20.5 -1690 20.6 -1691 20.7 -1692 20.8 -1693 20.9 -1694 21 -1695 7 -1696 8.5 -1697 10 -1698 11.5 -1699 13 -1700 14.5 -1701 16 -1702 17.5 -1703 19 -1704 20.5 -1705 22 -1706 6.9 -1707 8.4 -1708 9.9 -1709 11.4 -1710 12.9 -1711 14.4 -1712 15.9 -1713 17.4 -1714 18.9 -1715 20.4 -1716 21.9 -1717 6.8 -1718 8.3 -1719 9.8 -1720 11.3 -1721 12.8 -1722 14.3 -1723 15.8 -1724 17.3 -1725 18.8 -1726 20.3 -1727 21.8 -1728 6.7 -1729 8.2 -1730 9.7 -1731 11.2 -1732 12.7 -1733 14.2 -1734 15.7 -1735 17.2 -1736 18.7 -1737 20.2 -1738 21.7 -1739 6.6 -1740 8.1 -1741 9.6 -1742 11.1 -1743 12.6 -1744 14.1 -1745 15.6 -1746 17.1 -1747 18.6 -1748 20.1 -1749 21.6 -1750 6.5 -1751 8 -1752 9.5 -1753 11 -1754 12.5 -1755 14 -1756 15.5 -1757 17 -1758 18.5 -1759 20 -1760 21.5 -1761 6.4 -1762 7.9 -1763 9.4 -1764 10.9 -1765 12.4 -1766 13.9 -1767 15.4 -1768 16.9 -1769 18.4 -1770 19.9 -1771 21.4 -1772 6.3 -1773 7.8 -1774 9.3 -1775 10.8 -1776 12.3 -1777 13.8 -1778 15.3 -1779 16.8 -1780 18.3 -1781 19.8 -1782 21.3 -1783 6.2 -1784 7.7 -1785 9.2 -1786 10.7 -1787 12.2 -1788 13.7 -1789 15.2 -1790 16.7 -1791 18.2 -1792 19.7 -1793 21.2 -1794 6.1 -1795 7.6 -1796 9.1 -1797 10.6 -1798 12.1 -1799 13.6 -1800 15.1 -1801 16.6 -1802 18.1 -1803 19.6 -1804 21.1 -1805 6 -1806 7.5 -1807 9 -1808 10.5 -1809 12 -1810 13.5 -1811 15 -1812 16.5 -1813 18 -1814 19.5 -1815 21 -1816 17 -1817 17.6 -1818 18.2 -1819 18.8 -1820 19.4 -1821 20 -1822 20.6 -1823 21.2 -1824 21.8 -1825 22.4 -1826 23 -1827 16.9 -1828 17.5 -1829 18.1 -1830 18.7 -1831 19.3 -1832 19.9 -1833 20.5 -1834 21.1 -1835 21.7 -1836 22.3 -1837 22.9 -1838 16.8 -1839 17.4 -1840 18 -1841 18.6 -1842 19.2 -1843 19.8 -1844 20.4 -1845 21 -1846 21.6 -1847 22.2 -1848 22.8 -1849 16.7 -1850 17.3 -1851 17.9 -1852 18.5 -1853 19.1 -1854 19.7 -1855 20.3 -1856 20.9 -1857 21.5 -1858 22.1 -1859 22.7 -1860 16.6 -1861 17.2 -1862 17.8 -1863 18.4 -1864 19 -1865 19.6 -1866 20.2 -1867 20.8 -1868 21.4 -1869 22 -1870 22.6 -1871 16.5 -1872 17.1 -1873 17.7 -1874 18.3 -1875 18.9 -1876 19.5 -1877 20.1 -1878 20.7 -1879 21.3 -1880 21.9 -1881 22.5 -1882 16.4 -1883 17 -1884 17.6 -1885 18.2 -1886 18.8 -1887 19.4 -1888 20 -1889 20.6 -1890 21.2 -1891 21.8 -1892 22.4 -1893 16.3 -1894 16.9 -1895 17.5 -1896 18.1 -1897 18.7 -1898 19.3 -1899 19.9 -1900 20.5 -1901 21.1 -1902 21.7 -1903 22.3 -1904 16.2 -1905 16.8 -1906 17.4 -1907 18 -1908 18.6 -1909 19.2 -1910 19.8 -1911 20.4 -1912 21 -1913 21.6 -1914 22.2 -1915 16.1 -1916 16.7 -1917 17.3 -1918 17.9 -1919 18.5 -1920 19.1 -1921 19.7 -1922 20.3 -1923 20.9 -1924 21.5 -1925 22.1 -1926 16 -1927 16.6 -1928 17.2 -1929 17.8 -1930 18.4 -1931 19 -1932 19.6 -1933 20.2 -1934 20.8 -1935 21.4 -1936 22 -1937 11 -1938 12.2 -1939 13.4 -1940 14.6 -1941 15.8 -1942 17 -1943 18.2 -1944 19.4 -1945 20.6 -1946 21.8 -1947 23 -1948 10.6 -1949 11.83 -1950 13.06 -1951 14.29 -1952 15.52 -1953 16.75 -1954 17.98 -1955 19.21 -1956 20.44 -1957 21.67 -1958 22.9 -1959 10.2 -1960 11.46 -1961 12.72 -1962 13.98 -1963 15.24 -1964 16.5 -1965 17.76 -1966 19.02 -1967 20.28 -1968 21.54 -1969 22.8 -1970 9.8 -1971 11.09 -1972 12.38 -1973 13.67 -1974 14.96 -1975 16.25 -1976 17.54 -1977 18.83 -1978 20.12 -1979 21.41 -1980 22.7 -1981 9.4 -1982 10.72 -1983 12.04 -1984 13.36 -1985 14.68 -1986 16 -1987 17.32 -1988 18.64 -1989 19.96 -1990 21.28 -1991 22.6 -1992 9 -1993 10.35 -1994 11.7 -1995 13.05 -1996 14.4 -1997 15.75 -1998 17.1 -1999 18.45 -2000 19.8 -2001 21.15 -2002 22.5 -2003 8.6 -2004 9.98 -2005 11.36 -2006 12.74 -2007 14.12 -2008 15.5 -2009 16.88 -2010 18.26 -2011 19.64 -2012 21.02 -2013 22.4 -2014 8.2 -2015 9.61 -2016 11.02 -2017 12.43 -2018 13.84 -2019 15.25 -2020 16.66 -2021 18.07 -2022 19.48 -2023 20.89 -2024 22.3 -2025 7.8 -2026 9.24 -2027 10.68 -2028 12.12 -2029 13.56 -2030 15 -2031 16.44 -2032 17.88 -2033 19.32 -2034 20.76 -2035 22.2 -2036 7.4 -2037 8.87 -2038 10.34 -2039 11.81 -2040 13.28 -2041 14.75 -2042 16.22 -2043 17.69 -2044 19.16 -2045 20.63 -2046 22.1 -2047 7 -2048 8.5 -2049 10 -2050 11.5 -2051 13 -2052 14.5 -2053 16 -2054 17.5 -2055 19 -2056 20.5 -2057 22 -2058 10 -2059 10.1 -2060 10.2 -2061 10.3 -2062 10.4 -2063 10.5 -2064 10.6 -2065 10.7 -2066 10.8 -2067 10.9 -2068 11 -2069 10.7 -2070 10.85 -2071 11 -2072 11.15 -2073 11.3 -2074 11.45 -2075 11.6 -2076 11.75 -2077 11.9 -2078 12.05 -2079 12.2 -2080 11.4 -2081 11.6 -2082 11.8 -2083 12 -2084 12.2 -2085 12.4 -2086 12.6 -2087 12.8 -2088 13 -2089 13.2 -2090 13.4 -2091 12.1 -2092 12.35 -2093 12.6 -2094 12.85 -2095 13.1 -2096 13.35 -2097 13.6 -2098 13.85 -2099 14.1 -2100 14.35 -2101 14.6 -2102 12.8 -2103 13.1 -2104 13.4 -2105 13.7 -2106 14 -2107 14.3 -2108 14.6 -2109 14.9 -2110 15.2 -2111 15.5 -2112 15.8 -2113 13.5 -2114 13.85 -2115 14.2 -2116 14.55 -2117 14.9 -2118 15.25 -2119 15.6 -2120 15.95 -2121 16.3 -2122 16.65 -2123 17 -2124 14.2 -2125 14.6 -2126 15 -2127 15.4 -2128 15.8 -2129 16.2 -2130 16.6 -2131 17 -2132 17.4 -2133 17.8 -2134 18.2 -2135 14.9 -2136 15.35 -2137 15.8 -2138 16.25 -2139 16.7 -2140 17.15 -2141 17.6 -2142 18.05 -2143 18.5 -2144 18.95 -2145 19.4 -2146 15.6 -2147 16.1 -2148 16.6 -2149 17.1 -2150 17.6 -2151 18.1 -2152 18.6 -2153 19.1 -2154 19.6 -2155 20.1 -2156 20.6 -2157 16.3 -2158 16.85 -2159 17.4 -2160 17.95 -2161 18.5 -2162 19.05 -2163 19.6 -2164 20.15 -2165 20.7 -2166 21.25 -2167 21.8 -2168 17 -2169 17.6 -2170 18.2 -2171 18.8 -2172 19.4 -2173 20 -2174 20.6 -2175 21.2 -2176 21.8 -2177 22.4 -2178 23 -2179 24 -2180 24.3 -2181 24.6 -2182 24.9 -2183 25.2 -2184 25.5 -2185 25.8 -2186 26.1 -2187 26.4 -2188 26.7 -2189 27 -2190 24.1 -2191 24.38 -2192 24.66 -2193 24.94 -2194 25.22 -2195 25.5 -2196 25.78 -2197 26.06 -2198 26.34 -2199 26.62 -2200 26.9 -2201 24.2 -2202 24.46 -2203 24.72 -2204 24.98 -2205 25.24 -2206 25.5 -2207 25.76 -2208 26.02 -2209 26.28 -2210 26.54 -2211 26.8 -2212 24.3 -2213 24.54 -2214 24.78 -2215 25.02 -2216 25.26 -2217 25.5 -2218 25.74 -2219 25.98 -2220 26.22 -2221 26.46 -2222 26.7 -2223 24.4 -2224 24.62 -2225 24.84 -2226 25.06 -2227 25.28 -2228 25.5 -2229 25.72 -2230 25.94 -2231 26.16 -2232 26.38 -2233 26.6 -2234 24.5 -2235 24.7 -2236 24.9 -2237 25.1 -2238 25.3 -2239 25.5 -2240 25.7 -2241 25.9 -2242 26.1 -2243 26.3 -2244 26.5 -2245 24.6 -2246 24.78 -2247 24.96 -2248 25.14 -2249 25.32 -2250 25.5 -2251 25.68 -2252 25.86 -2253 26.04 -2254 26.22 -2255 26.4 -2256 24.7 -2257 24.86 -2258 25.02 -2259 25.18 -2260 25.34 -2261 25.5 -2262 25.66 -2263 25.82 -2264 25.98 -2265 26.14 -2266 26.3 -2267 24.8 -2268 24.94 -2269 25.08 -2270 25.22 -2271 25.36 -2272 25.5 -2273 25.64 -2274 25.78 -2275 25.92 -2276 26.06 -2277 26.2 -2278 24.9 -2279 25.02 -2280 25.14 -2281 25.26 -2282 25.38 -2283 25.5 -2284 25.62 -2285 25.74 -2286 25.86 -2287 25.98 -2288 26.1 -2289 25 -2290 25.1 -2291 25.2 -2292 25.3 -2293 25.4 -2294 25.5 -2295 25.6 -2296 25.7 -2297 25.8 -2298 25.9 -2299 26 -2300 24 -2301 24.4 -2302 24.8 -2303 25.2 -2304 25.6 -2305 26 -2306 26.4 -2307 26.8 -2308 27.2 -2309 27.6 -2310 28 -2311 24.1 -2312 24.5 -2313 24.9 -2314 25.3 -2315 25.7 -2316 26.1 -2317 26.5 -2318 26.9 -2319 27.3 -2320 27.7 -2321 28.1 -2322 24.2 -2323 24.6 -2324 25 -2325 25.4 -2326 25.8 -2327 26.2 -2328 26.6 -2329 27 -2330 27.4 -2331 27.8 -2332 28.2 -2333 24.3 -2334 24.7 -2335 25.1 -2336 25.5 -2337 25.9 -2338 26.3 -2339 26.7 -2340 27.1 -2341 27.5 -2342 27.9 -2343 28.3 -2344 24.4 -2345 24.8 -2346 25.2 -2347 25.6 -2348 26 -2349 26.4 -2350 26.8 -2351 27.2 -2352 27.6 -2353 28 -2354 28.4 -2355 24.5 -2356 24.9 -2357 25.3 -2358 25.7 -2359 26.1 -2360 26.5 -2361 26.9 -2362 27.3 -2363 27.7 -2364 28.1 -2365 28.5 -2366 24.6 -2367 25 -2368 25.4 -2369 25.8 -2370 26.2 -2371 26.6 -2372 27 -2373 27.4 -2374 27.8 -2375 28.2 -2376 28.6 -2377 24.7 -2378 25.1 -2379 25.5 -2380 25.9 -2381 26.3 -2382 26.7 -2383 27.1 -2384 27.5 -2385 27.9 -2386 28.3 -2387 28.7 -2388 24.8 -2389 25.2 -2390 25.6 -2391 26 -2392 26.4 -2393 26.8 -2394 27.2 -2395 27.6 -2396 28 -2397 28.4 -2398 28.8 -2399 24.9 -2400 25.3 -2401 25.7 -2402 26.1 -2403 26.5 -2404 26.9 -2405 27.3 -2406 27.7 -2407 28.1 -2408 28.5 -2409 28.9 -2410 25 -2411 25.4 -2412 25.8 -2413 26.2 -2414 26.6 -2415 27 -2416 27.4 -2417 27.8 -2418 28.2 -2419 28.6 -2420 29 -2421 24 -2422 24.3 -2423 24.6 -2424 24.9 -2425 25.2 -2426 25.5 -2427 25.8 -2428 26.1 -2429 26.4 -2430 26.7 -2431 27 -2432 24.4 -2433 24.7 -2434 25 -2435 25.3 -2436 25.6 -2437 25.9 -2438 26.2 -2439 26.5 -2440 26.8 -2441 27.1 -2442 27.4 -2443 24.8 -2444 25.1 -2445 25.4 -2446 25.7 -2447 26 -2448 26.3 -2449 26.6 -2450 26.9 -2451 27.2 -2452 27.5 -2453 27.8 -2454 25.2 -2455 25.5 -2456 25.8 -2457 26.1 -2458 26.4 -2459 26.7 -2460 27 -2461 27.3 -2462 27.6 -2463 27.9 -2464 28.2 -2465 25.6 -2466 25.9 -2467 26.2 -2468 26.5 -2469 26.8 -2470 27.1 -2471 27.4 -2472 27.7 -2473 28 -2474 28.3 -2475 28.6 -2476 26 -2477 26.3 -2478 26.6 -2479 26.9 -2480 27.2 -2481 27.5 -2482 27.8 -2483 28.1 -2484 28.4 -2485 28.7 -2486 29 -2487 26.4 -2488 26.7 -2489 27 -2490 27.3 -2491 27.6 -2492 27.9 -2493 28.2 -2494 28.5 -2495 28.8 -2496 29.1 -2497 29.4 -2498 26.8 -2499 27.1 -2500 27.4 -2501 27.7 -2502 28 -2503 28.3 -2504 28.6 -2505 28.9 -2506 29.2 -2507 29.5 -2508 29.8 -2509 27.2 -2510 27.5 -2511 27.8 -2512 28.1 -2513 28.4 -2514 28.7 -2515 29 -2516 29.3 -2517 29.6 -2518 29.9 -2519 30.2 -2520 27.6 -2521 27.9 -2522 28.2 -2523 28.5 -2524 28.8 -2525 29.1 -2526 29.4 -2527 29.7 -2528 30 -2529 30.3 -2530 30.6 -2531 28 -2532 28.3 -2533 28.6 -2534 28.9 -2535 29.2 -2536 29.5 -2537 29.8 -2538 30.1 -2539 30.4 -2540 30.7 -2541 31 -2542 25 -2543 25.1 -2544 25.2 -2545 25.3 -2546 25.4 -2547 25.5 -2548 25.6 -2549 25.7 -2550 25.8 -2551 25.9 -2552 26 -2553 25.7 -2554 25.8 -2555 25.9 -2556 26 -2557 26.1 -2558 26.2 -2559 26.3 -2560 26.4 -2561 26.5 -2562 26.6 -2563 26.7 -2564 26.4 -2565 26.5 -2566 26.6 -2567 26.7 -2568 26.8 -2569 26.9 -2570 27 -2571 27.1 -2572 27.2 -2573 27.3 -2574 27.4 -2575 27.1 -2576 27.2 -2577 27.3 -2578 27.4 -2579 27.5 -2580 27.6 -2581 27.7 -2582 27.8 -2583 27.9 -2584 28 -2585 28.1 -2586 27.8 -2587 27.9 -2588 28 -2589 28.1 -2590 28.2 -2591 28.3 -2592 28.4 -2593 28.5 -2594 28.6 -2595 28.7 -2596 28.8 -2597 28.5 -2598 28.6 -2599 28.7 -2600 28.8 -2601 28.9 -2602 29 -2603 29.1 -2604 29.2 -2605 29.3 -2606 29.4 -2607 29.5 -2608 29.2 -2609 29.3 -2610 29.4 -2611 29.5 -2612 29.6 -2613 29.7 -2614 29.8 -2615 29.9 -2616 30 -2617 30.1 -2618 30.2 -2619 29.9 -2620 30 -2621 30.1 -2622 30.2 -2623 30.3 -2624 30.4 -2625 30.5 -2626 30.6 -2627 30.7 -2628 30.8 -2629 30.9 -2630 30.6 -2631 30.7 -2632 30.8 -2633 30.9 -2634 31 -2635 31.1 -2636 31.2 -2637 31.3 -2638 31.4 -2639 31.5 -2640 31.6 -2641 31.3 -2642 31.4 -2643 31.5 -2644 31.6 -2645 31.7 -2646 31.8 -2647 31.9 -2648 32 -2649 32.1 -2650 32.2 -2651 32.3 -2652 32 -2653 32.1 -2654 32.2 -2655 32.3 -2656 32.4 -2657 32.5 -2658 32.6 -2659 32.7 -2660 32.8 -2661 32.9 -2662 33 -2663 25 -2664 25.4 -2665 25.8 -2666 26.2 -2667 26.6 -2668 27 -2669 27.4 -2670 27.8 -2671 28.2 -2672 28.6 -2673 29 -2674 25.7 -2675 26.08 -2676 26.46 -2677 26.84 -2678 27.22 -2679 27.6 -2680 27.98 -2681 28.36 -2682 28.74 -2683 29.12 -2684 29.5 -2685 26.4 -2686 26.76 -2687 27.12 -2688 27.48 -2689 27.84 -2690 28.2 -2691 28.56 -2692 28.92 -2693 29.28 -2694 29.64 -2695 30 -2696 27.1 -2697 27.44 -2698 27.78 -2699 28.12 -2700 28.46 -2701 28.8 -2702 29.14 -2703 29.48 -2704 29.82 -2705 30.16 -2706 30.5 -2707 27.8 -2708 28.12 -2709 28.44 -2710 28.76 -2711 29.08 -2712 29.4 -2713 29.72 -2714 30.04 -2715 30.36 -2716 30.68 -2717 31 -2718 28.5 -2719 28.8 -2720 29.1 -2721 29.4 -2722 29.7 -2723 30 -2724 30.3 -2725 30.6 -2726 30.9 -2727 31.2 -2728 31.5 -2729 29.2 -2730 29.48 -2731 29.76 -2732 30.04 -2733 30.32 -2734 30.6 -2735 30.88 -2736 31.16 -2737 31.44 -2738 31.72 -2739 32 -2740 29.9 -2741 30.16 -2742 30.42 -2743 30.68 -2744 30.94 -2745 31.2 -2746 31.46 -2747 31.72 -2748 31.98 -2749 32.24 -2750 32.5 -2751 30.6 -2752 30.84 -2753 31.08 -2754 31.32 -2755 31.56 -2756 31.8 -2757 32.04 -2758 32.28 -2759 32.52 -2760 32.76 -2761 33 -2762 31.3 -2763 31.52 -2764 31.74 -2765 31.96 -2766 32.18 -2767 32.4 -2768 32.62 -2769 32.84 -2770 33.06 -2771 33.28 -2772 33.5 -2773 32 -2774 32.2 -2775 32.4 -2776 32.6 -2777 32.8 -2778 33 -2779 33.2 -2780 33.4 -2781 33.6 -2782 33.8 -2783 34 -2784 26 -2785 27 -2786 28 -2787 29 -2788 30 -2789 31 -2790 32 -2791 33 -2792 34 -2793 35 -2794 36 -2795 26.7 -2796 27.27 -2797 27.84 -2798 28.41 -2799 28.98 -2800 29.55 -2801 30.12 -2802 30.69 -2803 31.26 -2804 31.83 -2805 32.4 -2806 27.4 -2807 27.54 -2808 27.68 -2809 27.82 -2810 27.96 -2811 28.1 -2812 28.24 -2813 28.38 -2814 28.52 -2815 28.66 -2816 28.8 -2817 28.1 -2818 27.81 -2819 27.52 -2820 27.23 -2821 26.94 -2822 26.65 -2823 26.36 -2824 26.07 -2825 25.78 -2826 25.49 -2827 25.2 -2828 28.8 -2829 28.08 -2830 27.36 -2831 26.64 -2832 25.92 -2833 25.2 -2834 24.48 -2835 23.76 -2836 23.04 -2837 22.32 -2838 21.6 -2839 29.5 -2840 28.35 -2841 27.2 -2842 26.05 -2843 24.9 -2844 23.75 -2845 22.6 -2846 21.45 -2847 20.3 -2848 19.15 -2849 18 -2850 30.2 -2851 28.62 -2852 27.04 -2853 25.46 -2854 23.88 -2855 22.3 -2856 20.72 -2857 19.14 -2858 17.56 -2859 15.98 -2860 14.4 -2861 30.9 -2862 28.89 -2863 26.88 -2864 24.87 -2865 22.86 -2866 20.85 -2867 18.84 -2868 16.83 -2869 14.82 -2870 12.81 -2871 10.8 -2872 31.6 -2873 29.16 -2874 26.72 -2875 24.28 -2876 21.84 -2877 19.4 -2878 16.96 -2879 14.52 -2880 12.08 -2881 9.64 -2882 7.2 -2883 32.3 -2884 29.43 -2885 26.56 -2886 23.69 -2887 20.82 -2888 17.95 -2889 15.08 -2890 12.21 -2891 9.34 -2892 6.47 -2893 3.6 -2894 33 -2895 29.7 -2896 26.4 -2897 23.1 -2898 19.8 -2899 16.5 -2900 13.2 -2901 9.9 -2902 6.6 -2903 3.3 -2904 0 -2905 27 -2906 25.1 -2907 23.2 -2908 21.3 -2909 19.4 -2910 17.5 -2911 15.6 -2912 13.7 -2913 11.8 -2914 9.9 -2915 8 -2916 26.9 -2917 25.29 -2918 23.68 -2919 22.07 -2920 20.46 -2921 18.85 -2922 17.24 -2923 15.63 -2924 14.02 -2925 12.41 -2926 10.8 -2927 26.8 -2928 25.48 -2929 24.16 -2930 22.84 -2931 21.52 -2932 20.2 -2933 18.88 -2934 17.56 -2935 16.24 -2936 14.92 -2937 13.6 -2938 26.7 -2939 25.67 -2940 24.64 -2941 23.61 -2942 22.58 -2943 21.55 -2944 20.52 -2945 19.49 -2946 18.46 -2947 17.43 -2948 16.4 -2949 26.6 -2950 25.86 -2951 25.12 -2952 24.38 -2953 23.64 -2954 22.9 -2955 22.16 -2956 21.42 -2957 20.68 -2958 19.94 -2959 19.2 -2960 26.5 -2961 26.05 -2962 25.6 -2963 25.15 -2964 24.7 -2965 24.25 -2966 23.8 -2967 23.35 -2968 22.9 -2969 22.45 -2970 22 -2971 26.4 -2972 26.24 -2973 26.08 -2974 25.92 -2975 25.76 -2976 25.6 -2977 25.44 -2978 25.28 -2979 25.12 -2980 24.96 -2981 24.8 -2982 26.3 -2983 26.43 -2984 26.56 -2985 26.69 -2986 26.82 -2987 26.95 -2988 27.08 -2989 27.21 -2990 27.34 -2991 27.47 -2992 27.6 -2993 26.2 -2994 26.62 -2995 27.04 -2996 27.46 -2997 27.88 -2998 28.3 -2999 28.72 -3000 29.14 -3001 29.56 -3002 29.98 -3003 30.4 -3004 26.1 -3005 26.81 -3006 27.52 -3007 28.23 -3008 28.94 -3009 29.65 -3010 30.36 -3011 31.07 -3012 31.78 -3013 32.49 -3014 33.2 -3015 26 -3016 27 -3017 28 -3018 29 -3019 30 -3020 31 -3021 32 -3022 33 -3023 34 -3024 35 -3025 36 -3026 27 -3027 25.1 -3028 23.2 -3029 21.3 -3030 19.4 -3031 17.5 -3032 15.6 -3033 13.7 -3034 11.8 -3035 9.9 -3036 8 -3037 27.4 -3038 25.77 -3039 24.14 -3040 22.51 -3041 20.88 -3042 19.25 -3043 17.62 -3044 15.99 -3045 14.36 -3046 12.73 -3047 11.1 -3048 27.8 -3049 26.44 -3050 25.08 -3051 23.72 -3052 22.36 -3053 21 -3054 19.64 -3055 18.28 -3056 16.92 -3057 15.56 -3058 14.2 -3059 28.2 -3060 27.11 -3061 26.02 -3062 24.93 -3063 23.84 -3064 22.75 -3065 21.66 -3066 20.57 -3067 19.48 -3068 18.39 -3069 17.3 -3070 28.6 -3071 27.78 -3072 26.96 -3073 26.14 -3074 25.32 -3075 24.5 -3076 23.68 -3077 22.86 -3078 22.04 -3079 21.22 -3080 20.4 -3081 29 -3082 28.45 -3083 27.9 -3084 27.35 -3085 26.8 -3086 26.25 -3087 25.7 -3088 25.15 -3089 24.6 -3090 24.05 -3091 23.5 -3092 29.4 -3093 29.12 -3094 28.84 -3095 28.56 -3096 28.28 -3097 28 -3098 27.72 -3099 27.44 -3100 27.16 -3101 26.88 -3102 26.6 -3103 29.8 -3104 29.79 -3105 29.78 -3106 29.77 -3107 29.76 -3108 29.75 -3109 29.74 -3110 29.73 -3111 29.72 -3112 29.71 -3113 29.7 -3114 30.2 -3115 30.46 -3116 30.72 -3117 30.98 -3118 31.24 -3119 31.5 -3120 31.76 -3121 32.02 -3122 32.28 -3123 32.54 -3124 32.8 -3125 30.6 -3126 31.13 -3127 31.66 -3128 32.19 -3129 32.72 -3130 33.25 -3131 33.78 -3132 34.31 -3133 34.84 -3134 35.37 -3135 35.9 -3136 31 -3137 31.8 -3138 32.6 -3139 33.4 -3140 34.2 -3141 35 -3142 35.8 -3143 36.6 -3144 37.4 -3145 38.2 -3146 39 -3147 28 -3148 26.4 -3149 24.8 -3150 23.2 -3151 21.6 -3152 20 -3153 18.4 -3154 16.8 -3155 15.2 -3156 13.6 -3157 12 -3158 28.1 -3159 26.77 -3160 25.44 -3161 24.11 -3162 22.78 -3163 21.45 -3164 20.12 -3165 18.79 -3166 17.46 -3167 16.13 -3168 14.8 -3169 28.2 -3170 27.14 -3171 26.08 -3172 25.02 -3173 23.96 -3174 22.9 -3175 21.84 -3176 20.78 -3177 19.72 -3178 18.66 -3179 17.6 -3180 28.3 -3181 27.51 -3182 26.72 -3183 25.93 -3184 25.14 -3185 24.35 -3186 23.56 -3187 22.77 -3188 21.98 -3189 21.19 -3190 20.4 -3191 28.4 -3192 27.88 -3193 27.36 -3194 26.84 -3195 26.32 -3196 25.8 -3197 25.28 -3198 24.76 -3199 24.24 -3200 23.72 -3201 23.2 -3202 28.5 -3203 28.25 -3204 28 -3205 27.75 -3206 27.5 -3207 27.25 -3208 27 -3209 26.75 -3210 26.5 -3211 26.25 -3212 26 -3213 28.6 -3214 28.62 -3215 28.64 -3216 28.66 -3217 28.68 -3218 28.7 -3219 28.72 -3220 28.74 -3221 28.76 -3222 28.78 -3223 28.8 -3224 28.7 -3225 28.99 -3226 29.28 -3227 29.57 -3228 29.86 -3229 30.15 -3230 30.44 -3231 30.73 -3232 31.02 -3233 31.31 -3234 31.6 -3235 28.8 -3236 29.36 -3237 29.92 -3238 30.48 -3239 31.04 -3240 31.6 -3241 32.16 -3242 32.72 -3243 33.28 -3244 33.84 -3245 34.4 -3246 28.9 -3247 29.73 -3248 30.56 -3249 31.39 -3250 32.22 -3251 33.05 -3252 33.88 -3253 34.71 -3254 35.54 -3255 36.37 -3256 37.2 -3257 29 -3258 30.1 -3259 31.2 -3260 32.3 -3261 33.4 -3262 34.5 -3263 35.6 -3264 36.7 -3265 37.8 -3266 38.9 -3267 40 -3268 28 -3269 28.3 -3270 28.6 -3271 28.9 -3272 29.2 -3273 29.5 -3274 29.8 -3275 30.1 -3276 30.4 -3277 30.7 -3278 31 -3279 26.4 -3280 26.97 -3281 27.54 -3282 28.11 -3283 28.68 -3284 29.25 -3285 29.82 -3286 30.39 -3287 30.96 -3288 31.53 -3289 32.1 -3290 24.8 -3291 25.64 -3292 26.48 -3293 27.32 -3294 28.16 -3295 29 -3296 29.84 -3297 30.68 -3298 31.52 -3299 32.36 -3300 33.2 -3301 23.2 -3302 24.31 -3303 25.42 -3304 26.53 -3305 27.64 -3306 28.75 -3307 29.86 -3308 30.97 -3309 32.08 -3310 33.19 -3311 34.3 -3312 21.6 -3313 22.98 -3314 24.36 -3315 25.74 -3316 27.12 -3317 28.5 -3318 29.88 -3319 31.26 -3320 32.64 -3321 34.02 -3322 35.4 -3323 20 -3324 21.65 -3325 23.3 -3326 24.95 -3327 26.6 -3328 28.25 -3329 29.9 -3330 31.55 -3331 33.2 -3332 34.85 -3333 36.5 -3334 18.4 -3335 20.32 -3336 22.24 -3337 24.16 -3338 26.08 -3339 28 -3340 29.92 -3341 31.84 -3342 33.76 -3343 35.68 -3344 37.6 -3345 16.8 -3346 18.99 -3347 21.18 -3348 23.37 -3349 25.56 -3350 27.75 -3351 29.94 -3352 32.13 -3353 34.32 -3354 36.51 -3355 38.7 -3356 15.2 -3357 17.66 -3358 20.12 -3359 22.58 -3360 25.04 -3361 27.5 -3362 29.96 -3363 32.42 -3364 34.88 -3365 37.34 -3366 39.8 -3367 13.6 -3368 16.33 -3369 19.06 -3370 21.79 -3371 24.52 -3372 27.25 -3373 29.98 -3374 32.71 -3375 35.44 -3376 38.17 -3377 40.9 -3378 12 -3379 15 -3380 18 -3381 21 -3382 24 -3383 27 -3384 30 -3385 33 -3386 36 -3387 39 -3388 42 -3389 29 -3390 30.1 -3391 31.2 -3392 32.3 -3393 33.4 -3394 34.5 -3395 35.6 -3396 36.7 -3397 37.8 -3398 38.9 -3399 40 -3400 29.5 -3401 30.28 -3402 31.06 -3403 31.84 -3404 32.62 -3405 33.4 -3406 34.18 -3407 34.96 -3408 35.74 -3409 36.52 -3410 37.3 -3411 30 -3412 30.46 -3413 30.92 -3414 31.38 -3415 31.84 -3416 32.3 -3417 32.76 -3418 33.22 -3419 33.68 -3420 34.14 -3421 34.6 -3422 30.5 -3423 30.64 -3424 30.78 -3425 30.92 -3426 31.06 -3427 31.2 -3428 31.34 -3429 31.48 -3430 31.62 -3431 31.76 -3432 31.9 -3433 31 -3434 30.82 -3435 30.64 -3436 30.46 -3437 30.28 -3438 30.1 -3439 29.92 -3440 29.74 -3441 29.56 -3442 29.38 -3443 29.2 -3444 31.5 -3445 31 -3446 30.5 -3447 30 -3448 29.5 -3449 29 -3450 28.5 -3451 28 -3452 27.5 -3453 27 -3454 26.5 -3455 32 -3456 31.18 -3457 30.36 -3458 29.54 -3459 28.72 -3460 27.9 -3461 27.08 -3462 26.26 -3463 25.44 -3464 24.62 -3465 23.8 -3466 32.5 -3467 31.36 -3468 30.22 -3469 29.08 -3470 27.94 -3471 26.8 -3472 25.66 -3473 24.52 -3474 23.38 -3475 22.24 -3476 21.1 -3477 33 -3478 31.54 -3479 30.08 -3480 28.62 -3481 27.16 -3482 25.7 -3483 24.24 -3484 22.78 -3485 21.32 -3486 19.86 -3487 18.4 -3488 33.5 -3489 31.72 -3490 29.94 -3491 28.16 -3492 26.38 -3493 24.6 -3494 22.82 -3495 21.04 -3496 19.26 -3497 17.48 -3498 15.7 -3499 34 -3500 31.9 -3501 29.8 -3502 27.7 -3503 25.6 -3504 23.5 -3505 21.4 -3506 19.3 -3507 17.2 -3508 15.1 -3509 13 -3510 31 -3511 31.8 -3512 32.6 -3513 33.4 -3514 34.2 -3515 35 -3516 35.8 -3517 36.6 -3518 37.4 -3519 38.2 -3520 39 -3521 32.1 -3522 32.5 -3523 32.9 -3524 33.3 -3525 33.7 -3526 34.1 -3527 34.5 -3528 34.9 -3529 35.3 -3530 35.7 -3531 36.1 -3532 33.2 -3533 33.2 -3534 33.2 -3535 33.2 -3536 33.2 -3537 33.2 -3538 33.2 -3539 33.2 -3540 33.2 -3541 33.2 -3542 33.2 -3543 34.3 -3544 33.9 -3545 33.5 -3546 33.1 -3547 32.7 -3548 32.3 -3549 31.9 -3550 31.5 -3551 31.1 -3552 30.7 -3553 30.3 -3554 35.4 -3555 34.6 -3556 33.8 -3557 33 -3558 32.2 -3559 31.4 -3560 30.6 -3561 29.8 -3562 29 -3563 28.2 -3564 27.4 -3565 36.5 -3566 35.3 -3567 34.1 -3568 32.9 -3569 31.7 -3570 30.5 -3571 29.3 -3572 28.1 -3573 26.9 -3574 25.7 -3575 24.5 -3576 37.6 -3577 36 -3578 34.4 -3579 32.8 -3580 31.2 -3581 29.6 -3582 28 -3583 26.4 -3584 24.8 -3585 23.2 -3586 21.6 -3587 38.7 -3588 36.7 -3589 34.7 -3590 32.7 -3591 30.7 -3592 28.7 -3593 26.7 -3594 24.7 -3595 22.7 -3596 20.7 -3597 18.7 -3598 39.8 -3599 37.4 -3600 35 -3601 32.6 -3602 30.2 -3603 27.8 -3604 25.4 -3605 23 -3606 20.6 -3607 18.2 -3608 15.8 -3609 40.9 -3610 38.1 -3611 35.3 -3612 32.5 -3613 29.7 -3614 26.9 -3615 24.1 -3616 21.3 -3617 18.5 -3618 15.7 -3619 12.9 -3620 42 -3621 38.8 -3622 35.6 -3623 32.4 -3624 29.2 -3625 26 -3626 22.8 -3627 19.6 -3628 16.4 -3629 13.2 -3630 10 -3631 32 -3632 32.1 -3633 32.2 -3634 32.3 -3635 32.4 -3636 32.5 -3637 32.6 -3638 32.7 -3639 32.8 -3640 32.9 -3641 33 -3642 33.3 -3643 33.4 -3644 33.5 -3645 33.6 -3646 33.7 -3647 33.8 -3648 33.9 -3649 34 -3650 34.1 -3651 34.2 -3652 34.3 -3653 34.6 -3654 34.7 -3655 34.8 -3656 34.9 -3657 35 -3658 35.1 -3659 35.2 -3660 35.3 -3661 35.4 -3662 35.5 -3663 35.6 -3664 35.9 -3665 36 -3666 36.1 -3667 36.2 -3668 36.3 -3669 36.4 -3670 36.5 -3671 36.6 -3672 36.7 -3673 36.8 -3674 36.9 -3675 37.2 -3676 37.3 -3677 37.4 -3678 37.5 -3679 37.6 -3680 37.7 -3681 37.8 -3682 37.9 -3683 38 -3684 38.1 -3685 38.2 -3686 38.5 -3687 38.6 -3688 38.7 -3689 38.8 -3690 38.9 -3691 39 -3692 39.1 -3693 39.2 -3694 39.3 -3695 39.4 -3696 39.5 -3697 39.8 -3698 39.9 -3699 40 -3700 40.1 -3701 40.2 -3702 40.3 -3703 40.4 -3704 40.5 -3705 40.6 -3706 40.7 -3707 40.8 -3708 41.1 -3709 41.2 -3710 41.3 -3711 41.4 -3712 41.5 -3713 41.6 -3714 41.7 -3715 41.8 -3716 41.9 -3717 42 -3718 42.1 -3719 42.4 -3720 42.5 -3721 42.6 -3722 42.7 -3723 42.8 -3724 42.9 -3725 43 -3726 43.1 -3727 43.2 -3728 43.3 -3729 43.4 -3730 43.7 -3731 43.8 -3732 43.9 -3733 44 -3734 44.1 -3735 44.2 -3736 44.3 -3737 44.4 -3738 44.5 -3739 44.6 -3740 44.7 -3741 45 -3742 45.1 -3743 45.2 -3744 45.3 -3745 45.4 -3746 45.5 -3747 45.6 -3748 45.7 -3749 45.8 -3750 45.9 -3751 46 -3752 32 -3753 32.2 -3754 32.4 -3755 32.6 -3756 32.8 -3757 33 -3758 33.2 -3759 33.4 -3760 33.6 -3761 33.8 -3762 34 -3763 33.3 -3764 33.5 -3765 33.7 -3766 33.9 -3767 34.1 -3768 34.3 -3769 34.5 -3770 34.7 -3771 34.9 -3772 35.1 -3773 35.3 -3774 34.6 -3775 34.8 -3776 35 -3777 35.2 -3778 35.4 -3779 35.6 -3780 35.8 -3781 36 -3782 36.2 -3783 36.4 -3784 36.6 -3785 35.9 -3786 36.1 -3787 36.3 -3788 36.5 -3789 36.7 -3790 36.9 -3791 37.1 -3792 37.3 -3793 37.5 -3794 37.7 -3795 37.9 -3796 37.2 -3797 37.4 -3798 37.6 -3799 37.8 -3800 38 -3801 38.2 -3802 38.4 -3803 38.6 -3804 38.8 -3805 39 -3806 39.2 -3807 38.5 -3808 38.7 -3809 38.9 -3810 39.1 -3811 39.3 -3812 39.5 -3813 39.7 -3814 39.9 -3815 40.1 -3816 40.3 -3817 40.5 -3818 39.8 -3819 40 -3820 40.2 -3821 40.4 -3822 40.6 -3823 40.8 -3824 41 -3825 41.2 -3826 41.4 -3827 41.6 -3828 41.8 -3829 41.1 -3830 41.3 -3831 41.5 -3832 41.7 -3833 41.9 -3834 42.1 -3835 42.3 -3836 42.5 -3837 42.7 -3838 42.9 -3839 43.1 -3840 42.4 -3841 42.6 -3842 42.8 -3843 43 -3844 43.2 -3845 43.4 -3846 43.6 -3847 43.8 -3848 44 -3849 44.2 -3850 44.4 -3851 43.7 -3852 43.9 -3853 44.1 -3854 44.3 -3855 44.5 -3856 44.7 -3857 44.9 -3858 45.1 -3859 45.3 -3860 45.5 -3861 45.7 -3862 45 -3863 45.2 -3864 45.4 -3865 45.6 -3866 45.8 -3867 46 -3868 46.2 -3869 46.4 -3870 46.6 -3871 46.8 -3872 47 -3873 45 -3874 45.1 -3875 45.2 -3876 45.3 -3877 45.4 -3878 45.5 -3879 45.6 -3880 45.7 -3881 45.8 -3882 45.9 -3883 46 -3884 45.4 -3885 45.5 -3886 45.6 -3887 45.7 -3888 45.8 -3889 45.9 -3890 46 -3891 46.1 -3892 46.2 -3893 46.3 -3894 46.4 -3895 45.8 -3896 45.9 -3897 46 -3898 46.1 -3899 46.2 -3900 46.3 -3901 46.4 -3902 46.5 -3903 46.6 -3904 46.7 -3905 46.8 -3906 46.2 -3907 46.3 -3908 46.4 -3909 46.5 -3910 46.6 -3911 46.7 -3912 46.8 -3913 46.9 -3914 47 -3915 47.1 -3916 47.2 -3917 46.6 -3918 46.7 -3919 46.8 -3920 46.9 -3921 47 -3922 47.1 -3923 47.2 -3924 47.3 -3925 47.4 -3926 47.5 -3927 47.6 -3928 47 -3929 47.1 -3930 47.2 -3931 47.3 -3932 47.4 -3933 47.5 -3934 47.6 -3935 47.7 -3936 47.8 -3937 47.9 -3938 48 -3939 47.4 -3940 47.5 -3941 47.6 -3942 47.7 -3943 47.8 -3944 47.9 -3945 48 -3946 48.1 -3947 48.2 -3948 48.3 -3949 48.4 -3950 47.8 -3951 47.9 -3952 48 -3953 48.1 -3954 48.2 -3955 48.3 -3956 48.4 -3957 48.5 -3958 48.6 -3959 48.7 -3960 48.8 -3961 48.2 -3962 48.3 -3963 48.4 -3964 48.5 -3965 48.6 -3966 48.7 -3967 48.8 -3968 48.9 -3969 49 -3970 49.1 -3971 49.2 -3972 48.6 -3973 48.7 -3974 48.8 -3975 48.9 -3976 49 -3977 49.1 -3978 49.2 -3979 49.3 -3980 49.4 -3981 49.5 -3982 49.6 -3983 49 -3984 49.1 -3985 49.2 -3986 49.3 -3987 49.4 -3988 49.5 -3989 49.6 -3990 49.7 -3991 49.8 -3992 49.9 -3993 50 -3994 45 -3995 45.2 -3996 45.4 -3997 45.6 -3998 45.8 -3999 46 -4000 46.2 -4001 46.4 -4002 46.6 -4003 46.8 -4004 47 -4005 45.4 -4006 45.6 -4007 45.8 -4008 46 -4009 46.2 -4010 46.4 -4011 46.6 -4012 46.8 -4013 47 -4014 47.2 -4015 47.4 -4016 45.8 -4017 46 -4018 46.2 -4019 46.4 -4020 46.6 -4021 46.8 -4022 47 -4023 47.2 -4024 47.4 -4025 47.6 -4026 47.8 -4027 46.2 -4028 46.4 -4029 46.6 -4030 46.8 -4031 47 -4032 47.2 -4033 47.4 -4034 47.6 -4035 47.8 -4036 48 -4037 48.2 -4038 46.6 -4039 46.8 -4040 47 -4041 47.2 -4042 47.4 -4043 47.6 -4044 47.8 -4045 48 -4046 48.2 -4047 48.4 -4048 48.6 -4049 47 -4050 47.2 -4051 47.4 -4052 47.6 -4053 47.8 -4054 48 -4055 48.2 -4056 48.4 -4057 48.6 -4058 48.8 -4059 49 -4060 47.4 -4061 47.6 -4062 47.8 -4063 48 -4064 48.2 -4065 48.4 -4066 48.6 -4067 48.8 -4068 49 -4069 49.2 -4070 49.4 -4071 47.8 -4072 48 -4073 48.2 -4074 48.4 -4075 48.6 -4076 48.8 -4077 49 -4078 49.2 -4079 49.4 -4080 49.6 -4081 49.8 -4082 48.2 -4083 48.4 -4084 48.6 -4085 48.8 -4086 49 -4087 49.2 -4088 49.4 -4089 49.6 -4090 49.8 -4091 50 -4092 50.2 -4093 48.6 -4094 48.8 -4095 49 -4096 49.2 -4097 49.4 -4098 49.6 -4099 49.8 -4100 50 -4101 50.2 -4102 50.4 -4103 50.6 -4104 49 -4105 49.2 -4106 49.4 -4107 49.6 -4108 49.8 -4109 50 -4110 50.2 -4111 50.4 -4112 50.6 -4113 50.8 -4114 51 -4115 49 -4116 49.1 -4117 49.2 -4118 49.3 -4119 49.4 -4120 49.5 -4121 49.6 -4122 49.7 -4123 49.8 -4124 49.9 -4125 50 -4126 49.2 -4127 49.3 -4128 49.4 -4129 49.5 -4130 49.6 -4131 49.7 -4132 49.8 -4133 49.9 -4134 50 -4135 50.1 -4136 50.2 -4137 49.4 -4138 49.5 -4139 49.6 -4140 49.7 -4141 49.8 -4142 49.9 -4143 50 -4144 50.1 -4145 50.2 -4146 50.3 -4147 50.4 -4148 49.6 -4149 49.7 -4150 49.8 -4151 49.9 -4152 50 -4153 50.1 -4154 50.2 -4155 50.3 -4156 50.4 -4157 50.5 -4158 50.6 -4159 49.8 -4160 49.9 -4161 50 -4162 50.1 -4163 50.2 -4164 50.3 -4165 50.4 -4166 50.5 -4167 50.6 -4168 50.7 -4169 50.8 -4170 50 -4171 50.1 -4172 50.2 -4173 50.3 -4174 50.4 -4175 50.5 -4176 50.6 -4177 50.7 -4178 50.8 -4179 50.9 -4180 51 -4181 50.2 -4182 50.3 -4183 50.4 -4184 50.5 -4185 50.6 -4186 50.7 -4187 50.8 -4188 50.9 -4189 51 -4190 51.1 -4191 51.2 -4192 50.4 -4193 50.5 -4194 50.6 -4195 50.7 -4196 50.8 -4197 50.9 -4198 51 -4199 51.1 -4200 51.2 -4201 51.3 -4202 51.4 -4203 50.6 -4204 50.7 -4205 50.8 -4206 50.9 -4207 51 -4208 51.1 -4209 51.2 -4210 51.3 -4211 51.4 -4212 51.5 -4213 51.6 -4214 50.8 -4215 50.9 -4216 51 -4217 51.1 -4218 51.2 -4219 51.3 -4220 51.4 -4221 51.5 -4222 51.6 -4223 51.7 -4224 51.8 -4225 51 -4226 51.1 -4227 51.2 -4228 51.3 -4229 51.4 -4230 51.5 -4231 51.6 -4232 51.7 -4233 51.8 -4234 51.9 -4235 52 -4236 46 -4237 46.7 -4238 47.4 -4239 48.1 -4240 48.8 -4241 49.5 -4242 50.2 -4243 50.9 -4244 51.6 -4245 52.3 -4246 53 -4247 46.4 -4248 46.54 -4249 46.68 -4250 46.82 -4251 46.96 -4252 47.1 -4253 47.24 -4254 47.38 -4255 47.52 -4256 47.66 -4257 47.8 -4258 46.8 -4259 46.38 -4260 45.96 -4261 45.54 -4262 45.12 -4263 44.7 -4264 44.28 -4265 43.86 -4266 43.44 -4267 43.02 -4268 42.6 -4269 47.2 -4270 46.22 -4271 45.24 -4272 44.26 -4273 43.28 -4274 42.3 -4275 41.32 -4276 40.34 -4277 39.36 -4278 38.38 -4279 37.4 -4280 47.6 -4281 46.06 -4282 44.52 -4283 42.98 -4284 41.44 -4285 39.9 -4286 38.36 -4287 36.82 -4288 35.28 -4289 33.74 -4290 32.2 -4291 48 -4292 45.9 -4293 43.8 -4294 41.7 -4295 39.6 -4296 37.5 -4297 35.4 -4298 33.3 -4299 31.2 -4300 29.1 -4301 27 -4302 48.4 -4303 45.74 -4304 43.08 -4305 40.42 -4306 37.76 -4307 35.1 -4308 32.44 -4309 29.78 -4310 27.12 -4311 24.46 -4312 21.8 -4313 48.8 -4314 45.58 -4315 42.36 -4316 39.14 -4317 35.92 -4318 32.7 -4319 29.48 -4320 26.26 -4321 23.04 -4322 19.82 -4323 16.6 -4324 49.2 -4325 45.42 -4326 41.64 -4327 37.86 -4328 34.08 -4329 30.3 -4330 26.52 -4331 22.74 -4332 18.96 -4333 15.18 -4334 11.4 -4335 49.6 -4336 45.26 -4337 40.92 -4338 36.58 -4339 32.24 -4340 27.9 -4341 23.56 -4342 19.22 -4343 14.88 -4344 10.54 -4345 6.2 -4346 50 -4347 45.1 -4348 40.2 -4349 35.3 -4350 30.4 -4351 25.5 -4352 20.6 -4353 15.7 -4354 10.8 -4355 5.9 -4356 1 -4357 50 -4358 45.1 -4359 40.2 -4360 35.3 -4361 30.4 -4362 25.5 -4363 20.6 -4364 15.7 -4365 10.8 -4366 5.9 -4367 1 -4368 50.2 -4369 45.81 -4370 41.42 -4371 37.03 -4372 32.64 -4373 28.25 -4374 23.86 -4375 19.47 -4376 15.08 -4377 10.69 -4378 6.3 -4379 50.4 -4380 46.52 -4381 42.64 -4382 38.76 -4383 34.88 -4384 31 -4385 27.12 -4386 23.24 -4387 19.36 -4388 15.48 -4389 11.6 -4390 50.6 -4391 47.23 -4392 43.86 -4393 40.49 -4394 37.12 -4395 33.75 -4396 30.38 -4397 27.01 -4398 23.64 -4399 20.27 -4400 16.9 -4401 50.8 -4402 47.94 -4403 45.08 -4404 42.22 -4405 39.36 -4406 36.5 -4407 33.64 -4408 30.78 -4409 27.92 -4410 25.06 -4411 22.2 -4412 51 -4413 48.65 -4414 46.3 -4415 43.95 -4416 41.6 -4417 39.25 -4418 36.9 -4419 34.55 -4420 32.2 -4421 29.85 -4422 27.5 -4423 51.2 -4424 49.36 -4425 47.52 -4426 45.68 -4427 43.84 -4428 42 -4429 40.16 -4430 38.32 -4431 36.48 -4432 34.64 -4433 32.8 -4434 51.4 -4435 50.07 -4436 48.74 -4437 47.41 -4438 46.08 -4439 44.75 -4440 43.42 -4441 42.09 -4442 40.76 -4443 39.43 -4444 38.1 -4445 51.6 -4446 50.78 -4447 49.96 -4448 49.14 -4449 48.32 -4450 47.5 -4451 46.68 -4452 45.86 -4453 45.04 -4454 44.22 -4455 43.4 -4456 51.8 -4457 51.49 -4458 51.18 -4459 50.87 -4460 50.56 -4461 50.25 -4462 49.94 -4463 49.63 -4464 49.32 -4465 49.01 -4466 48.7 -4467 52 -4468 52.2 -4469 52.4 -4470 52.6 -4471 52.8 -4472 53 -4473 53.2 -4474 53.4 -4475 53.6 -4476 53.8 -4477 54 -4478 33 -4479 29.7 -4480 26.4 -4481 23.1 -4482 19.8 -4483 16.5 -4484 13.2 -4485 9.9 -4486 6.6 -4487 3.3 -4488 0 -4489 34.3 -4490 31.4 -4491 28.5 -4492 25.6 -4493 22.7 -4494 19.8 -4495 16.9 -4496 14 -4497 11.1 -4498 8.2 -4499 5.3 -4500 35.6 -4501 33.1 -4502 30.6 -4503 28.1 -4504 25.6 -4505 23.1 -4506 20.6 -4507 18.1 -4508 15.6 -4509 13.1 -4510 10.6 -4511 36.9 -4512 34.8 -4513 32.7 -4514 30.6 -4515 28.5 -4516 26.4 -4517 24.3 -4518 22.2 -4519 20.1 -4520 18 -4521 15.9 -4522 38.2 -4523 36.5 -4524 34.8 -4525 33.1 -4526 31.4 -4527 29.7 -4528 28 -4529 26.3 -4530 24.6 -4531 22.9 -4532 21.2 -4533 39.5 -4534 38.2 -4535 36.9 -4536 35.6 -4537 34.3 -4538 33 -4539 31.7 -4540 30.4 -4541 29.1 -4542 27.8 -4543 26.5 -4544 40.8 -4545 39.9 -4546 39 -4547 38.1 -4548 37.2 -4549 36.3 -4550 35.4 -4551 34.5 -4552 33.6 -4553 32.7 -4554 31.8 -4555 42.1 -4556 41.6 -4557 41.1 -4558 40.6 -4559 40.1 -4560 39.6 -4561 39.1 -4562 38.6 -4563 38.1 -4564 37.6 -4565 37.1 -4566 43.4 -4567 43.3 -4568 43.2 -4569 43.1 -4570 43 -4571 42.9 -4572 42.8 -4573 42.7 -4574 42.6 -4575 42.5 -4576 42.4 -4577 44.7 -4578 45 -4579 45.3 -4580 45.6 -4581 45.9 -4582 46.2 -4583 46.5 -4584 46.8 -4585 47.1 -4586 47.4 -4587 47.7 -4588 46 -4589 46.7 -4590 47.4 -4591 48.1 -4592 48.8 -4593 49.5 -4594 50.2 -4595 50.9 -4596 51.6 -4597 52.3 -4598 53 -4599 34 -4600 31.9 -4601 29.8 -4602 27.7 -4603 25.6 -4604 23.5 -4605 21.4 -4606 19.3 -4607 17.2 -4608 15.1 -4609 13 -4610 35.3 -4611 33.5 -4612 31.7 -4613 29.9 -4614 28.1 -4615 26.3 -4616 24.5 -4617 22.7 -4618 20.9 -4619 19.1 -4620 17.3 -4621 36.6 -4622 35.1 -4623 33.6 -4624 32.1 -4625 30.6 -4626 29.1 -4627 27.6 -4628 26.1 -4629 24.6 -4630 23.1 -4631 21.6 -4632 37.9 -4633 36.7 -4634 35.5 -4635 34.3 -4636 33.1 -4637 31.9 -4638 30.7 -4639 29.5 -4640 28.3 -4641 27.1 -4642 25.9 -4643 39.2 -4644 38.3 -4645 37.4 -4646 36.5 -4647 35.6 -4648 34.7 -4649 33.8 -4650 32.9 -4651 32 -4652 31.1 -4653 30.2 -4654 40.5 -4655 39.9 -4656 39.3 -4657 38.7 -4658 38.1 -4659 37.5 -4660 36.9 -4661 36.3 -4662 35.7 -4663 35.1 -4664 34.5 -4665 41.8 -4666 41.5 -4667 41.2 -4668 40.9 -4669 40.6 -4670 40.3 -4671 40 -4672 39.7 -4673 39.4 -4674 39.1 -4675 38.8 -4676 43.1 -4677 43.1 -4678 43.1 -4679 43.1 -4680 43.1 -4681 43.1 -4682 43.1 -4683 43.1 -4684 43.1 -4685 43.1 -4686 43.1 -4687 44.4 -4688 44.7 -4689 45 -4690 45.3 -4691 45.6 -4692 45.9 -4693 46.2 -4694 46.5 -4695 46.8 -4696 47.1 -4697 47.4 -4698 45.7 -4699 46.3 -4700 46.9 -4701 47.5 -4702 48.1 -4703 48.7 -4704 49.3 -4705 49.9 -4706 50.5 -4707 51.1 -4708 51.7 -4709 47 -4710 47.9 -4711 48.8 -4712 49.7 -4713 50.6 -4714 51.5 -4715 52.4 -4716 53.3 -4717 54.2 -4718 55.1 -4719 56 -4720 47 -4721 47.9 -4722 48.8 -4723 49.7 -4724 50.6 -4725 51.5 -4726 52.4 -4727 53.3 -4728 54.2 -4729 55.1 -4730 56 -4731 47.4 -4732 47.88 -4733 48.36 -4734 48.84 -4735 49.32 -4736 49.8 -4737 50.28 -4738 50.76 -4739 51.24 -4740 51.72 -4741 52.2 -4742 47.8 -4743 47.86 -4744 47.92 -4745 47.98 -4746 48.04 -4747 48.1 -4748 48.16 -4749 48.22 -4750 48.28 -4751 48.34 -4752 48.4 -4753 48.2 -4754 47.84 -4755 47.48 -4756 47.12 -4757 46.76 -4758 46.4 -4759 46.04 -4760 45.68 -4761 45.32 -4762 44.96 -4763 44.6 -4764 48.6 -4765 47.82 -4766 47.04 -4767 46.26 -4768 45.48 -4769 44.7 -4770 43.92 -4771 43.14 -4772 42.36 -4773 41.58 -4774 40.8 -4775 49 -4776 47.8 -4777 46.6 -4778 45.4 -4779 44.2 -4780 43 -4781 41.8 -4782 40.6 -4783 39.4 -4784 38.2 -4785 37 -4786 49.4 -4787 47.78 -4788 46.16 -4789 44.54 -4790 42.92 -4791 41.3 -4792 39.68 -4793 38.06 -4794 36.44 -4795 34.82 -4796 33.2 -4797 49.8 -4798 47.76 -4799 45.72 -4800 43.68 -4801 41.64 -4802 39.6 -4803 37.56 -4804 35.52 -4805 33.48 -4806 31.44 -4807 29.4 -4808 50.2 -4809 47.74 -4810 45.28 -4811 42.82 -4812 40.36 -4813 37.9 -4814 35.44 -4815 32.98 -4816 30.52 -4817 28.06 -4818 25.6 -4819 50.6 -4820 47.72 -4821 44.84 -4822 41.96 -4823 39.08 -4824 36.2 -4825 33.32 -4826 30.44 -4827 27.56 -4828 24.68 -4829 21.8 -4830 51 -4831 47.7 -4832 44.4 -4833 41.1 -4834 37.8 -4835 34.5 -4836 31.2 -4837 27.9 -4838 24.6 -4839 21.3 -4840 18 -4841 51 -4842 51.1 -4843 51.2 -4844 51.3 -4845 51.4 -4846 51.5 -4847 51.6 -4848 51.7 -4849 51.8 -4850 51.9 -4851 52 -4852 47.7 -4853 48.19 -4854 48.68 -4855 49.17 -4856 49.66 -4857 50.15 -4858 50.64 -4859 51.13 -4860 51.62 -4861 52.11 -4862 52.6 -4863 44.4 -4864 45.28 -4865 46.16 -4866 47.04 -4867 47.92 -4868 48.8 -4869 49.68 -4870 50.56 -4871 51.44 -4872 52.32 -4873 53.2 -4874 41.1 -4875 42.37 -4876 43.64 -4877 44.91 -4878 46.18 -4879 47.45 -4880 48.72 -4881 49.99 -4882 51.26 -4883 52.53 -4884 53.8 -4885 37.8 -4886 39.46 -4887 41.12 -4888 42.78 -4889 44.44 -4890 46.1 -4891 47.76 -4892 49.42 -4893 51.08 -4894 52.74 -4895 54.4 -4896 34.5 -4897 36.55 -4898 38.6 -4899 40.65 -4900 42.7 -4901 44.75 -4902 46.8 -4903 48.85 -4904 50.9 -4905 52.95 -4906 55 -4907 31.2 -4908 33.64 -4909 36.08 -4910 38.52 -4911 40.96 -4912 43.4 -4913 45.84 -4914 48.28 -4915 50.72 -4916 53.16 -4917 55.6 -4918 27.9 -4919 30.73 -4920 33.56 -4921 36.39 -4922 39.22 -4923 42.05 -4924 44.88 -4925 47.71 -4926 50.54 -4927 53.37 -4928 56.2 -4929 24.6 -4930 27.82 -4931 31.04 -4932 34.26 -4933 37.48 -4934 40.7 -4935 43.92 -4936 47.14 -4937 50.36 -4938 53.58 -4939 56.8 -4940 21.3 -4941 24.91 -4942 28.52 -4943 32.13 -4944 35.74 -4945 39.35 -4946 42.96 -4947 46.57 -4948 50.18 -4949 53.79 -4950 57.4 -4951 18 -4952 22 -4953 26 -4954 30 -4955 34 -4956 38 -4957 42 -4958 46 -4959 50 -4960 54 -4961 58 -4962 52 -4963 52.2 -4964 52.4 -4965 52.6 -4966 52.8 -4967 53 -4968 53.2 -4969 53.4 -4970 53.6 -4971 53.8 -4972 54 -4973 52.6 -4974 52.25 -4975 51.9 -4976 51.55 -4977 51.2 -4978 50.85 -4979 50.5 -4980 50.15 -4981 49.8 -4982 49.45 -4983 49.1 -4984 53.2 -4985 52.3 -4986 51.4 -4987 50.5 -4988 49.6 -4989 48.7 -4990 47.8 -4991 46.9 -4992 46 -4993 45.1 -4994 44.2 -4995 53.8 -4996 52.35 -4997 50.9 -4998 49.45 -4999 48 -5000 46.55 -5001 45.1 -5002 43.65 -5003 42.2 -5004 40.75 -5005 39.3 -5006 54.4 -5007 52.4 -5008 50.4 -5009 48.4 -5010 46.4 -5011 44.4 -5012 42.4 -5013 40.4 -5014 38.4 -5015 36.4 -5016 34.4 -5017 55 -5018 52.45 -5019 49.9 -5020 47.35 -5021 44.8 -5022 42.25 -5023 39.7 -5024 37.15 -5025 34.6 -5026 32.05 -5027 29.5 -5028 55.6 -5029 52.5 -5030 49.4 -5031 46.3 -5032 43.2 -5033 40.1 -5034 37 -5035 33.9 -5036 30.8 -5037 27.7 -5038 24.6 -5039 56.2 -5040 52.55 -5041 48.9 -5042 45.25 -5043 41.6 -5044 37.95 -5045 34.3 -5046 30.65 -5047 27 -5048 23.35 -5049 19.7 -5050 56.8 -5051 52.6 -5052 48.4 -5053 44.2 -5054 40 -5055 35.8 -5056 31.6 -5057 27.4 -5058 23.2 -5059 19 -5060 14.8 -5061 57.4 -5062 52.65 -5063 47.9 -5064 43.15 -5065 38.4 -5066 33.65 -5067 28.9 -5068 24.15 -5069 19.4 -5070 14.65 -5071 9.9 -5072 58 -5073 52.7 -5074 47.4 -5075 42.1 -5076 36.8 -5077 31.5 -5078 26.2 -5079 20.9 -5080 15.6 -5081 10.3 -5082 5 diff --git a/tests/deal.II/dof_test.cc b/tests/deal.II/dof_test.cc deleted file mode 100644 index 63e85a2ceb..0000000000 --- a/tests/deal.II/dof_test.cc +++ /dev/null @@ -1,363 +0,0 @@ -//---------------------------- dof_test.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- dof_test.cc --------------------------- - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include - - -// 1: continuous refinement of the unit square always in the middle -// 2: refinement of the circle at the boundary -// 2: refinement of a wiggled area at the boundary - -ofstream logfile("dof_test.output"); - - -template -class Ball - : - public StraightBoundary -{ - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const - { - Point middle = StraightBoundary::get_new_point_on_line(line); - - for (int i=0; i - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const - { - Point middle = StraightBoundary::get_new_point_on_quad(quad); - - for (int i=0; i -class CurvedLine - : - public StraightBoundary -{ - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const; - - virtual Point - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const; -}; - - -template -Point -CurvedLine::get_new_point_on_line (const typename Triangulation::line_iterator &line) const -{ - Point middle = StraightBoundary::get_new_point_on_line (line); - - // if the line is at the top of bottom - // face: do a special treatment on - // this line. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the line is like that - if (dim>=3) - if (((middle(2) == 0) || (middle(2) == 1)) - // find out, if the line is in the - // interior of the top or bottom face - // of the domain, or at the edge. - // lines at the edge need to undergo - // the usual treatment, while for - // interior lines taking the midpoint - // is sufficient - // - // note: the trick with the boundary - // id was invented after the above was - // written, so we are not very strict - // here with using these flags - && (line->boundary_indicator() == 1)) - return middle; - - - double x=middle(0), - y=middle(1); - - if (y -Point -CurvedLine::get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const -{ - Point middle = StraightBoundary::get_new_point_on_quad (quad); - - // if the face is at the top of bottom - // face: do not move the midpoint in - // x/y direction. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the quad is like that - if ((middle(2) == 0) || (middle(2) == 1)) - return middle; - - double x=middle(0), - y=middle(1); - - if (y -class TestCases -{ - public: - TestCases (); - virtual ~TestCases (); - - virtual void create_new (); - virtual void run (const unsigned int testcase); - - private: - Triangulation *tria; - DoFHandler *dof; - CurvedLine curved_line; - Ball ball; -}; - - - -template -TestCases::TestCases () : - tria(0), dof(0) {}; - - - -template -TestCases::~TestCases () -{ - if (dof) delete dof; - if (tria) delete tria; -}; - - - -template -void TestCases::create_new () -{ - if (dof != 0) delete dof; - if (tria != 0) delete tria; - - tria = new Triangulation(); - GridGenerator::hyper_cube(*tria); - - dof = new DoFHandler (*tria); -}; - - - -template -void TestCases::run (const unsigned int test_case) -{ - deallog << "Dimension = " << dim - << ", Test case = " << test_case << endl - << endl; - - deallog << " Making grid..." << endl; - - switch (test_case) - { - case 1: - { - // refine first cell - tria->begin_active()->set_refine_flag(); - tria->execute_coarsening_and_refinement (); - // refine first active cell - // on coarsest level - tria->begin_active()->set_refine_flag (); - tria->execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell; - for (int i=0; i<(dim==2 ? 12 : 7); ++i) - { - // refine the presently - // second last cell 17 - // times - cell = tria->last_active(tria->n_levels()-1); - --cell; - cell->set_refine_flag (); - tria->execute_coarsening_and_refinement (); - }; - - break; - } - - case 2: - case 3: - { - if (dim==3) - { - tria->begin_active()->face(2)->set_boundary_indicator(1); - tria->begin_active()->face(4)->set_boundary_indicator(1); - }; - - // set the boundary function - tria->set_boundary(1, (test_case==2) - ? ((Boundary&)ball) : ((Boundary&)curved_line)); - - // refine once - tria->begin_active()->set_refine_flag(); - tria->execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell, endc; - for (int i=0; i<5-dim; ++i) - { - cell = tria->begin_active(); - endc = tria->end(); - - // refine all - // boundary cells - for (; cell!=endc; ++cell) - if (cell->at_boundary()) - cell->set_refine_flag(); - - tria->execute_coarsening_and_refinement(); - }; - - break; - } - }; - - - deallog << " Distributing degrees of freedom..." << endl; - FEQ1 fe; - dof->distribute_dofs (fe); - - deallog << " Renumbering degrees of freedom..." << endl; - DoFRenumbering::Cuthill_McKee (*dof); - - SparsityPattern sparsity (dof->n_dofs(), - dof->max_couplings_between_dofs()); - - - DoFTools::make_sparsity_pattern (*dof, sparsity); - int unconstrained_bandwidth = sparsity.bandwidth(); - - deallog << " Writing sparsity pattern..." << endl; - sparsity.print_gnuplot (logfile); - - - // computing constraints - deallog << " Computing constraints..." << endl; - ConstraintMatrix constraints; - DoFTools::make_hanging_node_constraints (*dof, constraints); - constraints.close (); - constraints.condense (sparsity); - - deallog << " Writing condensed sparsity pattern..." << endl; - sparsity.print_gnuplot (logfile); - - - deallog << endl - << " Total number of cells = " << tria->n_cells() << endl - << " Total number of active cells = " << tria->n_active_cells() << endl - << " Number of DoFs = " << dof->n_dofs() << endl - << " Number of constraints = " << constraints.n_constraints() << endl - << " Unconstrained matrix bandwidth= " << unconstrained_bandwidth << endl - << " Constrained matrix bandwidth = " << sparsity.bandwidth() - << endl << endl; - - // release the lock that dof has to the - // finite element object - dof->clear (); -}; - - - -int main () -{ - deallog.attach(logfile); - deallog.depth_console(0); - - for (unsigned int test_case=1; test_case<=3; ++test_case) - { - TestCases<2> tests; - tests.create_new (); - tests.run (test_case); - }; - - for (unsigned int test_case=1; test_case<=3; ++test_case) - { - TestCases<3> tests; - tests.create_new (); - tests.run (test_case); - }; - - return 0; -}; - diff --git a/tests/deal.II/dof_test.checked b/tests/deal.II/dof_test.checked deleted file mode 100644 index 49cd7e5625..0000000000 --- a/tests/deal.II/dof_test.checked +++ /dev/null @@ -1,101139 +0,0 @@ - -DEAL::Dimension = 2, Test case = 1 - -DEAL:: Making grid... -DEAL:: Distributing degrees of freedom... -DEAL:: Renumbering degrees of freedom... -DEAL:: Writing sparsity pattern... -0 0 -1 0 -3 0 -2 0 -1 -1 -0 -1 -3 -1 -2 -1 -4 -1 -8 -1 -2 -2 -0 -2 -1 -2 -3 -2 -9 -2 -5 -2 -3 -3 -0 -3 -1 -3 -2 -3 -4 -3 -8 -3 -9 -3 -5 -3 -6 -3 -10 -3 -7 -3 -4 -4 -1 -4 -8 -4 -3 -4 -11 -4 -17 -4 -5 -5 -2 -5 -3 -5 -9 -5 -18 -5 -12 -5 -6 -6 -3 -6 -10 -6 -7 -6 -8 -6 -19 -6 -7 -7 -3 -7 -6 -7 -10 -7 -20 -7 -9 -7 -8 -8 -1 -8 -4 -8 -3 -8 -11 -8 -17 -8 -6 -8 -19 -8 -10 -8 -13 -8 -21 -8 -9 -9 -2 -9 -3 -9 -5 -9 -18 -9 -12 -9 -7 -9 -10 -9 -20 -9 -22 -9 -14 -9 -10 -10 -3 -10 -6 -10 -7 -10 -8 -10 -19 -10 -20 -10 -9 -10 -15 -10 -23 -10 -16 -10 -11 -11 -4 -11 -17 -11 -8 -11 -24 -11 -26 -11 -12 -12 -5 -12 -9 -12 -18 -12 -29 -12 -25 -12 -13 -13 -8 -13 -21 -13 -19 -13 -17 -13 -30 -13 -14 -14 -9 -14 -20 -14 -22 -14 -31 -14 -18 -14 -15 -15 -10 -15 -23 -15 -16 -15 -19 -15 -42 -15 -16 -16 -10 -16 -15 -16 -23 -16 -43 -16 -20 -16 -17 -17 -4 -17 -11 -17 -8 -17 -24 -17 -26 -17 -27 -17 -38 -17 -13 -17 -30 -17 -21 -17 -18 -18 -5 -18 -9 -18 -12 -18 -39 -18 -28 -18 -29 -18 -25 -18 -14 -18 -22 -18 -31 -18 -19 -19 -6 -19 -8 -19 -10 -19 -13 -19 -21 -19 -15 -19 -42 -19 -23 -19 -32 -19 -44 -19 -20 -20 -7 -20 -10 -20 -9 -20 -22 -20 -14 -20 -16 -20 -23 -20 -43 -20 -45 -20 -34 -20 -21 -21 -8 -21 -13 -21 -19 -21 -17 -21 -30 -21 -38 -21 -40 -21 -32 -21 -33 -21 -44 -21 -22 -22 -9 -22 -20 -22 -14 -22 -41 -22 -39 -22 -31 -22 -18 -22 -34 -22 -45 -22 -35 -22 -23 -23 -10 -23 -15 -23 -16 -23 -19 -23 -42 -23 -43 -23 -20 -23 -36 -23 -46 -23 -37 -23 -24 -24 -11 -24 -26 -24 -17 -24 -25 -25 -12 -25 -18 -25 -29 -25 -26 -26 -11 -26 -24 -26 -17 -26 -27 -26 -38 -26 -27 -27 -17 -27 -26 -27 -38 -27 -47 -27 -59 -27 -28 -28 -18 -28 -39 -28 -29 -28 -59 -28 -48 -28 -29 -29 -18 -29 -39 -29 -28 -29 -12 -29 -25 -29 -30 -30 -13 -30 -17 -30 -21 -30 -38 -30 -40 -30 -31 -31 -22 -31 -41 -31 -39 -31 -14 -31 -18 -31 -32 -32 -19 -32 -44 -32 -42 -32 -21 -32 -33 -32 -33 -33 -32 -33 -21 -33 -44 -33 -40 -33 -61 -33 -34 -34 -20 -34 -43 -34 -45 -34 -35 -34 -22 -34 -35 -35 -45 -35 -62 -35 -41 -35 -34 -35 -22 -35 -36 -36 -23 -36 -46 -36 -37 -36 -42 -36 -64 -36 -37 -37 -23 -37 -36 -37 -46 -37 -65 -37 -43 -37 -38 -38 -17 -38 -26 -38 -27 -38 -47 -38 -59 -38 -21 -38 -30 -38 -40 -38 -49 -38 -60 -38 -39 -39 -18 -39 -28 -39 -29 -39 -59 -39 -48 -39 -22 -39 -41 -39 -31 -39 -60 -39 -50 -39 -40 -40 -21 -40 -30 -40 -38 -40 -49 -40 -60 -40 -44 -40 -33 -40 -61 -40 -51 -40 -63 -40 -41 -41 -22 -41 -39 -41 -31 -41 -60 -41 -50 -41 -45 -41 -62 -41 -35 -41 -63 -41 -52 -41 -42 -42 -15 -42 -19 -42 -23 -42 -32 -42 -44 -42 -36 -42 -64 -42 -46 -42 -53 -42 -66 -42 -43 -43 -16 -43 -23 -43 -20 -43 -45 -43 -34 -43 -37 -43 -46 -43 -65 -43 -67 -43 -55 -43 -44 -44 -19 -44 -32 -44 -42 -44 -21 -44 -33 -44 -40 -44 -61 -44 -53 -44 -54 -44 -66 -44 -45 -45 -20 -45 -43 -45 -34 -45 -62 -45 -41 -45 -35 -45 -22 -45 -55 -45 -67 -45 -56 -45 -46 -46 -23 -46 -36 -46 -37 -46 -42 -46 -64 -46 -65 -46 -43 -46 -57 -46 -68 -46 -58 -46 -47 -47 -38 -47 -27 -47 -59 -47 -69 -47 -48 -47 -48 -48 -59 -48 -47 -48 -69 -48 -39 -48 -28 -48 -49 -49 -40 -49 -38 -49 -60 -49 -59 -49 -50 -49 -50 -50 -60 -50 -49 -50 -59 -50 -41 -50 -39 -50 -51 -51 -61 -51 -40 -51 -63 -51 -60 -51 -52 -51 -52 -52 -63 -52 -51 -52 -60 -52 -62 -52 -41 -52 -53 -53 -42 -53 -66 -53 -64 -53 -44 -53 -54 -53 -54 -54 -53 -54 -44 -54 -66 -54 -61 -54 -78 -54 -55 -55 -43 -55 -65 -55 -67 -55 -56 -55 -45 -55 -56 -56 -67 -56 -79 -56 -62 -56 -55 -56 -45 -56 -57 -57 -46 -57 -68 -57 -58 -57 -64 -57 -81 -57 -58 -58 -46 -58 -57 -58 -68 -58 -82 -58 -65 -58 -59 -59 -38 -59 -27 -59 -47 -59 -69 -59 -48 -59 -39 -59 -28 -59 -60 -59 -49 -59 -50 -59 -60 -60 -40 -60 -38 -60 -49 -60 -59 -60 -50 -60 -41 -60 -39 -60 -63 -60 -51 -60 -52 -60 -61 -61 -44 -61 -33 -61 -40 -61 -51 -61 -63 -61 -66 -61 -54 -61 -78 -61 -70 -61 -80 -61 -62 -62 -45 -62 -41 -62 -35 -62 -63 -62 -52 -62 -67 -62 -79 -62 -56 -62 -80 -62 -71 -62 -63 -63 -61 -63 -40 -63 -51 -63 -60 -63 -52 -63 -62 -63 -41 -63 -80 -63 -70 -63 -71 -63 -64 -64 -36 -64 -42 -64 -46 -64 -53 -64 -66 -64 -57 -64 -81 -64 -68 -64 -72 -64 -83 -64 -65 -65 -37 -65 -46 -65 -43 -65 -67 -65 -55 -65 -58 -65 -68 -65 -82 -65 -84 -65 -74 -65 -66 -66 -42 -66 -53 -66 -64 -66 -44 -66 -54 -66 -61 -66 -78 -66 -72 -66 -73 -66 -83 -66 -67 -67 -43 -67 -65 -67 -55 -67 -79 -67 -62 -67 -56 -67 -45 -67 -74 -67 -84 -67 -75 -67 -68 -68 -46 -68 -57 -68 -58 -68 -64 -68 -81 -68 -82 -68 -65 -68 -76 -68 -85 -68 -77 -68 -69 -69 -59 -69 -47 -69 -48 -69 -70 -70 -78 -70 -61 -70 -80 -70 -63 -70 -71 -70 -71 -71 -80 -71 -70 -71 -63 -71 -79 -71 -62 -71 -72 -72 -64 -72 -83 -72 -81 -72 -66 -72 -73 -72 -73 -73 -72 -73 -66 -73 -83 -73 -78 -73 -94 -73 -74 -74 -65 -74 -82 -74 -84 -74 -75 -74 -67 -74 -75 -75 -84 -75 -95 -75 -79 -75 -74 -75 -67 -75 -76 -76 -68 -76 -85 -76 -77 -76 -81 -76 -97 -76 -77 -77 -68 -77 -76 -77 -85 -77 -98 -77 -82 -77 -78 -78 -66 -78 -54 -78 -61 -78 -70 -78 -80 -78 -83 -78 -73 -78 -94 -78 -86 -78 -96 -78 -79 -79 -67 -79 -62 -79 -56 -79 -80 -79 -71 -79 -84 -79 -95 -79 -75 -79 -96 -79 -87 -79 -80 -80 -78 -80 -61 -80 -70 -80 -63 -80 -71 -80 -79 -80 -62 -80 -96 -80 -86 -80 -87 -80 -81 -81 -57 -81 -64 -81 -68 -81 -72 -81 -83 -81 -76 -81 -97 -81 -85 -81 -88 -81 -99 -81 -82 -82 -58 -82 -68 -82 -65 -82 -84 -82 -74 -82 -77 -82 -85 -82 -98 -82 -100 -82 -90 -82 -83 -83 -64 -83 -72 -83 -81 -83 -66 -83 -73 -83 -78 -83 -94 -83 -88 -83 -89 -83 -99 -83 -84 -84 -65 -84 -82 -84 -74 -84 -95 -84 -79 -84 -75 -84 -67 -84 -90 -84 -100 -84 -91 -84 -85 -85 -68 -85 -76 -85 -77 -85 -81 -85 -97 -85 -98 -85 -82 -85 -92 -85 -101 -85 -93 -85 -86 -86 -94 -86 -78 -86 -96 -86 -80 -86 -87 -86 -87 -87 -96 -87 -86 -87 -80 -87 -95 -87 -79 -87 -88 -88 -81 -88 -99 -88 -97 -88 -83 -88 -89 -88 -89 -89 -88 -89 -83 -89 -99 -89 -94 -89 -110 -89 -90 -90 -82 -90 -98 -90 -100 -90 -91 -90 -84 -90 -91 -91 -100 -91 -111 -91 -95 -91 -90 -91 -84 -91 -92 -92 -85 -92 -101 -92 -93 -92 -97 -92 -113 -92 -93 -93 -85 -93 -92 -93 -101 -93 -114 -93 -98 -93 -94 -94 -83 -94 -73 -94 -78 -94 -86 -94 -96 -94 -99 -94 -89 -94 -110 -94 -102 -94 -112 -94 -95 -95 -84 -95 -79 -95 -75 -95 -96 -95 -87 -95 -100 -95 -111 -95 -91 -95 -112 -95 -103 -95 -96 -96 -94 -96 -78 -96 -86 -96 -80 -96 -87 -96 -95 -96 -79 -96 -112 -96 -102 -96 -103 -96 -97 -97 -76 -97 -81 -97 -85 -97 -88 -97 -99 -97 -92 -97 -113 -97 -101 -97 -104 -97 -115 -97 -98 -98 -77 -98 -85 -98 -82 -98 -100 -98 -90 -98 -93 -98 -101 -98 -114 -98 -116 -98 -106 -98 -99 -99 -81 -99 -88 -99 -97 -99 -83 -99 -89 -99 -94 -99 -110 -99 -104 -99 -105 -99 -115 -99 -100 -100 -82 -100 -98 -100 -90 -100 -111 -100 -95 -100 -91 -100 -84 -100 -106 -100 -116 -100 -107 -100 -101 -101 -85 -101 -92 -101 -93 -101 -97 -101 -113 -101 -114 -101 -98 -101 -108 -101 -117 -101 -109 -101 -102 -102 -110 -102 -94 -102 -112 -102 -96 -102 -103 -102 -103 -103 -112 -103 -102 -103 -96 -103 -111 -103 -95 -103 -104 -104 -97 -104 -115 -104 -113 -104 -99 -104 -105 -104 -105 -105 -104 -105 -99 -105 -115 -105 -110 -105 -126 -105 -106 -106 -98 -106 -114 -106 -116 -106 -107 -106 -100 -106 -107 -107 -116 -107 -127 -107 -111 -107 -106 -107 -100 -107 -108 -108 -101 -108 -117 -108 -109 -108 -113 -108 -129 -108 -109 -109 -101 -109 -108 -109 -117 -109 -130 -109 -114 -109 -110 -110 -99 -110 -89 -110 -94 -110 -102 -110 -112 -110 -115 -110 -105 -110 -126 -110 -118 -110 -128 -110 -111 -111 -100 -111 -95 -111 -91 -111 -112 -111 -103 -111 -116 -111 -127 -111 -107 -111 -128 -111 -119 -111 -112 -112 -110 -112 -94 -112 -102 -112 -96 -112 -103 -112 -111 -112 -95 -112 -128 -112 -118 -112 -119 -112 -113 -113 -92 -113 -97 -113 -101 -113 -104 -113 -115 -113 -108 -113 -129 -113 -117 -113 -120 -113 -131 -113 -114 -114 -93 -114 -101 -114 -98 -114 -116 -114 -106 -114 -109 -114 -117 -114 -130 -114 -132 -114 -122 -114 -115 -115 -97 -115 -104 -115 -113 -115 -99 -115 -105 -115 -110 -115 -126 -115 -120 -115 -121 -115 -131 -115 -116 -116 -98 -116 -114 -116 -106 -116 -127 -116 -111 -116 -107 -116 -100 -116 -122 -116 -132 -116 -123 -116 -117 -117 -101 -117 -108 -117 -109 -117 -113 -117 -129 -117 -130 -117 -114 -117 -124 -117 -133 -117 -125 -117 -118 -118 -126 -118 -110 -118 -128 -118 -112 -118 -119 -118 -119 -119 -128 -119 -118 -119 -112 -119 -127 -119 -111 -119 -120 -120 -113 -120 -131 -120 -129 -120 -115 -120 -121 -120 -121 -121 -120 -121 -115 -121 -131 -121 -126 -121 -142 -121 -122 -122 -114 -122 -130 -122 -132 -122 -123 -122 -116 -122 -123 -123 -132 -123 -143 -123 -127 -123 -122 -123 -116 -123 -124 -124 -117 -124 -133 -124 -125 -124 -129 -124 -145 -124 -125 -125 -117 -125 -124 -125 -133 -125 -146 -125 -130 -125 -126 -126 -115 -126 -105 -126 -110 -126 -118 -126 -128 -126 -131 -126 -121 -126 -142 -126 -134 -126 -144 -126 -127 -127 -116 -127 -111 -127 -107 -127 -128 -127 -119 -127 -132 -127 -143 -127 -123 -127 -144 -127 -135 -127 -128 -128 -126 -128 -110 -128 -118 -128 -112 -128 -119 -128 -127 -128 -111 -128 -144 -128 -134 -128 -135 -128 -129 -129 -108 -129 -113 -129 -117 -129 -120 -129 -131 -129 -124 -129 -145 -129 -133 -129 -136 -129 -147 -129 -130 -130 -109 -130 -117 -130 -114 -130 -132 -130 -122 -130 -125 -130 -133 -130 -146 -130 -148 -130 -138 -130 -131 -131 -113 -131 -120 -131 -129 -131 -115 -131 -121 -131 -126 -131 -142 -131 -136 -131 -137 -131 -147 -131 -132 -132 -114 -132 -130 -132 -122 -132 -143 -132 -127 -132 -123 -132 -116 -132 -138 -132 -148 -132 -139 -132 -133 -133 -117 -133 -124 -133 -125 -133 -129 -133 -145 -133 -146 -133 -130 -133 -140 -133 -149 -133 -141 -133 -134 -134 -142 -134 -126 -134 -144 -134 -128 -134 -135 -134 -135 -135 -144 -135 -134 -135 -128 -135 -143 -135 -127 -135 -136 -136 -129 -136 -147 -136 -145 -136 -131 -136 -137 -136 -137 -137 -136 -137 -131 -137 -147 -137 -142 -137 -158 -137 -138 -138 -130 -138 -146 -138 -148 -138 -139 -138 -132 -138 -139 -139 -148 -139 -159 -139 -143 -139 -138 -139 -132 -139 -140 -140 -133 -140 -149 -140 -141 -140 -145 -140 -161 -140 -141 -141 -133 -141 -140 -141 -149 -141 -162 -141 -146 -141 -142 -142 -131 -142 -121 -142 -126 -142 -134 -142 -144 -142 -147 -142 -137 -142 -158 -142 -150 -142 -160 -142 -143 -143 -132 -143 -127 -143 -123 -143 -144 -143 -135 -143 -148 -143 -159 -143 -139 -143 -160 -143 -151 -143 -144 -144 -142 -144 -126 -144 -134 -144 -128 -144 -135 -144 -143 -144 -127 -144 -160 -144 -150 -144 -151 -144 -145 -145 -124 -145 -129 -145 -133 -145 -136 -145 -147 -145 -140 -145 -161 -145 -149 -145 -152 -145 -163 -145 -146 -146 -125 -146 -133 -146 -130 -146 -148 -146 -138 -146 -141 -146 -149 -146 -162 -146 -164 -146 -154 -146 -147 -147 -129 -147 -136 -147 -145 -147 -131 -147 -137 -147 -142 -147 -158 -147 -152 -147 -153 -147 -163 -147 -148 -148 -130 -148 -146 -148 -138 -148 -159 -148 -143 -148 -139 -148 -132 -148 -154 -148 -164 -148 -155 -148 -149 -149 -133 -149 -140 -149 -141 -149 -145 -149 -161 -149 -162 -149 -146 -149 -156 -149 -165 -149 -157 -149 -150 -150 -158 -150 -142 -150 -160 -150 -144 -150 -151 -150 -151 -151 -160 -151 -150 -151 -144 -151 -159 -151 -143 -151 -152 -152 -145 -152 -163 -152 -161 -152 -147 -152 -153 -152 -153 -153 -152 -153 -147 -153 -163 -153 -158 -153 -174 -153 -154 -154 -146 -154 -162 -154 -164 -154 -155 -154 -148 -154 -155 -155 -164 -155 -175 -155 -159 -155 -154 -155 -148 -155 -156 -156 -149 -156 -165 -156 -157 -156 -161 -156 -177 -156 -157 -157 -149 -157 -156 -157 -165 -157 -178 -157 -162 -157 -158 -158 -147 -158 -137 -158 -142 -158 -150 -158 -160 -158 -163 -158 -153 -158 -174 -158 -166 -158 -176 -158 -159 -159 -148 -159 -143 -159 -139 -159 -160 -159 -151 -159 -164 -159 -175 -159 -155 -159 -176 -159 -167 -159 -160 -160 -158 -160 -142 -160 -150 -160 -144 -160 -151 -160 -159 -160 -143 -160 -176 -160 -166 -160 -167 -160 -161 -161 -140 -161 -145 -161 -149 -161 -152 -161 -163 -161 -156 -161 -177 -161 -165 -161 -168 -161 -179 -161 -162 -162 -141 -162 -149 -162 -146 -162 -164 -162 -154 -162 -157 -162 -165 -162 -178 -162 -180 -162 -170 -162 -163 -163 -145 -163 -152 -163 -161 -163 -147 -163 -153 -163 -158 -163 -174 -163 -168 -163 -169 -163 -179 -163 -164 -164 -146 -164 -162 -164 -154 -164 -175 -164 -159 -164 -155 -164 -148 -164 -170 -164 -180 -164 -171 -164 -165 -165 -149 -165 -156 -165 -157 -165 -161 -165 -177 -165 -178 -165 -162 -165 -172 -165 -181 -165 -173 -165 -166 -166 -174 -166 -158 -166 -176 -166 -160 -166 -167 -166 -167 -167 -176 -167 -166 -167 -160 -167 -175 -167 -159 -167 -168 -168 -161 -168 -179 -168 -177 -168 -163 -168 -169 -168 -169 -169 -168 -169 -163 -169 -179 -169 -174 -169 -194 -169 -170 -170 -162 -170 -178 -170 -180 -170 -171 -170 -164 -170 -171 -171 -180 -171 -195 -171 -175 -171 -170 -171 -164 -171 -172 -172 -165 -172 -181 -172 -173 -172 -177 -172 -196 -172 -173 -173 -165 -173 -172 -173 -181 -173 -197 -173 -178 -173 -174 -174 -163 -174 -153 -174 -158 -174 -166 -174 -176 -174 -179 -174 -169 -174 -194 -174 -182 -174 -190 -174 -175 -175 -164 -175 -159 -175 -155 -175 -176 -175 -167 -175 -180 -175 -195 -175 -171 -175 -190 -175 -183 -175 -176 -176 -174 -176 -158 -176 -166 -176 -160 -176 -167 -176 -175 -176 -159 -176 -190 -176 -182 -176 -183 -176 -177 -177 -156 -177 -161 -177 -165 -177 -168 -177 -179 -177 -172 -177 -196 -177 -181 -177 -184 -177 -191 -177 -178 -178 -157 -178 -165 -178 -162 -178 -180 -178 -170 -178 -173 -178 -181 -178 -197 -178 -192 -178 -186 -178 -179 -179 -161 -179 -168 -179 -177 -179 -163 -179 -169 -179 -174 -179 -194 -179 -184 -179 -185 -179 -191 -179 -180 -180 -162 -180 -178 -180 -170 -180 -195 -180 -175 -180 -171 -180 -164 -180 -186 -180 -192 -180 -187 -180 -181 -181 -165 -181 -172 -181 -173 -181 -177 -181 -196 -181 -197 -181 -178 -181 -188 -181 -193 -181 -189 -181 -182 -182 -194 -182 -174 -182 -190 -182 -176 -182 -183 -182 -183 -183 -190 -183 -182 -183 -176 -183 -195 -183 -175 -183 -184 -184 -177 -184 -191 -184 -196 -184 -179 -184 -185 -184 -185 -185 -184 -185 -179 -185 -191 -185 -194 -185 -198 -185 -186 -186 -178 -186 -197 -186 -192 -186 -187 -186 -180 -186 -187 -187 -192 -187 -199 -187 -195 -187 -186 -187 -180 -187 -188 -188 -181 -188 -193 -188 -189 -188 -196 -188 -200 -188 -189 -189 -181 -189 -188 -189 -193 -189 -201 -189 -197 -189 -190 -190 -202 -190 -194 -190 -195 -190 -174 -190 -182 -190 -176 -190 -183 -190 -175 -190 -191 -191 -177 -191 -184 -191 -196 -191 -179 -191 -185 -191 -194 -191 -198 -191 -202 -191 -192 -192 -178 -192 -197 -192 -186 -192 -202 -192 -199 -192 -195 -192 -187 -192 -180 -192 -193 -193 -181 -193 -188 -193 -189 -193 -196 -193 -200 -193 -202 -193 -201 -193 -197 -193 -194 -194 -179 -194 -169 -194 -174 -194 -202 -194 -190 -194 -195 -194 -182 -194 -191 -194 -185 -194 -198 -194 -195 -195 -180 -195 -175 -195 -171 -195 -202 -195 -194 -195 -190 -195 -183 -195 -192 -195 -199 -195 -187 -195 -196 -196 -172 -196 -177 -196 -181 -196 -184 -196 -191 -196 -198 -196 -202 -196 -188 -196 -200 -196 -193 -196 -197 -197 -173 -197 -181 -197 -178 -197 -192 -197 -186 -197 -202 -197 -199 -197 -189 -197 -193 -197 -201 -197 -198 -198 -191 -198 -185 -198 -194 -198 -196 -198 -202 -198 -199 -199 -197 -199 -202 -199 -192 -199 -195 -199 -187 -199 -200 -200 -188 -200 -196 -200 -193 -200 -202 -200 -201 -200 -201 -201 -193 -201 -200 -201 -202 -201 -189 -201 -197 -201 -202 -202 -194 -202 -190 -202 -195 -202 -196 -202 -191 -202 -198 -202 -197 -202 -199 -202 -192 -202 -193 -202 -200 -202 -201 -202 -DEAL:: Computing constraints... -DEAL:: Writing condensed sparsity pattern... -0 0 -1 0 -2 0 -3 0 -1 -1 -0 -1 -2 -1 -3 -1 -4 -1 -8 -1 -2 -2 -0 -2 -1 -2 -3 -2 -5 -2 -9 -2 -3 -3 -0 -3 -1 -3 -2 -3 -4 -3 -5 -3 -6 -3 -7 -3 -8 -3 -9 -3 -10 -3 -19 -3 -20 -3 -4 -4 -1 -4 -3 -4 -8 -4 -11 -4 -17 -4 -5 -5 -2 -5 -3 -5 -9 -5 -12 -5 -18 -5 -6 -6 -3 -6 -7 -6 -8 -6 -10 -6 -19 -6 -7 -7 -3 -7 -6 -7 -9 -7 -10 -7 -20 -7 -8 -8 -1 -8 -3 -8 -4 -8 -6 -8 -9 -8 -10 -8 -11 -8 -13 -8 -17 -8 -19 -8 -21 -8 -38 -8 -9 -9 -2 -9 -3 -9 -5 -9 -7 -9 -8 -9 -10 -9 -12 -9 -14 -9 -18 -9 -20 -9 -22 -9 -39 -9 -10 -10 -3 -10 -6 -10 -7 -10 -8 -10 -9 -10 -15 -10 -16 -10 -19 -10 -20 -10 -23 -10 -42 -10 -43 -10 -11 -11 -4 -11 -8 -11 -17 -11 -24 -11 -26 -11 -12 -12 -5 -12 -9 -12 -18 -12 -25 -12 -29 -12 -13 -13 -8 -13 -17 -13 -19 -13 -21 -13 -30 -13 -14 -14 -9 -14 -18 -14 -20 -14 -22 -14 -31 -14 -15 -15 -10 -15 -16 -15 -19 -15 -23 -15 -42 -15 -16 -16 -10 -16 -15 -16 -20 -16 -23 -16 -43 -16 -17 -17 -4 -17 -8 -17 -11 -17 -13 -17 -19 -17 -21 -17 -24 -17 -26 -17 -27 -17 -30 -17 -38 -17 -40 -17 -18 -18 -5 -18 -9 -18 -12 -18 -14 -18 -20 -18 -22 -18 -25 -18 -28 -18 -29 -18 -31 -18 -39 -18 -41 -18 -19 -19 -3 -19 -6 -19 -8 -19 -10 -19 -13 -19 -15 -19 -17 -19 -20 -19 -21 -19 -23 -19 -32 -19 -40 -19 -42 -19 -44 -19 -20 -20 -3 -20 -7 -20 -9 -20 -10 -20 -14 -20 -16 -20 -18 -20 -19 -20 -22 -20 -23 -20 -34 -20 -41 -20 -43 -20 -45 -20 -21 -21 -8 -21 -13 -21 -17 -21 -19 -21 -30 -21 -32 -21 -33 -21 -38 -21 -40 -21 -42 -21 -44 -21 -61 -21 -22 -22 -9 -22 -14 -22 -18 -22 -20 -22 -31 -22 -34 -22 -35 -22 -39 -22 -41 -22 -43 -22 -45 -22 -62 -22 -23 -23 -10 -23 -15 -23 -16 -23 -19 -23 -20 -23 -36 -23 -37 -23 -42 -23 -43 -23 -46 -23 -64 -23 -65 -23 -24 -24 -11 -24 -17 -24 -26 -24 -25 -25 -12 -25 -18 -25 -29 -25 -26 -26 -11 -26 -17 -26 -24 -26 -27 -26 -38 -26 -27 -27 -17 -27 -26 -27 -38 -27 -47 -27 -59 -27 -28 -28 -18 -28 -29 -28 -39 -28 -48 -28 -59 -28 -29 -29 -12 -29 -18 -29 -25 -29 -28 -29 -39 -29 -30 -30 -13 -30 -17 -30 -21 -30 -38 -30 -40 -30 -31 -31 -14 -31 -18 -31 -22 -31 -39 -31 -41 -31 -32 -32 -19 -32 -21 -32 -33 -32 -42 -32 -44 -32 -33 -33 -21 -33 -32 -33 -40 -33 -44 -33 -61 -33 -34 -34 -20 -34 -22 -34 -35 -34 -43 -34 -45 -34 -35 -35 -22 -35 -34 -35 -41 -35 -45 -35 -62 -35 -36 -36 -23 -36 -37 -36 -42 -36 -46 -36 -64 -36 -37 -37 -23 -37 -36 -37 -43 -37 -46 -37 -65 -37 -38 -38 -8 -38 -17 -38 -21 -38 -26 -38 -27 -38 -30 -38 -39 -38 -40 -38 -47 -38 -49 -38 -59 -38 -60 -38 -39 -39 -9 -39 -18 -39 -22 -39 -28 -39 -29 -39 -31 -39 -38 -39 -41 -39 -48 -39 -50 -39 -59 -39 -60 -39 -40 -40 -17 -40 -19 -40 -21 -40 -30 -40 -33 -40 -38 -40 -41 -40 -44 -40 -49 -40 -51 -40 -59 -40 -60 -40 -61 -40 -63 -40 -41 -41 -18 -41 -20 -41 -22 -41 -31 -41 -35 -41 -39 -41 -40 -41 -45 -41 -50 -41 -52 -41 -59 -41 -60 -41 -62 -41 -63 -41 -42 -42 -10 -42 -15 -42 -19 -42 -21 -42 -23 -42 -32 -42 -36 -42 -43 -42 -44 -42 -46 -42 -53 -42 -61 -42 -64 -42 -66 -42 -43 -43 -10 -43 -16 -43 -20 -43 -22 -43 -23 -43 -34 -43 -37 -43 -42 -43 -45 -43 -46 -43 -55 -43 -62 -43 -65 -43 -67 -43 -44 -44 -19 -44 -21 -44 -32 -44 -33 -44 -40 -44 -42 -44 -53 -44 -54 -44 -61 -44 -64 -44 -66 -44 -78 -44 -45 -45 -20 -45 -22 -45 -34 -45 -35 -45 -41 -45 -43 -45 -55 -45 -56 -45 -62 -45 -65 -45 -67 -45 -79 -45 -46 -46 -23 -46 -36 -46 -37 -46 -42 -46 -43 -46 -57 -46 -58 -46 -64 -46 -65 -46 -68 -46 -81 -46 -82 -46 -47 -47 -27 -47 -38 -47 -48 -47 -59 -47 -69 -47 -48 -48 -28 -48 -39 -48 -47 -48 -59 -48 -69 -48 -49 -49 -38 -49 -40 -49 -50 -49 -59 -49 -60 -49 -50 -50 -39 -50 -41 -50 -49 -50 -59 -50 -60 -50 -51 -51 -40 -51 -52 -51 -60 -51 -61 -51 -63 -51 -52 -52 -41 -52 -51 -52 -60 -52 -62 -52 -63 -52 -53 -53 -42 -53 -44 -53 -54 -53 -64 -53 -66 -53 -54 -54 -44 -54 -53 -54 -61 -54 -66 -54 -78 -54 -55 -55 -43 -55 -45 -55 -56 -55 -65 -55 -67 -55 -56 -56 -45 -56 -55 -56 -62 -56 -67 -56 -79 -56 -57 -57 -46 -57 -58 -57 -64 -57 -68 -57 -81 -57 -58 -58 -46 -58 -57 -58 -65 -58 -68 -58 -82 -58 -59 -59 -27 -59 -28 -59 -38 -59 -39 -59 -40 -59 -41 -59 -47 -59 -48 -59 -49 -59 -50 -59 -60 -59 -69 -59 -60 -60 -38 -60 -39 -60 -40 -60 -41 -60 -49 -60 -50 -60 -51 -60 -52 -60 -59 -60 -61 -60 -62 -60 -63 -60 -61 -61 -21 -61 -33 -61 -40 -61 -42 -61 -44 -61 -51 -61 -54 -61 -60 -61 -62 -61 -63 -61 -66 -61 -70 -61 -78 -61 -80 -61 -62 -62 -22 -62 -35 -62 -41 -62 -43 -62 -45 -62 -52 -62 -56 -62 -60 -62 -61 -62 -63 -62 -67 -62 -71 -62 -79 -62 -80 -62 -63 -63 -40 -63 -41 -63 -51 -63 -52 -63 -60 -63 -61 -63 -62 -63 -70 -63 -71 -63 -78 -63 -79 -63 -80 -63 -64 -64 -23 -64 -36 -64 -42 -64 -44 -64 -46 -64 -53 -64 -57 -64 -65 -64 -66 -64 -68 -64 -72 -64 -78 -64 -81 -64 -83 -64 -65 -65 -23 -65 -37 -65 -43 -65 -45 -65 -46 -65 -55 -65 -58 -65 -64 -65 -67 -65 -68 -65 -74 -65 -79 -65 -82 -65 -84 -65 -66 -66 -42 -66 -44 -66 -53 -66 -54 -66 -61 -66 -64 -66 -72 -66 -73 -66 -78 -66 -81 -66 -83 -66 -94 -66 -67 -67 -43 -67 -45 -67 -55 -67 -56 -67 -62 -67 -65 -67 -74 -67 -75 -67 -79 -67 -82 -67 -84 -67 -95 -67 -68 -68 -46 -68 -57 -68 -58 -68 -64 -68 -65 -68 -76 -68 -77 -68 -81 -68 -82 -68 -85 -68 -97 -68 -98 -68 -69 -69 -47 -69 -48 -69 -59 -69 -70 -70 -61 -70 -63 -70 -71 -70 -78 -70 -80 -70 -71 -71 -62 -71 -63 -71 -70 -71 -79 -71 -80 -71 -72 -72 -64 -72 -66 -72 -73 -72 -81 -72 -83 -72 -73 -73 -66 -73 -72 -73 -78 -73 -83 -73 -94 -73 -74 -74 -65 -74 -67 -74 -75 -74 -82 -74 -84 -74 -75 -75 -67 -75 -74 -75 -79 -75 -84 -75 -95 -75 -76 -76 -68 -76 -77 -76 -81 -76 -85 -76 -97 -76 -77 -77 -68 -77 -76 -77 -82 -77 -85 -77 -98 -77 -78 -78 -44 -78 -54 -78 -61 -78 -63 -78 -64 -78 -66 -78 -70 -78 -73 -78 -79 -78 -80 -78 -83 -78 -86 -78 -94 -78 -96 -78 -79 -79 -45 -79 -56 -79 -62 -79 -63 -79 -65 -79 -67 -79 -71 -79 -75 -79 -78 -79 -80 -79 -84 -79 -87 -79 -95 -79 -96 -79 -80 -80 -61 -80 -62 -80 -63 -80 -70 -80 -71 -80 -78 -80 -79 -80 -86 -80 -87 -80 -94 -80 -95 -80 -96 -80 -81 -81 -46 -81 -57 -81 -64 -81 -66 -81 -68 -81 -72 -81 -76 -81 -82 -81 -83 -81 -85 -81 -88 -81 -94 -81 -97 -81 -99 -81 -82 -82 -46 -82 -58 -82 -65 -82 -67 -82 -68 -82 -74 -82 -77 -82 -81 -82 -84 -82 -85 -82 -90 -82 -95 -82 -98 -82 -100 -82 -83 -83 -64 -83 -66 -83 -72 -83 -73 -83 -78 -83 -81 -83 -88 -83 -89 -83 -94 -83 -97 -83 -99 -83 -110 -83 -84 -84 -65 -84 -67 -84 -74 -84 -75 -84 -79 -84 -82 -84 -90 -84 -91 -84 -95 -84 -98 -84 -100 -84 -111 -84 -85 -85 -68 -85 -76 -85 -77 -85 -81 -85 -82 -85 -92 -85 -93 -85 -97 -85 -98 -85 -101 -85 -113 -85 -114 -85 -86 -86 -78 -86 -80 -86 -87 -86 -94 -86 -96 -86 -87 -87 -79 -87 -80 -87 -86 -87 -95 -87 -96 -87 -88 -88 -81 -88 -83 -88 -89 -88 -97 -88 -99 -88 -89 -89 -83 -89 -88 -89 -94 -89 -99 -89 -110 -89 -90 -90 -82 -90 -84 -90 -91 -90 -98 -90 -100 -90 -91 -91 -84 -91 -90 -91 -95 -91 -100 -91 -111 -91 -92 -92 -85 -92 -93 -92 -97 -92 -101 -92 -113 -92 -93 -93 -85 -93 -92 -93 -98 -93 -101 -93 -114 -93 -94 -94 -66 -94 -73 -94 -78 -94 -80 -94 -81 -94 -83 -94 -86 -94 -89 -94 -95 -94 -96 -94 -99 -94 -102 -94 -110 -94 -112 -94 -95 -95 -67 -95 -75 -95 -79 -95 -80 -95 -82 -95 -84 -95 -87 -95 -91 -95 -94 -95 -96 -95 -100 -95 -103 -95 -111 -95 -112 -95 -96 -96 -78 -96 -79 -96 -80 -96 -86 -96 -87 -96 -94 -96 -95 -96 -102 -96 -103 -96 -110 -96 -111 -96 -112 -96 -97 -97 -68 -97 -76 -97 -81 -97 -83 -97 -85 -97 -88 -97 -92 -97 -98 -97 -99 -97 -101 -97 -104 -97 -110 -97 -113 -97 -115 -97 -98 -98 -68 -98 -77 -98 -82 -98 -84 -98 -85 -98 -90 -98 -93 -98 -97 -98 -100 -98 -101 -98 -106 -98 -111 -98 -114 -98 -116 -98 -99 -99 -81 -99 -83 -99 -88 -99 -89 -99 -94 -99 -97 -99 -104 -99 -105 -99 -110 -99 -113 -99 -115 -99 -126 -99 -100 -100 -82 -100 -84 -100 -90 -100 -91 -100 -95 -100 -98 -100 -106 -100 -107 -100 -111 -100 -114 -100 -116 -100 -127 -100 -101 -101 -85 -101 -92 -101 -93 -101 -97 -101 -98 -101 -108 -101 -109 -101 -113 -101 -114 -101 -117 -101 -129 -101 -130 -101 -102 -102 -94 -102 -96 -102 -103 -102 -110 -102 -112 -102 -103 -103 -95 -103 -96 -103 -102 -103 -111 -103 -112 -103 -104 -104 -97 -104 -99 -104 -105 -104 -113 -104 -115 -104 -105 -105 -99 -105 -104 -105 -110 -105 -115 -105 -126 -105 -106 -106 -98 -106 -100 -106 -107 -106 -114 -106 -116 -106 -107 -107 -100 -107 -106 -107 -111 -107 -116 -107 -127 -107 -108 -108 -101 -108 -109 -108 -113 -108 -117 -108 -129 -108 -109 -109 -101 -109 -108 -109 -114 -109 -117 -109 -130 -109 -110 -110 -83 -110 -89 -110 -94 -110 -96 -110 -97 -110 -99 -110 -102 -110 -105 -110 -111 -110 -112 -110 -115 -110 -118 -110 -126 -110 -128 -110 -111 -111 -84 -111 -91 -111 -95 -111 -96 -111 -98 -111 -100 -111 -103 -111 -107 -111 -110 -111 -112 -111 -116 -111 -119 -111 -127 -111 -128 -111 -112 -112 -94 -112 -95 -112 -96 -112 -102 -112 -103 -112 -110 -112 -111 -112 -118 -112 -119 -112 -126 -112 -127 -112 -128 -112 -113 -113 -85 -113 -92 -113 -97 -113 -99 -113 -101 -113 -104 -113 -108 -113 -114 -113 -115 -113 -117 -113 -120 -113 -126 -113 -129 -113 -131 -113 -114 -114 -85 -114 -93 -114 -98 -114 -100 -114 -101 -114 -106 -114 -109 -114 -113 -114 -116 -114 -117 -114 -122 -114 -127 -114 -130 -114 -132 -114 -115 -115 -97 -115 -99 -115 -104 -115 -105 -115 -110 -115 -113 -115 -120 -115 -121 -115 -126 -115 -129 -115 -131 -115 -142 -115 -116 -116 -98 -116 -100 -116 -106 -116 -107 -116 -111 -116 -114 -116 -122 -116 -123 -116 -127 -116 -130 -116 -132 -116 -143 -116 -117 -117 -101 -117 -108 -117 -109 -117 -113 -117 -114 -117 -124 -117 -125 -117 -129 -117 -130 -117 -133 -117 -145 -117 -146 -117 -118 -118 -110 -118 -112 -118 -119 -118 -126 -118 -128 -118 -119 -119 -111 -119 -112 -119 -118 -119 -127 -119 -128 -119 -120 -120 -113 -120 -115 -120 -121 -120 -129 -120 -131 -120 -121 -121 -115 -121 -120 -121 -126 -121 -131 -121 -142 -121 -122 -122 -114 -122 -116 -122 -123 -122 -130 -122 -132 -122 -123 -123 -116 -123 -122 -123 -127 -123 -132 -123 -143 -123 -124 -124 -117 -124 -125 -124 -129 -124 -133 -124 -145 -124 -125 -125 -117 -125 -124 -125 -130 -125 -133 -125 -146 -125 -126 -126 -99 -126 -105 -126 -110 -126 -112 -126 -113 -126 -115 -126 -118 -126 -121 -126 -127 -126 -128 -126 -131 -126 -134 -126 -142 -126 -144 -126 -127 -127 -100 -127 -107 -127 -111 -127 -112 -127 -114 -127 -116 -127 -119 -127 -123 -127 -126 -127 -128 -127 -132 -127 -135 -127 -143 -127 -144 -127 -128 -128 -110 -128 -111 -128 -112 -128 -118 -128 -119 -128 -126 -128 -127 -128 -134 -128 -135 -128 -142 -128 -143 -128 -144 -128 -129 -129 -101 -129 -108 -129 -113 -129 -115 -129 -117 -129 -120 -129 -124 -129 -130 -129 -131 -129 -133 -129 -136 -129 -142 -129 -145 -129 -147 -129 -130 -130 -101 -130 -109 -130 -114 -130 -116 -130 -117 -130 -122 -130 -125 -130 -129 -130 -132 -130 -133 -130 -138 -130 -143 -130 -146 -130 -148 -130 -131 -131 -113 -131 -115 -131 -120 -131 -121 -131 -126 -131 -129 -131 -136 -131 -137 -131 -142 -131 -145 -131 -147 -131 -158 -131 -132 -132 -114 -132 -116 -132 -122 -132 -123 -132 -127 -132 -130 -132 -138 -132 -139 -132 -143 -132 -146 -132 -148 -132 -159 -132 -133 -133 -117 -133 -124 -133 -125 -133 -129 -133 -130 -133 -140 -133 -141 -133 -145 -133 -146 -133 -149 -133 -161 -133 -162 -133 -134 -134 -126 -134 -128 -134 -135 -134 -142 -134 -144 -134 -135 -135 -127 -135 -128 -135 -134 -135 -143 -135 -144 -135 -136 -136 -129 -136 -131 -136 -137 -136 -145 -136 -147 -136 -137 -137 -131 -137 -136 -137 -142 -137 -147 -137 -158 -137 -138 -138 -130 -138 -132 -138 -139 -138 -146 -138 -148 -138 -139 -139 -132 -139 -138 -139 -143 -139 -148 -139 -159 -139 -140 -140 -133 -140 -141 -140 -145 -140 -149 -140 -161 -140 -141 -141 -133 -141 -140 -141 -146 -141 -149 -141 -162 -141 -142 -142 -115 -142 -121 -142 -126 -142 -128 -142 -129 -142 -131 -142 -134 -142 -137 -142 -143 -142 -144 -142 -147 -142 -150 -142 -158 -142 -160 -142 -143 -143 -116 -143 -123 -143 -127 -143 -128 -143 -130 -143 -132 -143 -135 -143 -139 -143 -142 -143 -144 -143 -148 -143 -151 -143 -159 -143 -160 -143 -144 -144 -126 -144 -127 -144 -128 -144 -134 -144 -135 -144 -142 -144 -143 -144 -150 -144 -151 -144 -158 -144 -159 -144 -160 -144 -145 -145 -117 -145 -124 -145 -129 -145 -131 -145 -133 -145 -136 -145 -140 -145 -146 -145 -147 -145 -149 -145 -152 -145 -158 -145 -161 -145 -163 -145 -146 -146 -117 -146 -125 -146 -130 -146 -132 -146 -133 -146 -138 -146 -141 -146 -145 -146 -148 -146 -149 -146 -154 -146 -159 -146 -162 -146 -164 -146 -147 -147 -129 -147 -131 -147 -136 -147 -137 -147 -142 -147 -145 -147 -152 -147 -153 -147 -158 -147 -161 -147 -163 -147 -174 -147 -148 -148 -130 -148 -132 -148 -138 -148 -139 -148 -143 -148 -146 -148 -154 -148 -155 -148 -159 -148 -162 -148 -164 -148 -175 -148 -149 -149 -133 -149 -140 -149 -141 -149 -145 -149 -146 -149 -156 -149 -157 -149 -161 -149 -162 -149 -165 -149 -177 -149 -178 -149 -150 -150 -142 -150 -144 -150 -151 -150 -158 -150 -160 -150 -151 -151 -143 -151 -144 -151 -150 -151 -159 -151 -160 -151 -152 -152 -145 -152 -147 -152 -153 -152 -161 -152 -163 -152 -153 -153 -147 -153 -152 -153 -158 -153 -163 -153 -174 -153 -154 -154 -146 -154 -148 -154 -155 -154 -162 -154 -164 -154 -155 -155 -148 -155 -154 -155 -159 -155 -164 -155 -175 -155 -156 -156 -149 -156 -157 -156 -161 -156 -165 -156 -177 -156 -157 -157 -149 -157 -156 -157 -162 -157 -165 -157 -178 -157 -158 -158 -131 -158 -137 -158 -142 -158 -144 -158 -145 -158 -147 -158 -150 -158 -153 -158 -159 -158 -160 -158 -163 -158 -166 -158 -174 -158 -176 -158 -159 -159 -132 -159 -139 -159 -143 -159 -144 -159 -146 -159 -148 -159 -151 -159 -155 -159 -158 -159 -160 -159 -164 -159 -167 -159 -175 -159 -176 -159 -160 -160 -142 -160 -143 -160 -144 -160 -150 -160 -151 -160 -158 -160 -159 -160 -166 -160 -167 -160 -174 -160 -175 -160 -176 -160 -161 -161 -133 -161 -140 -161 -145 -161 -147 -161 -149 -161 -152 -161 -156 -161 -162 -161 -163 -161 -165 -161 -168 -161 -174 -161 -177 -161 -179 -161 -162 -162 -133 -162 -141 -162 -146 -162 -148 -162 -149 -162 -154 -162 -157 -162 -161 -162 -164 -162 -165 -162 -170 -162 -175 -162 -178 -162 -180 -162 -163 -163 -145 -163 -147 -163 -152 -163 -153 -163 -158 -163 -161 -163 -168 -163 -169 -163 -174 -163 -177 -163 -179 -163 -194 -163 -164 -164 -146 -164 -148 -164 -154 -164 -155 -164 -159 -164 -162 -164 -170 -164 -171 -164 -175 -164 -178 -164 -180 -164 -195 -164 -165 -165 -149 -165 -156 -165 -157 -165 -161 -165 -162 -165 -172 -165 -173 -165 -177 -165 -178 -165 -181 -165 -196 -165 -197 -165 -166 -166 -158 -166 -160 -166 -167 -166 -174 -166 -176 -166 -167 -167 -159 -167 -160 -167 -166 -167 -175 -167 -176 -167 -168 -168 -161 -168 -163 -168 -169 -168 -177 -168 -179 -168 -169 -169 -163 -169 -168 -169 -174 -169 -179 -169 -194 -169 -170 -170 -162 -170 -164 -170 -171 -170 -178 -170 -180 -170 -171 -171 -164 -171 -170 -171 -175 -171 -180 -171 -195 -171 -172 -172 -165 -172 -173 -172 -177 -172 -181 -172 -196 -172 -173 -173 -165 -173 -172 -173 -178 -173 -181 -173 -197 -173 -174 -174 -147 -174 -153 -174 -158 -174 -160 -174 -161 -174 -163 -174 -166 -174 -169 -174 -175 -174 -176 -174 -179 -174 -182 -174 -190 -174 -194 -174 -175 -175 -148 -175 -155 -175 -159 -175 -160 -175 -162 -175 -164 -175 -167 -175 -171 -175 -174 -175 -176 -175 -180 -175 -183 -175 -190 -175 -195 -175 -176 -176 -158 -176 -159 -176 -160 -176 -166 -176 -167 -176 -174 -176 -175 -176 -182 -176 -183 -176 -190 -176 -194 -176 -195 -176 -177 -177 -149 -177 -156 -177 -161 -177 -163 -177 -165 -177 -168 -177 -172 -177 -178 -177 -179 -177 -181 -177 -184 -177 -191 -177 -194 -177 -196 -177 -178 -178 -149 -178 -157 -178 -162 -178 -164 -178 -165 -178 -170 -178 -173 -178 -177 -178 -180 -178 -181 -178 -186 -178 -192 -178 -195 -178 -197 -178 -179 -179 -161 -179 -163 -179 -168 -179 -169 -179 -174 -179 -177 -179 -184 -179 -185 -179 -191 -179 -194 -179 -196 -179 -202 -179 -180 -180 -162 -180 -164 -180 -170 -180 -171 -180 -175 -180 -178 -180 -186 -180 -187 -180 -192 -180 -195 -180 -197 -180 -202 -180 -181 -181 -165 -181 -172 -181 -173 -181 -177 -181 -178 -181 -188 -181 -189 -181 -193 -181 -196 -181 -197 -181 -202 -181 -182 -182 -174 -182 -176 -182 -183 -182 -190 -182 -194 -182 -183 -183 -175 -183 -176 -183 -182 -183 -190 -183 -195 -183 -184 -184 -177 -184 -179 -184 -185 -184 -191 -184 -196 -184 -185 -185 -179 -185 -184 -185 -191 -185 -194 -185 -198 -185 -186 -186 -178 -186 -180 -186 -187 -186 -192 -186 -197 -186 -187 -187 -180 -187 -186 -187 -192 -187 -195 -187 -199 -187 -188 -188 -181 -188 -189 -188 -193 -188 -196 -188 -200 -188 -189 -189 -181 -189 -188 -189 -193 -189 -197 -189 -201 -189 -190 -190 -174 -190 -175 -190 -176 -190 -182 -190 -183 -190 -194 -190 -195 -190 -202 -190 -191 -191 -177 -191 -179 -191 -184 -191 -185 -191 -194 -191 -196 -191 -198 -191 -202 -191 -192 -192 -178 -192 -180 -192 -186 -192 -187 -192 -195 -192 -197 -192 -199 -192 -202 -192 -193 -193 -181 -193 -188 -193 -189 -193 -196 -193 -197 -193 -200 -193 -201 -193 -202 -193 -194 -194 -163 -194 -169 -194 -174 -194 -176 -194 -177 -194 -179 -194 -182 -194 -185 -194 -190 -194 -191 -194 -195 -194 -196 -194 -198 -194 -202 -194 -195 -195 -164 -195 -171 -195 -175 -195 -176 -195 -178 -195 -180 -195 -183 -195 -187 -195 -190 -195 -192 -195 -194 -195 -197 -195 -199 -195 -202 -195 -196 -196 -165 -196 -172 -196 -177 -196 -179 -196 -181 -196 -184 -196 -188 -196 -191 -196 -193 -196 -194 -196 -197 -196 -198 -196 -200 -196 -202 -196 -197 -197 -165 -197 -173 -197 -178 -197 -180 -197 -181 -197 -186 -197 -189 -197 -192 -197 -193 -197 -195 -197 -196 -197 -199 -197 -201 -197 -202 -197 -198 -198 -185 -198 -191 -198 -194 -198 -196 -198 -202 -198 -199 -199 -187 -199 -192 -199 -195 -199 -197 -199 -202 -199 -200 -200 -188 -200 -193 -200 -196 -200 -201 -200 -202 -200 -201 -201 -189 -201 -193 -201 -197 -201 -200 -201 -202 -201 -202 -202 -179 -202 -180 -202 -181 -202 -190 -202 -191 -202 -192 -202 -193 -202 -194 -202 -195 -202 -196 -202 -197 -202 -198 -202 -199 -202 -200 -202 -201 -202 - -DEAL:: Total number of cells = 197 -DEAL:: Total number of active cells = 148 -DEAL:: Number of DoFs = 203 -DEAL:: Number of constraints = 92 -DEAL:: Unconstrained matrix bandwidth= 32 -DEAL:: Constrained matrix bandwidth = 42 - -DEAL::Dimension = 2, Test case = 2 - -DEAL:: Making grid... -DEAL:: Distributing degrees of freedom... -DEAL:: Renumbering degrees of freedom... -DEAL:: Writing sparsity pattern... -0 0 -1 0 -3 0 -2 0 -1 -1 -0 -1 -3 -1 -2 -1 -4 -1 -6 -1 -2 -2 -0 -2 -1 -2 -3 -2 -7 -2 -5 -2 -3 -3 -0 -3 -1 -3 -2 -3 -4 -3 -6 -3 -8 -3 -7 -3 -5 -3 -4 -4 -1 -4 -6 -4 -3 -4 -9 -4 -13 -4 -5 -5 -2 -5 -3 -5 -7 -5 -14 -5 -11 -5 -6 -6 -1 -6 -4 -6 -3 -6 -8 -6 -7 -6 -9 -6 -13 -6 -10 -6 -7 -7 -3 -7 -6 -7 -8 -7 -2 -7 -5 -7 -14 -7 -11 -7 -12 -7 -8 -8 -16 -8 -15 -8 -17 -8 -3 -8 -6 -8 -7 -8 -13 -8 -10 -8 -12 -8 -14 -8 -9 -9 -4 -9 -13 -9 -6 -9 -20 -9 -25 -9 -10 -10 -13 -10 -25 -10 -16 -10 -6 -10 -8 -10 -11 -11 -5 -11 -7 -11 -14 -11 -26 -11 -21 -11 -12 -12 -7 -12 -8 -12 -14 -12 -17 -12 -26 -12 -13 -13 -4 -13 -9 -13 -6 -13 -20 -13 -25 -13 -16 -13 -10 -13 -8 -13 -14 -14 -5 -14 -7 -14 -11 -14 -8 -14 -12 -14 -17 -14 -26 -14 -21 -14 -15 -15 -29 -15 -24 -15 -30 -15 -8 -15 -16 -15 -17 -15 -31 -15 -18 -15 -19 -15 -32 -15 -16 -16 -8 -16 -15 -16 -17 -16 -31 -16 -18 -16 -13 -16 -25 -16 -10 -16 -27 -16 -22 -16 -17 -17 -8 -17 -16 -17 -15 -17 -19 -17 -32 -17 -14 -17 -12 -17 -26 -17 -23 -17 -28 -17 -18 -18 -31 -18 -50 -18 -29 -18 -16 -18 -15 -18 -19 -19 -17 -19 -15 -19 -32 -19 -30 -19 -51 -19 -20 -20 -9 -20 -25 -20 -13 -20 -35 -20 -27 -20 -21 -21 -11 -21 -14 -21 -26 -21 -28 -21 -38 -21 -22 -22 -27 -22 -41 -22 -31 -22 -25 -22 -16 -22 -23 -23 -26 -23 -17 -23 -28 -23 -32 -23 -43 -23 -24 -24 -15 -24 -29 -24 -30 -24 -45 -24 -46 -24 -47 -24 -48 -24 -49 -24 -25 -25 -9 -25 -20 -25 -13 -25 -16 -25 -10 -25 -35 -25 -27 -25 -22 -25 -26 -26 -14 -26 -12 -26 -17 -26 -11 -26 -21 -26 -28 -26 -38 -26 -23 -26 -27 -27 -20 -27 -35 -27 -25 -27 -36 -27 -41 -27 -31 -27 -22 -27 -16 -27 -28 -28 -21 -28 -26 -28 -38 -28 -17 -28 -23 -28 -32 -28 -43 -28 -39 -28 -29 -29 -15 -29 -24 -29 -30 -29 -45 -29 -46 -29 -31 -29 -50 -29 -18 -29 -52 -29 -33 -29 -30 -30 -15 -30 -29 -30 -24 -30 -48 -30 -49 -30 -32 -30 -19 -30 -51 -30 -34 -30 -53 -30 -31 -31 -50 -31 -29 -31 -18 -31 -16 -31 -15 -31 -27 -31 -41 -31 -22 -31 -42 -31 -37 -31 -32 -32 -17 -32 -15 -32 -19 -32 -30 -32 -51 -32 -28 -32 -23 -32 -43 -32 -40 -32 -44 -32 -33 -33 -52 -33 -74 -33 -45 -33 -50 -33 -29 -33 -34 -34 -51 -34 -30 -34 -53 -34 -49 -34 -85 -34 -35 -35 -20 -35 -27 -35 -25 -35 -36 -35 -41 -35 -36 -36 -35 -36 -41 -36 -27 -36 -58 -36 -42 -36 -37 -37 -42 -37 -66 -37 -50 -37 -41 -37 -31 -37 -38 -38 -21 -38 -26 -38 -28 -38 -43 -38 -39 -38 -39 -39 -38 -39 -28 -39 -43 -39 -44 -39 -60 -39 -40 -40 -43 -40 -32 -40 -44 -40 -51 -40 -67 -40 -41 -41 -35 -41 -36 -41 -27 -41 -31 -41 -22 -41 -58 -41 -42 -41 -37 -41 -42 -42 -36 -42 -58 -42 -41 -42 -59 -42 -66 -42 -50 -42 -37 -42 -31 -42 -43 -43 -28 -43 -23 -43 -32 -43 -38 -43 -39 -43 -44 -43 -60 -43 -40 -43 -44 -44 -39 -44 -43 -44 -60 -44 -32 -44 -40 -44 -51 -44 -67 -44 -61 -44 -45 -45 -29 -45 -46 -45 -24 -45 -52 -45 -74 -45 -33 -45 -75 -45 -76 -45 -77 -45 -54 -45 -46 -46 -29 -46 -45 -46 -24 -46 -47 -46 -48 -46 -54 -46 -77 -46 -78 -46 -79 -46 -55 -46 -47 -47 -24 -47 -46 -47 -48 -47 -55 -47 -79 -47 -80 -47 -81 -47 -82 -47 -56 -47 -83 -47 -48 -48 -24 -48 -46 -48 -47 -48 -30 -48 -49 -48 -56 -48 -83 -48 -84 -48 -57 -48 -86 -48 -49 -49 -30 -49 -24 -49 -48 -49 -53 -49 -34 -49 -85 -49 -57 -49 -86 -49 -87 -49 -88 -49 -50 -50 -31 -50 -29 -50 -18 -50 -52 -50 -33 -50 -42 -50 -66 -50 -37 -50 -68 -50 -62 -50 -51 -51 -32 -51 -19 -51 -30 -51 -34 -51 -53 -51 -44 -51 -40 -51 -67 -51 -64 -51 -71 -51 -52 -52 -74 -52 -45 -52 -33 -52 -50 -52 -29 -52 -68 -52 -69 -52 -62 -52 -70 -52 -63 -52 -53 -53 -51 -53 -30 -53 -34 -53 -49 -53 -85 -53 -71 -53 -64 -53 -72 -53 -65 -53 -73 -53 -54 -54 -45 -54 -76 -54 -77 -54 -78 -54 -46 -54 -55 -55 -46 -55 -78 -55 -79 -55 -80 -55 -47 -55 -56 -56 -48 -56 -83 -56 -84 -56 -47 -56 -82 -56 -57 -57 -49 -57 -86 -57 -87 -57 -48 -57 -84 -57 -58 -58 -36 -58 -42 -58 -41 -58 -59 -58 -66 -58 -59 -59 -58 -59 -66 -59 -42 -59 -89 -59 -68 -59 -60 -60 -39 -60 -43 -60 -44 -60 -67 -60 -61 -60 -61 -61 -60 -61 -44 -61 -67 -61 -71 -61 -103 -61 -62 -62 -68 -62 -69 -62 -52 -62 -66 -62 -50 -62 -63 -63 -70 -63 -111 -63 -74 -63 -69 -63 -52 -63 -64 -64 -67 -64 -51 -64 -71 -64 -53 -64 -72 -64 -65 -65 -72 -65 -53 -65 -73 -65 -85 -65 -136 -65 -66 -66 -58 -66 -59 -66 -42 -66 -50 -66 -37 -66 -89 -66 -68 -66 -62 -66 -67 -67 -44 -67 -40 -67 -51 -67 -60 -67 -61 -67 -71 -67 -103 -67 -64 -67 -68 -68 -59 -68 -89 -68 -66 -68 -90 -68 -69 -68 -52 -68 -62 -68 -50 -68 -69 -69 -89 -69 -90 -69 -68 -69 -52 -69 -62 -69 -91 -69 -70 -69 -63 -69 -70 -70 -90 -70 -91 -70 -69 -70 -92 -70 -111 -70 -74 -70 -63 -70 -52 -70 -71 -71 -61 -71 -67 -71 -103 -71 -51 -71 -64 -71 -53 -71 -72 -71 -104 -71 -72 -72 -71 -72 -64 -72 -53 -72 -103 -72 -104 -72 -73 -72 -105 -72 -65 -72 -73 -73 -104 -73 -72 -73 -105 -73 -53 -73 -65 -73 -85 -73 -136 -73 -106 -73 -74 -74 -52 -74 -45 -74 -33 -74 -75 -74 -76 -74 -70 -74 -111 -74 -63 -74 -112 -74 -93 -74 -75 -75 -74 -75 -76 -75 -45 -75 -112 -75 -113 -75 -93 -75 -114 -75 -115 -75 -116 -75 -94 -75 -76 -76 -74 -76 -75 -76 -45 -76 -77 -76 -54 -76 -94 -76 -116 -76 -117 -76 -118 -76 -95 -76 -77 -77 -45 -77 -76 -77 -54 -77 -78 -77 -46 -77 -95 -77 -118 -77 -119 -77 -120 -77 -96 -77 -78 -78 -54 -78 -77 -78 -46 -78 -79 -78 -55 -78 -96 -78 -120 -78 -121 -78 -122 -78 -97 -78 -79 -79 -46 -79 -78 -79 -55 -79 -80 -79 -47 -79 -97 -79 -122 -79 -123 -79 -124 -79 -98 -79 -80 -80 -55 -80 -79 -80 -47 -80 -81 -80 -82 -80 -98 -80 -124 -80 -125 -80 -126 -80 -99 -80 -81 -81 -47 -81 -80 -81 -82 -81 -99 -81 -126 -81 -127 -81 -128 -81 -129 -81 -100 -81 -130 -81 -82 -82 -47 -82 -80 -82 -81 -82 -56 -82 -83 -82 -100 -82 -130 -82 -131 -82 -101 -82 -132 -82 -83 -83 -48 -83 -56 -83 -84 -83 -47 -83 -82 -83 -101 -83 -132 -83 -133 -83 -102 -83 -134 -83 -84 -84 -48 -84 -56 -84 -83 -84 -57 -84 -86 -84 -102 -84 -134 -84 -135 -84 -107 -84 -137 -84 -85 -85 -53 -85 -34 -85 -49 -85 -87 -85 -88 -85 -73 -85 -65 -85 -136 -85 -109 -85 -141 -85 -86 -86 -49 -86 -57 -86 -87 -86 -48 -86 -84 -86 -107 -86 -137 -86 -138 -86 -108 -86 -139 -86 -87 -87 -49 -87 -57 -87 -86 -87 -85 -87 -88 -87 -108 -87 -139 -87 -140 -87 -110 -87 -143 -87 -88 -88 -85 -88 -49 -88 -87 -88 -141 -88 -109 -88 -142 -88 -110 -88 -143 -88 -144 -88 -145 -88 -89 -89 -59 -89 -68 -89 -66 -89 -90 -89 -69 -89 -90 -90 -89 -90 -69 -90 -68 -90 -91 -90 -70 -90 -91 -91 -90 -91 -70 -91 -69 -91 -92 -91 -111 -91 -92 -92 -91 -92 -111 -92 -70 -92 -149 -92 -112 -92 -93 -93 -112 -93 -113 -93 -75 -93 -111 -93 -74 -93 -94 -94 -75 -94 -115 -94 -116 -94 -117 -94 -76 -94 -95 -95 -76 -95 -117 -95 -118 -95 -119 -95 -77 -95 -96 -96 -77 -96 -119 -96 -120 -96 -121 -96 -78 -96 -97 -97 -78 -97 -121 -97 -122 -97 -123 -97 -79 -97 -98 -98 -79 -98 -123 -98 -124 -98 -125 -98 -80 -98 -99 -99 -80 -99 -125 -99 -126 -99 -127 -99 -81 -99 -100 -100 -82 -100 -130 -100 -131 -100 -81 -100 -129 -100 -101 -101 -83 -101 -132 -101 -133 -101 -82 -101 -131 -101 -102 -102 -84 -102 -134 -102 -135 -102 -83 -102 -133 -102 -103 -103 -61 -103 -67 -103 -71 -103 -72 -103 -104 -103 -104 -104 -103 -104 -71 -104 -72 -104 -73 -104 -105 -104 -105 -105 -104 -105 -72 -105 -73 -105 -136 -105 -106 -105 -106 -106 -105 -106 -73 -106 -136 -106 -141 -106 -179 -106 -107 -107 -86 -107 -137 -107 -138 -107 -84 -107 -135 -107 -108 -108 -87 -108 -139 -108 -140 -108 -86 -108 -138 -108 -109 -109 -136 -109 -85 -109 -141 -109 -88 -109 -142 -109 -110 -110 -88 -110 -143 -110 -144 -110 -87 -110 -140 -110 -111 -111 -91 -111 -92 -111 -70 -111 -74 -111 -63 -111 -149 -111 -112 -111 -93 -111 -112 -112 -92 -112 -149 -112 -111 -112 -150 -112 -113 -112 -75 -112 -93 -112 -74 -112 -113 -113 -149 -113 -150 -113 -112 -113 -75 -113 -93 -113 -151 -113 -114 -113 -115 -113 -114 -114 -150 -114 -151 -114 -113 -114 -146 -114 -152 -114 -153 -114 -115 -114 -75 -114 -115 -115 -114 -115 -152 -115 -153 -115 -113 -115 -75 -115 -116 -115 -94 -115 -154 -115 -116 -116 -75 -116 -115 -116 -94 -116 -153 -116 -154 -116 -155 -116 -117 -116 -76 -116 -117 -117 -116 -117 -154 -117 -155 -117 -94 -117 -76 -117 -118 -117 -95 -117 -156 -117 -118 -118 -76 -118 -117 -118 -95 -118 -155 -118 -156 -118 -157 -118 -119 -118 -77 -118 -119 -119 -118 -119 -156 -119 -157 -119 -95 -119 -77 -119 -120 -119 -96 -119 -158 -119 -120 -120 -77 -120 -119 -120 -96 -120 -157 -120 -158 -120 -159 -120 -121 -120 -78 -120 -121 -121 -120 -121 -158 -121 -159 -121 -96 -121 -78 -121 -122 -121 -97 -121 -160 -121 -122 -122 -78 -122 -121 -122 -97 -122 -159 -122 -160 -122 -161 -122 -123 -122 -79 -122 -123 -123 -122 -123 -160 -123 -161 -123 -97 -123 -79 -123 -124 -123 -98 -123 -162 -123 -124 -124 -79 -124 -123 -124 -98 -124 -161 -124 -162 -124 -163 -124 -125 -124 -80 -124 -125 -125 -124 -125 -162 -125 -163 -125 -98 -125 -80 -125 -126 -125 -99 -125 -164 -125 -126 -126 -80 -126 -125 -126 -99 -126 -163 -126 -164 -126 -165 -126 -127 -126 -81 -126 -127 -127 -126 -127 -164 -127 -165 -127 -99 -127 -81 -127 -128 -127 -129 -127 -166 -127 -128 -128 -81 -128 -127 -128 -129 -128 -165 -128 -166 -128 -147 -128 -167 -128 -168 -128 -129 -129 -81 -129 -127 -129 -128 -129 -167 -129 -168 -129 -100 -129 -130 -129 -169 -129 -130 -130 -82 -130 -100 -130 -131 -130 -81 -130 -129 -130 -168 -130 -169 -130 -170 -130 -131 -131 -82 -131 -100 -131 -130 -131 -169 -131 -170 -131 -101 -131 -132 -131 -171 -131 -132 -132 -83 -132 -101 -132 -133 -132 -82 -132 -131 -132 -170 -132 -171 -132 -172 -132 -133 -133 -83 -133 -101 -133 -132 -133 -171 -133 -172 -133 -102 -133 -134 -133 -173 -133 -134 -134 -84 -134 -102 -134 -135 -134 -83 -134 -133 -134 -172 -134 -173 -134 -174 -134 -135 -135 -84 -135 -102 -135 -134 -135 -173 -135 -174 -135 -107 -135 -137 -135 -175 -135 -136 -136 -73 -136 -65 -136 -85 -136 -105 -136 -106 -136 -141 -136 -179 -136 -109 -136 -137 -137 -86 -137 -107 -137 -138 -137 -84 -137 -135 -137 -174 -137 -175 -137 -176 -137 -138 -138 -86 -138 -107 -138 -137 -138 -175 -138 -176 -138 -108 -138 -139 -138 -177 -138 -139 -139 -87 -139 -108 -139 -140 -139 -86 -139 -138 -139 -176 -139 -177 -139 -178 -139 -140 -140 -87 -140 -108 -140 -139 -140 -177 -140 -178 -140 -110 -140 -143 -140 -181 -140 -141 -141 -106 -141 -136 -141 -179 -141 -85 -141 -109 -141 -88 -141 -142 -141 -180 -141 -142 -142 -141 -142 -109 -142 -88 -142 -179 -142 -180 -142 -145 -142 -183 -142 -144 -142 -143 -143 -88 -143 -110 -143 -144 -143 -87 -143 -140 -143 -178 -143 -181 -143 -182 -143 -144 -144 -88 -144 -110 -144 -143 -144 -181 -144 -182 -144 -142 -144 -145 -144 -184 -144 -145 -145 -180 -145 -142 -145 -183 -145 -88 -145 -144 -145 -182 -145 -184 -145 -148 -145 -146 -146 -151 -146 -152 -146 -114 -146 -147 -147 -128 -147 -166 -147 -167 -147 -148 -148 -183 -148 -145 -148 -184 -148 -149 -149 -92 -149 -112 -149 -111 -149 -150 -149 -113 -149 -150 -150 -149 -150 -113 -150 -112 -150 -151 -150 -114 -150 -151 -151 -150 -151 -114 -151 -113 -151 -146 -151 -152 -151 -152 -152 -151 -152 -146 -152 -114 -152 -153 -152 -115 -152 -153 -153 -114 -153 -152 -153 -115 -153 -154 -153 -116 -153 -154 -154 -115 -154 -153 -154 -116 -154 -155 -154 -117 -154 -155 -155 -116 -155 -154 -155 -117 -155 -156 -155 -118 -155 -156 -156 -117 -156 -155 -156 -118 -156 -157 -156 -119 -156 -157 -157 -118 -157 -156 -157 -119 -157 -158 -157 -120 -157 -158 -158 -119 -158 -157 -158 -120 -158 -159 -158 -121 -158 -159 -159 -120 -159 -158 -159 -121 -159 -160 -159 -122 -159 -160 -160 -121 -160 -159 -160 -122 -160 -161 -160 -123 -160 -161 -161 -122 -161 -160 -161 -123 -161 -162 -161 -124 -161 -162 -162 -123 -162 -161 -162 -124 -162 -163 -162 -125 -162 -163 -163 -124 -163 -162 -163 -125 -163 -164 -163 -126 -163 -164 -164 -125 -164 -163 -164 -126 -164 -165 -164 -127 -164 -165 -165 -126 -165 -164 -165 -127 -165 -166 -165 -128 -165 -166 -166 -127 -166 -165 -166 -128 -166 -147 -166 -167 -166 -167 -167 -128 -167 -166 -167 -147 -167 -129 -167 -168 -167 -168 -168 -129 -168 -128 -168 -167 -168 -130 -168 -169 -168 -169 -169 -130 -169 -129 -169 -168 -169 -131 -169 -170 -169 -170 -170 -131 -170 -130 -170 -169 -170 -132 -170 -171 -170 -171 -171 -132 -171 -131 -171 -170 -171 -133 -171 -172 -171 -172 -172 -133 -172 -132 -172 -171 -172 -134 -172 -173 -172 -173 -173 -134 -173 -133 -173 -172 -173 -135 -173 -174 -173 -174 -174 -135 -174 -134 -174 -173 -174 -137 -174 -175 -174 -175 -175 -137 -175 -135 -175 -174 -175 -138 -175 -176 -175 -176 -176 -138 -176 -137 -176 -175 -176 -139 -176 -177 -176 -177 -177 -139 -177 -138 -177 -176 -177 -140 -177 -178 -177 -178 -178 -140 -178 -139 -178 -177 -178 -143 -178 -181 -178 -179 -179 -106 -179 -136 -179 -141 -179 -142 -179 -180 -179 -180 -180 -179 -180 -141 -180 -142 -180 -145 -180 -183 -180 -181 -181 -143 -181 -140 -181 -178 -181 -144 -181 -182 -181 -182 -182 -144 -182 -143 -182 -181 -182 -145 -182 -184 -182 -183 -183 -180 -183 -142 -183 -145 -183 -184 -183 -148 -183 -184 -184 -145 -184 -144 -184 -182 -184 -183 -184 -148 -184 -DEAL:: Computing constraints... -DEAL:: Writing condensed sparsity pattern... -0 0 -1 0 -2 0 -3 0 -1 -1 -0 -1 -2 -1 -3 -1 -4 -1 -6 -1 -2 -2 -0 -2 -1 -2 -3 -2 -5 -2 -7 -2 -3 -3 -0 -3 -1 -3 -2 -3 -4 -3 -5 -3 -6 -3 -7 -3 -8 -3 -4 -4 -1 -4 -3 -4 -6 -4 -9 -4 -13 -4 -5 -5 -2 -5 -3 -5 -7 -5 -11 -5 -14 -5 -6 -6 -1 -6 -3 -6 -4 -6 -7 -6 -8 -6 -9 -6 -10 -6 -13 -6 -16 -6 -7 -7 -2 -7 -3 -7 -5 -7 -6 -7 -8 -7 -11 -7 -12 -7 -14 -7 -17 -7 -8 -8 -3 -8 -6 -8 -7 -8 -10 -8 -12 -8 -13 -8 -14 -8 -15 -8 -16 -8 -17 -8 -25 -8 -26 -8 -9 -9 -4 -9 -6 -9 -13 -9 -20 -9 -25 -9 -10 -10 -6 -10 -8 -10 -13 -10 -16 -10 -25 -10 -11 -11 -5 -11 -7 -11 -14 -11 -21 -11 -26 -11 -12 -12 -7 -12 -8 -12 -14 -12 -17 -12 -26 -12 -13 -13 -4 -13 -6 -13 -8 -13 -9 -13 -10 -13 -16 -13 -20 -13 -25 -13 -14 -14 -5 -14 -7 -14 -8 -14 -11 -14 -12 -14 -17 -14 -21 -14 -26 -14 -15 -15 -8 -15 -16 -15 -17 -15 -18 -15 -19 -15 -24 -15 -29 -15 -30 -15 -31 -15 -32 -15 -50 -15 -51 -15 -16 -16 -6 -16 -8 -16 -10 -16 -13 -16 -15 -16 -17 -16 -18 -16 -22 -16 -25 -16 -27 -16 -29 -16 -31 -16 -41 -16 -17 -17 -7 -17 -8 -17 -12 -17 -14 -17 -15 -17 -16 -17 -19 -17 -23 -17 -26 -17 -28 -17 -30 -17 -32 -17 -43 -17 -18 -18 -15 -18 -16 -18 -29 -18 -31 -18 -50 -18 -19 -19 -15 -19 -17 -19 -30 -19 -32 -19 -51 -19 -20 -20 -9 -20 -13 -20 -25 -20 -27 -20 -35 -20 -21 -21 -11 -21 -14 -21 -26 -21 -28 -21 -38 -21 -22 -22 -16 -22 -25 -22 -27 -22 -31 -22 -41 -22 -23 -23 -17 -23 -26 -23 -28 -23 -32 -23 -43 -23 -24 -24 -15 -24 -29 -24 -30 -24 -45 -24 -46 -24 -47 -24 -48 -24 -49 -24 -25 -25 -8 -25 -9 -25 -10 -25 -13 -25 -16 -25 -20 -25 -22 -25 -27 -25 -31 -25 -35 -25 -26 -26 -8 -26 -11 -26 -12 -26 -14 -26 -17 -26 -21 -26 -23 -26 -28 -26 -32 -26 -38 -26 -27 -27 -16 -27 -20 -27 -22 -27 -25 -27 -31 -27 -35 -27 -36 -27 -41 -27 -28 -28 -17 -28 -21 -28 -23 -28 -26 -28 -32 -28 -38 -28 -39 -28 -43 -28 -29 -29 -15 -29 -16 -29 -18 -29 -24 -29 -30 -29 -31 -29 -33 -29 -45 -29 -46 -29 -50 -29 -52 -29 -74 -29 -30 -30 -15 -30 -17 -30 -19 -30 -24 -30 -29 -30 -32 -30 -34 -30 -48 -30 -49 -30 -51 -30 -53 -30 -85 -30 -31 -31 -15 -31 -16 -31 -18 -31 -22 -31 -25 -31 -27 -31 -29 -31 -37 -31 -41 -31 -42 -31 -50 -31 -66 -31 -32 -32 -15 -32 -17 -32 -19 -32 -23 -32 -26 -32 -28 -32 -30 -32 -40 -32 -43 -32 -44 -32 -51 -32 -67 -32 -33 -33 -29 -33 -45 -33 -50 -33 -52 -33 -74 -33 -34 -34 -30 -34 -49 -34 -51 -34 -53 -34 -85 -34 -35 -35 -20 -35 -25 -35 -27 -35 -36 -35 -41 -35 -36 -36 -27 -36 -35 -36 -41 -36 -42 -36 -58 -36 -37 -37 -31 -37 -41 -37 -42 -37 -50 -37 -66 -37 -38 -38 -21 -38 -26 -38 -28 -38 -39 -38 -43 -38 -39 -39 -28 -39 -38 -39 -43 -39 -44 -39 -60 -39 -40 -40 -32 -40 -43 -40 -44 -40 -51 -40 -67 -40 -41 -41 -16 -41 -22 -41 -27 -41 -31 -41 -35 -41 -36 -41 -37 -41 -42 -41 -50 -41 -58 -41 -42 -42 -31 -42 -36 -42 -37 -42 -41 -42 -50 -42 -58 -42 -59 -42 -66 -42 -43 -43 -17 -43 -23 -43 -28 -43 -32 -43 -38 -43 -39 -43 -40 -43 -44 -43 -51 -43 -60 -43 -44 -44 -32 -44 -39 -44 -40 -44 -43 -44 -51 -44 -60 -44 -61 -44 -67 -44 -45 -45 -24 -45 -29 -45 -33 -45 -46 -45 -50 -45 -52 -45 -54 -45 -74 -45 -75 -45 -76 -45 -77 -45 -78 -45 -46 -46 -24 -46 -29 -46 -45 -46 -47 -46 -48 -46 -54 -46 -55 -46 -76 -46 -77 -46 -78 -46 -79 -46 -80 -46 -47 -47 -24 -47 -46 -47 -48 -47 -55 -47 -56 -47 -78 -47 -79 -47 -80 -47 -81 -47 -82 -47 -83 -47 -84 -47 -48 -48 -24 -48 -30 -48 -46 -48 -47 -48 -49 -48 -56 -48 -57 -48 -82 -48 -83 -48 -84 -48 -86 -48 -87 -48 -49 -49 -24 -49 -30 -49 -34 -49 -48 -49 -51 -49 -53 -49 -57 -49 -84 -49 -85 -49 -86 -49 -87 -49 -88 -49 -50 -50 -15 -50 -18 -50 -29 -50 -31 -50 -33 -50 -37 -50 -41 -50 -42 -50 -45 -50 -52 -50 -62 -50 -66 -50 -68 -50 -69 -50 -51 -51 -15 -51 -19 -51 -30 -51 -32 -51 -34 -51 -40 -51 -43 -51 -44 -51 -49 -51 -53 -51 -64 -51 -67 -51 -71 -51 -72 -51 -52 -52 -29 -52 -33 -52 -45 -52 -50 -52 -62 -52 -63 -52 -66 -52 -68 -52 -69 -52 -70 -52 -74 -52 -111 -52 -53 -53 -30 -53 -34 -53 -49 -53 -51 -53 -64 -53 -65 -53 -67 -53 -71 -53 -72 -53 -73 -53 -85 -53 -136 -53 -54 -54 -45 -54 -46 -54 -76 -54 -77 -54 -78 -54 -55 -55 -46 -55 -47 -55 -78 -55 -79 -55 -80 -55 -56 -56 -47 -56 -48 -56 -82 -56 -83 -56 -84 -56 -57 -57 -48 -57 -49 -57 -84 -57 -86 -57 -87 -57 -58 -58 -36 -58 -41 -58 -42 -58 -59 -58 -66 -58 -59 -59 -42 -59 -58 -59 -66 -59 -68 -59 -89 -59 -60 -60 -39 -60 -43 -60 -44 -60 -61 -60 -67 -60 -61 -61 -44 -61 -60 -61 -67 -61 -71 -61 -103 -61 -62 -62 -50 -62 -52 -62 -66 -62 -68 -62 -69 -62 -63 -63 -52 -63 -69 -63 -70 -63 -74 -63 -111 -63 -64 -64 -51 -64 -53 -64 -67 -64 -71 -64 -72 -64 -65 -65 -53 -65 -72 -65 -73 -65 -85 -65 -136 -65 -66 -66 -31 -66 -37 -66 -42 -66 -50 -66 -52 -66 -58 -66 -59 -66 -62 -66 -68 -66 -89 -66 -67 -67 -32 -67 -40 -67 -44 -67 -51 -67 -53 -67 -60 -67 -61 -67 -64 -67 -71 -67 -103 -67 -68 -68 -50 -68 -52 -68 -59 -68 -62 -68 -66 -68 -69 -68 -89 -68 -90 -68 -69 -69 -50 -69 -52 -69 -62 -69 -63 -69 -68 -69 -70 -69 -74 -69 -89 -69 -90 -69 -91 -69 -70 -70 -52 -70 -63 -70 -69 -70 -74 -70 -90 -70 -91 -70 -92 -70 -111 -70 -71 -71 -51 -71 -53 -71 -61 -71 -64 -71 -67 -71 -72 -71 -103 -71 -104 -71 -72 -72 -51 -72 -53 -72 -64 -72 -65 -72 -71 -72 -73 -72 -85 -72 -103 -72 -104 -72 -105 -72 -73 -73 -53 -73 -65 -73 -72 -73 -85 -73 -104 -73 -105 -73 -106 -73 -136 -73 -74 -74 -29 -74 -33 -74 -45 -74 -52 -74 -63 -74 -69 -74 -70 -74 -75 -74 -76 -74 -93 -74 -111 -74 -112 -74 -113 -74 -75 -75 -45 -75 -74 -75 -76 -75 -93 -75 -94 -75 -111 -75 -112 -75 -113 -75 -114 -75 -115 -75 -116 -75 -117 -75 -76 -76 -45 -76 -46 -76 -54 -76 -74 -76 -75 -76 -77 -76 -94 -76 -95 -76 -115 -76 -116 -76 -117 -76 -118 -76 -119 -76 -77 -77 -45 -77 -46 -77 -54 -77 -76 -77 -78 -77 -95 -77 -96 -77 -117 -77 -118 -77 -119 -77 -120 -77 -121 -77 -78 -78 -45 -78 -46 -78 -47 -78 -54 -78 -55 -78 -77 -78 -79 -78 -96 -78 -97 -78 -119 -78 -120 -78 -121 -78 -122 -78 -123 -78 -79 -79 -46 -79 -47 -79 -55 -79 -78 -79 -80 -79 -97 -79 -98 -79 -121 -79 -122 -79 -123 -79 -124 -79 -125 -79 -80 -80 -46 -80 -47 -80 -55 -80 -79 -80 -81 -80 -82 -80 -98 -80 -99 -80 -123 -80 -124 -80 -125 -80 -126 -80 -127 -80 -81 -81 -47 -81 -80 -81 -82 -81 -99 -81 -100 -81 -125 -81 -126 -81 -127 -81 -128 -81 -129 -81 -130 -81 -131 -81 -82 -82 -47 -82 -48 -82 -56 -82 -80 -82 -81 -82 -83 -82 -100 -82 -101 -82 -129 -82 -130 -82 -131 -82 -132 -82 -133 -82 -83 -83 -47 -83 -48 -83 -56 -83 -82 -83 -84 -83 -101 -83 -102 -83 -131 -83 -132 -83 -133 -83 -134 -83 -135 -83 -84 -84 -47 -84 -48 -84 -49 -84 -56 -84 -57 -84 -83 -84 -86 -84 -102 -84 -107 -84 -133 -84 -134 -84 -135 -84 -137 -84 -138 -84 -85 -85 -30 -85 -34 -85 -49 -85 -53 -85 -65 -85 -72 -85 -73 -85 -87 -85 -88 -85 -109 -85 -136 -85 -141 -85 -142 -85 -86 -86 -48 -86 -49 -86 -57 -86 -84 -86 -87 -86 -107 -86 -108 -86 -135 -86 -137 -86 -138 -86 -139 -86 -140 -86 -87 -87 -48 -87 -49 -87 -57 -87 -85 -87 -86 -87 -88 -87 -108 -87 -110 -87 -138 -87 -139 -87 -140 -87 -143 -87 -144 -87 -88 -88 -49 -88 -85 -88 -87 -88 -109 -88 -110 -88 -136 -88 -140 -88 -141 -88 -142 -88 -143 -88 -144 -88 -145 -88 -89 -89 -59 -89 -66 -89 -68 -89 -69 -89 -90 -89 -90 -90 -68 -90 -69 -90 -70 -90 -89 -90 -91 -90 -91 -91 -69 -91 -70 -91 -90 -91 -92 -91 -111 -91 -92 -92 -70 -92 -91 -92 -111 -92 -112 -92 -149 -92 -93 -93 -74 -93 -75 -93 -111 -93 -112 -93 -113 -93 -94 -94 -75 -94 -76 -94 -115 -94 -116 -94 -117 -94 -95 -95 -76 -95 -77 -95 -117 -95 -118 -95 -119 -95 -96 -96 -77 -96 -78 -96 -119 -96 -120 -96 -121 -96 -97 -97 -78 -97 -79 -97 -121 -97 -122 -97 -123 -97 -98 -98 -79 -98 -80 -98 -123 -98 -124 -98 -125 -98 -99 -99 -80 -99 -81 -99 -125 -99 -126 -99 -127 -99 -100 -100 -81 -100 -82 -100 -129 -100 -130 -100 -131 -100 -101 -101 -82 -101 -83 -101 -131 -101 -132 -101 -133 -101 -102 -102 -83 -102 -84 -102 -133 -102 -134 -102 -135 -102 -103 -103 -61 -103 -67 -103 -71 -103 -72 -103 -104 -103 -104 -104 -71 -104 -72 -104 -73 -104 -103 -104 -105 -104 -105 -105 -72 -105 -73 -105 -104 -105 -106 -105 -136 -105 -106 -106 -73 -106 -105 -106 -136 -106 -141 -106 -179 -106 -107 -107 -84 -107 -86 -107 -135 -107 -137 -107 -138 -107 -108 -108 -86 -108 -87 -108 -138 -108 -139 -108 -140 -108 -109 -109 -85 -109 -88 -109 -136 -109 -141 -109 -142 -109 -110 -110 -87 -110 -88 -110 -140 -110 -143 -110 -144 -110 -111 -111 -52 -111 -63 -111 -70 -111 -74 -111 -75 -111 -91 -111 -92 -111 -93 -111 -112 -111 -149 -111 -112 -112 -74 -112 -75 -112 -92 -112 -93 -112 -111 -112 -113 -112 -149 -112 -150 -112 -113 -113 -74 -113 -75 -113 -93 -113 -112 -113 -114 -113 -115 -113 -149 -113 -150 -113 -151 -113 -114 -114 -75 -114 -113 -114 -115 -114 -146 -114 -150 -114 -151 -114 -152 -114 -153 -114 -115 -115 -75 -115 -76 -115 -94 -115 -113 -115 -114 -115 -116 -115 -152 -115 -153 -115 -154 -115 -116 -116 -75 -116 -76 -116 -94 -116 -115 -116 -117 -116 -153 -116 -154 -116 -155 -116 -117 -117 -75 -117 -76 -117 -77 -117 -94 -117 -95 -117 -116 -117 -118 -117 -154 -117 -155 -117 -156 -117 -118 -118 -76 -118 -77 -118 -95 -118 -117 -118 -119 -118 -155 -118 -156 -118 -157 -118 -119 -119 -76 -119 -77 -119 -78 -119 -95 -119 -96 -119 -118 -119 -120 -119 -156 -119 -157 -119 -158 -119 -120 -120 -77 -120 -78 -120 -96 -120 -119 -120 -121 -120 -157 -120 -158 -120 -159 -120 -121 -121 -77 -121 -78 -121 -79 -121 -96 -121 -97 -121 -120 -121 -122 -121 -158 -121 -159 -121 -160 -121 -122 -122 -78 -122 -79 -122 -97 -122 -121 -122 -123 -122 -159 -122 -160 -122 -161 -122 -123 -123 -78 -123 -79 -123 -80 -123 -97 -123 -98 -123 -122 -123 -124 -123 -160 -123 -161 -123 -162 -123 -124 -124 -79 -124 -80 -124 -98 -124 -123 -124 -125 -124 -161 -124 -162 -124 -163 -124 -125 -125 -79 -125 -80 -125 -81 -125 -98 -125 -99 -125 -124 -125 -126 -125 -162 -125 -163 -125 -164 -125 -126 -126 -80 -126 -81 -126 -99 -126 -125 -126 -127 -126 -163 -126 -164 -126 -165 -126 -127 -127 -80 -127 -81 -127 -99 -127 -126 -127 -128 -127 -129 -127 -164 -127 -165 -127 -166 -127 -128 -128 -81 -128 -127 -128 -129 -128 -147 -128 -165 -128 -166 -128 -167 -128 -168 -128 -129 -129 -81 -129 -82 -129 -100 -129 -127 -129 -128 -129 -130 -129 -167 -129 -168 -129 -169 -129 -130 -130 -81 -130 -82 -130 -100 -130 -129 -130 -131 -130 -168 -130 -169 -130 -170 -130 -131 -131 -81 -131 -82 -131 -83 -131 -100 -131 -101 -131 -130 -131 -132 -131 -169 -131 -170 -131 -171 -131 -132 -132 -82 -132 -83 -132 -101 -132 -131 -132 -133 -132 -170 -132 -171 -132 -172 -132 -133 -133 -82 -133 -83 -133 -84 -133 -101 -133 -102 -133 -132 -133 -134 -133 -171 -133 -172 -133 -173 -133 -134 -134 -83 -134 -84 -134 -102 -134 -133 -134 -135 -134 -172 -134 -173 -134 -174 -134 -135 -135 -83 -135 -84 -135 -86 -135 -102 -135 -107 -135 -134 -135 -137 -135 -173 -135 -174 -135 -175 -135 -136 -136 -53 -136 -65 -136 -73 -136 -85 -136 -88 -136 -105 -136 -106 -136 -109 -136 -141 -136 -179 -136 -137 -137 -84 -137 -86 -137 -107 -137 -135 -137 -138 -137 -174 -137 -175 -137 -176 -137 -138 -138 -84 -138 -86 -138 -87 -138 -107 -138 -108 -138 -137 -138 -139 -138 -175 -138 -176 -138 -177 -138 -139 -139 -86 -139 -87 -139 -108 -139 -138 -139 -140 -139 -176 -139 -177 -139 -178 -139 -140 -140 -86 -140 -87 -140 -88 -140 -108 -140 -110 -140 -139 -140 -143 -140 -177 -140 -178 -140 -181 -140 -141 -141 -85 -141 -88 -141 -106 -141 -109 -141 -136 -141 -142 -141 -179 -141 -180 -141 -142 -142 -85 -142 -88 -142 -109 -142 -141 -142 -144 -142 -145 -142 -179 -142 -180 -142 -183 -142 -143 -143 -87 -143 -88 -143 -110 -143 -140 -143 -144 -143 -178 -143 -181 -143 -182 -143 -144 -144 -87 -144 -88 -144 -110 -144 -142 -144 -143 -144 -145 -144 -181 -144 -182 -144 -184 -144 -145 -145 -88 -145 -142 -145 -144 -145 -148 -145 -180 -145 -182 -145 -183 -145 -184 -145 -146 -146 -114 -146 -151 -146 -152 -146 -147 -147 -128 -147 -166 -147 -167 -147 -148 -148 -145 -148 -183 -148 -184 -148 -149 -149 -92 -149 -111 -149 -112 -149 -113 -149 -150 -149 -150 -150 -112 -150 -113 -150 -114 -150 -149 -150 -151 -150 -151 -151 -113 -151 -114 -151 -146 -151 -150 -151 -152 -151 -152 -152 -114 -152 -115 -152 -146 -152 -151 -152 -153 -152 -153 -153 -114 -153 -115 -153 -116 -153 -152 -153 -154 -153 -154 -154 -115 -154 -116 -154 -117 -154 -153 -154 -155 -154 -155 -155 -116 -155 -117 -155 -118 -155 -154 -155 -156 -155 -156 -156 -117 -156 -118 -156 -119 -156 -155 -156 -157 -156 -157 -157 -118 -157 -119 -157 -120 -157 -156 -157 -158 -157 -158 -158 -119 -158 -120 -158 -121 -158 -157 -158 -159 -158 -159 -159 -120 -159 -121 -159 -122 -159 -158 -159 -160 -159 -160 -160 -121 -160 -122 -160 -123 -160 -159 -160 -161 -160 -161 -161 -122 -161 -123 -161 -124 -161 -160 -161 -162 -161 -162 -162 -123 -162 -124 -162 -125 -162 -161 -162 -163 -162 -163 -163 -124 -163 -125 -163 -126 -163 -162 -163 -164 -163 -164 -164 -125 -164 -126 -164 -127 -164 -163 -164 -165 -164 -165 -165 -126 -165 -127 -165 -128 -165 -164 -165 -166 -165 -166 -166 -127 -166 -128 -166 -147 -166 -165 -166 -167 -166 -167 -167 -128 -167 -129 -167 -147 -167 -166 -167 -168 -167 -168 -168 -128 -168 -129 -168 -130 -168 -167 -168 -169 -168 -169 -169 -129 -169 -130 -169 -131 -169 -168 -169 -170 -169 -170 -170 -130 -170 -131 -170 -132 -170 -169 -170 -171 -170 -171 -171 -131 -171 -132 -171 -133 -171 -170 -171 -172 -171 -172 -172 -132 -172 -133 -172 -134 -172 -171 -172 -173 -172 -173 -173 -133 -173 -134 -173 -135 -173 -172 -173 -174 -173 -174 -174 -134 -174 -135 -174 -137 -174 -173 -174 -175 -174 -175 -175 -135 -175 -137 -175 -138 -175 -174 -175 -176 -175 -176 -176 -137 -176 -138 -176 -139 -176 -175 -176 -177 -176 -177 -177 -138 -177 -139 -177 -140 -177 -176 -177 -178 -177 -178 -178 -139 -178 -140 -178 -143 -178 -177 -178 -181 -178 -179 -179 -106 -179 -136 -179 -141 -179 -142 -179 -180 -179 -180 -180 -141 -180 -142 -180 -145 -180 -179 -180 -183 -180 -181 -181 -140 -181 -143 -181 -144 -181 -178 -181 -182 -181 -182 -182 -143 -182 -144 -182 -145 -182 -181 -182 -184 -182 -183 -183 -142 -183 -145 -183 -148 -183 -180 -183 -184 -183 -184 -184 -144 -184 -145 -184 -148 -184 -182 -184 -183 -184 - -DEAL:: Total number of cells = 181 -DEAL:: Total number of active cells = 136 -DEAL:: Number of DoFs = 185 -DEAL:: Number of constraints = 32 -DEAL:: Unconstrained matrix bandwidth= 73 -DEAL:: Constrained matrix bandwidth = 83 - -DEAL::Dimension = 2, Test case = 3 - -DEAL:: Making grid... -DEAL:: Distributing degrees of freedom... -DEAL:: Renumbering degrees of freedom... -DEAL:: Writing sparsity pattern... -0 0 -1 0 -3 0 -2 0 -1 -1 -0 -1 -3 -1 -2 -1 -4 -1 -6 -1 -2 -2 -0 -2 -1 -2 -3 -2 -7 -2 -5 -2 -3 -3 -0 -3 -1 -3 -2 -3 -4 -3 -6 -3 -8 -3 -7 -3 -5 -3 -4 -4 -1 -4 -6 -4 -3 -4 -9 -4 -13 -4 -5 -5 -2 -5 -3 -5 -7 -5 -14 -5 -11 -5 -6 -6 -1 -6 -4 -6 -3 -6 -8 -6 -7 -6 -9 -6 -13 -6 -10 -6 -7 -7 -3 -7 -6 -7 -8 -7 -2 -7 -5 -7 -14 -7 -11 -7 -12 -7 -8 -8 -16 -8 -15 -8 -17 -8 -3 -8 -6 -8 -7 -8 -13 -8 -10 -8 -12 -8 -14 -8 -9 -9 -4 -9 -13 -9 -6 -9 -20 -9 -25 -9 -10 -10 -13 -10 -25 -10 -16 -10 -6 -10 -8 -10 -11 -11 -5 -11 -7 -11 -14 -11 -26 -11 -21 -11 -12 -12 -7 -12 -8 -12 -14 -12 -17 -12 -26 -12 -13 -13 -4 -13 -9 -13 -6 -13 -20 -13 -25 -13 -16 -13 -10 -13 -8 -13 -14 -14 -5 -14 -7 -14 -11 -14 -8 -14 -12 -14 -17 -14 -26 -14 -21 -14 -15 -15 -29 -15 -24 -15 -30 -15 -8 -15 -16 -15 -17 -15 -31 -15 -18 -15 -19 -15 -32 -15 -16 -16 -8 -16 -15 -16 -17 -16 -31 -16 -18 -16 -13 -16 -25 -16 -10 -16 -27 -16 -22 -16 -17 -17 -8 -17 -16 -17 -15 -17 -19 -17 -32 -17 -14 -17 -12 -17 -26 -17 -23 -17 -28 -17 -18 -18 -31 -18 -50 -18 -29 -18 -16 -18 -15 -18 -19 -19 -17 -19 -15 -19 -32 -19 -30 -19 -51 -19 -20 -20 -9 -20 -25 -20 -13 -20 -35 -20 -27 -20 -21 -21 -11 -21 -14 -21 -26 -21 -28 -21 -38 -21 -22 -22 -27 -22 -41 -22 -31 -22 -25 -22 -16 -22 -23 -23 -26 -23 -17 -23 -28 -23 -32 -23 -43 -23 -24 -24 -15 -24 -29 -24 -30 -24 -45 -24 -46 -24 -47 -24 -48 -24 -49 -24 -25 -25 -9 -25 -20 -25 -13 -25 -16 -25 -10 -25 -35 -25 -27 -25 -22 -25 -26 -26 -14 -26 -12 -26 -17 -26 -11 -26 -21 -26 -28 -26 -38 -26 -23 -26 -27 -27 -20 -27 -35 -27 -25 -27 -36 -27 -41 -27 -31 -27 -22 -27 -16 -27 -28 -28 -21 -28 -26 -28 -38 -28 -17 -28 -23 -28 -32 -28 -43 -28 -39 -28 -29 -29 -15 -29 -24 -29 -30 -29 -45 -29 -46 -29 -31 -29 -50 -29 -18 -29 -52 -29 -33 -29 -30 -30 -15 -30 -29 -30 -24 -30 -48 -30 -49 -30 -32 -30 -19 -30 -51 -30 -34 -30 -53 -30 -31 -31 -50 -31 -29 -31 -18 -31 -16 -31 -15 -31 -27 -31 -41 -31 -22 -31 -42 -31 -37 -31 -32 -32 -17 -32 -15 -32 -19 -32 -30 -32 -51 -32 -28 -32 -23 -32 -43 -32 -40 -32 -44 -32 -33 -33 -52 -33 -74 -33 -45 -33 -50 -33 -29 -33 -34 -34 -51 -34 -30 -34 -53 -34 -49 -34 -85 -34 -35 -35 -20 -35 -27 -35 -25 -35 -36 -35 -41 -35 -36 -36 -35 -36 -41 -36 -27 -36 -58 -36 -42 -36 -37 -37 -42 -37 -66 -37 -50 -37 -41 -37 -31 -37 -38 -38 -21 -38 -26 -38 -28 -38 -43 -38 -39 -38 -39 -39 -38 -39 -28 -39 -43 -39 -44 -39 -60 -39 -40 -40 -43 -40 -32 -40 -44 -40 -51 -40 -67 -40 -41 -41 -35 -41 -36 -41 -27 -41 -31 -41 -22 -41 -58 -41 -42 -41 -37 -41 -42 -42 -36 -42 -58 -42 -41 -42 -59 -42 -66 -42 -50 -42 -37 -42 -31 -42 -43 -43 -28 -43 -23 -43 -32 -43 -38 -43 -39 -43 -44 -43 -60 -43 -40 -43 -44 -44 -39 -44 -43 -44 -60 -44 -32 -44 -40 -44 -51 -44 -67 -44 -61 -44 -45 -45 -29 -45 -46 -45 -24 -45 -52 -45 -74 -45 -33 -45 -75 -45 -76 -45 -77 -45 -54 -45 -46 -46 -29 -46 -45 -46 -24 -46 -47 -46 -48 -46 -54 -46 -77 -46 -78 -46 -79 -46 -55 -46 -47 -47 -24 -47 -46 -47 -48 -47 -55 -47 -79 -47 -80 -47 -81 -47 -82 -47 -56 -47 -83 -47 -48 -48 -24 -48 -46 -48 -47 -48 -30 -48 -49 -48 -56 -48 -83 -48 -84 -48 -57 -48 -86 -48 -49 -49 -30 -49 -24 -49 -48 -49 -53 -49 -34 -49 -85 -49 -57 -49 -86 -49 -87 -49 -88 -49 -50 -50 -31 -50 -29 -50 -18 -50 -52 -50 -33 -50 -42 -50 -66 -50 -37 -50 -68 -50 -62 -50 -51 -51 -32 -51 -19 -51 -30 -51 -34 -51 -53 -51 -44 -51 -40 -51 -67 -51 -64 -51 -71 -51 -52 -52 -74 -52 -45 -52 -33 -52 -50 -52 -29 -52 -68 -52 -69 -52 -62 -52 -70 -52 -63 -52 -53 -53 -51 -53 -30 -53 -34 -53 -49 -53 -85 -53 -71 -53 -64 -53 -72 -53 -65 -53 -73 -53 -54 -54 -45 -54 -76 -54 -77 -54 -78 -54 -46 -54 -55 -55 -46 -55 -78 -55 -79 -55 -80 -55 -47 -55 -56 -56 -48 -56 -83 -56 -84 -56 -47 -56 -82 -56 -57 -57 -49 -57 -86 -57 -87 -57 -48 -57 -84 -57 -58 -58 -36 -58 -42 -58 -41 -58 -59 -58 -66 -58 -59 -59 -58 -59 -66 -59 -42 -59 -89 -59 -68 -59 -60 -60 -39 -60 -43 -60 -44 -60 -67 -60 -61 -60 -61 -61 -60 -61 -44 -61 -67 -61 -71 -61 -103 -61 -62 -62 -68 -62 -69 -62 -52 -62 -66 -62 -50 -62 -63 -63 -70 -63 -111 -63 -74 -63 -69 -63 -52 -63 -64 -64 -67 -64 -51 -64 -71 -64 -53 -64 -72 -64 -65 -65 -72 -65 -53 -65 -73 -65 -85 -65 -136 -65 -66 -66 -58 -66 -59 -66 -42 -66 -50 -66 -37 -66 -89 -66 -68 -66 -62 -66 -67 -67 -44 -67 -40 -67 -51 -67 -60 -67 -61 -67 -71 -67 -103 -67 -64 -67 -68 -68 -59 -68 -89 -68 -66 -68 -90 -68 -69 -68 -52 -68 -62 -68 -50 -68 -69 -69 -89 -69 -90 -69 -68 -69 -52 -69 -62 -69 -91 -69 -70 -69 -63 -69 -70 -70 -90 -70 -91 -70 -69 -70 -92 -70 -111 -70 -74 -70 -63 -70 -52 -70 -71 -71 -61 -71 -67 -71 -103 -71 -51 -71 -64 -71 -53 -71 -72 -71 -104 -71 -72 -72 -71 -72 -64 -72 -53 -72 -103 -72 -104 -72 -73 -72 -105 -72 -65 -72 -73 -73 -104 -73 -72 -73 -105 -73 -53 -73 -65 -73 -85 -73 -136 -73 -106 -73 -74 -74 -52 -74 -45 -74 -33 -74 -75 -74 -76 -74 -70 -74 -111 -74 -63 -74 -112 -74 -93 -74 -75 -75 -74 -75 -76 -75 -45 -75 -112 -75 -113 -75 -93 -75 -114 -75 -115 -75 -116 -75 -94 -75 -76 -76 -74 -76 -75 -76 -45 -76 -77 -76 -54 -76 -94 -76 -116 -76 -117 -76 -118 -76 -95 -76 -77 -77 -45 -77 -76 -77 -54 -77 -78 -77 -46 -77 -95 -77 -118 -77 -119 -77 -120 -77 -96 -77 -78 -78 -54 -78 -77 -78 -46 -78 -79 -78 -55 -78 -96 -78 -120 -78 -121 -78 -122 -78 -97 -78 -79 -79 -46 -79 -78 -79 -55 -79 -80 -79 -47 -79 -97 -79 -122 -79 -123 -79 -124 -79 -98 -79 -80 -80 -55 -80 -79 -80 -47 -80 -81 -80 -82 -80 -98 -80 -124 -80 -125 -80 -126 -80 -99 -80 -81 -81 -47 -81 -80 -81 -82 -81 -99 -81 -126 -81 -127 -81 -128 -81 -129 -81 -100 -81 -130 -81 -82 -82 -47 -82 -80 -82 -81 -82 -56 -82 -83 -82 -100 -82 -130 -82 -131 -82 -101 -82 -132 -82 -83 -83 -48 -83 -56 -83 -84 -83 -47 -83 -82 -83 -101 -83 -132 -83 -133 -83 -102 -83 -134 -83 -84 -84 -48 -84 -56 -84 -83 -84 -57 -84 -86 -84 -102 -84 -134 -84 -135 -84 -107 -84 -137 -84 -85 -85 -53 -85 -34 -85 -49 -85 -87 -85 -88 -85 -73 -85 -65 -85 -136 -85 -109 -85 -141 -85 -86 -86 -49 -86 -57 -86 -87 -86 -48 -86 -84 -86 -107 -86 -137 -86 -138 -86 -108 -86 -139 -86 -87 -87 -49 -87 -57 -87 -86 -87 -85 -87 -88 -87 -108 -87 -139 -87 -140 -87 -110 -87 -143 -87 -88 -88 -85 -88 -49 -88 -87 -88 -141 -88 -109 -88 -142 -88 -110 -88 -143 -88 -144 -88 -145 -88 -89 -89 -59 -89 -68 -89 -66 -89 -90 -89 -69 -89 -90 -90 -89 -90 -69 -90 -68 -90 -91 -90 -70 -90 -91 -91 -90 -91 -70 -91 -69 -91 -92 -91 -111 -91 -92 -92 -91 -92 -111 -92 -70 -92 -149 -92 -112 -92 -93 -93 -112 -93 -113 -93 -75 -93 -111 -93 -74 -93 -94 -94 -75 -94 -115 -94 -116 -94 -117 -94 -76 -94 -95 -95 -76 -95 -117 -95 -118 -95 -119 -95 -77 -95 -96 -96 -77 -96 -119 -96 -120 -96 -121 -96 -78 -96 -97 -97 -78 -97 -121 -97 -122 -97 -123 -97 -79 -97 -98 -98 -79 -98 -123 -98 -124 -98 -125 -98 -80 -98 -99 -99 -80 -99 -125 -99 -126 -99 -127 -99 -81 -99 -100 -100 -82 -100 -130 -100 -131 -100 -81 -100 -129 -100 -101 -101 -83 -101 -132 -101 -133 -101 -82 -101 -131 -101 -102 -102 -84 -102 -134 -102 -135 -102 -83 -102 -133 -102 -103 -103 -61 -103 -67 -103 -71 -103 -72 -103 -104 -103 -104 -104 -103 -104 -71 -104 -72 -104 -73 -104 -105 -104 -105 -105 -104 -105 -72 -105 -73 -105 -136 -105 -106 -105 -106 -106 -105 -106 -73 -106 -136 -106 -141 -106 -179 -106 -107 -107 -86 -107 -137 -107 -138 -107 -84 -107 -135 -107 -108 -108 -87 -108 -139 -108 -140 -108 -86 -108 -138 -108 -109 -109 -136 -109 -85 -109 -141 -109 -88 -109 -142 -109 -110 -110 -88 -110 -143 -110 -144 -110 -87 -110 -140 -110 -111 -111 -91 -111 -92 -111 -70 -111 -74 -111 -63 -111 -149 -111 -112 -111 -93 -111 -112 -112 -92 -112 -149 -112 -111 -112 -150 -112 -113 -112 -75 -112 -93 -112 -74 -112 -113 -113 -149 -113 -150 -113 -112 -113 -75 -113 -93 -113 -151 -113 -114 -113 -115 -113 -114 -114 -150 -114 -151 -114 -113 -114 -146 -114 -152 -114 -153 -114 -115 -114 -75 -114 -115 -115 -114 -115 -152 -115 -153 -115 -113 -115 -75 -115 -116 -115 -94 -115 -154 -115 -116 -116 -75 -116 -115 -116 -94 -116 -153 -116 -154 -116 -155 -116 -117 -116 -76 -116 -117 -117 -116 -117 -154 -117 -155 -117 -94 -117 -76 -117 -118 -117 -95 -117 -156 -117 -118 -118 -76 -118 -117 -118 -95 -118 -155 -118 -156 -118 -157 -118 -119 -118 -77 -118 -119 -119 -118 -119 -156 -119 -157 -119 -95 -119 -77 -119 -120 -119 -96 -119 -158 -119 -120 -120 -77 -120 -119 -120 -96 -120 -157 -120 -158 -120 -159 -120 -121 -120 -78 -120 -121 -121 -120 -121 -158 -121 -159 -121 -96 -121 -78 -121 -122 -121 -97 -121 -160 -121 -122 -122 -78 -122 -121 -122 -97 -122 -159 -122 -160 -122 -161 -122 -123 -122 -79 -122 -123 -123 -122 -123 -160 -123 -161 -123 -97 -123 -79 -123 -124 -123 -98 -123 -162 -123 -124 -124 -79 -124 -123 -124 -98 -124 -161 -124 -162 -124 -163 -124 -125 -124 -80 -124 -125 -125 -124 -125 -162 -125 -163 -125 -98 -125 -80 -125 -126 -125 -99 -125 -164 -125 -126 -126 -80 -126 -125 -126 -99 -126 -163 -126 -164 -126 -165 -126 -127 -126 -81 -126 -127 -127 -126 -127 -164 -127 -165 -127 -99 -127 -81 -127 -128 -127 -129 -127 -166 -127 -128 -128 -81 -128 -127 -128 -129 -128 -165 -128 -166 -128 -147 -128 -167 -128 -168 -128 -129 -129 -81 -129 -127 -129 -128 -129 -167 -129 -168 -129 -100 -129 -130 -129 -169 -129 -130 -130 -82 -130 -100 -130 -131 -130 -81 -130 -129 -130 -168 -130 -169 -130 -170 -130 -131 -131 -82 -131 -100 -131 -130 -131 -169 -131 -170 -131 -101 -131 -132 -131 -171 -131 -132 -132 -83 -132 -101 -132 -133 -132 -82 -132 -131 -132 -170 -132 -171 -132 -172 -132 -133 -133 -83 -133 -101 -133 -132 -133 -171 -133 -172 -133 -102 -133 -134 -133 -173 -133 -134 -134 -84 -134 -102 -134 -135 -134 -83 -134 -133 -134 -172 -134 -173 -134 -174 -134 -135 -135 -84 -135 -102 -135 -134 -135 -173 -135 -174 -135 -107 -135 -137 -135 -175 -135 -136 -136 -73 -136 -65 -136 -85 -136 -105 -136 -106 -136 -141 -136 -179 -136 -109 -136 -137 -137 -86 -137 -107 -137 -138 -137 -84 -137 -135 -137 -174 -137 -175 -137 -176 -137 -138 -138 -86 -138 -107 -138 -137 -138 -175 -138 -176 -138 -108 -138 -139 -138 -177 -138 -139 -139 -87 -139 -108 -139 -140 -139 -86 -139 -138 -139 -176 -139 -177 -139 -178 -139 -140 -140 -87 -140 -108 -140 -139 -140 -177 -140 -178 -140 -110 -140 -143 -140 -181 -140 -141 -141 -106 -141 -136 -141 -179 -141 -85 -141 -109 -141 -88 -141 -142 -141 -180 -141 -142 -142 -141 -142 -109 -142 -88 -142 -179 -142 -180 -142 -145 -142 -183 -142 -144 -142 -143 -143 -88 -143 -110 -143 -144 -143 -87 -143 -140 -143 -178 -143 -181 -143 -182 -143 -144 -144 -88 -144 -110 -144 -143 -144 -181 -144 -182 -144 -142 -144 -145 -144 -184 -144 -145 -145 -180 -145 -142 -145 -183 -145 -88 -145 -144 -145 -182 -145 -184 -145 -148 -145 -146 -146 -151 -146 -152 -146 -114 -146 -147 -147 -128 -147 -166 -147 -167 -147 -148 -148 -183 -148 -145 -148 -184 -148 -149 -149 -92 -149 -112 -149 -111 -149 -150 -149 -113 -149 -150 -150 -149 -150 -113 -150 -112 -150 -151 -150 -114 -150 -151 -151 -150 -151 -114 -151 -113 -151 -146 -151 -152 -151 -152 -152 -151 -152 -146 -152 -114 -152 -153 -152 -115 -152 -153 -153 -114 -153 -152 -153 -115 -153 -154 -153 -116 -153 -154 -154 -115 -154 -153 -154 -116 -154 -155 -154 -117 -154 -155 -155 -116 -155 -154 -155 -117 -155 -156 -155 -118 -155 -156 -156 -117 -156 -155 -156 -118 -156 -157 -156 -119 -156 -157 -157 -118 -157 -156 -157 -119 -157 -158 -157 -120 -157 -158 -158 -119 -158 -157 -158 -120 -158 -159 -158 -121 -158 -159 -159 -120 -159 -158 -159 -121 -159 -160 -159 -122 -159 -160 -160 -121 -160 -159 -160 -122 -160 -161 -160 -123 -160 -161 -161 -122 -161 -160 -161 -123 -161 -162 -161 -124 -161 -162 -162 -123 -162 -161 -162 -124 -162 -163 -162 -125 -162 -163 -163 -124 -163 -162 -163 -125 -163 -164 -163 -126 -163 -164 -164 -125 -164 -163 -164 -126 -164 -165 -164 -127 -164 -165 -165 -126 -165 -164 -165 -127 -165 -166 -165 -128 -165 -166 -166 -127 -166 -165 -166 -128 -166 -147 -166 -167 -166 -167 -167 -128 -167 -166 -167 -147 -167 -129 -167 -168 -167 -168 -168 -129 -168 -128 -168 -167 -168 -130 -168 -169 -168 -169 -169 -130 -169 -129 -169 -168 -169 -131 -169 -170 -169 -170 -170 -131 -170 -130 -170 -169 -170 -132 -170 -171 -170 -171 -171 -132 -171 -131 -171 -170 -171 -133 -171 -172 -171 -172 -172 -133 -172 -132 -172 -171 -172 -134 -172 -173 -172 -173 -173 -134 -173 -133 -173 -172 -173 -135 -173 -174 -173 -174 -174 -135 -174 -134 -174 -173 -174 -137 -174 -175 -174 -175 -175 -137 -175 -135 -175 -174 -175 -138 -175 -176 -175 -176 -176 -138 -176 -137 -176 -175 -176 -139 -176 -177 -176 -177 -177 -139 -177 -138 -177 -176 -177 -140 -177 -178 -177 -178 -178 -140 -178 -139 -178 -177 -178 -143 -178 -181 -178 -179 -179 -106 -179 -136 -179 -141 -179 -142 -179 -180 -179 -180 -180 -179 -180 -141 -180 -142 -180 -145 -180 -183 -180 -181 -181 -143 -181 -140 -181 -178 -181 -144 -181 -182 -181 -182 -182 -144 -182 -143 -182 -181 -182 -145 -182 -184 -182 -183 -183 -180 -183 -142 -183 -145 -183 -184 -183 -148 -183 -184 -184 -145 -184 -144 -184 -182 -184 -183 -184 -148 -184 -DEAL:: Computing constraints... -DEAL:: Writing condensed sparsity pattern... -0 0 -1 0 -2 0 -3 0 -1 -1 -0 -1 -2 -1 -3 -1 -4 -1 -6 -1 -2 -2 -0 -2 -1 -2 -3 -2 -5 -2 -7 -2 -3 -3 -0 -3 -1 -3 -2 -3 -4 -3 -5 -3 -6 -3 -7 -3 -8 -3 -4 -4 -1 -4 -3 -4 -6 -4 -9 -4 -13 -4 -5 -5 -2 -5 -3 -5 -7 -5 -11 -5 -14 -5 -6 -6 -1 -6 -3 -6 -4 -6 -7 -6 -8 -6 -9 -6 -10 -6 -13 -6 -16 -6 -7 -7 -2 -7 -3 -7 -5 -7 -6 -7 -8 -7 -11 -7 -12 -7 -14 -7 -17 -7 -8 -8 -3 -8 -6 -8 -7 -8 -10 -8 -12 -8 -13 -8 -14 -8 -15 -8 -16 -8 -17 -8 -25 -8 -26 -8 -9 -9 -4 -9 -6 -9 -13 -9 -20 -9 -25 -9 -10 -10 -6 -10 -8 -10 -13 -10 -16 -10 -25 -10 -11 -11 -5 -11 -7 -11 -14 -11 -21 -11 -26 -11 -12 -12 -7 -12 -8 -12 -14 -12 -17 -12 -26 -12 -13 -13 -4 -13 -6 -13 -8 -13 -9 -13 -10 -13 -16 -13 -20 -13 -25 -13 -14 -14 -5 -14 -7 -14 -8 -14 -11 -14 -12 -14 -17 -14 -21 -14 -26 -14 -15 -15 -8 -15 -16 -15 -17 -15 -18 -15 -19 -15 -24 -15 -29 -15 -30 -15 -31 -15 -32 -15 -50 -15 -51 -15 -16 -16 -6 -16 -8 -16 -10 -16 -13 -16 -15 -16 -17 -16 -18 -16 -22 -16 -25 -16 -27 -16 -29 -16 -31 -16 -41 -16 -17 -17 -7 -17 -8 -17 -12 -17 -14 -17 -15 -17 -16 -17 -19 -17 -23 -17 -26 -17 -28 -17 -30 -17 -32 -17 -43 -17 -18 -18 -15 -18 -16 -18 -29 -18 -31 -18 -50 -18 -19 -19 -15 -19 -17 -19 -30 -19 -32 -19 -51 -19 -20 -20 -9 -20 -13 -20 -25 -20 -27 -20 -35 -20 -21 -21 -11 -21 -14 -21 -26 -21 -28 -21 -38 -21 -22 -22 -16 -22 -25 -22 -27 -22 -31 -22 -41 -22 -23 -23 -17 -23 -26 -23 -28 -23 -32 -23 -43 -23 -24 -24 -15 -24 -29 -24 -30 -24 -45 -24 -46 -24 -47 -24 -48 -24 -49 -24 -25 -25 -8 -25 -9 -25 -10 -25 -13 -25 -16 -25 -20 -25 -22 -25 -27 -25 -31 -25 -35 -25 -26 -26 -8 -26 -11 -26 -12 -26 -14 -26 -17 -26 -21 -26 -23 -26 -28 -26 -32 -26 -38 -26 -27 -27 -16 -27 -20 -27 -22 -27 -25 -27 -31 -27 -35 -27 -36 -27 -41 -27 -28 -28 -17 -28 -21 -28 -23 -28 -26 -28 -32 -28 -38 -28 -39 -28 -43 -28 -29 -29 -15 -29 -16 -29 -18 -29 -24 -29 -30 -29 -31 -29 -33 -29 -45 -29 -46 -29 -50 -29 -52 -29 -74 -29 -30 -30 -15 -30 -17 -30 -19 -30 -24 -30 -29 -30 -32 -30 -34 -30 -48 -30 -49 -30 -51 -30 -53 -30 -85 -30 -31 -31 -15 -31 -16 -31 -18 -31 -22 -31 -25 -31 -27 -31 -29 -31 -37 -31 -41 -31 -42 -31 -50 -31 -66 -31 -32 -32 -15 -32 -17 -32 -19 -32 -23 -32 -26 -32 -28 -32 -30 -32 -40 -32 -43 -32 -44 -32 -51 -32 -67 -32 -33 -33 -29 -33 -45 -33 -50 -33 -52 -33 -74 -33 -34 -34 -30 -34 -49 -34 -51 -34 -53 -34 -85 -34 -35 -35 -20 -35 -25 -35 -27 -35 -36 -35 -41 -35 -36 -36 -27 -36 -35 -36 -41 -36 -42 -36 -58 -36 -37 -37 -31 -37 -41 -37 -42 -37 -50 -37 -66 -37 -38 -38 -21 -38 -26 -38 -28 -38 -39 -38 -43 -38 -39 -39 -28 -39 -38 -39 -43 -39 -44 -39 -60 -39 -40 -40 -32 -40 -43 -40 -44 -40 -51 -40 -67 -40 -41 -41 -16 -41 -22 -41 -27 -41 -31 -41 -35 -41 -36 -41 -37 -41 -42 -41 -50 -41 -58 -41 -42 -42 -31 -42 -36 -42 -37 -42 -41 -42 -50 -42 -58 -42 -59 -42 -66 -42 -43 -43 -17 -43 -23 -43 -28 -43 -32 -43 -38 -43 -39 -43 -40 -43 -44 -43 -51 -43 -60 -43 -44 -44 -32 -44 -39 -44 -40 -44 -43 -44 -51 -44 -60 -44 -61 -44 -67 -44 -45 -45 -24 -45 -29 -45 -33 -45 -46 -45 -50 -45 -52 -45 -54 -45 -74 -45 -75 -45 -76 -45 -77 -45 -78 -45 -46 -46 -24 -46 -29 -46 -45 -46 -47 -46 -48 -46 -54 -46 -55 -46 -76 -46 -77 -46 -78 -46 -79 -46 -80 -46 -47 -47 -24 -47 -46 -47 -48 -47 -55 -47 -56 -47 -78 -47 -79 -47 -80 -47 -81 -47 -82 -47 -83 -47 -84 -47 -48 -48 -24 -48 -30 -48 -46 -48 -47 -48 -49 -48 -56 -48 -57 -48 -82 -48 -83 -48 -84 -48 -86 -48 -87 -48 -49 -49 -24 -49 -30 -49 -34 -49 -48 -49 -51 -49 -53 -49 -57 -49 -84 -49 -85 -49 -86 -49 -87 -49 -88 -49 -50 -50 -15 -50 -18 -50 -29 -50 -31 -50 -33 -50 -37 -50 -41 -50 -42 -50 -45 -50 -52 -50 -62 -50 -66 -50 -68 -50 -69 -50 -51 -51 -15 -51 -19 -51 -30 -51 -32 -51 -34 -51 -40 -51 -43 -51 -44 -51 -49 -51 -53 -51 -64 -51 -67 -51 -71 -51 -72 -51 -52 -52 -29 -52 -33 -52 -45 -52 -50 -52 -62 -52 -63 -52 -66 -52 -68 -52 -69 -52 -70 -52 -74 -52 -111 -52 -53 -53 -30 -53 -34 -53 -49 -53 -51 -53 -64 -53 -65 -53 -67 -53 -71 -53 -72 -53 -73 -53 -85 -53 -136 -53 -54 -54 -45 -54 -46 -54 -76 -54 -77 -54 -78 -54 -55 -55 -46 -55 -47 -55 -78 -55 -79 -55 -80 -55 -56 -56 -47 -56 -48 -56 -82 -56 -83 -56 -84 -56 -57 -57 -48 -57 -49 -57 -84 -57 -86 -57 -87 -57 -58 -58 -36 -58 -41 -58 -42 -58 -59 -58 -66 -58 -59 -59 -42 -59 -58 -59 -66 -59 -68 -59 -89 -59 -60 -60 -39 -60 -43 -60 -44 -60 -61 -60 -67 -60 -61 -61 -44 -61 -60 -61 -67 -61 -71 -61 -103 -61 -62 -62 -50 -62 -52 -62 -66 -62 -68 -62 -69 -62 -63 -63 -52 -63 -69 -63 -70 -63 -74 -63 -111 -63 -64 -64 -51 -64 -53 -64 -67 -64 -71 -64 -72 -64 -65 -65 -53 -65 -72 -65 -73 -65 -85 -65 -136 -65 -66 -66 -31 -66 -37 -66 -42 -66 -50 -66 -52 -66 -58 -66 -59 -66 -62 -66 -68 -66 -89 -66 -67 -67 -32 -67 -40 -67 -44 -67 -51 -67 -53 -67 -60 -67 -61 -67 -64 -67 -71 -67 -103 -67 -68 -68 -50 -68 -52 -68 -59 -68 -62 -68 -66 -68 -69 -68 -89 -68 -90 -68 -69 -69 -50 -69 -52 -69 -62 -69 -63 -69 -68 -69 -70 -69 -74 -69 -89 -69 -90 -69 -91 -69 -70 -70 -52 -70 -63 -70 -69 -70 -74 -70 -90 -70 -91 -70 -92 -70 -111 -70 -71 -71 -51 -71 -53 -71 -61 -71 -64 -71 -67 -71 -72 -71 -103 -71 -104 -71 -72 -72 -51 -72 -53 -72 -64 -72 -65 -72 -71 -72 -73 -72 -85 -72 -103 -72 -104 -72 -105 -72 -73 -73 -53 -73 -65 -73 -72 -73 -85 -73 -104 -73 -105 -73 -106 -73 -136 -73 -74 -74 -29 -74 -33 -74 -45 -74 -52 -74 -63 -74 -69 -74 -70 -74 -75 -74 -76 -74 -93 -74 -111 -74 -112 -74 -113 -74 -75 -75 -45 -75 -74 -75 -76 -75 -93 -75 -94 -75 -111 -75 -112 -75 -113 -75 -114 -75 -115 -75 -116 -75 -117 -75 -76 -76 -45 -76 -46 -76 -54 -76 -74 -76 -75 -76 -77 -76 -94 -76 -95 -76 -115 -76 -116 -76 -117 -76 -118 -76 -119 -76 -77 -77 -45 -77 -46 -77 -54 -77 -76 -77 -78 -77 -95 -77 -96 -77 -117 -77 -118 -77 -119 -77 -120 -77 -121 -77 -78 -78 -45 -78 -46 -78 -47 -78 -54 -78 -55 -78 -77 -78 -79 -78 -96 -78 -97 -78 -119 -78 -120 -78 -121 -78 -122 -78 -123 -78 -79 -79 -46 -79 -47 -79 -55 -79 -78 -79 -80 -79 -97 -79 -98 -79 -121 -79 -122 -79 -123 -79 -124 -79 -125 -79 -80 -80 -46 -80 -47 -80 -55 -80 -79 -80 -81 -80 -82 -80 -98 -80 -99 -80 -123 -80 -124 -80 -125 -80 -126 -80 -127 -80 -81 -81 -47 -81 -80 -81 -82 -81 -99 -81 -100 -81 -125 -81 -126 -81 -127 -81 -128 -81 -129 -81 -130 -81 -131 -81 -82 -82 -47 -82 -48 -82 -56 -82 -80 -82 -81 -82 -83 -82 -100 -82 -101 -82 -129 -82 -130 -82 -131 -82 -132 -82 -133 -82 -83 -83 -47 -83 -48 -83 -56 -83 -82 -83 -84 -83 -101 -83 -102 -83 -131 -83 -132 -83 -133 -83 -134 -83 -135 -83 -84 -84 -47 -84 -48 -84 -49 -84 -56 -84 -57 -84 -83 -84 -86 -84 -102 -84 -107 -84 -133 -84 -134 -84 -135 -84 -137 -84 -138 -84 -85 -85 -30 -85 -34 -85 -49 -85 -53 -85 -65 -85 -72 -85 -73 -85 -87 -85 -88 -85 -109 -85 -136 -85 -141 -85 -142 -85 -86 -86 -48 -86 -49 -86 -57 -86 -84 -86 -87 -86 -107 -86 -108 -86 -135 -86 -137 -86 -138 -86 -139 -86 -140 -86 -87 -87 -48 -87 -49 -87 -57 -87 -85 -87 -86 -87 -88 -87 -108 -87 -110 -87 -138 -87 -139 -87 -140 -87 -143 -87 -144 -87 -88 -88 -49 -88 -85 -88 -87 -88 -109 -88 -110 -88 -136 -88 -140 -88 -141 -88 -142 -88 -143 -88 -144 -88 -145 -88 -89 -89 -59 -89 -66 -89 -68 -89 -69 -89 -90 -89 -90 -90 -68 -90 -69 -90 -70 -90 -89 -90 -91 -90 -91 -91 -69 -91 -70 -91 -90 -91 -92 -91 -111 -91 -92 -92 -70 -92 -91 -92 -111 -92 -112 -92 -149 -92 -93 -93 -74 -93 -75 -93 -111 -93 -112 -93 -113 -93 -94 -94 -75 -94 -76 -94 -115 -94 -116 -94 -117 -94 -95 -95 -76 -95 -77 -95 -117 -95 -118 -95 -119 -95 -96 -96 -77 -96 -78 -96 -119 -96 -120 -96 -121 -96 -97 -97 -78 -97 -79 -97 -121 -97 -122 -97 -123 -97 -98 -98 -79 -98 -80 -98 -123 -98 -124 -98 -125 -98 -99 -99 -80 -99 -81 -99 -125 -99 -126 -99 -127 -99 -100 -100 -81 -100 -82 -100 -129 -100 -130 -100 -131 -100 -101 -101 -82 -101 -83 -101 -131 -101 -132 -101 -133 -101 -102 -102 -83 -102 -84 -102 -133 -102 -134 -102 -135 -102 -103 -103 -61 -103 -67 -103 -71 -103 -72 -103 -104 -103 -104 -104 -71 -104 -72 -104 -73 -104 -103 -104 -105 -104 -105 -105 -72 -105 -73 -105 -104 -105 -106 -105 -136 -105 -106 -106 -73 -106 -105 -106 -136 -106 -141 -106 -179 -106 -107 -107 -84 -107 -86 -107 -135 -107 -137 -107 -138 -107 -108 -108 -86 -108 -87 -108 -138 -108 -139 -108 -140 -108 -109 -109 -85 -109 -88 -109 -136 -109 -141 -109 -142 -109 -110 -110 -87 -110 -88 -110 -140 -110 -143 -110 -144 -110 -111 -111 -52 -111 -63 -111 -70 -111 -74 -111 -75 -111 -91 -111 -92 -111 -93 -111 -112 -111 -149 -111 -112 -112 -74 -112 -75 -112 -92 -112 -93 -112 -111 -112 -113 -112 -149 -112 -150 -112 -113 -113 -74 -113 -75 -113 -93 -113 -112 -113 -114 -113 -115 -113 -149 -113 -150 -113 -151 -113 -114 -114 -75 -114 -113 -114 -115 -114 -146 -114 -150 -114 -151 -114 -152 -114 -153 -114 -115 -115 -75 -115 -76 -115 -94 -115 -113 -115 -114 -115 -116 -115 -152 -115 -153 -115 -154 -115 -116 -116 -75 -116 -76 -116 -94 -116 -115 -116 -117 -116 -153 -116 -154 -116 -155 -116 -117 -117 -75 -117 -76 -117 -77 -117 -94 -117 -95 -117 -116 -117 -118 -117 -154 -117 -155 -117 -156 -117 -118 -118 -76 -118 -77 -118 -95 -118 -117 -118 -119 -118 -155 -118 -156 -118 -157 -118 -119 -119 -76 -119 -77 -119 -78 -119 -95 -119 -96 -119 -118 -119 -120 -119 -156 -119 -157 -119 -158 -119 -120 -120 -77 -120 -78 -120 -96 -120 -119 -120 -121 -120 -157 -120 -158 -120 -159 -120 -121 -121 -77 -121 -78 -121 -79 -121 -96 -121 -97 -121 -120 -121 -122 -121 -158 -121 -159 -121 -160 -121 -122 -122 -78 -122 -79 -122 -97 -122 -121 -122 -123 -122 -159 -122 -160 -122 -161 -122 -123 -123 -78 -123 -79 -123 -80 -123 -97 -123 -98 -123 -122 -123 -124 -123 -160 -123 -161 -123 -162 -123 -124 -124 -79 -124 -80 -124 -98 -124 -123 -124 -125 -124 -161 -124 -162 -124 -163 -124 -125 -125 -79 -125 -80 -125 -81 -125 -98 -125 -99 -125 -124 -125 -126 -125 -162 -125 -163 -125 -164 -125 -126 -126 -80 -126 -81 -126 -99 -126 -125 -126 -127 -126 -163 -126 -164 -126 -165 -126 -127 -127 -80 -127 -81 -127 -99 -127 -126 -127 -128 -127 -129 -127 -164 -127 -165 -127 -166 -127 -128 -128 -81 -128 -127 -128 -129 -128 -147 -128 -165 -128 -166 -128 -167 -128 -168 -128 -129 -129 -81 -129 -82 -129 -100 -129 -127 -129 -128 -129 -130 -129 -167 -129 -168 -129 -169 -129 -130 -130 -81 -130 -82 -130 -100 -130 -129 -130 -131 -130 -168 -130 -169 -130 -170 -130 -131 -131 -81 -131 -82 -131 -83 -131 -100 -131 -101 -131 -130 -131 -132 -131 -169 -131 -170 -131 -171 -131 -132 -132 -82 -132 -83 -132 -101 -132 -131 -132 -133 -132 -170 -132 -171 -132 -172 -132 -133 -133 -82 -133 -83 -133 -84 -133 -101 -133 -102 -133 -132 -133 -134 -133 -171 -133 -172 -133 -173 -133 -134 -134 -83 -134 -84 -134 -102 -134 -133 -134 -135 -134 -172 -134 -173 -134 -174 -134 -135 -135 -83 -135 -84 -135 -86 -135 -102 -135 -107 -135 -134 -135 -137 -135 -173 -135 -174 -135 -175 -135 -136 -136 -53 -136 -65 -136 -73 -136 -85 -136 -88 -136 -105 -136 -106 -136 -109 -136 -141 -136 -179 -136 -137 -137 -84 -137 -86 -137 -107 -137 -135 -137 -138 -137 -174 -137 -175 -137 -176 -137 -138 -138 -84 -138 -86 -138 -87 -138 -107 -138 -108 -138 -137 -138 -139 -138 -175 -138 -176 -138 -177 -138 -139 -139 -86 -139 -87 -139 -108 -139 -138 -139 -140 -139 -176 -139 -177 -139 -178 -139 -140 -140 -86 -140 -87 -140 -88 -140 -108 -140 -110 -140 -139 -140 -143 -140 -177 -140 -178 -140 -181 -140 -141 -141 -85 -141 -88 -141 -106 -141 -109 -141 -136 -141 -142 -141 -179 -141 -180 -141 -142 -142 -85 -142 -88 -142 -109 -142 -141 -142 -144 -142 -145 -142 -179 -142 -180 -142 -183 -142 -143 -143 -87 -143 -88 -143 -110 -143 -140 -143 -144 -143 -178 -143 -181 -143 -182 -143 -144 -144 -87 -144 -88 -144 -110 -144 -142 -144 -143 -144 -145 -144 -181 -144 -182 -144 -184 -144 -145 -145 -88 -145 -142 -145 -144 -145 -148 -145 -180 -145 -182 -145 -183 -145 -184 -145 -146 -146 -114 -146 -151 -146 -152 -146 -147 -147 -128 -147 -166 -147 -167 -147 -148 -148 -145 -148 -183 -148 -184 -148 -149 -149 -92 -149 -111 -149 -112 -149 -113 -149 -150 -149 -150 -150 -112 -150 -113 -150 -114 -150 -149 -150 -151 -150 -151 -151 -113 -151 -114 -151 -146 -151 -150 -151 -152 -151 -152 -152 -114 -152 -115 -152 -146 -152 -151 -152 -153 -152 -153 -153 -114 -153 -115 -153 -116 -153 -152 -153 -154 -153 -154 -154 -115 -154 -116 -154 -117 -154 -153 -154 -155 -154 -155 -155 -116 -155 -117 -155 -118 -155 -154 -155 -156 -155 -156 -156 -117 -156 -118 -156 -119 -156 -155 -156 -157 -156 -157 -157 -118 -157 -119 -157 -120 -157 -156 -157 -158 -157 -158 -158 -119 -158 -120 -158 -121 -158 -157 -158 -159 -158 -159 -159 -120 -159 -121 -159 -122 -159 -158 -159 -160 -159 -160 -160 -121 -160 -122 -160 -123 -160 -159 -160 -161 -160 -161 -161 -122 -161 -123 -161 -124 -161 -160 -161 -162 -161 -162 -162 -123 -162 -124 -162 -125 -162 -161 -162 -163 -162 -163 -163 -124 -163 -125 -163 -126 -163 -162 -163 -164 -163 -164 -164 -125 -164 -126 -164 -127 -164 -163 -164 -165 -164 -165 -165 -126 -165 -127 -165 -128 -165 -164 -165 -166 -165 -166 -166 -127 -166 -128 -166 -147 -166 -165 -166 -167 -166 -167 -167 -128 -167 -129 -167 -147 -167 -166 -167 -168 -167 -168 -168 -128 -168 -129 -168 -130 -168 -167 -168 -169 -168 -169 -169 -129 -169 -130 -169 -131 -169 -168 -169 -170 -169 -170 -170 -130 -170 -131 -170 -132 -170 -169 -170 -171 -170 -171 -171 -131 -171 -132 -171 -133 -171 -170 -171 -172 -171 -172 -172 -132 -172 -133 -172 -134 -172 -171 -172 -173 -172 -173 -173 -133 -173 -134 -173 -135 -173 -172 -173 -174 -173 -174 -174 -134 -174 -135 -174 -137 -174 -173 -174 -175 -174 -175 -175 -135 -175 -137 -175 -138 -175 -174 -175 -176 -175 -176 -176 -137 -176 -138 -176 -139 -176 -175 -176 -177 -176 -177 -177 -138 -177 -139 -177 -140 -177 -176 -177 -178 -177 -178 -178 -139 -178 -140 -178 -143 -178 -177 -178 -181 -178 -179 -179 -106 -179 -136 -179 -141 -179 -142 -179 -180 -179 -180 -180 -141 -180 -142 -180 -145 -180 -179 -180 -183 -180 -181 -181 -140 -181 -143 -181 -144 -181 -178 -181 -182 -181 -182 -182 -143 -182 -144 -182 -145 -182 -181 -182 -184 -182 -183 -183 -142 -183 -145 -183 -148 -183 -180 -183 -184 -183 -184 -184 -144 -184 -145 -184 -148 -184 -182 -184 -183 -184 - -DEAL:: Total number of cells = 181 -DEAL:: Total number of active cells = 136 -DEAL:: Number of DoFs = 185 -DEAL:: Number of constraints = 32 -DEAL:: Unconstrained matrix bandwidth= 73 -DEAL:: Constrained matrix bandwidth = 83 - -DEAL::Dimension = 3, Test case = 1 - -DEAL:: Making grid... -DEAL:: Distributing degrees of freedom... -DEAL:: Renumbering degrees of freedom... -DEAL:: Writing sparsity pattern... -0 0 -1 0 -4 0 -2 0 -3 0 -5 0 -7 0 -6 0 -1 -1 -0 -1 -4 -1 -2 -1 -3 -1 -5 -1 -7 -1 -6 -1 -8 -1 -14 -1 -15 -1 -27 -1 -2 -2 -0 -2 -1 -2 -4 -2 -3 -2 -5 -2 -7 -2 -6 -2 -17 -2 -9 -2 -29 -2 -18 -2 -3 -3 -0 -3 -1 -3 -4 -3 -2 -3 -5 -3 -7 -3 -6 -3 -10 -3 -19 -3 -30 -3 -20 -3 -4 -4 -0 -4 -1 -4 -2 -4 -3 -4 -5 -4 -7 -4 -6 -4 -8 -4 -14 -4 -15 -4 -27 -4 -16 -4 -17 -4 -28 -4 -29 -4 -9 -4 -18 -4 -5 -5 -0 -5 -1 -5 -4 -5 -2 -5 -3 -5 -7 -5 -6 -5 -8 -5 -14 -5 -15 -5 -27 -5 -10 -5 -19 -5 -30 -5 -20 -5 -21 -5 -31 -5 -6 -6 -0 -6 -1 -6 -4 -6 -2 -6 -3 -6 -5 -6 -7 -6 -17 -6 -9 -6 -29 -6 -18 -6 -10 -6 -19 -6 -30 -6 -20 -6 -32 -6 -22 -6 -7 -7 -0 -7 -1 -7 -4 -7 -2 -7 -3 -7 -5 -7 -6 -7 -8 -7 -14 -7 -15 -7 -27 -7 -16 -7 -17 -7 -28 -7 -29 -7 -9 -7 -18 -7 -10 -7 -19 -7 -30 -7 -20 -7 -21 -7 -31 -7 -32 -7 -22 -7 -11 -7 -23 -7 -12 -7 -13 -7 -24 -7 -26 -7 -25 -7 -8 -8 -1 -8 -14 -8 -4 -8 -5 -8 -15 -8 -27 -8 -7 -8 -33 -8 -42 -8 -43 -8 -81 -8 -9 -9 -2 -9 -4 -9 -17 -9 -6 -9 -7 -9 -29 -9 -18 -9 -48 -9 -34 -9 -83 -9 -49 -9 -10 -10 -3 -10 -5 -10 -7 -10 -6 -10 -19 -10 -30 -10 -20 -10 -35 -10 -51 -10 -84 -10 -52 -10 -11 -11 -7 -11 -23 -11 -12 -11 -13 -11 -24 -11 -26 -11 -25 -11 -27 -11 -57 -11 -58 -11 -100 -11 -12 -12 -7 -12 -11 -12 -23 -12 -13 -12 -24 -12 -26 -12 -25 -12 -59 -12 -29 -12 -102 -12 -60 -12 -13 -13 -7 -13 -11 -13 -23 -13 -12 -13 -24 -13 -26 -13 -25 -13 -30 -13 -61 -13 -103 -13 -62 -13 -14 -14 -1 -14 -8 -14 -4 -14 -5 -14 -15 -14 -27 -14 -7 -14 -16 -14 -17 -14 -28 -14 -29 -14 -33 -14 -42 -14 -43 -14 -81 -14 -44 -14 -94 -14 -15 -15 -1 -15 -8 -15 -14 -15 -4 -15 -5 -15 -27 -15 -7 -15 -19 -15 -21 -15 -31 -15 -30 -15 -33 -15 -42 -15 -43 -15 -81 -15 -45 -15 -95 -15 -16 -16 -4 -16 -14 -16 -17 -16 -7 -16 -27 -16 -28 -16 -29 -16 -42 -16 -44 -16 -81 -16 -94 -16 -46 -16 -47 -16 -82 -16 -96 -16 -48 -16 -83 -16 -17 -17 -4 -17 -14 -17 -16 -17 -7 -17 -27 -17 -28 -17 -29 -17 -2 -17 -9 -17 -6 -17 -18 -17 -48 -17 -34 -17 -83 -17 -49 -17 -47 -17 -96 -17 -18 -18 -2 -18 -4 -18 -17 -18 -9 -18 -6 -18 -7 -18 -29 -18 -20 -18 -30 -18 -32 -18 -22 -18 -48 -18 -34 -18 -83 -18 -49 -18 -97 -18 -50 -18 -19 -19 -3 -19 -5 -19 -7 -19 -6 -19 -10 -19 -30 -19 -20 -19 -15 -19 -27 -19 -21 -19 -31 -19 -35 -19 -51 -19 -84 -19 -52 -19 -53 -19 -98 -19 -20 -20 -3 -20 -5 -20 -7 -20 -6 -20 -10 -20 -19 -20 -30 -20 -29 -20 -18 -20 -32 -20 -22 -20 -35 -20 -51 -20 -84 -20 -52 -20 -99 -20 -54 -20 -21 -21 -5 -21 -15 -21 -27 -21 -7 -21 -19 -21 -31 -21 -30 -21 -43 -21 -81 -21 -45 -21 -95 -21 -51 -21 -53 -21 -98 -21 -84 -21 -55 -21 -85 -21 -22 -22 -6 -22 -7 -22 -29 -22 -18 -22 -20 -22 -30 -22 -32 -22 -83 -22 -49 -22 -97 -22 -50 -22 -52 -22 -84 -22 -99 -22 -54 -22 -86 -22 -56 -22 -23 -23 -7 -23 -11 -23 -12 -23 -13 -23 -24 -23 -26 -23 -25 -23 -27 -23 -57 -23 -58 -23 -100 -23 -28 -23 -59 -23 -101 -23 -102 -23 -29 -23 -60 -23 -24 -24 -7 -24 -11 -24 -23 -24 -12 -24 -13 -24 -26 -24 -25 -24 -27 -24 -57 -24 -58 -24 -100 -24 -30 -24 -61 -24 -103 -24 -62 -24 -31 -24 -104 -24 -25 -25 -7 -25 -11 -25 -23 -25 -12 -25 -13 -25 -24 -25 -26 -25 -59 -25 -29 -25 -102 -25 -60 -25 -30 -25 -61 -25 -103 -25 -62 -25 -105 -25 -32 -25 -26 -26 -7 -26 -11 -26 -23 -26 -12 -26 -13 -26 -24 -26 -25 -26 -27 -26 -57 -26 -58 -26 -100 -26 -28 -26 -59 -26 -101 -26 -102 -26 -29 -26 -60 -26 -30 -26 -61 -26 -103 -26 -62 -26 -31 -26 -104 -26 -105 -26 -32 -26 -39 -26 -78 -26 -40 -26 -41 -26 -79 -26 -93 -26 -80 -26 -27 -27 -1 -27 -8 -27 -14 -27 -4 -27 -5 -27 -15 -27 -7 -27 -16 -27 -17 -27 -28 -27 -29 -27 -19 -27 -21 -27 -31 -27 -30 -27 -33 -27 -42 -27 -43 -27 -81 -27 -44 -27 -94 -27 -45 -27 -95 -27 -11 -27 -57 -27 -23 -27 -24 -27 -58 -27 -100 -27 -26 -27 -36 -27 -63 -27 -64 -27 -87 -27 -28 -28 -4 -28 -14 -28 -16 -28 -17 -28 -7 -28 -27 -28 -29 -28 -42 -28 -44 -28 -81 -28 -94 -28 -46 -28 -47 -28 -82 -28 -96 -28 -48 -28 -83 -28 -23 -28 -57 -28 -59 -28 -26 -28 -100 -28 -101 -28 -102 -28 -63 -28 -65 -28 -87 -28 -106 -28 -67 -28 -68 -28 -88 -28 -108 -28 -69 -28 -89 -28 -29 -29 -4 -29 -14 -29 -16 -29 -17 -29 -7 -29 -27 -29 -28 -29 -2 -29 -9 -29 -6 -29 -18 -29 -20 -29 -30 -29 -32 -29 -22 -29 -48 -29 -34 -29 -83 -29 -49 -29 -47 -29 -96 -29 -97 -29 -50 -29 -12 -29 -23 -29 -59 -29 -25 -29 -26 -29 -102 -29 -60 -29 -69 -29 -37 -29 -89 -29 -70 -29 -30 -30 -3 -30 -5 -30 -7 -30 -6 -30 -10 -30 -19 -30 -20 -30 -15 -30 -27 -30 -21 -30 -31 -30 -29 -30 -18 -30 -32 -30 -22 -30 -35 -30 -51 -30 -84 -30 -52 -30 -53 -30 -98 -30 -99 -30 -54 -30 -13 -30 -24 -30 -26 -30 -25 -30 -61 -30 -103 -30 -62 -30 -38 -30 -72 -30 -90 -30 -73 -30 -31 -31 -5 -31 -15 -31 -27 -31 -7 -31 -19 -31 -21 -31 -30 -31 -43 -31 -81 -31 -45 -31 -95 -31 -51 -31 -53 -31 -98 -31 -84 -31 -55 -31 -85 -31 -24 -31 -58 -31 -100 -31 -26 -31 -61 -31 -104 -31 -103 -31 -64 -31 -87 -31 -66 -31 -107 -31 -72 -31 -74 -31 -110 -31 -90 -31 -76 -31 -91 -31 -32 -32 -6 -32 -7 -32 -29 -32 -18 -32 -20 -32 -30 -32 -22 -32 -83 -32 -49 -32 -97 -32 -50 -32 -52 -32 -84 -32 -99 -32 -54 -32 -86 -32 -56 -32 -25 -32 -26 -32 -102 -32 -60 -32 -62 -32 -103 -32 -105 -32 -89 -32 -70 -32 -109 -32 -71 -32 -73 -32 -90 -32 -111 -32 -75 -32 -92 -32 -77 -32 -33 -33 -8 -33 -42 -33 -14 -33 -15 -33 -43 -33 -81 -33 -27 -33 -112 -33 -118 -33 -119 -33 -178 -33 -34 -34 -9 -34 -17 -34 -48 -34 -18 -34 -29 -34 -83 -34 -49 -34 -127 -34 -114 -34 -188 -34 -128 -34 -35 -35 -10 -35 -19 -35 -30 -35 -20 -35 -51 -35 -84 -35 -52 -35 -115 -35 -130 -35 -190 -35 -131 -35 -36 -36 -27 -36 -63 -36 -57 -36 -58 -36 -64 -36 -87 -36 -100 -36 -81 -36 -142 -36 -143 -36 -202 -36 -37 -37 -29 -37 -59 -37 -69 -37 -60 -37 -102 -37 -89 -37 -70 -37 -147 -37 -83 -37 -210 -37 -148 -37 -38 -38 -30 -38 -61 -38 -103 -38 -62 -38 -72 -38 -90 -38 -73 -38 -84 -38 -149 -38 -212 -38 -150 -38 -39 -39 -26 -39 -78 -39 -40 -39 -41 -39 -79 -39 -93 -39 -80 -39 -100 -39 -223 -39 -224 -39 -281 -39 -40 -40 -26 -40 -39 -40 -78 -40 -41 -40 -79 -40 -93 -40 -80 -40 -225 -40 -102 -40 -283 -40 -226 -40 -41 -41 -26 -41 -39 -41 -78 -41 -40 -41 -79 -41 -93 -41 -80 -41 -103 -41 -227 -41 -284 -41 -228 -41 -42 -42 -8 -42 -33 -42 -14 -42 -15 -42 -43 -42 -81 -42 -27 -42 -112 -42 -118 -42 -119 -42 -178 -42 -120 -42 -44 -42 -179 -42 -94 -42 -16 -42 -28 -42 -43 -43 -8 -43 -33 -43 -42 -43 -14 -43 -15 -43 -81 -43 -27 -43 -112 -43 -118 -43 -119 -43 -178 -43 -21 -43 -45 -43 -95 -43 -31 -43 -121 -43 -180 -43 -44 -44 -42 -44 -118 -44 -120 -44 -81 -44 -178 -44 -179 -44 -94 -44 -14 -44 -16 -44 -27 -44 -28 -44 -46 -44 -47 -44 -82 -44 -96 -44 -122 -44 -182 -44 -45 -45 -15 -45 -43 -45 -81 -45 -27 -45 -21 -45 -95 -45 -31 -45 -119 -45 -178 -45 -121 -45 -180 -45 -53 -45 -55 -45 -85 -45 -98 -45 -134 -45 -194 -45 -46 -46 -16 -46 -44 -46 -47 -46 -28 -46 -94 -46 -82 -46 -96 -46 -120 -46 -122 -46 -179 -46 -182 -46 -113 -46 -123 -46 -124 -46 -183 -46 -125 -46 -184 -46 -47 -47 -16 -47 -44 -47 -46 -47 -28 -47 -94 -47 -82 -47 -96 -47 -123 -47 -125 -47 -183 -47 -184 -47 -17 -47 -48 -47 -29 -47 -83 -47 -127 -47 -188 -47 -48 -48 -9 -48 -17 -48 -34 -48 -18 -48 -29 -48 -83 -48 -49 -48 -16 -48 -47 -48 -28 -48 -96 -48 -125 -48 -127 -48 -184 -48 -188 -48 -114 -48 -128 -48 -49 -49 -9 -49 -17 -49 -48 -49 -34 -49 -18 -49 -29 -49 -83 -49 -127 -49 -114 -49 -188 -49 -128 -49 -22 -49 -32 -49 -97 -49 -50 -49 -189 -49 -129 -49 -50 -50 -18 -50 -29 -50 -83 -50 -49 -50 -22 -50 -32 -50 -97 -50 -188 -50 -128 -50 -189 -50 -129 -50 -54 -50 -99 -50 -86 -50 -56 -50 -199 -50 -138 -50 -51 -51 -10 -51 -19 -51 -30 -51 -20 -51 -35 -51 -84 -51 -52 -51 -21 -51 -31 -51 -53 -51 -98 -51 -115 -51 -130 -51 -190 -51 -131 -51 -132 -51 -191 -51 -52 -52 -10 -52 -19 -52 -30 -52 -20 -52 -35 -52 -51 -52 -84 -52 -32 -52 -22 -52 -99 -52 -54 -52 -115 -52 -130 -52 -190 -52 -131 -52 -193 -52 -133 -52 -53 -53 -19 -53 -21 -53 -31 -53 -30 -53 -51 -53 -98 -53 -84 -53 -130 -53 -132 -53 -191 -53 -190 -53 -45 -53 -95 -53 -55 -53 -85 -53 -135 -53 -196 -53 -54 -54 -20 -54 -30 -54 -32 -54 -22 -54 -52 -54 -84 -54 -99 -54 -131 -54 -190 -54 -193 -54 -133 -54 -97 -54 -50 -54 -86 -54 -56 -54 -200 -54 -139 -54 -55 -55 -21 -55 -45 -55 -95 -55 -31 -55 -53 -55 -85 -55 -98 -55 -121 -55 -180 -55 -134 -55 -194 -55 -132 -55 -135 -55 -196 -55 -191 -55 -116 -55 -136 -55 -56 -56 -22 -56 -32 -56 -97 -56 -50 -56 -54 -56 -99 -56 -86 -56 -189 -56 -129 -56 -199 -56 -138 -56 -133 -56 -193 -56 -200 -56 -139 -56 -141 -56 -117 -56 -57 -57 -11 -57 -27 -57 -23 -57 -24 -57 -58 -57 -100 -57 -26 -57 -28 -57 -59 -57 -101 -57 -102 -57 -36 -57 -63 -57 -64 -57 -87 -57 -65 -57 -106 -57 -58 -58 -11 -58 -27 -58 -57 -58 -23 -58 -24 -58 -100 -58 -26 -58 -61 -58 -31 -58 -104 -58 -103 -58 -36 -58 -63 -58 -64 -58 -87 -58 -66 -58 -107 -58 -59 -59 -23 -59 -57 -59 -28 -59 -26 -59 -100 -59 -101 -59 -102 -59 -12 -59 -29 -59 -25 -59 -60 -59 -69 -59 -37 -59 -89 -59 -70 -59 -68 -59 -108 -59 -60 -60 -12 -60 -23 -60 -59 -60 -29 -60 -25 -60 -26 -60 -102 -60 -62 -60 -103 -60 -105 -60 -32 -60 -69 -60 -37 -60 -89 -60 -70 -60 -109 -60 -71 -60 -61 -61 -13 -61 -24 -61 -26 -61 -25 -61 -30 -61 -103 -61 -62 -61 -58 -61 -100 -61 -31 -61 -104 -61 -38 -61 -72 -61 -90 -61 -73 -61 -74 -61 -110 -61 -62 -62 -13 -62 -24 -62 -26 -62 -25 -62 -30 -62 -61 -62 -103 -62 -102 -62 -60 -62 -105 -62 -32 -62 -38 -62 -72 -62 -90 -62 -73 -62 -111 -62 -75 -62 -63 -63 -27 -63 -36 -63 -57 -63 -58 -63 -64 -63 -87 -63 -100 -63 -81 -63 -142 -63 -143 -63 -202 -63 -94 -63 -65 -63 -203 -63 -106 -63 -28 -63 -101 -63 -64 -64 -27 -64 -36 -64 -63 -64 -57 -64 -58 -64 -87 -64 -100 -64 -81 -64 -142 -64 -143 -64 -202 -64 -31 -64 -66 -64 -107 -64 -104 -64 -95 -64 -204 -64 -65 -65 -63 -65 -142 -65 -94 -65 -87 -65 -202 -65 -203 -65 -106 -65 -57 -65 -28 -65 -100 -65 -101 -65 -67 -65 -68 -65 -88 -65 -108 -65 -144 -65 -205 -65 -66 -66 -58 -66 -64 -66 -87 -66 -100 -66 -31 -66 -107 -66 -104 -66 -143 -66 -202 -66 -95 -66 -204 -66 -74 -66 -76 -66 -91 -66 -110 -66 -151 -66 -215 -66 -67 -67 -28 -67 -65 -67 -68 -67 -101 -67 -106 -67 -88 -67 -108 -67 -94 -67 -144 -67 -203 -67 -205 -67 -82 -67 -145 -67 -146 -67 -206 -67 -96 -67 -207 -67 -68 -68 -28 -68 -65 -68 -67 -68 -101 -68 -106 -68 -88 -68 -108 -68 -145 -68 -96 -68 -206 -68 -207 -68 -59 -68 -69 -68 -102 -68 -89 -68 -147 -68 -210 -68 -69 -69 -29 -69 -59 -69 -37 -69 -60 -69 -102 -69 -89 -69 -70 -69 -28 -69 -68 -69 -101 -69 -108 -69 -96 -69 -147 -69 -207 -69 -210 -69 -83 -69 -148 -69 -70 -70 -29 -70 -59 -70 -69 -70 -37 -70 -60 -70 -102 -70 -89 -70 -147 -70 -83 -70 -210 -70 -148 -70 -32 -70 -105 -70 -109 -70 -71 -70 -211 -70 -97 -70 -71 -71 -60 -71 -102 -71 -89 -71 -70 -71 -32 -71 -105 -71 -109 -71 -210 -71 -148 -71 -211 -71 -97 -71 -75 -71 -111 -71 -92 -71 -77 -71 -220 -71 -154 -71 -72 -72 -30 -72 -61 -72 -103 -72 -62 -72 -38 -72 -90 -72 -73 -72 -31 -72 -104 -72 -74 -72 -110 -72 -84 -72 -149 -72 -212 -72 -150 -72 -98 -72 -213 -72 -73 -73 -30 -73 -61 -73 -103 -73 -62 -73 -38 -73 -72 -73 -90 -73 -105 -73 -32 -73 -111 -73 -75 -73 -84 -73 -149 -73 -212 -73 -150 -73 -214 -73 -99 -73 -74 -74 -61 -74 -31 -74 -104 -74 -103 -74 -72 -74 -110 -74 -90 -74 -149 -74 -98 -74 -213 -74 -212 -74 -66 -74 -107 -74 -76 -74 -91 -74 -152 -74 -217 -74 -75 -75 -62 -75 -103 -75 -105 -75 -32 -75 -73 -75 -90 -75 -111 -75 -150 -75 -212 -75 -214 -75 -99 -75 -109 -75 -71 -75 -92 -75 -77 -75 -221 -75 -155 -75 -76 -76 -31 -76 -66 -76 -107 -76 -104 -76 -74 -76 -91 -76 -110 -76 -95 -76 -204 -76 -151 -76 -215 -76 -98 -76 -152 -76 -217 -76 -213 -76 -85 -76 -153 -76 -77 -77 -32 -77 -105 -77 -109 -77 -71 -77 -75 -77 -111 -77 -92 -77 -211 -77 -97 -77 -220 -77 -154 -77 -99 -77 -214 -77 -221 -77 -155 -77 -156 -77 -86 -77 -78 -78 -26 -78 -39 -78 -40 -78 -41 -78 -79 -78 -93 -78 -80 -78 -100 -78 -223 -78 -224 -78 -281 -78 -101 -78 -225 -78 -282 -78 -283 -78 -102 -78 -226 -78 -79 -79 -26 -79 -39 -79 -78 -79 -40 -79 -41 -79 -93 -79 -80 -79 -100 -79 -223 -79 -224 -79 -281 -79 -103 -79 -227 -79 -284 -79 -228 -79 -104 -79 -285 -79 -80 -80 -26 -80 -39 -80 -78 -80 -40 -80 -41 -80 -79 -80 -93 -80 -225 -80 -102 -80 -283 -80 -226 -80 -103 -80 -227 -80 -284 -80 -228 -80 -286 -80 -105 -80 -81 -81 -8 -81 -33 -81 -42 -81 -14 -81 -15 -81 -43 -81 -27 -81 -112 -81 -118 -81 -119 -81 -178 -81 -120 -81 -44 -81 -179 -81 -94 -81 -16 -81 -28 -81 -21 -81 -45 -81 -95 -81 -31 -81 -121 -81 -180 -81 -181 -81 -269 -81 -36 -81 -142 -81 -63 -81 -64 -81 -143 -81 -202 -81 -87 -81 -82 -82 -16 -82 -44 -82 -46 -82 -47 -82 -28 -82 -94 -82 -96 -82 -120 -82 -122 -82 -179 -82 -182 -82 -113 -82 -123 -82 -124 -82 -183 -82 -125 -82 -184 -82 -269 -82 -181 -82 -185 -82 -270 -82 -126 -82 -186 -82 -271 -82 -187 -82 -67 -82 -144 -82 -145 -82 -88 -82 -205 -82 -146 -82 -206 -82 -83 -83 -9 -83 -17 -83 -48 -83 -34 -83 -18 -83 -29 -83 -49 -83 -16 -83 -47 -83 -28 -83 -96 -83 -125 -83 -127 -83 -184 -83 -188 -83 -114 -83 -128 -83 -22 -83 -32 -83 -97 -83 -50 -83 -271 -83 -187 -83 -189 -83 -129 -83 -37 -83 -69 -83 -147 -83 -70 -83 -89 -83 -210 -83 -148 -83 -84 -84 -10 -84 -19 -84 -30 -84 -20 -84 -35 -84 -51 -84 -52 -84 -21 -84 -31 -84 -53 -84 -98 -84 -32 -84 -22 -84 -99 -84 -54 -84 -115 -84 -130 -84 -190 -84 -131 -84 -132 -84 -191 -84 -272 -84 -192 -84 -193 -84 -133 -84 -38 -84 -72 -84 -90 -84 -73 -84 -149 -84 -212 -84 -150 -84 -85 -85 -21 -85 -45 -85 -95 -85 -31 -85 -53 -85 -55 -85 -98 -85 -121 -85 -180 -85 -134 -85 -194 -85 -181 -85 -269 -85 -195 -85 -273 -85 -132 -85 -135 -85 -196 -85 -191 -85 -116 -85 -136 -85 -137 -85 -197 -85 -272 -85 -192 -85 -76 -85 -151 -85 -215 -85 -91 -85 -152 -85 -153 -85 -217 -85 -86 -86 -22 -86 -32 -86 -97 -86 -50 -86 -54 -86 -99 -86 -56 -86 -271 -86 -187 -86 -189 -86 -274 -86 -198 -86 -199 -86 -129 -86 -138 -86 -133 -86 -193 -86 -200 -86 -139 -86 -272 -86 -192 -86 -201 -86 -140 -86 -141 -86 -117 -86 -77 -86 -92 -86 -220 -86 -154 -86 -155 -86 -221 -86 -156 -86 -87 -87 -27 -87 -36 -87 -63 -87 -57 -87 -58 -87 -64 -87 -100 -87 -81 -87 -142 -87 -143 -87 -202 -87 -94 -87 -65 -87 -203 -87 -106 -87 -28 -87 -101 -87 -31 -87 -66 -87 -107 -87 -104 -87 -95 -87 -204 -87 -269 -87 -275 -87 -157 -87 -158 -87 -229 -87 -230 -87 -159 -87 -231 -87 -262 -87 -88 -88 -28 -88 -65 -88 -67 -88 -68 -88 -101 -88 -106 -88 -108 -88 -94 -88 -144 -88 -203 -88 -205 -88 -82 -88 -145 -88 -146 -88 -206 -88 -96 -88 -207 -88 -275 -88 -269 -88 -208 -88 -276 -88 -270 -88 -209 -88 -277 -88 -271 -88 -236 -88 -160 -88 -161 -88 -263 -88 -238 -88 -162 -88 -239 -88 -89 -89 -29 -89 -59 -89 -69 -89 -37 -89 -60 -89 -102 -89 -70 -89 -28 -89 -68 -89 -101 -89 -108 -89 -96 -89 -147 -89 -207 -89 -210 -89 -83 -89 -148 -89 -32 -89 -105 -89 -109 -89 -71 -89 -277 -89 -271 -89 -211 -89 -97 -89 -163 -89 -241 -89 -164 -89 -242 -89 -264 -89 -243 -89 -165 -89 -90 -90 -30 -90 -61 -90 -103 -90 -62 -90 -38 -90 -72 -90 -73 -90 -31 -90 -104 -90 -74 -90 -110 -90 -105 -90 -32 -90 -111 -90 -75 -90 -84 -90 -149 -90 -212 -90 -150 -90 -98 -90 -213 -90 -278 -90 -272 -90 -214 -90 -99 -90 -166 -90 -246 -90 -265 -90 -247 -90 -167 -90 -250 -90 -168 -90 -91 -91 -31 -91 -66 -91 -107 -91 -104 -91 -74 -91 -76 -91 -110 -91 -95 -91 -204 -91 -151 -91 -215 -91 -269 -91 -275 -91 -216 -91 -279 -91 -98 -91 -152 -91 -217 -91 -213 -91 -85 -91 -153 -91 -273 -91 -218 -91 -278 -91 -272 -91 -253 -91 -169 -91 -254 -91 -266 -91 -170 -91 -171 -91 -255 -91 -92 -92 -32 -92 -105 -92 -109 -92 -71 -92 -75 -92 -111 -92 -77 -92 -277 -92 -271 -92 -211 -92 -280 -92 -219 -92 -220 -92 -97 -92 -154 -92 -99 -92 -214 -92 -221 -92 -155 -92 -278 -92 -272 -92 -222 -92 -274 -92 -156 -92 -86 -92 -256 -92 -267 -92 -257 -92 -172 -92 -173 -92 -258 -92 -174 -92 -93 -93 -26 -93 -39 -93 -78 -93 -40 -93 -41 -93 -79 -93 -80 -93 -100 -93 -223 -93 -224 -93 -281 -93 -101 -93 -225 -93 -282 -93 -283 -93 -102 -93 -226 -93 -103 -93 -227 -93 -284 -93 -228 -93 -104 -93 -285 -93 -286 -93 -105 -93 -175 -93 -259 -93 -176 -93 -177 -93 -260 -93 -268 -93 -261 -93 -94 -94 -42 -94 -118 -94 -120 -94 -44 -94 -81 -94 -178 -94 -179 -94 -14 -94 -16 -94 -27 -94 -28 -94 -95 -94 -180 -94 -181 -94 -269 -94 -46 -94 -47 -94 -82 -94 -96 -94 -122 -94 -182 -94 -185 -94 -270 -94 -63 -94 -142 -94 -65 -94 -87 -94 -202 -94 -203 -94 -106 -94 -144 -94 -67 -94 -205 -94 -88 -94 -95 -95 -15 -95 -43 -95 -81 -95 -27 -95 -21 -95 -45 -95 -31 -95 -119 -95 -178 -95 -121 -95 -180 -95 -179 -95 -94 -95 -181 -95 -269 -95 -53 -95 -55 -95 -85 -95 -98 -95 -134 -95 -194 -95 -195 -95 -273 -95 -64 -95 -143 -95 -202 -95 -87 -95 -66 -95 -204 -95 -107 -95 -76 -95 -151 -95 -215 -95 -91 -95 -96 -96 -16 -96 -44 -96 -46 -96 -47 -96 -28 -96 -94 -96 -82 -96 -123 -96 -125 -96 -183 -96 -184 -96 -271 -96 -270 -96 -186 -96 -187 -96 -17 -96 -48 -96 -29 -96 -83 -96 -127 -96 -188 -96 -97 -96 -189 -96 -68 -96 -67 -96 -145 -96 -108 -96 -88 -96 -206 -96 -207 -96 -69 -96 -147 -96 -89 -96 -210 -96 -97 -97 -18 -97 -29 -97 -83 -97 -49 -97 -22 -97 -32 -97 -50 -97 -96 -97 -184 -97 -188 -97 -271 -97 -187 -97 -189 -97 -128 -97 -129 -97 -54 -97 -99 -97 -86 -97 -56 -97 -274 -97 -198 -97 -199 -97 -138 -97 -70 -97 -89 -97 -210 -97 -148 -97 -71 -97 -109 -97 -211 -97 -77 -97 -92 -97 -220 -97 -154 -97 -98 -98 -19 -98 -21 -98 -31 -98 -30 -98 -51 -98 -53 -98 -84 -98 -130 -98 -132 -98 -191 -98 -190 -98 -272 -98 -99 -98 -192 -98 -193 -98 -45 -98 -95 -98 -55 -98 -85 -98 -135 -98 -196 -98 -273 -98 -197 -98 -72 -98 -74 -98 -110 -98 -90 -98 -149 -98 -213 -98 -212 -98 -76 -98 -91 -98 -152 -98 -217 -98 -99 -99 -20 -99 -30 -99 -32 -99 -22 -99 -52 -99 -84 -99 -54 -99 -98 -99 -272 -99 -190 -99 -191 -99 -192 -99 -193 -99 -131 -99 -133 -99 -97 -99 -50 -99 -86 -99 -56 -99 -200 -99 -139 -99 -274 -99 -201 -99 -73 -99 -90 -99 -111 -99 -75 -99 -150 -99 -212 -99 -214 -99 -92 -99 -77 -99 -221 -99 -155 -99 -100 -100 -11 -100 -27 -100 -57 -100 -23 -100 -24 -100 -58 -100 -26 -100 -28 -100 -59 -100 -101 -100 -102 -100 -61 -100 -31 -100 -104 -100 -103 -100 -36 -100 -63 -100 -64 -100 -87 -100 -65 -100 -106 -100 -66 -100 -107 -100 -39 -100 -223 -100 -78 -100 -79 -100 -224 -100 -281 -100 -93 -100 -157 -100 -229 -100 -230 -100 -262 -100 -101 -101 -23 -101 -57 -101 -28 -101 -59 -101 -26 -101 -100 -101 -102 -101 -63 -101 -65 -101 -87 -101 -106 -101 -67 -101 -68 -101 -88 -101 -108 -101 -69 -101 -89 -101 -78 -101 -223 -101 -225 -101 -93 -101 -281 -101 -282 -101 -283 -101 -229 -101 -232 -101 -262 -101 -287 -101 -236 -101 -237 -101 -263 -101 -289 -101 -241 -101 -264 -101 -102 -102 -23 -102 -57 -102 -28 -102 -59 -102 -26 -102 -100 -102 -101 -102 -12 -102 -29 -102 -25 -102 -60 -102 -62 -102 -103 -102 -105 -102 -32 -102 -69 -102 -37 -102 -89 -102 -70 -102 -68 -102 -108 -102 -109 -102 -71 -102 -40 -102 -78 -102 -225 -102 -80 -102 -93 -102 -283 -102 -226 -102 -241 -102 -163 -102 -264 -102 -242 -102 -103 -103 -13 -103 -24 -103 -26 -103 -25 -103 -30 -103 -61 -103 -62 -103 -58 -103 -100 -103 -31 -103 -104 -103 -102 -103 -60 -103 -105 -103 -32 -103 -38 -103 -72 -103 -90 -103 -73 -103 -74 -103 -110 -103 -111 -103 -75 -103 -41 -103 -79 -103 -93 -103 -80 -103 -227 -103 -284 -103 -228 -103 -166 -103 -246 -103 -265 -103 -247 -103 -104 -104 -24 -104 -58 -104 -100 -104 -26 -104 -61 -104 -31 -104 -103 -104 -64 -104 -87 -104 -66 -104 -107 -104 -72 -104 -74 -104 -110 -104 -90 -104 -76 -104 -91 -104 -79 -104 -224 -104 -281 -104 -93 -104 -227 -104 -285 -104 -284 -104 -230 -104 -262 -104 -234 -104 -288 -104 -246 -104 -248 -104 -291 -104 -265 -104 -253 -104 -266 -104 -105 -105 -25 -105 -26 -105 -102 -105 -60 -105 -62 -105 -103 -105 -32 -105 -89 -105 -70 -105 -109 -105 -71 -105 -73 -105 -90 -105 -111 -105 -75 -105 -92 -105 -77 -105 -80 -105 -93 -105 -283 -105 -226 -105 -228 -105 -284 -105 -286 -105 -264 -105 -242 -105 -290 -105 -244 -105 -247 -105 -265 -105 -292 -105 -249 -105 -267 -105 -256 -105 -106 -106 -63 -106 -142 -106 -94 -106 -65 -106 -87 -106 -202 -106 -203 -106 -57 -106 -28 -106 -100 -106 -101 -106 -107 -106 -204 -106 -269 -106 -275 -106 -67 -106 -68 -106 -88 -106 -108 -106 -144 -106 -205 -106 -208 -106 -276 -106 -229 -106 -158 -106 -232 -106 -262 -106 -231 -106 -233 -106 -287 -106 -160 -106 -236 -106 -238 -106 -263 -106 -107 -107 -58 -107 -64 -107 -87 -107 -100 -107 -31 -107 -66 -107 -104 -107 -143 -107 -202 -107 -95 -107 -204 -107 -203 -107 -106 -107 -269 -107 -275 -107 -74 -107 -76 -107 -91 -107 -110 -107 -151 -107 -215 -107 -216 -107 -279 -107 -230 -107 -159 -107 -231 -107 -262 -107 -234 -107 -235 -107 -288 -107 -253 -107 -169 -107 -254 -107 -266 -107 -108 -108 -28 -108 -65 -108 -67 -108 -68 -108 -101 -108 -106 -108 -88 -108 -145 -108 -96 -108 -206 -108 -207 -108 -277 -108 -276 -108 -209 -108 -271 -108 -59 -108 -69 -108 -102 -108 -89 -108 -147 -108 -210 -108 -109 -108 -211 -108 -237 -108 -236 -108 -161 -108 -289 -108 -263 -108 -239 -108 -240 -108 -241 -108 -164 -108 -264 -108 -243 -108 -109 -109 -60 -109 -102 -109 -89 -109 -70 -109 -32 -109 -105 -109 -71 -109 -108 -109 -207 -109 -210 -109 -277 -109 -271 -109 -211 -109 -148 -109 -97 -109 -75 -109 -111 -109 -92 -109 -77 -109 -280 -109 -219 -109 -220 -109 -154 -109 -242 -109 -264 -109 -243 -109 -165 -109 -244 -109 -290 -109 -245 -109 -256 -109 -267 -109 -257 -109 -172 -109 -110 -110 -61 -110 -31 -110 -104 -110 -103 -110 -72 -110 -74 -110 -90 -110 -149 -110 -98 -110 -213 -110 -212 -110 -278 -110 -111 -110 -272 -110 -214 -110 -66 -110 -107 -110 -76 -110 -91 -110 -152 -110 -217 -110 -279 -110 -218 -110 -246 -110 -248 -110 -291 -110 -265 -110 -167 -110 -251 -110 -250 -110 -253 -110 -266 -110 -170 -110 -255 -110 -111 -111 -62 -111 -103 -111 -105 -111 -32 -111 -73 -111 -90 -111 -75 -111 -110 -111 -278 -111 -212 -111 -213 -111 -272 -111 -214 -111 -150 -111 -99 -111 -109 -111 -71 -111 -92 -111 -77 -111 -221 -111 -155 -111 -280 -111 -222 -111 -247 -111 -265 -111 -292 -111 -249 -111 -168 -111 -250 -111 -252 -111 -267 -111 -256 -111 -258 -111 -173 -111 -112 -112 -33 -112 -118 -112 -42 -112 -43 -112 -119 -112 -178 -112 -81 -112 -113 -113 -46 -113 -122 -113 -123 -113 -82 -113 -182 -113 -124 -113 -183 -113 -114 -114 -34 -114 -48 -114 -127 -114 -49 -114 -83 -114 -188 -114 -128 -114 -115 -115 -35 -115 -51 -115 -84 -115 -52 -115 -130 -115 -190 -115 -131 -115 -116 -116 -55 -116 -134 -116 -194 -116 -85 -116 -135 -116 -136 -116 -196 -116 -117 -117 -56 -117 -86 -117 -199 -117 -138 -117 -139 -117 -200 -117 -141 -117 -118 -118 -33 -118 -112 -118 -42 -118 -43 -118 -119 -118 -178 -118 -81 -118 -120 -118 -44 -118 -179 -118 -94 -118 -119 -119 -33 -119 -112 -119 -118 -119 -42 -119 -43 -119 -178 -119 -81 -119 -45 -119 -121 -119 -180 -119 -95 -119 -120 -120 -42 -120 -118 -120 -44 -120 -81 -120 -178 -120 -179 -120 -94 -120 -122 -120 -46 -120 -182 -120 -82 -120 -121 -121 -43 -121 -119 -121 -178 -121 -81 -121 -45 -121 -180 -121 -95 -121 -55 -121 -134 -121 -194 -121 -85 -121 -122 -122 -44 -122 -120 -122 -46 -122 -94 -122 -179 -122 -182 -122 -82 -122 -113 -122 -123 -122 -124 -122 -183 -122 -123 -123 -46 -123 -122 -123 -113 -123 -82 -123 -182 -123 -124 -123 -183 -123 -47 -123 -125 -123 -96 -123 -184 -123 -124 -124 -46 -124 -122 -124 -113 -124 -123 -124 -82 -124 -182 -124 -183 -124 -270 -124 -185 -124 -126 -124 -186 -124 -125 -125 -47 -125 -46 -125 -123 -125 -96 -125 -82 -125 -183 -125 -184 -125 -48 -125 -127 -125 -83 -125 -188 -125 -126 -126 -82 -126 -182 -126 -124 -126 -183 -126 -270 -126 -185 -126 -186 -126 -377 -126 -323 -126 -293 -126 -324 -126 -127 -127 -48 -127 -47 -127 -125 -127 -83 -127 -96 -127 -184 -127 -188 -127 -34 -127 -114 -127 -49 -127 -128 -127 -128 -128 -34 -128 -48 -128 -127 -128 -114 -128 -49 -128 -83 -128 -188 -128 -50 -128 -97 -128 -189 -128 -129 -128 -129 -129 -49 -129 -83 -129 -188 -129 -128 -129 -50 -129 -97 -129 -189 -129 -56 -129 -86 -129 -199 -129 -138 -129 -130 -130 -35 -130 -51 -130 -84 -130 -52 -130 -115 -130 -190 -130 -131 -130 -53 -130 -98 -130 -132 -130 -191 -130 -131 -131 -35 -131 -51 -131 -84 -131 -52 -131 -115 -131 -130 -131 -190 -131 -99 -131 -54 -131 -193 -131 -133 -131 -132 -132 -51 -132 -53 -132 -98 -132 -84 -132 -130 -132 -191 -132 -190 -132 -55 -132 -85 -132 -135 -132 -196 -132 -133 -133 -52 -133 -84 -133 -99 -133 -54 -133 -131 -133 -190 -133 -193 -133 -86 -133 -56 -133 -200 -133 -139 -133 -134 -134 -45 -134 -121 -134 -180 -134 -95 -134 -55 -134 -194 -134 -85 -134 -135 -134 -116 -134 -136 -134 -196 -134 -135 -135 -53 -135 -55 -135 -85 -135 -98 -135 -132 -135 -196 -135 -191 -135 -134 -135 -194 -135 -116 -135 -136 -135 -136 -136 -55 -136 -134 -136 -194 -136 -85 -136 -135 -136 -116 -136 -196 -136 -195 -136 -273 -136 -137 -136 -197 -136 -137 -137 -85 -137 -194 -137 -195 -137 -273 -137 -196 -137 -136 -137 -197 -137 -323 -137 -377 -137 -294 -137 -325 -137 -138 -138 -50 -138 -97 -138 -189 -138 -129 -138 -56 -138 -86 -138 -199 -138 -139 -138 -200 -138 -141 -138 -117 -138 -139 -139 -54 -139 -99 -139 -86 -139 -56 -139 -133 -139 -193 -139 -200 -139 -199 -139 -138 -139 -141 -139 -117 -139 -140 -140 -86 -140 -274 -140 -198 -140 -199 -140 -200 -140 -201 -140 -141 -140 -377 -140 -324 -140 -325 -140 -295 -140 -141 -141 -86 -141 -274 -141 -198 -141 -199 -141 -200 -141 -201 -141 -140 -141 -56 -141 -138 -141 -139 -141 -117 -141 -142 -142 -36 -142 -81 -142 -63 -142 -64 -142 -143 -142 -202 -142 -87 -142 -94 -142 -65 -142 -203 -142 -106 -142 -143 -143 -36 -143 -81 -143 -142 -143 -63 -143 -64 -143 -202 -143 -87 -143 -66 -143 -95 -143 -204 -143 -107 -143 -144 -144 -65 -144 -94 -144 -67 -144 -106 -144 -203 -144 -205 -144 -88 -144 -82 -144 -145 -144 -146 -144 -206 -144 -145 -145 -67 -145 -144 -145 -82 -145 -88 -145 -205 -145 -146 -145 -206 -145 -68 -145 -96 -145 -108 -145 -207 -145 -146 -146 -67 -146 -144 -146 -82 -146 -145 -146 -88 -146 -205 -146 -206 -146 -276 -146 -208 -146 -270 -146 -209 -146 -147 -147 -69 -147 -68 -147 -96 -147 -89 -147 -108 -147 -207 -147 -210 -147 -37 -147 -83 -147 -70 -147 -148 -147 -148 -148 -37 -148 -69 -148 -147 -148 -83 -148 -70 -148 -89 -148 -210 -148 -71 -148 -109 -148 -211 -148 -97 -148 -149 -149 -38 -149 -72 -149 -90 -149 -73 -149 -84 -149 -212 -149 -150 -149 -74 -149 -110 -149 -98 -149 -213 -149 -150 -150 -38 -150 -72 -150 -90 -150 -73 -150 -84 -150 -149 -150 -212 -150 -111 -150 -75 -150 -214 -150 -99 -150 -151 -151 -66 -151 -95 -151 -204 -151 -107 -151 -76 -151 -215 -151 -91 -151 -152 -151 -85 -151 -153 -151 -217 -151 -152 -152 -74 -152 -76 -152 -91 -152 -110 -152 -98 -152 -217 -152 -213 -152 -151 -152 -215 -152 -85 -152 -153 -152 -153 -153 -76 -153 -151 -153 -215 -153 -91 -153 -152 -153 -85 -153 -217 -153 -216 -153 -279 -153 -273 -153 -218 -153 -154 -154 -71 -154 -109 -154 -211 -154 -97 -154 -77 -154 -92 -154 -220 -154 -155 -154 -221 -154 -156 -154 -86 -154 -155 -155 -75 -155 -111 -155 -92 -155 -77 -155 -99 -155 -214 -155 -221 -155 -220 -155 -154 -155 -156 -155 -86 -155 -156 -156 -92 -156 -280 -156 -219 -156 -220 -156 -221 -156 -222 -156 -274 -156 -77 -156 -154 -156 -155 -156 -86 -156 -157 -157 -100 -157 -229 -157 -223 -157 -224 -157 -230 -157 -262 -157 -281 -157 -87 -157 -158 -157 -159 -157 -231 -157 -158 -158 -157 -158 -87 -158 -229 -158 -230 -158 -159 -158 -231 -158 -262 -158 -106 -158 -232 -158 -233 -158 -287 -158 -159 -159 -157 -159 -87 -159 -158 -159 -229 -159 -230 -159 -231 -159 -262 -159 -234 -159 -107 -159 -235 -159 -288 -159 -160 -160 -232 -160 -106 -160 -236 -160 -287 -160 -233 -160 -238 -160 -263 -160 -88 -160 -161 -160 -162 -160 -239 -160 -161 -161 -236 -161 -160 -161 -88 -161 -263 -161 -238 -161 -162 -161 -239 -161 -237 -161 -108 -161 -289 -161 -240 -161 -162 -162 -236 -162 -160 -162 -88 -162 -161 -162 -263 -162 -238 -162 -239 -162 -388 -162 -329 -162 -276 -162 -330 -162 -163 -163 -102 -163 -225 -163 -241 -163 -226 -163 -283 -163 -264 -163 -242 -163 -164 -163 -89 -163 -243 -163 -165 -163 -164 -164 -241 -164 -237 -164 -108 -164 -264 -164 -289 -164 -240 -164 -243 -164 -163 -164 -89 -164 -242 -164 -165 -164 -165 -165 -163 -165 -241 -165 -164 -165 -89 -165 -242 -165 -264 -165 -243 -165 -244 -165 -290 -165 -245 -165 -109 -165 -166 -166 -103 -166 -227 -166 -284 -166 -228 -166 -246 -166 -265 -166 -247 -166 -90 -166 -167 -166 -250 -166 -168 -166 -167 -167 -166 -167 -246 -167 -265 -167 -247 -167 -90 -167 -250 -167 -168 -167 -248 -167 -291 -167 -110 -167 -251 -167 -168 -168 -166 -168 -246 -168 -265 -168 -247 -168 -90 -168 -167 -168 -250 -168 -292 -168 -249 -168 -252 -168 -111 -168 -169 -169 -234 -169 -107 -169 -235 -169 -288 -169 -253 -169 -254 -169 -266 -169 -170 -169 -91 -169 -171 -169 -255 -169 -170 -170 -248 -170 -253 -170 -266 -170 -291 -170 -110 -170 -255 -170 -251 -170 -169 -170 -254 -170 -91 -170 -171 -170 -171 -171 -253 -171 -169 -171 -254 -171 -266 -171 -170 -171 -91 -171 -255 -171 -331 -171 -391 -171 -279 -171 -332 -171 -172 -172 -244 -172 -290 -172 -245 -172 -109 -172 -256 -172 -267 -172 -257 -172 -173 -172 -258 -172 -174 -172 -92 -172 -173 -173 -249 -173 -292 -173 -267 -173 -256 -173 -111 -173 -252 -173 -258 -173 -257 -173 -172 -173 -174 -173 -92 -173 -174 -174 -267 -174 -392 -174 -333 -174 -257 -174 -258 -174 -334 -174 -280 -174 -256 -174 -172 -174 -173 -174 -92 -174 -175 -175 -93 -175 -259 -175 -176 -175 -177 -175 -260 -175 -268 -175 -261 -175 -281 -175 -338 -175 -339 -175 -393 -175 -176 -176 -93 -176 -175 -176 -259 -176 -177 -176 -260 -176 -268 -176 -261 -176 -340 -176 -283 -176 -395 -176 -341 -176 -177 -177 -93 -177 -175 -177 -259 -177 -176 -177 -260 -177 -268 -177 -261 -177 -284 -177 -342 -177 -396 -177 -343 -177 -178 -178 -33 -178 -112 -178 -118 -178 -42 -178 -43 -178 -119 -178 -81 -178 -120 -178 -44 -178 -179 -178 -94 -178 -45 -178 -121 -178 -180 -178 -95 -178 -181 -178 -269 -178 -179 -179 -42 -179 -118 -179 -120 -179 -44 -179 -81 -179 -178 -179 -94 -179 -95 -179 -180 -179 -181 -179 -269 -179 -122 -179 -46 -179 -182 -179 -82 -179 -185 -179 -270 -179 -180 -180 -43 -180 -119 -180 -178 -180 -81 -180 -45 -180 -121 -180 -95 -180 -179 -180 -94 -180 -181 -180 -269 -180 -55 -180 -134 -180 -194 -180 -85 -180 -195 -180 -273 -180 -181 -181 -81 -181 -178 -181 -179 -181 -94 -181 -95 -181 -180 -181 -269 -181 -182 -181 -82 -181 -185 -181 -270 -181 -85 -181 -194 -181 -195 -181 -273 -181 -323 -181 -377 -181 -182 -182 -44 -182 -120 -182 -122 -182 -46 -182 -94 -182 -179 -182 -82 -182 -113 -182 -123 -182 -124 -182 -183 -182 -269 -182 -181 -182 -185 -182 -270 -182 -126 -182 -186 -182 -183 -183 -46 -183 -122 -183 -113 -183 -123 -183 -82 -183 -182 -183 -124 -183 -47 -183 -125 -183 -96 -183 -184 -183 -270 -183 -185 -183 -126 -183 -186 -183 -271 -183 -187 -183 -184 -184 -47 -184 -46 -184 -123 -184 -125 -184 -96 -184 -82 -184 -183 -184 -271 -184 -270 -184 -186 -184 -187 -184 -48 -184 -127 -184 -83 -184 -188 -184 -97 -184 -189 -184 -185 -185 -94 -185 -179 -185 -182 -185 -82 -185 -269 -185 -181 -185 -270 -185 -124 -185 -183 -185 -126 -185 -186 -185 -273 -185 -195 -185 -323 -185 -377 -185 -293 -185 -324 -185 -186 -186 -82 -186 -182 -186 -124 -186 -183 -186 -270 -186 -185 -186 -126 -186 -96 -186 -184 -186 -271 -186 -187 -186 -377 -186 -323 -186 -293 -186 -324 -186 -274 -186 -198 -186 -187 -187 -96 -187 -82 -187 -183 -187 -184 -187 -271 -187 -270 -187 -186 -187 -83 -187 -188 -187 -97 -187 -189 -187 -86 -187 -274 -187 -198 -187 -199 -187 -377 -187 -324 -187 -188 -188 -48 -188 -47 -188 -125 -188 -127 -188 -83 -188 -96 -188 -184 -188 -34 -188 -114 -188 -49 -188 -128 -188 -97 -188 -271 -188 -187 -188 -189 -188 -50 -188 -129 -188 -189 -189 -83 -189 -96 -189 -184 -189 -188 -189 -97 -189 -271 -189 -187 -189 -49 -189 -128 -189 -50 -189 -129 -189 -86 -189 -274 -189 -198 -189 -199 -189 -56 -189 -138 -189 -190 -190 -35 -190 -51 -190 -84 -190 -52 -190 -115 -190 -130 -190 -131 -190 -53 -190 -98 -190 -132 -190 -191 -190 -272 -190 -99 -190 -192 -190 -193 -190 -54 -190 -133 -190 -191 -191 -51 -191 -53 -191 -98 -191 -84 -191 -130 -191 -132 -191 -190 -191 -272 -191 -99 -191 -192 -191 -193 -191 -55 -191 -85 -191 -135 -191 -196 -191 -273 -191 -197 -191 -192 -192 -84 -192 -98 -192 -272 -192 -99 -192 -190 -192 -191 -192 -193 -192 -85 -192 -273 -192 -196 -192 -197 -192 -274 -192 -86 -192 -201 -192 -200 -192 -377 -192 -325 -192 -193 -193 -84 -193 -98 -193 -272 -193 -99 -193 -190 -193 -191 -193 -192 -193 -52 -193 -54 -193 -131 -193 -133 -193 -86 -193 -56 -193 -200 -193 -139 -193 -274 -193 -201 -193 -194 -194 -45 -194 -121 -194 -180 -194 -95 -194 -55 -194 -134 -194 -85 -194 -181 -194 -269 -194 -195 -194 -273 -194 -135 -194 -116 -194 -136 -194 -196 -194 -137 -194 -197 -194 -195 -195 -95 -195 -180 -195 -181 -195 -269 -195 -85 -195 -194 -195 -273 -195 -196 -195 -136 -195 -137 -195 -197 -195 -185 -195 -270 -195 -323 -195 -377 -195 -294 -195 -325 -195 -196 -196 -53 -196 -55 -196 -85 -196 -98 -196 -132 -196 -135 -196 -191 -196 -134 -196 -194 -196 -116 -196 -136 -196 -195 -196 -273 -196 -137 -196 -197 -196 -272 -196 -192 -196 -197 -197 -85 -197 -194 -197 -195 -197 -273 -197 -196 -197 -136 -197 -137 -197 -98 -197 -272 -197 -191 -197 -192 -197 -377 -197 -274 -197 -325 -197 -201 -197 -323 -197 -294 -197 -198 -198 -97 -198 -271 -198 -187 -198 -189 -198 -86 -198 -274 -198 -199 -198 -200 -198 -201 -198 -140 -198 -141 -198 -270 -198 -186 -198 -377 -198 -324 -198 -325 -198 -295 -198 -199 -199 -97 -199 -271 -199 -187 -199 -189 -199 -86 -199 -274 -199 -198 -199 -50 -199 -129 -199 -56 -199 -138 -199 -200 -199 -201 -199 -140 -199 -141 -199 -139 -199 -117 -199 -200 -200 -54 -200 -99 -200 -86 -200 -56 -200 -133 -200 -193 -200 -139 -200 -272 -200 -274 -200 -192 -200 -201 -200 -198 -200 -199 -200 -140 -200 -141 -200 -138 -200 -117 -200 -201 -201 -99 -201 -272 -201 -274 -201 -86 -201 -193 -201 -192 -201 -200 -201 -198 -201 -199 -201 -140 -201 -141 -201 -273 -201 -377 -201 -197 -201 -325 -201 -324 -201 -295 -201 -202 -202 -36 -202 -81 -202 -142 -202 -63 -202 -64 -202 -143 -202 -87 -202 -94 -202 -65 -202 -203 -202 -106 -202 -66 -202 -95 -202 -204 -202 -107 -202 -269 -202 -275 -202 -203 -203 -63 -203 -142 -203 -94 -203 -65 -203 -87 -203 -202 -203 -106 -203 -107 -203 -204 -203 -269 -203 -275 -203 -144 -203 -67 -203 -205 -203 -88 -203 -208 -203 -276 -203 -204 -204 -64 -204 -143 -204 -202 -204 -87 -204 -66 -204 -95 -204 -107 -204 -203 -204 -106 -204 -269 -204 -275 -204 -76 -204 -151 -204 -215 -204 -91 -204 -216 -204 -279 -204 -205 -205 -65 -205 -94 -205 -144 -205 -67 -205 -106 -205 -203 -205 -88 -205 -82 -205 -145 -205 -146 -205 -206 -205 -275 -205 -269 -205 -208 -205 -276 -205 -270 -205 -209 -205 -206 -206 -67 -206 -144 -206 -82 -206 -145 -206 -88 -206 -205 -206 -146 -206 -68 -206 -96 -206 -108 -206 -207 -206 -276 -206 -208 -206 -270 -206 -209 -206 -277 -206 -271 -206 -207 -207 -68 -207 -67 -207 -145 -207 -96 -207 -108 -207 -88 -207 -206 -207 -277 -207 -276 -207 -209 -207 -271 -207 -69 -207 -147 -207 -89 -207 -210 -207 -109 -207 -211 -207 -208 -208 -106 -208 -203 -208 -205 -208 -88 -208 -275 -208 -269 -208 -276 -208 -146 -208 -206 -208 -270 -208 -209 -208 -279 -208 -216 -208 -326 -208 -378 -208 -296 -208 -327 -208 -209 -209 -88 -209 -205 -209 -146 -209 -206 -209 -276 -209 -208 -209 -270 -209 -108 -209 -207 -209 -277 -209 -271 -209 -378 -209 -326 -209 -296 -209 -327 -209 -280 -209 -219 -209 -210 -210 -69 -210 -68 -210 -96 -210 -147 -210 -89 -210 -108 -210 -207 -210 -37 -210 -83 -210 -70 -210 -148 -210 -109 -210 -277 -210 -271 -210 -211 -210 -71 -210 -97 -210 -211 -211 -89 -211 -108 -211 -207 -211 -210 -211 -109 -211 -277 -211 -271 -211 -70 -211 -148 -211 -71 -211 -97 -211 -92 -211 -280 -211 -219 -211 -220 -211 -77 -211 -154 -211 -212 -212 -38 -212 -72 -212 -90 -212 -73 -212 -84 -212 -149 -212 -150 -212 -74 -212 -110 -212 -98 -212 -213 -212 -278 -212 -111 -212 -272 -212 -214 -212 -75 -212 -99 -212 -213 -213 -72 -213 -74 -213 -110 -213 -90 -213 -149 -213 -98 -213 -212 -213 -278 -213 -111 -213 -272 -213 -214 -213 -76 -213 -91 -213 -152 -213 -217 -213 -279 -213 -218 -213 -214 -214 -90 -214 -110 -214 -278 -214 -111 -214 -212 -214 -213 -214 -272 -214 -73 -214 -75 -214 -150 -214 -99 -214 -92 -214 -77 -214 -221 -214 -155 -214 -280 -214 -222 -214 -215 -215 -66 -215 -95 -215 -204 -215 -107 -215 -76 -215 -151 -215 -91 -215 -269 -215 -275 -215 -216 -215 -279 -215 -152 -215 -85 -215 -153 -215 -217 -215 -273 -215 -218 -215 -216 -216 -107 -216 -204 -216 -269 -216 -275 -216 -91 -216 -215 -216 -279 -216 -217 -216 -153 -216 -273 -216 -218 -216 -208 -216 -276 -216 -326 -216 -378 -216 -297 -216 -328 -216 -217 -217 -74 -217 -76 -217 -91 -217 -110 -217 -98 -217 -152 -217 -213 -217 -151 -217 -215 -217 -85 -217 -153 -217 -216 -217 -279 -217 -273 -217 -218 -217 -278 -217 -272 -217 -218 -218 -91 -218 -215 -218 -216 -218 -279 -218 -217 -218 -153 -218 -273 -218 -110 -218 -278 -218 -213 -218 -272 -218 -378 -218 -280 -218 -328 -218 -222 -218 -326 -218 -297 -218 -219 -219 -109 -219 -277 -219 -271 -219 -211 -219 -92 -219 -280 -219 -220 -219 -221 -219 -222 -219 -274 -219 -156 -219 -276 -219 -209 -219 -378 -219 -327 -219 -328 -219 -298 -219 -220 -220 -109 -220 -277 -220 -271 -220 -211 -220 -92 -220 -280 -220 -219 -220 -71 -220 -97 -220 -77 -220 -154 -220 -221 -220 -222 -220 -274 -220 -156 -220 -155 -220 -86 -220 -221 -221 -75 -221 -111 -221 -92 -221 -77 -221 -99 -221 -214 -221 -155 -221 -278 -221 -280 -221 -272 -221 -222 -221 -219 -221 -220 -221 -274 -221 -156 -221 -154 -221 -86 -221 -222 -222 -111 -222 -278 -222 -280 -222 -92 -222 -214 -222 -272 -222 -221 -222 -219 -222 -220 -222 -274 -222 -156 -222 -279 -222 -378 -222 -218 -222 -328 -222 -327 -222 -298 -222 -223 -223 -39 -223 -100 -223 -78 -223 -79 -223 -224 -223 -281 -223 -93 -223 -101 -223 -225 -223 -282 -223 -283 -223 -157 -223 -229 -223 -230 -223 -262 -223 -232 -223 -287 -223 -224 -224 -39 -224 -100 -224 -223 -224 -78 -224 -79 -224 -281 -224 -93 -224 -227 -224 -104 -224 -285 -224 -284 -224 -157 -224 -229 -224 -230 -224 -262 -224 -234 -224 -288 -224 -225 -225 -78 -225 -223 -225 -101 -225 -93 -225 -281 -225 -282 -225 -283 -225 -40 -225 -102 -225 -80 -225 -226 -225 -241 -225 -163 -225 -264 -225 -242 -225 -237 -225 -289 -225 -226 -226 -40 -226 -78 -226 -225 -226 -102 -226 -80 -226 -93 -226 -283 -226 -228 -226 -284 -226 -286 -226 -105 -226 -241 -226 -163 -226 -264 -226 -242 -226 -290 -226 -244 -226 -227 -227 -41 -227 -79 -227 -93 -227 -80 -227 -103 -227 -284 -227 -228 -227 -224 -227 -281 -227 -104 -227 -285 -227 -166 -227 -246 -227 -265 -227 -247 -227 -248 -227 -291 -227 -228 -228 -41 -228 -79 -228 -93 -228 -80 -228 -103 -228 -227 -228 -284 -228 -283 -228 -226 -228 -286 -228 -105 -228 -166 -228 -246 -228 -265 -228 -247 -228 -292 -228 -249 -228 -229 -229 -100 -229 -157 -229 -223 -229 -224 -229 -230 -229 -262 -229 -281 -229 -87 -229 -158 -229 -159 -229 -231 -229 -106 -229 -232 -229 -233 -229 -287 -229 -101 -229 -282 -229 -230 -230 -100 -230 -157 -230 -229 -230 -223 -230 -224 -230 -262 -230 -281 -230 -87 -230 -158 -230 -159 -230 -231 -230 -104 -230 -234 -230 -288 -230 -285 -230 -107 -230 -235 -230 -231 -231 -157 -231 -87 -231 -158 -231 -229 -231 -230 -231 -159 -231 -262 -231 -106 -231 -232 -231 -233 -231 -287 -231 -234 -231 -107 -231 -235 -231 -288 -231 -275 -231 -387 -231 -232 -232 -229 -232 -158 -232 -106 -232 -262 -232 -231 -232 -233 -232 -287 -232 -223 -232 -101 -232 -281 -232 -282 -232 -236 -232 -237 -232 -263 -232 -289 -232 -160 -232 -238 -232 -233 -233 -229 -233 -158 -233 -106 -233 -232 -233 -262 -233 -231 -233 -287 -233 -288 -233 -235 -233 -275 -233 -387 -233 -160 -233 -236 -233 -238 -233 -263 -233 -329 -233 -388 -233 -234 -234 -224 -234 -230 -234 -262 -234 -281 -234 -104 -234 -288 -234 -285 -234 -159 -234 -231 -234 -107 -234 -235 -234 -248 -234 -253 -234 -266 -234 -291 -234 -169 -234 -254 -234 -235 -235 -230 -235 -159 -235 -231 -235 -262 -235 -234 -235 -107 -235 -288 -235 -233 -235 -287 -235 -275 -235 -387 -235 -253 -235 -169 -235 -254 -235 -266 -235 -331 -235 -391 -235 -236 -236 -101 -236 -232 -236 -237 -236 -282 -236 -287 -236 -263 -236 -289 -236 -106 -236 -160 -236 -233 -236 -238 -236 -88 -236 -161 -236 -162 -236 -239 -236 -108 -236 -240 -236 -237 -237 -101 -237 -232 -237 -236 -237 -282 -237 -287 -237 -263 -237 -289 -237 -161 -237 -108 -237 -239 -237 -240 -237 -225 -237 -241 -237 -283 -237 -264 -237 -164 -237 -243 -237 -238 -238 -232 -238 -106 -238 -160 -238 -236 -238 -287 -238 -233 -238 -263 -238 -88 -238 -161 -238 -162 -238 -239 -238 -387 -238 -275 -238 -329 -238 -388 -238 -276 -238 -330 -238 -239 -239 -236 -239 -160 -239 -88 -239 -161 -239 -263 -239 -238 -239 -162 -239 -237 -239 -108 -239 -289 -239 -240 -239 -388 -239 -329 -239 -276 -239 -330 -239 -389 -239 -277 -239 -240 -240 -237 -240 -236 -240 -161 -240 -108 -240 -289 -240 -263 -240 -239 -240 -389 -240 -388 -240 -330 -240 -277 -240 -241 -240 -164 -240 -264 -240 -243 -240 -290 -240 -245 -240 -241 -241 -102 -241 -225 -241 -163 -241 -226 -241 -283 -241 -264 -241 -242 -241 -101 -241 -237 -241 -282 -241 -289 -241 -108 -241 -164 -241 -240 -241 -243 -241 -89 -241 -165 -241 -242 -242 -102 -242 -225 -242 -241 -242 -163 -242 -226 -242 -283 -242 -264 -242 -164 -242 -89 -242 -243 -242 -165 -242 -105 -242 -286 -242 -290 -242 -244 -242 -245 -242 -109 -242 -243 -243 -241 -243 -237 -243 -108 -243 -164 -243 -264 -243 -289 -243 -240 -243 -163 -243 -89 -243 -242 -243 -165 -243 -290 -243 -389 -243 -277 -243 -245 -243 -244 -243 -109 -243 -244 -244 -226 -244 -283 -244 -264 -244 -242 -244 -105 -244 -286 -244 -290 -244 -243 -244 -165 -244 -245 -244 -109 -244 -249 -244 -292 -244 -267 -244 -256 -244 -257 -244 -172 -244 -245 -245 -264 -245 -289 -245 -240 -245 -243 -245 -290 -245 -389 -245 -277 -245 -242 -245 -165 -245 -244 -245 -109 -245 -267 -245 -392 -245 -333 -245 -257 -245 -256 -245 -172 -245 -246 -246 -103 -246 -227 -246 -284 -246 -228 -246 -166 -246 -265 -246 -247 -246 -104 -246 -285 -246 -248 -246 -291 -246 -90 -246 -167 -246 -250 -246 -168 -246 -110 -246 -251 -246 -247 -247 -103 -247 -227 -247 -284 -247 -228 -247 -166 -247 -246 -247 -265 -247 -286 -247 -105 -247 -292 -247 -249 -247 -90 -247 -167 -247 -250 -247 -168 -247 -252 -247 -111 -247 -248 -248 -227 -248 -104 -248 -285 -248 -284 -248 -246 -248 -291 -248 -265 -248 -167 -248 -110 -248 -251 -248 -250 -248 -234 -248 -288 -248 -253 -248 -266 -248 -170 -248 -255 -248 -249 -249 -228 -249 -284 -249 -286 -249 -105 -249 -247 -249 -265 -249 -292 -249 -168 -249 -250 -249 -252 -249 -111 -249 -290 -249 -244 -249 -267 -249 -256 -249 -258 -249 -173 -249 -250 -250 -166 -250 -246 -250 -265 -250 -247 -250 -90 -250 -167 -250 -168 -250 -248 -250 -291 -250 -110 -250 -251 -250 -390 -250 -292 -250 -278 -250 -252 -250 -249 -250 -111 -250 -251 -251 -246 -251 -248 -251 -291 -251 -265 -251 -167 -251 -110 -251 -250 -251 -390 -251 -292 -251 -278 -251 -252 -251 -253 -251 -266 -251 -170 -251 -255 -251 -391 -251 -332 -251 -252 -252 -265 -252 -291 -252 -390 -252 -292 -252 -250 -252 -251 -252 -278 -252 -247 -252 -249 -252 -168 -252 -111 -252 -267 -252 -256 -252 -258 -252 -173 -252 -392 -252 -334 -252 -253 -253 -104 -253 -234 -253 -288 -253 -285 -253 -248 -253 -266 -253 -291 -253 -107 -253 -235 -253 -169 -253 -254 -253 -110 -253 -170 -253 -255 -253 -251 -253 -91 -253 -171 -253 -254 -254 -234 -254 -107 -254 -235 -254 -288 -254 -253 -254 -169 -254 -266 -254 -275 -254 -387 -254 -331 -254 -391 -254 -170 -254 -91 -254 -171 -254 -255 -254 -279 -254 -332 -254 -255 -255 -248 -255 -253 -255 -266 -255 -291 -255 -110 -255 -170 -255 -251 -255 -169 -255 -254 -255 -91 -255 -171 -255 -331 -255 -391 -255 -279 -255 -332 -255 -390 -255 -278 -255 -256 -256 -105 -256 -286 -256 -290 -256 -244 -256 -249 -256 -292 -256 -267 -256 -245 -256 -109 -256 -257 -256 -172 -256 -111 -256 -252 -256 -258 -256 -173 -256 -174 -256 -92 -256 -257 -257 -290 -257 -389 -257 -277 -257 -245 -257 -267 -257 -392 -257 -333 -257 -244 -257 -109 -257 -256 -257 -172 -257 -258 -257 -334 -257 -280 -257 -174 -257 -173 -257 -92 -257 -258 -258 -249 -258 -292 -258 -267 -258 -256 -258 -111 -258 -252 -258 -173 -258 -390 -258 -392 -258 -278 -258 -334 -258 -333 -258 -257 -258 -280 -258 -174 -258 -172 -258 -92 -258 -259 -259 -93 -259 -175 -259 -176 -259 -177 -259 -260 -259 -268 -259 -261 -259 -281 -259 -338 -259 -339 -259 -393 -259 -282 -259 -340 -259 -394 -259 -395 -259 -283 -259 -341 -259 -260 -260 -93 -260 -175 -260 -259 -260 -176 -260 -177 -260 -268 -260 -261 -260 -281 -260 -338 -260 -339 -260 -393 -260 -284 -260 -342 -260 -396 -260 -343 -260 -285 -260 -397 -260 -261 -261 -93 -261 -175 -261 -259 -261 -176 -261 -177 -261 -260 -261 -268 -261 -340 -261 -283 -261 -395 -261 -341 -261 -284 -261 -342 -261 -396 -261 -343 -261 -398 -261 -286 -261 -262 -262 -100 -262 -157 -262 -229 -262 -223 -262 -224 -262 -230 -262 -281 -262 -87 -262 -158 -262 -159 -262 -231 -262 -106 -262 -232 -262 -233 -262 -287 -262 -101 -262 -282 -262 -104 -262 -234 -262 -288 -262 -285 -262 -107 -262 -235 -262 -275 -262 -387 -262 -302 -262 -303 -262 -344 -262 -345 -262 -304 -262 -346 -262 -380 -262 -263 -263 -101 -263 -232 -263 -236 -263 -237 -263 -282 -263 -287 -263 -289 -263 -106 -263 -160 -263 -233 -263 -238 -263 -88 -263 -161 -263 -162 -263 -239 -263 -108 -263 -240 -263 -387 -263 -275 -263 -329 -263 -388 -263 -276 -263 -330 -263 -389 -263 -277 -263 -351 -263 -305 -263 -306 -263 -381 -263 -353 -263 -307 -263 -354 -263 -264 -264 -102 -264 -225 -264 -241 -264 -163 -264 -226 -264 -283 -264 -242 -264 -101 -264 -237 -264 -282 -264 -289 -264 -108 -264 -164 -264 -240 -264 -243 -264 -89 -264 -165 -264 -105 -264 -286 -264 -290 -264 -244 -264 -389 -264 -277 -264 -245 -264 -109 -264 -308 -264 -356 -264 -309 -264 -357 -264 -382 -264 -358 -264 -310 -264 -265 -265 -103 -265 -227 -265 -284 -265 -228 -265 -166 -265 -246 -265 -247 -265 -104 -265 -285 -265 -248 -265 -291 -265 -286 -265 -105 -265 -292 -265 -249 -265 -90 -265 -167 -265 -250 -265 -168 -265 -110 -265 -251 -265 -390 -265 -278 -265 -252 -265 -111 -265 -311 -265 -361 -265 -383 -265 -362 -265 -312 -265 -365 -265 -313 -265 -266 -266 -104 -266 -234 -266 -288 -266 -285 -266 -248 -266 -253 -266 -291 -266 -107 -266 -235 -266 -169 -266 -254 -266 -275 -266 -387 -266 -331 -266 -391 -266 -110 -266 -170 -266 -255 -266 -251 -266 -91 -266 -171 -266 -279 -266 -332 -266 -390 -266 -278 -266 -368 -266 -314 -266 -369 -266 -384 -266 -315 -266 -316 -266 -370 -266 -267 -267 -105 -267 -286 -267 -290 -267 -244 -267 -249 -267 -292 -267 -256 -267 -389 -267 -277 -267 -245 -267 -392 -267 -333 -267 -257 -267 -109 -267 -172 -267 -111 -267 -252 -267 -258 -267 -173 -267 -390 -267 -278 -267 -334 -267 -280 -267 -174 -267 -92 -267 -371 -267 -385 -267 -372 -267 -317 -267 -318 -267 -373 -267 -319 -267 -268 -268 -93 -268 -175 -268 -259 -268 -176 -268 -177 -268 -260 -268 -261 -268 -281 -268 -338 -268 -339 -268 -393 -268 -282 -268 -340 -268 -394 -268 -395 -268 -283 -268 -341 -268 -284 -268 -342 -268 -396 -268 -343 -268 -285 -268 -397 -268 -398 -268 -286 -268 -320 -268 -374 -268 -321 -268 -322 -268 -375 -268 -386 -268 -376 -268 -269 -269 -81 -269 -178 -269 -179 -269 -94 -269 -95 -269 -180 -269 -181 -269 -182 -269 -82 -269 -185 -269 -270 -269 -85 -269 -194 -269 -195 -269 -273 -269 -323 -269 -377 -269 -87 -269 -202 -269 -203 -269 -106 -269 -107 -269 -204 -269 -275 -269 -205 -269 -88 -269 -208 -269 -276 -269 -91 -269 -215 -269 -216 -269 -279 -269 -326 -269 -378 -269 -270 -270 -94 -270 -179 -270 -182 -270 -82 -270 -269 -270 -181 -270 -185 -270 -124 -270 -183 -270 -126 -270 -186 -270 -96 -270 -184 -270 -271 -270 -187 -270 -273 -270 -195 -270 -323 -270 -377 -270 -293 -270 -324 -270 -274 -270 -198 -270 -88 -270 -205 -270 -146 -270 -206 -270 -276 -270 -208 -270 -209 -270 -378 -270 -326 -270 -296 -270 -327 -270 -271 -271 -96 -271 -82 -271 -183 -271 -184 -271 -270 -271 -186 -271 -187 -271 -83 -271 -188 -271 -97 -271 -189 -271 -86 -271 -274 -271 -198 -271 -199 -271 -377 -271 -324 -271 -108 -271 -88 -271 -206 -271 -207 -271 -277 -271 -276 -271 -209 -271 -89 -271 -210 -271 -109 -271 -211 -271 -92 -271 -280 -271 -219 -271 -220 -271 -378 -271 -327 -271 -272 -272 -84 -272 -98 -272 -99 -272 -190 -272 -191 -272 -192 -272 -193 -272 -85 -272 -273 -272 -196 -272 -197 -272 -274 -272 -86 -272 -201 -272 -200 -272 -377 -272 -325 -272 -90 -272 -110 -272 -278 -272 -111 -272 -212 -272 -213 -272 -214 -272 -91 -272 -279 -272 -217 -272 -218 -272 -280 -272 -92 -272 -222 -272 -221 -272 -378 -272 -328 -272 -273 -273 -95 -273 -180 -273 -181 -273 -269 -273 -85 -273 -194 -273 -195 -273 -196 -273 -136 -273 -137 -273 -197 -273 -98 -273 -272 -273 -191 -273 -192 -273 -185 -273 -270 -273 -323 -273 -377 -273 -274 -273 -325 -273 -201 -273 -294 -273 -91 -273 -215 -273 -216 -273 -279 -273 -217 -273 -153 -273 -218 -273 -326 -273 -378 -273 -297 -273 -328 -273 -274 -274 -97 -274 -271 -274 -187 -274 -189 -274 -86 -274 -198 -274 -199 -274 -99 -274 -272 -274 -193 -274 -192 -274 -201 -274 -200 -274 -140 -274 -141 -274 -270 -274 -186 -274 -377 -274 -324 -274 -273 -274 -197 -274 -325 -274 -295 -274 -92 -274 -280 -274 -219 -274 -220 -274 -221 -274 -222 -274 -156 -274 -378 -274 -327 -274 -328 -274 -298 -274 -275 -275 -87 -275 -202 -275 -203 -275 -106 -275 -107 -275 -204 -275 -269 -275 -205 -275 -88 -275 -208 -275 -276 -275 -91 -275 -215 -275 -216 -275 -279 -275 -326 -275 -378 -275 -262 -275 -231 -275 -233 -275 -287 -275 -288 -275 -235 -275 -387 -275 -238 -275 -263 -275 -329 -275 -388 -275 -266 -275 -254 -275 -331 -275 -391 -275 -335 -275 -379 -275 -276 -276 -106 -276 -203 -276 -205 -276 -88 -276 -275 -276 -269 -276 -208 -276 -146 -276 -206 -276 -270 -276 -209 -276 -108 -276 -207 -276 -277 -276 -271 -276 -279 -276 -216 -276 -326 -276 -378 -276 -296 -276 -327 -276 -280 -276 -219 -276 -263 -276 -238 -276 -162 -276 -239 -276 -388 -276 -329 -276 -330 -276 -379 -276 -335 -276 -299 -276 -336 -276 -277 -277 -108 -277 -88 -277 -206 -277 -207 -277 -276 -277 -209 -277 -271 -277 -89 -277 -210 -277 -109 -277 -211 -277 -92 -277 -280 -277 -219 -277 -220 -277 -378 -277 -327 -277 -289 -277 -263 -277 -239 -277 -240 -277 -389 -277 -388 -277 -330 -277 -264 -277 -243 -277 -290 -277 -245 -277 -267 -277 -392 -277 -333 -277 -257 -277 -379 -277 -336 -277 -278 -278 -90 -278 -110 -278 -111 -278 -212 -278 -213 -278 -272 -278 -214 -278 -91 -278 -279 -278 -217 -278 -218 -278 -280 -278 -92 -278 -222 -278 -221 -278 -378 -278 -328 -278 -265 -278 -291 -278 -390 -278 -292 -278 -250 -278 -251 -278 -252 -278 -266 -278 -391 -278 -255 -278 -332 -278 -392 -278 -267 -278 -334 -278 -258 -278 -379 -278 -337 -278 -279 -279 -107 -279 -204 -279 -269 -279 -275 -279 -91 -279 -215 -279 -216 -279 -217 -279 -153 -279 -273 -279 -218 -279 -110 -279 -278 -279 -213 -279 -272 -279 -208 -279 -276 -279 -326 -279 -378 -279 -280 -279 -328 -279 -222 -279 -297 -279 -266 -279 -254 -279 -331 -279 -391 -279 -255 -279 -171 -279 -332 -279 -335 -279 -379 -279 -300 -279 -337 -279 -280 -280 -109 -280 -277 -280 -271 -280 -211 -280 -92 -280 -219 -280 -220 -280 -111 -280 -278 -280 -214 -280 -272 -280 -222 -280 -221 -280 -274 -280 -156 -280 -276 -280 -209 -280 -378 -280 -327 -280 -279 -280 -218 -280 -328 -280 -298 -280 -267 -280 -392 -280 -333 -280 -257 -280 -258 -280 -334 -280 -174 -280 -379 -280 -336 -280 -337 -280 -301 -280 -281 -281 -39 -281 -100 -281 -223 -281 -78 -281 -79 -281 -224 -281 -93 -281 -101 -281 -225 -281 -282 -281 -283 -281 -227 -281 -104 -281 -285 -281 -284 -281 -157 -281 -229 -281 -230 -281 -262 -281 -232 -281 -287 -281 -234 -281 -288 -281 -175 -281 -338 -281 -259 -281 -260 -281 -339 -281 -393 -281 -268 -281 -302 -281 -344 -281 -345 -281 -380 -281 -282 -282 -78 -282 -223 -282 -101 -282 -225 -282 -93 -282 -281 -282 -283 -282 -229 -282 -232 -282 -262 -282 -287 -282 -236 -282 -237 -282 -263 -282 -289 -282 -241 -282 -264 -282 -259 -282 -338 -282 -340 -282 -268 -282 -393 -282 -394 -282 -395 -282 -344 -282 -347 -282 -380 -282 -399 -282 -351 -282 -352 -282 -381 -282 -401 -282 -356 -282 -382 -282 -283 -283 -78 -283 -223 -283 -101 -283 -225 -283 -93 -283 -281 -283 -282 -283 -40 -283 -102 -283 -80 -283 -226 -283 -228 -283 -284 -283 -286 -283 -105 -283 -241 -283 -163 -283 -264 -283 -242 -283 -237 -283 -289 -283 -290 -283 -244 -283 -176 -283 -259 -283 -340 -283 -261 -283 -268 -283 -395 -283 -341 -283 -356 -283 -308 -283 -382 -283 -357 -283 -284 -284 -41 -284 -79 -284 -93 -284 -80 -284 -103 -284 -227 -284 -228 -284 -224 -284 -281 -284 -104 -284 -285 -284 -283 -284 -226 -284 -286 -284 -105 -284 -166 -284 -246 -284 -265 -284 -247 -284 -248 -284 -291 -284 -292 -284 -249 -284 -177 -284 -260 -284 -268 -284 -261 -284 -342 -284 -396 -284 -343 -284 -311 -284 -361 -284 -383 -284 -362 -284 -285 -285 -79 -285 -224 -285 -281 -285 -93 -285 -227 -285 -104 -285 -284 -285 -230 -285 -262 -285 -234 -285 -288 -285 -246 -285 -248 -285 -291 -285 -265 -285 -253 -285 -266 -285 -260 -285 -339 -285 -393 -285 -268 -285 -342 -285 -397 -285 -396 -285 -345 -285 -380 -285 -349 -285 -400 -285 -361 -285 -363 -285 -403 -285 -383 -285 -368 -285 -384 -285 -286 -286 -80 -286 -93 -286 -283 -286 -226 -286 -228 -286 -284 -286 -105 -286 -264 -286 -242 -286 -290 -286 -244 -286 -247 -286 -265 -286 -292 -286 -249 -286 -267 -286 -256 -286 -261 -286 -268 -286 -395 -286 -341 -286 -343 -286 -396 -286 -398 -286 -382 -286 -357 -286 -402 -286 -359 -286 -362 -286 -383 -286 -404 -286 -364 -286 -385 -286 -371 -286 -287 -287 -229 -287 -158 -287 -106 -287 -232 -287 -262 -287 -231 -287 -233 -287 -223 -287 -101 -287 -281 -287 -282 -287 -288 -287 -235 -287 -275 -287 -387 -287 -236 -287 -237 -287 -263 -287 -289 -287 -160 -287 -238 -287 -329 -287 -388 -287 -344 -287 -303 -287 -347 -287 -380 -287 -346 -287 -348 -287 -399 -287 -305 -287 -351 -287 -353 -287 -381 -287 -288 -288 -224 -288 -230 -288 -262 -288 -281 -288 -104 -288 -234 -288 -285 -288 -159 -288 -231 -288 -107 -288 -235 -288 -233 -288 -287 -288 -275 -288 -387 -288 -248 -288 -253 -288 -266 -288 -291 -288 -169 -288 -254 -288 -331 -288 -391 -288 -345 -288 -304 -288 -346 -288 -380 -288 -349 -288 -350 -288 -400 -288 -368 -288 -314 -288 -369 -288 -384 -288 -289 -289 -101 -289 -232 -289 -236 -289 -237 -289 -282 -289 -287 -289 -263 -289 -161 -289 -108 -289 -239 -289 -240 -289 -389 -289 -388 -289 -330 -289 -277 -289 -225 -289 -241 -289 -283 -289 -264 -289 -164 -289 -243 -289 -290 -289 -245 -289 -352 -289 -351 -289 -306 -289 -401 -289 -381 -289 -354 -289 -355 -289 -356 -289 -309 -289 -382 -289 -358 -289 -290 -290 -226 -290 -283 -290 -264 -290 -242 -290 -105 -290 -286 -290 -244 -290 -289 -290 -240 -290 -243 -290 -389 -290 -277 -290 -245 -290 -165 -290 -109 -290 -249 -290 -292 -290 -267 -290 -256 -290 -392 -290 -333 -290 -257 -290 -172 -290 -357 -290 -382 -290 -358 -290 -310 -290 -359 -290 -402 -290 -360 -290 -371 -290 -385 -290 -372 -290 -317 -290 -291 -291 -227 -291 -104 -291 -285 -291 -284 -291 -246 -291 -248 -291 -265 -291 -167 -291 -110 -291 -251 -291 -250 -291 -390 -291 -292 -291 -278 -291 -252 -291 -234 -291 -288 -291 -253 -291 -266 -291 -170 -291 -255 -291 -391 -291 -332 -291 -361 -291 -363 -291 -403 -291 -383 -291 -312 -291 -366 -291 -365 -291 -368 -291 -384 -291 -315 -291 -370 -291 -292 -292 -228 -292 -284 -292 -286 -292 -105 -292 -247 -292 -265 -292 -249 -292 -291 -292 -390 -292 -250 -292 -251 -292 -278 -292 -252 -292 -168 -292 -111 -292 -290 -292 -244 -292 -267 -292 -256 -292 -258 -292 -173 -292 -392 -292 -334 -292 -362 -292 -383 -292 -404 -292 -364 -292 -313 -292 -365 -292 -367 -292 -385 -292 -371 -292 -373 -292 -318 -292 -293 -293 -270 -293 -185 -293 -126 -293 -186 -293 -377 -293 -323 -293 -324 -293 -325 -293 -294 -293 -405 -293 -295 -293 -294 -294 -273 -294 -195 -294 -323 -294 -377 -294 -197 -294 -137 -294 -325 -294 -293 -294 -324 -294 -405 -294 -295 -294 -295 -295 -377 -295 -323 -295 -293 -295 -324 -295 -325 -295 -294 -295 -405 -295 -274 -295 -198 -295 -201 -295 -140 -295 -296 -296 -276 -296 -208 -296 -270 -296 -209 -296 -378 -296 -326 -296 -327 -296 -328 -296 -297 -296 -377 -296 -298 -296 -297 -297 -279 -297 -216 -297 -326 -297 -378 -297 -218 -297 -273 -297 -328 -297 -296 -297 -327 -297 -377 -297 -298 -297 -298 -298 -378 -298 -326 -298 -296 -298 -327 -298 -328 -298 -297 -298 -377 -298 -280 -298 -219 -298 -222 -298 -274 -298 -299 -299 -388 -299 -329 -299 -276 -299 -330 -299 -379 -299 -335 -299 -336 -299 -337 -299 -300 -299 -378 -299 -301 -299 -300 -300 -391 -300 -331 -300 -335 -300 -379 -300 -332 -300 -279 -300 -337 -300 -299 -300 -336 -300 -378 -300 -301 -300 -301 -301 -379 -301 -335 -301 -299 -301 -336 -301 -337 -301 -300 -301 -378 -301 -392 -301 -333 -301 -334 -301 -280 -301 -302 -302 -281 -302 -344 -302 -338 -302 -339 -302 -345 -302 -380 -302 -393 -302 -262 -302 -303 -302 -304 -302 -346 -302 -303 -303 -302 -303 -262 -303 -344 -303 -345 -303 -304 -303 -346 -303 -380 -303 -287 -303 -347 -303 -348 -303 -399 -303 -304 -304 -302 -304 -262 -304 -303 -304 -344 -304 -345 -304 -346 -304 -380 -304 -349 -304 -288 -304 -350 -304 -400 -304 -305 -305 -347 -305 -287 -305 -351 -305 -399 -305 -348 -305 -353 -305 -381 -305 -263 -305 -306 -305 -307 -305 -354 -305 -306 -306 -351 -306 -305 -306 -263 -306 -381 -306 -353 -306 -307 -306 -354 -306 -352 -306 -289 -306 -401 -306 -355 -306 -307 -307 -351 -307 -305 -307 -263 -307 -306 -307 -381 -307 -353 -307 -354 -307 -487 -307 -430 -307 -388 -307 -431 -307 -308 -308 -283 -308 -340 -308 -356 -308 -341 -308 -395 -308 -382 -308 -357 -308 -309 -308 -264 -308 -358 -308 -310 -308 -309 -309 -356 -309 -352 -309 -289 -309 -382 -309 -401 -309 -355 -309 -358 -309 -308 -309 -264 -309 -357 -309 -310 -309 -310 -310 -308 -310 -356 -310 -309 -310 -264 -310 -357 -310 -382 -310 -358 -310 -359 -310 -402 -310 -360 -310 -290 -310 -311 -311 -284 -311 -342 -311 -396 -311 -343 -311 -361 -311 -383 -311 -362 -311 -265 -311 -312 -311 -365 -311 -313 -311 -312 -312 -311 -312 -361 -312 -383 -312 -362 -312 -265 -312 -365 -312 -313 -312 -363 -312 -403 -312 -291 -312 -366 -312 -313 -313 -311 -313 -361 -313 -383 -313 -362 -313 -265 -313 -312 -313 -365 -313 -404 -313 -364 -313 -367 -313 -292 -313 -314 -314 -349 -314 -288 -314 -350 -314 -400 -314 -368 -314 -369 -314 -384 -314 -315 -314 -266 -314 -316 -314 -370 -314 -315 -315 -363 -315 -368 -315 -384 -315 -403 -315 -291 -315 -370 -315 -366 -315 -314 -315 -369 -315 -266 -315 -316 -315 -316 -316 -368 -316 -314 -316 -369 -316 -384 -316 -315 -316 -266 -316 -370 -316 -432 -316 -490 -316 -391 -316 -433 -316 -317 -317 -359 -317 -402 -317 -360 -317 -290 -317 -371 -317 -385 -317 -372 -317 -318 -317 -373 -317 -319 -317 -267 -317 -318 -318 -364 -318 -404 -318 -385 -318 -371 -318 -292 -318 -367 -318 -373 -318 -372 -318 -317 -318 -319 -318 -267 -318 -319 -319 -385 -319 -491 -319 -434 -319 -372 -319 -373 -319 -435 -319 -392 -319 -371 -319 -317 -319 -318 -319 -267 -319 -320 -320 -268 -320 -374 -320 -321 -320 -322 -320 -375 -320 -386 -320 -376 -320 -393 -320 -439 -320 -440 -320 -492 -320 -321 -321 -268 -321 -320 -321 -374 -321 -322 -321 -375 -321 -386 -321 -376 -321 -441 -321 -395 -321 -494 -321 -442 -321 -322 -322 -268 -322 -320 -322 -374 -322 -321 -322 -375 -322 -386 -322 -376 -322 -396 -322 -443 -322 -495 -322 -444 -322 -323 -323 -269 -323 -181 -323 -185 -323 -270 -323 -273 -323 -195 -323 -377 -323 -126 -323 -186 -323 -293 -323 -324 -323 -197 -323 -137 -323 -294 -323 -325 -323 -405 -323 -295 -323 -324 -324 -270 -324 -185 -324 -126 -324 -186 -324 -377 -324 -323 -324 -293 -324 -271 -324 -187 -324 -274 -324 -198 -324 -325 -324 -294 -324 -405 -324 -295 -324 -201 -324 -140 -324 -325 -325 -272 -325 -273 -325 -377 -325 -274 -325 -192 -325 -197 -325 -201 -325 -195 -325 -323 -325 -137 -325 -294 -325 -293 -325 -324 -325 -405 -325 -295 -325 -198 -325 -140 -325 -326 -326 -275 -326 -269 -326 -208 -326 -276 -326 -279 -326 -216 -326 -378 -326 -270 -326 -209 -326 -296 -326 -327 -326 -218 -326 -273 -326 -297 -326 -328 -326 -377 -326 -298 -326 -327 -327 -276 -327 -208 -327 -270 -327 -209 -327 -378 -327 -326 -327 -296 -327 -277 -327 -271 -327 -280 -327 -219 -327 -328 -327 -297 -327 -377 -327 -298 -327 -222 -327 -274 -327 -328 -328 -278 -328 -279 -328 -378 -328 -280 -328 -272 -328 -218 -328 -222 -328 -216 -328 -326 -328 -273 -328 -297 -328 -296 -328 -327 -328 -377 -328 -298 -328 -219 -328 -274 -328 -329 -329 -287 -329 -233 -329 -238 -329 -263 -329 -387 -329 -275 -329 -388 -329 -162 -329 -239 -329 -276 -329 -330 -329 -391 -329 -331 -329 -335 -329 -379 -329 -299 -329 -336 -329 -330 -330 -263 -330 -238 -330 -162 -330 -239 -330 -388 -330 -329 -330 -276 -330 -289 -330 -240 -330 -389 -330 -277 -330 -379 -330 -335 -330 -299 -330 -336 -330 -392 -330 -333 -330 -331 -331 -288 -331 -235 -331 -275 -331 -387 -331 -266 -331 -254 -331 -391 -331 -255 -331 -171 -331 -279 -331 -332 -331 -329 -331 -388 -331 -335 -331 -379 -331 -300 -331 -337 -331 -332 -332 -266 -332 -254 -332 -331 -332 -391 -332 -255 -332 -171 -332 -279 -332 -291 -332 -390 -332 -251 -332 -278 -332 -379 -332 -392 -332 -337 -332 -334 -332 -335 -332 -300 -332 -333 -333 -290 -333 -389 -333 -277 -333 -245 -333 -267 -333 -392 -333 -257 -333 -258 -333 -334 -333 -280 -333 -174 -333 -388 -333 -330 -333 -379 -333 -336 -333 -337 -333 -301 -333 -334 -334 -292 -334 -390 -334 -392 -334 -267 -334 -252 -334 -278 -334 -258 -334 -333 -334 -257 -334 -280 -334 -174 -334 -391 -334 -379 -334 -332 -334 -337 -334 -336 -334 -301 -334 -335 -335 -387 -335 -275 -335 -329 -335 -388 -335 -391 -335 -331 -335 -379 -335 -276 -335 -330 -335 -299 -335 -336 -335 -332 -335 -279 -335 -300 -335 -337 -335 -378 -335 -301 -335 -336 -336 -388 -336 -329 -336 -276 -336 -330 -336 -379 -336 -335 -336 -299 -336 -389 -336 -277 -336 -392 -336 -333 -336 -337 -336 -300 -336 -378 -336 -301 -336 -334 -336 -280 -336 -337 -337 -390 -337 -391 -337 -379 -337 -392 -337 -278 -337 -332 -337 -334 -337 -331 -337 -335 -337 -279 -337 -300 -337 -299 -337 -336 -337 -378 -337 -301 -337 -333 -337 -280 -337 -338 -338 -175 -338 -281 -338 -259 -338 -260 -338 -339 -338 -393 -338 -268 -338 -282 -338 -340 -338 -394 -338 -395 -338 -302 -338 -344 -338 -345 -338 -380 -338 -347 -338 -399 -338 -339 -339 -175 -339 -281 -339 -338 -339 -259 -339 -260 -339 -393 -339 -268 -339 -342 -339 -285 -339 -397 -339 -396 -339 -302 -339 -344 -339 -345 -339 -380 -339 -349 -339 -400 -339 -340 -340 -259 -340 -338 -340 -282 -340 -268 -340 -393 -340 -394 -340 -395 -340 -176 -340 -283 -340 -261 -340 -341 -340 -356 -340 -308 -340 -382 -340 -357 -340 -352 -340 -401 -340 -341 -341 -176 -341 -259 -341 -340 -341 -283 -341 -261 -341 -268 -341 -395 -341 -343 -341 -396 -341 -398 -341 -286 -341 -356 -341 -308 -341 -382 -341 -357 -341 -402 -341 -359 -341 -342 -342 -177 -342 -260 -342 -268 -342 -261 -342 -284 -342 -396 -342 -343 -342 -339 -342 -393 -342 -285 -342 -397 -342 -311 -342 -361 -342 -383 -342 -362 -342 -363 -342 -403 -342 -343 -343 -177 -343 -260 -343 -268 -343 -261 -343 -284 -343 -342 -343 -396 -343 -395 -343 -341 -343 -398 -343 -286 -343 -311 -343 -361 -343 -383 -343 -362 -343 -404 -343 -364 -343 -344 -344 -281 -344 -302 -344 -338 -344 -339 -344 -345 -344 -380 -344 -393 -344 -262 -344 -303 -344 -304 -344 -346 -344 -287 -344 -347 -344 -348 -344 -399 -344 -282 -344 -394 -344 -345 -345 -281 -345 -302 -345 -344 -345 -338 -345 -339 -345 -380 -345 -393 -345 -262 -345 -303 -345 -304 -345 -346 -345 -285 -345 -349 -345 -400 -345 -397 -345 -288 -345 -350 -345 -346 -346 -302 -346 -262 -346 -303 -346 -344 -346 -345 -346 -304 -346 -380 -346 -287 -346 -347 -346 -348 -346 -399 -346 -349 -346 -288 -346 -350 -346 -400 -346 -387 -346 -486 -346 -347 -347 -344 -347 -303 -347 -287 -347 -380 -347 -346 -347 -348 -347 -399 -347 -338 -347 -282 -347 -393 -347 -394 -347 -351 -347 -352 -347 -381 -347 -401 -347 -305 -347 -353 -347 -348 -348 -344 -348 -303 -348 -287 -348 -347 -348 -380 -348 -346 -348 -399 -348 -400 -348 -350 -348 -387 -348 -486 -348 -305 -348 -351 -348 -353 -348 -381 -348 -430 -348 -487 -348 -349 -349 -339 -349 -345 -349 -380 -349 -393 -349 -285 -349 -400 -349 -397 -349 -304 -349 -346 -349 -288 -349 -350 -349 -363 -349 -368 -349 -384 -349 -403 -349 -314 -349 -369 -349 -350 -350 -345 -350 -304 -350 -346 -350 -380 -350 -349 -350 -288 -350 -400 -350 -348 -350 -399 -350 -387 -350 -486 -350 -368 -350 -314 -350 -369 -350 -384 -350 -432 -350 -490 -350 -351 -351 -282 -351 -347 -351 -352 -351 -394 -351 -399 -351 -381 -351 -401 -351 -287 -351 -305 -351 -348 -351 -353 -351 -263 -351 -306 -351 -307 -351 -354 -351 -289 -351 -355 -351 -352 -352 -282 -352 -347 -352 -351 -352 -394 -352 -399 -352 -381 -352 -401 -352 -306 -352 -289 -352 -354 -352 -355 -352 -340 -352 -356 -352 -395 -352 -382 -352 -309 -352 -358 -352 -353 -353 -347 -353 -287 -353 -305 -353 -351 -353 -399 -353 -348 -353 -381 -353 -263 -353 -306 -353 -307 -353 -354 -353 -486 -353 -387 -353 -430 -353 -487 -353 -388 -353 -431 -353 -354 -354 -351 -354 -305 -354 -263 -354 -306 -354 -381 -354 -353 -354 -307 -354 -352 -354 -289 -354 -401 -354 -355 -354 -487 -354 -430 -354 -388 -354 -431 -354 -488 -354 -389 -354 -355 -355 -352 -355 -351 -355 -306 -355 -289 -355 -401 -355 -381 -355 -354 -355 -488 -355 -487 -355 -431 -355 -389 -355 -356 -355 -309 -355 -382 -355 -358 -355 -402 -355 -360 -355 -356 -356 -283 -356 -340 -356 -308 -356 -341 -356 -395 -356 -382 -356 -357 -356 -282 -356 -352 -356 -394 -356 -401 -356 -289 -356 -309 -356 -355 -356 -358 -356 -264 -356 -310 -356 -357 -357 -283 -357 -340 -357 -356 -357 -308 -357 -341 -357 -395 -357 -382 -357 -309 -357 -264 -357 -358 -357 -310 -357 -286 -357 -398 -357 -402 -357 -359 -357 -360 -357 -290 -357 -358 -358 -356 -358 -352 -358 -289 -358 -309 -358 -382 -358 -401 -358 -355 -358 -308 -358 -264 -358 -357 -358 -310 -358 -402 -358 -488 -358 -389 -358 -360 -358 -359 -358 -290 -358 -359 -359 -341 -359 -395 -359 -382 -359 -357 -359 -286 -359 -398 -359 -402 -359 -358 -359 -310 -359 -360 -359 -290 -359 -364 -359 -404 -359 -385 -359 -371 -359 -372 -359 -317 -359 -360 -360 -382 -360 -401 -360 -355 -360 -358 -360 -402 -360 -488 -360 -389 -360 -357 -360 -310 -360 -359 -360 -290 -360 -385 -360 -491 -360 -434 -360 -372 -360 -371 -360 -317 -360 -361 -361 -284 -361 -342 -361 -396 -361 -343 -361 -311 -361 -383 -361 -362 -361 -285 -361 -397 -361 -363 -361 -403 -361 -265 -361 -312 -361 -365 -361 -313 -361 -291 -361 -366 -361 -362 -362 -284 -362 -342 -362 -396 -362 -343 -362 -311 -362 -361 -362 -383 -362 -398 -362 -286 -362 -404 -362 -364 -362 -265 -362 -312 -362 -365 -362 -313 -362 -367 -362 -292 -362 -363 -363 -342 -363 -285 -363 -397 -363 -396 -363 -361 -363 -403 -363 -383 -363 -312 -363 -291 -363 -366 -363 -365 -363 -349 -363 -400 -363 -368 -363 -384 -363 -315 -363 -370 -363 -364 -364 -343 -364 -396 -364 -398 -364 -286 -364 -362 -364 -383 -364 -404 -364 -313 -364 -365 -364 -367 -364 -292 -364 -402 -364 -359 -364 -385 -364 -371 -364 -373 -364 -318 -364 -365 -365 -311 -365 -361 -365 -383 -365 -362 -365 -265 -365 -312 -365 -313 -365 -363 -365 -403 -365 -291 -365 -366 -365 -489 -365 -404 -365 -390 -365 -367 -365 -364 -365 -292 -365 -366 -366 -361 -366 -363 -366 -403 -366 -383 -366 -312 -366 -291 -366 -365 -366 -489 -366 -404 -366 -390 -366 -367 -366 -368 -366 -384 -366 -315 -366 -370 -366 -490 -366 -433 -366 -367 -367 -383 -367 -403 -367 -489 -367 -404 -367 -365 -367 -366 -367 -390 -367 -362 -367 -364 -367 -313 -367 -292 -367 -385 -367 -371 -367 -373 -367 -318 -367 -491 -367 -435 -367 -368 -368 -285 -368 -349 -368 -400 -368 -397 -368 -363 -368 -384 -368 -403 -368 -288 -368 -350 -368 -314 -368 -369 -368 -291 -368 -315 -368 -370 -368 -366 -368 -266 -368 -316 -368 -369 -369 -349 -369 -288 -369 -350 -369 -400 -369 -368 -369 -314 -369 -384 -369 -387 -369 -486 -369 -432 -369 -490 -369 -315 -369 -266 -369 -316 -369 -370 -369 -391 -369 -433 -369 -370 -370 -363 -370 -368 -370 -384 -370 -403 -370 -291 -370 -315 -370 -366 -370 -314 -370 -369 -370 -266 -370 -316 -370 -432 -370 -490 -370 -391 -370 -433 -370 -489 -370 -390 -370 -371 -371 -286 -371 -398 -371 -402 -371 -359 -371 -364 -371 -404 -371 -385 -371 -360 -371 -290 -371 -372 -371 -317 -371 -292 -371 -367 -371 -373 -371 -318 -371 -319 -371 -267 -371 -372 -372 -402 -372 -488 -372 -389 -372 -360 -372 -385 -372 -491 -372 -434 -372 -359 -372 -290 -372 -371 -372 -317 -372 -373 -372 -435 -372 -392 -372 -319 -372 -318 -372 -267 -372 -373 -373 -364 -373 -404 -373 -385 -373 -371 -373 -292 -373 -367 -373 -318 -373 -489 -373 -491 -373 -390 -373 -435 -373 -434 -373 -372 -373 -392 -373 -319 -373 -317 -373 -267 -373 -374 -374 -268 -374 -320 -374 -321 -374 -322 -374 -375 -374 -386 -374 -376 -374 -393 -374 -439 -374 -440 -374 -492 -374 -394 -374 -441 -374 -493 -374 -494 -374 -395 -374 -442 -374 -375 -375 -268 -375 -320 -375 -374 -375 -321 -375 -322 -375 -386 -375 -376 -375 -393 -375 -439 -375 -440 -375 -492 -375 -396 -375 -443 -375 -495 -375 -444 -375 -397 -375 -496 -375 -376 -376 -268 -376 -320 -376 -374 -376 -321 -376 -322 -376 -375 -376 -386 -376 -441 -376 -395 -376 -494 -376 -442 -376 -396 -376 -443 -376 -495 -376 -444 -376 -497 -376 -398 -376 -377 -377 -269 -377 -181 -377 -185 -377 -270 -377 -273 -377 -195 -377 -323 -377 -126 -377 -186 -377 -293 -377 -324 -377 -271 -377 -187 -377 -274 -377 -198 -377 -272 -377 -192 -377 -197 -377 -325 -377 -201 -377 -137 -377 -294 -377 -405 -377 -295 -377 -140 -377 -378 -377 -326 -377 -296 -377 -327 -377 -328 -377 -297 -377 -298 -377 -378 -378 -275 -378 -269 -378 -208 -378 -276 -378 -279 -378 -216 -378 -326 -378 -270 -378 -209 -378 -296 -378 -327 -378 -277 -378 -271 -378 -280 -378 -219 -378 -278 -378 -272 -378 -218 -378 -328 -378 -222 -378 -273 -378 -297 -378 -377 -378 -298 -378 -274 -378 -379 -378 -335 -378 -299 -378 -336 -378 -337 -378 -300 -378 -301 -378 -379 -379 -387 -379 -275 -379 -329 -379 -388 -379 -391 -379 -331 -379 -335 -379 -276 -379 -330 -379 -299 -379 -336 -379 -389 -379 -277 -379 -392 -379 -333 -379 -390 -379 -278 -379 -332 -379 -337 -379 -334 -379 -279 -379 -300 -379 -378 -379 -301 -379 -280 -379 -478 -379 -436 -379 -406 -379 -437 -379 -438 -379 -407 -379 -408 -379 -380 -380 -281 -380 -302 -380 -344 -380 -338 -380 -339 -380 -345 -380 -393 -380 -262 -380 -303 -380 -304 -380 -346 -380 -287 -380 -347 -380 -348 -380 -399 -380 -282 -380 -394 -380 -285 -380 -349 -380 -400 -380 -397 -380 -288 -380 -350 -380 -387 -380 -486 -380 -409 -380 -410 -380 -445 -380 -446 -380 -411 -380 -447 -380 -479 -380 -381 -381 -282 -381 -347 -381 -351 -381 -352 -381 -394 -381 -399 -381 -401 -381 -287 -381 -305 -381 -348 -381 -353 -381 -263 -381 -306 -381 -307 -381 -354 -381 -289 -381 -355 -381 -486 -381 -387 -381 -430 -381 -487 -381 -388 -381 -431 -381 -488 -381 -389 -381 -452 -381 -412 -381 -413 -381 -480 -381 -454 -381 -414 -381 -455 -381 -382 -382 -283 -382 -340 -382 -356 -382 -308 -382 -341 -382 -395 -382 -357 -382 -282 -382 -352 -382 -394 -382 -401 -382 -289 -382 -309 -382 -355 -382 -358 -382 -264 -382 -310 -382 -286 -382 -398 -382 -402 -382 -359 -382 -488 -382 -389 -382 -360 -382 -290 -382 -415 -382 -457 -382 -416 -382 -458 -382 -481 -382 -459 -382 -417 -382 -383 -383 -284 -383 -342 -383 -396 -383 -343 -383 -311 -383 -361 -383 -362 -383 -285 -383 -397 -383 -363 -383 -403 -383 -398 -383 -286 -383 -404 -383 -364 -383 -265 -383 -312 -383 -365 -383 -313 -383 -291 -383 -366 -383 -489 -383 -390 -383 -367 -383 -292 -383 -418 -383 -462 -383 -482 -383 -463 -383 -419 -383 -466 -383 -420 -383 -384 -384 -285 -384 -349 -384 -400 -384 -397 -384 -363 -384 -368 -384 -403 -384 -288 -384 -350 -384 -314 -384 -369 -384 -387 -384 -486 -384 -432 -384 -490 -384 -291 -384 -315 -384 -370 -384 -366 -384 -266 -384 -316 -384 -391 -384 -433 -384 -489 -384 -390 -384 -469 -384 -421 -384 -470 -384 -483 -384 -422 -384 -423 -384 -471 -384 -385 -385 -286 -385 -398 -385 -402 -385 -359 -385 -364 -385 -404 -385 -371 -385 -488 -385 -389 -385 -360 -385 -491 -385 -434 -385 -372 -385 -290 -385 -317 -385 -292 -385 -367 -385 -373 -385 -318 -385 -489 -385 -390 -385 -435 -385 -392 -385 -319 -385 -267 -385 -472 -385 -484 -385 -473 -385 -424 -385 -425 -385 -474 -385 -426 -385 -386 -386 -268 -386 -320 -386 -374 -386 -321 -386 -322 -386 -375 -386 -376 -386 -393 -386 -439 -386 -440 -386 -492 -386 -394 -386 -441 -386 -493 -386 -494 -386 -395 -386 -442 -386 -396 -386 -443 -386 -495 -386 -444 -386 -397 -386 -496 -386 -497 -386 -398 -386 -427 -386 -475 -386 -428 -386 -429 -386 -476 -386 -485 -386 -477 -386 -387 -387 -262 -387 -231 -387 -233 -387 -287 -387 -288 -387 -235 -387 -275 -387 -238 -387 -263 -387 -329 -387 -388 -387 -266 -387 -254 -387 -331 -387 -391 -387 -335 -387 -379 -387 -380 -387 -346 -387 -348 -387 -399 -387 -400 -387 -350 -387 -486 -387 -353 -387 -381 -387 -430 -387 -487 -387 -384 -387 -369 -387 -432 -387 -490 -387 -436 -387 -478 -387 -388 -388 -287 -388 -233 -388 -238 -388 -263 -388 -387 -388 -275 -388 -329 -388 -162 -388 -239 -388 -276 -388 -330 -388 -289 -388 -240 -388 -389 -388 -277 -388 -391 -388 -331 -388 -335 -388 -379 -388 -299 -388 -336 -388 -392 -388 -333 -388 -381 -388 -353 -388 -307 -388 -354 -388 -487 -388 -430 -388 -431 -388 -478 -388 -436 -388 -406 -388 -437 -388 -389 -389 -289 -389 -263 -389 -239 -389 -240 -389 -388 -389 -330 -389 -277 -389 -264 -389 -243 -389 -290 -389 -245 -389 -267 -389 -392 -389 -333 -389 -257 -389 -379 -389 -336 -389 -401 -389 -381 -389 -354 -389 -355 -389 -488 -389 -487 -389 -431 -389 -382 -389 -358 -389 -402 -389 -360 -389 -385 -389 -491 -389 -434 -389 -372 -389 -478 -389 -437 -389 -390 -390 -265 -390 -291 -390 -292 -390 -250 -390 -251 -390 -278 -390 -252 -390 -266 -390 -391 -390 -255 -390 -332 -390 -392 -390 -267 -390 -334 -390 -258 -390 -379 -390 -337 -390 -383 -390 -403 -390 -489 -390 -404 -390 -365 -390 -366 -390 -367 -390 -384 -390 -490 -390 -370 -390 -433 -390 -491 -390 -385 -390 -435 -390 -373 -390 -478 -390 -438 -390 -391 -391 -288 -391 -235 -391 -275 -391 -387 -391 -266 -391 -254 -391 -331 -391 -255 -391 -171 -391 -279 -391 -332 -391 -291 -391 -390 -391 -251 -391 -278 -391 -329 -391 -388 -391 -335 -391 -379 -391 -392 -391 -337 -391 -334 -391 -300 -391 -384 -391 -369 -391 -432 -391 -490 -391 -370 -391 -316 -391 -433 -391 -436 -391 -478 -391 -407 -391 -438 -391 -392 -392 -290 -392 -389 -392 -277 -392 -245 -392 -267 -392 -333 -392 -257 -392 -292 -392 -390 -392 -252 -392 -278 -392 -334 -392 -258 -392 -280 -392 -174 -392 -388 -392 -330 -392 -379 -392 -336 -392 -391 -392 -332 -392 -337 -392 -301 -392 -385 -392 -491 -392 -434 -392 -372 -392 -373 -392 -435 -392 -319 -392 -478 -392 -437 -392 -438 -392 -408 -392 -393 -393 -175 -393 -281 -393 -338 -393 -259 -393 -260 -393 -339 -393 -268 -393 -282 -393 -340 -393 -394 -393 -395 -393 -342 -393 -285 -393 -397 -393 -396 -393 -302 -393 -344 -393 -345 -393 -380 -393 -347 -393 -399 -393 -349 -393 -400 -393 -320 -393 -439 -393 -374 -393 -375 -393 -440 -393 -492 -393 -386 -393 -409 -393 -445 -393 -446 -393 -479 -393 -394 -394 -259 -394 -338 -394 -282 -394 -340 -394 -268 -394 -393 -394 -395 -394 -344 -394 -347 -394 -380 -394 -399 -394 -351 -394 -352 -394 -381 -394 -401 -394 -356 -394 -382 -394 -374 -394 -439 -394 -441 -394 -386 -394 -492 -394 -493 -394 -494 -394 -445 -394 -448 -394 -479 -394 -498 -394 -452 -394 -453 -394 -480 -394 -500 -394 -457 -394 -481 -394 -395 -395 -259 -395 -338 -395 -282 -395 -340 -395 -268 -395 -393 -395 -394 -395 -176 -395 -283 -395 -261 -395 -341 -395 -343 -395 -396 -395 -398 -395 -286 -395 -356 -395 -308 -395 -382 -395 -357 -395 -352 -395 -401 -395 -402 -395 -359 -395 -321 -395 -374 -395 -441 -395 -376 -395 -386 -395 -494 -395 -442 -395 -457 -395 -415 -395 -481 -395 -458 -395 -396 -396 -177 -396 -260 -396 -268 -396 -261 -396 -284 -396 -342 -396 -343 -396 -339 -396 -393 -396 -285 -396 -397 -396 -395 -396 -341 -396 -398 -396 -286 -396 -311 -396 -361 -396 -383 -396 -362 -396 -363 -396 -403 -396 -404 -396 -364 -396 -322 -396 -375 -396 -386 -396 -376 -396 -443 -396 -495 -396 -444 -396 -418 -396 -462 -396 -482 -396 -463 -396 -397 -397 -260 -397 -339 -397 -393 -397 -268 -397 -342 -397 -285 -397 -396 -397 -345 -397 -380 -397 -349 -397 -400 -397 -361 -397 -363 -397 -403 -397 -383 -397 -368 -397 -384 -397 -375 -397 -440 -397 -492 -397 -386 -397 -443 -397 -496 -397 -495 -397 -446 -397 -479 -397 -450 -397 -499 -397 -462 -397 -464 -397 -502 -397 -482 -397 -469 -397 -483 -397 -398 -398 -261 -398 -268 -398 -395 -398 -341 -398 -343 -398 -396 -398 -286 -398 -382 -398 -357 -398 -402 -398 -359 -398 -362 -398 -383 -398 -404 -398 -364 -398 -385 -398 -371 -398 -376 -398 -386 -398 -494 -398 -442 -398 -444 -398 -495 -398 -497 -398 -481 -398 -458 -398 -501 -398 -460 -398 -463 -398 -482 -398 -503 -398 -465 -398 -484 -398 -472 -398 -399 -399 -344 -399 -303 -399 -287 -399 -347 -399 -380 -399 -346 -399 -348 -399 -338 -399 -282 -399 -393 -399 -394 -399 -400 -399 -350 -399 -387 -399 -486 -399 -351 -399 -352 -399 -381 -399 -401 -399 -305 -399 -353 -399 -430 -399 -487 -399 -445 -399 -410 -399 -448 -399 -479 -399 -447 -399 -449 -399 -498 -399 -412 -399 -452 -399 -454 -399 -480 -399 -400 -400 -339 -400 -345 -400 -380 -400 -393 -400 -285 -400 -349 -400 -397 -400 -304 -400 -346 -400 -288 -400 -350 -400 -348 -400 -399 -400 -387 -400 -486 -400 -363 -400 -368 -400 -384 -400 -403 -400 -314 -400 -369 -400 -432 -400 -490 -400 -446 -400 -411 -400 -447 -400 -479 -400 -450 -400 -451 -400 -499 -400 -469 -400 -421 -400 -470 -400 -483 -400 -401 -401 -282 -401 -347 -401 -351 -401 -352 -401 -394 -401 -399 -401 -381 -401 -306 -401 -289 -401 -354 -401 -355 -401 -488 -401 -487 -401 -431 -401 -389 -401 -340 -401 -356 -401 -395 -401 -382 -401 -309 -401 -358 -401 -402 -401 -360 -401 -453 -401 -452 -401 -413 -401 -500 -401 -480 -401 -455 -401 -456 -401 -457 -401 -416 -401 -481 -401 -459 -401 -402 -402 -341 -402 -395 -402 -382 -402 -357 -402 -286 -402 -398 -402 -359 -402 -401 -402 -355 -402 -358 -402 -488 -402 -389 -402 -360 -402 -310 -402 -290 -402 -364 -402 -404 -402 -385 -402 -371 -402 -491 -402 -434 -402 -372 -402 -317 -402 -458 -402 -481 -402 -459 -402 -417 -402 -460 -402 -501 -402 -461 -402 -472 -402 -484 -402 -473 -402 -424 -402 -403 -403 -342 -403 -285 -403 -397 -403 -396 -403 -361 -403 -363 -403 -383 -403 -312 -403 -291 -403 -366 -403 -365 -403 -489 -403 -404 -403 -390 -403 -367 -403 -349 -403 -400 -403 -368 -403 -384 -403 -315 -403 -370 -403 -490 -403 -433 -403 -462 -403 -464 -403 -502 -403 -482 -403 -419 -403 -467 -403 -466 -403 -469 -403 -483 -403 -422 -403 -471 -403 -404 -404 -343 -404 -396 -404 -398 -404 -286 -404 -362 -404 -383 -404 -364 -404 -403 -404 -489 -404 -365 -404 -366 -404 -390 -404 -367 -404 -313 -404 -292 -404 -402 -404 -359 -404 -385 -404 -371 -404 -373 -404 -318 -404 -491 -404 -435 -404 -463 -404 -482 -404 -503 -404 -465 -404 -420 -404 -466 -404 -468 -404 -484 -404 -472 -404 -474 -404 -425 -404 -405 -405 -377 -405 -323 -405 -293 -405 -324 -405 -325 -405 -294 -405 -295 -405 -406 -406 -487 -406 -430 -406 -388 -406 -431 -406 -478 -406 -436 -406 -437 -406 -438 -406 -407 -406 -379 -406 -408 -406 -407 -407 -490 -407 -432 -407 -436 -407 -478 -407 -433 -407 -391 -407 -438 -407 -406 -407 -437 -407 -379 -407 -408 -407 -408 -408 -478 -408 -436 -408 -406 -408 -437 -408 -438 -408 -407 -408 -379 -408 -491 -408 -434 -408 -435 -408 -392 -408 -409 -409 -393 -409 -445 -409 -439 -409 -440 -409 -446 -409 -479 -409 -492 -409 -380 -409 -410 -409 -411 -409 -447 -409 -410 -410 -409 -410 -380 -410 -445 -410 -446 -410 -411 -410 -447 -410 -479 -410 -399 -410 -448 -410 -449 -410 -498 -410 -411 -411 -409 -411 -380 -411 -410 -411 -445 -411 -446 -411 -447 -411 -479 -411 -450 -411 -400 -411 -451 -411 -499 -411 -412 -412 -448 -412 -399 -412 -452 -412 -498 -412 -449 -412 -454 -412 -480 -412 -381 -412 -413 -412 -414 -412 -455 -412 -413 -413 -452 -413 -412 -413 -381 -413 -480 -413 -454 -413 -414 -413 -455 -413 -453 -413 -401 -413 -500 -413 -456 -413 -414 -414 -452 -414 -412 -414 -381 -414 -413 -414 -480 -414 -454 -414 -455 -414 -585 -414 -528 -414 -487 -414 -529 -414 -415 -415 -395 -415 -441 -415 -457 -415 -442 -415 -494 -415 -481 -415 -458 -415 -416 -415 -382 -415 -459 -415 -417 -415 -416 -416 -457 -416 -453 -416 -401 -416 -481 -416 -500 -416 -456 -416 -459 -416 -415 -416 -382 -416 -458 -416 -417 -416 -417 -417 -415 -417 -457 -417 -416 -417 -382 -417 -458 -417 -481 -417 -459 -417 -460 -417 -501 -417 -461 -417 -402 -417 -418 -418 -396 -418 -443 -418 -495 -418 -444 -418 -462 -418 -482 -418 -463 -418 -383 -418 -419 -418 -466 -418 -420 -418 -419 -419 -418 -419 -462 -419 -482 -419 -463 -419 -383 -419 -466 -419 -420 -419 -464 -419 -502 -419 -403 -419 -467 -419 -420 -420 -418 -420 -462 -420 -482 -420 -463 -420 -383 -420 -419 -420 -466 -420 -503 -420 -465 -420 -468 -420 -404 -420 -421 -421 -450 -421 -400 -421 -451 -421 -499 -421 -469 -421 -470 -421 -483 -421 -422 -421 -384 -421 -423 -421 -471 -421 -422 -422 -464 -422 -469 -422 -483 -422 -502 -422 -403 -422 -471 -422 -467 -422 -421 -422 -470 -422 -384 -422 -423 -422 -423 -423 -469 -423 -421 -423 -470 -423 -483 -423 -422 -423 -384 -423 -471 -423 -530 -423 -588 -423 -490 -423 -531 -423 -424 -424 -460 -424 -501 -424 -461 -424 -402 -424 -472 -424 -484 -424 -473 -424 -425 -424 -474 -424 -426 -424 -385 -424 -425 -425 -465 -425 -503 -425 -484 -425 -472 -425 -404 -425 -468 -425 -474 -425 -473 -425 -424 -425 -426 -425 -385 -425 -426 -426 -484 -426 -589 -426 -532 -426 -473 -426 -474 -426 -533 -426 -491 -426 -472 -426 -424 -426 -425 -426 -385 -426 -427 -427 -386 -427 -475 -427 -428 -427 -429 -427 -476 -427 -485 -427 -477 -427 -492 -427 -537 -427 -538 -427 -590 -427 -428 -428 -386 -428 -427 -428 -475 -428 -429 -428 -476 -428 -485 -428 -477 -428 -539 -428 -494 -428 -592 -428 -540 -428 -429 -429 -386 -429 -427 -429 -475 -429 -428 -429 -476 -429 -485 -429 -477 -429 -495 -429 -541 -429 -593 -429 -542 -429 -430 -430 -399 -430 -348 -430 -353 -430 -381 -430 -486 -430 -387 -430 -487 -430 -307 -430 -354 -430 -388 -430 -431 -430 -490 -430 -432 -430 -436 -430 -478 -430 -406 -430 -437 -430 -431 -431 -381 -431 -353 -431 -307 -431 -354 -431 -487 -431 -430 -431 -388 -431 -401 -431 -355 -431 -488 -431 -389 -431 -478 -431 -436 -431 -406 -431 -437 -431 -491 -431 -434 -431 -432 -432 -400 -432 -350 -432 -387 -432 -486 -432 -384 -432 -369 -432 -490 -432 -370 -432 -316 -432 -391 -432 -433 -432 -430 -432 -487 -432 -436 -432 -478 -432 -407 -432 -438 -432 -433 -433 -384 -433 -369 -433 -432 -433 -490 -433 -370 -433 -316 -433 -391 -433 -403 -433 -489 -433 -366 -433 -390 -433 -478 -433 -491 -433 -438 -433 -435 -433 -436 -433 -407 -433 -434 -434 -402 -434 -488 -434 -389 -434 -360 -434 -385 -434 -491 -434 -372 -434 -373 -434 -435 -434 -392 -434 -319 -434 -487 -434 -431 -434 -478 -434 -437 -434 -438 -434 -408 -434 -435 -435 -404 -435 -489 -435 -491 -435 -385 -435 -367 -435 -390 -435 -373 -435 -434 -435 -372 -435 -392 -435 -319 -435 -490 -435 -478 -435 -433 -435 -438 -435 -437 -435 -408 -435 -436 -436 -486 -436 -387 -436 -430 -436 -487 -436 -490 -436 -432 -436 -478 -436 -388 -436 -431 -436 -406 -436 -437 -436 -433 -436 -391 -436 -407 -436 -438 -436 -379 -436 -408 -436 -437 -437 -487 -437 -430 -437 -388 -437 -431 -437 -478 -437 -436 -437 -406 -437 -488 -437 -389 -437 -491 -437 -434 -437 -438 -437 -407 -437 -379 -437 -408 -437 -435 -437 -392 -437 -438 -438 -489 -438 -490 -438 -478 -438 -491 -438 -390 -438 -433 -438 -435 -438 -432 -438 -436 -438 -391 -438 -407 -438 -406 -438 -437 -438 -379 -438 -408 -438 -434 -438 -392 -438 -439 -439 -320 -439 -393 -439 -374 -439 -375 -439 -440 -439 -492 -439 -386 -439 -394 -439 -441 -439 -493 -439 -494 -439 -409 -439 -445 -439 -446 -439 -479 -439 -448 -439 -498 -439 -440 -440 -320 -440 -393 -440 -439 -440 -374 -440 -375 -440 -492 -440 -386 -440 -443 -440 -397 -440 -496 -440 -495 -440 -409 -440 -445 -440 -446 -440 -479 -440 -450 -440 -499 -440 -441 -441 -374 -441 -439 -441 -394 -441 -386 -441 -492 -441 -493 -441 -494 -441 -321 -441 -395 -441 -376 -441 -442 -441 -457 -441 -415 -441 -481 -441 -458 -441 -453 -441 -500 -441 -442 -442 -321 -442 -374 -442 -441 -442 -395 -442 -376 -442 -386 -442 -494 -442 -444 -442 -495 -442 -497 -442 -398 -442 -457 -442 -415 -442 -481 -442 -458 -442 -501 -442 -460 -442 -443 -443 -322 -443 -375 -443 -386 -443 -376 -443 -396 -443 -495 -443 -444 -443 -440 -443 -492 -443 -397 -443 -496 -443 -418 -443 -462 -443 -482 -443 -463 -443 -464 -443 -502 -443 -444 -444 -322 -444 -375 -444 -386 -444 -376 -444 -396 -444 -443 -444 -495 -444 -494 -444 -442 -444 -497 -444 -398 -444 -418 -444 -462 -444 -482 -444 -463 -444 -503 -444 -465 -444 -445 -445 -393 -445 -409 -445 -439 -445 -440 -445 -446 -445 -479 -445 -492 -445 -380 -445 -410 -445 -411 -445 -447 -445 -399 -445 -448 -445 -449 -445 -498 -445 -394 -445 -493 -445 -446 -446 -393 -446 -409 -446 -445 -446 -439 -446 -440 -446 -479 -446 -492 -446 -380 -446 -410 -446 -411 -446 -447 -446 -397 -446 -450 -446 -499 -446 -496 -446 -400 -446 -451 -446 -447 -447 -409 -447 -380 -447 -410 -447 -445 -447 -446 -447 -411 -447 -479 -447 -399 -447 -448 -447 -449 -447 -498 -447 -450 -447 -400 -447 -451 -447 -499 -447 -486 -447 -584 -447 -448 -448 -445 -448 -410 -448 -399 -448 -479 -448 -447 -448 -449 -448 -498 -448 -439 -448 -394 -448 -492 -448 -493 -448 -452 -448 -453 -448 -480 -448 -500 -448 -412 -448 -454 -448 -449 -449 -445 -449 -410 -449 -399 -449 -448 -449 -479 -449 -447 -449 -498 -449 -499 -449 -451 -449 -486 -449 -584 -449 -412 -449 -452 -449 -454 -449 -480 -449 -528 -449 -585 -449 -450 -450 -440 -450 -446 -450 -479 -450 -492 -450 -397 -450 -499 -450 -496 -450 -411 -450 -447 -450 -400 -450 -451 -450 -464 -450 -469 -450 -483 -450 -502 -450 -421 -450 -470 -450 -451 -451 -446 -451 -411 -451 -447 -451 -479 -451 -450 -451 -400 -451 -499 -451 -449 -451 -498 -451 -486 -451 -584 -451 -469 -451 -421 -451 -470 -451 -483 -451 -530 -451 -588 -451 -452 -452 -394 -452 -448 -452 -453 -452 -493 -452 -498 -452 -480 -452 -500 -452 -399 -452 -412 -452 -449 -452 -454 -452 -381 -452 -413 -452 -414 -452 -455 -452 -401 -452 -456 -452 -453 -453 -394 -453 -448 -453 -452 -453 -493 -453 -498 -453 -480 -453 -500 -453 -413 -453 -401 -453 -455 -453 -456 -453 -441 -453 -457 -453 -494 -453 -481 -453 -416 -453 -459 -453 -454 -454 -448 -454 -399 -454 -412 -454 -452 -454 -498 -454 -449 -454 -480 -454 -381 -454 -413 -454 -414 -454 -455 -454 -584 -454 -486 -454 -528 -454 -585 -454 -487 -454 -529 -454 -455 -455 -452 -455 -412 -455 -381 -455 -413 -455 -480 -455 -454 -455 -414 -455 -453 -455 -401 -455 -500 -455 -456 -455 -585 -455 -528 -455 -487 -455 -529 -455 -586 -455 -488 -455 -456 -456 -453 -456 -452 -456 -413 -456 -401 -456 -500 -456 -480 -456 -455 -456 -586 -456 -585 -456 -529 -456 -488 -456 -457 -456 -416 -456 -481 -456 -459 -456 -501 -456 -461 -456 -457 -457 -395 -457 -441 -457 -415 -457 -442 -457 -494 -457 -481 -457 -458 -457 -394 -457 -453 -457 -493 -457 -500 -457 -401 -457 -416 -457 -456 -457 -459 -457 -382 -457 -417 -457 -458 -458 -395 -458 -441 -458 -457 -458 -415 -458 -442 -458 -494 -458 -481 -458 -416 -458 -382 -458 -459 -458 -417 -458 -398 -458 -497 -458 -501 -458 -460 -458 -461 -458 -402 -458 -459 -459 -457 -459 -453 -459 -401 -459 -416 -459 -481 -459 -500 -459 -456 -459 -415 -459 -382 -459 -458 -459 -417 -459 -501 -459 -586 -459 -488 -459 -461 -459 -460 -459 -402 -459 -460 -460 -442 -460 -494 -460 -481 -460 -458 -460 -398 -460 -497 -460 -501 -460 -459 -460 -417 -460 -461 -460 -402 -460 -465 -460 -503 -460 -484 -460 -472 -460 -473 -460 -424 -460 -461 -461 -481 -461 -500 -461 -456 -461 -459 -461 -501 -461 -586 -461 -488 -461 -458 -461 -417 -461 -460 -461 -402 -461 -484 -461 -589 -461 -532 -461 -473 -461 -472 -461 -424 -461 -462 -462 -396 -462 -443 -462 -495 -462 -444 -462 -418 -462 -482 -462 -463 -462 -397 -462 -496 -462 -464 -462 -502 -462 -383 -462 -419 -462 -466 -462 -420 -462 -403 -462 -467 -462 -463 -463 -396 -463 -443 -463 -495 -463 -444 -463 -418 -463 -462 -463 -482 -463 -497 -463 -398 -463 -503 -463 -465 -463 -383 -463 -419 -463 -466 -463 -420 -463 -468 -463 -404 -463 -464 -464 -443 -464 -397 -464 -496 -464 -495 -464 -462 -464 -502 -464 -482 -464 -419 -464 -403 -464 -467 -464 -466 -464 -450 -464 -499 -464 -469 -464 -483 -464 -422 -464 -471 -464 -465 -465 -444 -465 -495 -465 -497 -465 -398 -465 -463 -465 -482 -465 -503 -465 -420 -465 -466 -465 -468 -465 -404 -465 -501 -465 -460 -465 -484 -465 -472 -465 -474 -465 -425 -465 -466 -466 -418 -466 -462 -466 -482 -466 -463 -466 -383 -466 -419 -466 -420 -466 -464 -466 -502 -466 -403 -466 -467 -466 -587 -466 -503 -466 -489 -466 -468 -466 -465 -466 -404 -466 -467 -467 -462 -467 -464 -467 -502 -467 -482 -467 -419 -467 -403 -467 -466 -467 -587 -467 -503 -467 -489 -467 -468 -467 -469 -467 -483 -467 -422 -467 -471 -467 -588 -467 -531 -467 -468 -468 -482 -468 -502 -468 -587 -468 -503 -468 -466 -468 -467 -468 -489 -468 -463 -468 -465 -468 -420 -468 -404 -468 -484 -468 -472 -468 -474 -468 -425 -468 -589 -468 -533 -468 -469 -469 -397 -469 -450 -469 -499 -469 -496 -469 -464 -469 -483 -469 -502 -469 -400 -469 -451 -469 -421 -469 -470 -469 -403 -469 -422 -469 -471 -469 -467 -469 -384 -469 -423 -469 -470 -470 -450 -470 -400 -470 -451 -470 -499 -470 -469 -470 -421 -470 -483 -470 -486 -470 -584 -470 -530 -470 -588 -470 -422 -470 -384 -470 -423 -470 -471 -470 -490 -470 -531 -470 -471 -471 -464 -471 -469 -471 -483 -471 -502 -471 -403 -471 -422 -471 -467 -471 -421 -471 -470 -471 -384 -471 -423 -471 -530 -471 -588 -471 -490 -471 -531 -471 -587 -471 -489 -471 -472 -472 -398 -472 -497 -472 -501 -472 -460 -472 -465 -472 -503 -472 -484 -472 -461 -472 -402 -472 -473 -472 -424 -472 -404 -472 -468 -472 -474 -472 -425 -472 -426 -472 -385 -472 -473 -473 -501 -473 -586 -473 -488 -473 -461 -473 -484 -473 -589 -473 -532 -473 -460 -473 -402 -473 -472 -473 -424 -473 -474 -473 -533 -473 -491 -473 -426 -473 -425 -473 -385 -473 -474 -474 -465 -474 -503 -474 -484 -474 -472 -474 -404 -474 -468 -474 -425 -474 -587 -474 -589 -474 -489 -474 -533 -474 -532 -474 -473 -474 -491 -474 -426 -474 -424 -474 -385 -474 -475 -475 -386 -475 -427 -475 -428 -475 -429 -475 -476 -475 -485 -475 -477 -475 -492 -475 -537 -475 -538 -475 -590 -475 -493 -475 -539 -475 -591 -475 -592 -475 -494 -475 -540 -475 -476 -476 -386 -476 -427 -476 -475 -476 -428 -476 -429 -476 -485 -476 -477 -476 -492 -476 -537 -476 -538 -476 -590 -476 -495 -476 -541 -476 -593 -476 -542 -476 -496 -476 -594 -476 -477 -477 -386 -477 -427 -477 -475 -477 -428 -477 -429 -477 -476 -477 -485 -477 -539 -477 -494 -477 -592 -477 -540 -477 -495 -477 -541 -477 -593 -477 -542 -477 -595 -477 -497 -477 -478 -478 -486 -478 -387 -478 -430 -478 -487 -478 -490 -478 -432 -478 -436 -478 -388 -478 -431 -478 -406 -478 -437 -478 -488 -478 -389 -478 -491 -478 -434 -478 -489 -478 -390 -478 -433 -478 -438 -478 -435 -478 -391 -478 -407 -478 -379 -478 -408 -478 -392 -478 -576 -478 -534 -478 -504 -478 -535 -478 -536 -478 -505 -478 -506 -478 -479 -479 -393 -479 -409 -479 -445 -479 -439 -479 -440 -479 -446 -479 -492 -479 -380 -479 -410 -479 -411 -479 -447 -479 -399 -479 -448 -479 -449 -479 -498 -479 -394 -479 -493 -479 -397 -479 -450 -479 -499 -479 -496 -479 -400 -479 -451 -479 -486 -479 -584 -479 -507 -479 -508 -479 -543 -479 -544 -479 -509 -479 -545 -479 -577 -479 -480 -480 -394 -480 -448 -480 -452 -480 -453 -480 -493 -480 -498 -480 -500 -480 -399 -480 -412 -480 -449 -480 -454 -480 -381 -480 -413 -480 -414 -480 -455 -480 -401 -480 -456 -480 -584 -480 -486 -480 -528 -480 -585 -480 -487 -480 -529 -480 -586 -480 -488 -480 -550 -480 -510 -480 -511 -480 -578 -480 -552 -480 -512 -480 -553 -480 -481 -481 -395 -481 -441 -481 -457 -481 -415 -481 -442 -481 -494 -481 -458 -481 -394 -481 -453 -481 -493 -481 -500 -481 -401 -481 -416 -481 -456 -481 -459 -481 -382 -481 -417 -481 -398 -481 -497 -481 -501 -481 -460 -481 -586 -481 -488 -481 -461 -481 -402 -481 -513 -481 -555 -481 -514 -481 -556 -481 -579 -481 -557 -481 -515 -481 -482 -482 -396 -482 -443 -482 -495 -482 -444 -482 -418 -482 -462 -482 -463 -482 -397 -482 -496 -482 -464 -482 -502 -482 -497 -482 -398 -482 -503 -482 -465 -482 -383 -482 -419 -482 -466 -482 -420 -482 -403 -482 -467 -482 -587 -482 -489 -482 -468 -482 -404 -482 -516 -482 -560 -482 -580 -482 -561 -482 -517 -482 -564 -482 -518 -482 -483 -483 -397 -483 -450 -483 -499 -483 -496 -483 -464 -483 -469 -483 -502 -483 -400 -483 -451 -483 -421 -483 -470 -483 -486 -483 -584 -483 -530 -483 -588 -483 -403 -483 -422 -483 -471 -483 -467 -483 -384 -483 -423 -483 -490 -483 -531 -483 -587 -483 -489 -483 -567 -483 -519 -483 -568 -483 -581 -483 -520 -483 -521 -483 -569 -483 -484 -484 -398 -484 -497 -484 -501 -484 -460 -484 -465 -484 -503 -484 -472 -484 -586 -484 -488 -484 -461 -484 -589 -484 -532 -484 -473 -484 -402 -484 -424 -484 -404 -484 -468 -484 -474 -484 -425 -484 -587 -484 -489 -484 -533 -484 -491 -484 -426 -484 -385 -484 -570 -484 -582 -484 -571 -484 -522 -484 -523 -484 -572 -484 -524 -484 -485 -485 -386 -485 -427 -485 -475 -485 -428 -485 -429 -485 -476 -485 -477 -485 -492 -485 -537 -485 -538 -485 -590 -485 -493 -485 -539 -485 -591 -485 -592 -485 -494 -485 -540 -485 -495 -485 -541 -485 -593 -485 -542 -485 -496 -485 -594 -485 -595 -485 -497 -485 -525 -485 -573 -485 -526 -485 -527 -485 -574 -485 -583 -485 -575 -485 -486 -486 -380 -486 -346 -486 -348 -486 -399 -486 -400 -486 -350 -486 -387 -486 -353 -486 -381 -486 -430 -486 -487 -486 -384 -486 -369 -486 -432 -486 -490 -486 -436 -486 -478 -486 -479 -486 -447 -486 -449 -486 -498 -486 -499 -486 -451 -486 -584 -486 -454 -486 -480 -486 -528 -486 -585 -486 -483 -486 -470 -486 -530 -486 -588 -486 -534 -486 -576 -486 -487 -487 -399 -487 -348 -487 -353 -487 -381 -487 -486 -487 -387 -487 -430 -487 -307 -487 -354 -487 -388 -487 -431 -487 -401 -487 -355 -487 -488 -487 -389 -487 -490 -487 -432 -487 -436 -487 -478 -487 -406 -487 -437 -487 -491 -487 -434 -487 -480 -487 -454 -487 -414 -487 -455 -487 -585 -487 -528 -487 -529 -487 -576 -487 -534 -487 -504 -487 -535 -487 -488 -488 -401 -488 -381 -488 -354 -488 -355 -488 -487 -488 -431 -488 -389 -488 -382 -488 -358 -488 -402 -488 -360 -488 -385 -488 -491 -488 -434 -488 -372 -488 -478 -488 -437 -488 -500 -488 -480 -488 -455 -488 -456 -488 -586 -488 -585 -488 -529 -488 -481 -488 -459 -488 -501 -488 -461 -488 -484 -488 -589 -488 -532 -488 -473 -488 -576 -488 -535 -488 -489 -489 -383 -489 -403 -489 -404 -489 -365 -489 -366 -489 -390 -489 -367 -489 -384 -489 -490 -489 -370 -489 -433 -489 -491 -489 -385 -489 -435 -489 -373 -489 -478 -489 -438 -489 -482 -489 -502 -489 -587 -489 -503 -489 -466 -489 -467 -489 -468 -489 -483 -489 -588 -489 -471 -489 -531 -489 -589 -489 -484 -489 -533 -489 -474 -489 -576 -489 -536 -489 -490 -490 -400 -490 -350 -490 -387 -490 -486 -490 -384 -490 -369 -490 -432 -490 -370 -490 -316 -490 -391 -490 -433 -490 -403 -490 -489 -490 -366 -490 -390 -490 -430 -490 -487 -490 -436 -490 -478 -490 -491 -490 -438 -490 -435 -490 -407 -490 -483 -490 -470 -490 -530 -490 -588 -490 -471 -490 -423 -490 -531 -490 -534 -490 -576 -490 -505 -490 -536 -490 -491 -491 -402 -491 -488 -491 -389 -491 -360 -491 -385 -491 -434 -491 -372 -491 -404 -491 -489 -491 -367 -491 -390 -491 -435 -491 -373 -491 -392 -491 -319 -491 -487 -491 -431 -491 -478 -491 -437 -491 -490 -491 -433 -491 -438 -491 -408 -491 -484 -491 -589 -491 -532 -491 -473 -491 -474 -491 -533 -491 -426 -491 -576 -491 -535 -491 -536 -491 -506 -491 -492 -492 -320 -492 -393 -492 -439 -492 -374 -492 -375 -492 -440 -492 -386 -492 -394 -492 -441 -492 -493 -492 -494 -492 -443 -492 -397 -492 -496 -492 -495 -492 -409 -492 -445 -492 -446 -492 -479 -492 -448 -492 -498 -492 -450 -492 -499 -492 -427 -492 -537 -492 -475 -492 -476 -492 -538 -492 -590 -492 -485 -492 -507 -492 -543 -492 -544 -492 -577 -492 -493 -493 -374 -493 -439 -493 -394 -493 -441 -493 -386 -493 -492 -493 -494 -493 -445 -493 -448 -493 -479 -493 -498 -493 -452 -493 -453 -493 -480 -493 -500 -493 -457 -493 -481 -493 -475 -493 -537 -493 -539 -493 -485 -493 -590 -493 -591 -493 -592 -493 -543 -493 -546 -493 -577 -493 -596 -493 -550 -493 -551 -493 -578 -493 -598 -493 -555 -493 -579 -493 -494 -494 -374 -494 -439 -494 -394 -494 -441 -494 -386 -494 -492 -494 -493 -494 -321 -494 -395 -494 -376 -494 -442 -494 -444 -494 -495 -494 -497 -494 -398 -494 -457 -494 -415 -494 -481 -494 -458 -494 -453 -494 -500 -494 -501 -494 -460 -494 -428 -494 -475 -494 -539 -494 -477 -494 -485 -494 -592 -494 -540 -494 -555 -494 -513 -494 -579 -494 -556 -494 -495 -495 -322 -495 -375 -495 -386 -495 -376 -495 -396 -495 -443 -495 -444 -495 -440 -495 -492 -495 -397 -495 -496 -495 -494 -495 -442 -495 -497 -495 -398 -495 -418 -495 -462 -495 -482 -495 -463 -495 -464 -495 -502 -495 -503 -495 -465 -495 -429 -495 -476 -495 -485 -495 -477 -495 -541 -495 -593 -495 -542 -495 -516 -495 -560 -495 -580 -495 -561 -495 -496 -496 -375 -496 -440 -496 -492 -496 -386 -496 -443 -496 -397 -496 -495 -496 -446 -496 -479 -496 -450 -496 -499 -496 -462 -496 -464 -496 -502 -496 -482 -496 -469 -496 -483 -496 -476 -496 -538 -496 -590 -496 -485 -496 -541 -496 -594 -496 -593 -496 -544 -496 -577 -496 -548 -496 -597 -496 -560 -496 -562 -496 -600 -496 -580 -496 -567 -496 -581 -496 -497 -497 -376 -497 -386 -497 -494 -497 -442 -497 -444 -497 -495 -497 -398 -497 -481 -497 -458 -497 -501 -497 -460 -497 -463 -497 -482 -497 -503 -497 -465 -497 -484 -497 -472 -497 -477 -497 -485 -497 -592 -497 -540 -497 -542 -497 -593 -497 -595 -497 -579 -497 -556 -497 -599 -497 -558 -497 -561 -497 -580 -497 -601 -497 -563 -497 -582 -497 -570 -497 -498 -498 -445 -498 -410 -498 -399 -498 -448 -498 -479 -498 -447 -498 -449 -498 -439 -498 -394 -498 -492 -498 -493 -498 -499 -498 -451 -498 -486 -498 -584 -498 -452 -498 -453 -498 -480 -498 -500 -498 -412 -498 -454 -498 -528 -498 -585 -498 -543 -498 -508 -498 -546 -498 -577 -498 -545 -498 -547 -498 -596 -498 -510 -498 -550 -498 -552 -498 -578 -498 -499 -499 -440 -499 -446 -499 -479 -499 -492 -499 -397 -499 -450 -499 -496 -499 -411 -499 -447 -499 -400 -499 -451 -499 -449 -499 -498 -499 -486 -499 -584 -499 -464 -499 -469 -499 -483 -499 -502 -499 -421 -499 -470 -499 -530 -499 -588 -499 -544 -499 -509 -499 -545 -499 -577 -499 -548 -499 -549 -499 -597 -499 -567 -499 -519 -499 -568 -499 -581 -499 -500 -500 -394 -500 -448 -500 -452 -500 -453 -500 -493 -500 -498 -500 -480 -500 -413 -500 -401 -500 -455 -500 -456 -500 -586 -500 -585 -500 -529 -500 -488 -500 -441 -500 -457 -500 -494 -500 -481 -500 -416 -500 -459 -500 -501 -500 -461 -500 -551 -500 -550 -500 -511 -500 -598 -500 -578 -500 -553 -500 -554 -500 -555 -500 -514 -500 -579 -500 -557 -500 -501 -501 -442 -501 -494 -501 -481 -501 -458 -501 -398 -501 -497 -501 -460 -501 -500 -501 -456 -501 -459 -501 -586 -501 -488 -501 -461 -501 -417 -501 -402 -501 -465 -501 -503 -501 -484 -501 -472 -501 -589 -501 -532 -501 -473 -501 -424 -501 -556 -501 -579 -501 -557 -501 -515 -501 -558 -501 -599 -501 -559 -501 -570 -501 -582 -501 -571 -501 -522 -501 -502 -502 -443 -502 -397 -502 -496 -502 -495 -502 -462 -502 -464 -502 -482 -502 -419 -502 -403 -502 -467 -502 -466 -502 -587 -502 -503 -502 -489 -502 -468 -502 -450 -502 -499 -502 -469 -502 -483 -502 -422 -502 -471 -502 -588 -502 -531 -502 -560 -502 -562 -502 -600 -502 -580 -502 -517 -502 -565 -502 -564 -502 -567 -502 -581 -502 -520 -502 -569 -502 -503 -503 -444 -503 -495 -503 -497 -503 -398 -503 -463 -503 -482 -503 -465 -503 -502 -503 -587 -503 -466 -503 -467 -503 -489 -503 -468 -503 -420 -503 -404 -503 -501 -503 -460 -503 -484 -503 -472 -503 -474 -503 -425 -503 -589 -503 -533 -503 -561 -503 -580 -503 -601 -503 -563 -503 -518 -503 -564 -503 -566 -503 -582 -503 -570 -503 -572 -503 -523 -503 -504 -504 -585 -504 -528 -504 -487 -504 -529 -504 -576 -504 -534 -504 -535 -504 -536 -504 -505 -504 -478 -504 -506 -504 -505 -505 -588 -505 -530 -505 -534 -505 -576 -505 -531 -505 -490 -505 -536 -505 -504 -505 -535 -505 -478 -505 -506 -505 -506 -506 -576 -506 -534 -506 -504 -506 -535 -506 -536 -506 -505 -506 -478 -506 -589 -506 -532 -506 -533 -506 -491 -506 -507 -507 -492 -507 -543 -507 -537 -507 -538 -507 -544 -507 -577 -507 -590 -507 -479 -507 -508 -507 -509 -507 -545 -507 -508 -508 -507 -508 -479 -508 -543 -508 -544 -508 -509 -508 -545 -508 -577 -508 -498 -508 -546 -508 -547 -508 -596 -508 -509 -509 -507 -509 -479 -509 -508 -509 -543 -509 -544 -509 -545 -509 -577 -509 -548 -509 -499 -509 -549 -509 -597 -509 -510 -510 -546 -510 -498 -510 -550 -510 -596 -510 -547 -510 -552 -510 -578 -510 -480 -510 -511 -510 -512 -510 -553 -510 -511 -511 -550 -511 -510 -511 -480 -511 -578 -511 -552 -511 -512 -511 -553 -511 -551 -511 -500 -511 -598 -511 -554 -511 -512 -512 -550 -512 -510 -512 -480 -512 -511 -512 -578 -512 -552 -512 -553 -512 -688 -512 -626 -512 -585 -512 -627 -512 -513 -513 -494 -513 -539 -513 -555 -513 -540 -513 -592 -513 -579 -513 -556 -513 -514 -513 -481 -513 -557 -513 -515 -513 -514 -514 -555 -514 -551 -514 -500 -514 -579 -514 -598 -514 -554 -514 -557 -514 -513 -514 -481 -514 -556 -514 -515 -514 -515 -515 -513 -515 -555 -515 -514 -515 -481 -515 -556 -515 -579 -515 -557 -515 -558 -515 -599 -515 -559 -515 -501 -515 -516 -516 -495 -516 -541 -516 -593 -516 -542 -516 -560 -516 -580 -516 -561 -516 -482 -516 -517 -516 -564 -516 -518 -516 -517 -517 -516 -517 -560 -517 -580 -517 -561 -517 -482 -517 -564 -517 -518 -517 -562 -517 -600 -517 -502 -517 -565 -517 -518 -518 -516 -518 -560 -518 -580 -518 -561 -518 -482 -518 -517 -518 -564 -518 -601 -518 -563 -518 -566 -518 -503 -518 -519 -519 -548 -519 -499 -519 -549 -519 -597 -519 -567 -519 -568 -519 -581 -519 -520 -519 -483 -519 -521 -519 -569 -519 -520 -520 -562 -520 -567 -520 -581 -520 -600 -520 -502 -520 -569 -520 -565 -520 -519 -520 -568 -520 -483 -520 -521 -520 -521 -521 -567 -521 -519 -521 -568 -521 -581 -521 -520 -521 -483 -521 -569 -521 -628 -521 -689 -521 -588 -521 -629 -521 -522 -522 -558 -522 -599 -522 -559 -522 -501 -522 -570 -522 -582 -522 -571 -522 -523 -522 -572 -522 -524 -522 -484 -522 -523 -523 -563 -523 -601 -523 -582 -523 -570 -523 -503 -523 -566 -523 -572 -523 -571 -523 -522 -523 -524 -523 -484 -523 -524 -524 -582 -524 -690 -524 -630 -524 -571 -524 -572 -524 -631 -524 -589 -524 -570 -524 -522 -524 -523 -524 -484 -524 -525 -525 -485 -525 -573 -525 -526 -525 -527 -525 -574 -525 -583 -525 -575 -525 -590 -525 -635 -525 -636 -525 -691 -525 -526 -526 -485 -526 -525 -526 -573 -526 -527 -526 -574 -526 -583 -526 -575 -526 -637 -526 -592 -526 -693 -526 -638 -526 -527 -527 -485 -527 -525 -527 -573 -527 -526 -527 -574 -527 -583 -527 -575 -527 -593 -527 -639 -527 -694 -527 -640 -527 -528 -528 -498 -528 -449 -528 -454 -528 -480 -528 -584 -528 -486 -528 -585 -528 -414 -528 -455 -528 -487 -528 -529 -528 -588 -528 -530 -528 -534 -528 -576 -528 -504 -528 -535 -528 -529 -529 -480 -529 -454 -529 -414 -529 -455 -529 -585 -529 -528 -529 -487 -529 -500 -529 -456 -529 -586 -529 -488 -529 -576 -529 -534 -529 -504 -529 -535 -529 -589 -529 -532 -529 -530 -530 -499 -530 -451 -530 -486 -530 -584 -530 -483 -530 -470 -530 -588 -530 -471 -530 -423 -530 -490 -530 -531 -530 -528 -530 -585 -530 -534 -530 -576 -530 -505 -530 -536 -530 -531 -531 -483 -531 -470 -531 -530 -531 -588 -531 -471 -531 -423 -531 -490 -531 -502 -531 -587 -531 -467 -531 -489 -531 -576 -531 -589 -531 -536 -531 -533 -531 -534 -531 -505 -531 -532 -532 -501 -532 -586 -532 -488 -532 -461 -532 -484 -532 -589 -532 -473 -532 -474 -532 -533 -532 -491 -532 -426 -532 -585 -532 -529 -532 -576 -532 -535 -532 -536 -532 -506 -532 -533 -533 -503 -533 -587 -533 -589 -533 -484 -533 -468 -533 -489 -533 -474 -533 -532 -533 -473 -533 -491 -533 -426 -533 -588 -533 -576 -533 -531 -533 -536 -533 -535 -533 -506 -533 -534 -534 -584 -534 -486 -534 -528 -534 -585 -534 -588 -534 -530 -534 -576 -534 -487 -534 -529 -534 -504 -534 -535 -534 -531 -534 -490 -534 -505 -534 -536 -534 -478 -534 -506 -534 -535 -535 -585 -535 -528 -535 -487 -535 -529 -535 -576 -535 -534 -535 -504 -535 -586 -535 -488 -535 -589 -535 -532 -535 -536 -535 -505 -535 -478 -535 -506 -535 -533 -535 -491 -535 -536 -536 -587 -536 -588 -536 -576 -536 -589 -536 -489 -536 -531 -536 -533 -536 -530 -536 -534 -536 -490 -536 -505 -536 -504 -536 -535 -536 -478 -536 -506 -536 -532 -536 -491 -536 -537 -537 -427 -537 -492 -537 -475 -537 -476 -537 -538 -537 -590 -537 -485 -537 -493 -537 -539 -537 -591 -537 -592 -537 -507 -537 -543 -537 -544 -537 -577 -537 -546 -537 -596 -537 -538 -538 -427 -538 -492 -538 -537 -538 -475 -538 -476 -538 -590 -538 -485 -538 -541 -538 -496 -538 -594 -538 -593 -538 -507 -538 -543 -538 -544 -538 -577 -538 -548 -538 -597 -538 -539 -539 -475 -539 -537 -539 -493 -539 -485 -539 -590 -539 -591 -539 -592 -539 -428 -539 -494 -539 -477 -539 -540 -539 -555 -539 -513 -539 -579 -539 -556 -539 -551 -539 -598 -539 -540 -540 -428 -540 -475 -540 -539 -540 -494 -540 -477 -540 -485 -540 -592 -540 -542 -540 -593 -540 -595 -540 -497 -540 -555 -540 -513 -540 -579 -540 -556 -540 -599 -540 -558 -540 -541 -541 -429 -541 -476 -541 -485 -541 -477 -541 -495 -541 -593 -541 -542 -541 -538 -541 -590 -541 -496 -541 -594 -541 -516 -541 -560 -541 -580 -541 -561 -541 -562 -541 -600 -541 -542 -542 -429 -542 -476 -542 -485 -542 -477 -542 -495 -542 -541 -542 -593 -542 -592 -542 -540 -542 -595 -542 -497 -542 -516 -542 -560 -542 -580 -542 -561 -542 -601 -542 -563 -542 -543 -543 -492 -543 -507 -543 -537 -543 -538 -543 -544 -543 -577 -543 -590 -543 -479 -543 -508 -543 -509 -543 -545 -543 -498 -543 -546 -543 -547 -543 -596 -543 -493 -543 -591 -543 -544 -544 -492 -544 -507 -544 -543 -544 -537 -544 -538 -544 -577 -544 -590 -544 -479 -544 -508 -544 -509 -544 -545 -544 -496 -544 -548 -544 -597 -544 -594 -544 -499 -544 -549 -544 -545 -545 -507 -545 -479 -545 -508 -545 -543 -545 -544 -545 -509 -545 -577 -545 -498 -545 -546 -545 -547 -545 -596 -545 -548 -545 -499 -545 -549 -545 -597 -545 -584 -545 -697 -545 -546 -546 -543 -546 -508 -546 -498 -546 -577 -546 -545 -546 -547 -546 -596 -546 -537 -546 -493 -546 -590 -546 -591 -546 -550 -546 -551 -546 -578 -546 -598 -546 -510 -546 -552 -546 -547 -547 -543 -547 -508 -547 -498 -547 -546 -547 -577 -547 -545 -547 -596 -547 -597 -547 -549 -547 -584 -547 -697 -547 -510 -547 -550 -547 -552 -547 -578 -547 -626 -547 -688 -547 -548 -548 -538 -548 -544 -548 -577 -548 -590 -548 -496 -548 -597 -548 -594 -548 -509 -548 -545 -548 -499 -548 -549 -548 -562 -548 -567 -548 -581 -548 -600 -548 -519 -548 -568 -548 -549 -549 -544 -549 -509 -549 -545 -549 -577 -549 -548 -549 -499 -549 -597 -549 -547 -549 -596 -549 -584 -549 -697 -549 -567 -549 -519 -549 -568 -549 -581 -549 -628 -549 -689 -549 -550 -550 -493 -550 -546 -550 -551 -550 -591 -550 -596 -550 -578 -550 -598 -550 -498 -550 -510 -550 -547 -550 -552 -550 -480 -550 -511 -550 -512 -550 -553 -550 -500 -550 -554 -550 -551 -551 -493 -551 -546 -551 -550 -551 -591 -551 -596 -551 -578 -551 -598 -551 -511 -551 -500 -551 -553 -551 -554 -551 -539 -551 -555 -551 -592 -551 -579 -551 -514 -551 -557 -551 -552 -552 -546 -552 -498 -552 -510 -552 -550 -552 -596 -552 -547 -552 -578 -552 -480 -552 -511 -552 -512 -552 -553 -552 -697 -552 -584 -552 -626 -552 -688 -552 -585 -552 -627 -552 -553 -553 -550 -553 -510 -553 -480 -553 -511 -553 -578 -553 -552 -553 -512 -553 -551 -553 -500 -553 -598 -553 -554 -553 -688 -553 -626 -553 -585 -553 -627 -553 -698 -553 -586 -553 -554 -554 -551 -554 -550 -554 -511 -554 -500 -554 -598 -554 -578 -554 -553 -554 -698 -554 -688 -554 -627 -554 -586 -554 -555 -554 -514 -554 -579 -554 -557 -554 -599 -554 -559 -554 -555 -555 -494 -555 -539 -555 -513 -555 -540 -555 -592 -555 -579 -555 -556 -555 -493 -555 -551 -555 -591 -555 -598 -555 -500 -555 -514 -555 -554 -555 -557 -555 -481 -555 -515 -555 -556 -556 -494 -556 -539 -556 -555 -556 -513 -556 -540 -556 -592 -556 -579 -556 -514 -556 -481 -556 -557 -556 -515 -556 -497 -556 -595 -556 -599 -556 -558 -556 -559 -556 -501 -556 -557 -557 -555 -557 -551 -557 -500 -557 -514 -557 -579 -557 -598 -557 -554 -557 -513 -557 -481 -557 -556 -557 -515 -557 -599 -557 -698 -557 -586 -557 -559 -557 -558 -557 -501 -557 -558 -558 -540 -558 -592 -558 -579 -558 -556 -558 -497 -558 -595 -558 -599 -558 -557 -558 -515 -558 -559 -558 -501 -558 -563 -558 -601 -558 -582 -558 -570 -558 -571 -558 -522 -558 -559 -559 -579 -559 -598 -559 -554 -559 -557 -559 -599 -559 -698 -559 -586 -559 -556 -559 -515 -559 -558 -559 -501 -559 -582 -559 -690 -559 -630 -559 -571 -559 -570 -559 -522 -559 -560 -560 -495 -560 -541 -560 -593 -560 -542 -560 -516 -560 -580 -560 -561 -560 -496 -560 -594 -560 -562 -560 -600 -560 -482 -560 -517 -560 -564 -560 -518 -560 -502 -560 -565 -560 -561 -561 -495 -561 -541 -561 -593 -561 -542 -561 -516 -561 -560 -561 -580 -561 -595 -561 -497 -561 -601 -561 -563 -561 -482 -561 -517 -561 -564 -561 -518 -561 -566 -561 -503 -561 -562 -562 -541 -562 -496 -562 -594 -562 -593 -562 -560 -562 -600 -562 -580 -562 -517 -562 -502 -562 -565 -562 -564 -562 -548 -562 -597 -562 -567 -562 -581 -562 -520 -562 -569 -562 -563 -563 -542 -563 -593 -563 -595 -563 -497 -563 -561 -563 -580 -563 -601 -563 -518 -563 -564 -563 -566 -563 -503 -563 -599 -563 -558 -563 -582 -563 -570 -563 -572 -563 -523 -563 -564 -564 -516 -564 -560 -564 -580 -564 -561 -564 -482 -564 -517 -564 -518 -564 -562 -564 -600 -564 -502 -564 -565 -564 -699 -564 -601 -564 -587 -564 -566 -564 -563 -564 -503 -564 -565 -565 -560 -565 -562 -565 -600 -565 -580 -565 -517 -565 -502 -565 -564 -565 -699 -565 -601 -565 -587 -565 -566 -565 -567 -565 -581 -565 -520 -565 -569 -565 -689 -565 -629 -565 -566 -566 -580 -566 -600 -566 -699 -566 -601 -566 -564 -566 -565 -566 -587 -566 -561 -566 -563 -566 -518 -566 -503 -566 -582 -566 -570 -566 -572 -566 -523 -566 -690 -566 -631 -566 -567 -567 -496 -567 -548 -567 -597 -567 -594 -567 -562 -567 -581 -567 -600 -567 -499 -567 -549 -567 -519 -567 -568 -567 -502 -567 -520 -567 -569 -567 -565 -567 -483 -567 -521 -567 -568 -568 -548 -568 -499 -568 -549 -568 -597 -568 -567 -568 -519 -568 -581 -568 -584 -568 -697 -568 -628 -568 -689 -568 -520 -568 -483 -568 -521 -568 -569 -568 -588 -568 -629 -568 -569 -569 -562 -569 -567 -569 -581 -569 -600 -569 -502 -569 -520 -569 -565 -569 -519 -569 -568 -569 -483 -569 -521 -569 -628 -569 -689 -569 -588 -569 -629 -569 -699 -569 -587 -569 -570 -570 -497 -570 -595 -570 -599 -570 -558 -570 -563 -570 -601 -570 -582 -570 -559 -570 -501 -570 -571 -570 -522 -570 -503 -570 -566 -570 -572 -570 -523 -570 -524 -570 -484 -570 -571 -571 -599 -571 -698 -571 -586 -571 -559 -571 -582 -571 -690 -571 -630 -571 -558 -571 -501 -571 -570 -571 -522 -571 -572 -571 -631 -571 -589 -571 -524 -571 -523 -571 -484 -571 -572 -572 -563 -572 -601 -572 -582 -572 -570 -572 -503 -572 -566 -572 -523 -572 -699 -572 -690 -572 -587 -572 -631 -572 -630 -572 -571 -572 -589 -572 -524 -572 -522 -572 -484 -572 -573 -573 -485 -573 -525 -573 -526 -573 -527 -573 -574 -573 -583 -573 -575 -573 -590 -573 -635 -573 -636 -573 -691 -573 -591 -573 -637 -573 -692 -573 -693 -573 -592 -573 -638 -573 -574 -574 -485 -574 -525 -574 -573 -574 -526 -574 -527 -574 -583 -574 -575 -574 -590 -574 -635 -574 -636 -574 -691 -574 -593 -574 -639 -574 -694 -574 -640 -574 -594 -574 -695 -574 -575 -575 -485 -575 -525 -575 -573 -575 -526 -575 -527 -575 -574 -575 -583 -575 -637 -575 -592 -575 -693 -575 -638 -575 -593 -575 -639 -575 -694 -575 -640 -575 -696 -575 -595 -575 -576 -576 -584 -576 -486 -576 -528 -576 -585 -576 -588 -576 -530 -576 -534 -576 -487 -576 -529 -576 -504 -576 -535 -576 -586 -576 -488 -576 -589 -576 -532 -576 -587 -576 -489 -576 -531 -576 -536 -576 -533 -576 -490 -576 -505 -576 -478 -576 -506 -576 -491 -576 -674 -576 -632 -576 -602 -576 -633 -576 -634 -576 -603 -576 -604 -576 -577 -577 -492 -577 -507 -577 -543 -577 -537 -577 -538 -577 -544 -577 -590 -577 -479 -577 -508 -577 -509 -577 -545 -577 -498 -577 -546 -577 -547 -577 -596 -577 -493 -577 -591 -577 -496 -577 -548 -577 -597 -577 -594 -577 -499 -577 -549 -577 -584 -577 -697 -577 -605 -577 -606 -577 -641 -577 -642 -577 -607 -577 -643 -577 -675 -577 -578 -578 -493 -578 -546 -578 -550 -578 -551 -578 -591 -578 -596 -578 -598 -578 -498 -578 -510 -578 -547 -578 -552 -578 -480 -578 -511 -578 -512 -578 -553 -578 -500 -578 -554 -578 -697 -578 -584 -578 -626 -578 -688 -578 -585 -578 -627 -578 -698 -578 -586 -578 -648 -578 -608 -578 -609 -578 -678 -578 -650 -578 -610 -578 -651 -578 -579 -579 -494 -579 -539 -579 -555 -579 -513 -579 -540 -579 -592 -579 -556 -579 -493 -579 -551 -579 -591 -579 -598 -579 -500 -579 -514 -579 -554 -579 -557 -579 -481 -579 -515 -579 -497 -579 -595 -579 -599 -579 -558 -579 -698 -579 -586 -579 -559 -579 -501 -579 -611 -579 -653 -579 -612 -579 -654 -579 -680 -579 -655 -579 -613 -579 -580 -580 -495 -580 -541 -580 -593 -580 -542 -580 -516 -580 -560 -580 -561 -580 -496 -580 -594 -580 -562 -580 -600 -580 -595 -580 -497 -580 -601 -580 -563 -580 -482 -580 -517 -580 -564 -580 -518 -580 -502 -580 -565 -580 -699 -580 -587 -580 -566 -580 -503 -580 -614 -580 -658 -580 -682 -580 -659 -580 -615 -580 -662 -580 -616 -580 -581 -581 -496 -581 -548 -581 -597 -581 -594 -581 -562 -581 -567 -581 -600 -581 -499 -581 -549 -581 -519 -581 -568 -581 -584 -581 -697 -581 -628 -581 -689 -581 -502 -581 -520 -581 -569 -581 -565 -581 -483 -581 -521 -581 -588 -581 -629 -581 -699 -581 -587 -581 -665 -581 -617 -581 -666 -581 -685 -581 -618 -581 -619 -581 -667 -581 -582 -582 -497 -582 -595 -582 -599 -582 -558 -582 -563 -582 -601 -582 -570 -582 -698 -582 -586 -582 -559 -582 -690 -582 -630 -582 -571 -582 -501 -582 -522 -582 -503 -582 -566 -582 -572 -582 -523 -582 -699 -582 -587 -582 -631 -582 -589 -582 -524 -582 -484 -582 -668 -582 -686 -582 -669 -582 -620 -582 -621 -582 -670 -582 -622 -582 -583 -583 -485 -583 -525 -583 -573 -583 -526 -583 -527 -583 -574 -583 -575 -583 -590 -583 -635 -583 -636 -583 -691 -583 -591 -583 -637 -583 -692 -583 -693 -583 -592 -583 -638 -583 -593 -583 -639 -583 -694 -583 -640 -583 -594 -583 -695 -583 -696 -583 -595 -583 -623 -583 -671 -583 -624 -583 -625 -583 -672 -583 -687 -583 -673 -583 -584 -584 -479 -584 -447 -584 -449 -584 -498 -584 -499 -584 -451 -584 -486 -584 -454 -584 -480 -584 -528 -584 -585 -584 -483 -584 -470 -584 -530 -584 -588 -584 -534 -584 -576 -584 -577 -584 -545 -584 -547 -584 -596 -584 -597 -584 -549 -584 -697 -584 -552 -584 -578 -584 -626 -584 -688 -584 -581 -584 -568 -584 -628 -584 -689 -584 -632 -584 -674 -584 -585 -585 -498 -585 -449 -585 -454 -585 -480 -585 -584 -585 -486 -585 -528 -585 -414 -585 -455 -585 -487 -585 -529 -585 -500 -585 -456 -585 -586 -585 -488 -585 -588 -585 -530 -585 -534 -585 -576 -585 -504 -585 -535 -585 -589 -585 -532 -585 -578 -585 -552 -585 -512 -585 -553 -585 -688 -585 -626 -585 -627 -585 -674 -585 -632 -585 -602 -585 -633 -585 -586 -586 -500 -586 -480 -586 -455 -586 -456 -586 -585 -586 -529 -586 -488 -586 -481 -586 -459 -586 -501 -586 -461 -586 -484 -586 -589 -586 -532 -586 -473 -586 -576 -586 -535 -586 -598 -586 -578 -586 -553 -586 -554 -586 -698 -586 -688 -586 -627 -586 -579 -586 -557 -586 -599 -586 -559 -586 -582 -586 -690 -586 -630 -586 -571 -586 -674 -586 -633 -586 -587 -587 -482 -587 -502 -587 -503 -587 -466 -587 -467 -587 -489 -587 -468 -587 -483 -587 -588 -587 -471 -587 -531 -587 -589 -587 -484 -587 -533 -587 -474 -587 -576 -587 -536 -587 -580 -587 -600 -587 -699 -587 -601 -587 -564 -587 -565 -587 -566 -587 -581 -587 -689 -587 -569 -587 -629 -587 -690 -587 -582 -587 -631 -587 -572 -587 -674 -587 -634 -587 -588 -588 -499 -588 -451 -588 -486 -588 -584 -588 -483 -588 -470 -588 -530 -588 -471 -588 -423 -588 -490 -588 -531 -588 -502 -588 -587 -588 -467 -588 -489 -588 -528 -588 -585 -588 -534 -588 -576 -588 -589 -588 -536 -588 -533 -588 -505 -588 -581 -588 -568 -588 -628 -588 -689 -588 -569 -588 -521 -588 -629 -588 -632 -588 -674 -588 -603 -588 -634 -588 -589 -589 -501 -589 -586 -589 -488 -589 -461 -589 -484 -589 -532 -589 -473 -589 -503 -589 -587 -589 -468 -589 -489 -589 -533 -589 -474 -589 -491 -589 -426 -589 -585 -589 -529 -589 -576 -589 -535 -589 -588 -589 -531 -589 -536 -589 -506 -589 -582 -589 -690 -589 -630 -589 -571 -589 -572 -589 -631 -589 -524 -589 -674 -589 -633 -589 -634 -589 -604 -589 -590 -590 -427 -590 -492 -590 -537 -590 -475 -590 -476 -590 -538 -590 -485 -590 -493 -590 -539 -590 -591 -590 -592 -590 -541 -590 -496 -590 -594 -590 -593 -590 -507 -590 -543 -590 -544 -590 -577 -590 -546 -590 -596 -590 -548 -590 -597 -590 -525 -590 -635 -590 -573 -590 -574 -590 -636 -590 -691 -590 -583 -590 -605 -590 -641 -590 -642 -590 -675 -590 -591 -591 -475 -591 -537 -591 -493 -591 -539 -591 -485 -591 -590 -591 -592 -591 -543 -591 -546 -591 -577 -591 -596 -591 -550 -591 -551 -591 -578 -591 -598 -591 -555 -591 -579 -591 -573 -591 -635 -591 -637 -591 -583 -591 -691 -591 -692 -591 -693 -591 -641 -591 -644 -591 -675 -591 -676 -591 -648 -591 -649 -591 -678 -591 -679 -591 -653 -591 -680 -591 -592 -592 -475 -592 -537 -592 -493 -592 -539 -592 -485 -592 -590 -592 -591 -592 -428 -592 -494 -592 -477 -592 -540 -592 -542 -592 -593 -592 -595 -592 -497 -592 -555 -592 -513 -592 -579 -592 -556 -592 -551 -592 -598 -592 -599 -592 -558 -592 -526 -592 -573 -592 -637 -592 -575 -592 -583 -592 -693 -592 -638 -592 -653 -592 -611 -592 -680 -592 -654 -592 -593 -593 -429 -593 -476 -593 -485 -593 -477 -593 -495 -593 -541 -593 -542 -593 -538 -593 -590 -593 -496 -593 -594 -593 -592 -593 -540 -593 -595 -593 -497 -593 -516 -593 -560 -593 -580 -593 -561 -593 -562 -593 -600 -593 -601 -593 -563 -593 -527 -593 -574 -593 -583 -593 -575 -593 -639 -593 -694 -593 -640 -593 -614 -593 -658 -593 -682 -593 -659 -593 -594 -594 -476 -594 -538 -594 -590 -594 -485 -594 -541 -594 -496 -594 -593 -594 -544 -594 -577 -594 -548 -594 -597 -594 -560 -594 -562 -594 -600 -594 -580 -594 -567 -594 -581 -594 -574 -594 -636 -594 -691 -594 -583 -594 -639 -594 -695 -594 -694 -594 -642 -594 -675 -594 -646 -594 -677 -594 -658 -594 -660 -594 -683 -594 -682 -594 -665 -594 -685 -594 -595 -595 -477 -595 -485 -595 -592 -595 -540 -595 -542 -595 -593 -595 -497 -595 -579 -595 -556 -595 -599 -595 -558 -595 -561 -595 -580 -595 -601 -595 -563 -595 -582 -595 -570 -595 -575 -595 -583 -595 -693 -595 -638 -595 -640 -595 -694 -595 -696 -595 -680 -595 -654 -595 -681 -595 -656 -595 -659 -595 -682 -595 -684 -595 -661 -595 -686 -595 -668 -595 -596 -596 -543 -596 -508 -596 -498 -596 -546 -596 -577 -596 -545 -596 -547 -596 -537 -596 -493 -596 -590 -596 -591 -596 -597 -596 -549 -596 -584 -596 -697 -596 -550 -596 -551 -596 -578 -596 -598 -596 -510 -596 -552 -596 -626 -596 -688 -596 -641 -596 -606 -596 -644 -596 -675 -596 -643 -596 -645 -596 -676 -596 -608 -596 -648 -596 -650 -596 -678 -596 -597 -597 -538 -597 -544 -597 -577 -597 -590 -597 -496 -597 -548 -597 -594 -597 -509 -597 -545 -597 -499 -597 -549 -597 -547 -597 -596 -597 -584 -597 -697 -597 -562 -597 -567 -597 -581 -597 -600 -597 -519 -597 -568 -597 -628 -597 -689 -597 -642 -597 -607 -597 -643 -597 -675 -597 -646 -597 -647 -597 -677 -597 -665 -597 -617 -597 -666 -597 -685 -597 -598 -598 -493 -598 -546 -598 -550 -598 -551 -598 -591 -598 -596 -598 -578 -598 -511 -598 -500 -598 -553 -598 -554 -598 -698 -598 -688 -598 -627 -598 -586 -598 -539 -598 -555 -598 -592 -598 -579 -598 -514 -598 -557 -598 -599 -598 -559 -598 -649 -598 -648 -598 -609 -598 -679 -598 -678 -598 -651 -598 -652 -598 -653 -598 -612 -598 -680 -598 -655 -598 -599 -599 -540 -599 -592 -599 -579 -599 -556 -599 -497 -599 -595 -599 -558 -599 -598 -599 -554 -599 -557 -599 -698 -599 -586 -599 -559 -599 -515 -599 -501 -599 -563 -599 -601 -599 -582 -599 -570 -599 -690 -599 -630 -599 -571 -599 -522 -599 -654 -599 -680 -599 -655 -599 -613 -599 -656 -599 -681 -599 -657 -599 -668 -599 -686 -599 -669 -599 -620 -599 -600 -600 -541 -600 -496 -600 -594 -600 -593 -600 -560 -600 -562 -600 -580 -600 -517 -600 -502 -600 -565 -600 -564 -600 -699 -600 -601 -600 -587 -600 -566 -600 -548 -600 -597 -600 -567 -600 -581 -600 -520 -600 -569 -600 -689 -600 -629 -600 -658 -600 -660 -600 -683 -600 -682 -600 -615 -600 -663 -600 -662 -600 -665 -600 -685 -600 -618 -600 -667 -600 -601 -601 -542 -601 -593 -601 -595 -601 -497 -601 -561 -601 -580 -601 -563 -601 -600 -601 -699 -601 -564 -601 -565 -601 -587 -601 -566 -601 -518 -601 -503 -601 -599 -601 -558 -601 -582 -601 -570 -601 -572 -601 -523 -601 -690 -601 -631 -601 -659 -601 -682 -601 -684 -601 -661 -601 -616 -601 -662 -601 -664 -601 -686 -601 -668 -601 -670 -601 -621 -601 -602 -602 -688 -602 -626 -602 -585 -602 -627 -602 -674 -602 -632 -602 -633 -602 -634 -602 -603 -602 -576 -602 -604 -602 -603 -603 -689 -603 -628 -603 -632 -603 -674 -603 -629 -603 -588 -603 -634 -603 -602 -603 -633 -603 -576 -603 -604 -603 -604 -604 -674 -604 -632 -604 -602 -604 -633 -604 -634 -604 -603 -604 -576 -604 -690 -604 -630 -604 -631 -604 -589 -604 -605 -605 -590 -605 -641 -605 -635 -605 -636 -605 -642 -605 -675 -605 -691 -605 -577 -605 -606 -605 -607 -605 -643 -605 -606 -606 -605 -606 -577 -606 -641 -606 -642 -606 -607 -606 -643 -606 -675 -606 -596 -606 -644 -606 -645 -606 -676 -606 -607 -607 -605 -607 -577 -607 -606 -607 -641 -607 -642 -607 -643 -607 -675 -607 -646 -607 -597 -607 -647 -607 -677 -607 -608 -608 -644 -608 -596 -608 -648 -608 -676 -608 -645 -608 -650 -608 -678 -608 -578 -608 -609 -608 -610 -608 -651 -608 -609 -609 -648 -609 -608 -609 -578 -609 -678 -609 -650 -609 -610 -609 -651 -609 -649 -609 -598 -609 -679 -609 -652 -609 -610 -610 -648 -610 -608 -610 -578 -610 -609 -610 -678 -610 -650 -610 -651 -610 -715 -610 -700 -610 -688 -610 -701 -610 -611 -611 -592 -611 -637 -611 -653 -611 -638 -611 -693 -611 -680 -611 -654 -611 -612 -611 -579 -611 -655 -611 -613 -611 -612 -612 -653 -612 -649 -612 -598 -612 -680 -612 -679 -612 -652 -612 -655 -612 -611 -612 -579 -612 -654 -612 -613 -612 -613 -613 -611 -613 -653 -613 -612 -613 -579 -613 -654 -613 -680 -613 -655 -613 -656 -613 -681 -613 -657 -613 -599 -613 -614 -614 -593 -614 -639 -614 -694 -614 -640 -614 -658 -614 -682 -614 -659 -614 -580 -614 -615 -614 -662 -614 -616 -614 -615 -615 -614 -615 -658 -615 -682 -615 -659 -615 -580 -615 -662 -615 -616 -615 -660 -615 -683 -615 -600 -615 -663 -615 -616 -616 -614 -616 -658 -616 -682 -616 -659 -616 -580 -616 -615 -616 -662 -616 -684 -616 -661 -616 -664 -616 -601 -616 -617 -617 -646 -617 -597 -617 -647 -617 -677 -617 -665 -617 -666 -617 -685 -617 -618 -617 -581 -617 -619 -617 -667 -617 -618 -618 -660 -618 -665 -618 -685 -618 -683 -618 -600 -618 -667 -618 -663 -618 -617 -618 -666 -618 -581 -618 -619 -618 -619 -619 -665 -619 -617 -619 -666 -619 -685 -619 -618 -619 -581 -619 -667 -619 -702 -619 -716 -619 -689 -619 -703 -619 -620 -620 -656 -620 -681 -620 -657 -620 -599 -620 -668 -620 -686 -620 -669 -620 -621 -620 -670 -620 -622 -620 -582 -620 -621 -621 -661 -621 -684 -621 -686 -621 -668 -621 -601 -621 -664 -621 -670 -621 -669 -621 -620 -621 -622 -621 -582 -621 -622 -622 -686 -622 -717 -622 -704 -622 -669 -622 -670 -622 -705 -622 -690 -622 -668 -622 -620 -622 -621 -622 -582 -622 -623 -623 -583 -623 -671 -623 -624 -623 -625 -623 -672 -623 -687 -623 -673 -623 -691 -623 -706 -623 -707 -623 -718 -623 -624 -624 -583 -624 -623 -624 -671 -624 -625 -624 -672 -624 -687 -624 -673 -624 -708 -624 -693 -624 -719 -624 -710 -624 -625 -625 -583 -625 -623 -625 -671 -625 -624 -625 -672 -625 -687 -625 -673 -625 -694 -625 -711 -625 -720 -625 -712 -625 -626 -626 -596 -626 -547 -626 -552 -626 -578 -626 -697 -626 -584 -626 -688 -626 -512 -626 -553 -626 -585 -626 -627 -626 -689 -626 -628 -626 -632 -626 -674 -626 -602 -626 -633 -626 -627 -627 -578 -627 -552 -627 -512 -627 -553 -627 -688 -627 -626 -627 -585 -627 -598 -627 -554 -627 -698 -627 -586 -627 -674 -627 -632 -627 -602 -627 -633 -627 -690 -627 -630 -627 -628 -628 -597 -628 -549 -628 -584 -628 -697 -628 -581 -628 -568 -628 -689 -628 -569 -628 -521 -628 -588 -628 -629 -628 -626 -628 -688 -628 -632 -628 -674 -628 -603 -628 -634 -628 -629 -629 -581 -629 -568 -629 -628 -629 -689 -629 -569 -629 -521 -629 -588 -629 -600 -629 -699 -629 -565 -629 -587 -629 -674 -629 -690 -629 -634 -629 -631 -629 -632 -629 -603 -629 -630 -630 -599 -630 -698 -630 -586 -630 -559 -630 -582 -630 -690 -630 -571 -630 -572 -630 -631 -630 -589 -630 -524 -630 -688 -630 -627 -630 -674 -630 -633 -630 -634 -630 -604 -630 -631 -631 -601 -631 -699 -631 -690 -631 -582 -631 -566 -631 -587 -631 -572 -631 -630 -631 -571 -631 -589 -631 -524 -631 -689 -631 -674 -631 -629 -631 -634 -631 -633 -631 -604 -631 -632 -632 -697 -632 -584 -632 -626 -632 -688 -632 -689 -632 -628 -632 -674 -632 -585 -632 -627 -632 -602 -632 -633 -632 -629 -632 -588 -632 -603 -632 -634 -632 -576 -632 -604 -632 -633 -633 -688 -633 -626 -633 -585 -633 -627 -633 -674 -633 -632 -633 -602 -633 -698 -633 -586 -633 -690 -633 -630 -633 -634 -633 -603 -633 -576 -633 -604 -633 -631 -633 -589 -633 -634 -634 -699 -634 -689 -634 -674 -634 -690 -634 -587 -634 -629 -634 -631 -634 -628 -634 -632 -634 -588 -634 -603 -634 -602 -634 -633 -634 -576 -634 -604 -634 -630 -634 -589 -634 -635 -635 -525 -635 -590 -635 -573 -635 -574 -635 -636 -635 -691 -635 -583 -635 -591 -635 -637 -635 -692 -635 -693 -635 -605 -635 -641 -635 -642 -635 -675 -635 -644 -635 -676 -635 -636 -636 -525 -636 -590 -636 -635 -636 -573 -636 -574 -636 -691 -636 -583 -636 -639 -636 -594 -636 -695 -636 -694 -636 -605 -636 -641 -636 -642 -636 -675 -636 -646 -636 -677 -636 -637 -637 -573 -637 -635 -637 -591 -637 -583 -637 -691 -637 -692 -637 -693 -637 -526 -637 -592 -637 -575 -637 -638 -637 -653 -637 -611 -637 -680 -637 -654 -637 -649 -637 -679 -637 -638 -638 -526 -638 -573 -638 -637 -638 -592 -638 -575 -638 -583 -638 -693 -638 -640 -638 -694 -638 -696 -638 -595 -638 -653 -638 -611 -638 -680 -638 -654 -638 -681 -638 -656 -638 -639 -639 -527 -639 -574 -639 -583 -639 -575 -639 -593 -639 -694 -639 -640 -639 -636 -639 -691 -639 -594 -639 -695 -639 -614 -639 -658 -639 -682 -639 -659 -639 -660 -639 -683 -639 -640 -640 -527 -640 -574 -640 -583 -640 -575 -640 -593 -640 -639 -640 -694 -640 -693 -640 -638 -640 -696 -640 -595 -640 -614 -640 -658 -640 -682 -640 -659 -640 -684 -640 -661 -640 -641 -641 -590 -641 -605 -641 -635 -641 -636 -641 -642 -641 -675 -641 -691 -641 -577 -641 -606 -641 -607 -641 -643 -641 -596 -641 -644 -641 -645 -641 -676 -641 -591 -641 -692 -641 -642 -642 -590 -642 -605 -642 -641 -642 -635 -642 -636 -642 -675 -642 -691 -642 -577 -642 -606 -642 -607 -642 -643 -642 -594 -642 -646 -642 -677 -642 -695 -642 -597 -642 -647 -642 -643 -643 -605 -643 -577 -643 -606 -643 -641 -643 -642 -643 -607 -643 -675 -643 -596 -643 -644 -643 -645 -643 -676 -643 -646 -643 -597 -643 -647 -643 -677 -643 -697 -643 -721 -643 -644 -644 -641 -644 -606 -644 -596 -644 -675 -644 -643 -644 -645 -644 -676 -644 -635 -644 -591 -644 -691 -644 -692 -644 -648 -644 -649 -644 -678 -644 -679 -644 -608 -644 -650 -644 -645 -645 -641 -645 -606 -645 -596 -645 -644 -645 -675 -645 -643 -645 -676 -645 -677 -645 -647 -645 -697 -645 -721 -645 -608 -645 -648 -645 -650 -645 -678 -645 -700 -645 -715 -645 -646 -646 -636 -646 -642 -646 -675 -646 -691 -646 -594 -646 -677 -646 -695 -646 -607 -646 -643 -646 -597 -646 -647 -646 -660 -646 -665 -646 -685 -646 -683 -646 -617 -646 -666 -646 -647 -647 -642 -647 -607 -647 -643 -647 -675 -647 -646 -647 -597 -647 -677 -647 -645 -647 -676 -647 -697 -647 -721 -647 -665 -647 -617 -647 -666 -647 -685 -647 -702 -647 -716 -647 -648 -648 -591 -648 -644 -648 -649 -648 -692 -648 -676 -648 -678 -648 -679 -648 -596 -648 -608 -648 -645 -648 -650 -648 -578 -648 -609 -648 -610 -648 -651 -648 -598 -648 -652 -648 -649 -649 -591 -649 -644 -649 -648 -649 -692 -649 -676 -649 -678 -649 -679 -649 -609 -649 -598 -649 -651 -649 -652 -649 -637 -649 -653 -649 -693 -649 -680 -649 -612 -649 -655 -649 -650 -650 -644 -650 -596 -650 -608 -650 -648 -650 -676 -650 -645 -650 -678 -650 -578 -650 -609 -650 -610 -650 -651 -650 -721 -650 -697 -650 -700 -650 -715 -650 -688 -650 -701 -650 -651 -651 -648 -651 -608 -651 -578 -651 -609 -651 -678 -651 -650 -651 -610 -651 -649 -651 -598 -651 -679 -651 -652 -651 -715 -651 -700 -651 -688 -651 -701 -651 -722 -651 -698 -651 -652 -652 -649 -652 -648 -652 -609 -652 -598 -652 -679 -652 -678 -652 -651 -652 -722 -652 -715 -652 -701 -652 -698 -652 -653 -652 -612 -652 -680 -652 -655 -652 -681 -652 -657 -652 -653 -653 -592 -653 -637 -653 -611 -653 -638 -653 -693 -653 -680 -653 -654 -653 -591 -653 -649 -653 -692 -653 -679 -653 -598 -653 -612 -653 -652 -653 -655 -653 -579 -653 -613 -653 -654 -654 -592 -654 -637 -654 -653 -654 -611 -654 -638 -654 -693 -654 -680 -654 -612 -654 -579 -654 -655 -654 -613 -654 -595 -654 -696 -654 -681 -654 -656 -654 -657 -654 -599 -654 -655 -655 -653 -655 -649 -655 -598 -655 -612 -655 -680 -655 -679 -655 -652 -655 -611 -655 -579 -655 -654 -655 -613 -655 -681 -655 -722 -655 -698 -655 -657 -655 -656 -655 -599 -655 -656 -656 -638 -656 -693 -656 -680 -656 -654 -656 -595 -656 -696 -656 -681 -656 -655 -656 -613 -656 -657 -656 -599 -656 -661 -656 -684 -656 -686 -656 -668 -656 -669 -656 -620 -656 -657 -657 -680 -657 -679 -657 -652 -657 -655 -657 -681 -657 -722 -657 -698 -657 -654 -657 -613 -657 -656 -657 -599 -657 -686 -657 -717 -657 -704 -657 -669 -657 -668 -657 -620 -657 -658 -658 -593 -658 -639 -658 -694 -658 -640 -658 -614 -658 -682 -658 -659 -658 -594 -658 -695 -658 -660 -658 -683 -658 -580 -658 -615 -658 -662 -658 -616 -658 -600 -658 -663 -658 -659 -659 -593 -659 -639 -659 -694 -659 -640 -659 -614 -659 -658 -659 -682 -659 -696 -659 -595 -659 -684 -659 -661 -659 -580 -659 -615 -659 -662 -659 -616 -659 -664 -659 -601 -659 -660 -660 -639 -660 -594 -660 -695 -660 -694 -660 -658 -660 -683 -660 -682 -660 -615 -660 -600 -660 -663 -660 -662 -660 -646 -660 -677 -660 -665 -660 -685 -660 -618 -660 -667 -660 -661 -661 -640 -661 -694 -661 -696 -661 -595 -661 -659 -661 -682 -661 -684 -661 -616 -661 -662 -661 -664 -661 -601 -661 -681 -661 -656 -661 -686 -661 -668 -661 -670 -661 -621 -661 -662 -662 -614 -662 -658 -662 -682 -662 -659 -662 -580 -662 -615 -662 -616 -662 -660 -662 -683 -662 -600 -662 -663 -662 -723 -662 -684 -662 -699 -662 -664 -662 -661 -662 -601 -662 -663 -663 -658 -663 -660 -663 -683 -663 -682 -663 -615 -663 -600 -663 -662 -663 -723 -663 -684 -663 -699 -663 -664 -663 -665 -663 -685 -663 -618 -663 -667 -663 -716 -663 -703 -663 -664 -664 -682 -664 -683 -664 -723 -664 -684 -664 -662 -664 -663 -664 -699 -664 -659 -664 -661 -664 -616 -664 -601 -664 -686 -664 -668 -664 -670 -664 -621 -664 -717 -664 -705 -664 -665 -665 -594 -665 -646 -665 -677 -665 -695 -665 -660 -665 -685 -665 -683 -665 -597 -665 -647 -665 -617 -665 -666 -665 -600 -665 -618 -665 -667 -665 -663 -665 -581 -665 -619 -665 -666 -666 -646 -666 -597 -666 -647 -666 -677 -666 -665 -666 -617 -666 -685 -666 -697 -666 -721 -666 -702 -666 -716 -666 -618 -666 -581 -666 -619 -666 -667 -666 -689 -666 -703 -666 -667 -667 -660 -667 -665 -667 -685 -667 -683 -667 -600 -667 -618 -667 -663 -667 -617 -667 -666 -667 -581 -667 -619 -667 -702 -667 -716 -667 -689 -667 -703 -667 -723 -667 -699 -667 -668 -668 -595 -668 -696 -668 -681 -668 -656 -668 -661 -668 -684 -668 -686 -668 -657 -668 -599 -668 -669 -668 -620 -668 -601 -668 -664 -668 -670 -668 -621 -668 -622 -668 -582 -668 -669 -669 -681 -669 -722 -669 -698 -669 -657 -669 -686 -669 -717 -669 -704 -669 -656 -669 -599 -669 -668 -669 -620 -669 -670 -669 -705 -669 -690 -669 -622 -669 -621 -669 -582 -669 -670 -670 -661 -670 -684 -670 -686 -670 -668 -670 -601 -670 -664 -670 -621 -670 -723 -670 -717 -670 -699 -670 -705 -670 -704 -670 -669 -670 -690 -670 -622 -670 -620 -670 -582 -670 -671 -671 -583 -671 -623 -671 -624 -671 -625 -671 -672 -671 -687 -671 -673 -671 -691 -671 -706 -671 -707 -671 -718 -671 -692 -671 -708 -671 -709 -671 -719 -671 -693 -671 -710 -671 -672 -672 -583 -672 -623 -672 -671 -672 -624 -672 -625 -672 -687 -672 -673 -672 -691 -672 -706 -672 -707 -672 -718 -672 -694 -672 -711 -672 -720 -672 -712 -672 -695 -672 -713 -672 -673 -673 -583 -673 -623 -673 -671 -673 -624 -673 -625 -673 -672 -673 -687 -673 -708 -673 -693 -673 -719 -673 -710 -673 -694 -673 -711 -673 -720 -673 -712 -673 -714 -673 -696 -673 -674 -674 -724 -674 -697 -674 -688 -674 -698 -674 -699 -674 -689 -674 -690 -674 -584 -674 -626 -674 -628 -674 -632 -674 -585 -674 -627 -674 -602 -674 -633 -674 -586 -674 -630 -674 -587 -674 -629 -674 -634 -674 -631 -674 -588 -674 -603 -674 -576 -674 -604 -674 -589 -674 -675 -675 -590 -675 -605 -675 -641 -675 -635 -675 -636 -675 -642 -675 -691 -675 -577 -675 -606 -675 -607 -675 -643 -675 -596 -675 -644 -675 -645 -675 -676 -675 -591 -675 -692 -675 -594 -675 -646 -675 -677 -675 -695 -675 -597 -675 -647 -675 -697 -675 -721 -675 -724 -675 -676 -676 -641 -676 -606 -676 -596 -676 -644 -676 -675 -676 -643 -676 -645 -676 -635 -676 -591 -676 -691 -676 -692 -676 -677 -676 -647 -676 -697 -676 -721 -676 -695 -676 -724 -676 -648 -676 -649 -676 -678 -676 -679 -676 -608 -676 -650 -676 -715 -676 -722 -676 -700 -676 -677 -677 -636 -677 -642 -677 -675 -677 -691 -677 -594 -677 -646 -677 -695 -677 -607 -677 -643 -677 -597 -677 -647 -677 -645 -677 -676 -677 -697 -677 -721 -677 -692 -677 -724 -677 -660 -677 -665 -677 -685 -677 -683 -677 -617 -677 -666 -677 -702 -677 -716 -677 -723 -677 -678 -678 -591 -678 -644 -678 -648 -678 -649 -678 -692 -678 -676 -678 -679 -678 -596 -678 -608 -678 -645 -678 -650 -678 -578 -678 -609 -678 -610 -678 -651 -678 -598 -678 -652 -678 -724 -678 -721 -678 -715 -678 -722 -678 -697 -678 -700 -678 -688 -678 -701 -678 -698 -678 -679 -679 -591 -679 -644 -679 -648 -679 -649 -679 -692 -679 -676 -679 -678 -679 -609 -679 -598 -679 -651 -679 -652 -679 -724 -679 -721 -679 -715 -679 -722 -679 -701 -679 -698 -679 -637 -679 -653 -679 -693 -679 -680 -679 -612 -679 -655 -679 -696 -679 -681 -679 -657 -679 -680 -680 -592 -680 -637 -680 -653 -680 -611 -680 -638 -680 -693 -680 -654 -680 -591 -680 -649 -680 -692 -680 -679 -680 -598 -680 -612 -680 -652 -680 -655 -680 -579 -680 -613 -680 -595 -680 -696 -680 -681 -680 -656 -680 -724 -680 -722 -680 -698 -680 -657 -680 -599 -680 -681 -681 -638 -681 -693 -681 -680 -681 -654 -681 -595 -681 -696 -681 -656 -681 -692 -681 -679 -681 -724 -681 -722 -681 -652 -681 -655 -681 -698 -681 -657 -681 -613 -681 -599 -681 -661 -681 -684 -681 -686 -681 -668 -681 -723 -681 -717 -681 -704 -681 -669 -681 -620 -681 -682 -682 -593 -682 -639 -682 -694 -682 -640 -682 -614 -682 -658 -682 -659 -682 -594 -682 -695 -682 -660 -682 -683 -682 -724 -682 -696 -682 -723 -682 -684 -682 -595 -682 -661 -682 -580 -682 -615 -682 -662 -682 -616 -682 -600 -682 -663 -682 -699 -682 -664 -682 -601 -682 -683 -683 -639 -683 -594 -683 -695 -683 -694 -683 -658 -683 -660 -683 -682 -683 -724 -683 -696 -683 -723 -683 -684 -683 -615 -683 -600 -683 -663 -683 -662 -683 -699 -683 -664 -683 -646 -683 -677 -683 -665 -683 -685 -683 -721 -683 -716 -683 -618 -683 -667 -683 -703 -683 -684 -684 -694 -684 -695 -684 -724 -684 -696 -684 -682 -684 -683 -684 -723 -684 -640 -684 -595 -684 -659 -684 -661 -684 -662 -684 -663 -684 -699 -684 -664 -684 -616 -684 -601 -684 -681 -684 -656 -684 -686 -684 -668 -684 -722 -684 -717 -684 -670 -684 -621 -684 -705 -684 -685 -685 -594 -685 -646 -685 -677 -685 -695 -685 -660 -685 -665 -685 -683 -685 -597 -685 -647 -685 -617 -685 -666 -685 -697 -685 -721 -685 -702 -685 -716 -685 -724 -685 -723 -685 -600 -685 -618 -685 -667 -685 -663 -685 -581 -685 -619 -685 -689 -685 -703 -685 -699 -685 -686 -686 -595 -686 -696 -686 -681 -686 -656 -686 -661 -686 -684 -686 -668 -686 -724 -686 -722 -686 -723 -686 -717 -686 -698 -686 -657 -686 -704 -686 -669 -686 -599 -686 -620 -686 -601 -686 -664 -686 -670 -686 -621 -686 -699 -686 -705 -686 -690 -686 -622 -686 -582 -686 -687 -687 -583 -687 -623 -687 -671 -687 -624 -687 -625 -687 -672 -687 -673 -687 -691 -687 -706 -687 -707 -687 -718 -687 -692 -687 -708 -687 -709 -687 -719 -687 -693 -687 -710 -687 -694 -687 -711 -687 -720 -687 -712 -687 -695 -687 -713 -687 -724 -687 -714 -687 -696 -687 -688 -688 -596 -688 -547 -688 -552 -688 -578 -688 -697 -688 -584 -688 -626 -688 -512 -688 -553 -688 -585 -688 -627 -688 -598 -688 -554 -688 -698 -688 -586 -688 -724 -688 -699 -688 -689 -688 -674 -688 -690 -688 -628 -688 -632 -688 -602 -688 -633 -688 -630 -688 -678 -688 -650 -688 -610 -688 -651 -688 -715 -688 -700 -688 -701 -688 -689 -689 -597 -689 -549 -689 -584 -689 -697 -689 -581 -689 -568 -689 -628 -689 -569 -689 -521 -689 -588 -689 -629 -689 -600 -689 -699 -689 -565 -689 -587 -689 -724 -689 -688 -689 -698 -689 -674 -689 -690 -689 -626 -689 -632 -689 -634 -689 -631 -689 -603 -689 -685 -689 -666 -689 -702 -689 -716 -689 -667 -689 -619 -689 -703 -689 -690 -690 -599 -690 -698 -690 -586 -690 -559 -690 -582 -690 -630 -690 -571 -690 -601 -690 -699 -690 -566 -690 -587 -690 -631 -690 -572 -690 -589 -690 -524 -690 -724 -690 -697 -690 -688 -690 -689 -690 -674 -690 -627 -690 -633 -690 -629 -690 -634 -690 -604 -690 -686 -690 -717 -690 -704 -690 -669 -690 -670 -690 -705 -690 -622 -690 -691 -691 -525 -691 -590 -691 -635 -691 -573 -691 -574 -691 -636 -691 -583 -691 -591 -691 -637 -691 -692 -691 -693 -691 -639 -691 -594 -691 -695 -691 -694 -691 -605 -691 -641 -691 -642 -691 -675 -691 -644 -691 -676 -691 -646 -691 -677 -691 -721 -691 -724 -691 -623 -691 -706 -691 -671 -691 -672 -691 -707 -691 -718 -691 -687 -691 -692 -692 -573 -692 -635 -692 -591 -692 -637 -692 -583 -692 -691 -692 -693 -692 -641 -692 -644 -692 -675 -692 -676 -692 -695 -692 -677 -692 -721 -692 -724 -692 -648 -692 -649 -692 -678 -692 -679 -692 -715 -692 -722 -692 -653 -692 -680 -692 -696 -692 -681 -692 -671 -692 -706 -692 -708 -692 -687 -692 -718 -692 -709 -692 -719 -692 -693 -693 -573 -693 -635 -693 -591 -693 -637 -693 -583 -693 -691 -693 -692 -693 -526 -693 -592 -693 -575 -693 -638 -693 -640 -693 -694 -693 -696 -693 -595 -693 -653 -693 -611 -693 -680 -693 -654 -693 -649 -693 -679 -693 -681 -693 -656 -693 -724 -693 -722 -693 -624 -693 -671 -693 -708 -693 -673 -693 -687 -693 -719 -693 -710 -693 -694 -694 -527 -694 -574 -694 -583 -694 -575 -694 -593 -694 -639 -694 -640 -694 -636 -694 -691 -694 -594 -694 -695 -694 -693 -694 -638 -694 -696 -694 -595 -694 -614 -694 -658 -694 -682 -694 -659 -694 -660 -694 -683 -694 -724 -694 -723 -694 -684 -694 -661 -694 -625 -694 -672 -694 -687 -694 -673 -694 -711 -694 -720 -694 -712 -694 -695 -695 -574 -695 -636 -695 -691 -695 -583 -695 -639 -695 -594 -695 -694 -695 -642 -695 -675 -695 -646 -695 -677 -695 -676 -695 -692 -695 -721 -695 -724 -695 -658 -695 -660 -695 -683 -695 -682 -695 -696 -695 -723 -695 -684 -695 -665 -695 -685 -695 -716 -695 -672 -695 -707 -695 -718 -695 -687 -695 -711 -695 -713 -695 -720 -695 -696 -696 -575 -696 -583 -696 -693 -696 -638 -696 -640 -696 -694 -696 -595 -696 -680 -696 -654 -696 -681 -696 -656 -696 -692 -696 -679 -696 -724 -696 -722 -696 -695 -696 -682 -696 -683 -696 -723 -696 -684 -696 -659 -696 -661 -696 -686 -696 -668 -696 -717 -696 -673 -696 -687 -696 -719 -696 -710 -696 -712 -696 -720 -696 -714 -696 -697 -697 -577 -697 -545 -697 -547 -697 -596 -697 -597 -697 -549 -697 -584 -697 -552 -697 -578 -697 -626 -697 -688 -697 -581 -697 -568 -697 -628 -697 -689 -697 -724 -697 -698 -697 -699 -697 -674 -697 -690 -697 -632 -697 -675 -697 -643 -697 -645 -697 -676 -697 -677 -697 -647 -697 -721 -697 -650 -697 -678 -697 -700 -697 -715 -697 -685 -697 -666 -697 -702 -697 -716 -697 -698 -698 -598 -698 -578 -698 -553 -698 -554 -698 -688 -698 -627 -698 -586 -698 -579 -698 -557 -698 -599 -698 -559 -698 -582 -698 -690 -698 -630 -698 -571 -698 -724 -698 -697 -698 -699 -698 -689 -698 -674 -698 -633 -698 -679 -698 -678 -698 -651 -698 -652 -698 -722 -698 -715 -698 -701 -698 -680 -698 -655 -698 -681 -698 -657 -698 -686 -698 -717 -698 -704 -698 -669 -698 -699 -699 -580 -699 -600 -699 -601 -699 -564 -699 -565 -699 -587 -699 -566 -699 -581 -699 -689 -699 -569 -699 -629 -699 -690 -699 -582 -699 -631 -699 -572 -699 -724 -699 -697 -699 -688 -699 -698 -699 -674 -699 -634 -699 -682 -699 -683 -699 -723 -699 -684 -699 -662 -699 -663 -699 -664 -699 -685 -699 -716 -699 -667 -699 -703 -699 -717 -699 -686 -699 -705 -699 -670 -699 -700 -700 -676 -700 -645 -700 -650 -700 -678 -700 -721 -700 -697 -700 -715 -700 -610 -700 -651 -700 -688 -700 -701 -700 -701 -701 -678 -701 -650 -701 -610 -701 -651 -701 -715 -701 -700 -701 -688 -701 -679 -701 -652 -701 -722 -701 -698 -701 -702 -702 -677 -702 -647 -702 -697 -702 -721 -702 -685 -702 -666 -702 -716 -702 -667 -702 -619 -702 -689 -702 -703 -702 -703 -703 -685 -703 -666 -703 -702 -703 -716 -703 -667 -703 -619 -703 -689 -703 -683 -703 -723 -703 -663 -703 -699 -703 -704 -704 -681 -704 -722 -704 -698 -704 -657 -704 -686 -704 -717 -704 -669 -704 -670 -704 -705 -704 -690 -704 -622 -704 -705 -705 -684 -705 -723 -705 -717 -705 -686 -705 -664 -705 -699 -705 -670 -705 -704 -705 -669 -705 -690 -705 -622 -705 -706 -706 -623 -706 -691 -706 -671 -706 -672 -706 -707 -706 -718 -706 -687 -706 -692 -706 -708 -706 -709 -706 -719 -706 -707 -707 -623 -707 -691 -707 -706 -707 -671 -707 -672 -707 -718 -707 -687 -707 -711 -707 -695 -707 -713 -707 -720 -707 -708 -708 -671 -708 -706 -708 -692 -708 -687 -708 -718 -708 -709 -708 -719 -708 -624 -708 -693 -708 -673 -708 -710 -708 -709 -709 -671 -709 -706 -709 -692 -709 -708 -709 -687 -709 -718 -709 -719 -709 -720 -709 -713 -709 -724 -709 -714 -709 -710 -710 -624 -710 -671 -710 -708 -710 -693 -710 -673 -710 -687 -710 -719 -710 -712 -710 -720 -710 -714 -710 -696 -710 -711 -711 -625 -711 -672 -711 -687 -711 -673 -711 -694 -711 -720 -711 -712 -711 -707 -711 -718 -711 -695 -711 -713 -711 -712 -712 -625 -712 -672 -712 -687 -712 -673 -712 -694 -712 -711 -712 -720 -712 -719 -712 -710 -712 -714 -712 -696 -712 -713 -713 -672 -713 -707 -713 -718 -713 -687 -713 -711 -713 -695 -713 -720 -713 -709 -713 -719 -713 -724 -713 -714 -713 -714 -714 -687 -714 -718 -714 -709 -714 -719 -714 -720 -714 -713 -714 -724 -714 -673 -714 -710 -714 -712 -714 -696 -714 -715 -715 -692 -715 -676 -715 -678 -715 -679 -715 -724 -715 -721 -715 -722 -715 -645 -715 -650 -715 -697 -715 -700 -715 -610 -715 -651 -715 -688 -715 -701 -715 -652 -715 -698 -715 -716 -716 -677 -716 -647 -716 -697 -716 -721 -716 -685 -716 -666 -716 -702 -716 -695 -716 -724 -716 -683 -716 -723 -716 -667 -716 -619 -716 -689 -716 -703 -716 -663 -716 -699 -716 -717 -717 -696 -717 -724 -717 -722 -717 -681 -717 -684 -717 -723 -717 -686 -717 -698 -717 -657 -717 -704 -717 -669 -717 -664 -717 -699 -717 -705 -717 -670 -717 -690 -717 -622 -717 -718 -718 -623 -718 -691 -718 -706 -718 -671 -718 -672 -718 -707 -718 -687 -718 -692 -718 -708 -718 -709 -718 -719 -718 -711 -718 -695 -718 -713 -718 -720 -718 -724 -718 -714 -718 -719 -719 -671 -719 -706 -719 -692 -719 -708 -719 -687 -719 -718 -719 -709 -719 -624 -719 -693 -719 -673 -719 -710 -719 -720 -719 -713 -719 -724 -719 -714 -719 -712 -719 -696 -719 -720 -720 -625 -720 -672 -720 -687 -720 -673 -720 -694 -720 -711 -720 -712 -720 -707 -720 -718 -720 -695 -720 -713 -720 -709 -720 -719 -720 -724 -720 -714 -720 -710 -720 -696 -720 -721 -721 -675 -721 -643 -721 -645 -721 -676 -721 -677 -721 -647 -721 -697 -721 -691 -721 -692 -721 -695 -721 -724 -721 -678 -721 -679 -721 -715 -721 -722 -721 -650 -721 -700 -721 -685 -721 -666 -721 -702 -721 -716 -721 -683 -721 -723 -721 -722 -722 -692 -722 -676 -722 -678 -722 -679 -722 -724 -722 -721 -722 -715 -722 -651 -722 -652 -722 -701 -722 -698 -722 -693 -722 -680 -722 -696 -722 -681 -722 -655 -722 -657 -722 -684 -722 -723 -722 -717 -722 -686 -722 -704 -722 -669 -722 -723 -723 -694 -723 -695 -723 -724 -723 -696 -723 -682 -723 -683 -723 -684 -723 -662 -723 -663 -723 -699 -723 -664 -723 -677 -723 -721 -723 -685 -723 -716 -723 -667 -723 -703 -723 -722 -723 -681 -723 -717 -723 -686 -723 -705 -723 -670 -723 -724 -724 -697 -724 -688 -724 -698 -724 -699 -724 -689 -724 -674 -724 -690 -724 -691 -724 -675 -724 -676 -724 -692 -724 -695 -724 -677 -724 -721 -724 -678 -724 -679 -724 -715 -724 -722 -724 -693 -724 -680 -724 -696 -724 -681 -724 -694 -724 -682 -724 -683 -724 -723 -724 -684 -724 -685 -724 -716 -724 -717 -724 -686 -724 -687 -724 -718 -724 -709 -724 -719 -724 -720 -724 -713 -724 -714 -724 -DEAL:: Computing constraints... -DEAL:: Writing condensed sparsity pattern... -0 0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -1 -1 -0 -1 -2 -1 -3 -1 -4 -1 -5 -1 -6 -1 -7 -1 -8 -1 -14 -1 -15 -1 -27 -1 -2 -2 -0 -2 -1 -2 -3 -2 -4 -2 -5 -2 -6 -2 -7 -2 -9 -2 -17 -2 -18 -2 -29 -2 -3 -3 -0 -3 -1 -3 -2 -3 -4 -3 -5 -3 -6 -3 -7 -3 -10 -3 -19 -3 -20 -3 -30 -3 -4 -4 -0 -4 -1 -4 -2 -4 -3 -4 -5 -4 -6 -4 -7 -4 -8 -4 -9 -4 -14 -4 -15 -4 -16 -4 -17 -4 -18 -4 -27 -4 -28 -4 -29 -4 -5 -5 -0 -5 -1 -5 -2 -5 -3 -5 -4 -5 -6 -5 -7 -5 -8 -5 -10 -5 -14 -5 -15 -5 -19 -5 -20 -5 -21 -5 -27 -5 -30 -5 -31 -5 -6 -6 -0 -6 -1 -6 -2 -6 -3 -6 -4 -6 -5 -6 -7 -6 -9 -6 -10 -6 -17 -6 -18 -6 -19 -6 -20 -6 -22 -6 -29 -6 -30 -6 -32 -6 -7 -7 -0 -7 -1 -7 -2 -7 -3 -7 -4 -7 -5 -7 -6 -7 -8 -7 -9 -7 -10 -7 -11 -7 -12 -7 -13 -7 -14 -7 -15 -7 -16 -7 -17 -7 -18 -7 -19 -7 -20 -7 -21 -7 -22 -7 -23 -7 -24 -7 -25 -7 -26 -7 -27 -7 -28 -7 -29 -7 -30 -7 -31 -7 -32 -7 -100 -7 -101 -7 -102 -7 -103 -7 -104 -7 -105 -7 -8 -8 -1 -8 -4 -8 -5 -8 -7 -8 -14 -8 -15 -8 -27 -8 -33 -8 -42 -8 -43 -8 -81 -8 -9 -9 -2 -9 -4 -9 -6 -9 -7 -9 -17 -9 -18 -9 -29 -9 -34 -9 -48 -9 -49 -9 -83 -9 -10 -10 -3 -10 -5 -10 -6 -10 -7 -10 -19 -10 -20 -10 -30 -10 -35 -10 -51 -10 -52 -10 -84 -10 -11 -11 -7 -11 -12 -11 -13 -11 -23 -11 -24 -11 -25 -11 -26 -11 -27 -11 -57 -11 -58 -11 -100 -11 -12 -12 -7 -12 -11 -12 -13 -12 -23 -12 -24 -12 -25 -12 -26 -12 -29 -12 -59 -12 -60 -12 -102 -12 -13 -13 -7 -13 -11 -13 -12 -13 -23 -13 -24 -13 -25 -13 -26 -13 -30 -13 -61 -13 -62 -13 -103 -13 -14 -14 -1 -14 -4 -14 -5 -14 -7 -14 -8 -14 -15 -14 -16 -14 -17 -14 -27 -14 -28 -14 -29 -14 -33 -14 -42 -14 -43 -14 -44 -14 -81 -14 -94 -14 -15 -15 -1 -15 -4 -15 -5 -15 -7 -15 -8 -15 -14 -15 -19 -15 -21 -15 -27 -15 -30 -15 -31 -15 -33 -15 -42 -15 -43 -15 -45 -15 -81 -15 -95 -15 -16 -16 -4 -16 -7 -16 -14 -16 -17 -16 -27 -16 -28 -16 -29 -16 -42 -16 -44 -16 -46 -16 -47 -16 -48 -16 -81 -16 -82 -16 -83 -16 -94 -16 -96 -16 -17 -17 -2 -17 -4 -17 -6 -17 -7 -17 -9 -17 -14 -17 -16 -17 -18 -17 -27 -17 -28 -17 -29 -17 -34 -17 -47 -17 -48 -17 -49 -17 -83 -17 -96 -17 -18 -18 -2 -18 -4 -18 -6 -18 -7 -18 -9 -18 -17 -18 -20 -18 -22 -18 -29 -18 -30 -18 -32 -18 -34 -18 -48 -18 -49 -18 -50 -18 -83 -18 -97 -18 -19 -19 -3 -19 -5 -19 -6 -19 -7 -19 -10 -19 -15 -19 -20 -19 -21 -19 -27 -19 -30 -19 -31 -19 -35 -19 -51 -19 -52 -19 -53 -19 -84 -19 -98 -19 -20 -20 -3 -20 -5 -20 -6 -20 -7 -20 -10 -20 -18 -20 -19 -20 -22 -20 -29 -20 -30 -20 -32 -20 -35 -20 -51 -20 -52 -20 -54 -20 -84 -20 -99 -20 -21 -21 -5 -21 -7 -21 -15 -21 -19 -21 -27 -21 -30 -21 -31 -21 -43 -21 -45 -21 -51 -21 -53 -21 -55 -21 -81 -21 -84 -21 -85 -21 -95 -21 -98 -21 -22 -22 -6 -22 -7 -22 -18 -22 -20 -22 -29 -22 -30 -22 -32 -22 -49 -22 -50 -22 -52 -22 -54 -22 -56 -22 -83 -22 -84 -22 -86 -22 -97 -22 -99 -22 -23 -23 -7 -23 -11 -23 -12 -23 -13 -23 -24 -23 -25 -23 -26 -23 -27 -23 -28 -23 -29 -23 -57 -23 -58 -23 -59 -23 -60 -23 -100 -23 -101 -23 -102 -23 -24 -24 -7 -24 -11 -24 -12 -24 -13 -24 -23 -24 -25 -24 -26 -24 -27 -24 -30 -24 -31 -24 -57 -24 -58 -24 -61 -24 -62 -24 -100 -24 -103 -24 -104 -24 -25 -25 -7 -25 -11 -25 -12 -25 -13 -25 -23 -25 -24 -25 -26 -25 -29 -25 -30 -25 -32 -25 -59 -25 -60 -25 -61 -25 -62 -25 -102 -25 -103 -25 -105 -25 -26 -26 -7 -26 -11 -26 -12 -26 -13 -26 -23 -26 -24 -26 -25 -26 -27 -26 -28 -26 -29 -26 -30 -26 -31 -26 -32 -26 -39 -26 -40 -26 -41 -26 -57 -26 -58 -26 -59 -26 -60 -26 -61 -26 -62 -26 -78 -26 -79 -26 -80 -26 -93 -26 -100 -26 -101 -26 -102 -26 -103 -26 -104 -26 -105 -26 -281 -26 -282 -26 -283 -26 -284 -26 -285 -26 -286 -26 -27 -27 -1 -27 -4 -27 -5 -27 -7 -27 -8 -27 -11 -27 -14 -27 -15 -27 -16 -27 -17 -27 -19 -27 -21 -27 -23 -27 -24 -27 -26 -27 -28 -27 -29 -27 -30 -27 -31 -27 -32 -27 -33 -27 -36 -27 -42 -27 -43 -27 -44 -27 -45 -27 -57 -27 -58 -27 -63 -27 -64 -27 -81 -27 -87 -27 -94 -27 -95 -27 -100 -27 -101 -27 -102 -27 -103 -27 -104 -27 -106 -27 -107 -27 -269 -27 -28 -28 -4 -28 -7 -28 -14 -28 -16 -28 -17 -28 -23 -28 -26 -28 -27 -28 -29 -28 -30 -28 -31 -28 -32 -28 -42 -28 -44 -28 -46 -28 -47 -28 -48 -28 -57 -28 -59 -28 -63 -28 -65 -28 -67 -28 -68 -28 -69 -28 -81 -28 -82 -28 -83 -28 -87 -28 -88 -28 -89 -28 -94 -28 -95 -28 -96 -28 -97 -28 -100 -28 -101 -28 -102 -28 -106 -28 -108 -28 -269 -28 -270 -28 -271 -28 -29 -29 -2 -29 -4 -29 -6 -29 -7 -29 -9 -29 -12 -29 -14 -29 -16 -29 -17 -29 -18 -29 -20 -29 -22 -29 -23 -29 -25 -29 -26 -29 -27 -29 -28 -29 -30 -29 -31 -29 -32 -29 -34 -29 -37 -29 -47 -29 -48 -29 -49 -29 -50 -29 -59 -29 -60 -29 -69 -29 -70 -29 -83 -29 -89 -29 -96 -29 -97 -29 -100 -29 -101 -29 -102 -29 -103 -29 -105 -29 -108 -29 -109 -29 -271 -29 -30 -30 -3 -30 -5 -30 -6 -30 -7 -30 -10 -30 -13 -30 -15 -30 -18 -30 -19 -30 -20 -30 -21 -30 -22 -30 -24 -30 -25 -30 -26 -30 -27 -30 -28 -30 -29 -30 -31 -30 -32 -30 -35 -30 -38 -30 -51 -30 -52 -30 -53 -30 -54 -30 -61 -30 -62 -30 -72 -30 -73 -30 -84 -30 -90 -30 -98 -30 -99 -30 -100 -30 -102 -30 -103 -30 -104 -30 -105 -30 -110 -30 -111 -30 -272 -30 -31 -31 -5 -31 -7 -31 -15 -31 -19 -31 -21 -31 -24 -31 -26 -31 -27 -31 -28 -31 -29 -31 -30 -31 -32 -31 -43 -31 -45 -31 -51 -31 -53 -31 -55 -31 -58 -31 -61 -31 -64 -31 -66 -31 -72 -31 -74 -31 -76 -31 -81 -31 -84 -31 -85 -31 -87 -31 -90 -31 -91 -31 -94 -31 -95 -31 -98 -31 -99 -31 -100 -31 -103 -31 -104 -31 -107 -31 -110 -31 -269 -31 -272 -31 -273 -31 -32 -32 -6 -32 -7 -32 -18 -32 -20 -32 -22 -32 -25 -32 -26 -32 -27 -32 -28 -32 -29 -32 -30 -32 -31 -32 -49 -32 -50 -32 -52 -32 -54 -32 -56 -32 -60 -32 -62 -32 -70 -32 -71 -32 -73 -32 -75 -32 -77 -32 -83 -32 -84 -32 -86 -32 -89 -32 -90 -32 -92 -32 -96 -32 -97 -32 -98 -32 -99 -32 -102 -32 -103 -32 -105 -32 -109 -32 -111 -32 -271 -32 -272 -32 -274 -32 -33 -33 -8 -33 -14 -33 -15 -33 -27 -33 -42 -33 -43 -33 -81 -33 -112 -33 -118 -33 -119 -33 -178 -33 -34 -34 -9 -34 -17 -34 -18 -34 -29 -34 -48 -34 -49 -34 -83 -34 -114 -34 -127 -34 -128 -34 -188 -34 -35 -35 -10 -35 -19 -35 -20 -35 -30 -35 -51 -35 -52 -35 -84 -35 -115 -35 -130 -35 -131 -35 -190 -35 -36 -36 -27 -36 -57 -36 -58 -36 -63 -36 -64 -36 -81 -36 -87 -36 -100 -36 -142 -36 -143 -36 -202 -36 -37 -37 -29 -37 -59 -37 -60 -37 -69 -37 -70 -37 -83 -37 -89 -37 -102 -37 -147 -37 -148 -37 -210 -37 -38 -38 -30 -38 -61 -38 -62 -38 -72 -38 -73 -38 -84 -38 -90 -38 -103 -38 -149 -38 -150 -38 -212 -38 -39 -39 -26 -39 -40 -39 -41 -39 -78 -39 -79 -39 -80 -39 -93 -39 -100 -39 -223 -39 -224 -39 -281 -39 -40 -40 -26 -40 -39 -40 -41 -40 -78 -40 -79 -40 -80 -40 -93 -40 -102 -40 -225 -40 -226 -40 -283 -40 -41 -41 -26 -41 -39 -41 -40 -41 -78 -41 -79 -41 -80 -41 -93 -41 -103 -41 -227 -41 -228 -41 -284 -41 -42 -42 -8 -42 -14 -42 -15 -42 -16 -42 -27 -42 -28 -42 -33 -42 -43 -42 -44 -42 -81 -42 -94 -42 -112 -42 -118 -42 -119 -42 -120 -42 -178 -42 -179 -42 -43 -43 -8 -43 -14 -43 -15 -43 -21 -43 -27 -43 -31 -43 -33 -43 -42 -43 -45 -43 -81 -43 -95 -43 -112 -43 -118 -43 -119 -43 -121 -43 -178 -43 -180 -43 -44 -44 -14 -44 -16 -44 -27 -44 -28 -44 -42 -44 -46 -44 -47 -44 -81 -44 -82 -44 -94 -44 -96 -44 -118 -44 -120 -44 -122 -44 -178 -44 -179 -44 -182 -44 -45 -45 -15 -45 -21 -45 -27 -45 -31 -45 -43 -45 -53 -45 -55 -45 -81 -45 -85 -45 -95 -45 -98 -45 -119 -45 -121 -45 -134 -45 -178 -45 -180 -45 -194 -45 -46 -46 -16 -46 -28 -46 -44 -46 -47 -46 -82 -46 -94 -46 -96 -46 -113 -46 -120 -46 -122 -46 -123 -46 -124 -46 -125 -46 -179 -46 -182 -46 -183 -46 -184 -46 -47 -47 -16 -47 -17 -47 -28 -47 -29 -47 -44 -47 -46 -47 -48 -47 -82 -47 -83 -47 -94 -47 -96 -47 -123 -47 -125 -47 -127 -47 -183 -47 -184 -47 -188 -47 -48 -48 -9 -48 -16 -48 -17 -48 -18 -48 -28 -48 -29 -48 -34 -48 -47 -48 -49 -48 -83 -48 -96 -48 -114 -48 -125 -48 -127 -48 -128 -48 -184 -48 -188 -48 -49 -49 -9 -49 -17 -49 -18 -49 -22 -49 -29 -49 -32 -49 -34 -49 -48 -49 -50 -49 -83 -49 -97 -49 -114 -49 -127 -49 -128 -49 -129 -49 -188 -49 -189 -49 -50 -50 -18 -50 -22 -50 -29 -50 -32 -50 -49 -50 -54 -50 -56 -50 -83 -50 -86 -50 -97 -50 -99 -50 -128 -50 -129 -50 -138 -50 -188 -50 -189 -50 -199 -50 -51 -51 -10 -51 -19 -51 -20 -51 -21 -51 -30 -51 -31 -51 -35 -51 -52 -51 -53 -51 -84 -51 -98 -51 -115 -51 -130 -51 -131 -51 -132 -51 -190 -51 -191 -51 -52 -52 -10 -52 -19 -52 -20 -52 -22 -52 -30 -52 -32 -52 -35 -52 -51 -52 -54 -52 -84 -52 -99 -52 -115 -52 -130 -52 -131 -52 -133 -52 -190 -52 -193 -52 -53 -53 -19 -53 -21 -53 -30 -53 -31 -53 -45 -53 -51 -53 -55 -53 -84 -53 -85 -53 -95 -53 -98 -53 -130 -53 -132 -53 -135 -53 -190 -53 -191 -53 -196 -53 -54 -54 -20 -54 -22 -54 -30 -54 -32 -54 -50 -54 -52 -54 -56 -54 -84 -54 -86 -54 -97 -54 -99 -54 -131 -54 -133 -54 -139 -54 -190 -54 -193 -54 -200 -54 -55 -55 -21 -55 -31 -55 -45 -55 -53 -55 -85 -55 -95 -55 -98 -55 -116 -55 -121 -55 -132 -55 -134 -55 -135 -55 -136 -55 -180 -55 -191 -55 -194 -55 -196 -55 -56 -56 -22 -56 -32 -56 -50 -56 -54 -56 -86 -56 -97 -56 -99 -56 -117 -56 -129 -56 -133 -56 -138 -56 -139 -56 -141 -56 -189 -56 -193 -56 -199 -56 -200 -56 -57 -57 -11 -57 -23 -57 -24 -57 -26 -57 -27 -57 -28 -57 -36 -57 -58 -57 -59 -57 -63 -57 -64 -57 -65 -57 -87 -57 -100 -57 -101 -57 -102 -57 -106 -57 -58 -58 -11 -58 -23 -58 -24 -58 -26 -58 -27 -58 -31 -58 -36 -58 -57 -58 -61 -58 -63 -58 -64 -58 -66 -58 -87 -58 -100 -58 -103 -58 -104 -58 -107 -58 -59 -59 -12 -59 -23 -59 -25 -59 -26 -59 -28 -59 -29 -59 -37 -59 -57 -59 -60 -59 -68 -59 -69 -59 -70 -59 -89 -59 -100 -59 -101 -59 -102 -59 -108 -59 -60 -60 -12 -60 -23 -60 -25 -60 -26 -60 -29 -60 -32 -60 -37 -60 -59 -60 -62 -60 -69 -60 -70 -60 -71 -60 -89 -60 -102 -60 -103 -60 -105 -60 -109 -60 -61 -61 -13 -61 -24 -61 -25 -61 -26 -61 -30 -61 -31 -61 -38 -61 -58 -61 -62 -61 -72 -61 -73 -61 -74 -61 -90 -61 -100 -61 -103 -61 -104 -61 -110 -61 -62 -62 -13 -62 -24 -62 -25 -62 -26 -62 -30 -62 -32 -62 -38 -62 -60 -62 -61 -62 -72 -62 -73 -62 -75 -62 -90 -62 -102 -62 -103 -62 -105 -62 -111 -62 -63 -63 -27 -63 -28 -63 -36 -63 -57 -63 -58 -63 -64 -63 -65 -63 -81 -63 -87 -63 -94 -63 -100 -63 -101 -63 -106 -63 -142 -63 -143 -63 -202 -63 -203 -63 -64 -64 -27 -64 -31 -64 -36 -64 -57 -64 -58 -64 -63 -64 -66 -64 -81 -64 -87 -64 -95 -64 -100 -64 -104 -64 -107 -64 -142 -64 -143 -64 -202 -64 -204 -64 -65 -65 -28 -65 -57 -65 -63 -65 -67 -65 -68 -65 -87 -65 -88 -65 -94 -65 -100 -65 -101 -65 -106 -65 -108 -65 -142 -65 -144 -65 -202 -65 -203 -65 -205 -65 -66 -66 -31 -66 -58 -66 -64 -66 -74 -66 -76 -66 -87 -66 -91 -66 -95 -66 -100 -66 -104 -66 -107 -66 -110 -66 -143 -66 -151 -66 -202 -66 -204 -66 -215 -66 -67 -67 -28 -67 -65 -67 -68 -67 -82 -67 -88 -67 -94 -67 -96 -67 -101 -67 -106 -67 -108 -67 -144 -67 -145 -67 -146 -67 -203 -67 -205 -67 -206 -67 -207 -67 -68 -68 -28 -68 -59 -68 -65 -68 -67 -68 -69 -68 -88 -68 -89 -68 -96 -68 -101 -68 -102 -68 -106 -68 -108 -68 -145 -68 -147 -68 -206 -68 -207 -68 -210 -68 -69 -69 -28 -69 -29 -69 -37 -69 -59 -69 -60 -69 -68 -69 -70 -69 -83 -69 -89 -69 -96 -69 -101 -69 -102 -69 -108 -69 -147 -69 -148 -69 -207 -69 -210 -69 -70 -70 -29 -70 -32 -70 -37 -70 -59 -70 -60 -70 -69 -70 -71 -70 -83 -70 -89 -70 -97 -70 -102 -70 -105 -70 -109 -70 -147 -70 -148 -70 -210 -70 -211 -70 -71 -71 -32 -71 -60 -71 -70 -71 -75 -71 -77 -71 -89 -71 -92 -71 -97 -71 -102 -71 -105 -71 -109 -71 -111 -71 -148 -71 -154 -71 -210 -71 -211 -71 -220 -71 -72 -72 -30 -72 -31 -72 -38 -72 -61 -72 -62 -72 -73 -72 -74 -72 -84 -72 -90 -72 -98 -72 -103 -72 -104 -72 -110 -72 -149 -72 -150 -72 -212 -72 -213 -72 -73 -73 -30 -73 -32 -73 -38 -73 -61 -73 -62 -73 -72 -73 -75 -73 -84 -73 -90 -73 -99 -73 -103 -73 -105 -73 -111 -73 -149 -73 -150 -73 -212 -73 -214 -73 -74 -74 -31 -74 -61 -74 -66 -74 -72 -74 -76 -74 -90 -74 -91 -74 -98 -74 -103 -74 -104 -74 -107 -74 -110 -74 -149 -74 -152 -74 -212 -74 -213 -74 -217 -74 -75 -75 -32 -75 -62 -75 -71 -75 -73 -75 -77 -75 -90 -75 -92 -75 -99 -75 -103 -75 -105 -75 -109 -75 -111 -75 -150 -75 -155 -75 -212 -75 -214 -75 -221 -75 -76 -76 -31 -76 -66 -76 -74 -76 -85 -76 -91 -76 -95 -76 -98 -76 -104 -76 -107 -76 -110 -76 -151 -76 -152 -76 -153 -76 -204 -76 -213 -76 -215 -76 -217 -76 -77 -77 -32 -77 -71 -77 -75 -77 -86 -77 -92 -77 -97 -77 -99 -77 -105 -77 -109 -77 -111 -77 -154 -77 -155 -77 -156 -77 -211 -77 -214 -77 -220 -77 -221 -77 -78 -78 -26 -78 -39 -78 -40 -78 -41 -78 -79 -78 -80 -78 -93 -78 -100 -78 -101 -78 -102 -78 -223 -78 -224 -78 -225 -78 -226 -78 -281 -78 -282 -78 -283 -78 -79 -79 -26 -79 -39 -79 -40 -79 -41 -79 -78 -79 -80 -79 -93 -79 -100 -79 -103 -79 -104 -79 -223 -79 -224 -79 -227 -79 -228 -79 -281 -79 -284 -79 -285 -79 -80 -80 -26 -80 -39 -80 -40 -80 -41 -80 -78 -80 -79 -80 -93 -80 -102 -80 -103 -80 -105 -80 -225 -80 -226 -80 -227 -80 -228 -80 -283 -80 -284 -80 -286 -80 -81 -81 -8 -81 -14 -81 -15 -81 -16 -81 -21 -81 -27 -81 -28 -81 -31 -81 -33 -81 -36 -81 -42 -81 -43 -81 -44 -81 -45 -81 -63 -81 -64 -81 -87 -81 -94 -81 -95 -81 -100 -81 -101 -81 -104 -81 -106 -81 -107 -81 -112 -81 -118 -81 -119 -81 -120 -81 -121 -81 -142 -81 -143 -81 -178 -81 -179 -81 -180 -81 -181 -81 -202 -81 -269 -81 -275 -81 -82 -82 -16 -82 -28 -82 -44 -82 -46 -82 -47 -82 -67 -82 -88 -82 -94 -82 -96 -82 -101 -82 -106 -82 -108 -82 -113 -82 -120 -82 -122 -82 -123 -82 -124 -82 -125 -82 -126 -82 -144 -82 -145 -82 -146 -82 -179 -82 -181 -82 -182 -82 -183 -82 -184 -82 -185 -82 -186 -82 -187 -82 -205 -82 -206 -82 -269 -82 -270 -82 -271 -82 -275 -82 -276 -82 -277 -82 -83 -83 -9 -83 -16 -83 -17 -83 -18 -83 -22 -83 -28 -83 -29 -83 -32 -83 -34 -83 -37 -83 -47 -83 -48 -83 -49 -83 -50 -83 -69 -83 -70 -83 -89 -83 -96 -83 -97 -83 -101 -83 -102 -83 -105 -83 -108 -83 -109 -83 -114 -83 -125 -83 -127 -83 -128 -83 -129 -83 -147 -83 -148 -83 -184 -83 -187 -83 -188 -83 -189 -83 -210 -83 -271 -83 -277 -83 -84 -84 -10 -84 -19 -84 -20 -84 -21 -84 -22 -84 -30 -84 -31 -84 -32 -84 -35 -84 -38 -84 -51 -84 -52 -84 -53 -84 -54 -84 -72 -84 -73 -84 -90 -84 -98 -84 -99 -84 -103 -84 -104 -84 -105 -84 -110 -84 -111 -84 -115 -84 -130 -84 -131 -84 -132 -84 -133 -84 -149 -84 -150 -84 -190 -84 -191 -84 -192 -84 -193 -84 -212 -84 -272 -84 -278 -84 -85 -85 -21 -85 -31 -85 -45 -85 -53 -85 -55 -85 -76 -85 -91 -85 -95 -85 -98 -85 -104 -85 -107 -85 -110 -85 -116 -85 -121 -85 -132 -85 -134 -85 -135 -85 -136 -85 -137 -85 -151 -85 -152 -85 -153 -85 -180 -85 -181 -85 -191 -85 -192 -85 -194 -85 -195 -85 -196 -85 -197 -85 -215 -85 -217 -85 -269 -85 -272 -85 -273 -85 -275 -85 -278 -85 -279 -85 -86 -86 -22 -86 -32 -86 -50 -86 -54 -86 -56 -86 -77 -86 -92 -86 -97 -86 -99 -86 -105 -86 -109 -86 -111 -86 -117 -86 -129 -86 -133 -86 -138 -86 -139 -86 -140 -86 -141 -86 -154 -86 -155 -86 -156 -86 -187 -86 -189 -86 -192 -86 -193 -86 -198 -86 -199 -86 -200 -86 -201 -86 -220 -86 -221 -86 -271 -86 -272 -86 -274 -86 -277 -86 -278 -86 -280 -86 -87 -87 -27 -87 -28 -87 -31 -87 -36 -87 -57 -87 -58 -87 -63 -87 -64 -87 -65 -87 -66 -87 -81 -87 -94 -87 -95 -87 -100 -87 -101 -87 -104 -87 -106 -87 -107 -87 -142 -87 -143 -87 -157 -87 -158 -87 -159 -87 -202 -87 -203 -87 -204 -87 -229 -87 -230 -87 -231 -87 -262 -87 -269 -87 -275 -87 -281 -87 -282 -87 -285 -87 -287 -87 -288 -87 -387 -87 -88 -88 -28 -88 -65 -88 -67 -88 -68 -88 -82 -88 -94 -88 -96 -88 -101 -88 -106 -88 -108 -88 -144 -88 -145 -88 -146 -88 -160 -88 -161 -88 -162 -88 -203 -88 -205 -88 -206 -88 -207 -88 -208 -88 -209 -88 -236 -88 -238 -88 -239 -88 -263 -88 -269 -88 -270 -88 -271 -88 -275 -88 -276 -88 -277 -88 -282 -88 -287 -88 -289 -88 -387 -88 -388 -88 -389 -88 -89 -89 -28 -89 -29 -89 -32 -89 -37 -89 -59 -89 -60 -89 -68 -89 -69 -89 -70 -89 -71 -89 -83 -89 -96 -89 -97 -89 -101 -89 -102 -89 -105 -89 -108 -89 -109 -89 -147 -89 -148 -89 -163 -89 -164 -89 -165 -89 -207 -89 -210 -89 -211 -89 -241 -89 -242 -89 -243 -89 -264 -89 -271 -89 -277 -89 -282 -89 -283 -89 -286 -89 -289 -89 -290 -89 -389 -89 -90 -90 -30 -90 -31 -90 -32 -90 -38 -90 -61 -90 -62 -90 -72 -90 -73 -90 -74 -90 -75 -90 -84 -90 -98 -90 -99 -90 -103 -90 -104 -90 -105 -90 -110 -90 -111 -90 -149 -90 -150 -90 -166 -90 -167 -90 -168 -90 -212 -90 -213 -90 -214 -90 -246 -90 -247 -90 -250 -90 -265 -90 -272 -90 -278 -90 -284 -90 -285 -90 -286 -90 -291 -90 -292 -90 -390 -90 -91 -91 -31 -91 -66 -91 -74 -91 -76 -91 -85 -91 -95 -91 -98 -91 -104 -91 -107 -91 -110 -91 -151 -91 -152 -91 -153 -91 -169 -91 -170 -91 -171 -91 -204 -91 -213 -91 -215 -91 -216 -91 -217 -91 -218 -91 -253 -91 -254 -91 -255 -91 -266 -91 -269 -91 -272 -91 -273 -91 -275 -91 -278 -91 -279 -91 -285 -91 -288 -91 -291 -91 -387 -91 -390 -91 -391 -91 -92 -92 -32 -92 -71 -92 -75 -92 -77 -92 -86 -92 -97 -92 -99 -92 -105 -92 -109 -92 -111 -92 -154 -92 -155 -92 -156 -92 -172 -92 -173 -92 -174 -92 -211 -92 -214 -92 -219 -92 -220 -92 -221 -92 -222 -92 -256 -92 -257 -92 -258 -92 -267 -92 -271 -92 -272 -92 -274 -92 -277 -92 -278 -92 -280 -92 -286 -92 -290 -92 -292 -92 -389 -92 -390 -92 -392 -92 -93 -93 -26 -93 -39 -93 -40 -93 -41 -93 -78 -93 -79 -93 -80 -93 -100 -93 -101 -93 -102 -93 -103 -93 -104 -93 -105 -93 -175 -93 -176 -93 -177 -93 -223 -93 -224 -93 -225 -93 -226 -93 -227 -93 -228 -93 -259 -93 -260 -93 -261 -93 -268 -93 -281 -93 -282 -93 -283 -93 -284 -93 -285 -93 -286 -93 -393 -93 -394 -93 -395 -93 -396 -93 -397 -93 -398 -93 -94 -94 -14 -94 -16 -94 -27 -94 -28 -94 -31 -94 -42 -94 -44 -94 -46 -94 -47 -94 -63 -94 -65 -94 -67 -94 -81 -94 -82 -94 -87 -94 -88 -94 -95 -94 -96 -94 -100 -94 -101 -94 -106 -94 -107 -94 -108 -94 -118 -94 -120 -94 -122 -94 -142 -94 -144 -94 -178 -94 -179 -94 -180 -94 -181 -94 -182 -94 -185 -94 -202 -94 -203 -94 -205 -94 -269 -94 -270 -94 -271 -94 -275 -94 -276 -94 -95 -95 -15 -95 -21 -95 -27 -95 -28 -95 -31 -95 -43 -95 -45 -95 -53 -95 -55 -95 -64 -95 -66 -95 -76 -95 -81 -95 -85 -95 -87 -95 -91 -95 -94 -95 -98 -95 -100 -95 -104 -95 -106 -95 -107 -95 -110 -95 -119 -95 -121 -95 -134 -95 -143 -95 -151 -95 -178 -95 -179 -95 -180 -95 -181 -95 -194 -95 -195 -95 -202 -95 -204 -95 -215 -95 -269 -95 -272 -95 -273 -95 -275 -95 -279 -95 -96 -96 -16 -96 -17 -96 -28 -96 -29 -96 -32 -96 -44 -96 -46 -96 -47 -96 -48 -96 -67 -96 -68 -96 -69 -96 -82 -96 -83 -96 -88 -96 -89 -96 -94 -96 -97 -96 -101 -96 -102 -96 -106 -96 -108 -96 -109 -96 -123 -96 -125 -96 -127 -96 -145 -96 -147 -96 -183 -96 -184 -96 -186 -96 -187 -96 -188 -96 -189 -96 -206 -96 -207 -96 -210 -96 -269 -96 -270 -96 -271 -96 -276 -96 -277 -96 -97 -97 -18 -97 -22 -97 -28 -97 -29 -97 -32 -97 -49 -97 -50 -97 -54 -97 -56 -97 -70 -97 -71 -97 -77 -97 -83 -97 -86 -97 -89 -97 -92 -97 -96 -97 -99 -97 -102 -97 -105 -97 -108 -97 -109 -97 -111 -97 -128 -97 -129 -97 -138 -97 -148 -97 -154 -97 -184 -97 -187 -97 -188 -97 -189 -97 -198 -97 -199 -97 -210 -97 -211 -97 -220 -97 -271 -97 -272 -97 -274 -97 -277 -97 -280 -97 -98 -98 -19 -98 -21 -98 -30 -98 -31 -98 -32 -98 -45 -98 -51 -98 -53 -98 -55 -98 -72 -98 -74 -98 -76 -98 -84 -98 -85 -98 -90 -98 -91 -98 -95 -98 -99 -98 -103 -98 -104 -98 -107 -98 -110 -98 -111 -98 -130 -98 -132 -98 -135 -98 -149 -98 -152 -98 -190 -98 -191 -98 -192 -98 -193 -98 -196 -98 -197 -98 -212 -98 -213 -98 -217 -98 -269 -98 -272 -98 -273 -98 -278 -98 -279 -98 -99 -99 -20 -99 -22 -99 -30 -99 -31 -99 -32 -99 -50 -99 -52 -99 -54 -99 -56 -99 -73 -99 -75 -99 -77 -99 -84 -99 -86 -99 -90 -99 -92 -99 -97 -99 -98 -99 -103 -99 -105 -99 -109 -99 -110 -99 -111 -99 -131 -99 -133 -99 -139 -99 -150 -99 -155 -99 -190 -99 -191 -99 -192 -99 -193 -99 -200 -99 -201 -99 -212 -99 -214 -99 -221 -99 -271 -99 -272 -99 -274 -99 -278 -99 -280 -99 -100 -100 -7 -100 -11 -100 -23 -100 -24 -100 -26 -100 -27 -100 -28 -100 -29 -100 -30 -100 -31 -100 -36 -100 -39 -100 -57 -100 -58 -100 -59 -100 -61 -100 -63 -100 -64 -100 -65 -100 -66 -100 -78 -100 -79 -100 -81 -100 -87 -100 -93 -100 -94 -100 -95 -100 -101 -100 -102 -100 -103 -100 -104 -100 -105 -100 -106 -100 -107 -100 -157 -100 -223 -100 -224 -100 -229 -100 -230 -100 -262 -100 -275 -100 -281 -100 -282 -100 -283 -100 -284 -100 -285 -100 -287 -100 -288 -100 -101 -101 -7 -101 -23 -101 -26 -101 -27 -101 -28 -101 -29 -101 -57 -101 -59 -101 -63 -101 -65 -101 -67 -101 -68 -101 -69 -101 -78 -101 -81 -101 -82 -101 -83 -101 -87 -101 -88 -101 -89 -101 -93 -101 -94 -101 -96 -101 -100 -101 -102 -101 -103 -101 -104 -101 -105 -101 -106 -101 -107 -101 -108 -101 -109 -101 -223 -101 -225 -101 -229 -101 -232 -101 -236 -101 -237 -101 -241 -101 -262 -101 -263 -101 -264 -101 -275 -101 -276 -101 -277 -101 -281 -101 -282 -101 -283 -101 -287 -101 -289 -101 -102 -102 -7 -102 -12 -102 -23 -102 -25 -102 -26 -102 -27 -102 -28 -102 -29 -102 -30 -102 -32 -102 -37 -102 -40 -102 -57 -102 -59 -102 -60 -102 -62 -102 -68 -102 -69 -102 -70 -102 -71 -102 -78 -102 -80 -102 -83 -102 -89 -102 -93 -102 -96 -102 -97 -102 -100 -102 -101 -102 -103 -102 -104 -102 -105 -102 -108 -102 -109 -102 -163 -102 -225 -102 -226 -102 -241 -102 -242 -102 -264 -102 -277 -102 -281 -102 -282 -102 -283 -102 -284 -102 -286 -102 -289 -102 -290 -102 -103 -103 -7 -103 -13 -103 -24 -103 -25 -103 -26 -103 -27 -103 -29 -103 -30 -103 -31 -103 -32 -103 -38 -103 -41 -103 -58 -103 -60 -103 -61 -103 -62 -103 -72 -103 -73 -103 -74 -103 -75 -103 -79 -103 -80 -103 -84 -103 -90 -103 -93 -103 -98 -103 -99 -103 -100 -103 -101 -103 -102 -103 -104 -103 -105 -103 -110 -103 -111 -103 -166 -103 -227 -103 -228 -103 -246 -103 -247 -103 -265 -103 -278 -103 -281 -103 -283 -103 -284 -103 -285 -103 -286 -103 -291 -103 -292 -103 -104 -104 -7 -104 -24 -104 -26 -104 -27 -104 -30 -104 -31 -104 -58 -104 -61 -104 -64 -104 -66 -104 -72 -104 -74 -104 -76 -104 -79 -104 -81 -104 -84 -104 -85 -104 -87 -104 -90 -104 -91 -104 -93 -104 -95 -104 -98 -104 -100 -104 -101 -104 -102 -104 -103 -104 -105 -104 -106 -104 -107 -104 -110 -104 -111 -104 -224 -104 -227 -104 -230 -104 -234 -104 -246 -104 -248 -104 -253 -104 -262 -104 -265 -104 -266 -104 -275 -104 -278 -104 -279 -104 -281 -104 -284 -104 -285 -104 -288 -104 -291 -104 -105 -105 -7 -105 -25 -105 -26 -105 -29 -105 -30 -105 -32 -105 -60 -105 -62 -105 -70 -105 -71 -105 -73 -105 -75 -105 -77 -105 -80 -105 -83 -105 -84 -105 -86 -105 -89 -105 -90 -105 -92 -105 -93 -105 -97 -105 -99 -105 -100 -105 -101 -105 -102 -105 -103 -105 -104 -105 -108 -105 -109 -105 -110 -105 -111 -105 -226 -105 -228 -105 -242 -105 -244 -105 -247 -105 -249 -105 -256 -105 -264 -105 -265 -105 -267 -105 -277 -105 -278 -105 -280 -105 -283 -105 -284 -105 -286 -105 -290 -105 -292 -105 -106 -106 -27 -106 -28 -106 -57 -106 -63 -106 -65 -106 -67 -106 -68 -106 -81 -106 -82 -106 -87 -106 -88 -106 -94 -106 -95 -106 -96 -106 -100 -106 -101 -106 -104 -106 -107 -106 -108 -106 -142 -106 -144 -106 -158 -106 -160 -106 -202 -106 -203 -106 -204 -106 -205 -106 -208 -106 -229 -106 -231 -106 -232 -106 -233 -106 -236 -106 -238 -106 -262 -106 -263 -106 -269 -106 -270 -106 -275 -106 -276 -106 -277 -106 -281 -106 -282 -106 -287 -106 -288 -106 -289 -106 -387 -106 -388 -106 -107 -107 -27 -107 -31 -107 -58 -107 -64 -107 -66 -107 -74 -107 -76 -107 -81 -107 -85 -107 -87 -107 -91 -107 -94 -107 -95 -107 -98 -107 -100 -107 -101 -107 -104 -107 -106 -107 -110 -107 -143 -107 -151 -107 -159 -107 -169 -107 -202 -107 -203 -107 -204 -107 -215 -107 -216 -107 -230 -107 -231 -107 -234 -107 -235 -107 -253 -107 -254 -107 -262 -107 -266 -107 -269 -107 -273 -107 -275 -107 -278 -107 -279 -107 -281 -107 -285 -107 -287 -107 -288 -107 -291 -107 -387 -107 -391 -107 -108 -108 -28 -108 -29 -108 -59 -108 -65 -108 -67 -108 -68 -108 -69 -108 -82 -108 -83 -108 -88 -108 -89 -108 -94 -108 -96 -108 -97 -108 -101 -108 -102 -108 -105 -108 -106 -108 -109 -108 -145 -108 -147 -108 -161 -108 -164 -108 -206 -108 -207 -108 -209 -108 -210 -108 -211 -108 -236 -108 -237 -108 -239 -108 -240 -108 -241 -108 -243 -108 -263 -108 -264 -108 -270 -108 -271 -108 -275 -108 -276 -108 -277 -108 -282 -108 -283 -108 -287 -108 -289 -108 -290 -108 -388 -108 -389 -108 -109 -109 -29 -109 -32 -109 -60 -109 -70 -109 -71 -109 -75 -109 -77 -109 -83 -109 -86 -109 -89 -109 -92 -109 -96 -109 -97 -109 -99 -109 -101 -109 -102 -109 -105 -109 -108 -109 -111 -109 -148 -109 -154 -109 -165 -109 -172 -109 -207 -109 -210 -109 -211 -109 -219 -109 -220 -109 -242 -109 -243 -109 -244 -109 -245 -109 -256 -109 -257 -109 -264 -109 -267 -109 -271 -109 -274 -109 -277 -109 -278 -109 -280 -109 -283 -109 -286 -109 -289 -109 -290 -109 -292 -109 -389 -109 -392 -109 -110 -110 -30 -110 -31 -110 -61 -110 -66 -110 -72 -110 -74 -110 -76 -110 -84 -110 -85 -110 -90 -110 -91 -110 -95 -110 -98 -110 -99 -110 -103 -110 -104 -110 -105 -110 -107 -110 -111 -110 -149 -110 -152 -110 -167 -110 -170 -110 -212 -110 -213 -110 -214 -110 -217 -110 -218 -110 -246 -110 -248 -110 -250 -110 -251 -110 -253 -110 -255 -110 -265 -110 -266 -110 -272 -110 -273 -110 -275 -110 -278 -110 -279 -110 -284 -110 -285 -110 -288 -110 -291 -110 -292 -110 -390 -110 -391 -110 -111 -111 -30 -111 -32 -111 -62 -111 -71 -111 -73 -111 -75 -111 -77 -111 -84 -111 -86 -111 -90 -111 -92 -111 -97 -111 -98 -111 -99 -111 -103 -111 -104 -111 -105 -111 -109 -111 -110 -111 -150 -111 -155 -111 -168 -111 -173 -111 -212 -111 -213 -111 -214 -111 -221 -111 -222 -111 -247 -111 -249 -111 -250 -111 -252 -111 -256 -111 -258 -111 -265 -111 -267 -111 -272 -111 -274 -111 -277 -111 -278 -111 -280 -111 -284 -111 -286 -111 -290 -111 -291 -111 -292 -111 -390 -111 -392 -111 -112 -112 -33 -112 -42 -112 -43 -112 -81 -112 -118 -112 -119 -112 -178 -112 -113 -113 -46 -113 -82 -113 -122 -113 -123 -113 -124 -113 -182 -113 -183 -113 -114 -114 -34 -114 -48 -114 -49 -114 -83 -114 -127 -114 -128 -114 -188 -114 -115 -115 -35 -115 -51 -115 -52 -115 -84 -115 -130 -115 -131 -115 -190 -115 -116 -116 -55 -116 -85 -116 -134 -116 -135 -116 -136 -116 -194 -116 -196 -116 -117 -117 -56 -117 -86 -117 -138 -117 -139 -117 -141 -117 -199 -117 -200 -117 -118 -118 -33 -118 -42 -118 -43 -118 -44 -118 -81 -118 -94 -118 -112 -118 -119 -118 -120 -118 -178 -118 -179 -118 -119 -119 -33 -119 -42 -119 -43 -119 -45 -119 -81 -119 -95 -119 -112 -119 -118 -119 -121 -119 -178 -119 -180 -119 -120 -120 -42 -120 -44 -120 -46 -120 -81 -120 -82 -120 -94 -120 -118 -120 -122 -120 -178 -120 -179 -120 -182 -120 -121 -121 -43 -121 -45 -121 -55 -121 -81 -121 -85 -121 -95 -121 -119 -121 -134 -121 -178 -121 -180 -121 -194 -121 -122 -122 -44 -122 -46 -122 -82 -122 -94 -122 -113 -122 -120 -122 -123 -122 -124 -122 -179 -122 -182 -122 -183 -122 -123 -123 -46 -123 -47 -123 -82 -123 -96 -123 -113 -123 -122 -123 -124 -123 -125 -123 -182 -123 -183 -123 -184 -123 -124 -124 -46 -124 -82 -124 -113 -124 -122 -124 -123 -124 -126 -124 -182 -124 -183 -124 -185 -124 -186 -124 -270 -124 -125 -125 -46 -125 -47 -125 -48 -125 -82 -125 -83 -125 -96 -125 -123 -125 -127 -125 -183 -125 -184 -125 -188 -125 -126 -126 -82 -126 -124 -126 -182 -126 -183 -126 -185 -126 -186 -126 -270 -126 -293 -126 -323 -126 -324 -126 -377 -126 -127 -127 -34 -127 -47 -127 -48 -127 -49 -127 -83 -127 -96 -127 -114 -127 -125 -127 -128 -127 -184 -127 -188 -127 -128 -128 -34 -128 -48 -128 -49 -128 -50 -128 -83 -128 -97 -128 -114 -128 -127 -128 -129 -128 -188 -128 -189 -128 -129 -129 -49 -129 -50 -129 -56 -129 -83 -129 -86 -129 -97 -129 -128 -129 -138 -129 -188 -129 -189 -129 -199 -129 -130 -130 -35 -130 -51 -130 -52 -130 -53 -130 -84 -130 -98 -130 -115 -130 -131 -130 -132 -130 -190 -130 -191 -130 -131 -131 -35 -131 -51 -131 -52 -131 -54 -131 -84 -131 -99 -131 -115 -131 -130 -131 -133 -131 -190 -131 -193 -131 -132 -132 -51 -132 -53 -132 -55 -132 -84 -132 -85 -132 -98 -132 -130 -132 -135 -132 -190 -132 -191 -132 -196 -132 -133 -133 -52 -133 -54 -133 -56 -133 -84 -133 -86 -133 -99 -133 -131 -133 -139 -133 -190 -133 -193 -133 -200 -133 -134 -134 -45 -134 -55 -134 -85 -134 -95 -134 -116 -134 -121 -134 -135 -134 -136 -134 -180 -134 -194 -134 -196 -134 -135 -135 -53 -135 -55 -135 -85 -135 -98 -135 -116 -135 -132 -135 -134 -135 -136 -135 -191 -135 -194 -135 -196 -135 -136 -136 -55 -136 -85 -136 -116 -136 -134 -136 -135 -136 -137 -136 -194 -136 -195 -136 -196 -136 -197 -136 -273 -136 -137 -137 -85 -137 -136 -137 -194 -137 -195 -137 -196 -137 -197 -137 -273 -137 -294 -137 -323 -137 -325 -137 -377 -137 -138 -138 -50 -138 -56 -138 -86 -138 -97 -138 -117 -138 -129 -138 -139 -138 -141 -138 -189 -138 -199 -138 -200 -138 -139 -139 -54 -139 -56 -139 -86 -139 -99 -139 -117 -139 -133 -139 -138 -139 -141 -139 -193 -139 -199 -139 -200 -139 -140 -140 -86 -140 -141 -140 -198 -140 -199 -140 -200 -140 -201 -140 -274 -140 -295 -140 -324 -140 -325 -140 -377 -140 -141 -141 -56 -141 -86 -141 -117 -141 -138 -141 -139 -141 -140 -141 -198 -141 -199 -141 -200 -141 -201 -141 -274 -141 -142 -142 -36 -142 -63 -142 -64 -142 -65 -142 -81 -142 -87 -142 -94 -142 -106 -142 -143 -142 -202 -142 -203 -142 -143 -143 -36 -143 -63 -143 -64 -143 -66 -143 -81 -143 -87 -143 -95 -143 -107 -143 -142 -143 -202 -143 -204 -143 -144 -144 -65 -144 -67 -144 -82 -144 -88 -144 -94 -144 -106 -144 -145 -144 -146 -144 -203 -144 -205 -144 -206 -144 -145 -145 -67 -145 -68 -145 -82 -145 -88 -145 -96 -145 -108 -145 -144 -145 -146 -145 -205 -145 -206 -145 -207 -145 -146 -146 -67 -146 -82 -146 -88 -146 -144 -146 -145 -146 -205 -146 -206 -146 -208 -146 -209 -146 -270 -146 -276 -146 -147 -147 -37 -147 -68 -147 -69 -147 -70 -147 -83 -147 -89 -147 -96 -147 -108 -147 -148 -147 -207 -147 -210 -147 -148 -148 -37 -148 -69 -148 -70 -148 -71 -148 -83 -148 -89 -148 -97 -148 -109 -148 -147 -148 -210 -148 -211 -148 -149 -149 -38 -149 -72 -149 -73 -149 -74 -149 -84 -149 -90 -149 -98 -149 -110 -149 -150 -149 -212 -149 -213 -149 -150 -150 -38 -150 -72 -150 -73 -150 -75 -150 -84 -150 -90 -150 -99 -150 -111 -150 -149 -150 -212 -150 -214 -150 -151 -151 -66 -151 -76 -151 -85 -151 -91 -151 -95 -151 -107 -151 -152 -151 -153 -151 -204 -151 -215 -151 -217 -151 -152 -152 -74 -152 -76 -152 -85 -152 -91 -152 -98 -152 -110 -152 -151 -152 -153 -152 -213 -152 -215 -152 -217 -152 -153 -153 -76 -153 -85 -153 -91 -153 -151 -153 -152 -153 -215 -153 -216 -153 -217 -153 -218 -153 -273 -153 -279 -153 -154 -154 -71 -154 -77 -154 -86 -154 -92 -154 -97 -154 -109 -154 -155 -154 -156 -154 -211 -154 -220 -154 -221 -154 -155 -155 -75 -155 -77 -155 -86 -155 -92 -155 -99 -155 -111 -155 -154 -155 -156 -155 -214 -155 -220 -155 -221 -155 -156 -156 -77 -156 -86 -156 -92 -156 -154 -156 -155 -156 -219 -156 -220 -156 -221 -156 -222 -156 -274 -156 -280 -156 -157 -157 -87 -157 -100 -157 -158 -157 -159 -157 -223 -157 -224 -157 -229 -157 -230 -157 -231 -157 -262 -157 -281 -157 -158 -158 -87 -158 -106 -158 -157 -158 -159 -158 -229 -158 -230 -158 -231 -158 -232 -158 -233 -158 -262 -158 -287 -158 -159 -159 -87 -159 -107 -159 -157 -159 -158 -159 -229 -159 -230 -159 -231 -159 -234 -159 -235 -159 -262 -159 -288 -159 -160 -160 -88 -160 -106 -160 -161 -160 -162 -160 -232 -160 -233 -160 -236 -160 -238 -160 -239 -160 -263 -160 -287 -160 -161 -161 -88 -161 -108 -161 -160 -161 -162 -161 -236 -161 -237 -161 -238 -161 -239 -161 -240 -161 -263 -161 -289 -161 -162 -162 -88 -162 -160 -162 -161 -162 -236 -162 -238 -162 -239 -162 -263 -162 -276 -162 -329 -162 -330 -162 -388 -162 -163 -163 -89 -163 -102 -163 -164 -163 -165 -163 -225 -163 -226 -163 -241 -163 -242 -163 -243 -163 -264 -163 -283 -163 -164 -164 -89 -164 -108 -164 -163 -164 -165 -164 -237 -164 -240 -164 -241 -164 -242 -164 -243 -164 -264 -164 -289 -164 -165 -165 -89 -165 -109 -165 -163 -165 -164 -165 -241 -165 -242 -165 -243 -165 -244 -165 -245 -165 -264 -165 -290 -165 -166 -166 -90 -166 -103 -166 -167 -166 -168 -166 -227 -166 -228 -166 -246 -166 -247 -166 -250 -166 -265 -166 -284 -166 -167 -167 -90 -167 -110 -167 -166 -167 -168 -167 -246 -167 -247 -167 -248 -167 -250 -167 -251 -167 -265 -167 -291 -167 -168 -168 -90 -168 -111 -168 -166 -168 -167 -168 -246 -168 -247 -168 -249 -168 -250 -168 -252 -168 -265 -168 -292 -168 -169 -169 -91 -169 -107 -169 -170 -169 -171 -169 -234 -169 -235 -169 -253 -169 -254 -169 -255 -169 -266 -169 -288 -169 -170 -170 -91 -170 -110 -170 -169 -170 -171 -170 -248 -170 -251 -170 -253 -170 -254 -170 -255 -170 -266 -170 -291 -170 -171 -171 -91 -171 -169 -171 -170 -171 -253 -171 -254 -171 -255 -171 -266 -171 -279 -171 -331 -171 -332 -171 -391 -171 -172 -172 -92 -172 -109 -172 -173 -172 -174 -172 -244 -172 -245 -172 -256 -172 -257 -172 -258 -172 -267 -172 -290 -172 -173 -173 -92 -173 -111 -173 -172 -173 -174 -173 -249 -173 -252 -173 -256 -173 -257 -173 -258 -173 -267 -173 -292 -173 -174 -174 -92 -174 -172 -174 -173 -174 -256 -174 -257 -174 -258 -174 -267 -174 -280 -174 -333 -174 -334 -174 -392 -174 -175 -175 -93 -175 -176 -175 -177 -175 -259 -175 -260 -175 -261 -175 -268 -175 -281 -175 -338 -175 -339 -175 -393 -175 -176 -176 -93 -176 -175 -176 -177 -176 -259 -176 -260 -176 -261 -176 -268 -176 -283 -176 -340 -176 -341 -176 -395 -176 -177 -177 -93 -177 -175 -177 -176 -177 -259 -177 -260 -177 -261 -177 -268 -177 -284 -177 -342 -177 -343 -177 -396 -177 -178 -178 -33 -178 -42 -178 -43 -178 -44 -178 -45 -178 -81 -178 -94 -178 -95 -178 -112 -178 -118 -178 -119 -178 -120 -178 -121 -178 -179 -178 -180 -178 -181 -178 -269 -178 -179 -179 -42 -179 -44 -179 -46 -179 -81 -179 -82 -179 -94 -179 -95 -179 -118 -179 -120 -179 -122 -179 -178 -179 -180 -179 -181 -179 -182 -179 -185 -179 -269 -179 -270 -179 -180 -180 -43 -180 -45 -180 -55 -180 -81 -180 -85 -180 -94 -180 -95 -180 -119 -180 -121 -180 -134 -180 -178 -180 -179 -180 -181 -180 -194 -180 -195 -180 -269 -180 -273 -180 -181 -181 -81 -181 -82 -181 -85 -181 -94 -181 -95 -181 -178 -181 -179 -181 -180 -181 -182 -181 -185 -181 -194 -181 -195 -181 -269 -181 -270 -181 -273 -181 -323 -181 -377 -181 -182 -182 -44 -182 -46 -182 -82 -182 -94 -182 -113 -182 -120 -182 -122 -182 -123 -182 -124 -182 -126 -182 -179 -182 -181 -182 -183 -182 -185 -182 -186 -182 -269 -182 -270 -182 -183 -183 -46 -183 -47 -183 -82 -183 -96 -183 -113 -183 -122 -183 -123 -183 -124 -183 -125 -183 -126 -183 -182 -183 -184 -183 -185 -183 -186 -183 -187 -183 -270 -183 -271 -183 -184 -184 -46 -184 -47 -184 -48 -184 -82 -184 -83 -184 -96 -184 -97 -184 -123 -184 -125 -184 -127 -184 -183 -184 -186 -184 -187 -184 -188 -184 -189 -184 -270 -184 -271 -184 -185 -185 -82 -185 -94 -185 -124 -185 -126 -185 -179 -185 -181 -185 -182 -185 -183 -185 -186 -185 -195 -185 -269 -185 -270 -185 -273 -185 -293 -185 -323 -185 -324 -185 -377 -185 -186 -186 -82 -186 -96 -186 -124 -186 -126 -186 -182 -186 -183 -186 -184 -186 -185 -186 -187 -186 -198 -186 -270 -186 -271 -186 -274 -186 -293 -186 -323 -186 -324 -186 -377 -186 -187 -187 -82 -187 -83 -187 -86 -187 -96 -187 -97 -187 -183 -187 -184 -187 -186 -187 -188 -187 -189 -187 -198 -187 -199 -187 -270 -187 -271 -187 -274 -187 -324 -187 -377 -187 -188 -188 -34 -188 -47 -188 -48 -188 -49 -188 -50 -188 -83 -188 -96 -188 -97 -188 -114 -188 -125 -188 -127 -188 -128 -188 -129 -188 -184 -188 -187 -188 -189 -188 -271 -188 -189 -189 -49 -189 -50 -189 -56 -189 -83 -189 -86 -189 -96 -189 -97 -189 -128 -189 -129 -189 -138 -189 -184 -189 -187 -189 -188 -189 -198 -189 -199 -189 -271 -189 -274 -189 -190 -190 -35 -190 -51 -190 -52 -190 -53 -190 -54 -190 -84 -190 -98 -190 -99 -190 -115 -190 -130 -190 -131 -190 -132 -190 -133 -190 -191 -190 -192 -190 -193 -190 -272 -190 -191 -191 -51 -191 -53 -191 -55 -191 -84 -191 -85 -191 -98 -191 -99 -191 -130 -191 -132 -191 -135 -191 -190 -191 -192 -191 -193 -191 -196 -191 -197 -191 -272 -191 -273 -191 -192 -192 -84 -192 -85 -192 -86 -192 -98 -192 -99 -192 -190 -192 -191 -192 -193 -192 -196 -192 -197 -192 -200 -192 -201 -192 -272 -192 -273 -192 -274 -192 -325 -192 -377 -192 -193 -193 -52 -193 -54 -193 -56 -193 -84 -193 -86 -193 -98 -193 -99 -193 -131 -193 -133 -193 -139 -193 -190 -193 -191 -193 -192 -193 -200 -193 -201 -193 -272 -193 -274 -193 -194 -194 -45 -194 -55 -194 -85 -194 -95 -194 -116 -194 -121 -194 -134 -194 -135 -194 -136 -194 -137 -194 -180 -194 -181 -194 -195 -194 -196 -194 -197 -194 -269 -194 -273 -194 -195 -195 -85 -195 -95 -195 -136 -195 -137 -195 -180 -195 -181 -195 -185 -195 -194 -195 -196 -195 -197 -195 -269 -195 -270 -195 -273 -195 -294 -195 -323 -195 -325 -195 -377 -195 -196 -196 -53 -196 -55 -196 -85 -196 -98 -196 -116 -196 -132 -196 -134 -196 -135 -196 -136 -196 -137 -196 -191 -196 -192 -196 -194 -196 -195 -196 -197 -196 -272 -196 -273 -196 -197 -197 -85 -197 -98 -197 -136 -197 -137 -197 -191 -197 -192 -197 -194 -197 -195 -197 -196 -197 -201 -197 -272 -197 -273 -197 -274 -197 -294 -197 -323 -197 -325 -197 -377 -197 -198 -198 -86 -198 -97 -198 -140 -198 -141 -198 -186 -198 -187 -198 -189 -198 -199 -198 -200 -198 -201 -198 -270 -198 -271 -198 -274 -198 -295 -198 -324 -198 -325 -198 -377 -198 -199 -199 -50 -199 -56 -199 -86 -199 -97 -199 -117 -199 -129 -199 -138 -199 -139 -199 -140 -199 -141 -199 -187 -199 -189 -199 -198 -199 -200 -199 -201 -199 -271 -199 -274 -199 -200 -200 -54 -200 -56 -200 -86 -200 -99 -200 -117 -200 -133 -200 -138 -200 -139 -200 -140 -200 -141 -200 -192 -200 -193 -200 -198 -200 -199 -200 -201 -200 -272 -200 -274 -200 -201 -201 -86 -201 -99 -201 -140 -201 -141 -201 -192 -201 -193 -201 -197 -201 -198 -201 -199 -201 -200 -201 -272 -201 -273 -201 -274 -201 -295 -201 -324 -201 -325 -201 -377 -201 -202 -202 -36 -202 -63 -202 -64 -202 -65 -202 -66 -202 -81 -202 -87 -202 -94 -202 -95 -202 -106 -202 -107 -202 -142 -202 -143 -202 -203 -202 -204 -202 -269 -202 -275 -202 -203 -203 -63 -203 -65 -203 -67 -203 -87 -203 -88 -203 -94 -203 -106 -203 -107 -203 -142 -203 -144 -203 -202 -203 -204 -203 -205 -203 -208 -203 -269 -203 -275 -203 -276 -203 -204 -204 -64 -204 -66 -204 -76 -204 -87 -204 -91 -204 -95 -204 -106 -204 -107 -204 -143 -204 -151 -204 -202 -204 -203 -204 -215 -204 -216 -204 -269 -204 -275 -204 -279 -204 -205 -205 -65 -205 -67 -205 -82 -205 -88 -205 -94 -205 -106 -205 -144 -205 -145 -205 -146 -205 -203 -205 -206 -205 -208 -205 -209 -205 -269 -205 -270 -205 -275 -205 -276 -205 -206 -206 -67 -206 -68 -206 -82 -206 -88 -206 -96 -206 -108 -206 -144 -206 -145 -206 -146 -206 -205 -206 -207 -206 -208 -206 -209 -206 -270 -206 -271 -206 -276 -206 -277 -206 -207 -207 -67 -207 -68 -207 -69 -207 -88 -207 -89 -207 -96 -207 -108 -207 -109 -207 -145 -207 -147 -207 -206 -207 -209 -207 -210 -207 -211 -207 -271 -207 -276 -207 -277 -207 -208 -208 -88 -208 -106 -208 -146 -208 -203 -208 -205 -208 -206 -208 -209 -208 -216 -208 -269 -208 -270 -208 -275 -208 -276 -208 -279 -208 -296 -208 -326 -208 -327 -208 -378 -208 -209 -209 -88 -209 -108 -209 -146 -209 -205 -209 -206 -209 -207 -209 -208 -209 -219 -209 -270 -209 -271 -209 -276 -209 -277 -209 -280 -209 -296 -209 -326 -209 -327 -209 -378 -209 -210 -210 -37 -210 -68 -210 -69 -210 -70 -210 -71 -210 -83 -210 -89 -210 -96 -210 -97 -210 -108 -210 -109 -210 -147 -210 -148 -210 -207 -210 -211 -210 -271 -210 -277 -210 -211 -211 -70 -211 -71 -211 -77 -211 -89 -211 -92 -211 -97 -211 -108 -211 -109 -211 -148 -211 -154 -211 -207 -211 -210 -211 -219 -211 -220 -211 -271 -211 -277 -211 -280 -211 -212 -212 -38 -212 -72 -212 -73 -212 -74 -212 -75 -212 -84 -212 -90 -212 -98 -212 -99 -212 -110 -212 -111 -212 -149 -212 -150 -212 -213 -212 -214 -212 -272 -212 -278 -212 -213 -213 -72 -213 -74 -213 -76 -213 -90 -213 -91 -213 -98 -213 -110 -213 -111 -213 -149 -213 -152 -213 -212 -213 -214 -213 -217 -213 -218 -213 -272 -213 -278 -213 -279 -213 -214 -214 -73 -214 -75 -214 -77 -214 -90 -214 -92 -214 -99 -214 -110 -214 -111 -214 -150 -214 -155 -214 -212 -214 -213 -214 -221 -214 -222 -214 -272 -214 -278 -214 -280 -214 -215 -215 -66 -215 -76 -215 -85 -215 -91 -215 -95 -215 -107 -215 -151 -215 -152 -215 -153 -215 -204 -215 -216 -215 -217 -215 -218 -215 -269 -215 -273 -215 -275 -215 -279 -215 -216 -216 -91 -216 -107 -216 -153 -216 -204 -216 -208 -216 -215 -216 -217 -216 -218 -216 -269 -216 -273 -216 -275 -216 -276 -216 -279 -216 -297 -216 -326 -216 -328 -216 -378 -216 -217 -217 -74 -217 -76 -217 -85 -217 -91 -217 -98 -217 -110 -217 -151 -217 -152 -217 -153 -217 -213 -217 -215 -217 -216 -217 -218 -217 -272 -217 -273 -217 -278 -217 -279 -217 -218 -218 -91 -218 -110 -218 -153 -218 -213 -218 -215 -218 -216 -218 -217 -218 -222 -218 -272 -218 -273 -218 -278 -218 -279 -218 -280 -218 -297 -218 -326 -218 -328 -218 -378 -218 -219 -219 -92 -219 -109 -219 -156 -219 -209 -219 -211 -219 -220 -219 -221 -219 -222 -219 -271 -219 -274 -219 -276 -219 -277 -219 -280 -219 -298 -219 -327 -219 -328 -219 -378 -219 -220 -220 -71 -220 -77 -220 -86 -220 -92 -220 -97 -220 -109 -220 -154 -220 -155 -220 -156 -220 -211 -220 -219 -220 -221 -220 -222 -220 -271 -220 -274 -220 -277 -220 -280 -220 -221 -221 -75 -221 -77 -221 -86 -221 -92 -221 -99 -221 -111 -221 -154 -221 -155 -221 -156 -221 -214 -221 -219 -221 -220 -221 -222 -221 -272 -221 -274 -221 -278 -221 -280 -221 -222 -222 -92 -222 -111 -222 -156 -222 -214 -222 -218 -222 -219 -222 -220 -222 -221 -222 -272 -222 -274 -222 -278 -222 -279 -222 -280 -222 -298 -222 -327 -222 -328 -222 -378 -222 -223 -223 -39 -223 -78 -223 -79 -223 -93 -223 -100 -223 -101 -223 -157 -223 -224 -223 -225 -223 -229 -223 -230 -223 -232 -223 -262 -223 -281 -223 -282 -223 -283 -223 -287 -223 -224 -224 -39 -224 -78 -224 -79 -224 -93 -224 -100 -224 -104 -224 -157 -224 -223 -224 -227 -224 -229 -224 -230 -224 -234 -224 -262 -224 -281 -224 -284 -224 -285 -224 -288 -224 -225 -225 -40 -225 -78 -225 -80 -225 -93 -225 -101 -225 -102 -225 -163 -225 -223 -225 -226 -225 -237 -225 -241 -225 -242 -225 -264 -225 -281 -225 -282 -225 -283 -225 -289 -225 -226 -226 -40 -226 -78 -226 -80 -226 -93 -226 -102 -226 -105 -226 -163 -226 -225 -226 -228 -226 -241 -226 -242 -226 -244 -226 -264 -226 -283 -226 -284 -226 -286 -226 -290 -226 -227 -227 -41 -227 -79 -227 -80 -227 -93 -227 -103 -227 -104 -227 -166 -227 -224 -227 -228 -227 -246 -227 -247 -227 -248 -227 -265 -227 -281 -227 -284 -227 -285 -227 -291 -227 -228 -228 -41 -228 -79 -228 -80 -228 -93 -228 -103 -228 -105 -228 -166 -228 -226 -228 -227 -228 -246 -228 -247 -228 -249 -228 -265 -228 -283 -228 -284 -228 -286 -228 -292 -228 -229 -229 -87 -229 -100 -229 -101 -229 -106 -229 -157 -229 -158 -229 -159 -229 -223 -229 -224 -229 -230 -229 -231 -229 -232 -229 -233 -229 -262 -229 -281 -229 -282 -229 -287 -229 -230 -230 -87 -230 -100 -230 -104 -230 -107 -230 -157 -230 -158 -230 -159 -230 -223 -230 -224 -230 -229 -230 -231 -230 -234 -230 -235 -230 -262 -230 -281 -230 -285 -230 -288 -230 -231 -231 -87 -231 -106 -231 -107 -231 -157 -231 -158 -231 -159 -231 -229 -231 -230 -231 -232 -231 -233 -231 -234 -231 -235 -231 -262 -231 -275 -231 -287 -231 -288 -231 -387 -231 -232 -232 -101 -232 -106 -232 -158 -232 -160 -232 -223 -232 -229 -232 -231 -232 -233 -232 -236 -232 -237 -232 -238 -232 -262 -232 -263 -232 -281 -232 -282 -232 -287 -232 -289 -232 -233 -233 -106 -233 -158 -233 -160 -233 -229 -233 -231 -233 -232 -233 -235 -233 -236 -233 -238 -233 -262 -233 -263 -233 -275 -233 -287 -233 -288 -233 -329 -233 -387 -233 -388 -233 -234 -234 -104 -234 -107 -234 -159 -234 -169 -234 -224 -234 -230 -234 -231 -234 -235 -234 -248 -234 -253 -234 -254 -234 -262 -234 -266 -234 -281 -234 -285 -234 -288 -234 -291 -234 -235 -235 -107 -235 -159 -235 -169 -235 -230 -235 -231 -235 -233 -235 -234 -235 -253 -235 -254 -235 -262 -235 -266 -235 -275 -235 -287 -235 -288 -235 -331 -235 -387 -235 -391 -235 -236 -236 -88 -236 -101 -236 -106 -236 -108 -236 -160 -236 -161 -236 -162 -236 -232 -236 -233 -236 -237 -236 -238 -236 -239 -236 -240 -236 -263 -236 -282 -236 -287 -236 -289 -236 -237 -237 -101 -237 -108 -237 -161 -237 -164 -237 -225 -237 -232 -237 -236 -237 -239 -237 -240 -237 -241 -237 -243 -237 -263 -237 -264 -237 -282 -237 -283 -237 -287 -237 -289 -237 -238 -238 -88 -238 -106 -238 -160 -238 -161 -238 -162 -238 -232 -238 -233 -238 -236 -238 -239 -238 -263 -238 -275 -238 -276 -238 -287 -238 -329 -238 -330 -238 -387 -238 -388 -238 -239 -239 -88 -239 -108 -239 -160 -239 -161 -239 -162 -239 -236 -239 -237 -239 -238 -239 -240 -239 -263 -239 -276 -239 -277 -239 -289 -239 -329 -239 -330 -239 -388 -239 -389 -239 -240 -240 -108 -240 -161 -240 -164 -240 -236 -240 -237 -240 -239 -240 -241 -240 -243 -240 -245 -240 -263 -240 -264 -240 -277 -240 -289 -240 -290 -240 -330 -240 -388 -240 -389 -240 -241 -241 -89 -241 -101 -241 -102 -241 -108 -241 -163 -241 -164 -241 -165 -241 -225 -241 -226 -241 -237 -241 -240 -241 -242 -241 -243 -241 -264 -241 -282 -241 -283 -241 -289 -241 -242 -242 -89 -242 -102 -242 -105 -242 -109 -242 -163 -242 -164 -242 -165 -242 -225 -242 -226 -242 -241 -242 -243 -242 -244 -242 -245 -242 -264 -242 -283 -242 -286 -242 -290 -242 -243 -243 -89 -243 -108 -243 -109 -243 -163 -243 -164 -243 -165 -243 -237 -243 -240 -243 -241 -243 -242 -243 -244 -243 -245 -243 -264 -243 -277 -243 -289 -243 -290 -243 -389 -243 -244 -244 -105 -244 -109 -244 -165 -244 -172 -244 -226 -244 -242 -244 -243 -244 -245 -244 -249 -244 -256 -244 -257 -244 -264 -244 -267 -244 -283 -244 -286 -244 -290 -244 -292 -244 -245 -245 -109 -245 -165 -245 -172 -245 -240 -245 -242 -245 -243 -245 -244 -245 -256 -245 -257 -245 -264 -245 -267 -245 -277 -245 -289 -245 -290 -245 -333 -245 -389 -245 -392 -245 -246 -246 -90 -246 -103 -246 -104 -246 -110 -246 -166 -246 -167 -246 -168 -246 -227 -246 -228 -246 -247 -246 -248 -246 -250 -246 -251 -246 -265 -246 -284 -246 -285 -246 -291 -246 -247 -247 -90 -247 -103 -247 -105 -247 -111 -247 -166 -247 -167 -247 -168 -247 -227 -247 -228 -247 -246 -247 -249 -247 -250 -247 -252 -247 -265 -247 -284 -247 -286 -247 -292 -247 -248 -248 -104 -248 -110 -248 -167 -248 -170 -248 -227 -248 -234 -248 -246 -248 -250 -248 -251 -248 -253 -248 -255 -248 -265 -248 -266 -248 -284 -248 -285 -248 -288 -248 -291 -248 -249 -249 -105 -249 -111 -249 -168 -249 -173 -249 -228 -249 -244 -249 -247 -249 -250 -249 -252 -249 -256 -249 -258 -249 -265 -249 -267 -249 -284 -249 -286 -249 -290 -249 -292 -249 -250 -250 -90 -250 -110 -250 -111 -250 -166 -250 -167 -250 -168 -250 -246 -250 -247 -250 -248 -250 -249 -250 -251 -250 -252 -250 -265 -250 -278 -250 -291 -250 -292 -250 -390 -250 -251 -251 -110 -251 -167 -251 -170 -251 -246 -251 -248 -251 -250 -251 -252 -251 -253 -251 -255 -251 -265 -251 -266 -251 -278 -251 -291 -251 -292 -251 -332 -251 -390 -251 -391 -251 -252 -252 -111 -252 -168 -252 -173 -252 -247 -252 -249 -252 -250 -252 -251 -252 -256 -252 -258 -252 -265 -252 -267 -252 -278 -252 -291 -252 -292 -252 -334 -252 -390 -252 -392 -252 -253 -253 -91 -253 -104 -253 -107 -253 -110 -253 -169 -253 -170 -253 -171 -253 -234 -253 -235 -253 -248 -253 -251 -253 -254 -253 -255 -253 -266 -253 -285 -253 -288 -253 -291 -253 -254 -254 -91 -254 -107 -254 -169 -254 -170 -254 -171 -254 -234 -254 -235 -254 -253 -254 -255 -254 -266 -254 -275 -254 -279 -254 -288 -254 -331 -254 -332 -254 -387 -254 -391 -254 -255 -255 -91 -255 -110 -255 -169 -255 -170 -255 -171 -255 -248 -255 -251 -255 -253 -255 -254 -255 -266 -255 -278 -255 -279 -255 -291 -255 -331 -255 -332 -255 -390 -255 -391 -255 -256 -256 -92 -256 -105 -256 -109 -256 -111 -256 -172 -256 -173 -256 -174 -256 -244 -256 -245 -256 -249 -256 -252 -256 -257 -256 -258 -256 -267 -256 -286 -256 -290 -256 -292 -256 -257 -257 -92 -257 -109 -257 -172 -257 -173 -257 -174 -257 -244 -257 -245 -257 -256 -257 -258 -257 -267 -257 -277 -257 -280 -257 -290 -257 -333 -257 -334 -257 -389 -257 -392 -257 -258 -258 -92 -258 -111 -258 -172 -258 -173 -258 -174 -258 -249 -258 -252 -258 -256 -258 -257 -258 -267 -258 -278 -258 -280 -258 -292 -258 -333 -258 -334 -258 -390 -258 -392 -258 -259 -259 -93 -259 -175 -259 -176 -259 -177 -259 -260 -259 -261 -259 -268 -259 -281 -259 -282 -259 -283 -259 -338 -259 -339 -259 -340 -259 -341 -259 -393 -259 -394 -259 -395 -259 -260 -260 -93 -260 -175 -260 -176 -260 -177 -260 -259 -260 -261 -260 -268 -260 -281 -260 -284 -260 -285 -260 -338 -260 -339 -260 -342 -260 -343 -260 -393 -260 -396 -260 -397 -260 -261 -261 -93 -261 -175 -261 -176 -261 -177 -261 -259 -261 -260 -261 -268 -261 -283 -261 -284 -261 -286 -261 -340 -261 -341 -261 -342 -261 -343 -261 -395 -261 -396 -261 -398 -261 -262 -262 -87 -262 -100 -262 -101 -262 -104 -262 -106 -262 -107 -262 -157 -262 -158 -262 -159 -262 -223 -262 -224 -262 -229 -262 -230 -262 -231 -262 -232 -262 -233 -262 -234 -262 -235 -262 -275 -262 -281 -262 -282 -262 -285 -262 -287 -262 -288 -262 -302 -262 -303 -262 -304 -262 -344 -262 -345 -262 -346 -262 -380 -262 -387 -262 -393 -262 -394 -262 -397 -262 -399 -262 -400 -262 -486 -262 -263 -263 -88 -263 -101 -263 -106 -263 -108 -263 -160 -263 -161 -263 -162 -263 -232 -263 -233 -263 -236 -263 -237 -263 -238 -263 -239 -263 -240 -263 -275 -263 -276 -263 -277 -263 -282 -263 -287 -263 -289 -263 -305 -263 -306 -263 -307 -263 -329 -263 -330 -263 -351 -263 -353 -263 -354 -263 -381 -263 -387 -263 -388 -263 -389 -263 -394 -263 -399 -263 -401 -263 -486 -263 -487 -263 -488 -263 -264 -264 -89 -264 -101 -264 -102 -264 -105 -264 -108 -264 -109 -264 -163 -264 -164 -264 -165 -264 -225 -264 -226 -264 -237 -264 -240 -264 -241 -264 -242 -264 -243 -264 -244 -264 -245 -264 -277 -264 -282 -264 -283 -264 -286 -264 -289 -264 -290 -264 -308 -264 -309 -264 -310 -264 -356 -264 -357 -264 -358 -264 -382 -264 -389 -264 -394 -264 -395 -264 -398 -264 -401 -264 -402 -264 -488 -264 -265 -265 -90 -265 -103 -265 -104 -265 -105 -265 -110 -265 -111 -265 -166 -265 -167 -265 -168 -265 -227 -265 -228 -265 -246 -265 -247 -265 -248 -265 -249 -265 -250 -265 -251 -265 -252 -265 -278 -265 -284 -265 -285 -265 -286 -265 -291 -265 -292 -265 -311 -265 -312 -265 -313 -265 -361 -265 -362 -265 -365 -265 -383 -265 -390 -265 -396 -265 -397 -265 -398 -265 -403 -265 -404 -265 -489 -265 -266 -266 -91 -266 -104 -266 -107 -266 -110 -266 -169 -266 -170 -266 -171 -266 -234 -266 -235 -266 -248 -266 -251 -266 -253 -266 -254 -266 -255 -266 -275 -266 -278 -266 -279 -266 -285 -266 -288 -266 -291 -266 -314 -266 -315 -266 -316 -266 -331 -266 -332 -266 -368 -266 -369 -266 -370 -266 -384 -266 -387 -266 -390 -266 -391 -266 -397 -266 -400 -266 -403 -266 -486 -266 -489 -266 -490 -266 -267 -267 -92 -267 -105 -267 -109 -267 -111 -267 -172 -267 -173 -267 -174 -267 -244 -267 -245 -267 -249 -267 -252 -267 -256 -267 -257 -267 -258 -267 -277 -267 -278 -267 -280 -267 -286 -267 -290 -267 -292 -267 -317 -267 -318 -267 -319 -267 -333 -267 -334 -267 -371 -267 -372 -267 -373 -267 -385 -267 -389 -267 -390 -267 -392 -267 -398 -267 -402 -267 -404 -267 -488 -267 -489 -267 -491 -267 -268 -268 -93 -268 -175 -268 -176 -268 -177 -268 -259 -268 -260 -268 -261 -268 -281 -268 -282 -268 -283 -268 -284 -268 -285 -268 -286 -268 -320 -268 -321 -268 -322 -268 -338 -268 -339 -268 -340 -268 -341 -268 -342 -268 -343 -268 -374 -268 -375 -268 -376 -268 -386 -268 -393 -268 -394 -268 -395 -268 -396 -268 -397 -268 -398 -268 -492 -268 -493 -268 -494 -268 -495 -268 -496 -268 -497 -268 -269 -269 -27 -269 -28 -269 -31 -269 -81 -269 -82 -269 -85 -269 -87 -269 -88 -269 -91 -269 -94 -269 -95 -269 -96 -269 -98 -269 -106 -269 -107 -269 -178 -269 -179 -269 -180 -269 -181 -269 -182 -269 -185 -269 -194 -269 -195 -269 -202 -269 -203 -269 -204 -269 -205 -269 -208 -269 -215 -269 -216 -269 -270 -269 -271 -269 -272 -269 -273 -269 -274 -269 -275 -269 -276 -269 -279 -269 -323 -269 -326 -269 -377 -269 -378 -269 -270 -270 -28 -270 -82 -270 -88 -270 -94 -270 -96 -270 -106 -270 -108 -270 -124 -270 -126 -270 -146 -270 -179 -270 -181 -270 -182 -270 -183 -270 -184 -270 -185 -270 -186 -270 -187 -270 -195 -270 -198 -270 -205 -270 -206 -270 -208 -270 -209 -270 -269 -270 -271 -270 -272 -270 -273 -270 -274 -270 -275 -270 -276 -270 -277 -270 -279 -270 -280 -270 -293 -270 -296 -270 -323 -270 -324 -270 -326 -270 -327 -270 -377 -270 -378 -270 -271 -271 -28 -271 -29 -271 -32 -271 -82 -271 -83 -271 -86 -271 -88 -271 -89 -271 -92 -271 -94 -271 -96 -271 -97 -271 -99 -271 -108 -271 -109 -271 -183 -271 -184 -271 -186 -271 -187 -271 -188 -271 -189 -271 -198 -271 -199 -271 -206 -271 -207 -271 -209 -271 -210 -271 -211 -271 -219 -271 -220 -271 -269 -271 -270 -271 -272 -271 -273 -271 -274 -271 -276 -271 -277 -271 -280 -271 -324 -271 -327 -271 -377 -271 -378 -271 -272 -272 -30 -272 -31 -272 -32 -272 -84 -272 -85 -272 -86 -272 -90 -272 -91 -272 -92 -272 -95 -272 -97 -272 -98 -272 -99 -272 -110 -272 -111 -272 -190 -272 -191 -272 -192 -272 -193 -272 -196 -272 -197 -272 -200 -272 -201 -272 -212 -272 -213 -272 -214 -272 -217 -272 -218 -272 -221 -272 -222 -272 -269 -272 -270 -272 -271 -272 -273 -272 -274 -272 -278 -272 -279 -272 -280 -272 -325 -272 -328 -272 -377 -272 -378 -272 -273 -273 -31 -273 -85 -273 -91 -273 -95 -273 -98 -273 -107 -273 -110 -273 -136 -273 -137 -273 -153 -273 -180 -273 -181 -273 -185 -273 -191 -273 -192 -273 -194 -273 -195 -273 -196 -273 -197 -273 -201 -273 -215 -273 -216 -273 -217 -273 -218 -273 -269 -273 -270 -273 -271 -273 -272 -273 -274 -273 -275 -273 -276 -273 -278 -273 -279 -273 -280 -273 -294 -273 -297 -273 -323 -273 -325 -273 -326 -273 -328 -273 -377 -273 -378 -273 -274 -274 -32 -274 -86 -274 -92 -274 -97 -274 -99 -274 -109 -274 -111 -274 -140 -274 -141 -274 -156 -274 -186 -274 -187 -274 -189 -274 -192 -274 -193 -274 -197 -274 -198 -274 -199 -274 -200 -274 -201 -274 -219 -274 -220 -274 -221 -274 -222 -274 -269 -274 -270 -274 -271 -274 -272 -274 -273 -274 -276 -274 -277 -274 -278 -274 -279 -274 -280 -274 -295 -274 -298 -274 -324 -274 -325 -274 -327 -274 -328 -274 -377 -274 -378 -274 -275 -275 -81 -275 -82 -275 -85 -275 -87 -275 -88 -275 -91 -275 -94 -275 -95 -275 -100 -275 -101 -275 -104 -275 -106 -275 -107 -275 -108 -275 -110 -275 -202 -275 -203 -275 -204 -275 -205 -275 -208 -275 -215 -275 -216 -275 -231 -275 -233 -275 -235 -275 -238 -275 -254 -275 -262 -275 -263 -275 -266 -275 -269 -275 -270 -275 -273 -275 -276 -275 -277 -275 -278 -275 -279 -275 -280 -275 -287 -275 -288 -275 -326 -275 -329 -275 -331 -275 -335 -275 -377 -275 -378 -275 -379 -275 -387 -275 -388 -275 -391 -275 -276 -276 -82 -276 -88 -276 -94 -276 -96 -276 -101 -276 -106 -276 -108 -276 -146 -276 -162 -276 -203 -276 -205 -276 -206 -276 -207 -276 -208 -276 -209 -276 -216 -276 -219 -276 -238 -276 -239 -276 -263 -276 -269 -276 -270 -276 -271 -276 -273 -276 -274 -276 -275 -276 -277 -276 -278 -276 -279 -276 -280 -276 -287 -276 -289 -276 -296 -276 -299 -276 -326 -276 -327 -276 -329 -276 -330 -276 -335 -276 -336 -276 -377 -276 -378 -276 -379 -276 -387 -276 -388 -276 -389 -276 -391 -276 -392 -276 -277 -277 -82 -277 -83 -277 -86 -277 -88 -277 -89 -277 -92 -277 -96 -277 -97 -277 -101 -277 -102 -277 -105 -277 -106 -277 -108 -277 -109 -277 -111 -277 -206 -277 -207 -277 -209 -277 -210 -277 -211 -277 -219 -277 -220 -277 -239 -277 -240 -277 -243 -277 -245 -277 -257 -277 -263 -277 -264 -277 -267 -277 -270 -277 -271 -277 -274 -277 -275 -277 -276 -277 -278 -277 -279 -277 -280 -277 -289 -277 -290 -277 -327 -277 -330 -277 -333 -277 -336 -277 -377 -277 -378 -277 -379 -277 -388 -277 -389 -277 -392 -277 -278 -278 -84 -278 -85 -278 -86 -278 -90 -278 -91 -278 -92 -278 -98 -278 -99 -278 -103 -278 -104 -278 -105 -278 -107 -278 -109 -278 -110 -278 -111 -278 -212 -278 -213 -278 -214 -278 -217 -278 -218 -278 -221 -278 -222 -278 -250 -278 -251 -278 -252 -278 -255 -278 -258 -278 -265 -278 -266 -278 -267 -278 -272 -278 -273 -278 -274 -278 -275 -278 -276 -278 -277 -278 -279 -278 -280 -278 -291 -278 -292 -278 -328 -278 -332 -278 -334 -278 -337 -278 -377 -278 -378 -278 -379 -278 -390 -278 -391 -278 -392 -278 -279 -279 -85 -279 -91 -279 -95 -279 -98 -279 -104 -279 -107 -279 -110 -279 -153 -279 -171 -279 -204 -279 -208 -279 -213 -279 -215 -279 -216 -279 -217 -279 -218 -279 -222 -279 -254 -279 -255 -279 -266 -279 -269 -279 -270 -279 -272 -279 -273 -279 -274 -279 -275 -279 -276 -279 -277 -279 -278 -279 -280 -279 -288 -279 -291 -279 -297 -279 -300 -279 -326 -279 -328 -279 -331 -279 -332 -279 -335 -279 -337 -279 -377 -279 -378 -279 -379 -279 -387 -279 -388 -279 -390 -279 -391 -279 -392 -279 -280 -280 -86 -280 -92 -280 -97 -280 -99 -280 -105 -280 -109 -280 -111 -280 -156 -280 -174 -280 -209 -280 -211 -280 -214 -280 -218 -280 -219 -280 -220 -280 -221 -280 -222 -280 -257 -280 -258 -280 -267 -280 -270 -280 -271 -280 -272 -280 -273 -280 -274 -280 -275 -280 -276 -280 -277 -280 -278 -280 -279 -280 -290 -280 -292 -280 -298 -280 -301 -280 -327 -280 -328 -280 -333 -280 -334 -280 -336 -280 -337 -280 -377 -280 -378 -280 -379 -280 -388 -280 -389 -280 -390 -280 -391 -280 -392 -280 -281 -281 -26 -281 -39 -281 -78 -281 -79 -281 -87 -281 -93 -281 -100 -281 -101 -281 -102 -281 -103 -281 -104 -281 -106 -281 -107 -281 -157 -281 -175 -281 -223 -281 -224 -281 -225 -281 -227 -281 -229 -281 -230 -281 -232 -281 -234 -281 -259 -281 -260 -281 -262 -281 -268 -281 -282 -281 -283 -281 -284 -281 -285 -281 -286 -281 -287 -281 -288 -281 -302 -281 -338 -281 -339 -281 -344 -281 -345 -281 -380 -281 -387 -281 -393 -281 -394 -281 -395 -281 -396 -281 -397 -281 -399 -281 -400 -281 -282 -282 -26 -282 -78 -282 -87 -282 -88 -282 -89 -282 -93 -282 -100 -282 -101 -282 -102 -282 -106 -282 -108 -282 -223 -282 -225 -282 -229 -282 -232 -282 -236 -282 -237 -282 -241 -282 -259 -282 -262 -282 -263 -282 -264 -282 -268 -282 -281 -282 -283 -282 -284 -282 -285 -282 -286 -282 -287 -282 -288 -282 -289 -282 -290 -282 -338 -282 -340 -282 -344 -282 -347 -282 -351 -282 -352 -282 -356 -282 -380 -282 -381 -282 -382 -282 -387 -282 -388 -282 -389 -282 -393 -282 -394 -282 -395 -282 -399 -282 -401 -282 -283 -283 -26 -283 -40 -283 -78 -283 -80 -283 -89 -283 -93 -283 -100 -283 -101 -283 -102 -283 -103 -283 -105 -283 -108 -283 -109 -283 -163 -283 -176 -283 -223 -283 -225 -283 -226 -283 -228 -283 -237 -283 -241 -283 -242 -283 -244 -283 -259 -283 -261 -283 -264 -283 -268 -283 -281 -283 -282 -283 -284 -283 -285 -283 -286 -283 -289 -283 -290 -283 -308 -283 -340 -283 -341 -283 -356 -283 -357 -283 -382 -283 -389 -283 -393 -283 -394 -283 -395 -283 -396 -283 -398 -283 -401 -283 -402 -283 -284 -284 -26 -284 -41 -284 -79 -284 -80 -284 -90 -284 -93 -284 -100 -284 -102 -284 -103 -284 -104 -284 -105 -284 -110 -284 -111 -284 -166 -284 -177 -284 -224 -284 -226 -284 -227 -284 -228 -284 -246 -284 -247 -284 -248 -284 -249 -284 -260 -284 -261 -284 -265 -284 -268 -284 -281 -284 -282 -284 -283 -284 -285 -284 -286 -284 -291 -284 -292 -284 -311 -284 -342 -284 -343 -284 -361 -284 -362 -284 -383 -284 -390 -284 -393 -284 -395 -284 -396 -284 -397 -284 -398 -284 -403 -284 -404 -284 -285 -285 -26 -285 -79 -285 -87 -285 -90 -285 -91 -285 -93 -285 -100 -285 -103 -285 -104 -285 -107 -285 -110 -285 -224 -285 -227 -285 -230 -285 -234 -285 -246 -285 -248 -285 -253 -285 -260 -285 -262 -285 -265 -285 -266 -285 -268 -285 -281 -285 -282 -285 -283 -285 -284 -285 -286 -285 -287 -285 -288 -285 -291 -285 -292 -285 -339 -285 -342 -285 -345 -285 -349 -285 -361 -285 -363 -285 -368 -285 -380 -285 -383 -285 -384 -285 -387 -285 -390 -285 -391 -285 -393 -285 -396 -285 -397 -285 -400 -285 -403 -285 -286 -286 -26 -286 -80 -286 -89 -286 -90 -286 -92 -286 -93 -286 -102 -286 -103 -286 -105 -286 -109 -286 -111 -286 -226 -286 -228 -286 -242 -286 -244 -286 -247 -286 -249 -286 -256 -286 -261 -286 -264 -286 -265 -286 -267 -286 -268 -286 -281 -286 -282 -286 -283 -286 -284 -286 -285 -286 -289 -286 -290 -286 -291 -286 -292 -286 -341 -286 -343 -286 -357 -286 -359 -286 -362 -286 -364 -286 -371 -286 -382 -286 -383 -286 -385 -286 -389 -286 -390 -286 -392 -286 -395 -286 -396 -286 -398 -286 -402 -286 -404 -286 -287 -287 -87 -287 -88 -287 -100 -287 -101 -287 -106 -287 -107 -287 -108 -287 -158 -287 -160 -287 -223 -287 -229 -287 -231 -287 -232 -287 -233 -287 -235 -287 -236 -287 -237 -287 -238 -287 -262 -287 -263 -287 -275 -287 -276 -287 -281 -287 -282 -287 -285 -287 -288 -287 -289 -287 -303 -287 -305 -287 -329 -287 -344 -287 -346 -287 -347 -287 -348 -287 -351 -287 -353 -287 -380 -287 -381 -287 -387 -287 -388 -287 -389 -287 -393 -287 -394 -287 -399 -287 -400 -287 -401 -287 -486 -287 -487 -287 -288 -288 -87 -288 -91 -288 -100 -288 -104 -288 -106 -288 -107 -288 -110 -288 -159 -288 -169 -288 -224 -288 -230 -288 -231 -288 -233 -288 -234 -288 -235 -288 -248 -288 -253 -288 -254 -288 -262 -288 -266 -288 -275 -288 -279 -288 -281 -288 -282 -288 -285 -288 -287 -288 -291 -288 -304 -288 -314 -288 -331 -288 -345 -288 -346 -288 -349 -288 -350 -288 -368 -288 -369 -288 -380 -288 -384 -288 -387 -288 -390 -288 -391 -288 -393 -288 -397 -288 -399 -288 -400 -288 -403 -288 -486 -288 -490 -288 -289 -289 -88 -289 -89 -289 -101 -289 -102 -289 -106 -289 -108 -289 -109 -289 -161 -289 -164 -289 -225 -289 -232 -289 -236 -289 -237 -289 -239 -289 -240 -289 -241 -289 -243 -289 -245 -289 -263 -289 -264 -289 -276 -289 -277 -289 -282 -289 -283 -289 -286 -289 -287 -289 -290 -289 -306 -289 -309 -289 -330 -289 -351 -289 -352 -289 -354 -289 -355 -289 -356 -289 -358 -289 -381 -289 -382 -289 -387 -289 -388 -289 -389 -289 -394 -289 -395 -289 -399 -289 -401 -289 -402 -289 -487 -289 -488 -289 -290 -290 -89 -290 -92 -290 -102 -290 -105 -290 -108 -290 -109 -290 -111 -290 -165 -290 -172 -290 -226 -290 -240 -290 -242 -290 -243 -290 -244 -290 -245 -290 -249 -290 -256 -290 -257 -290 -264 -290 -267 -290 -277 -290 -280 -290 -282 -290 -283 -290 -286 -290 -289 -290 -292 -290 -310 -290 -317 -290 -333 -290 -357 -290 -358 -290 -359 -290 -360 -290 -371 -290 -372 -290 -382 -290 -385 -290 -389 -290 -390 -290 -392 -290 -395 -290 -398 -290 -401 -290 -402 -290 -404 -290 -488 -290 -491 -290 -291 -291 -90 -291 -91 -291 -103 -291 -104 -291 -107 -291 -110 -291 -111 -291 -167 -291 -170 -291 -227 -291 -234 -291 -246 -291 -248 -291 -250 -291 -251 -291 -252 -291 -253 -291 -255 -291 -265 -291 -266 -291 -278 -291 -279 -291 -284 -291 -285 -291 -286 -291 -288 -291 -292 -291 -312 -291 -315 -291 -332 -291 -361 -291 -363 -291 -365 -291 -366 -291 -368 -291 -370 -291 -383 -291 -384 -291 -387 -291 -390 -291 -391 -291 -396 -291 -397 -291 -400 -291 -403 -291 -404 -291 -489 -291 -490 -291 -292 -292 -90 -292 -92 -292 -103 -292 -105 -292 -109 -292 -110 -292 -111 -292 -168 -292 -173 -292 -228 -292 -244 -292 -247 -292 -249 -292 -250 -292 -251 -292 -252 -292 -256 -292 -258 -292 -265 -292 -267 -292 -278 -292 -280 -292 -284 -292 -285 -292 -286 -292 -290 -292 -291 -292 -313 -292 -318 -292 -334 -292 -362 -292 -364 -292 -365 -292 -367 -292 -371 -292 -373 -292 -383 -292 -385 -292 -389 -292 -390 -292 -392 -292 -396 -292 -398 -292 -402 -292 -403 -292 -404 -292 -489 -292 -491 -292 -293 -293 -126 -293 -185 -293 -186 -293 -270 -293 -294 -293 -295 -293 -323 -293 -324 -293 -325 -293 -377 -293 -405 -293 -294 -294 -137 -294 -195 -294 -197 -294 -273 -294 -293 -294 -295 -294 -323 -294 -324 -294 -325 -294 -377 -294 -405 -294 -295 -295 -140 -295 -198 -295 -201 -295 -274 -295 -293 -295 -294 -295 -323 -295 -324 -295 -325 -295 -377 -295 -405 -295 -296 -296 -208 -296 -209 -296 -270 -296 -276 -296 -297 -296 -298 -296 -326 -296 -327 -296 -328 -296 -377 -296 -378 -296 -297 -297 -216 -297 -218 -297 -273 -297 -279 -297 -296 -297 -298 -297 -326 -297 -327 -297 -328 -297 -377 -297 -378 -297 -298 -298 -219 -298 -222 -298 -274 -298 -280 -298 -296 -298 -297 -298 -326 -298 -327 -298 -328 -298 -377 -298 -378 -298 -299 -299 -276 -299 -300 -299 -301 -299 -329 -299 -330 -299 -335 -299 -336 -299 -337 -299 -378 -299 -379 -299 -388 -299 -300 -300 -279 -300 -299 -300 -301 -300 -331 -300 -332 -300 -335 -300 -336 -300 -337 -300 -378 -300 -379 -300 -391 -300 -301 -301 -280 -301 -299 -301 -300 -301 -333 -301 -334 -301 -335 -301 -336 -301 -337 -301 -378 -301 -379 -301 -392 -301 -302 -302 -262 -302 -281 -302 -303 -302 -304 -302 -338 -302 -339 -302 -344 -302 -345 -302 -346 -302 -380 -302 -393 -302 -303 -303 -262 -303 -287 -303 -302 -303 -304 -303 -344 -303 -345 -303 -346 -303 -347 -303 -348 -303 -380 -303 -399 -303 -304 -304 -262 -304 -288 -304 -302 -304 -303 -304 -344 -304 -345 -304 -346 -304 -349 -304 -350 -304 -380 -304 -400 -304 -305 -305 -263 -305 -287 -305 -306 -305 -307 -305 -347 -305 -348 -305 -351 -305 -353 -305 -354 -305 -381 -305 -399 -305 -306 -306 -263 -306 -289 -306 -305 -306 -307 -306 -351 -306 -352 -306 -353 -306 -354 -306 -355 -306 -381 -306 -401 -306 -307 -307 -263 -307 -305 -307 -306 -307 -351 -307 -353 -307 -354 -307 -381 -307 -388 -307 -430 -307 -431 -307 -487 -307 -308 -308 -264 -308 -283 -308 -309 -308 -310 -308 -340 -308 -341 -308 -356 -308 -357 -308 -358 -308 -382 -308 -395 -308 -309 -309 -264 -309 -289 -309 -308 -309 -310 -309 -352 -309 -355 -309 -356 -309 -357 -309 -358 -309 -382 -309 -401 -309 -310 -310 -264 -310 -290 -310 -308 -310 -309 -310 -356 -310 -357 -310 -358 -310 -359 -310 -360 -310 -382 -310 -402 -310 -311 -311 -265 -311 -284 -311 -312 -311 -313 -311 -342 -311 -343 -311 -361 -311 -362 -311 -365 -311 -383 -311 -396 -311 -312 -312 -265 -312 -291 -312 -311 -312 -313 -312 -361 -312 -362 -312 -363 -312 -365 -312 -366 -312 -383 -312 -403 -312 -313 -313 -265 -313 -292 -313 -311 -313 -312 -313 -361 -313 -362 -313 -364 -313 -365 -313 -367 -313 -383 -313 -404 -313 -314 -314 -266 -314 -288 -314 -315 -314 -316 -314 -349 -314 -350 -314 -368 -314 -369 -314 -370 -314 -384 -314 -400 -314 -315 -315 -266 -315 -291 -315 -314 -315 -316 -315 -363 -315 -366 -315 -368 -315 -369 -315 -370 -315 -384 -315 -403 -315 -316 -316 -266 -316 -314 -316 -315 -316 -368 -316 -369 -316 -370 -316 -384 -316 -391 -316 -432 -316 -433 -316 -490 -316 -317 -317 -267 -317 -290 -317 -318 -317 -319 -317 -359 -317 -360 -317 -371 -317 -372 -317 -373 -317 -385 -317 -402 -317 -318 -318 -267 -318 -292 -318 -317 -318 -319 -318 -364 -318 -367 -318 -371 -318 -372 -318 -373 -318 -385 -318 -404 -318 -319 -319 -267 -319 -317 -319 -318 -319 -371 -319 -372 -319 -373 -319 -385 -319 -392 -319 -434 -319 -435 -319 -491 -319 -320 -320 -268 -320 -321 -320 -322 -320 -374 -320 -375 -320 -376 -320 -386 -320 -393 -320 -439 -320 -440 -320 -492 -320 -321 -321 -268 -321 -320 -321 -322 -321 -374 -321 -375 -321 -376 -321 -386 -321 -395 -321 -441 -321 -442 -321 -494 -321 -322 -322 -268 -322 -320 -322 -321 -322 -374 -322 -375 -322 -376 -322 -386 -322 -396 -322 -443 -322 -444 -322 -495 -322 -323 -323 -126 -323 -137 -323 -181 -323 -185 -323 -186 -323 -195 -323 -197 -323 -269 -323 -270 -323 -273 -323 -293 -323 -294 -323 -295 -323 -324 -323 -325 -323 -377 -323 -405 -323 -324 -324 -126 -324 -140 -324 -185 -324 -186 -324 -187 -324 -198 -324 -201 -324 -270 -324 -271 -324 -274 -324 -293 -324 -294 -324 -295 -324 -323 -324 -325 -324 -377 -324 -405 -324 -325 -325 -137 -325 -140 -325 -192 -325 -195 -325 -197 -325 -198 -325 -201 -325 -272 -325 -273 -325 -274 -325 -293 -325 -294 -325 -295 -325 -323 -325 -324 -325 -377 -325 -405 -325 -326 -326 -208 -326 -209 -326 -216 -326 -218 -326 -269 -326 -270 -326 -273 -326 -275 -326 -276 -326 -279 -326 -296 -326 -297 -326 -298 -326 -327 -326 -328 -326 -377 -326 -378 -326 -327 -327 -208 -327 -209 -327 -219 -327 -222 -327 -270 -327 -271 -327 -274 -327 -276 -327 -277 -327 -280 -327 -296 -327 -297 -327 -298 -327 -326 -327 -328 -327 -377 -327 -378 -327 -328 -328 -216 -328 -218 -328 -219 -328 -222 -328 -272 -328 -273 -328 -274 -328 -278 -328 -279 -328 -280 -328 -296 -328 -297 -328 -298 -328 -326 -328 -327 -328 -377 -328 -378 -328 -329 -329 -162 -329 -233 -329 -238 -329 -239 -329 -263 -329 -275 -329 -276 -329 -287 -329 -299 -329 -330 -329 -331 -329 -335 -329 -336 -329 -379 -329 -387 -329 -388 -329 -391 -329 -330 -330 -162 -330 -238 -330 -239 -330 -240 -330 -263 -330 -276 -330 -277 -330 -289 -330 -299 -330 -329 -330 -333 -330 -335 -330 -336 -330 -379 -330 -388 -330 -389 -330 -392 -330 -331 -331 -171 -331 -235 -331 -254 -331 -255 -331 -266 -331 -275 -331 -279 -331 -288 -331 -300 -331 -329 -331 -332 -331 -335 -331 -337 -331 -379 -331 -387 -331 -388 -331 -391 -331 -332 -332 -171 -332 -251 -332 -254 -332 -255 -332 -266 -332 -278 -332 -279 -332 -291 -332 -300 -332 -331 -332 -334 -332 -335 -332 -337 -332 -379 -332 -390 -332 -391 -332 -392 -332 -333 -333 -174 -333 -245 -333 -257 -333 -258 -333 -267 -333 -277 -333 -280 -333 -290 -333 -301 -333 -330 -333 -334 -333 -336 -333 -337 -333 -379 -333 -388 -333 -389 -333 -392 -333 -334 -334 -174 -334 -252 -334 -257 -334 -258 -334 -267 -334 -278 -334 -280 -334 -292 -334 -301 -334 -332 -334 -333 -334 -336 -334 -337 -334 -379 -334 -390 -334 -391 -334 -392 -334 -335 -335 -275 -335 -276 -335 -279 -335 -299 -335 -300 -335 -301 -335 -329 -335 -330 -335 -331 -335 -332 -335 -336 -335 -337 -335 -378 -335 -379 -335 -387 -335 -388 -335 -391 -335 -336 -336 -276 -336 -277 -336 -280 -336 -299 -336 -300 -336 -301 -336 -329 -336 -330 -336 -333 -336 -334 -336 -335 -336 -337 -336 -378 -336 -379 -336 -388 -336 -389 -336 -392 -336 -337 -337 -278 -337 -279 -337 -280 -337 -299 -337 -300 -337 -301 -337 -331 -337 -332 -337 -333 -337 -334 -337 -335 -337 -336 -337 -378 -337 -379 -337 -390 -337 -391 -337 -392 -337 -338 -338 -175 -338 -259 -338 -260 -338 -268 -338 -281 -338 -282 -338 -302 -338 -339 -338 -340 -338 -344 -338 -345 -338 -347 -338 -380 -338 -393 -338 -394 -338 -395 -338 -399 -338 -339 -339 -175 -339 -259 -339 -260 -339 -268 -339 -281 -339 -285 -339 -302 -339 -338 -339 -342 -339 -344 -339 -345 -339 -349 -339 -380 -339 -393 -339 -396 -339 -397 -339 -400 -339 -340 -340 -176 -340 -259 -340 -261 -340 -268 -340 -282 -340 -283 -340 -308 -340 -338 -340 -341 -340 -352 -340 -356 -340 -357 -340 -382 -340 -393 -340 -394 -340 -395 -340 -401 -340 -341 -341 -176 -341 -259 -341 -261 -341 -268 -341 -283 -341 -286 -341 -308 -341 -340 -341 -343 -341 -356 -341 -357 -341 -359 -341 -382 -341 -395 -341 -396 -341 -398 -341 -402 -341 -342 -342 -177 -342 -260 -342 -261 -342 -268 -342 -284 -342 -285 -342 -311 -342 -339 -342 -343 -342 -361 -342 -362 -342 -363 -342 -383 -342 -393 -342 -396 -342 -397 -342 -403 -342 -343 -343 -177 -343 -260 -343 -261 -343 -268 -343 -284 -343 -286 -343 -311 -343 -341 -343 -342 -343 -361 -343 -362 -343 -364 -343 -383 -343 -395 -343 -396 -343 -398 -343 -404 -343 -344 -344 -262 -344 -281 -344 -282 -344 -287 -344 -302 -344 -303 -344 -304 -344 -338 -344 -339 -344 -345 -344 -346 -344 -347 -344 -348 -344 -380 -344 -393 -344 -394 -344 -399 -344 -345 -345 -262 -345 -281 -345 -285 -345 -288 -345 -302 -345 -303 -345 -304 -345 -338 -345 -339 -345 -344 -345 -346 -345 -349 -345 -350 -345 -380 -345 -393 -345 -397 -345 -400 -345 -346 -346 -262 -346 -287 -346 -288 -346 -302 -346 -303 -346 -304 -346 -344 -346 -345 -346 -347 -346 -348 -346 -349 -346 -350 -346 -380 -346 -387 -346 -399 -346 -400 -346 -486 -346 -347 -347 -282 -347 -287 -347 -303 -347 -305 -347 -338 -347 -344 -347 -346 -347 -348 -347 -351 -347 -352 -347 -353 -347 -380 -347 -381 -347 -393 -347 -394 -347 -399 -347 -401 -347 -348 -348 -287 -348 -303 -348 -305 -348 -344 -348 -346 -348 -347 -348 -350 -348 -351 -348 -353 -348 -380 -348 -381 -348 -387 -348 -399 -348 -400 -348 -430 -348 -486 -348 -487 -348 -349 -349 -285 -349 -288 -349 -304 -349 -314 -349 -339 -349 -345 -349 -346 -349 -350 -349 -363 -349 -368 -349 -369 -349 -380 -349 -384 -349 -393 -349 -397 -349 -400 -349 -403 -349 -350 -350 -288 -350 -304 -350 -314 -350 -345 -350 -346 -350 -348 -350 -349 -350 -368 -350 -369 -350 -380 -350 -384 -350 -387 -350 -399 -350 -400 -350 -432 -350 -486 -350 -490 -350 -351 -351 -263 -351 -282 -351 -287 -351 -289 -351 -305 -351 -306 -351 -307 -351 -347 -351 -348 -351 -352 -351 -353 -351 -354 -351 -355 -351 -381 -351 -394 -351 -399 -351 -401 -351 -352 -352 -282 -352 -289 -352 -306 -352 -309 -352 -340 -352 -347 -352 -351 -352 -354 -352 -355 -352 -356 -352 -358 -352 -381 -352 -382 -352 -394 -352 -395 -352 -399 -352 -401 -352 -353 -353 -263 -353 -287 -353 -305 -353 -306 -353 -307 -353 -347 -353 -348 -353 -351 -353 -354 -353 -381 -353 -387 -353 -388 -353 -399 -353 -430 -353 -431 -353 -486 -353 -487 -353 -354 -354 -263 -354 -289 -354 -305 -354 -306 -354 -307 -354 -351 -354 -352 -354 -353 -354 -355 -354 -381 -354 -388 -354 -389 -354 -401 -354 -430 -354 -431 -354 -487 -354 -488 -354 -355 -355 -289 -355 -306 -355 -309 -355 -351 -355 -352 -355 -354 -355 -356 -355 -358 -355 -360 -355 -381 -355 -382 -355 -389 -355 -401 -355 -402 -355 -431 -355 -487 -355 -488 -355 -356 -356 -264 -356 -282 -356 -283 -356 -289 -356 -308 -356 -309 -356 -310 -356 -340 -356 -341 -356 -352 -356 -355 -356 -357 -356 -358 -356 -382 -356 -394 -356 -395 -356 -401 -356 -357 -357 -264 -357 -283 -357 -286 -357 -290 -357 -308 -357 -309 -357 -310 -357 -340 -357 -341 -357 -356 -357 -358 -357 -359 -357 -360 -357 -382 -357 -395 -357 -398 -357 -402 -357 -358 -358 -264 -358 -289 -358 -290 -358 -308 -358 -309 -358 -310 -358 -352 -358 -355 -358 -356 -358 -357 -358 -359 -358 -360 -358 -382 -358 -389 -358 -401 -358 -402 -358 -488 -358 -359 -359 -286 -359 -290 -359 -310 -359 -317 -359 -341 -359 -357 -359 -358 -359 -360 -359 -364 -359 -371 -359 -372 -359 -382 -359 -385 -359 -395 -359 -398 -359 -402 -359 -404 -359 -360 -360 -290 -360 -310 -360 -317 -360 -355 -360 -357 -360 -358 -360 -359 -360 -371 -360 -372 -360 -382 -360 -385 -360 -389 -360 -401 -360 -402 -360 -434 -360 -488 -360 -491 -360 -361 -361 -265 -361 -284 -361 -285 -361 -291 -361 -311 -361 -312 -361 -313 -361 -342 -361 -343 -361 -362 -361 -363 -361 -365 -361 -366 -361 -383 -361 -396 -361 -397 -361 -403 -361 -362 -362 -265 -362 -284 -362 -286 -362 -292 -362 -311 -362 -312 -362 -313 -362 -342 -362 -343 -362 -361 -362 -364 -362 -365 -362 -367 -362 -383 -362 -396 -362 -398 -362 -404 -362 -363 -363 -285 -363 -291 -363 -312 -363 -315 -363 -342 -363 -349 -363 -361 -363 -365 -363 -366 -363 -368 -363 -370 -363 -383 -363 -384 -363 -396 -363 -397 -363 -400 -363 -403 -363 -364 -364 -286 -364 -292 -364 -313 -364 -318 -364 -343 -364 -359 -364 -362 -364 -365 -364 -367 -364 -371 -364 -373 -364 -383 -364 -385 -364 -396 -364 -398 -364 -402 -364 -404 -364 -365 -365 -265 -365 -291 -365 -292 -365 -311 -365 -312 -365 -313 -365 -361 -365 -362 -365 -363 -365 -364 -365 -366 -365 -367 -365 -383 -365 -390 -365 -403 -365 -404 -365 -489 -365 -366 -366 -291 -366 -312 -366 -315 -366 -361 -366 -363 -366 -365 -366 -367 -366 -368 -366 -370 -366 -383 -366 -384 -366 -390 -366 -403 -366 -404 -366 -433 -366 -489 -366 -490 -366 -367 -367 -292 -367 -313 -367 -318 -367 -362 -367 -364 -367 -365 -367 -366 -367 -371 -367 -373 -367 -383 -367 -385 -367 -390 -367 -403 -367 -404 -367 -435 -367 -489 -367 -491 -367 -368 -368 -266 -368 -285 -368 -288 -368 -291 -368 -314 -368 -315 -368 -316 -368 -349 -368 -350 -368 -363 -368 -366 -368 -369 -368 -370 -368 -384 -368 -397 -368 -400 -368 -403 -368 -369 -369 -266 -369 -288 -369 -314 -369 -315 -369 -316 -369 -349 -369 -350 -369 -368 -369 -370 -369 -384 -369 -387 -369 -391 -369 -400 -369 -432 -369 -433 -369 -486 -369 -490 -369 -370 -370 -266 -370 -291 -370 -314 -370 -315 -370 -316 -370 -363 -370 -366 -370 -368 -370 -369 -370 -384 -370 -390 -370 -391 -370 -403 -370 -432 -370 -433 -370 -489 -370 -490 -370 -371 -371 -267 -371 -286 -371 -290 -371 -292 -371 -317 -371 -318 -371 -319 -371 -359 -371 -360 -371 -364 -371 -367 -371 -372 -371 -373 -371 -385 -371 -398 -371 -402 -371 -404 -371 -372 -372 -267 -372 -290 -372 -317 -372 -318 -372 -319 -372 -359 -372 -360 -372 -371 -372 -373 -372 -385 -372 -389 -372 -392 -372 -402 -372 -434 -372 -435 -372 -488 -372 -491 -372 -373 -373 -267 -373 -292 -373 -317 -373 -318 -373 -319 -373 -364 -373 -367 -373 -371 -373 -372 -373 -385 -373 -390 -373 -392 -373 -404 -373 -434 -373 -435 -373 -489 -373 -491 -373 -374 -374 -268 -374 -320 -374 -321 -374 -322 -374 -375 -374 -376 -374 -386 -374 -393 -374 -394 -374 -395 -374 -439 -374 -440 -374 -441 -374 -442 -374 -492 -374 -493 -374 -494 -374 -375 -375 -268 -375 -320 -375 -321 -375 -322 -375 -374 -375 -376 -375 -386 -375 -393 -375 -396 -375 -397 -375 -439 -375 -440 -375 -443 -375 -444 -375 -492 -375 -495 -375 -496 -375 -376 -376 -268 -376 -320 -376 -321 -376 -322 -376 -374 -376 -375 -376 -386 -376 -395 -376 -396 -376 -398 -376 -441 -376 -442 -376 -443 -376 -444 -376 -494 -376 -495 -376 -497 -376 -377 -377 -126 -377 -137 -377 -140 -377 -181 -377 -185 -377 -186 -377 -187 -377 -192 -377 -195 -377 -197 -377 -198 -377 -201 -377 -269 -377 -270 -377 -271 -377 -272 -377 -273 -377 -274 -377 -275 -377 -276 -377 -277 -377 -278 -377 -279 -377 -280 -377 -293 -377 -294 -377 -295 -377 -296 -377 -297 -377 -298 -377 -323 -377 -324 -377 -325 -377 -326 -377 -327 -377 -328 -377 -378 -377 -405 -377 -378 -378 -208 -378 -209 -378 -216 -378 -218 -378 -219 -378 -222 -378 -269 -378 -270 -378 -271 -378 -272 -378 -273 -378 -274 -378 -275 -378 -276 -378 -277 -378 -278 -378 -279 -378 -280 -378 -296 -378 -297 -378 -298 -378 -299 -378 -300 -378 -301 -378 -326 -378 -327 -378 -328 -378 -335 -378 -336 -378 -337 -378 -377 -378 -379 -378 -387 -378 -388 -378 -389 -378 -390 -378 -391 -378 -392 -378 -379 -379 -275 -379 -276 -379 -277 -379 -278 -379 -279 -379 -280 -379 -299 -379 -300 -379 -301 -379 -329 -379 -330 -379 -331 -379 -332 -379 -333 -379 -334 -379 -335 -379 -336 -379 -337 -379 -378 -379 -387 -379 -388 -379 -389 -379 -390 -379 -391 -379 -392 -379 -406 -379 -407 -379 -408 -379 -436 -379 -437 -379 -438 -379 -478 -379 -486 -379 -487 -379 -488 -379 -489 -379 -490 -379 -491 -379 -380 -380 -262 -380 -281 -380 -282 -380 -285 -380 -287 -380 -288 -380 -302 -380 -303 -380 -304 -380 -338 -380 -339 -380 -344 -380 -345 -380 -346 -380 -347 -380 -348 -380 -349 -380 -350 -380 -387 -380 -393 -380 -394 -380 -397 -380 -399 -380 -400 -380 -409 -380 -410 -380 -411 -380 -445 -380 -446 -380 -447 -380 -479 -380 -486 -380 -492 -380 -493 -380 -496 -380 -498 -380 -499 -380 -584 -380 -381 -381 -263 -381 -282 -381 -287 -381 -289 -381 -305 -381 -306 -381 -307 -381 -347 -381 -348 -381 -351 -381 -352 -381 -353 -381 -354 -381 -355 -381 -387 -381 -388 -381 -389 -381 -394 -381 -399 -381 -401 -381 -412 -381 -413 -381 -414 -381 -430 -381 -431 -381 -452 -381 -454 -381 -455 -381 -480 -381 -486 -381 -487 -381 -488 -381 -493 -381 -498 -381 -500 -381 -584 -381 -585 -381 -586 -381 -382 -382 -264 -382 -282 -382 -283 -382 -286 -382 -289 -382 -290 -382 -308 -382 -309 -382 -310 -382 -340 -382 -341 -382 -352 -382 -355 -382 -356 -382 -357 -382 -358 -382 -359 -382 -360 -382 -389 -382 -394 -382 -395 -382 -398 -382 -401 -382 -402 -382 -415 -382 -416 -382 -417 -382 -457 -382 -458 -382 -459 -382 -481 -382 -488 -382 -493 -382 -494 -382 -497 -382 -500 -382 -501 -382 -586 -382 -383 -383 -265 -383 -284 -383 -285 -383 -286 -383 -291 -383 -292 -383 -311 -383 -312 -383 -313 -383 -342 -383 -343 -383 -361 -383 -362 -383 -363 -383 -364 -383 -365 -383 -366 -383 -367 -383 -390 -383 -396 -383 -397 -383 -398 -383 -403 -383 -404 -383 -418 -383 -419 -383 -420 -383 -462 -383 -463 -383 -466 -383 -482 -383 -489 -383 -495 -383 -496 -383 -497 -383 -502 -383 -503 -383 -587 -383 -384 -384 -266 -384 -285 -384 -288 -384 -291 -384 -314 -384 -315 -384 -316 -384 -349 -384 -350 -384 -363 -384 -366 -384 -368 -384 -369 -384 -370 -384 -387 -384 -390 -384 -391 -384 -397 -384 -400 -384 -403 -384 -421 -384 -422 -384 -423 -384 -432 -384 -433 -384 -469 -384 -470 -384 -471 -384 -483 -384 -486 -384 -489 -384 -490 -384 -496 -384 -499 -384 -502 -384 -584 -384 -587 -384 -588 -384 -385 -385 -267 -385 -286 -385 -290 -385 -292 -385 -317 -385 -318 -385 -319 -385 -359 -385 -360 -385 -364 -385 -367 -385 -371 -385 -372 -385 -373 -385 -389 -385 -390 -385 -392 -385 -398 -385 -402 -385 -404 -385 -424 -385 -425 -385 -426 -385 -434 -385 -435 -385 -472 -385 -473 -385 -474 -385 -484 -385 -488 -385 -489 -385 -491 -385 -497 -385 -501 -385 -503 -385 -586 -385 -587 -385 -589 -385 -386 -386 -268 -386 -320 -386 -321 -386 -322 -386 -374 -386 -375 -386 -376 -386 -393 -386 -394 -386 -395 -386 -396 -386 -397 -386 -398 -386 -427 -386 -428 -386 -429 -386 -439 -386 -440 -386 -441 -386 -442 -386 -443 -386 -444 -386 -475 -386 -476 -386 -477 -386 -485 -386 -492 -386 -493 -386 -494 -386 -495 -386 -496 -386 -497 -386 -590 -386 -591 -386 -592 -386 -593 -386 -594 -386 -595 -386 -387 -387 -87 -387 -88 -387 -91 -387 -106 -387 -107 -387 -231 -387 -233 -387 -235 -387 -238 -387 -254 -387 -262 -387 -263 -387 -266 -387 -275 -387 -276 -387 -279 -387 -281 -387 -282 -387 -285 -387 -287 -387 -288 -387 -289 -387 -291 -387 -329 -387 -331 -387 -335 -387 -346 -387 -348 -387 -350 -387 -353 -387 -369 -387 -378 -387 -379 -387 -380 -387 -381 -387 -384 -387 -388 -387 -389 -387 -390 -387 -391 -387 -392 -387 -399 -387 -400 -387 -430 -387 -432 -387 -436 -387 -478 -387 -486 -387 -487 -387 -490 -387 -388 -388 -88 -388 -106 -388 -108 -388 -162 -388 -233 -388 -238 -388 -239 -388 -240 -388 -263 -388 -275 -388 -276 -388 -277 -388 -279 -388 -280 -388 -282 -388 -287 -388 -289 -388 -299 -388 -307 -388 -329 -388 -330 -388 -331 -388 -333 -388 -335 -388 -336 -388 -353 -388 -354 -388 -378 -388 -379 -388 -381 -388 -387 -388 -389 -388 -390 -388 -391 -388 -392 -388 -399 -388 -401 -388 -406 -388 -430 -388 -431 -388 -436 -388 -437 -388 -478 -388 -486 -388 -487 -388 -488 -388 -490 -388 -491 -388 -389 -389 -88 -389 -89 -389 -92 -389 -108 -389 -109 -389 -239 -389 -240 -389 -243 -389 -245 -389 -257 -389 -263 -389 -264 -389 -267 -389 -276 -389 -277 -389 -280 -389 -282 -389 -283 -389 -286 -389 -287 -389 -289 -389 -290 -389 -292 -389 -330 -389 -333 -389 -336 -389 -354 -389 -355 -389 -358 -389 -360 -389 -372 -389 -378 -389 -379 -389 -381 -389 -382 -389 -385 -389 -387 -389 -388 -389 -390 -389 -391 -389 -392 -389 -401 -389 -402 -389 -431 -389 -434 -389 -437 -389 -478 -389 -487 -389 -488 -389 -491 -389 -390 -390 -90 -390 -91 -390 -92 -390 -110 -390 -111 -390 -250 -390 -251 -390 -252 -390 -255 -390 -258 -390 -265 -390 -266 -390 -267 -390 -278 -390 -279 -390 -280 -390 -284 -390 -285 -390 -286 -390 -288 -390 -290 -390 -291 -390 -292 -390 -332 -390 -334 -390 -337 -390 -365 -390 -366 -390 -367 -390 -370 -390 -373 -390 -378 -390 -379 -390 -383 -390 -384 -390 -385 -390 -387 -390 -388 -390 -389 -390 -391 -390 -392 -390 -403 -390 -404 -390 -433 -390 -435 -390 -438 -390 -478 -390 -489 -390 -490 -390 -491 -390 -391 -391 -91 -391 -107 -391 -110 -391 -171 -391 -235 -391 -251 -391 -254 -391 -255 -391 -266 -391 -275 -391 -276 -391 -278 -391 -279 -391 -280 -391 -285 -391 -288 -391 -291 -391 -300 -391 -316 -391 -329 -391 -331 -391 -332 -391 -334 -391 -335 -391 -337 -391 -369 -391 -370 -391 -378 -391 -379 -391 -384 -391 -387 -391 -388 -391 -389 -391 -390 -391 -392 -391 -400 -391 -403 -391 -407 -391 -432 -391 -433 -391 -436 -391 -438 -391 -478 -391 -486 -391 -487 -391 -489 -391 -490 -391 -491 -391 -392 -392 -92 -392 -109 -392 -111 -392 -174 -392 -245 -392 -252 -392 -257 -392 -258 -392 -267 -392 -276 -392 -277 -392 -278 -392 -279 -392 -280 -392 -286 -392 -290 -392 -292 -392 -301 -392 -319 -392 -330 -392 -332 -392 -333 -392 -334 -392 -336 -392 -337 -392 -372 -392 -373 -392 -378 -392 -379 -392 -385 -392 -387 -392 -388 -392 -389 -392 -390 -392 -391 -392 -402 -392 -404 -392 -408 -392 -434 -392 -435 -392 -437 -392 -438 -392 -478 -392 -487 -392 -488 -392 -489 -392 -490 -392 -491 -392 -393 -393 -93 -393 -175 -393 -259 -393 -260 -393 -262 -393 -268 -393 -281 -393 -282 -393 -283 -393 -284 -393 -285 -393 -287 -393 -288 -393 -302 -393 -320 -393 -338 -393 -339 -393 -340 -393 -342 -393 -344 -393 -345 -393 -347 -393 -349 -393 -374 -393 -375 -393 -380 -393 -386 -393 -394 -393 -395 -393 -396 -393 -397 -393 -398 -393 -399 -393 -400 -393 -409 -393 -439 -393 -440 -393 -445 -393 -446 -393 -479 -393 -486 -393 -492 -393 -493 -393 -494 -393 -495 -393 -496 -393 -498 -393 -499 -393 -394 -394 -93 -394 -259 -394 -262 -394 -263 -394 -264 -394 -268 -394 -281 -394 -282 -394 -283 -394 -287 -394 -289 -394 -338 -394 -340 -394 -344 -394 -347 -394 -351 -394 -352 -394 -356 -394 -374 -394 -380 -394 -381 -394 -382 -394 -386 -394 -393 -394 -395 -394 -396 -394 -397 -394 -398 -394 -399 -394 -400 -394 -401 -394 -402 -394 -439 -394 -441 -394 -445 -394 -448 -394 -452 -394 -453 -394 -457 -394 -479 -394 -480 -394 -481 -394 -486 -394 -487 -394 -488 -394 -492 -394 -493 -394 -494 -394 -498 -394 -500 -394 -395 -395 -93 -395 -176 -395 -259 -395 -261 -395 -264 -395 -268 -395 -281 -395 -282 -395 -283 -395 -284 -395 -286 -395 -289 -395 -290 -395 -308 -395 -321 -395 -338 -395 -340 -395 -341 -395 -343 -395 -352 -395 -356 -395 -357 -395 -359 -395 -374 -395 -376 -395 -382 -395 -386 -395 -393 -395 -394 -395 -396 -395 -397 -395 -398 -395 -401 -395 -402 -395 -415 -395 -441 -395 -442 -395 -457 -395 -458 -395 -481 -395 -488 -395 -492 -395 -493 -395 -494 -395 -495 -395 -497 -395 -500 -395 -501 -395 -396 -396 -93 -396 -177 -396 -260 -396 -261 -396 -265 -396 -268 -396 -281 -396 -283 -396 -284 -396 -285 -396 -286 -396 -291 -396 -292 -396 -311 -396 -322 -396 -339 -396 -341 -396 -342 -396 -343 -396 -361 -396 -362 -396 -363 -396 -364 -396 -375 -396 -376 -396 -383 -396 -386 -396 -393 -396 -394 -396 -395 -396 -397 -396 -398 -396 -403 -396 -404 -396 -418 -396 -443 -396 -444 -396 -462 -396 -463 -396 -482 -396 -489 -396 -492 -396 -494 -396 -495 -396 -496 -396 -497 -396 -502 -396 -503 -396 -397 -397 -93 -397 -260 -397 -262 -397 -265 -397 -266 -397 -268 -397 -281 -397 -284 -397 -285 -397 -288 -397 -291 -397 -339 -397 -342 -397 -345 -397 -349 -397 -361 -397 -363 -397 -368 -397 -375 -397 -380 -397 -383 -397 -384 -397 -386 -397 -393 -397 -394 -397 -395 -397 -396 -397 -398 -397 -399 -397 -400 -397 -403 -397 -404 -397 -440 -397 -443 -397 -446 -397 -450 -397 -462 -397 -464 -397 -469 -397 -479 -397 -482 -397 -483 -397 -486 -397 -489 -397 -490 -397 -492 -397 -495 -397 -496 -397 -499 -397 -502 -397 -398 -398 -93 -398 -261 -398 -264 -398 -265 -398 -267 -398 -268 -398 -283 -398 -284 -398 -286 -398 -290 -398 -292 -398 -341 -398 -343 -398 -357 -398 -359 -398 -362 -398 -364 -398 -371 -398 -376 -398 -382 -398 -383 -398 -385 -398 -386 -398 -393 -398 -394 -398 -395 -398 -396 -398 -397 -398 -401 -398 -402 -398 -403 -398 -404 -398 -442 -398 -444 -398 -458 -398 -460 -398 -463 -398 -465 -398 -472 -398 -481 -398 -482 -398 -484 -398 -488 -398 -489 -398 -491 -398 -494 -398 -495 -398 -497 -398 -501 -398 -503 -398 -399 -399 -262 -399 -263 -399 -281 -399 -282 -399 -287 -399 -288 -399 -289 -399 -303 -399 -305 -399 -338 -399 -344 -399 -346 -399 -347 -399 -348 -399 -350 -399 -351 -399 -352 -399 -353 -399 -380 -399 -381 -399 -387 -399 -388 -399 -393 -399 -394 -399 -397 -399 -400 -399 -401 -399 -410 -399 -412 -399 -430 -399 -445 -399 -447 -399 -448 -399 -449 -399 -452 -399 -454 -399 -479 -399 -480 -399 -486 -399 -487 -399 -488 -399 -492 -399 -493 -399 -498 -399 -499 -399 -500 -399 -584 -399 -585 -399 -400 -400 -262 -400 -266 -400 -281 -400 -285 -400 -287 -400 -288 -400 -291 -400 -304 -400 -314 -400 -339 -400 -345 -400 -346 -400 -348 -400 -349 -400 -350 -400 -363 -400 -368 -400 -369 -400 -380 -400 -384 -400 -387 -400 -391 -400 -393 -400 -394 -400 -397 -400 -399 -400 -403 -400 -411 -400 -421 -400 -432 -400 -446 -400 -447 -400 -450 -400 -451 -400 -469 -400 -470 -400 -479 -400 -483 -400 -486 -400 -489 -400 -490 -400 -492 -400 -496 -400 -498 -400 -499 -400 -502 -400 -584 -400 -588 -400 -401 -401 -263 -401 -264 -401 -282 -401 -283 -401 -287 -401 -289 -401 -290 -401 -306 -401 -309 -401 -340 -401 -347 -401 -351 -401 -352 -401 -354 -401 -355 -401 -356 -401 -358 -401 -360 -401 -381 -401 -382 -401 -388 -401 -389 -401 -394 -401 -395 -401 -398 -401 -399 -401 -402 -401 -413 -401 -416 -401 -431 -401 -452 -401 -453 -401 -455 -401 -456 -401 -457 -401 -459 -401 -480 -401 -481 -401 -486 -401 -487 -401 -488 -401 -493 -401 -494 -401 -498 -401 -500 -401 -501 -401 -585 -401 -586 -401 -402 -402 -264 -402 -267 -402 -283 -402 -286 -402 -289 -402 -290 -402 -292 -402 -310 -402 -317 -402 -341 -402 -355 -402 -357 -402 -358 -402 -359 -402 -360 -402 -364 -402 -371 -402 -372 -402 -382 -402 -385 -402 -389 -402 -392 -402 -394 -402 -395 -402 -398 -402 -401 -402 -404 -402 -417 -402 -424 -402 -434 -402 -458 -402 -459 -402 -460 -402 -461 -402 -472 -402 -473 -402 -481 -402 -484 -402 -488 -402 -489 -402 -491 -402 -494 -402 -497 -402 -500 -402 -501 -402 -503 -402 -586 -402 -589 -402 -403 -403 -265 -403 -266 -403 -284 -403 -285 -403 -288 -403 -291 -403 -292 -403 -312 -403 -315 -403 -342 -403 -349 -403 -361 -403 -363 -403 -365 -403 -366 -403 -367 -403 -368 -403 -370 -403 -383 -403 -384 -403 -390 -403 -391 -403 -396 -403 -397 -403 -398 -403 -400 -403 -404 -403 -419 -403 -422 -403 -433 -403 -462 -403 -464 -403 -466 -403 -467 -403 -469 -403 -471 -403 -482 -403 -483 -403 -486 -403 -489 -403 -490 -403 -495 -403 -496 -403 -499 -403 -502 -403 -503 -403 -587 -403 -588 -403 -404 -404 -265 -404 -267 -404 -284 -404 -286 -404 -290 -404 -291 -404 -292 -404 -313 -404 -318 -404 -343 -404 -359 -404 -362 -404 -364 -404 -365 -404 -366 -404 -367 -404 -371 -404 -373 -404 -383 -404 -385 -404 -390 -404 -392 -404 -396 -404 -397 -404 -398 -404 -402 -404 -403 -404 -420 -404 -425 -404 -435 -404 -463 -404 -465 -404 -466 -404 -468 -404 -472 -404 -474 -404 -482 -404 -484 -404 -488 -404 -489 -404 -491 -404 -495 -404 -497 -404 -501 -404 -502 -404 -503 -404 -587 -404 -589 -404 -405 -405 -293 -405 -294 -405 -295 -405 -323 -405 -324 -405 -325 -405 -377 -405 -406 -406 -379 -406 -388 -406 -407 -406 -408 -406 -430 -406 -431 -406 -436 -406 -437 -406 -438 -406 -478 -406 -487 -406 -407 -407 -379 -407 -391 -407 -406 -407 -408 -407 -432 -407 -433 -407 -436 -407 -437 -407 -438 -407 -478 -407 -490 -407 -408 -408 -379 -408 -392 -408 -406 -408 -407 -408 -434 -408 -435 -408 -436 -408 -437 -408 -438 -408 -478 -408 -491 -408 -409 -409 -380 -409 -393 -409 -410 -409 -411 -409 -439 -409 -440 -409 -445 -409 -446 -409 -447 -409 -479 -409 -492 -409 -410 -410 -380 -410 -399 -410 -409 -410 -411 -410 -445 -410 -446 -410 -447 -410 -448 -410 -449 -410 -479 -410 -498 -410 -411 -411 -380 -411 -400 -411 -409 -411 -410 -411 -445 -411 -446 -411 -447 -411 -450 -411 -451 -411 -479 -411 -499 -411 -412 -412 -381 -412 -399 -412 -413 -412 -414 -412 -448 -412 -449 -412 -452 -412 -454 -412 -455 -412 -480 -412 -498 -412 -413 -413 -381 -413 -401 -413 -412 -413 -414 -413 -452 -413 -453 -413 -454 -413 -455 -413 -456 -413 -480 -413 -500 -413 -414 -414 -381 -414 -412 -414 -413 -414 -452 -414 -454 -414 -455 -414 -480 -414 -487 -414 -528 -414 -529 -414 -585 -414 -415 -415 -382 -415 -395 -415 -416 -415 -417 -415 -441 -415 -442 -415 -457 -415 -458 -415 -459 -415 -481 -415 -494 -415 -416 -416 -382 -416 -401 -416 -415 -416 -417 -416 -453 -416 -456 -416 -457 -416 -458 -416 -459 -416 -481 -416 -500 -416 -417 -417 -382 -417 -402 -417 -415 -417 -416 -417 -457 -417 -458 -417 -459 -417 -460 -417 -461 -417 -481 -417 -501 -417 -418 -418 -383 -418 -396 -418 -419 -418 -420 -418 -443 -418 -444 -418 -462 -418 -463 -418 -466 -418 -482 -418 -495 -418 -419 -419 -383 -419 -403 -419 -418 -419 -420 -419 -462 -419 -463 -419 -464 -419 -466 -419 -467 -419 -482 -419 -502 -419 -420 -420 -383 -420 -404 -420 -418 -420 -419 -420 -462 -420 -463 -420 -465 -420 -466 -420 -468 -420 -482 -420 -503 -420 -421 -421 -384 -421 -400 -421 -422 -421 -423 -421 -450 -421 -451 -421 -469 -421 -470 -421 -471 -421 -483 -421 -499 -421 -422 -422 -384 -422 -403 -422 -421 -422 -423 -422 -464 -422 -467 -422 -469 -422 -470 -422 -471 -422 -483 -422 -502 -422 -423 -423 -384 -423 -421 -423 -422 -423 -469 -423 -470 -423 -471 -423 -483 -423 -490 -423 -530 -423 -531 -423 -588 -423 -424 -424 -385 -424 -402 -424 -425 -424 -426 -424 -460 -424 -461 -424 -472 -424 -473 -424 -474 -424 -484 -424 -501 -424 -425 -425 -385 -425 -404 -425 -424 -425 -426 -425 -465 -425 -468 -425 -472 -425 -473 -425 -474 -425 -484 -425 -503 -425 -426 -426 -385 -426 -424 -426 -425 -426 -472 -426 -473 -426 -474 -426 -484 -426 -491 -426 -532 -426 -533 -426 -589 -426 -427 -427 -386 -427 -428 -427 -429 -427 -475 -427 -476 -427 -477 -427 -485 -427 -492 -427 -537 -427 -538 -427 -590 -427 -428 -428 -386 -428 -427 -428 -429 -428 -475 -428 -476 -428 -477 -428 -485 -428 -494 -428 -539 -428 -540 -428 -592 -428 -429 -429 -386 -429 -427 -429 -428 -429 -475 -429 -476 -429 -477 -429 -485 -429 -495 -429 -541 -429 -542 -429 -593 -429 -430 -430 -307 -430 -348 -430 -353 -430 -354 -430 -381 -430 -387 -430 -388 -430 -399 -430 -406 -430 -431 -430 -432 -430 -436 -430 -437 -430 -478 -430 -486 -430 -487 -430 -490 -430 -431 -431 -307 -431 -353 -431 -354 -431 -355 -431 -381 -431 -388 -431 -389 -431 -401 -431 -406 -431 -430 -431 -434 -431 -436 -431 -437 -431 -478 -431 -487 -431 -488 -431 -491 -431 -432 -432 -316 -432 -350 -432 -369 -432 -370 -432 -384 -432 -387 -432 -391 -432 -400 -432 -407 -432 -430 -432 -433 -432 -436 -432 -438 -432 -478 -432 -486 -432 -487 -432 -490 -432 -433 -433 -316 -433 -366 -433 -369 -433 -370 -433 -384 -433 -390 -433 -391 -433 -403 -433 -407 -433 -432 -433 -435 -433 -436 -433 -438 -433 -478 -433 -489 -433 -490 -433 -491 -433 -434 -434 -319 -434 -360 -434 -372 -434 -373 -434 -385 -434 -389 -434 -392 -434 -402 -434 -408 -434 -431 -434 -435 -434 -437 -434 -438 -434 -478 -434 -487 -434 -488 -434 -491 -434 -435 -435 -319 -435 -367 -435 -372 -435 -373 -435 -385 -435 -390 -435 -392 -435 -404 -435 -408 -435 -433 -435 -434 -435 -437 -435 -438 -435 -478 -435 -489 -435 -490 -435 -491 -435 -436 -436 -379 -436 -387 -436 -388 -436 -391 -436 -406 -436 -407 -436 -408 -436 -430 -436 -431 -436 -432 -436 -433 -436 -437 -436 -438 -436 -478 -436 -486 -436 -487 -436 -490 -436 -437 -437 -379 -437 -388 -437 -389 -437 -392 -437 -406 -437 -407 -437 -408 -437 -430 -437 -431 -437 -434 -437 -435 -437 -436 -437 -438 -437 -478 -437 -487 -437 -488 -437 -491 -437 -438 -438 -379 -438 -390 -438 -391 -438 -392 -438 -406 -438 -407 -438 -408 -438 -432 -438 -433 -438 -434 -438 -435 -438 -436 -438 -437 -438 -478 -438 -489 -438 -490 -438 -491 -438 -439 -439 -320 -439 -374 -439 -375 -439 -386 -439 -393 -439 -394 -439 -409 -439 -440 -439 -441 -439 -445 -439 -446 -439 -448 -439 -479 -439 -492 -439 -493 -439 -494 -439 -498 -439 -440 -440 -320 -440 -374 -440 -375 -440 -386 -440 -393 -440 -397 -440 -409 -440 -439 -440 -443 -440 -445 -440 -446 -440 -450 -440 -479 -440 -492 -440 -495 -440 -496 -440 -499 -440 -441 -441 -321 -441 -374 -441 -376 -441 -386 -441 -394 -441 -395 -441 -415 -441 -439 -441 -442 -441 -453 -441 -457 -441 -458 -441 -481 -441 -492 -441 -493 -441 -494 -441 -500 -441 -442 -442 -321 -442 -374 -442 -376 -442 -386 -442 -395 -442 -398 -442 -415 -442 -441 -442 -444 -442 -457 -442 -458 -442 -460 -442 -481 -442 -494 -442 -495 -442 -497 -442 -501 -442 -443 -443 -322 -443 -375 -443 -376 -443 -386 -443 -396 -443 -397 -443 -418 -443 -440 -443 -444 -443 -462 -443 -463 -443 -464 -443 -482 -443 -492 -443 -495 -443 -496 -443 -502 -443 -444 -444 -322 -444 -375 -444 -376 -444 -386 -444 -396 -444 -398 -444 -418 -444 -442 -444 -443 -444 -462 -444 -463 -444 -465 -444 -482 -444 -494 -444 -495 -444 -497 -444 -503 -444 -445 -445 -380 -445 -393 -445 -394 -445 -399 -445 -409 -445 -410 -445 -411 -445 -439 -445 -440 -445 -446 -445 -447 -445 -448 -445 -449 -445 -479 -445 -492 -445 -493 -445 -498 -445 -446 -446 -380 -446 -393 -446 -397 -446 -400 -446 -409 -446 -410 -446 -411 -446 -439 -446 -440 -446 -445 -446 -447 -446 -450 -446 -451 -446 -479 -446 -492 -446 -496 -446 -499 -446 -447 -447 -380 -447 -399 -447 -400 -447 -409 -447 -410 -447 -411 -447 -445 -447 -446 -447 -448 -447 -449 -447 -450 -447 -451 -447 -479 -447 -486 -447 -498 -447 -499 -447 -584 -447 -448 -448 -394 -448 -399 -448 -410 -448 -412 -448 -439 -448 -445 -448 -447 -448 -449 -448 -452 -448 -453 -448 -454 -448 -479 -448 -480 -448 -492 -448 -493 -448 -498 -448 -500 -448 -449 -449 -399 -449 -410 -449 -412 -449 -445 -449 -447 -449 -448 -449 -451 -449 -452 -449 -454 -449 -479 -449 -480 -449 -486 -449 -498 -449 -499 -449 -528 -449 -584 -449 -585 -449 -450 -450 -397 -450 -400 -450 -411 -450 -421 -450 -440 -450 -446 -450 -447 -450 -451 -450 -464 -450 -469 -450 -470 -450 -479 -450 -483 -450 -492 -450 -496 -450 -499 -450 -502 -450 -451 -451 -400 -451 -411 -451 -421 -451 -446 -451 -447 -451 -449 -451 -450 -451 -469 -451 -470 -451 -479 -451 -483 -451 -486 -451 -498 -451 -499 -451 -530 -451 -584 -451 -588 -451 -452 -452 -381 -452 -394 -452 -399 -452 -401 -452 -412 -452 -413 -452 -414 -452 -448 -452 -449 -452 -453 -452 -454 -452 -455 -452 -456 -452 -480 -452 -493 -452 -498 -452 -500 -452 -453 -453 -394 -453 -401 -453 -413 -453 -416 -453 -441 -453 -448 -453 -452 -453 -455 -453 -456 -453 -457 -453 -459 -453 -480 -453 -481 -453 -493 -453 -494 -453 -498 -453 -500 -453 -454 -454 -381 -454 -399 -454 -412 -454 -413 -454 -414 -454 -448 -454 -449 -454 -452 -454 -455 -454 -480 -454 -486 -454 -487 -454 -498 -454 -528 -454 -529 -454 -584 -454 -585 -454 -455 -455 -381 -455 -401 -455 -412 -455 -413 -455 -414 -455 -452 -455 -453 -455 -454 -455 -456 -455 -480 -455 -487 -455 -488 -455 -500 -455 -528 -455 -529 -455 -585 -455 -586 -455 -456 -456 -401 -456 -413 -456 -416 -456 -452 -456 -453 -456 -455 -456 -457 -456 -459 -456 -461 -456 -480 -456 -481 -456 -488 -456 -500 -456 -501 -456 -529 -456 -585 -456 -586 -456 -457 -457 -382 -457 -394 -457 -395 -457 -401 -457 -415 -457 -416 -457 -417 -457 -441 -457 -442 -457 -453 -457 -456 -457 -458 -457 -459 -457 -481 -457 -493 -457 -494 -457 -500 -457 -458 -458 -382 -458 -395 -458 -398 -458 -402 -458 -415 -458 -416 -458 -417 -458 -441 -458 -442 -458 -457 -458 -459 -458 -460 -458 -461 -458 -481 -458 -494 -458 -497 -458 -501 -458 -459 -459 -382 -459 -401 -459 -402 -459 -415 -459 -416 -459 -417 -459 -453 -459 -456 -459 -457 -459 -458 -459 -460 -459 -461 -459 -481 -459 -488 -459 -500 -459 -501 -459 -586 -459 -460 -460 -398 -460 -402 -460 -417 -460 -424 -460 -442 -460 -458 -460 -459 -460 -461 -460 -465 -460 -472 -460 -473 -460 -481 -460 -484 -460 -494 -460 -497 -460 -501 -460 -503 -460 -461 -461 -402 -461 -417 -461 -424 -461 -456 -461 -458 -461 -459 -461 -460 -461 -472 -461 -473 -461 -481 -461 -484 -461 -488 -461 -500 -461 -501 -461 -532 -461 -586 -461 -589 -461 -462 -462 -383 -462 -396 -462 -397 -462 -403 -462 -418 -462 -419 -462 -420 -462 -443 -462 -444 -462 -463 -462 -464 -462 -466 -462 -467 -462 -482 -462 -495 -462 -496 -462 -502 -462 -463 -463 -383 -463 -396 -463 -398 -463 -404 -463 -418 -463 -419 -463 -420 -463 -443 -463 -444 -463 -462 -463 -465 -463 -466 -463 -468 -463 -482 -463 -495 -463 -497 -463 -503 -463 -464 -464 -397 -464 -403 -464 -419 -464 -422 -464 -443 -464 -450 -464 -462 -464 -466 -464 -467 -464 -469 -464 -471 -464 -482 -464 -483 -464 -495 -464 -496 -464 -499 -464 -502 -464 -465 -465 -398 -465 -404 -465 -420 -465 -425 -465 -444 -465 -460 -465 -463 -465 -466 -465 -468 -465 -472 -465 -474 -465 -482 -465 -484 -465 -495 -465 -497 -465 -501 -465 -503 -465 -466 -466 -383 -466 -403 -466 -404 -466 -418 -466 -419 -466 -420 -466 -462 -466 -463 -466 -464 -466 -465 -466 -467 -466 -468 -466 -482 -466 -489 -466 -502 -466 -503 -466 -587 -466 -467 -467 -403 -467 -419 -467 -422 -467 -462 -467 -464 -467 -466 -467 -468 -467 -469 -467 -471 -467 -482 -467 -483 -467 -489 -467 -502 -467 -503 -467 -531 -467 -587 -467 -588 -467 -468 -468 -404 -468 -420 -468 -425 -468 -463 -468 -465 -468 -466 -468 -467 -468 -472 -468 -474 -468 -482 -468 -484 -468 -489 -468 -502 -468 -503 -468 -533 -468 -587 -468 -589 -468 -469 -469 -384 -469 -397 -469 -400 -469 -403 -469 -421 -469 -422 -469 -423 -469 -450 -469 -451 -469 -464 -469 -467 -469 -470 -469 -471 -469 -483 -469 -496 -469 -499 -469 -502 -469 -470 -470 -384 -470 -400 -470 -421 -470 -422 -470 -423 -470 -450 -470 -451 -470 -469 -470 -471 -470 -483 -470 -486 -470 -490 -470 -499 -470 -530 -470 -531 -470 -584 -470 -588 -470 -471 -471 -384 -471 -403 -471 -421 -471 -422 -471 -423 -471 -464 -471 -467 -471 -469 -471 -470 -471 -483 -471 -489 -471 -490 -471 -502 -471 -530 -471 -531 -471 -587 -471 -588 -471 -472 -472 -385 -472 -398 -472 -402 -472 -404 -472 -424 -472 -425 -472 -426 -472 -460 -472 -461 -472 -465 -472 -468 -472 -473 -472 -474 -472 -484 -472 -497 -472 -501 -472 -503 -472 -473 -473 -385 -473 -402 -473 -424 -473 -425 -473 -426 -473 -460 -473 -461 -473 -472 -473 -474 -473 -484 -473 -488 -473 -491 -473 -501 -473 -532 -473 -533 -473 -586 -473 -589 -473 -474 -474 -385 -474 -404 -474 -424 -474 -425 -474 -426 -474 -465 -474 -468 -474 -472 -474 -473 -474 -484 -474 -489 -474 -491 -474 -503 -474 -532 -474 -533 -474 -587 -474 -589 -474 -475 -475 -386 -475 -427 -475 -428 -475 -429 -475 -476 -475 -477 -475 -485 -475 -492 -475 -493 -475 -494 -475 -537 -475 -538 -475 -539 -475 -540 -475 -590 -475 -591 -475 -592 -475 -476 -476 -386 -476 -427 -476 -428 -476 -429 -476 -475 -476 -477 -476 -485 -476 -492 -476 -495 -476 -496 -476 -537 -476 -538 -476 -541 -476 -542 -476 -590 -476 -593 -476 -594 -476 -477 -477 -386 -477 -427 -477 -428 -477 -429 -477 -475 -477 -476 -477 -485 -477 -494 -477 -495 -477 -497 -477 -539 -477 -540 -477 -541 -477 -542 -477 -592 -477 -593 -477 -595 -477 -478 -478 -379 -478 -387 -478 -388 -478 -389 -478 -390 -478 -391 -478 -392 -478 -406 -478 -407 -478 -408 -478 -430 -478 -431 -478 -432 -478 -433 -478 -434 -478 -435 -478 -436 -478 -437 -478 -438 -478 -486 -478 -487 -478 -488 -478 -489 -478 -490 -478 -491 -478 -504 -478 -505 -478 -506 -478 -534 -478 -535 -478 -536 -478 -576 -478 -584 -478 -585 -478 -586 -478 -587 -478 -588 -478 -589 -478 -479 -479 -380 -479 -393 -479 -394 -479 -397 -479 -399 -479 -400 -479 -409 -479 -410 -479 -411 -479 -439 -479 -440 -479 -445 -479 -446 -479 -447 -479 -448 -479 -449 -479 -450 -479 -451 -479 -486 -479 -492 -479 -493 -479 -496 -479 -498 -479 -499 -479 -507 -479 -508 -479 -509 -479 -543 -479 -544 -479 -545 -479 -577 -479 -584 -479 -590 -479 -591 -479 -594 -479 -596 -479 -597 -479 -697 -479 -480 -480 -381 -480 -394 -480 -399 -480 -401 -480 -412 -480 -413 -480 -414 -480 -448 -480 -449 -480 -452 -480 -453 -480 -454 -480 -455 -480 -456 -480 -486 -480 -487 -480 -488 -480 -493 -480 -498 -480 -500 -480 -510 -480 -511 -480 -512 -480 -528 -480 -529 -480 -550 -480 -552 -480 -553 -480 -578 -480 -584 -480 -585 -480 -586 -480 -591 -480 -596 -480 -598 -480 -688 -480 -697 -480 -698 -480 -481 -481 -382 -481 -394 -481 -395 -481 -398 -481 -401 -481 -402 -481 -415 -481 -416 -481 -417 -481 -441 -481 -442 -481 -453 -481 -456 -481 -457 -481 -458 -481 -459 -481 -460 -481 -461 -481 -488 -481 -493 -481 -494 -481 -497 -481 -500 -481 -501 -481 -513 -481 -514 -481 -515 -481 -555 -481 -556 -481 -557 -481 -579 -481 -586 -481 -591 -481 -592 -481 -595 -481 -598 -481 -599 -481 -698 -481 -482 -482 -383 -482 -396 -482 -397 -482 -398 -482 -403 -482 -404 -482 -418 -482 -419 -482 -420 -482 -443 -482 -444 -482 -462 -482 -463 -482 -464 -482 -465 -482 -466 -482 -467 -482 -468 -482 -489 -482 -495 -482 -496 -482 -497 -482 -502 -482 -503 -482 -516 -482 -517 -482 -518 -482 -560 -482 -561 -482 -564 -482 -580 -482 -587 -482 -593 -482 -594 -482 -595 -482 -600 -482 -601 -482 -699 -482 -483 -483 -384 -483 -397 -483 -400 -483 -403 -483 -421 -483 -422 -483 -423 -483 -450 -483 -451 -483 -464 -483 -467 -483 -469 -483 -470 -483 -471 -483 -486 -483 -489 -483 -490 -483 -496 -483 -499 -483 -502 -483 -519 -483 -520 -483 -521 -483 -530 -483 -531 -483 -567 -483 -568 -483 -569 -483 -581 -483 -584 -483 -587 -483 -588 -483 -594 -483 -597 -483 -600 -483 -689 -483 -697 -483 -699 -483 -484 -484 -385 -484 -398 -484 -402 -484 -404 -484 -424 -484 -425 -484 -426 -484 -460 -484 -461 -484 -465 -484 -468 -484 -472 -484 -473 -484 -474 -484 -488 -484 -489 -484 -491 -484 -497 -484 -501 -484 -503 -484 -522 -484 -523 -484 -524 -484 -532 -484 -533 -484 -570 -484 -571 -484 -572 -484 -582 -484 -586 -484 -587 -484 -589 -484 -595 -484 -599 -484 -601 -484 -690 -484 -698 -484 -699 -484 -485 -485 -386 -485 -427 -485 -428 -485 -429 -485 -475 -485 -476 -485 -477 -485 -492 -485 -493 -485 -494 -485 -495 -485 -496 -485 -497 -485 -525 -485 -526 -485 -527 -485 -537 -485 -538 -485 -539 -485 -540 -485 -541 -485 -542 -485 -573 -485 -574 -485 -575 -485 -583 -485 -590 -485 -591 -485 -592 -485 -593 -485 -594 -485 -595 -485 -691 -485 -692 -485 -693 -485 -694 -485 -695 -485 -696 -485 -486 -486 -262 -486 -263 -486 -266 -486 -287 -486 -288 -486 -346 -486 -348 -486 -350 -486 -353 -486 -369 -486 -379 -486 -380 -486 -381 -486 -384 -486 -387 -486 -388 -486 -391 -486 -393 -486 -394 -486 -397 -486 -399 -486 -400 -486 -401 -486 -403 -486 -430 -486 -432 -486 -436 -486 -447 -486 -449 -486 -451 -486 -454 -486 -470 -486 -478 -486 -479 -486 -480 -486 -483 -486 -487 -486 -488 -486 -489 -486 -490 -486 -491 -486 -498 -486 -499 -486 -528 -486 -530 -486 -534 -486 -576 -486 -584 -486 -585 -486 -588 -486 -487 -487 -263 -487 -287 -487 -289 -487 -307 -487 -348 -487 -353 -487 -354 -487 -355 -487 -379 -487 -381 -487 -387 -487 -388 -487 -389 -487 -391 -487 -392 -487 -394 -487 -399 -487 -401 -487 -406 -487 -414 -487 -430 -487 -431 -487 -432 -487 -434 -487 -436 -487 -437 -487 -454 -487 -455 -487 -478 -487 -480 -487 -486 -487 -488 -487 -489 -487 -490 -487 -491 -487 -498 -487 -500 -487 -504 -487 -528 -487 -529 -487 -534 -487 -535 -487 -576 -487 -584 -487 -585 -487 -586 -487 -588 -487 -589 -487 -488 -488 -263 -488 -264 -488 -267 -488 -289 -488 -290 -488 -354 -488 -355 -488 -358 -488 -360 -488 -372 -488 -379 -488 -381 -488 -382 -488 -385 -488 -388 -488 -389 -488 -392 -488 -394 -488 -395 -488 -398 -488 -399 -488 -401 -488 -402 -488 -404 -488 -431 -488 -434 -488 -437 -488 -455 -488 -456 -488 -459 -488 -461 -488 -473 -488 -478 -488 -480 -488 -481 -488 -484 -488 -486 -488 -487 -488 -489 -488 -490 -488 -491 -488 -500 -488 -501 -488 -529 -488 -532 -488 -535 -488 -576 -488 -585 -488 -586 -488 -589 -488 -489 -489 -265 -489 -266 -489 -267 -489 -291 -489 -292 -489 -365 -489 -366 -489 -367 -489 -370 -489 -373 -489 -379 -489 -383 -489 -384 -489 -385 -489 -390 -489 -391 -489 -392 -489 -396 -489 -397 -489 -398 -489 -400 -489 -402 -489 -403 -489 -404 -489 -433 -489 -435 -489 -438 -489 -466 -489 -467 -489 -468 -489 -471 -489 -474 -489 -478 -489 -482 -489 -483 -489 -484 -489 -486 -489 -487 -489 -488 -489 -490 -489 -491 -489 -502 -489 -503 -489 -531 -489 -533 -489 -536 -489 -576 -489 -587 -489 -588 -489 -589 -489 -490 -490 -266 -490 -288 -490 -291 -490 -316 -490 -350 -490 -366 -490 -369 -490 -370 -490 -379 -490 -384 -490 -387 -490 -388 -490 -390 -490 -391 -490 -392 -490 -397 -490 -400 -490 -403 -490 -407 -490 -423 -490 -430 -490 -432 -490 -433 -490 -435 -490 -436 -490 -438 -490 -470 -490 -471 -490 -478 -490 -483 -490 -486 -490 -487 -490 -488 -490 -489 -490 -491 -490 -499 -490 -502 -490 -505 -490 -530 -490 -531 -490 -534 -490 -536 -490 -576 -490 -584 -490 -585 -490 -587 -490 -588 -490 -589 -490 -491 -491 -267 -491 -290 -491 -292 -491 -319 -491 -360 -491 -367 -491 -372 -491 -373 -491 -379 -491 -385 -491 -388 -491 -389 -491 -390 -491 -391 -491 -392 -491 -398 -491 -402 -491 -404 -491 -408 -491 -426 -491 -431 -491 -433 -491 -434 -491 -435 -491 -437 -491 -438 -491 -473 -491 -474 -491 -478 -491 -484 -491 -486 -491 -487 -491 -488 -491 -489 -491 -490 -491 -501 -491 -503 -491 -506 -491 -532 -491 -533 -491 -535 -491 -536 -491 -576 -491 -585 -491 -586 -491 -587 -491 -588 -491 -589 -491 -492 -492 -268 -492 -320 -492 -374 -492 -375 -492 -380 -492 -386 -492 -393 -492 -394 -492 -395 -492 -396 -492 -397 -492 -399 -492 -400 -492 -409 -492 -427 -492 -439 -492 -440 -492 -441 -492 -443 -492 -445 -492 -446 -492 -448 -492 -450 -492 -475 -492 -476 -492 -479 -492 -485 -492 -493 -492 -494 -492 -495 -492 -496 -492 -497 -492 -498 -492 -499 -492 -507 -492 -537 -492 -538 -492 -543 -492 -544 -492 -577 -492 -584 -492 -590 -492 -591 -492 -592 -492 -593 -492 -594 -492 -596 -492 -597 -492 -493 -493 -268 -493 -374 -493 -380 -493 -381 -493 -382 -493 -386 -493 -393 -493 -394 -493 -395 -493 -399 -493 -401 -493 -439 -493 -441 -493 -445 -493 -448 -493 -452 -493 -453 -493 -457 -493 -475 -493 -479 -493 -480 -493 -481 -493 -485 -493 -492 -493 -494 -493 -495 -493 -496 -493 -497 -493 -498 -493 -499 -493 -500 -493 -501 -493 -537 -493 -539 -493 -543 -493 -546 -493 -550 -493 -551 -493 -555 -493 -577 -493 -578 -493 -579 -493 -584 -493 -585 -493 -586 -493 -590 -493 -591 -493 -592 -493 -596 -493 -598 -493 -494 -494 -268 -494 -321 -494 -374 -494 -376 -494 -382 -494 -386 -494 -393 -494 -394 -494 -395 -494 -396 -494 -398 -494 -401 -494 -402 -494 -415 -494 -428 -494 -439 -494 -441 -494 -442 -494 -444 -494 -453 -494 -457 -494 -458 -494 -460 -494 -475 -494 -477 -494 -481 -494 -485 -494 -492 -494 -493 -494 -495 -494 -496 -494 -497 -494 -500 -494 -501 -494 -513 -494 -539 -494 -540 -494 -555 -494 -556 -494 -579 -494 -586 -494 -590 -494 -591 -494 -592 -494 -593 -494 -595 -494 -598 -494 -599 -494 -495 -495 -268 -495 -322 -495 -375 -495 -376 -495 -383 -495 -386 -495 -393 -495 -395 -495 -396 -495 -397 -495 -398 -495 -403 -495 -404 -495 -418 -495 -429 -495 -440 -495 -442 -495 -443 -495 -444 -495 -462 -495 -463 -495 -464 -495 -465 -495 -476 -495 -477 -495 -482 -495 -485 -495 -492 -495 -493 -495 -494 -495 -496 -495 -497 -495 -502 -495 -503 -495 -516 -495 -541 -495 -542 -495 -560 -495 -561 -495 -580 -495 -587 -495 -590 -495 -592 -495 -593 -495 -594 -495 -595 -495 -600 -495 -601 -495 -496 -496 -268 -496 -375 -496 -380 -496 -383 -496 -384 -496 -386 -496 -393 -496 -396 -496 -397 -496 -400 -496 -403 -496 -440 -496 -443 -496 -446 -496 -450 -496 -462 -496 -464 -496 -469 -496 -476 -496 -479 -496 -482 -496 -483 -496 -485 -496 -492 -496 -493 -496 -494 -496 -495 -496 -497 -496 -498 -496 -499 -496 -502 -496 -503 -496 -538 -496 -541 -496 -544 -496 -548 -496 -560 -496 -562 -496 -567 -496 -577 -496 -580 -496 -581 -496 -584 -496 -587 -496 -588 -496 -590 -496 -593 -496 -594 -496 -597 -496 -600 -496 -497 -497 -268 -497 -376 -497 -382 -497 -383 -497 -385 -497 -386 -497 -395 -497 -396 -497 -398 -497 -402 -497 -404 -497 -442 -497 -444 -497 -458 -497 -460 -497 -463 -497 -465 -497 -472 -497 -477 -497 -481 -497 -482 -497 -484 -497 -485 -497 -492 -497 -493 -497 -494 -497 -495 -497 -496 -497 -500 -497 -501 -497 -502 -497 -503 -497 -540 -497 -542 -497 -556 -497 -558 -497 -561 -497 -563 -497 -570 -497 -579 -497 -580 -497 -582 -497 -586 -497 -587 -497 -589 -497 -592 -497 -593 -497 -595 -497 -599 -497 -601 -497 -498 -498 -380 -498 -381 -498 -393 -498 -394 -498 -399 -498 -400 -498 -401 -498 -410 -498 -412 -498 -439 -498 -445 -498 -447 -498 -448 -498 -449 -498 -451 -498 -452 -498 -453 -498 -454 -498 -479 -498 -480 -498 -486 -498 -487 -498 -492 -498 -493 -498 -496 -498 -499 -498 -500 -498 -508 -498 -510 -498 -528 -498 -543 -498 -545 -498 -546 -498 -547 -498 -550 -498 -552 -498 -577 -498 -578 -498 -584 -498 -585 -498 -586 -498 -590 -498 -591 -498 -596 -498 -597 -498 -598 -498 -688 -498 -697 -498 -499 -499 -380 -499 -384 -499 -393 -499 -397 -499 -399 -499 -400 -499 -403 -499 -411 -499 -421 -499 -440 -499 -446 -499 -447 -499 -449 -499 -450 -499 -451 -499 -464 -499 -469 -499 -470 -499 -479 -499 -483 -499 -486 -499 -490 -499 -492 -499 -493 -499 -496 -499 -498 -499 -502 -499 -509 -499 -519 -499 -530 -499 -544 -499 -545 -499 -548 -499 -549 -499 -567 -499 -568 -499 -577 -499 -581 -499 -584 -499 -587 -499 -588 -499 -590 -499 -594 -499 -596 -499 -597 -499 -600 -499 -689 -499 -697 -499 -500 -500 -381 -500 -382 -500 -394 -500 -395 -500 -399 -500 -401 -500 -402 -500 -413 -500 -416 -500 -441 -500 -448 -500 -452 -500 -453 -500 -455 -500 -456 -500 -457 -500 -459 -500 -461 -500 -480 -500 -481 -500 -487 -500 -488 -500 -493 -500 -494 -500 -497 -500 -498 -500 -501 -500 -511 -500 -514 -500 -529 -500 -550 -500 -551 -500 -553 -500 -554 -500 -555 -500 -557 -500 -578 -500 -579 -500 -584 -500 -585 -500 -586 -500 -591 -500 -592 -500 -596 -500 -598 -500 -599 -500 -688 -500 -698 -500 -501 -501 -382 -501 -385 -501 -395 -501 -398 -501 -401 -501 -402 -501 -404 -501 -417 -501 -424 -501 -442 -501 -456 -501 -458 -501 -459 -501 -460 -501 -461 -501 -465 -501 -472 -501 -473 -501 -481 -501 -484 -501 -488 -501 -491 -501 -493 -501 -494 -501 -497 -501 -500 -501 -503 -501 -515 -501 -522 -501 -532 -501 -556 -501 -557 -501 -558 -501 -559 -501 -570 -501 -571 -501 -579 -501 -582 -501 -586 -501 -587 -501 -589 -501 -592 -501 -595 -501 -598 -501 -599 -501 -601 -501 -690 -501 -698 -501 -502 -502 -383 -502 -384 -502 -396 -502 -397 -502 -400 -502 -403 -502 -404 -502 -419 -502 -422 -502 -443 -502 -450 -502 -462 -502 -464 -502 -466 -502 -467 -502 -468 -502 -469 -502 -471 -502 -482 -502 -483 -502 -489 -502 -490 -502 -495 -502 -496 -502 -497 -502 -499 -502 -503 -502 -517 -502 -520 -502 -531 -502 -560 -502 -562 -502 -564 -502 -565 -502 -567 -502 -569 -502 -580 -502 -581 -502 -584 -502 -587 -502 -588 -502 -593 -502 -594 -502 -597 -502 -600 -502 -601 -502 -689 -502 -699 -502 -503 -503 -383 -503 -385 -503 -396 -503 -398 -503 -402 -503 -403 -503 -404 -503 -420 -503 -425 -503 -444 -503 -460 -503 -463 -503 -465 -503 -466 -503 -467 -503 -468 -503 -472 -503 -474 -503 -482 -503 -484 -503 -489 -503 -491 -503 -495 -503 -496 -503 -497 -503 -501 -503 -502 -503 -518 -503 -523 -503 -533 -503 -561 -503 -563 -503 -564 -503 -566 -503 -570 -503 -572 -503 -580 -503 -582 -503 -586 -503 -587 -503 -589 -503 -593 -503 -595 -503 -599 -503 -600 -503 -601 -503 -690 -503 -699 -503 -504 -504 -478 -504 -487 -504 -505 -504 -506 -504 -528 -504 -529 -504 -534 -504 -535 -504 -536 -504 -576 -504 -585 -504 -505 -505 -478 -505 -490 -505 -504 -505 -506 -505 -530 -505 -531 -505 -534 -505 -535 -505 -536 -505 -576 -505 -588 -505 -506 -506 -478 -506 -491 -506 -504 -506 -505 -506 -532 -506 -533 -506 -534 -506 -535 -506 -536 -506 -576 -506 -589 -506 -507 -507 -479 -507 -492 -507 -508 -507 -509 -507 -537 -507 -538 -507 -543 -507 -544 -507 -545 -507 -577 -507 -590 -507 -508 -508 -479 -508 -498 -508 -507 -508 -509 -508 -543 -508 -544 -508 -545 -508 -546 -508 -547 -508 -577 -508 -596 -508 -509 -509 -479 -509 -499 -509 -507 -509 -508 -509 -543 -509 -544 -509 -545 -509 -548 -509 -549 -509 -577 -509 -597 -509 -510 -510 -480 -510 -498 -510 -511 -510 -512 -510 -546 -510 -547 -510 -550 -510 -552 -510 -553 -510 -578 -510 -596 -510 -511 -511 -480 -511 -500 -511 -510 -511 -512 -511 -550 -511 -551 -511 -552 -511 -553 -511 -554 -511 -578 -511 -598 -511 -512 -512 -480 -512 -510 -512 -511 -512 -550 -512 -552 -512 -553 -512 -578 -512 -585 -512 -626 -512 -627 -512 -688 -512 -513 -513 -481 -513 -494 -513 -514 -513 -515 -513 -539 -513 -540 -513 -555 -513 -556 -513 -557 -513 -579 -513 -592 -513 -514 -514 -481 -514 -500 -514 -513 -514 -515 -514 -551 -514 -554 -514 -555 -514 -556 -514 -557 -514 -579 -514 -598 -514 -515 -515 -481 -515 -501 -515 -513 -515 -514 -515 -555 -515 -556 -515 -557 -515 -558 -515 -559 -515 -579 -515 -599 -515 -516 -516 -482 -516 -495 -516 -517 -516 -518 -516 -541 -516 -542 -516 -560 -516 -561 -516 -564 -516 -580 -516 -593 -516 -517 -517 -482 -517 -502 -517 -516 -517 -518 -517 -560 -517 -561 -517 -562 -517 -564 -517 -565 -517 -580 -517 -600 -517 -518 -518 -482 -518 -503 -518 -516 -518 -517 -518 -560 -518 -561 -518 -563 -518 -564 -518 -566 -518 -580 -518 -601 -518 -519 -519 -483 -519 -499 -519 -520 -519 -521 -519 -548 -519 -549 -519 -567 -519 -568 -519 -569 -519 -581 -519 -597 -519 -520 -520 -483 -520 -502 -520 -519 -520 -521 -520 -562 -520 -565 -520 -567 -520 -568 -520 -569 -520 -581 -520 -600 -520 -521 -521 -483 -521 -519 -521 -520 -521 -567 -521 -568 -521 -569 -521 -581 -521 -588 -521 -628 -521 -629 -521 -689 -521 -522 -522 -484 -522 -501 -522 -523 -522 -524 -522 -558 -522 -559 -522 -570 -522 -571 -522 -572 -522 -582 -522 -599 -522 -523 -523 -484 -523 -503 -523 -522 -523 -524 -523 -563 -523 -566 -523 -570 -523 -571 -523 -572 -523 -582 -523 -601 -523 -524 -524 -484 -524 -522 -524 -523 -524 -570 -524 -571 -524 -572 -524 -582 -524 -589 -524 -630 -524 -631 -524 -690 -524 -525 -525 -485 -525 -526 -525 -527 -525 -573 -525 -574 -525 -575 -525 -583 -525 -590 -525 -635 -525 -636 -525 -691 -525 -526 -526 -485 -526 -525 -526 -527 -526 -573 -526 -574 -526 -575 -526 -583 -526 -592 -526 -637 -526 -638 -526 -693 -526 -527 -527 -485 -527 -525 -527 -526 -527 -573 -527 -574 -527 -575 -527 -583 -527 -593 -527 -639 -527 -640 -527 -694 -527 -528 -528 -414 -528 -449 -528 -454 -528 -455 -528 -480 -528 -486 -528 -487 -528 -498 -528 -504 -528 -529 -528 -530 -528 -534 -528 -535 -528 -576 -528 -584 -528 -585 -528 -588 -528 -529 -529 -414 -529 -454 -529 -455 -529 -456 -529 -480 -529 -487 -529 -488 -529 -500 -529 -504 -529 -528 -529 -532 -529 -534 -529 -535 -529 -576 -529 -585 -529 -586 -529 -589 -529 -530 -530 -423 -530 -451 -530 -470 -530 -471 -530 -483 -530 -486 -530 -490 -530 -499 -530 -505 -530 -528 -530 -531 -530 -534 -530 -536 -530 -576 -530 -584 -530 -585 -530 -588 -530 -531 -531 -423 -531 -467 -531 -470 -531 -471 -531 -483 -531 -489 -531 -490 -531 -502 -531 -505 -531 -530 -531 -533 -531 -534 -531 -536 -531 -576 -531 -587 -531 -588 -531 -589 -531 -532 -532 -426 -532 -461 -532 -473 -532 -474 -532 -484 -532 -488 -532 -491 -532 -501 -532 -506 -532 -529 -532 -533 -532 -535 -532 -536 -532 -576 -532 -585 -532 -586 -532 -589 -532 -533 -533 -426 -533 -468 -533 -473 -533 -474 -533 -484 -533 -489 -533 -491 -533 -503 -533 -506 -533 -531 -533 -532 -533 -535 -533 -536 -533 -576 -533 -587 -533 -588 -533 -589 -533 -534 -534 -478 -534 -486 -534 -487 -534 -490 -534 -504 -534 -505 -534 -506 -534 -528 -534 -529 -534 -530 -534 -531 -534 -535 -534 -536 -534 -576 -534 -584 -534 -585 -534 -588 -534 -535 -535 -478 -535 -487 -535 -488 -535 -491 -535 -504 -535 -505 -535 -506 -535 -528 -535 -529 -535 -532 -535 -533 -535 -534 -535 -536 -535 -576 -535 -585 -535 -586 -535 -589 -535 -536 -536 -478 -536 -489 -536 -490 -536 -491 -536 -504 -536 -505 -536 -506 -536 -530 -536 -531 -536 -532 -536 -533 -536 -534 -536 -535 -536 -576 -536 -587 -536 -588 -536 -589 -536 -537 -537 -427 -537 -475 -537 -476 -537 -485 -537 -492 -537 -493 -537 -507 -537 -538 -537 -539 -537 -543 -537 -544 -537 -546 -537 -577 -537 -590 -537 -591 -537 -592 -537 -596 -537 -538 -538 -427 -538 -475 -538 -476 -538 -485 -538 -492 -538 -496 -538 -507 -538 -537 -538 -541 -538 -543 -538 -544 -538 -548 -538 -577 -538 -590 -538 -593 -538 -594 -538 -597 -538 -539 -539 -428 -539 -475 -539 -477 -539 -485 -539 -493 -539 -494 -539 -513 -539 -537 -539 -540 -539 -551 -539 -555 -539 -556 -539 -579 -539 -590 -539 -591 -539 -592 -539 -598 -539 -540 -540 -428 -540 -475 -540 -477 -540 -485 -540 -494 -540 -497 -540 -513 -540 -539 -540 -542 -540 -555 -540 -556 -540 -558 -540 -579 -540 -592 -540 -593 -540 -595 -540 -599 -540 -541 -541 -429 -541 -476 -541 -477 -541 -485 -541 -495 -541 -496 -541 -516 -541 -538 -541 -542 -541 -560 -541 -561 -541 -562 -541 -580 -541 -590 -541 -593 -541 -594 -541 -600 -541 -542 -542 -429 -542 -476 -542 -477 -542 -485 -542 -495 -542 -497 -542 -516 -542 -540 -542 -541 -542 -560 -542 -561 -542 -563 -542 -580 -542 -592 -542 -593 -542 -595 -542 -601 -542 -543 -543 -479 -543 -492 -543 -493 -543 -498 -543 -507 -543 -508 -543 -509 -543 -537 -543 -538 -543 -544 -543 -545 -543 -546 -543 -547 -543 -577 -543 -590 -543 -591 -543 -596 -543 -544 -544 -479 -544 -492 -544 -496 -544 -499 -544 -507 -544 -508 -544 -509 -544 -537 -544 -538 -544 -543 -544 -545 -544 -548 -544 -549 -544 -577 -544 -590 -544 -594 -544 -597 -544 -545 -545 -479 -545 -498 -545 -499 -545 -507 -545 -508 -545 -509 -545 -543 -545 -544 -545 -546 -545 -547 -545 -548 -545 -549 -545 -577 -545 -584 -545 -596 -545 -597 -545 -697 -545 -546 -546 -493 -546 -498 -546 -508 -546 -510 -546 -537 -546 -543 -546 -545 -546 -547 -546 -550 -546 -551 -546 -552 -546 -577 -546 -578 -546 -590 -546 -591 -546 -596 -546 -598 -546 -547 -547 -498 -547 -508 -547 -510 -547 -543 -547 -545 -547 -546 -547 -549 -547 -550 -547 -552 -547 -577 -547 -578 -547 -584 -547 -596 -547 -597 -547 -626 -547 -688 -547 -697 -547 -548 -548 -496 -548 -499 -548 -509 -548 -519 -548 -538 -548 -544 -548 -545 -548 -549 -548 -562 -548 -567 -548 -568 -548 -577 -548 -581 -548 -590 -548 -594 -548 -597 -548 -600 -548 -549 -549 -499 -549 -509 -549 -519 -549 -544 -549 -545 -549 -547 -549 -548 -549 -567 -549 -568 -549 -577 -549 -581 -549 -584 -549 -596 -549 -597 -549 -628 -549 -689 -549 -697 -549 -550 -550 -480 -550 -493 -550 -498 -550 -500 -550 -510 -550 -511 -550 -512 -550 -546 -550 -547 -550 -551 -550 -552 -550 -553 -550 -554 -550 -578 -550 -591 -550 -596 -550 -598 -550 -551 -551 -493 -551 -500 -551 -511 -551 -514 -551 -539 -551 -546 -551 -550 -551 -553 -551 -554 -551 -555 -551 -557 -551 -578 -551 -579 -551 -591 -551 -592 -551 -596 -551 -598 -551 -552 -552 -480 -552 -498 -552 -510 -552 -511 -552 -512 -552 -546 -552 -547 -552 -550 -552 -553 -552 -578 -552 -584 -552 -585 -552 -596 -552 -626 -552 -627 -552 -688 -552 -697 -552 -553 -553 -480 -553 -500 -553 -510 -553 -511 -553 -512 -553 -550 -553 -551 -553 -552 -553 -554 -553 -578 -553 -585 -553 -586 -553 -598 -553 -626 -553 -627 -553 -688 -553 -698 -553 -554 -554 -500 -554 -511 -554 -514 -554 -550 -554 -551 -554 -553 -554 -555 -554 -557 -554 -559 -554 -578 -554 -579 -554 -586 -554 -598 -554 -599 -554 -627 -554 -688 -554 -698 -554 -555 -555 -481 -555 -493 -555 -494 -555 -500 -555 -513 -555 -514 -555 -515 -555 -539 -555 -540 -555 -551 -555 -554 -555 -556 -555 -557 -555 -579 -555 -591 -555 -592 -555 -598 -555 -556 -556 -481 -556 -494 -556 -497 -556 -501 -556 -513 -556 -514 -556 -515 -556 -539 -556 -540 -556 -555 -556 -557 -556 -558 -556 -559 -556 -579 -556 -592 -556 -595 -556 -599 -556 -557 -557 -481 -557 -500 -557 -501 -557 -513 -557 -514 -557 -515 -557 -551 -557 -554 -557 -555 -557 -556 -557 -558 -557 -559 -557 -579 -557 -586 -557 -598 -557 -599 -557 -698 -557 -558 -558 -497 -558 -501 -558 -515 -558 -522 -558 -540 -558 -556 -558 -557 -558 -559 -558 -563 -558 -570 -558 -571 -558 -579 -558 -582 -558 -592 -558 -595 -558 -599 -558 -601 -558 -559 -559 -501 -559 -515 -559 -522 -559 -554 -559 -556 -559 -557 -559 -558 -559 -570 -559 -571 -559 -579 -559 -582 -559 -586 -559 -598 -559 -599 -559 -630 -559 -690 -559 -698 -559 -560 -560 -482 -560 -495 -560 -496 -560 -502 -560 -516 -560 -517 -560 -518 -560 -541 -560 -542 -560 -561 -560 -562 -560 -564 -560 -565 -560 -580 -560 -593 -560 -594 -560 -600 -560 -561 -561 -482 -561 -495 -561 -497 -561 -503 -561 -516 -561 -517 -561 -518 -561 -541 -561 -542 -561 -560 -561 -563 -561 -564 -561 -566 -561 -580 -561 -593 -561 -595 -561 -601 -561 -562 -562 -496 -562 -502 -562 -517 -562 -520 -562 -541 -562 -548 -562 -560 -562 -564 -562 -565 -562 -567 -562 -569 -562 -580 -562 -581 -562 -593 -562 -594 -562 -597 -562 -600 -562 -563 -563 -497 -563 -503 -563 -518 -563 -523 -563 -542 -563 -558 -563 -561 -563 -564 -563 -566 -563 -570 -563 -572 -563 -580 -563 -582 -563 -593 -563 -595 -563 -599 -563 -601 -563 -564 -564 -482 -564 -502 -564 -503 -564 -516 -564 -517 -564 -518 -564 -560 -564 -561 -564 -562 -564 -563 -564 -565 -564 -566 -564 -580 -564 -587 -564 -600 -564 -601 -564 -699 -564 -565 -565 -502 -565 -517 -565 -520 -565 -560 -565 -562 -565 -564 -565 -566 -565 -567 -565 -569 -565 -580 -565 -581 -565 -587 -565 -600 -565 -601 -565 -629 -565 -689 -565 -699 -565 -566 -566 -503 -566 -518 -566 -523 -566 -561 -566 -563 -566 -564 -566 -565 -566 -570 -566 -572 -566 -580 -566 -582 -566 -587 -566 -600 -566 -601 -566 -631 -566 -690 -566 -699 -566 -567 -567 -483 -567 -496 -567 -499 -567 -502 -567 -519 -567 -520 -567 -521 -567 -548 -567 -549 -567 -562 -567 -565 -567 -568 -567 -569 -567 -581 -567 -594 -567 -597 -567 -600 -567 -568 -568 -483 -568 -499 -568 -519 -568 -520 -568 -521 -568 -548 -568 -549 -568 -567 -568 -569 -568 -581 -568 -584 -568 -588 -568 -597 -568 -628 -568 -629 -568 -689 -568 -697 -568 -569 -569 -483 -569 -502 -569 -519 -569 -520 -569 -521 -569 -562 -569 -565 -569 -567 -569 -568 -569 -581 -569 -587 -569 -588 -569 -600 -569 -628 -569 -629 -569 -689 -569 -699 -569 -570 -570 -484 -570 -497 -570 -501 -570 -503 -570 -522 -570 -523 -570 -524 -570 -558 -570 -559 -570 -563 -570 -566 -570 -571 -570 -572 -570 -582 -570 -595 -570 -599 -570 -601 -570 -571 -571 -484 -571 -501 -571 -522 -571 -523 -571 -524 -571 -558 -571 -559 -571 -570 -571 -572 -571 -582 -571 -586 -571 -589 -571 -599 -571 -630 -571 -631 -571 -690 -571 -698 -571 -572 -572 -484 -572 -503 -572 -522 -572 -523 -572 -524 -572 -563 -572 -566 -572 -570 -572 -571 -572 -582 -572 -587 -572 -589 -572 -601 -572 -630 -572 -631 -572 -690 -572 -699 -572 -573 -573 -485 -573 -525 -573 -526 -573 -527 -573 -574 -573 -575 -573 -583 -573 -590 -573 -591 -573 -592 -573 -635 -573 -636 -573 -637 -573 -638 -573 -691 -573 -692 -573 -693 -573 -574 -574 -485 -574 -525 -574 -526 -574 -527 -574 -573 -574 -575 -574 -583 -574 -590 -574 -593 -574 -594 -574 -635 -574 -636 -574 -639 -574 -640 -574 -691 -574 -694 -574 -695 -574 -575 -575 -485 -575 -525 -575 -526 -575 -527 -575 -573 -575 -574 -575 -583 -575 -592 -575 -593 -575 -595 -575 -637 -575 -638 -575 -639 -575 -640 -575 -693 -575 -694 -575 -696 -575 -576 -576 -478 -576 -486 -576 -487 -576 -488 -576 -489 -576 -490 -576 -491 -576 -504 -576 -505 -576 -506 -576 -528 -576 -529 -576 -530 -576 -531 -576 -532 -576 -533 -576 -534 -576 -535 -576 -536 -576 -584 -576 -585 -576 -586 -576 -587 -576 -588 -576 -589 -576 -602 -576 -603 -576 -604 -576 -632 -576 -633 -576 -634 -576 -674 -576 -688 -576 -689 -576 -690 -576 -697 -576 -698 -576 -699 -576 -577 -577 -479 -577 -492 -577 -493 -577 -496 -577 -498 -577 -499 -577 -507 -577 -508 -577 -509 -577 -537 -577 -538 -577 -543 -577 -544 -577 -545 -577 -546 -577 -547 -577 -548 -577 -549 -577 -584 -577 -590 -577 -591 -577 -594 -577 -596 -577 -597 -577 -605 -577 -606 -577 -607 -577 -641 -577 -642 -577 -643 -577 -675 -577 -676 -577 -677 -577 -691 -577 -692 -577 -695 -577 -697 -577 -724 -577 -578 -578 -480 -578 -493 -578 -498 -578 -500 -578 -510 -578 -511 -578 -512 -578 -546 -578 -547 -578 -550 -578 -551 -578 -552 -578 -553 -578 -554 -578 -584 -578 -585 -578 -586 -578 -591 -578 -596 -578 -598 -578 -608 -578 -609 -578 -610 -578 -626 -578 -627 -578 -648 -578 -650 -578 -651 -578 -676 -578 -678 -578 -679 -578 -688 -578 -692 -578 -697 -578 -698 -578 -724 -578 -579 -579 -481 -579 -493 -579 -494 -579 -497 -579 -500 -579 -501 -579 -513 -579 -514 -579 -515 -579 -539 -579 -540 -579 -551 -579 -554 -579 -555 -579 -556 -579 -557 -579 -558 -579 -559 -579 -586 -579 -591 -579 -592 -579 -595 -579 -598 -579 -599 -579 -611 -579 -612 -579 -613 -579 -653 -579 -654 -579 -655 -579 -679 -579 -680 -579 -681 -579 -692 -579 -693 -579 -696 -579 -698 -579 -724 -579 -580 -580 -482 -580 -495 -580 -496 -580 -497 -580 -502 -580 -503 -580 -516 -580 -517 -580 -518 -580 -541 -580 -542 -580 -560 -580 -561 -580 -562 -580 -563 -580 -564 -580 -565 -580 -566 -580 -587 -580 -593 -580 -594 -580 -595 -580 -600 -580 -601 -580 -614 -580 -615 -580 -616 -580 -658 -580 -659 -580 -662 -580 -682 -580 -683 -580 -684 -580 -694 -580 -695 -580 -696 -580 -699 -580 -724 -580 -581 -581 -483 -581 -496 -581 -499 -581 -502 -581 -519 -581 -520 -581 -521 -581 -548 -581 -549 -581 -562 -581 -565 -581 -567 -581 -568 -581 -569 -581 -584 -581 -587 -581 -588 -581 -594 -581 -597 -581 -600 -581 -617 -581 -618 -581 -619 -581 -628 -581 -629 -581 -665 -581 -666 -581 -667 -581 -677 -581 -683 -581 -685 -581 -689 -581 -695 -581 -697 -581 -699 -581 -724 -581 -582 -582 -484 -582 -497 -582 -501 -582 -503 -582 -522 -582 -523 -582 -524 -582 -558 -582 -559 -582 -563 -582 -566 -582 -570 -582 -571 -582 -572 -582 -586 -582 -587 -582 -589 -582 -595 -582 -599 -582 -601 -582 -620 -582 -621 -582 -622 -582 -630 -582 -631 -582 -668 -582 -669 -582 -670 -582 -681 -582 -684 -582 -686 -582 -690 -582 -696 -582 -698 -582 -699 -582 -724 -582 -583 -583 -485 -583 -525 -583 -526 -583 -527 -583 -573 -583 -574 -583 -575 -583 -590 -583 -591 -583 -592 -583 -593 -583 -594 -583 -595 -583 -623 -583 -624 -583 -625 -583 -635 -583 -636 -583 -637 -583 -638 -583 -639 -583 -640 -583 -671 -583 -672 -583 -673 -583 -687 -583 -691 -583 -692 -583 -693 -583 -694 -583 -695 -583 -696 -583 -724 -583 -584 -584 -380 -584 -381 -584 -384 -584 -399 -584 -400 -584 -447 -584 -449 -584 -451 -584 -454 -584 -470 -584 -478 -584 -479 -584 -480 -584 -483 -584 -486 -584 -487 -584 -490 -584 -492 -584 -493 -584 -496 -584 -498 -584 -499 -584 -500 -584 -502 -584 -528 -584 -530 -584 -534 -584 -545 -584 -547 -584 -549 -584 -552 -584 -568 -584 -576 -584 -577 -584 -578 -584 -581 -584 -585 -584 -586 -584 -587 -584 -588 -584 -589 -584 -596 -584 -597 -584 -626 -584 -628 -584 -632 -584 -674 -584 -688 -584 -689 -584 -697 -584 -585 -585 -381 -585 -399 -585 -401 -585 -414 -585 -449 -585 -454 -585 -455 -585 -456 -585 -478 -585 -480 -585 -486 -585 -487 -585 -488 -585 -490 -585 -491 -585 -493 -585 -498 -585 -500 -585 -504 -585 -512 -585 -528 -585 -529 -585 -530 -585 -532 -585 -534 -585 -535 -585 -552 -585 -553 -585 -576 -585 -578 -585 -584 -585 -586 -585 -587 -585 -588 -585 -589 -585 -596 -585 -598 -585 -602 -585 -626 -585 -627 -585 -632 -585 -633 -585 -674 -585 -688 -585 -689 -585 -690 -585 -697 -585 -698 -585 -586 -586 -381 -586 -382 -586 -385 -586 -401 -586 -402 -586 -455 -586 -456 -586 -459 -586 -461 -586 -473 -586 -478 -586 -480 -586 -481 -586 -484 -586 -487 -586 -488 -586 -491 -586 -493 -586 -494 -586 -497 -586 -498 -586 -500 -586 -501 -586 -503 -586 -529 -586 -532 -586 -535 -586 -553 -586 -554 -586 -557 -586 -559 -586 -571 -586 -576 -586 -578 -586 -579 -586 -582 -586 -584 -586 -585 -586 -587 -586 -588 -586 -589 -586 -598 -586 -599 -586 -627 -586 -630 -586 -633 -586 -674 -586 -688 -586 -690 -586 -698 -586 -587 -587 -383 -587 -384 -587 -385 -587 -403 -587 -404 -587 -466 -587 -467 -587 -468 -587 -471 -587 -474 -587 -478 -587 -482 -587 -483 -587 -484 -587 -489 -587 -490 -587 -491 -587 -495 -587 -496 -587 -497 -587 -499 -587 -501 -587 -502 -587 -503 -587 -531 -587 -533 -587 -536 -587 -564 -587 -565 -587 -566 -587 -569 -587 -572 -587 -576 -587 -580 -587 -581 -587 -582 -587 -584 -587 -585 -587 -586 -587 -588 -587 -589 -587 -600 -587 -601 -587 -629 -587 -631 -587 -634 -587 -674 -587 -689 -587 -690 -587 -699 -587 -588 -588 -384 -588 -400 -588 -403 -588 -423 -588 -451 -588 -467 -588 -470 -588 -471 -588 -478 -588 -483 -588 -486 -588 -487 -588 -489 -588 -490 -588 -491 -588 -496 -588 -499 -588 -502 -588 -505 -588 -521 -588 -528 -588 -530 -588 -531 -588 -533 -588 -534 -588 -536 -588 -568 -588 -569 -588 -576 -588 -581 -588 -584 -588 -585 -588 -586 -588 -587 -588 -589 -588 -597 -588 -600 -588 -603 -588 -628 -588 -629 -588 -632 -588 -634 -588 -674 -588 -688 -588 -689 -588 -690 -588 -697 -588 -699 -588 -589 -589 -385 -589 -402 -589 -404 -589 -426 -589 -461 -589 -468 -589 -473 -589 -474 -589 -478 -589 -484 -589 -487 -589 -488 -589 -489 -589 -490 -589 -491 -589 -497 -589 -501 -589 -503 -589 -506 -589 -524 -589 -529 -589 -531 -589 -532 -589 -533 -589 -535 -589 -536 -589 -571 -589 -572 -589 -576 -589 -582 -589 -584 -589 -585 -589 -586 -589 -587 -589 -588 -589 -599 -589 -601 -589 -604 -589 -630 -589 -631 -589 -633 -589 -634 -589 -674 -589 -688 -589 -689 -589 -690 -589 -698 -589 -699 -589 -590 -590 -386 -590 -427 -590 -475 -590 -476 -590 -479 -590 -485 -590 -492 -590 -493 -590 -494 -590 -495 -590 -496 -590 -498 -590 -499 -590 -507 -590 -525 -590 -537 -590 -538 -590 -539 -590 -541 -590 -543 -590 -544 -590 -546 -590 -548 -590 -573 -590 -574 -590 -577 -590 -583 -590 -591 -590 -592 -590 -593 -590 -594 -590 -595 -590 -596 -590 -597 -590 -605 -590 -635 -590 -636 -590 -641 -590 -642 -590 -675 -590 -676 -590 -677 -590 -691 -590 -692 -590 -693 -590 -694 -590 -695 -590 -697 -590 -591 -591 -386 -591 -475 -591 -479 -591 -480 -591 -481 -591 -485 -591 -492 -591 -493 -591 -494 -591 -498 -591 -500 -591 -537 -591 -539 -591 -543 -591 -546 -591 -550 -591 -551 -591 -555 -591 -573 -591 -577 -591 -578 -591 -579 -591 -583 -591 -590 -591 -592 -591 -593 -591 -594 -591 -595 -591 -596 -591 -597 -591 -598 -591 -599 -591 -635 -591 -637 -591 -641 -591 -644 -591 -648 -591 -649 -591 -653 -591 -675 -591 -676 -591 -678 -591 -679 -591 -680 -591 -688 -591 -691 -591 -692 -591 -693 -591 -697 -591 -698 -591 -592 -592 -386 -592 -428 -592 -475 -592 -477 -592 -481 -592 -485 -592 -492 -592 -493 -592 -494 -592 -495 -592 -497 -592 -500 -592 -501 -592 -513 -592 -526 -592 -537 -592 -539 -592 -540 -592 -542 -592 -551 -592 -555 -592 -556 -592 -558 -592 -573 -592 -575 -592 -579 -592 -583 -592 -590 -592 -591 -592 -593 -592 -594 -592 -595 -592 -598 -592 -599 -592 -611 -592 -637 -592 -638 -592 -653 -592 -654 -592 -679 -592 -680 -592 -681 -592 -691 -592 -692 -592 -693 -592 -694 -592 -696 -592 -698 -592 -593 -593 -386 -593 -429 -593 -476 -593 -477 -593 -482 -593 -485 -593 -492 -593 -494 -593 -495 -593 -496 -593 -497 -593 -502 -593 -503 -593 -516 -593 -527 -593 -538 -593 -540 -593 -541 -593 -542 -593 -560 -593 -561 -593 -562 -593 -563 -593 -574 -593 -575 -593 -580 -593 -583 -593 -590 -593 -591 -593 -592 -593 -594 -593 -595 -593 -600 -593 -601 -593 -614 -593 -639 -593 -640 -593 -658 -593 -659 -593 -682 -593 -683 -593 -684 -593 -691 -593 -693 -593 -694 -593 -695 -593 -696 -593 -699 -593 -594 -594 -386 -594 -476 -594 -479 -594 -482 -594 -483 -594 -485 -594 -492 -594 -495 -594 -496 -594 -499 -594 -502 -594 -538 -594 -541 -594 -544 -594 -548 -594 -560 -594 -562 -594 -567 -594 -574 -594 -577 -594 -580 -594 -581 -594 -583 -594 -590 -594 -591 -594 -592 -594 -593 -594 -595 -594 -596 -594 -597 -594 -600 -594 -601 -594 -636 -594 -639 -594 -642 -594 -646 -594 -658 -594 -660 -594 -665 -594 -675 -594 -677 -594 -682 -594 -683 -594 -685 -594 -689 -594 -691 -594 -694 -594 -695 -594 -697 -594 -699 -594 -595 -595 -386 -595 -477 -595 -481 -595 -482 -595 -484 -595 -485 -595 -494 -595 -495 -595 -497 -595 -501 -595 -503 -595 -540 -595 -542 -595 -556 -595 -558 -595 -561 -595 -563 -595 -570 -595 -575 -595 -579 -595 -580 -595 -582 -595 -583 -595 -590 -595 -591 -595 -592 -595 -593 -595 -594 -595 -598 -595 -599 -595 -600 -595 -601 -595 -638 -595 -640 -595 -654 -595 -656 -595 -659 -595 -661 -595 -668 -595 -680 -595 -681 -595 -682 -595 -684 -595 -686 -595 -690 -595 -693 -595 -694 -595 -696 -595 -698 -595 -699 -595 -596 -596 -479 -596 -480 -596 -492 -596 -493 -596 -498 -596 -499 -596 -500 -596 -508 -596 -510 -596 -537 -596 -543 -596 -545 -596 -546 -596 -547 -596 -549 -596 -550 -596 -551 -596 -552 -596 -577 -596 -578 -596 -584 -596 -585 -596 -590 -596 -591 -596 -594 -596 -597 -596 -598 -596 -606 -596 -608 -596 -626 -596 -641 -596 -643 -596 -644 -596 -645 -596 -648 -596 -650 -596 -675 -596 -676 -596 -677 -596 -678 -596 -679 -596 -688 -596 -691 -596 -692 -596 -697 -596 -698 -596 -724 -596 -597 -597 -479 -597 -483 -597 -492 -597 -496 -597 -498 -597 -499 -597 -502 -597 -509 -597 -519 -597 -538 -597 -544 -597 -545 -597 -547 -597 -548 -597 -549 -597 -562 -597 -567 -597 -568 -597 -577 -597 -581 -597 -584 -597 -588 -597 -590 -597 -591 -597 -594 -597 -596 -597 -600 -597 -607 -597 -617 -597 -628 -597 -642 -597 -643 -597 -646 -597 -647 -597 -665 -597 -666 -597 -675 -597 -676 -597 -677 -597 -683 -597 -685 -597 -689 -597 -691 -597 -695 -597 -697 -597 -699 -597 -724 -597 -598 -598 -480 -598 -481 -598 -493 -598 -494 -598 -498 -598 -500 -598 -501 -598 -511 -598 -514 -598 -539 -598 -546 -598 -550 -598 -551 -598 -553 -598 -554 -598 -555 -598 -557 -598 -559 -598 -578 -598 -579 -598 -585 -598 -586 -598 -591 -598 -592 -598 -595 -598 -596 -598 -599 -598 -609 -598 -612 -598 -627 -598 -648 -598 -649 -598 -651 -598 -652 -598 -653 -598 -655 -598 -676 -598 -678 -598 -679 -598 -680 -598 -681 -598 -688 -598 -692 -598 -693 -598 -697 -598 -698 -598 -724 -598 -599 -599 -481 -599 -484 -599 -494 -599 -497 -599 -500 -599 -501 -599 -503 -599 -515 -599 -522 -599 -540 -599 -554 -599 -556 -599 -557 -599 -558 -599 -559 -599 -563 -599 -570 -599 -571 -599 -579 -599 -582 -599 -586 -599 -589 -599 -591 -599 -592 -599 -595 -599 -598 -599 -601 -599 -613 -599 -620 -599 -630 -599 -654 -599 -655 -599 -656 -599 -657 -599 -668 -599 -669 -599 -679 -599 -680 -599 -681 -599 -684 -599 -686 -599 -690 -599 -693 -599 -696 -599 -698 -599 -699 -599 -724 -599 -600 -600 -482 -600 -483 -600 -495 -600 -496 -600 -499 -600 -502 -600 -503 -600 -517 -600 -520 -600 -541 -600 -548 -600 -560 -600 -562 -600 -564 -600 -565 -600 -566 -600 -567 -600 -569 -600 -580 -600 -581 -600 -587 -600 -588 -600 -593 -600 -594 -600 -595 -600 -597 -600 -601 -600 -615 -600 -618 -600 -629 -600 -658 -600 -660 -600 -662 -600 -663 -600 -665 -600 -667 -600 -677 -600 -682 -600 -683 -600 -684 -600 -685 -600 -689 -600 -694 -600 -695 -600 -697 -600 -699 -600 -724 -600 -601 -601 -482 -601 -484 -601 -495 -601 -497 -601 -501 -601 -502 -601 -503 -601 -518 -601 -523 -601 -542 -601 -558 -601 -561 -601 -563 -601 -564 -601 -565 -601 -566 -601 -570 -601 -572 -601 -580 -601 -582 -601 -587 -601 -589 -601 -593 -601 -594 -601 -595 -601 -599 -601 -600 -601 -616 -601 -621 -601 -631 -601 -659 -601 -661 -601 -662 -601 -664 -601 -668 -601 -670 -601 -681 -601 -682 -601 -683 -601 -684 -601 -686 -601 -690 -601 -694 -601 -696 -601 -698 -601 -699 -601 -724 -601 -602 -602 -576 -602 -585 -602 -603 -602 -604 -602 -626 -602 -627 -602 -632 -602 -633 -602 -634 -602 -674 -602 -688 -602 -603 -603 -576 -603 -588 -603 -602 -603 -604 -603 -628 -603 -629 -603 -632 -603 -633 -603 -634 -603 -674 -603 -689 -603 -604 -604 -576 -604 -589 -604 -602 -604 -603 -604 -630 -604 -631 -604 -632 -604 -633 -604 -634 -604 -674 -604 -690 -604 -605 -605 -577 -605 -590 -605 -606 -605 -607 -605 -635 -605 -636 -605 -641 -605 -642 -605 -643 -605 -675 -605 -691 -605 -606 -606 -577 -606 -596 -606 -605 -606 -607 -606 -641 -606 -642 -606 -643 -606 -644 -606 -645 -606 -675 -606 -676 -606 -607 -607 -577 -607 -597 -607 -605 -607 -606 -607 -641 -607 -642 -607 -643 -607 -646 -607 -647 -607 -675 -607 -677 -607 -608 -608 -578 -608 -596 -608 -609 -608 -610 -608 -644 -608 -645 -608 -648 -608 -650 -608 -651 -608 -676 -608 -678 -608 -609 -609 -578 -609 -598 -609 -608 -609 -610 -609 -648 -609 -649 -609 -650 -609 -651 -609 -652 -609 -678 -609 -679 -609 -610 -610 -578 -610 -608 -610 -609 -610 -648 -610 -650 -610 -651 -610 -678 -610 -688 -610 -700 -610 -701 -610 -715 -610 -611 -611 -579 -611 -592 -611 -612 -611 -613 -611 -637 -611 -638 -611 -653 -611 -654 -611 -655 -611 -680 -611 -693 -611 -612 -612 -579 -612 -598 -612 -611 -612 -613 -612 -649 -612 -652 -612 -653 -612 -654 -612 -655 -612 -679 -612 -680 -612 -613 -613 -579 -613 -599 -613 -611 -613 -612 -613 -653 -613 -654 -613 -655 -613 -656 -613 -657 -613 -680 -613 -681 -613 -614 -614 -580 -614 -593 -614 -615 -614 -616 -614 -639 -614 -640 -614 -658 -614 -659 -614 -662 -614 -682 -614 -694 -614 -615 -615 -580 -615 -600 -615 -614 -615 -616 -615 -658 -615 -659 -615 -660 -615 -662 -615 -663 -615 -682 -615 -683 -615 -616 -616 -580 -616 -601 -616 -614 -616 -615 -616 -658 -616 -659 -616 -661 -616 -662 -616 -664 -616 -682 -616 -684 -616 -617 -617 -581 -617 -597 -617 -618 -617 -619 -617 -646 -617 -647 -617 -665 -617 -666 -617 -667 -617 -677 -617 -685 -617 -618 -618 -581 -618 -600 -618 -617 -618 -619 -618 -660 -618 -663 -618 -665 -618 -666 -618 -667 -618 -683 -618 -685 -618 -619 -619 -581 -619 -617 -619 -618 -619 -665 -619 -666 -619 -667 -619 -685 -619 -689 -619 -702 -619 -703 -619 -716 -619 -620 -620 -582 -620 -599 -620 -621 -620 -622 -620 -656 -620 -657 -620 -668 -620 -669 -620 -670 -620 -681 -620 -686 -620 -621 -621 -582 -621 -601 -621 -620 -621 -622 -621 -661 -621 -664 -621 -668 -621 -669 -621 -670 -621 -684 -621 -686 -621 -622 -622 -582 -622 -620 -622 -621 -622 -668 -622 -669 -622 -670 -622 -686 -622 -690 -622 -704 -622 -705 -622 -717 -622 -623 -623 -583 -623 -624 -623 -625 -623 -671 -623 -672 -623 -673 -623 -687 -623 -691 -623 -706 -623 -707 -623 -718 -623 -624 -624 -583 -624 -623 -624 -625 -624 -671 -624 -672 -624 -673 -624 -687 -624 -693 -624 -708 -624 -710 -624 -719 -624 -625 -625 -583 -625 -623 -625 -624 -625 -671 -625 -672 -625 -673 -625 -687 -625 -694 -625 -711 -625 -712 -625 -720 -625 -626 -626 -512 -626 -547 -626 -552 -626 -553 -626 -578 -626 -584 -626 -585 -626 -596 -626 -602 -626 -627 -626 -628 -626 -632 -626 -633 -626 -674 -626 -688 -626 -689 -626 -697 -626 -627 -627 -512 -627 -552 -627 -553 -627 -554 -627 -578 -627 -585 -627 -586 -627 -598 -627 -602 -627 -626 -627 -630 -627 -632 -627 -633 -627 -674 -627 -688 -627 -690 -627 -698 -627 -628 -628 -521 -628 -549 -628 -568 -628 -569 -628 -581 -628 -584 -628 -588 -628 -597 -628 -603 -628 -626 -628 -629 -628 -632 -628 -634 -628 -674 -628 -688 -628 -689 -628 -697 -628 -629 -629 -521 -629 -565 -629 -568 -629 -569 -629 -581 -629 -587 -629 -588 -629 -600 -629 -603 -629 -628 -629 -631 -629 -632 -629 -634 -629 -674 -629 -689 -629 -690 -629 -699 -629 -630 -630 -524 -630 -559 -630 -571 -630 -572 -630 -582 -630 -586 -630 -589 -630 -599 -630 -604 -630 -627 -630 -631 -630 -633 -630 -634 -630 -674 -630 -688 -630 -690 -630 -698 -630 -631 -631 -524 -631 -566 -631 -571 -631 -572 -631 -582 -631 -587 -631 -589 -631 -601 -631 -604 -631 -629 -631 -630 -631 -633 -631 -634 -631 -674 -631 -689 -631 -690 -631 -699 -631 -632 -632 -576 -632 -584 -632 -585 -632 -588 -632 -602 -632 -603 -632 -604 -632 -626 -632 -627 -632 -628 -632 -629 -632 -633 -632 -634 -632 -674 -632 -688 -632 -689 -632 -697 -632 -633 -633 -576 -633 -585 -633 -586 -633 -589 -633 -602 -633 -603 -633 -604 -633 -626 -633 -627 -633 -630 -633 -631 -633 -632 -633 -634 -633 -674 -633 -688 -633 -690 -633 -698 -633 -634 -634 -576 -634 -587 -634 -588 -634 -589 -634 -602 -634 -603 -634 -604 -634 -628 -634 -629 -634 -630 -634 -631 -634 -632 -634 -633 -634 -674 -634 -689 -634 -690 -634 -699 -634 -635 -635 -525 -635 -573 -635 -574 -635 -583 -635 -590 -635 -591 -635 -605 -635 -636 -635 -637 -635 -641 -635 -642 -635 -644 -635 -675 -635 -676 -635 -691 -635 -692 -635 -693 -635 -636 -636 -525 -636 -573 -636 -574 -636 -583 -636 -590 -636 -594 -636 -605 -636 -635 -636 -639 -636 -641 -636 -642 -636 -646 -636 -675 -636 -677 -636 -691 -636 -694 -636 -695 -636 -637 -637 -526 -637 -573 -637 -575 -637 -583 -637 -591 -637 -592 -637 -611 -637 -635 -637 -638 -637 -649 -637 -653 -637 -654 -637 -679 -637 -680 -637 -691 -637 -692 -637 -693 -637 -638 -638 -526 -638 -573 -638 -575 -638 -583 -638 -592 -638 -595 -638 -611 -638 -637 -638 -640 -638 -653 -638 -654 -638 -656 -638 -680 -638 -681 -638 -693 -638 -694 -638 -696 -638 -639 -639 -527 -639 -574 -639 -575 -639 -583 -639 -593 -639 -594 -639 -614 -639 -636 -639 -640 -639 -658 -639 -659 -639 -660 -639 -682 -639 -683 -639 -691 -639 -694 -639 -695 -639 -640 -640 -527 -640 -574 -640 -575 -640 -583 -640 -593 -640 -595 -640 -614 -640 -638 -640 -639 -640 -658 -640 -659 -640 -661 -640 -682 -640 -684 -640 -693 -640 -694 -640 -696 -640 -641 -641 -577 -641 -590 -641 -591 -641 -596 -641 -605 -641 -606 -641 -607 -641 -635 -641 -636 -641 -642 -641 -643 -641 -644 -641 -645 -641 -675 -641 -676 -641 -691 -641 -692 -641 -642 -642 -577 -642 -590 -642 -594 -642 -597 -642 -605 -642 -606 -642 -607 -642 -635 -642 -636 -642 -641 -642 -643 -642 -646 -642 -647 -642 -675 -642 -677 -642 -691 -642 -695 -642 -643 -643 -577 -643 -596 -643 -597 -643 -605 -643 -606 -643 -607 -643 -641 -643 -642 -643 -644 -643 -645 -643 -646 -643 -647 -643 -675 -643 -676 -643 -677 -643 -697 -643 -721 -643 -644 -644 -591 -644 -596 -644 -606 -644 -608 -644 -635 -644 -641 -644 -643 -644 -645 -644 -648 -644 -649 -644 -650 -644 -675 -644 -676 -644 -678 -644 -679 -644 -691 -644 -692 -644 -645 -645 -596 -645 -606 -645 -608 -645 -641 -645 -643 -645 -644 -645 -647 -645 -648 -645 -650 -645 -675 -645 -676 -645 -677 -645 -678 -645 -697 -645 -700 -645 -715 -645 -721 -645 -646 -646 -594 -646 -597 -646 -607 -646 -617 -646 -636 -646 -642 -646 -643 -646 -647 -646 -660 -646 -665 -646 -666 -646 -675 -646 -677 -646 -683 -646 -685 -646 -691 -646 -695 -646 -647 -647 -597 -647 -607 -647 -617 -647 -642 -647 -643 -647 -645 -647 -646 -647 -665 -647 -666 -647 -675 -647 -676 -647 -677 -647 -685 -647 -697 -647 -702 -647 -716 -647 -721 -647 -648 -648 -578 -648 -591 -648 -596 -648 -598 -648 -608 -648 -609 -648 -610 -648 -644 -648 -645 -648 -649 -648 -650 -648 -651 -648 -652 -648 -676 -648 -678 -648 -679 -648 -692 -648 -649 -649 -591 -649 -598 -649 -609 -649 -612 -649 -637 -649 -644 -649 -648 -649 -651 -649 -652 -649 -653 -649 -655 -649 -676 -649 -678 -649 -679 -649 -680 -649 -692 -649 -693 -649 -650 -650 -578 -650 -596 -650 -608 -650 -609 -650 -610 -650 -644 -650 -645 -650 -648 -650 -651 -650 -676 -650 -678 -650 -688 -650 -697 -650 -700 -650 -701 -650 -715 -650 -721 -650 -651 -651 -578 -651 -598 -651 -608 -651 -609 -651 -610 -651 -648 -651 -649 -651 -650 -651 -652 -651 -678 -651 -679 -651 -688 -651 -698 -651 -700 -651 -701 -651 -715 -651 -722 -651 -652 -652 -598 -652 -609 -652 -612 -652 -648 -652 -649 -652 -651 -652 -653 -652 -655 -652 -657 -652 -678 -652 -679 -652 -680 -652 -681 -652 -698 -652 -701 -652 -715 -652 -722 -652 -653 -653 -579 -653 -591 -653 -592 -653 -598 -653 -611 -653 -612 -653 -613 -653 -637 -653 -638 -653 -649 -653 -652 -653 -654 -653 -655 -653 -679 -653 -680 -653 -692 -653 -693 -653 -654 -654 -579 -654 -592 -654 -595 -654 -599 -654 -611 -654 -612 -654 -613 -654 -637 -654 -638 -654 -653 -654 -655 -654 -656 -654 -657 -654 -680 -654 -681 -654 -693 -654 -696 -654 -655 -655 -579 -655 -598 -655 -599 -655 -611 -655 -612 -655 -613 -655 -649 -655 -652 -655 -653 -655 -654 -655 -656 -655 -657 -655 -679 -655 -680 -655 -681 -655 -698 -655 -722 -655 -656 -656 -595 -656 -599 -656 -613 -656 -620 -656 -638 -656 -654 -656 -655 -656 -657 -656 -661 -656 -668 -656 -669 -656 -680 -656 -681 -656 -684 -656 -686 -656 -693 -656 -696 -656 -657 -657 -599 -657 -613 -657 -620 -657 -652 -657 -654 -657 -655 -657 -656 -657 -668 -657 -669 -657 -679 -657 -680 -657 -681 -657 -686 -657 -698 -657 -704 -657 -717 -657 -722 -657 -658 -658 -580 -658 -593 -658 -594 -658 -600 -658 -614 -658 -615 -658 -616 -658 -639 -658 -640 -658 -659 -658 -660 -658 -662 -658 -663 -658 -682 -658 -683 -658 -694 -658 -695 -658 -659 -659 -580 -659 -593 -659 -595 -659 -601 -659 -614 -659 -615 -659 -616 -659 -639 -659 -640 -659 -658 -659 -661 -659 -662 -659 -664 -659 -682 -659 -684 -659 -694 -659 -696 -659 -660 -660 -594 -660 -600 -660 -615 -660 -618 -660 -639 -660 -646 -660 -658 -660 -662 -660 -663 -660 -665 -660 -667 -660 -677 -660 -682 -660 -683 -660 -685 -660 -694 -660 -695 -660 -661 -661 -595 -661 -601 -661 -616 -661 -621 -661 -640 -661 -656 -661 -659 -661 -662 -661 -664 -661 -668 -661 -670 -661 -681 -661 -682 -661 -684 -661 -686 -661 -694 -661 -696 -661 -662 -662 -580 -662 -600 -662 -601 -662 -614 -662 -615 -662 -616 -662 -658 -662 -659 -662 -660 -662 -661 -662 -663 -662 -664 -662 -682 -662 -683 -662 -684 -662 -699 -662 -723 -662 -663 -663 -600 -663 -615 -663 -618 -663 -658 -663 -660 -663 -662 -663 -664 -663 -665 -663 -667 -663 -682 -663 -683 -663 -684 -663 -685 -663 -699 -663 -703 -663 -716 -663 -723 -663 -664 -664 -601 -664 -616 -664 -621 -664 -659 -664 -661 -664 -662 -664 -663 -664 -668 -664 -670 -664 -682 -664 -683 -664 -684 -664 -686 -664 -699 -664 -705 -664 -717 -664 -723 -664 -665 -665 -581 -665 -594 -665 -597 -665 -600 -665 -617 -665 -618 -665 -619 -665 -646 -665 -647 -665 -660 -665 -663 -665 -666 -665 -667 -665 -677 -665 -683 -665 -685 -665 -695 -665 -666 -666 -581 -666 -597 -666 -617 -666 -618 -666 -619 -666 -646 -666 -647 -666 -665 -666 -667 -666 -677 -666 -685 -666 -689 -666 -697 -666 -702 -666 -703 -666 -716 -666 -721 -666 -667 -667 -581 -667 -600 -667 -617 -667 -618 -667 -619 -667 -660 -667 -663 -667 -665 -667 -666 -667 -683 -667 -685 -667 -689 -667 -699 -667 -702 -667 -703 -667 -716 -667 -723 -667 -668 -668 -582 -668 -595 -668 -599 -668 -601 -668 -620 -668 -621 -668 -622 -668 -656 -668 -657 -668 -661 -668 -664 -668 -669 -668 -670 -668 -681 -668 -684 -668 -686 -668 -696 -668 -669 -669 -582 -669 -599 -669 -620 -669 -621 -669 -622 -669 -656 -669 -657 -669 -668 -669 -670 -669 -681 -669 -686 -669 -690 -669 -698 -669 -704 -669 -705 -669 -717 -669 -722 -669 -670 -670 -582 -670 -601 -670 -620 -670 -621 -670 -622 -670 -661 -670 -664 -670 -668 -670 -669 -670 -684 -670 -686 -670 -690 -670 -699 -670 -704 -670 -705 -670 -717 -670 -723 -670 -671 -671 -583 -671 -623 -671 -624 -671 -625 -671 -672 -671 -673 -671 -687 -671 -691 -671 -692 -671 -693 -671 -706 -671 -707 -671 -708 -671 -709 -671 -710 -671 -718 -671 -719 -671 -672 -672 -583 -672 -623 -672 -624 -672 -625 -672 -671 -672 -673 -672 -687 -672 -691 -672 -694 -672 -695 -672 -706 -672 -707 -672 -711 -672 -712 -672 -713 -672 -718 -672 -720 -672 -673 -673 -583 -673 -623 -673 -624 -673 -625 -673 -671 -673 -672 -673 -687 -673 -693 -673 -694 -673 -696 -673 -708 -673 -710 -673 -711 -673 -712 -673 -714 -673 -719 -673 -720 -673 -674 -674 -576 -674 -584 -674 -585 -674 -586 -674 -587 -674 -588 -674 -589 -674 -602 -674 -603 -674 -604 -674 -626 -674 -627 -674 -628 -674 -629 -674 -630 -674 -631 -674 -632 -674 -633 -674 -634 -674 -688 -674 -689 -674 -690 -674 -697 -674 -698 -674 -699 -674 -724 -674 -675 -675 -577 -675 -590 -675 -591 -675 -594 -675 -596 -675 -597 -675 -605 -675 -606 -675 -607 -675 -635 -675 -636 -675 -641 -675 -642 -675 -643 -675 -644 -675 -645 -675 -646 -675 -647 -675 -676 -675 -677 -675 -691 -675 -692 -675 -695 -675 -697 -675 -721 -675 -724 -675 -676 -676 -577 -676 -578 -676 -590 -676 -591 -676 -596 -676 -597 -676 -598 -676 -606 -676 -608 -676 -635 -676 -641 -676 -643 -676 -644 -676 -645 -676 -647 -676 -648 -676 -649 -676 -650 -676 -675 -676 -677 -676 -678 -676 -679 -676 -688 -676 -691 -676 -692 -676 -695 -676 -697 -676 -698 -676 -700 -676 -715 -676 -721 -676 -722 -676 -724 -676 -677 -677 -577 -677 -581 -677 -590 -677 -594 -677 -596 -677 -597 -677 -600 -677 -607 -677 -617 -677 -636 -677 -642 -677 -643 -677 -645 -677 -646 -677 -647 -677 -660 -677 -665 -677 -666 -677 -675 -677 -676 -677 -683 -677 -685 -677 -689 -677 -691 -677 -692 -677 -695 -677 -697 -677 -699 -677 -702 -677 -716 -677 -721 -677 -723 -677 -724 -677 -678 -678 -578 -678 -591 -678 -596 -678 -598 -678 -608 -678 -609 -678 -610 -678 -644 -678 -645 -678 -648 -678 -649 -678 -650 -678 -651 -678 -652 -678 -676 -678 -679 -678 -688 -678 -692 -678 -697 -678 -698 -678 -700 -678 -701 -678 -715 -678 -721 -678 -722 -678 -724 -678 -679 -679 -578 -679 -579 -679 -591 -679 -592 -679 -596 -679 -598 -679 -599 -679 -609 -679 -612 -679 -637 -679 -644 -679 -648 -679 -649 -679 -651 -679 -652 -679 -653 -679 -655 -679 -657 -679 -676 -679 -678 -679 -680 -679 -681 -679 -688 -679 -692 -679 -693 -679 -696 -679 -697 -679 -698 -679 -701 -679 -715 -679 -721 -679 -722 -679 -724 -679 -680 -680 -579 -680 -591 -680 -592 -680 -595 -680 -598 -680 -599 -680 -611 -680 -612 -680 -613 -680 -637 -680 -638 -680 -649 -680 -652 -680 -653 -680 -654 -680 -655 -680 -656 -680 -657 -680 -679 -680 -681 -680 -692 -680 -693 -680 -696 -680 -698 -680 -722 -680 -724 -680 -681 -681 -579 -681 -582 -681 -592 -681 -595 -681 -598 -681 -599 -681 -601 -681 -613 -681 -620 -681 -638 -681 -652 -681 -654 -681 -655 -681 -656 -681 -657 -681 -661 -681 -668 -681 -669 -681 -679 -681 -680 -681 -684 -681 -686 -681 -690 -681 -692 -681 -693 -681 -696 -681 -698 -681 -699 -681 -704 -681 -717 -681 -722 -681 -723 -681 -724 -681 -682 -682 -580 -682 -593 -682 -594 -682 -595 -682 -600 -682 -601 -682 -614 -682 -615 -682 -616 -682 -639 -682 -640 -682 -658 -682 -659 -682 -660 -682 -661 -682 -662 -682 -663 -682 -664 -682 -683 -682 -684 -682 -694 -682 -695 -682 -696 -682 -699 -682 -723 -682 -724 -682 -683 -683 -580 -683 -581 -683 -593 -683 -594 -683 -597 -683 -600 -683 -601 -683 -615 -683 -618 -683 -639 -683 -646 -683 -658 -683 -660 -683 -662 -683 -663 -683 -664 -683 -665 -683 -667 -683 -677 -683 -682 -683 -684 -683 -685 -683 -689 -683 -694 -683 -695 -683 -696 -683 -697 -683 -699 -683 -703 -683 -716 -683 -721 -683 -723 -683 -724 -683 -684 -684 -580 -684 -582 -684 -593 -684 -595 -684 -599 -684 -600 -684 -601 -684 -616 -684 -621 -684 -640 -684 -656 -684 -659 -684 -661 -684 -662 -684 -663 -684 -664 -684 -668 -684 -670 -684 -681 -684 -682 -684 -683 -684 -686 -684 -690 -684 -694 -684 -695 -684 -696 -684 -698 -684 -699 -684 -705 -684 -717 -684 -722 -684 -723 -684 -724 -684 -685 -685 -581 -685 -594 -685 -597 -685 -600 -685 -617 -685 -618 -685 -619 -685 -646 -685 -647 -685 -660 -685 -663 -685 -665 -685 -666 -685 -667 -685 -677 -685 -683 -685 -689 -685 -695 -685 -697 -685 -699 -685 -702 -685 -703 -685 -716 -685 -721 -685 -723 -685 -724 -685 -686 -686 -582 -686 -595 -686 -599 -686 -601 -686 -620 -686 -621 -686 -622 -686 -656 -686 -657 -686 -661 -686 -664 -686 -668 -686 -669 -686 -670 -686 -681 -686 -684 -686 -690 -686 -696 -686 -698 -686 -699 -686 -704 -686 -705 -686 -717 -686 -722 -686 -723 -686 -724 -686 -687 -687 -583 -687 -623 -687 -624 -687 -625 -687 -671 -687 -672 -687 -673 -687 -691 -687 -692 -687 -693 -687 -694 -687 -695 -687 -696 -687 -706 -687 -707 -687 -708 -687 -709 -687 -710 -687 -711 -687 -712 -687 -713 -687 -714 -687 -718 -687 -719 -687 -720 -687 -724 -687 -688 -688 -480 -688 -498 -688 -500 -688 -512 -688 -547 -688 -552 -688 -553 -688 -554 -688 -576 -688 -578 -688 -584 -688 -585 -688 -586 -688 -588 -688 -589 -688 -591 -688 -596 -688 -598 -688 -602 -688 -610 -688 -626 -688 -627 -688 -628 -688 -630 -688 -632 -688 -633 -688 -650 -688 -651 -688 -674 -688 -676 -688 -678 -688 -679 -688 -689 -688 -690 -688 -692 -688 -697 -688 -698 -688 -699 -688 -700 -688 -701 -688 -715 -688 -724 -688 -689 -689 -483 -689 -499 -689 -502 -689 -521 -689 -549 -689 -565 -689 -568 -689 -569 -689 -576 -689 -581 -689 -584 -689 -585 -689 -587 -689 -588 -689 -589 -689 -594 -689 -597 -689 -600 -689 -603 -689 -619 -689 -626 -689 -628 -689 -629 -689 -631 -689 -632 -689 -634 -689 -666 -689 -667 -689 -674 -689 -677 -689 -683 -689 -685 -689 -688 -689 -690 -689 -695 -689 -697 -689 -698 -689 -699 -689 -702 -689 -703 -689 -716 -689 -724 -689 -690 -690 -484 -690 -501 -690 -503 -690 -524 -690 -559 -690 -566 -690 -571 -690 -572 -690 -576 -690 -582 -690 -585 -690 -586 -690 -587 -690 -588 -690 -589 -690 -595 -690 -599 -690 -601 -690 -604 -690 -622 -690 -627 -690 -629 -690 -630 -690 -631 -690 -633 -690 -634 -690 -669 -690 -670 -690 -674 -690 -681 -690 -684 -690 -686 -690 -688 -690 -689 -690 -696 -690 -697 -690 -698 -690 -699 -690 -704 -690 -705 -690 -717 -690 -724 -690 -691 -691 -485 -691 -525 -691 -573 -691 -574 -691 -577 -691 -583 -691 -590 -691 -591 -691 -592 -691 -593 -691 -594 -691 -596 -691 -597 -691 -605 -691 -623 -691 -635 -691 -636 -691 -637 -691 -639 -691 -641 -691 -642 -691 -644 -691 -646 -691 -671 -691 -672 -691 -675 -691 -676 -691 -677 -691 -687 -691 -692 -691 -693 -691 -694 -691 -695 -691 -696 -691 -697 -691 -706 -691 -707 -691 -718 -691 -721 -691 -724 -691 -692 -692 -485 -692 -573 -692 -577 -692 -578 -692 -579 -692 -583 -692 -590 -692 -591 -692 -592 -692 -596 -692 -598 -692 -635 -692 -637 -692 -641 -692 -644 -692 -648 -692 -649 -692 -653 -692 -671 -692 -675 -692 -676 -692 -677 -692 -678 -692 -679 -692 -680 -692 -681 -692 -687 -692 -688 -692 -691 -692 -693 -692 -694 -692 -695 -692 -696 -692 -697 -692 -698 -692 -706 -692 -708 -692 -709 -692 -715 -692 -718 -692 -719 -692 -721 -692 -722 -692 -724 -692 -693 -693 -485 -693 -526 -693 -573 -693 -575 -693 -579 -693 -583 -693 -590 -693 -591 -693 -592 -693 -593 -693 -595 -693 -598 -693 -599 -693 -611 -693 -624 -693 -635 -693 -637 -693 -638 -693 -640 -693 -649 -693 -653 -693 -654 -693 -656 -693 -671 -693 -673 -693 -679 -693 -680 -693 -681 -693 -687 -693 -691 -693 -692 -693 -694 -693 -695 -693 -696 -693 -698 -693 -708 -693 -710 -693 -719 -693 -722 -693 -724 -693 -694 -694 -485 -694 -527 -694 -574 -694 -575 -694 -580 -694 -583 -694 -590 -694 -592 -694 -593 -694 -594 -694 -595 -694 -600 -694 -601 -694 -614 -694 -625 -694 -636 -694 -638 -694 -639 -694 -640 -694 -658 -694 -659 -694 -660 -694 -661 -694 -672 -694 -673 -694 -682 -694 -683 -694 -684 -694 -687 -694 -691 -694 -692 -694 -693 -694 -695 -694 -696 -694 -699 -694 -711 -694 -712 -694 -720 -694 -723 -694 -724 -694 -695 -695 -485 -695 -574 -695 -577 -695 -580 -695 -581 -695 -583 -695 -590 -695 -593 -695 -594 -695 -597 -695 -600 -695 -636 -695 -639 -695 -642 -695 -646 -695 -658 -695 -660 -695 -665 -695 -672 -695 -675 -695 -676 -695 -677 -695 -682 -695 -683 -695 -684 -695 -685 -695 -687 -695 -689 -695 -691 -695 -692 -695 -693 -695 -694 -695 -696 -695 -697 -695 -699 -695 -707 -695 -711 -695 -713 -695 -716 -695 -718 -695 -720 -695 -721 -695 -723 -695 -724 -695 -696 -696 -485 -696 -575 -696 -579 -696 -580 -696 -582 -696 -583 -696 -592 -696 -593 -696 -595 -696 -599 -696 -601 -696 -638 -696 -640 -696 -654 -696 -656 -696 -659 -696 -661 -696 -668 -696 -673 -696 -679 -696 -680 -696 -681 -696 -682 -696 -683 -696 -684 -696 -686 -696 -687 -696 -690 -696 -691 -696 -692 -696 -693 -696 -694 -696 -695 -696 -698 -696 -699 -696 -710 -696 -712 -696 -714 -696 -717 -696 -719 -696 -720 -696 -722 -696 -723 -696 -724 -696 -697 -697 -479 -697 -480 -697 -483 -697 -498 -697 -499 -697 -545 -697 -547 -697 -549 -697 -552 -697 -568 -697 -576 -697 -577 -697 -578 -697 -581 -697 -584 -697 -585 -697 -588 -697 -590 -697 -591 -697 -594 -697 -596 -697 -597 -697 -598 -697 -600 -697 -626 -697 -628 -697 -632 -697 -643 -697 -645 -697 -647 -697 -650 -697 -666 -697 -674 -697 -675 -697 -676 -697 -677 -697 -678 -697 -679 -697 -683 -697 -685 -697 -688 -697 -689 -697 -690 -697 -691 -697 -692 -697 -695 -697 -698 -697 -699 -697 -700 -697 -702 -697 -715 -697 -716 -697 -721 -697 -724 -697 -698 -698 -480 -698 -481 -698 -484 -698 -500 -698 -501 -698 -553 -698 -554 -698 -557 -698 -559 -698 -571 -698 -576 -698 -578 -698 -579 -698 -582 -698 -585 -698 -586 -698 -589 -698 -591 -698 -592 -698 -595 -698 -596 -698 -598 -698 -599 -698 -601 -698 -627 -698 -630 -698 -633 -698 -651 -698 -652 -698 -655 -698 -657 -698 -669 -698 -674 -698 -676 -698 -678 -698 -679 -698 -680 -698 -681 -698 -684 -698 -686 -698 -688 -698 -689 -698 -690 -698 -692 -698 -693 -698 -696 -698 -697 -698 -699 -698 -701 -698 -704 -698 -715 -698 -717 -698 -722 -698 -724 -698 -699 -699 -482 -699 -483 -699 -484 -699 -502 -699 -503 -699 -564 -699 -565 -699 -566 -699 -569 -699 -572 -699 -576 -699 -580 -699 -581 -699 -582 -699 -587 -699 -588 -699 -589 -699 -593 -699 -594 -699 -595 -699 -597 -699 -599 -699 -600 -699 -601 -699 -629 -699 -631 -699 -634 -699 -662 -699 -663 -699 -664 -699 -667 -699 -670 -699 -674 -699 -677 -699 -681 -699 -682 -699 -683 -699 -684 -699 -685 -699 -686 -699 -688 -699 -689 -699 -690 -699 -694 -699 -695 -699 -696 -699 -697 -699 -698 -699 -703 -699 -705 -699 -716 -699 -717 -699 -723 -699 -724 -699 -700 -700 -610 -700 -645 -700 -650 -700 -651 -700 -676 -700 -678 -700 -688 -700 -697 -700 -701 -700 -715 -700 -721 -700 -701 -701 -610 -701 -650 -701 -651 -701 -652 -701 -678 -701 -679 -701 -688 -701 -698 -701 -700 -701 -715 -701 -722 -701 -702 -702 -619 -702 -647 -702 -666 -702 -667 -702 -677 -702 -685 -702 -689 -702 -697 -702 -703 -702 -716 -702 -721 -702 -703 -703 -619 -703 -663 -703 -666 -703 -667 -703 -683 -703 -685 -703 -689 -703 -699 -703 -702 -703 -716 -703 -723 -703 -704 -704 -622 -704 -657 -704 -669 -704 -670 -704 -681 -704 -686 -704 -690 -704 -698 -704 -705 -704 -717 -704 -722 -704 -705 -705 -622 -705 -664 -705 -669 -705 -670 -705 -684 -705 -686 -705 -690 -705 -699 -705 -704 -705 -717 -705 -723 -705 -706 -706 -623 -706 -671 -706 -672 -706 -687 -706 -691 -706 -692 -706 -707 -706 -708 -706 -709 -706 -718 -706 -719 -706 -707 -707 -623 -707 -671 -707 -672 -707 -687 -707 -691 -707 -695 -707 -706 -707 -711 -707 -713 -707 -718 -707 -720 -707 -708 -708 -624 -708 -671 -708 -673 -708 -687 -708 -692 -708 -693 -708 -706 -708 -709 -708 -710 -708 -718 -708 -719 -708 -709 -709 -671 -709 -687 -709 -692 -709 -706 -709 -708 -709 -713 -709 -714 -709 -718 -709 -719 -709 -720 -709 -724 -709 -710 -710 -624 -710 -671 -710 -673 -710 -687 -710 -693 -710 -696 -710 -708 -710 -712 -710 -714 -710 -719 -710 -720 -710 -711 -711 -625 -711 -672 -711 -673 -711 -687 -711 -694 -711 -695 -711 -707 -711 -712 -711 -713 -711 -718 -711 -720 -711 -712 -712 -625 -712 -672 -712 -673 -712 -687 -712 -694 -712 -696 -712 -710 -712 -711 -712 -714 -712 -719 -712 -720 -712 -713 -713 -672 -713 -687 -713 -695 -713 -707 -713 -709 -713 -711 -713 -714 -713 -718 -713 -719 -713 -720 -713 -724 -713 -714 -714 -673 -714 -687 -714 -696 -714 -709 -714 -710 -714 -712 -714 -713 -714 -718 -714 -719 -714 -720 -714 -724 -714 -715 -715 -610 -715 -645 -715 -650 -715 -651 -715 -652 -715 -676 -715 -678 -715 -679 -715 -688 -715 -692 -715 -697 -715 -698 -715 -700 -715 -701 -715 -721 -715 -722 -715 -724 -715 -716 -716 -619 -716 -647 -716 -663 -716 -666 -716 -667 -716 -677 -716 -683 -716 -685 -716 -689 -716 -695 -716 -697 -716 -699 -716 -702 -716 -703 -716 -721 -716 -723 -716 -724 -716 -717 -717 -622 -717 -657 -717 -664 -717 -669 -717 -670 -717 -681 -717 -684 -717 -686 -717 -690 -717 -696 -717 -698 -717 -699 -717 -704 -717 -705 -717 -722 -717 -723 -717 -724 -717 -718 -718 -623 -718 -671 -718 -672 -718 -687 -718 -691 -718 -692 -718 -695 -718 -706 -718 -707 -718 -708 -718 -709 -718 -711 -718 -713 -718 -714 -718 -719 -718 -720 -718 -724 -718 -719 -719 -624 -719 -671 -719 -673 -719 -687 -719 -692 -719 -693 -719 -696 -719 -706 -719 -708 -719 -709 -719 -710 -719 -712 -719 -713 -719 -714 -719 -718 -719 -720 -719 -724 -719 -720 -720 -625 -720 -672 -720 -673 -720 -687 -720 -694 -720 -695 -720 -696 -720 -707 -720 -709 -720 -710 -720 -711 -720 -712 -720 -713 -720 -714 -720 -718 -720 -719 -720 -724 -720 -721 -721 -643 -721 -645 -721 -647 -721 -650 -721 -666 -721 -675 -721 -676 -721 -677 -721 -678 -721 -679 -721 -683 -721 -685 -721 -691 -721 -692 -721 -695 -721 -697 -721 -700 -721 -702 -721 -715 -721 -716 -721 -722 -721 -723 -721 -724 -721 -722 -722 -651 -722 -652 -722 -655 -722 -657 -722 -669 -722 -676 -722 -678 -722 -679 -722 -680 -722 -681 -722 -684 -722 -686 -722 -692 -722 -693 -722 -696 -722 -698 -722 -701 -722 -704 -722 -715 -722 -717 -722 -721 -722 -723 -722 -724 -722 -723 -723 -662 -723 -663 -723 -664 -723 -667 -723 -670 -723 -677 -723 -681 -723 -682 -723 -683 -723 -684 -723 -685 -723 -686 -723 -694 -723 -695 -723 -696 -723 -699 -723 -703 -723 -705 -723 -716 -723 -717 -723 -721 -723 -722 -723 -724 -723 -724 -724 -577 -724 -578 -724 -579 -724 -580 -724 -581 -724 -582 -724 -583 -724 -596 -724 -597 -724 -598 -724 -599 -724 -600 -724 -601 -724 -674 -724 -675 -724 -676 -724 -677 -724 -678 -724 -679 -724 -680 -724 -681 -724 -682 -724 -683 -724 -684 -724 -685 -724 -686 -724 -687 -724 -688 -724 -689 -724 -690 -724 -691 -724 -692 -724 -693 -724 -694 -724 -695 -724 -696 -724 -697 -724 -698 -724 -699 -724 -709 -724 -713 -724 -714 -724 -715 -724 -716 -724 -717 -724 -718 -724 -719 -724 -720 -724 -721 -724 -722 -724 -723 -724 - -DEAL:: Total number of cells = 457 -DEAL:: Total number of active cells = 400 -DEAL:: Number of DoFs = 725 -DEAL:: Number of constraints = 450 -DEAL:: Unconstrained matrix bandwidth= 251 -DEAL:: Constrained matrix bandwidth = 305 - -DEAL::Dimension = 3, Test case = 2 - -DEAL:: Making grid... -DEAL:: Distributing degrees of freedom... -DEAL:: Renumbering degrees of freedom... -DEAL:: Writing sparsity pattern... -0 0 -1 0 -4 0 -2 0 -3 0 -5 0 -7 0 -6 0 -1 -1 -0 -1 -4 -1 -2 -1 -3 -1 -5 -1 -7 -1 -6 -1 -8 -1 -11 -1 -12 -1 -20 -1 -2 -2 -0 -2 -1 -2 -4 -2 -3 -2 -5 -2 -7 -2 -6 -2 -14 -2 -9 -2 -22 -2 -15 -2 -3 -3 -0 -3 -1 -3 -4 -3 -2 -3 -5 -3 -7 -3 -6 -3 -10 -3 -16 -3 -23 -3 -17 -3 -4 -4 -0 -4 -1 -4 -2 -4 -3 -4 -5 -4 -7 -4 -6 -4 -8 -4 -11 -4 -12 -4 -20 -4 -13 -4 -14 -4 -21 -4 -22 -4 -9 -4 -15 -4 -5 -5 -0 -5 -1 -5 -4 -5 -2 -5 -3 -5 -7 -5 -6 -5 -8 -5 -11 -5 -12 -5 -20 -5 -10 -5 -16 -5 -23 -5 -17 -5 -18 -5 -24 -5 -6 -6 -0 -6 -1 -6 -4 -6 -2 -6 -3 -6 -5 -6 -7 -6 -14 -6 -9 -6 -22 -6 -15 -6 -10 -6 -16 -6 -23 -6 -17 -6 -25 -6 -19 -6 -7 -7 -0 -7 -1 -7 -4 -7 -2 -7 -3 -7 -5 -7 -6 -7 -8 -7 -11 -7 -12 -7 -20 -7 -13 -7 -14 -7 -21 -7 -22 -7 -9 -7 -15 -7 -10 -7 -16 -7 -23 -7 -17 -7 -18 -7 -24 -7 -26 -7 -25 -7 -19 -7 -8 -8 -1 -8 -11 -8 -4 -8 -5 -8 -12 -8 -20 -8 -7 -8 -27 -8 -30 -8 -31 -8 -52 -8 -9 -9 -2 -9 -4 -9 -14 -9 -6 -9 -7 -9 -22 -9 -15 -9 -37 -9 -28 -9 -57 -9 -38 -9 -10 -10 -3 -10 -5 -10 -7 -10 -6 -10 -16 -10 -23 -10 -17 -10 -29 -10 -40 -10 -59 -10 -41 -10 -11 -11 -1 -11 -8 -11 -4 -11 -5 -11 -12 -11 -20 -11 -7 -11 -13 -11 -14 -11 -21 -11 -22 -11 -27 -11 -30 -11 -31 -11 -52 -11 -32 -11 -53 -11 -12 -12 -1 -12 -8 -12 -11 -12 -4 -12 -5 -12 -20 -12 -7 -12 -16 -12 -18 -12 -24 -12 -23 -12 -27 -12 -30 -12 -31 -12 -52 -12 -33 -12 -54 -12 -13 -13 -4 -13 -11 -13 -14 -13 -7 -13 -20 -13 -21 -13 -22 -13 -30 -13 -32 -13 -52 -13 -53 -13 -34 -13 -35 -13 -55 -13 -56 -13 -37 -13 -57 -13 -14 -14 -4 -14 -11 -14 -13 -14 -7 -14 -20 -14 -21 -14 -22 -14 -2 -14 -9 -14 -6 -14 -15 -14 -37 -14 -28 -14 -57 -14 -38 -14 -35 -14 -56 -14 -15 -15 -2 -15 -4 -15 -14 -15 -9 -15 -6 -15 -7 -15 -22 -15 -17 -15 -23 -15 -25 -15 -19 -15 -37 -15 -28 -15 -57 -15 -38 -15 -58 -15 -39 -15 -16 -16 -3 -16 -5 -16 -7 -16 -6 -16 -10 -16 -23 -16 -17 -16 -12 -16 -20 -16 -18 -16 -24 -16 -29 -16 -40 -16 -59 -16 -41 -16 -42 -16 -60 -16 -17 -17 -3 -17 -5 -17 -7 -17 -6 -17 -10 -17 -16 -17 -23 -17 -22 -17 -15 -17 -25 -17 -19 -17 -29 -17 -40 -17 -59 -17 -41 -17 -61 -17 -43 -17 -18 -18 -5 -18 -12 -18 -20 -18 -7 -18 -16 -18 -24 -18 -23 -18 -31 -18 -52 -18 -33 -18 -54 -18 -40 -18 -42 -18 -60 -18 -59 -18 -44 -18 -62 -18 -19 -19 -6 -19 -7 -19 -22 -19 -15 -19 -17 -19 -23 -19 -25 -19 -57 -19 -38 -19 -58 -19 -39 -19 -41 -19 -59 -19 -61 -19 -43 -19 -63 -19 -46 -19 -20 -20 -1 -20 -8 -20 -11 -20 -4 -20 -5 -20 -12 -20 -7 -20 -13 -20 -14 -20 -21 -20 -22 -20 -16 -20 -18 -20 -24 -20 -23 -20 -26 -20 -25 -20 -27 -20 -30 -20 -31 -20 -52 -20 -32 -20 -53 -20 -33 -20 -54 -20 -48 -20 -21 -21 -4 -21 -11 -21 -13 -21 -14 -21 -7 -21 -20 -21 -22 -21 -23 -21 -24 -21 -26 -21 -25 -21 -30 -21 -32 -21 -52 -21 -53 -21 -54 -21 -48 -21 -34 -21 -35 -21 -55 -21 -56 -21 -36 -21 -49 -21 -37 -21 -57 -21 -58 -21 -22 -22 -4 -22 -11 -22 -13 -22 -14 -22 -7 -22 -20 -22 -21 -22 -2 -22 -9 -22 -6 -22 -15 -22 -23 -22 -24 -22 -26 -22 -25 -22 -17 -22 -19 -22 -37 -22 -28 -22 -57 -22 -38 -22 -35 -22 -56 -22 -58 -22 -39 -22 -49 -22 -23 -23 -3 -23 -5 -23 -7 -23 -6 -23 -10 -23 -16 -23 -17 -23 -12 -23 -20 -23 -18 -23 -24 -23 -21 -23 -22 -23 -26 -23 -25 -23 -15 -23 -19 -23 -29 -23 -40 -23 -59 -23 -41 -23 -42 -23 -60 -23 -50 -23 -61 -23 -43 -23 -24 -24 -5 -24 -12 -24 -20 -24 -7 -24 -16 -24 -18 -24 -23 -24 -21 -24 -22 -24 -26 -24 -25 -24 -31 -24 -52 -24 -33 -24 -54 -24 -53 -24 -48 -24 -40 -24 -42 -24 -60 -24 -59 -24 -50 -24 -61 -24 -44 -24 -62 -24 -45 -24 -25 -25 -7 -25 -20 -25 -21 -25 -22 -25 -23 -25 -24 -25 -26 -25 -6 -25 -15 -25 -17 -25 -19 -25 -57 -25 -38 -25 -58 -25 -39 -25 -56 -25 -49 -25 -59 -25 -60 -25 -50 -25 -61 -25 -41 -25 -43 -25 -63 -25 -46 -25 -47 -25 -26 -26 -64 -26 -65 -26 -66 -26 -67 -26 -68 -26 -51 -26 -69 -26 -7 -26 -20 -26 -21 -26 -22 -26 -23 -26 -24 -26 -25 -26 -52 -26 -53 -26 -54 -26 -48 -26 -55 -26 -56 -26 -36 -26 -49 -26 -57 -26 -58 -26 -59 -26 -60 -26 -50 -26 -61 -26 -62 -26 -45 -26 -47 -26 -63 -26 -27 -27 -8 -27 -30 -27 -11 -27 -12 -27 -31 -27 -52 -27 -20 -27 -70 -27 -73 -27 -74 -27 -118 -27 -28 -28 -9 -28 -14 -28 -37 -28 -15 -28 -22 -28 -57 -28 -38 -28 -83 -28 -71 -28 -125 -28 -84 -28 -29 -29 -10 -29 -16 -29 -23 -29 -17 -29 -40 -29 -59 -29 -41 -29 -72 -29 -86 -29 -127 -29 -87 -29 -30 -30 -8 -30 -27 -30 -11 -30 -12 -30 -31 -30 -52 -30 -20 -30 -70 -30 -73 -30 -74 -30 -118 -30 -75 -30 -32 -30 -119 -30 -53 -30 -13 -30 -21 -30 -31 -31 -8 -31 -27 -31 -30 -31 -11 -31 -12 -31 -52 -31 -20 -31 -70 -31 -73 -31 -74 -31 -118 -31 -18 -31 -33 -31 -54 -31 -24 -31 -76 -31 -120 -31 -32 -32 -30 -32 -73 -32 -75 -32 -52 -32 -118 -32 -119 -32 -53 -32 -11 -32 -13 -32 -20 -32 -21 -32 -34 -32 -35 -32 -55 -32 -56 -32 -77 -32 -121 -32 -33 -33 -12 -33 -31 -33 -52 -33 -20 -33 -18 -33 -54 -33 -24 -33 -74 -33 -118 -33 -76 -33 -120 -33 -42 -33 -44 -33 -62 -33 -60 -33 -90 -33 -130 -33 -34 -34 -13 -34 -32 -34 -35 -34 -21 -34 -53 -34 -55 -34 -56 -34 -75 -34 -77 -34 -119 -34 -121 -34 -78 -34 -79 -34 -122 -34 -123 -34 -80 -34 -124 -34 -35 -35 -13 -35 -32 -35 -34 -35 -21 -35 -53 -35 -55 -35 -56 -35 -79 -35 -80 -35 -123 -35 -124 -35 -14 -35 -37 -35 -22 -35 -57 -35 -83 -35 -125 -35 -36 -36 -21 -36 -53 -36 -55 -36 -56 -36 -26 -36 -48 -36 -49 -36 -119 -36 -121 -36 -64 -36 -81 -36 -122 -36 -123 -36 -65 -36 -82 -36 -124 -36 -66 -36 -37 -37 -9 -37 -14 -37 -28 -37 -15 -37 -22 -37 -57 -37 -38 -37 -13 -37 -35 -37 -21 -37 -56 -37 -80 -37 -83 -37 -124 -37 -125 -37 -71 -37 -84 -37 -38 -38 -9 -38 -14 -38 -37 -38 -28 -38 -15 -38 -22 -38 -57 -38 -83 -38 -71 -38 -125 -38 -84 -38 -19 -38 -25 -38 -58 -38 -39 -38 -126 -38 -85 -38 -39 -39 -15 -39 -22 -39 -57 -39 -38 -39 -19 -39 -25 -39 -58 -39 -125 -39 -84 -39 -126 -39 -85 -39 -43 -39 -61 -39 -63 -39 -46 -39 -133 -39 -96 -39 -40 -40 -10 -40 -16 -40 -23 -40 -17 -40 -29 -40 -59 -40 -41 -40 -18 -40 -24 -40 -42 -40 -60 -40 -72 -40 -86 -40 -127 -40 -87 -40 -88 -40 -128 -40 -41 -41 -10 -41 -16 -41 -23 -41 -17 -41 -29 -41 -40 -41 -59 -41 -25 -41 -19 -41 -61 -41 -43 -41 -72 -41 -86 -41 -127 -41 -87 -41 -129 -41 -89 -41 -42 -42 -16 -42 -18 -42 -24 -42 -23 -42 -40 -42 -60 -42 -59 -42 -86 -42 -88 -42 -128 -42 -127 -42 -33 -42 -54 -42 -44 -42 -62 -42 -92 -42 -131 -42 -43 -43 -17 -43 -23 -43 -25 -43 -19 -43 -41 -43 -59 -43 -61 -43 -87 -43 -127 -43 -129 -43 -89 -43 -58 -43 -39 -43 -63 -43 -46 -43 -134 -43 -97 -43 -44 -44 -18 -44 -33 -44 -54 -44 -24 -44 -42 -44 -62 -44 -60 -44 -76 -44 -120 -44 -90 -44 -130 -44 -88 -44 -92 -44 -131 -44 -128 -44 -93 -44 -132 -44 -45 -45 -54 -45 -120 -45 -64 -45 -48 -45 -62 -45 -130 -45 -91 -45 -24 -45 -26 -45 -60 -45 -50 -45 -131 -45 -132 -45 -68 -45 -94 -45 -128 -45 -67 -45 -46 -46 -19 -46 -25 -46 -58 -46 -39 -46 -43 -46 -61 -46 -63 -46 -126 -46 -85 -46 -133 -46 -96 -46 -89 -46 -129 -46 -134 -46 -97 -46 -135 -46 -99 -46 -47 -47 -25 -47 -26 -47 -49 -47 -58 -47 -61 -47 -50 -47 -63 -47 -66 -47 -126 -47 -95 -47 -133 -47 -129 -47 -67 -47 -98 -47 -134 -47 -69 -47 -135 -47 -48 -48 -52 -48 -118 -48 -119 -48 -53 -48 -54 -48 -120 -48 -64 -48 -20 -48 -21 -48 -24 -48 -26 -48 -55 -48 -56 -48 -36 -48 -49 -48 -121 -48 -81 -48 -62 -48 -130 -48 -91 -48 -45 -48 -60 -48 -50 -48 -49 -49 -21 -49 -53 -49 -55 -49 -56 -49 -26 -49 -48 -49 -36 -49 -123 -49 -124 -49 -82 -49 -66 -49 -22 -49 -57 -49 -25 -49 -58 -49 -125 -49 -126 -49 -61 -49 -50 -49 -47 -49 -63 -49 -95 -49 -133 -49 -50 -50 -23 -50 -24 -50 -26 -50 -25 -50 -59 -50 -60 -50 -61 -50 -127 -50 -128 -50 -67 -50 -129 -50 -54 -50 -48 -50 -62 -50 -45 -50 -131 -50 -94 -50 -49 -50 -58 -50 -47 -50 -63 -50 -98 -50 -134 -50 -51 -51 -26 -51 -64 -51 -65 -51 -66 -51 -67 -51 -68 -51 -69 -51 -160 -51 -167 -51 -168 -51 -169 -51 -161 -51 -170 -51 -171 -51 -172 -51 -162 -51 -173 -51 -163 -51 -174 -51 -175 -51 -176 -51 -164 -51 -177 -51 -165 -51 -178 -51 -166 -51 -52 -52 -8 -52 -27 -52 -30 -52 -11 -52 -12 -52 -31 -52 -20 -52 -70 -52 -73 -52 -74 -52 -118 -52 -75 -52 -32 -52 -119 -52 -53 -52 -13 -52 -21 -52 -18 -52 -33 -52 -54 -52 -24 -52 -76 -52 -120 -52 -64 -52 -48 -52 -26 -52 -53 -53 -30 -53 -73 -53 -75 -53 -32 -53 -52 -53 -118 -53 -119 -53 -11 -53 -13 -53 -20 -53 -21 -53 -54 -53 -120 -53 -64 -53 -48 -53 -24 -53 -26 -53 -34 -53 -35 -53 -55 -53 -56 -53 -77 -53 -121 -53 -36 -53 -49 -53 -81 -53 -54 -54 -12 -54 -31 -54 -52 -54 -20 -54 -18 -54 -33 -54 -24 -54 -74 -54 -118 -54 -76 -54 -120 -54 -119 -54 -53 -54 -64 -54 -48 -54 -21 -54 -26 -54 -42 -54 -44 -54 -62 -54 -60 -54 -90 -54 -130 -54 -91 -54 -45 -54 -50 -54 -55 -55 -13 -55 -32 -55 -34 -55 -35 -55 -21 -55 -53 -55 -56 -55 -75 -55 -77 -55 -119 -55 -121 -55 -78 -55 -79 -55 -122 -55 -123 -55 -80 -55 -124 -55 -26 -55 -48 -55 -36 -55 -49 -55 -64 -55 -81 -55 -65 -55 -82 -55 -66 -55 -56 -56 -13 -56 -32 -56 -34 -56 -35 -56 -21 -56 -53 -56 -55 -56 -79 -56 -80 -56 -123 -56 -124 -56 -26 -56 -48 -56 -36 -56 -49 -56 -82 -56 -66 -56 -14 -56 -37 -56 -22 -56 -57 -56 -83 -56 -125 -56 -25 -56 -58 -56 -126 -56 -57 -57 -9 -57 -14 -57 -37 -57 -28 -57 -15 -57 -22 -57 -38 -57 -13 -57 -35 -57 -21 -57 -56 -57 -80 -57 -83 -57 -124 -57 -125 -57 -71 -57 -84 -57 -19 -57 -25 -57 -58 -57 -39 -57 -26 -57 -49 -57 -66 -57 -126 -57 -85 -57 -58 -58 -15 -58 -22 -58 -57 -58 -38 -58 -19 -58 -25 -58 -39 -58 -21 -58 -56 -58 -26 -58 -49 -58 -124 -58 -125 -58 -66 -58 -126 -58 -84 -58 -85 -58 -43 -58 -61 -58 -63 -58 -46 -58 -50 -58 -47 -58 -95 -58 -133 -58 -96 -58 -59 -59 -10 -59 -16 -59 -23 -59 -17 -59 -29 -59 -40 -59 -41 -59 -18 -59 -24 -59 -42 -59 -60 -59 -26 -59 -25 -59 -50 -59 -61 -59 -19 -59 -43 -59 -72 -59 -86 -59 -127 -59 -87 -59 -88 -59 -128 -59 -67 -59 -129 -59 -89 -59 -60 -60 -16 -60 -18 -60 -24 -60 -23 -60 -40 -60 -42 -60 -59 -60 -26 -60 -25 -60 -50 -60 -61 -60 -86 -60 -88 -60 -128 -60 -127 -60 -67 -60 -129 -60 -33 -60 -54 -60 -44 -60 -62 -60 -48 -60 -45 -60 -92 -60 -131 -60 -94 -60 -61 -61 -23 -61 -24 -61 -26 -61 -25 -61 -59 -61 -60 -61 -50 -61 -17 -61 -19 -61 -41 -61 -43 -61 -127 -61 -128 -61 -67 -61 -129 -61 -87 -61 -89 -61 -58 -61 -39 -61 -63 -61 -46 -61 -49 -61 -47 -61 -134 -61 -97 -61 -98 -61 -62 -62 -18 -62 -33 -62 -54 -62 -24 -62 -42 -62 -44 -62 -60 -62 -76 -62 -120 -62 -90 -62 -130 -62 -64 -62 -48 -62 -91 -62 -45 -62 -26 -62 -50 -62 -88 -62 -92 -62 -131 -62 -128 -62 -93 -62 -132 -62 -68 -62 -94 -62 -67 -62 -63 -63 -19 -63 -25 -63 -58 -63 -39 -63 -43 -63 -61 -63 -46 -63 -26 -63 -49 -63 -50 -63 -47 -63 -66 -63 -126 -63 -95 -63 -133 -63 -85 -63 -96 -63 -89 -63 -129 -63 -134 -63 -97 -63 -67 -63 -98 -63 -69 -63 -135 -63 -99 -63 -64 -64 -26 -64 -65 -64 -66 -64 -67 -64 -68 -64 -51 -64 -69 -64 -160 -64 -167 -64 -168 -64 -169 -64 -52 -64 -118 -64 -119 -64 -53 -64 -54 -64 -120 -64 -48 -64 -121 -64 -55 -64 -81 -64 -36 -64 -62 -64 -130 -64 -91 -64 -45 -64 -136 -64 -137 -64 -138 -64 -115 -64 -139 -64 -100 -64 -141 -64 -102 -64 -65 -65 -26 -65 -64 -65 -66 -65 -67 -65 -68 -65 -51 -65 -69 -65 -160 -65 -167 -65 -168 -65 -169 -65 -161 -65 -170 -65 -171 -65 -172 -65 -162 -65 -173 -65 -55 -65 -121 -65 -122 -65 -123 -65 -36 -65 -81 -65 -82 -65 -139 -65 -140 -65 -100 -65 -101 -65 -143 -65 -144 -65 -104 -65 -105 -65 -148 -65 -106 -65 -66 -66 -26 -66 -64 -66 -65 -66 -67 -66 -68 -66 -51 -66 -69 -66 -170 -66 -162 -66 -172 -66 -173 -66 -56 -66 -55 -66 -123 -66 -124 -66 -49 -66 -36 -66 -82 -66 -57 -66 -125 -66 -58 -66 -126 -66 -63 -66 -47 -66 -95 -66 -133 -66 -146 -66 -145 -66 -116 -66 -147 -66 -148 -66 -106 -66 -107 -66 -149 -66 -67 -67 -26 -67 -64 -67 -65 -67 -66 -67 -68 -67 -51 -67 -69 -67 -163 -67 -174 -67 -175 -67 -176 -67 -59 -67 -60 -67 -50 -67 -61 -67 -127 -67 -128 -67 -129 -67 -62 -67 -45 -67 -131 -67 -94 -67 -47 -67 -63 -67 -98 -67 -134 -67 -151 -67 -152 -67 -117 -67 -153 -67 -154 -67 -110 -67 -111 -67 -156 -67 -68 -68 -26 -68 -64 -68 -65 -68 -66 -68 -67 -68 -51 -68 -69 -68 -160 -68 -167 -68 -168 -68 -169 -68 -163 -68 -174 -68 -175 -68 -176 -68 -164 -68 -177 -68 -62 -68 -130 -68 -91 -68 -45 -68 -131 -68 -132 -68 -94 -68 -141 -68 -102 -68 -142 -68 -103 -68 -154 -68 -155 -68 -109 -68 -110 -68 -158 -68 -113 -68 -69 -69 -26 -69 -64 -69 -65 -69 -66 -69 -67 -69 -68 -69 -51 -69 -170 -69 -162 -69 -172 -69 -173 -69 -163 -69 -174 -69 -175 -69 -176 -69 -178 -69 -166 -69 -63 -69 -47 -69 -95 -69 -133 -69 -134 -69 -98 -69 -135 -69 -107 -69 -149 -69 -108 -69 -150 -69 -156 -69 -111 -69 -112 -69 -157 -69 -114 -69 -159 -69 -70 -70 -27 -70 -73 -70 -30 -70 -31 -70 -74 -70 -118 -70 -52 -70 -179 -70 -185 -70 -186 -70 -136 -70 -71 -71 -28 -71 -37 -71 -83 -71 -38 -71 -57 -71 -125 -71 -84 -71 -215 -71 -181 -71 -145 -71 -216 -71 -72 -72 -29 -72 -40 -72 -59 -72 -41 -72 -86 -72 -127 -72 -87 -72 -183 -72 -231 -72 -151 -72 -232 -72 -73 -73 -27 -73 -70 -73 -30 -73 -31 -73 -74 -73 -118 -73 -52 -73 -75 -73 -32 -73 -119 -73 -53 -73 -179 -73 -185 -73 -186 -73 -136 -73 -190 -73 -137 -73 -74 -74 -27 -74 -70 -74 -73 -74 -30 -74 -31 -74 -118 -74 -52 -74 -33 -74 -76 -74 -120 -74 -54 -74 -179 -74 -185 -74 -186 -74 -136 -74 -191 -74 -138 -74 -75 -75 -30 -75 -73 -75 -32 -75 -52 -75 -118 -75 -119 -75 -53 -75 -77 -75 -34 -75 -121 -75 -55 -75 -185 -75 -190 -75 -136 -75 -137 -75 -195 -75 -139 -75 -76 -76 -31 -76 -74 -76 -118 -76 -52 -76 -33 -76 -120 -76 -54 -76 -44 -76 -90 -76 -130 -76 -62 -76 -186 -76 -136 -76 -191 -76 -138 -76 -197 -76 -141 -76 -77 -77 -32 -77 -75 -77 -34 -77 -53 -77 -119 -77 -121 -77 -55 -77 -78 -77 -79 -77 -122 -77 -123 -77 -190 -77 -195 -77 -137 -77 -139 -77 -196 -77 -140 -77 -78 -78 -34 -78 -77 -78 -79 -78 -55 -78 -121 -78 -122 -78 -123 -78 -195 -78 -196 -78 -139 -78 -140 -78 -204 -78 -205 -78 -143 -78 -144 -78 -223 -78 -148 -78 -79 -79 -34 -79 -77 -79 -78 -79 -55 -79 -121 -79 -122 -79 -123 -79 -35 -79 -80 -79 -56 -79 -124 -79 -223 -79 -217 -79 -148 -79 -146 -79 -205 -79 -144 -79 -80 -80 -35 -80 -34 -80 -79 -80 -56 -80 -55 -80 -123 -80 -124 -80 -37 -80 -83 -80 -57 -80 -125 -80 -217 -80 -215 -80 -146 -80 -145 -80 -223 -80 -148 -80 -81 -81 -53 -81 -119 -81 -121 -81 -55 -81 -48 -81 -64 -81 -36 -81 -122 -81 -123 -81 -65 -81 -82 -81 -137 -81 -139 -81 -115 -81 -100 -81 -140 -81 -101 -81 -82 -82 -55 -82 -121 -82 -122 -82 -123 -82 -36 -82 -81 -82 -65 -82 -56 -82 -124 -82 -49 -82 -66 -82 -148 -82 -146 -82 -106 -82 -116 -82 -144 -82 -105 -82 -83 -83 -37 -83 -35 -83 -80 -83 -57 -83 -56 -83 -124 -83 -125 -83 -28 -83 -71 -83 -38 -83 -84 -83 -215 -83 -181 -83 -145 -83 -216 -83 -217 -83 -146 -83 -84 -84 -28 -84 -37 -84 -83 -84 -71 -84 -38 -84 -57 -84 -125 -84 -39 -84 -58 -84 -126 -84 -85 -84 -215 -84 -181 -84 -145 -84 -216 -84 -147 -84 -221 -84 -85 -85 -38 -85 -57 -85 -125 -85 -84 -85 -39 -85 -58 -85 -126 -85 -46 -85 -63 -85 -133 -85 -96 -85 -145 -85 -216 -85 -147 -85 -221 -85 -149 -85 -225 -85 -86 -86 -29 -86 -40 -86 -59 -86 -41 -86 -72 -86 -127 -86 -87 -86 -42 -86 -60 -86 -88 -86 -128 -86 -183 -86 -231 -86 -151 -86 -232 -86 -233 -86 -152 -86 -87 -87 -29 -87 -40 -87 -59 -87 -41 -87 -72 -87 -86 -87 -127 -87 -61 -87 -43 -87 -129 -87 -89 -87 -183 -87 -231 -87 -151 -87 -232 -87 -153 -87 -234 -87 -88 -88 -40 -88 -42 -88 -60 -88 -59 -88 -86 -88 -128 -88 -127 -88 -44 -88 -62 -88 -92 -88 -131 -88 -231 -88 -233 -88 -152 -88 -151 -88 -239 -88 -154 -88 -89 -89 -41 -89 -59 -89 -61 -89 -43 -89 -87 -89 -127 -89 -129 -89 -63 -89 -46 -89 -134 -89 -97 -89 -232 -89 -151 -89 -153 -89 -234 -89 -156 -89 -243 -89 -90 -90 -33 -90 -76 -90 -120 -90 -54 -90 -44 -90 -130 -90 -62 -90 -92 -90 -93 -90 -132 -90 -131 -90 -191 -90 -138 -90 -197 -90 -141 -90 -199 -90 -142 -90 -91 -91 -54 -91 -120 -91 -64 -91 -48 -91 -62 -91 -130 -91 -45 -91 -131 -91 -132 -91 -68 -91 -94 -91 -138 -91 -115 -91 -141 -91 -102 -91 -142 -91 -103 -91 -92 -92 -42 -92 -44 -92 -62 -92 -60 -92 -88 -92 -131 -92 -128 -92 -90 -92 -130 -92 -93 -92 -132 -92 -233 -92 -239 -92 -154 -92 -152 -92 -240 -92 -155 -92 -93 -93 -44 -93 -90 -93 -130 -93 -62 -93 -92 -93 -132 -93 -131 -93 -197 -93 -141 -93 -199 -93 -142 -93 -239 -93 -240 -93 -155 -93 -154 -93 -250 -93 -158 -93 -94 -94 -62 -94 -130 -94 -91 -94 -45 -94 -131 -94 -132 -94 -68 -94 -60 -94 -50 -94 -128 -94 -67 -94 -154 -94 -155 -94 -109 -94 -110 -94 -152 -94 -117 -94 -95 -95 -58 -95 -49 -95 -66 -95 -126 -95 -63 -95 -47 -95 -133 -95 -134 -95 -98 -95 -69 -95 -135 -95 -116 -95 -147 -95 -107 -95 -149 -95 -108 -95 -150 -95 -96 -96 -39 -96 -58 -96 -126 -96 -85 -96 -46 -96 -63 -96 -133 -96 -97 -96 -134 -96 -135 -96 -99 -96 -147 -96 -221 -96 -149 -96 -225 -96 -150 -96 -227 -96 -97 -97 -43 -97 -61 -97 -63 -97 -46 -97 -89 -97 -129 -97 -134 -97 -133 -97 -96 -97 -135 -97 -99 -97 -234 -97 -153 -97 -156 -97 -243 -97 -157 -97 -244 -97 -98 -98 -61 -98 -50 -98 -47 -98 -63 -98 -129 -98 -67 -98 -134 -98 -95 -98 -133 -98 -69 -98 -135 -98 -153 -98 -117 -98 -111 -98 -156 -98 -112 -98 -157 -98 -99 -99 -46 -99 -63 -99 -133 -99 -96 -99 -97 -99 -134 -99 -135 -99 -149 -99 -225 -99 -150 -99 -227 -99 -243 -99 -156 -99 -157 -99 -244 -99 -159 -99 -263 -99 -100 -100 -119 -100 -137 -100 -139 -100 -121 -100 -64 -100 -115 -100 -81 -100 -288 -100 -295 -100 -160 -100 -269 -100 -297 -100 -140 -100 -167 -100 -101 -100 -122 -100 -65 -100 -101 -101 -139 -101 -295 -101 -297 -101 -140 -101 -100 -101 -269 -101 -167 -101 -121 -101 -122 -101 -81 -101 -65 -101 -143 -101 -144 -101 -104 -101 -105 -101 -310 -101 -271 -101 -102 -102 -138 -102 -289 -102 -160 -102 -115 -102 -141 -102 -300 -102 -270 -102 -120 -102 -64 -102 -130 -102 -91 -102 -142 -102 -301 -102 -168 -102 -103 -102 -132 -102 -68 -102 -103 -103 -141 -103 -300 -103 -270 -103 -102 -103 -142 -103 -301 -103 -168 -103 -130 -103 -91 -103 -132 -103 -68 -103 -158 -103 -379 -103 -278 -103 -113 -103 -155 -103 -109 -103 -104 -104 -122 -104 -140 -104 -143 -104 -144 -104 -65 -104 -101 -104 -105 -104 -297 -104 -310 -104 -167 -104 -271 -104 -311 -104 -312 -104 -161 -104 -272 -104 -313 -104 -170 -104 -105 -105 -122 -105 -140 -105 -143 -105 -144 -105 -65 -105 -101 -105 -104 -105 -312 -105 -313 -105 -272 -105 -170 -105 -123 -105 -148 -105 -82 -105 -106 -105 -341 -105 -274 -105 -106 -106 -124 -106 -123 -106 -148 -106 -146 -106 -66 -106 -82 -106 -116 -106 -122 -106 -144 -106 -65 -106 -105 -106 -313 -106 -341 -106 -170 -106 -274 -106 -338 -106 -162 -106 -107 -107 -126 -107 -66 -107 -116 -107 -147 -107 -133 -107 -95 -107 -149 -107 -162 -107 -340 -107 -275 -107 -348 -107 -135 -107 -69 -107 -108 -107 -150 -107 -173 -107 -349 -107 -108 -108 -133 -108 -95 -108 -107 -108 -149 -108 -135 -108 -69 -108 -150 -108 -275 -108 -348 -108 -173 -108 -349 -108 -157 -108 -112 -108 -114 -108 -159 -108 -284 -108 -426 -108 -109 -109 -131 -109 -132 -109 -68 -109 -94 -109 -154 -109 -155 -109 -110 -109 -359 -109 -360 -109 -174 -109 -276 -109 -142 -109 -103 -109 -158 -109 -113 -109 -380 -109 -279 -109 -110 -110 -131 -110 -132 -110 -68 -110 -94 -110 -154 -110 -155 -110 -109 -110 -128 -110 -67 -110 -152 -110 -117 -110 -359 -110 -360 -110 -174 -110 -276 -110 -357 -110 -163 -110 -111 -111 -129 -111 -67 -111 -98 -111 -134 -111 -153 -111 -117 -111 -156 -111 -69 -111 -135 -111 -112 -111 -157 -111 -358 -111 -163 -111 -277 -111 -361 -111 -176 -111 -362 -111 -112 -112 -134 -112 -98 -112 -69 -112 -135 -112 -156 -112 -111 -112 -157 -112 -361 -112 -277 -112 -176 -112 -362 -112 -108 -112 -150 -112 -114 -112 -159 -112 -285 -112 -427 -112 -113 -113 -142 -113 -301 -113 -168 -113 -103 -113 -158 -113 -379 -113 -278 -113 -132 -113 -68 -113 -155 -113 -109 -113 -380 -113 -381 -113 -164 -113 -279 -113 -360 -113 -174 -113 -114 -114 -135 -114 -69 -114 -108 -114 -150 -114 -157 -114 -112 -114 -159 -114 -173 -114 -349 -114 -284 -114 -426 -114 -362 -114 -176 -114 -285 -114 -427 -114 -166 -114 -428 -114 -115 -115 -136 -115 -287 -115 -288 -115 -137 -115 -138 -115 -289 -115 -160 -115 -118 -115 -119 -115 -120 -115 -64 -115 -139 -115 -121 -115 -100 -115 -81 -115 -295 -115 -269 -115 -141 -115 -300 -115 -270 -115 -102 -115 -130 -115 -91 -115 -116 -116 -125 -116 -124 -116 -146 -116 -145 -116 -126 -116 -66 -116 -147 -116 -338 -116 -339 -116 -162 -116 -340 -116 -123 -116 -148 -116 -82 -116 -106 -116 -341 -116 -274 -116 -133 -116 -95 -116 -107 -116 -149 -116 -275 -116 -348 -116 -117 -117 -127 -117 -128 -117 -67 -117 -129 -117 -151 -117 -152 -117 -153 -117 -356 -117 -357 -117 -163 -117 -358 -117 -131 -117 -94 -117 -154 -117 -110 -117 -359 -117 -276 -117 -98 -117 -134 -117 -111 -117 -156 -117 -277 -117 -361 -117 -118 -118 -27 -118 -70 -118 -73 -118 -30 -118 -31 -118 -74 -118 -52 -118 -75 -118 -32 -118 -119 -118 -53 -118 -33 -118 -76 -118 -120 -118 -54 -118 -64 -118 -48 -118 -179 -118 -185 -118 -186 -118 -136 -118 -190 -118 -137 -118 -191 -118 -138 -118 -115 -118 -119 -119 -30 -119 -73 -119 -75 -119 -32 -119 -52 -119 -118 -119 -53 -119 -54 -119 -120 -119 -64 -119 -48 -119 -77 -119 -34 -119 -121 -119 -55 -119 -81 -119 -36 -119 -185 -119 -190 -119 -136 -119 -137 -119 -138 -119 -115 -119 -195 -119 -139 -119 -100 -119 -120 -120 -31 -120 -74 -120 -118 -120 -52 -120 -33 -120 -76 -120 -54 -120 -119 -120 -53 -120 -64 -120 -48 -120 -44 -120 -90 -120 -130 -120 -62 -120 -91 -120 -45 -120 -186 -120 -136 -120 -191 -120 -138 -120 -137 -120 -115 -120 -197 -120 -141 -120 -102 -120 -121 -121 -32 -121 -75 -121 -77 -121 -34 -121 -53 -121 -119 -121 -55 -121 -78 -121 -79 -121 -122 -121 -123 -121 -48 -121 -64 -121 -81 -121 -36 -121 -65 -121 -82 -121 -190 -121 -195 -121 -137 -121 -139 -121 -196 -121 -140 -121 -115 -121 -100 -121 -101 -121 -122 -122 -34 -122 -77 -122 -78 -122 -79 -122 -55 -122 -121 -122 -123 -122 -36 -122 -81 -122 -65 -122 -82 -122 -195 -122 -196 -122 -139 -122 -140 -122 -100 -122 -101 -122 -204 -122 -205 -122 -143 -122 -144 -122 -104 -122 -105 -122 -223 -122 -148 -122 -106 -122 -123 -123 -34 -123 -77 -123 -78 -123 -79 -123 -55 -123 -121 -123 -122 -123 -35 -123 -80 -123 -56 -123 -124 -123 -36 -123 -81 -123 -65 -123 -82 -123 -49 -123 -66 -123 -223 -123 -217 -123 -148 -123 -146 -123 -205 -123 -144 -123 -106 -123 -116 -123 -105 -123 -124 -124 -35 -124 -34 -124 -79 -124 -80 -124 -56 -124 -55 -124 -123 -124 -49 -124 -36 -124 -82 -124 -66 -124 -37 -124 -83 -124 -57 -124 -125 -124 -58 -124 -126 -124 -217 -124 -215 -124 -146 -124 -145 -124 -116 -124 -147 -124 -223 -124 -148 -124 -106 -124 -125 -125 -37 -125 -35 -125 -80 -125 -83 -125 -57 -125 -56 -125 -124 -125 -28 -125 -71 -125 -38 -125 -84 -125 -58 -125 -49 -125 -66 -125 -126 -125 -39 -125 -85 -125 -215 -125 -181 -125 -145 -125 -216 -125 -217 -125 -146 -125 -147 -125 -221 -125 -116 -125 -126 -126 -57 -126 -56 -126 -124 -126 -125 -126 -58 -126 -49 -126 -66 -126 -38 -126 -84 -126 -39 -126 -85 -126 -63 -126 -47 -126 -95 -126 -133 -126 -46 -126 -96 -126 -145 -126 -216 -126 -147 -126 -221 -126 -146 -126 -116 -126 -149 -126 -225 -126 -107 -126 -127 -127 -29 -127 -40 -127 -59 -127 -41 -127 -72 -127 -86 -127 -87 -127 -42 -127 -60 -127 -88 -127 -128 -127 -50 -127 -61 -127 -67 -127 -129 -127 -43 -127 -89 -127 -183 -127 -231 -127 -151 -127 -232 -127 -233 -127 -152 -127 -117 -127 -153 -127 -234 -127 -128 -128 -40 -128 -42 -128 -60 -128 -59 -128 -86 -128 -88 -128 -127 -128 -50 -128 -61 -128 -67 -128 -129 -128 -44 -128 -62 -128 -92 -128 -131 -128 -45 -128 -94 -128 -231 -128 -233 -128 -152 -128 -151 -128 -117 -128 -153 -128 -239 -128 -154 -128 -110 -128 -129 -129 -59 -129 -60 -129 -50 -129 -61 -129 -127 -129 -128 -129 -67 -129 -41 -129 -43 -129 -87 -129 -89 -129 -63 -129 -46 -129 -134 -129 -97 -129 -47 -129 -98 -129 -151 -129 -152 -129 -117 -129 -153 -129 -232 -129 -234 -129 -156 -129 -243 -129 -111 -129 -130 -130 -33 -130 -76 -130 -120 -130 -54 -130 -44 -130 -90 -130 -62 -130 -64 -130 -48 -130 -91 -130 -45 -130 -92 -130 -93 -130 -132 -130 -131 -130 -68 -130 -94 -130 -191 -130 -138 -130 -197 -130 -141 -130 -115 -130 -102 -130 -199 -130 -142 -130 -103 -130 -131 -131 -42 -131 -44 -131 -62 -131 -60 -131 -88 -131 -92 -131 -128 -131 -90 -131 -130 -131 -93 -131 -132 -131 -91 -131 -45 -131 -68 -131 -94 -131 -50 -131 -67 -131 -233 -131 -239 -131 -154 -131 -152 -131 -240 -131 -155 -131 -109 -131 -110 -131 -117 -131 -132 -132 -44 -132 -90 -132 -130 -132 -62 -132 -92 -132 -93 -132 -131 -132 -91 -132 -45 -132 -68 -132 -94 -132 -197 -132 -141 -132 -199 -132 -142 -132 -102 -132 -103 -132 -239 -132 -240 -132 -155 -132 -154 -132 -109 -132 -110 -132 -250 -132 -158 -132 -113 -132 -133 -133 -58 -133 -49 -133 -66 -133 -126 -133 -63 -133 -47 -133 -95 -133 -39 -133 -85 -133 -46 -133 -96 -133 -134 -133 -98 -133 -69 -133 -135 -133 -97 -133 -99 -133 -147 -133 -221 -133 -149 -133 -225 -133 -116 -133 -107 -133 -150 -133 -227 -133 -108 -133 -134 -134 -43 -134 -61 -134 -63 -134 -46 -134 -89 -134 -129 -134 -97 -134 -50 -134 -47 -134 -67 -134 -98 -134 -95 -134 -133 -134 -69 -134 -135 -134 -96 -134 -99 -134 -234 -134 -153 -134 -156 -134 -243 -134 -117 -134 -111 -134 -112 -134 -157 -134 -244 -134 -135 -135 -63 -135 -47 -135 -95 -135 -133 -135 -134 -135 -98 -135 -69 -135 -46 -135 -96 -135 -97 -135 -99 -135 -149 -135 -225 -135 -150 -135 -227 -135 -107 -135 -108 -135 -156 -135 -111 -135 -112 -135 -157 -135 -243 -135 -244 -135 -159 -135 -263 -135 -114 -135 -136 -136 -70 -136 -179 -136 -185 -136 -73 -136 -74 -136 -186 -136 -118 -136 -180 -136 -187 -136 -188 -136 -287 -136 -189 -136 -190 -136 -288 -136 -137 -136 -75 -136 -119 -136 -76 -136 -191 -136 -138 -136 -120 -136 -192 -136 -289 -136 -160 -136 -115 -136 -64 -136 -137 -137 -185 -137 -187 -137 -189 -137 -190 -137 -136 -137 -287 -137 -288 -137 -73 -137 -75 -137 -118 -137 -119 -137 -138 -137 -289 -137 -160 -137 -115 -137 -120 -137 -64 -137 -195 -137 -77 -137 -139 -137 -121 -137 -193 -137 -295 -137 -100 -137 -81 -137 -269 -137 -138 -138 -74 -138 -186 -138 -136 -138 -118 -138 -76 -138 -191 -138 -120 -138 -188 -138 -287 -138 -192 -138 -289 -138 -288 -138 -137 -138 -160 -138 -115 -138 -119 -138 -64 -138 -90 -138 -197 -138 -141 -138 -130 -138 -198 -138 -300 -138 -270 -138 -102 -138 -91 -138 -139 -139 -75 -139 -190 -139 -195 -139 -77 -139 -119 -139 -137 -139 -121 -139 -189 -139 -193 -139 -288 -139 -295 -139 -194 -139 -196 -139 -297 -139 -140 -139 -78 -139 -122 -139 -64 -139 -115 -139 -100 -139 -81 -139 -160 -139 -269 -139 -167 -139 -101 -139 -65 -139 -140 -140 -195 -140 -193 -140 -194 -140 -196 -140 -139 -140 -295 -140 -297 -140 -77 -140 -78 -140 -121 -140 -122 -140 -100 -140 -269 -140 -167 -140 -101 -140 -81 -140 -65 -140 -204 -140 -205 -140 -143 -140 -144 -140 -206 -140 -310 -140 -104 -140 -105 -140 -271 -140 -141 -141 -76 -141 -191 -141 -138 -141 -120 -141 -90 -141 -197 -141 -130 -141 -192 -141 -289 -141 -198 -141 -300 -141 -160 -141 -115 -141 -270 -141 -102 -141 -64 -141 -91 -141 -93 -141 -199 -141 -142 -141 -132 -141 -200 -141 -301 -141 -168 -141 -103 -141 -68 -141 -142 -142 -90 -142 -197 -142 -141 -142 -130 -142 -93 -142 -199 -142 -132 -142 -198 -142 -300 -142 -200 -142 -301 -142 -270 -142 -102 -142 -168 -142 -103 -142 -91 -142 -68 -142 -240 -142 -250 -142 -158 -142 -155 -142 -251 -142 -379 -142 -278 -142 -113 -142 -109 -142 -143 -143 -78 -143 -196 -143 -204 -143 -205 -143 -122 -143 -140 -143 -144 -143 -194 -143 -206 -143 -297 -143 -310 -143 -207 -143 -208 -143 -311 -143 -312 -143 -209 -143 -313 -143 -65 -143 -101 -143 -104 -143 -105 -143 -167 -143 -271 -143 -161 -143 -272 -143 -170 -143 -144 -144 -78 -144 -196 -144 -204 -144 -205 -144 -122 -144 -140 -144 -143 -144 -208 -144 -209 -144 -312 -144 -313 -144 -65 -144 -101 -144 -104 -144 -105 -144 -272 -144 -170 -144 -79 -144 -223 -144 -123 -144 -148 -144 -224 -144 -341 -144 -82 -144 -106 -144 -274 -144 -145 -145 -71 -145 -83 -145 -215 -145 -181 -145 -84 -145 -125 -145 -216 -145 -80 -145 -217 -145 -124 -145 -146 -145 -218 -145 -219 -145 -338 -145 -339 -145 -182 -145 -220 -145 -85 -145 -126 -145 -147 -145 -221 -145 -66 -145 -116 -145 -162 -145 -340 -145 -222 -145 -146 -146 -83 -146 -80 -146 -217 -146 -215 -146 -125 -146 -124 -146 -145 -146 -218 -146 -219 -146 -338 -146 -339 -146 -126 -146 -66 -146 -116 -146 -147 -146 -162 -146 -340 -146 -79 -146 -223 -146 -123 -146 -148 -146 -224 -146 -341 -146 -82 -146 -106 -146 -274 -146 -147 -147 -84 -147 -125 -147 -145 -147 -216 -147 -85 -147 -126 -147 -221 -147 -124 -147 -146 -147 -66 -147 -116 -147 -338 -147 -339 -147 -162 -147 -340 -147 -220 -147 -222 -147 -96 -147 -133 -147 -149 -147 -225 -147 -95 -147 -107 -147 -275 -147 -348 -147 -226 -147 -148 -148 -80 -148 -79 -148 -223 -148 -217 -148 -124 -148 -123 -148 -146 -148 -78 -148 -205 -148 -122 -148 -144 -148 -209 -148 -224 -148 -313 -148 -341 -148 -218 -148 -338 -148 -66 -148 -82 -148 -106 -148 -116 -148 -65 -148 -105 -148 -170 -148 -274 -148 -162 -148 -149 -149 -85 -149 -126 -149 -147 -149 -221 -149 -96 -149 -133 -149 -225 -149 -66 -149 -116 -149 -95 -149 -107 -149 -162 -149 -340 -149 -275 -149 -348 -149 -222 -149 -226 -149 -99 -149 -135 -149 -150 -149 -227 -149 -69 -149 -108 -149 -173 -149 -349 -149 -228 -149 -150 -150 -96 -150 -133 -150 -149 -150 -225 -150 -99 -150 -135 -150 -227 -150 -95 -150 -107 -150 -69 -150 -108 -150 -275 -150 -348 -150 -173 -150 -349 -150 -226 -150 -228 -150 -244 -150 -157 -150 -159 -150 -263 -150 -112 -150 -114 -150 -284 -150 -426 -150 -264 -150 -151 -151 -72 -151 -86 -151 -127 -151 -87 -151 -183 -151 -231 -151 -232 -151 -88 -151 -128 -151 -233 -151 -152 -151 -67 -151 -129 -151 -117 -151 -153 -151 -89 -151 -234 -151 -184 -151 -235 -151 -356 -151 -236 -151 -237 -151 -357 -151 -163 -151 -358 -151 -238 -151 -152 -152 -86 -152 -88 -152 -128 -152 -127 -152 -231 -152 -233 -152 -151 -152 -67 -152 -129 -152 -117 -152 -153 -152 -235 -152 -237 -152 -357 -152 -356 -152 -163 -152 -358 -152 -92 -152 -131 -152 -239 -152 -154 -152 -94 -152 -110 -152 -241 -152 -359 -152 -276 -152 -153 -153 -127 -153 -128 -153 -67 -153 -129 -153 -151 -153 -152 -153 -117 -153 -87 -153 -89 -153 -232 -153 -234 -153 -356 -153 -357 -153 -163 -153 -358 -153 -236 -153 -238 -153 -134 -153 -97 -153 -156 -153 -243 -153 -98 -153 -111 -153 -361 -153 -245 -153 -277 -153 -154 -154 -88 -154 -92 -154 -131 -154 -128 -154 -233 -154 -239 -154 -152 -154 -93 -154 -132 -154 -240 -154 -155 -154 -68 -154 -94 -154 -109 -154 -110 -154 -67 -154 -117 -154 -237 -154 -241 -154 -359 -154 -357 -154 -242 -154 -360 -154 -174 -154 -276 -154 -163 -154 -155 -155 -92 -155 -93 -155 -132 -155 -131 -155 -239 -155 -240 -155 -154 -155 -68 -155 -94 -155 -109 -155 -110 -155 -241 -155 -242 -155 -360 -155 -359 -155 -174 -155 -276 -155 -199 -155 -142 -155 -250 -155 -158 -155 -103 -155 -113 -155 -252 -155 -380 -155 -279 -155 -156 -156 -89 -156 -129 -156 -134 -156 -97 -156 -234 -156 -153 -156 -243 -156 -67 -156 -98 -156 -117 -156 -111 -156 -69 -156 -135 -156 -112 -156 -157 -156 -99 -156 -244 -156 -238 -156 -358 -156 -361 -156 -245 -156 -163 -156 -277 -156 -176 -156 -362 -156 -246 -156 -157 -157 -134 -157 -98 -157 -69 -157 -135 -157 -156 -157 -111 -157 -112 -157 -97 -157 -99 -157 -243 -157 -244 -157 -361 -157 -277 -157 -176 -157 -362 -157 -245 -157 -246 -157 -150 -157 -227 -157 -159 -157 -263 -157 -108 -157 -114 -157 -427 -157 -265 -157 -285 -157 -158 -158 -93 -158 -199 -158 -142 -158 -132 -158 -240 -158 -250 -158 -155 -158 -200 -158 -301 -158 -251 -158 -379 -158 -168 -158 -103 -158 -278 -158 -113 -158 -68 -158 -109 -158 -242 -158 -252 -158 -380 -158 -360 -158 -253 -158 -381 -158 -164 -158 -279 -158 -174 -158 -159 -159 -99 -159 -135 -159 -150 -159 -227 -159 -244 -159 -157 -159 -263 -159 -69 -159 -108 -159 -112 -159 -114 -159 -173 -159 -349 -159 -284 -159 -426 -159 -228 -159 -264 -159 -246 -159 -362 -159 -427 -159 -265 -159 -176 -159 -285 -159 -166 -159 -428 -159 -266 -159 -160 -160 -64 -160 -167 -160 -65 -160 -68 -160 -168 -160 -169 -160 -51 -160 -136 -160 -287 -160 -288 -160 -137 -160 -138 -160 -289 -160 -115 -160 -290 -160 -291 -160 -292 -160 -293 -160 -294 -160 -295 -160 -298 -160 -269 -160 -139 -160 -100 -160 -141 -160 -300 -160 -270 -160 -102 -160 -302 -160 -303 -160 -306 -160 -201 -160 -161 -161 -65 -161 -167 -161 -170 -161 -51 -161 -169 -161 -171 -161 -172 -161 -143 -161 -310 -161 -311 -161 -312 -161 -104 -161 -271 -161 -272 -161 -314 -161 -315 -161 -316 -161 -317 -161 -318 -161 -319 -161 -320 -161 -321 -161 -322 -161 -324 -161 -210 -161 -326 -161 -327 -161 -273 -161 -330 -161 -331 -161 -213 -161 -334 -161 -162 -162 -66 -162 -65 -162 -170 -162 -69 -162 -51 -162 -172 -162 -173 -162 -145 -162 -146 -162 -338 -162 -339 -162 -147 -162 -116 -162 -340 -162 -148 -162 -341 -162 -106 -162 -274 -162 -342 -162 -343 -162 -344 -162 -345 -162 -346 -162 -347 -162 -149 -162 -107 -162 -275 -162 -348 -162 -229 -162 -350 -162 -351 -162 -354 -162 -163 -163 -67 -163 -68 -163 -51 -163 -69 -163 -174 -163 -175 -163 -176 -163 -151 -163 -152 -163 -117 -163 -153 -163 -356 -163 -357 -163 -358 -163 -154 -163 -110 -163 -359 -163 -276 -163 -111 -163 -156 -163 -277 -163 -361 -163 -363 -163 -364 -163 -365 -163 -366 -163 -367 -163 -370 -163 -247 -163 -371 -163 -372 -163 -377 -163 -164 -164 -68 -164 -168 -164 -169 -164 -51 -164 -174 -164 -177 -164 -175 -164 -158 -164 -379 -164 -278 -164 -113 -164 -380 -164 -381 -164 -279 -164 -382 -164 -383 -164 -384 -164 -385 -164 -386 -164 -254 -164 -388 -164 -280 -164 -390 -164 -391 -164 -392 -164 -393 -164 -394 -164 -395 -164 -396 -164 -397 -164 -256 -164 -400 -164 -165 -165 -51 -165 -169 -165 -171 -165 -172 -165 -175 -165 -177 -165 -178 -165 -258 -165 -402 -165 -403 -165 -281 -165 -282 -165 -404 -165 -405 -165 -406 -165 -407 -165 -408 -165 -409 -165 -260 -165 -410 -165 -283 -165 -412 -165 -261 -165 -414 -165 -416 -165 -417 -165 -418 -165 -420 -165 -421 -165 -422 -165 -423 -165 -424 -165 -166 -166 -69 -166 -51 -166 -172 -166 -173 -166 -176 -166 -175 -166 -178 -166 -159 -166 -114 -166 -284 -166 -426 -166 -427 -166 -285 -166 -428 -166 -267 -166 -429 -166 -430 -166 -286 -166 -431 -166 -432 -166 -433 -166 -434 -166 -435 -166 -436 -166 -437 -166 -438 -166 -268 -166 -439 -166 -440 -166 -441 -166 -442 -166 -443 -166 -167 -167 -64 -167 -160 -167 -65 -167 -68 -167 -168 -167 -169 -167 -51 -167 -161 -167 -170 -167 -171 -167 -172 -167 -295 -167 -294 -167 -296 -167 -297 -167 -269 -167 -298 -167 -299 -167 -139 -167 -140 -167 -100 -167 -101 -167 -201 -167 -306 -167 -307 -167 -202 -167 -310 -167 -143 -167 -271 -167 -104 -167 -314 -167 -316 -167 -326 -167 -210 -167 -168 -168 -64 -168 -160 -168 -167 -168 -65 -168 -68 -168 -169 -168 -51 -168 -174 -168 -164 -168 -177 -168 -175 -168 -141 -168 -300 -168 -270 -168 -102 -168 -142 -168 -301 -168 -103 -168 -302 -168 -303 -168 -304 -168 -305 -168 -306 -168 -201 -168 -308 -168 -203 -168 -158 -168 -379 -168 -278 -168 -113 -168 -382 -168 -383 -168 -386 -168 -254 -168 -169 -169 -64 -169 -160 -169 -167 -169 -65 -169 -68 -169 -168 -169 -51 -169 -161 -169 -170 -169 -171 -169 -172 -169 -174 -169 -164 -169 -177 -169 -175 -169 -165 -169 -178 -169 -201 -169 -306 -169 -307 -169 -202 -169 -203 -169 -308 -169 -309 -169 -326 -169 -210 -169 -328 -169 -211 -169 -254 -169 -386 -169 -387 -169 -255 -169 -402 -169 -258 -169 -170 -170 -65 -170 -167 -170 -161 -170 -51 -170 -169 -170 -171 -170 -172 -170 -66 -170 -162 -170 -69 -170 -173 -170 -144 -170 -143 -170 -312 -170 -313 -170 -105 -170 -104 -170 -272 -170 -322 -170 -323 -170 -324 -170 -325 -170 -212 -170 -213 -170 -334 -170 -335 -170 -148 -170 -341 -170 -106 -170 -274 -170 -342 -170 -344 -170 -229 -170 -350 -170 -171 -171 -65 -171 -167 -171 -161 -171 -170 -171 -51 -171 -169 -171 -172 -171 -175 -171 -177 -171 -165 -171 -178 -171 -210 -171 -326 -171 -327 -171 -273 -171 -211 -171 -328 -171 -329 -171 -330 -171 -331 -171 -332 -171 -333 -171 -213 -171 -334 -171 -214 -171 -336 -171 -258 -171 -402 -171 -403 -171 -281 -171 -406 -171 -407 -171 -260 -171 -410 -171 -172 -172 -65 -172 -167 -172 -161 -172 -170 -172 -51 -172 -169 -172 -171 -172 -66 -172 -162 -172 -69 -172 -173 -172 -175 -172 -177 -172 -165 -172 -178 -172 -176 -172 -166 -172 -212 -172 -213 -172 -334 -172 -335 -172 -214 -172 -336 -172 -337 -172 -229 -172 -350 -172 -230 -172 -352 -172 -259 -172 -260 -172 -410 -172 -411 -172 -267 -172 -429 -172 -173 -173 -66 -173 -65 -173 -170 -173 -162 -173 -69 -173 -51 -173 -172 -173 -176 -173 -175 -173 -178 -173 -166 -173 -149 -173 -107 -173 -275 -173 -348 -173 -150 -173 -108 -173 -349 -173 -229 -173 -350 -173 -351 -173 -230 -173 -352 -173 -353 -173 -354 -173 -355 -173 -159 -173 -114 -173 -284 -173 -426 -173 -267 -173 -429 -173 -430 -173 -433 -173 -174 -174 -67 -174 -68 -174 -51 -174 -69 -174 -163 -174 -175 -174 -176 -174 -168 -174 -169 -174 -164 -174 -177 -174 -154 -174 -155 -174 -109 -174 -110 -174 -359 -174 -360 -174 -276 -174 -367 -174 -368 -174 -369 -174 -370 -174 -248 -174 -247 -174 -373 -174 -371 -174 -158 -174 -113 -174 -380 -174 -279 -174 -390 -174 -393 -174 -256 -174 -400 -174 -175 -175 -67 -175 -68 -175 -51 -175 -69 -175 -163 -175 -174 -175 -176 -175 -168 -175 -169 -175 -164 -175 -177 -175 -171 -175 -172 -175 -165 -175 -178 -175 -173 -175 -166 -175 -247 -175 -248 -175 -249 -175 -371 -175 -373 -175 -374 -175 -375 -175 -256 -175 -257 -175 -400 -175 -401 -175 -261 -175 -262 -175 -414 -175 -415 -175 -268 -175 -439 -175 -176 -176 -67 -176 -68 -176 -51 -176 -69 -176 -163 -176 -174 -176 -175 -176 -172 -176 -173 -176 -178 -176 -166 -176 -156 -176 -111 -176 -112 -176 -157 -176 -361 -176 -277 -176 -362 -176 -247 -176 -249 -176 -372 -176 -371 -176 -375 -176 -376 -176 -377 -176 -378 -176 -114 -176 -159 -176 -285 -176 -427 -176 -436 -176 -435 -176 -268 -176 -439 -176 -177 -177 -68 -177 -168 -177 -169 -177 -51 -177 -174 -177 -164 -177 -175 -177 -171 -177 -172 -177 -165 -177 -178 -177 -254 -177 -386 -177 -387 -177 -255 -177 -280 -177 -388 -177 -389 -177 -397 -177 -396 -177 -398 -177 -399 -177 -256 -177 -257 -177 -400 -177 -401 -177 -402 -177 -258 -177 -404 -177 -282 -177 -261 -177 -416 -177 -414 -177 -420 -177 -178 -178 -51 -178 -169 -178 -171 -178 -172 -178 -175 -178 -177 -178 -165 -178 -69 -178 -173 -178 -176 -178 -166 -178 -259 -178 -260 -178 -410 -178 -411 -178 -283 -178 -412 -178 -413 -178 -262 -178 -261 -178 -415 -178 -414 -178 -418 -178 -419 -178 -424 -178 -425 -178 -267 -178 -429 -178 -286 -178 -431 -178 -268 -178 -439 -178 -440 -178 -441 -178 -179 -179 -70 -179 -185 -179 -73 -179 -74 -179 -186 -179 -136 -179 -118 -179 -180 -179 -187 -179 -188 -179 -287 -179 -180 -180 -179 -180 -187 -180 -185 -180 -186 -180 -188 -180 -287 -180 -136 -180 -451 -180 -517 -180 -518 -180 -290 -180 -181 -181 -71 -181 -83 -181 -215 -181 -84 -181 -125 -181 -145 -181 -216 -181 -219 -181 -182 -181 -339 -181 -220 -181 -182 -182 -181 -182 -215 -182 -219 -182 -216 -182 -145 -182 -339 -182 -220 -182 -581 -182 -473 -182 -346 -182 -582 -182 -183 -183 -72 -183 -86 -183 -127 -183 -87 -183 -231 -183 -151 -183 -232 -183 -184 -183 -235 -183 -356 -183 -236 -183 -184 -184 -183 -184 -231 -184 -151 -184 -232 -184 -235 -184 -356 -184 -236 -184 -479 -184 -594 -184 -363 -184 -595 -184 -185 -185 -70 -185 -179 -185 -73 -185 -74 -185 -186 -185 -136 -185 -118 -185 -180 -185 -187 -185 -188 -185 -287 -185 -189 -185 -190 -185 -288 -185 -137 -185 -75 -185 -119 -185 -186 -186 -70 -186 -179 -186 -185 -186 -73 -186 -74 -186 -136 -186 -118 -186 -180 -186 -187 -186 -188 -186 -287 -186 -76 -186 -191 -186 -138 -186 -120 -186 -192 -186 -289 -186 -187 -187 -179 -187 -180 -187 -185 -187 -186 -187 -188 -187 -287 -187 -136 -187 -189 -187 -190 -187 -288 -187 -137 -187 -451 -187 -517 -187 -518 -187 -290 -187 -520 -187 -291 -187 -188 -188 -179 -188 -180 -188 -187 -188 -185 -188 -186 -188 -287 -188 -136 -188 -191 -188 -192 -188 -289 -188 -138 -188 -451 -188 -517 -188 -518 -188 -290 -188 -522 -188 -292 -188 -189 -189 -185 -189 -187 -189 -190 -189 -136 -189 -287 -189 -288 -189 -137 -189 -517 -189 -520 -189 -290 -189 -291 -189 -525 -189 -193 -189 -294 -189 -295 -189 -195 -189 -139 -189 -190 -190 -185 -190 -187 -190 -189 -190 -136 -190 -287 -190 -288 -190 -137 -190 -73 -190 -75 -190 -118 -190 -119 -190 -195 -190 -77 -190 -139 -190 -121 -190 -193 -190 -295 -190 -191 -191 -74 -191 -186 -191 -136 -191 -118 -191 -76 -191 -138 -191 -120 -191 -188 -191 -287 -191 -192 -191 -289 -191 -90 -191 -197 -191 -141 -191 -130 -191 -198 -191 -300 -191 -192 -192 -186 -192 -188 -192 -287 -192 -136 -192 -191 -192 -289 -192 -138 -192 -518 -192 -290 -192 -522 -192 -292 -192 -197 -192 -198 -192 -300 -192 -141 -192 -531 -192 -302 -192 -193 -193 -189 -193 -520 -193 -525 -193 -288 -193 -291 -193 -294 -193 -295 -193 -527 -193 -194 -193 -296 -193 -297 -193 -190 -193 -195 -193 -137 -193 -139 -193 -196 -193 -140 -193 -194 -194 -193 -194 -525 -194 -527 -194 -295 -194 -294 -194 -296 -194 -297 -194 -195 -194 -196 -194 -139 -194 -140 -194 -206 -194 -204 -194 -310 -194 -143 -194 -541 -194 -314 -194 -195 -195 -75 -195 -190 -195 -77 -195 -119 -195 -137 -195 -139 -195 -121 -195 -189 -195 -193 -195 -288 -195 -295 -195 -194 -195 -196 -195 -297 -195 -140 -195 -78 -195 -122 -195 -196 -196 -195 -196 -193 -196 -194 -196 -139 -196 -295 -196 -297 -196 -140 -196 -77 -196 -78 -196 -121 -196 -122 -196 -204 -196 -205 -196 -143 -196 -144 -196 -206 -196 -310 -196 -197 -197 -76 -197 -191 -197 -138 -197 -120 -197 -90 -197 -141 -197 -130 -197 -192 -197 -289 -197 -198 -197 -300 -197 -93 -197 -199 -197 -142 -197 -132 -197 -200 -197 -301 -197 -198 -198 -191 -198 -192 -198 -289 -198 -138 -198 -197 -198 -300 -198 -141 -198 -199 -198 -200 -198 -301 -198 -142 -198 -522 -198 -292 -198 -531 -198 -302 -198 -534 -198 -304 -198 -199 -199 -90 -199 -197 -199 -141 -199 -130 -199 -93 -199 -142 -199 -132 -199 -198 -199 -300 -199 -200 -199 -301 -199 -240 -199 -250 -199 -158 -199 -155 -199 -251 -199 -379 -199 -200 -200 -197 -200 -198 -200 -300 -200 -141 -200 -199 -200 -301 -200 -142 -200 -531 -200 -302 -200 -534 -200 -304 -200 -250 -200 -251 -200 -379 -200 -158 -200 -618 -200 -382 -200 -201 -201 -160 -201 -293 -201 -298 -201 -269 -201 -270 -201 -303 -201 -306 -201 -299 -201 -167 -201 -307 -201 -202 -201 -168 -201 -305 -201 -308 -201 -203 -201 -309 -201 -169 -201 -202 -202 -269 -202 -298 -202 -299 -202 -167 -202 -201 -202 -306 -202 -307 -202 -203 -202 -308 -202 -309 -202 -169 -202 -316 -202 -271 -202 -326 -202 -210 -202 -328 -202 -211 -202 -203 -203 -270 -203 -303 -203 -306 -203 -201 -203 -168 -203 -305 -203 -308 -203 -307 -203 -202 -203 -309 -203 -169 -203 -278 -203 -383 -203 -386 -203 -254 -203 -387 -203 -255 -203 -204 -204 -78 -204 -196 -204 -205 -204 -122 -204 -140 -204 -143 -204 -144 -204 -194 -204 -206 -204 -297 -204 -310 -204 -207 -204 -208 -204 -311 -204 -312 -204 -209 -204 -313 -204 -205 -205 -78 -205 -196 -205 -204 -205 -122 -205 -140 -205 -143 -205 -144 -205 -208 -205 -209 -205 -312 -205 -313 -205 -79 -205 -223 -205 -123 -205 -148 -205 -224 -205 -341 -205 -206 -206 -196 -206 -194 -206 -204 -206 -140 -206 -297 -206 -310 -206 -143 -206 -207 -206 -208 -206 -311 -206 -312 -206 -527 -206 -541 -206 -296 -206 -314 -206 -543 -206 -315 -206 -207 -207 -204 -207 -206 -207 -208 -207 -143 -207 -310 -207 -311 -207 -312 -207 -541 -207 -543 -207 -314 -207 -315 -207 -547 -207 -548 -207 -318 -207 -319 -207 -555 -207 -322 -207 -208 -208 -204 -208 -206 -208 -207 -208 -143 -208 -310 -208 -311 -208 -312 -208 -205 -208 -209 -208 -144 -208 -313 -208 -555 -208 -556 -208 -322 -208 -323 -208 -548 -208 -319 -208 -209 -209 -205 -209 -204 -209 -208 -209 -144 -209 -143 -209 -312 -209 -313 -209 -555 -209 -556 -209 -322 -209 -323 -209 -223 -209 -224 -209 -148 -209 -341 -209 -575 -209 -342 -209 -210 -210 -167 -210 -299 -210 -316 -210 -271 -210 -202 -210 -307 -210 -326 -210 -317 -210 -161 -210 -327 -210 -273 -210 -169 -210 -309 -210 -328 -210 -211 -210 -329 -210 -171 -210 -211 -211 -202 -211 -307 -211 -326 -211 -210 -211 -169 -211 -309 -211 -328 -211 -327 -211 -273 -211 -329 -211 -171 -211 -255 -211 -387 -211 -402 -211 -258 -211 -403 -211 -281 -211 -212 -212 -170 -212 -272 -212 -324 -212 -325 -212 -213 -212 -334 -212 -335 -212 -172 -212 -214 -212 -336 -212 -337 -212 -274 -212 -344 -212 -229 -212 -350 -212 -230 -212 -352 -212 -213 -213 -170 -213 -272 -213 -324 -213 -325 -213 -212 -213 -334 -213 -335 -213 -161 -213 -321 -213 -273 -213 -331 -213 -172 -213 -214 -213 -336 -213 -337 -213 -171 -213 -333 -213 -214 -214 -212 -214 -213 -214 -334 -214 -335 -214 -172 -214 -336 -214 -337 -214 -273 -214 -331 -214 -171 -214 -333 -214 -259 -214 -260 -214 -410 -214 -411 -214 -281 -214 -407 -214 -215 -215 -71 -215 -83 -215 -181 -215 -84 -215 -125 -215 -145 -215 -216 -215 -80 -215 -217 -215 -124 -215 -146 -215 -218 -215 -219 -215 -338 -215 -339 -215 -182 -215 -220 -215 -216 -216 -71 -216 -83 -216 -215 -216 -181 -216 -84 -216 -125 -216 -145 -216 -219 -216 -182 -216 -339 -216 -220 -216 -85 -216 -126 -216 -147 -216 -221 -216 -340 -216 -222 -216 -217 -217 -83 -217 -80 -217 -215 -217 -125 -217 -124 -217 -146 -217 -145 -217 -218 -217 -219 -217 -338 -217 -339 -217 -79 -217 -223 -217 -123 -217 -148 -217 -224 -217 -341 -217 -218 -218 -215 -218 -217 -218 -219 -218 -145 -218 -146 -218 -338 -218 -339 -218 -223 -218 -224 -218 -148 -218 -341 -218 -575 -218 -576 -218 -342 -218 -343 -218 -581 -218 -346 -218 -219 -219 -215 -219 -217 -219 -218 -219 -145 -219 -146 -219 -338 -219 -339 -219 -181 -219 -182 -219 -216 -219 -220 -219 -581 -219 -473 -219 -346 -219 -582 -219 -576 -219 -343 -219 -220 -220 -181 -220 -215 -220 -219 -220 -182 -220 -216 -220 -145 -220 -339 -220 -221 -220 -147 -220 -340 -220 -222 -220 -581 -220 -473 -220 -346 -220 -582 -220 -347 -220 -584 -220 -221 -221 -84 -221 -125 -221 -145 -221 -216 -221 -85 -221 -126 -221 -147 -221 -339 -221 -220 -221 -340 -221 -222 -221 -96 -221 -133 -221 -149 -221 -225 -221 -348 -221 -226 -221 -222 -222 -216 -222 -145 -222 -339 -222 -220 -222 -221 -222 -147 -222 -340 -222 -346 -222 -582 -222 -347 -222 -584 -222 -225 -222 -149 -222 -348 -222 -226 -222 -354 -222 -590 -222 -223 -223 -80 -223 -79 -223 -217 -223 -124 -223 -123 -223 -148 -223 -146 -223 -78 -223 -205 -223 -122 -223 -144 -223 -209 -223 -224 -223 -313 -223 -341 -223 -218 -223 -338 -223 -224 -224 -223 -224 -205 -224 -209 -224 -148 -224 -144 -224 -313 -224 -341 -224 -217 -224 -218 -224 -146 -224 -338 -224 -575 -224 -576 -224 -342 -224 -343 -224 -556 -224 -323 -224 -225 -225 -85 -225 -126 -225 -147 -225 -221 -225 -96 -225 -133 -225 -149 -225 -340 -225 -222 -225 -348 -225 -226 -225 -99 -225 -135 -225 -150 -225 -227 -225 -349 -225 -228 -225 -226 -226 -221 -226 -147 -226 -340 -226 -222 -226 -225 -226 -149 -226 -348 -226 -227 -226 -150 -226 -349 -226 -228 -226 -347 -226 -584 -226 -354 -226 -590 -226 -355 -226 -592 -226 -227 -227 -96 -227 -133 -227 -149 -227 -225 -227 -99 -227 -135 -227 -150 -227 -348 -227 -226 -227 -349 -227 -228 -227 -244 -227 -157 -227 -159 -227 -263 -227 -426 -227 -264 -227 -228 -228 -225 -228 -149 -228 -348 -228 -226 -228 -227 -228 -150 -228 -349 -228 -354 -228 -590 -228 -355 -228 -592 -228 -263 -228 -159 -228 -426 -228 -264 -228 -433 -228 -684 -228 -229 -229 -162 -229 -274 -229 -344 -229 -345 -229 -275 -229 -350 -229 -351 -229 -170 -229 -325 -229 -212 -229 -335 -229 -173 -229 -230 -229 -352 -229 -353 -229 -172 -229 -337 -229 -230 -230 -275 -230 -229 -230 -350 -230 -351 -230 -173 -230 -352 -230 -353 -230 -212 -230 -335 -230 -172 -230 -337 -230 -284 -230 -267 -230 -429 -230 -430 -230 -259 -230 -411 -230 -231 -231 -72 -231 -86 -231 -127 -231 -87 -231 -183 -231 -151 -231 -232 -231 -88 -231 -128 -231 -233 -231 -152 -231 -184 -231 -235 -231 -356 -231 -236 -231 -237 -231 -357 -231 -232 -232 -72 -232 -86 -232 -127 -232 -87 -232 -183 -232 -231 -232 -151 -232 -129 -232 -89 -232 -153 -232 -234 -232 -184 -232 -235 -232 -356 -232 -236 -232 -358 -232 -238 -232 -233 -233 -86 -233 -88 -233 -128 -233 -127 -233 -231 -233 -152 -233 -151 -233 -235 -233 -237 -233 -357 -233 -356 -233 -92 -233 -131 -233 -239 -233 -154 -233 -241 -233 -359 -233 -234 -234 -87 -234 -127 -234 -129 -234 -89 -234 -232 -234 -151 -234 -153 -234 -236 -234 -356 -234 -358 -234 -238 -234 -134 -234 -97 -234 -156 -234 -243 -234 -361 -234 -245 -234 -235 -235 -183 -235 -231 -235 -151 -235 -232 -235 -184 -235 -356 -235 -236 -235 -233 -235 -152 -235 -237 -235 -357 -235 -479 -235 -594 -235 -363 -235 -595 -235 -596 -235 -364 -235 -236 -236 -183 -236 -231 -236 -151 -236 -232 -236 -184 -236 -235 -236 -356 -236 -153 -236 -234 -236 -358 -236 -238 -236 -479 -236 -594 -236 -363 -236 -595 -236 -366 -236 -597 -236 -237 -237 -231 -237 -233 -237 -152 -237 -151 -237 -235 -237 -357 -237 -356 -237 -239 -237 -154 -237 -241 -237 -359 -237 -594 -237 -596 -237 -364 -237 -363 -237 -602 -237 -367 -237 -238 -238 -232 -238 -151 -238 -153 -238 -234 -238 -236 -238 -356 -238 -358 -238 -156 -238 -243 -238 -361 -238 -245 -238 -595 -238 -363 -238 -366 -238 -597 -238 -377 -238 -614 -238 -239 -239 -88 -239 -92 -239 -131 -239 -128 -239 -233 -239 -154 -239 -152 -239 -93 -239 -132 -239 -240 -239 -155 -239 -237 -239 -241 -239 -359 -239 -357 -239 -242 -239 -360 -239 -240 -240 -92 -240 -93 -240 -132 -240 -131 -240 -239 -240 -155 -240 -154 -240 -241 -240 -242 -240 -360 -240 -359 -240 -199 -240 -142 -240 -250 -240 -158 -240 -252 -240 -380 -240 -241 -241 -233 -241 -239 -241 -154 -241 -152 -241 -237 -241 -359 -241 -357 -241 -240 -241 -155 -241 -242 -241 -360 -241 -596 -241 -602 -241 -367 -241 -364 -241 -603 -241 -368 -241 -242 -242 -239 -242 -240 -242 -155 -242 -154 -242 -241 -242 -360 -242 -359 -242 -602 -242 -603 -242 -368 -242 -367 -242 -250 -242 -158 -242 -252 -242 -380 -242 -628 -242 -390 -242 -243 -243 -89 -243 -129 -243 -134 -243 -97 -243 -234 -243 -153 -243 -156 -243 -135 -243 -99 -243 -157 -243 -244 -243 -238 -243 -358 -243 -361 -243 -245 -243 -362 -243 -246 -243 -244 -244 -97 -244 -134 -244 -135 -244 -99 -244 -243 -244 -156 -244 -157 -244 -245 -244 -361 -244 -362 -244 -246 -244 -150 -244 -227 -244 -159 -244 -263 -244 -427 -244 -265 -244 -245 -245 -234 -245 -153 -245 -156 -245 -243 -245 -238 -245 -358 -245 -361 -245 -157 -245 -244 -245 -362 -245 -246 -245 -597 -245 -366 -245 -377 -245 -614 -245 -378 -245 -615 -245 -246 -246 -243 -246 -156 -246 -157 -246 -244 -246 -245 -246 -361 -246 -362 -246 -614 -246 -377 -246 -378 -246 -615 -246 -159 -246 -263 -246 -427 -246 -265 -246 -435 -246 -688 -246 -247 -247 -163 -247 -276 -247 -277 -247 -365 -247 -370 -247 -371 -247 -372 -247 -174 -247 -248 -247 -369 -247 -373 -247 -175 -247 -249 -247 -374 -247 -375 -247 -176 -247 -376 -247 -248 -248 -276 -248 -174 -248 -247 -248 -370 -248 -369 -248 -373 -248 -371 -248 -175 -248 -249 -248 -374 -248 -375 -248 -279 -248 -256 -248 -393 -248 -400 -248 -257 -248 -401 -248 -249 -249 -247 -249 -248 -249 -175 -249 -371 -249 -373 -249 -374 -249 -375 -249 -277 -249 -176 -249 -372 -249 -376 -249 -268 -249 -285 -249 -439 -249 -436 -249 -262 -249 -415 -249 -250 -250 -93 -250 -199 -250 -142 -250 -132 -250 -240 -250 -158 -250 -155 -250 -200 -250 -301 -250 -251 -250 -379 -250 -242 -250 -252 -250 -380 -250 -360 -250 -253 -250 -381 -250 -251 -251 -199 -251 -200 -251 -301 -251 -142 -251 -250 -251 -379 -251 -158 -251 -252 -251 -253 -251 -381 -251 -380 -251 -534 -251 -304 -251 -618 -251 -382 -251 -621 -251 -384 -251 -252 -252 -240 -252 -250 -252 -158 -252 -155 -252 -242 -252 -380 -252 -360 -252 -251 -252 -379 -252 -253 -252 -381 -252 -603 -252 -628 -252 -390 -252 -368 -252 -629 -252 -391 -252 -253 -253 -250 -253 -251 -253 -379 -253 -158 -253 -252 -253 -381 -253 -380 -253 -618 -253 -382 -253 -621 -253 -384 -253 -628 -253 -629 -253 -391 -253 -390 -253 -634 -253 -394 -253 -254 -254 -168 -254 -305 -254 -308 -254 -203 -254 -278 -254 -383 -254 -386 -254 -309 -254 -169 -254 -387 -254 -255 -254 -164 -254 -385 -254 -388 -254 -280 -254 -389 -254 -177 -254 -255 -255 -203 -255 -308 -255 -309 -255 -169 -255 -254 -255 -386 -255 -387 -255 -280 -255 -388 -255 -389 -255 -177 -255 -328 -255 -211 -255 -402 -255 -258 -255 -404 -255 -282 -255 -256 -256 -174 -256 -279 -256 -248 -256 -369 -256 -393 -256 -400 -256 -373 -256 -164 -256 -280 -256 -392 -256 -397 -256 -177 -256 -257 -256 -399 -256 -401 -256 -175 -256 -374 -256 -257 -257 -256 -257 -280 -257 -177 -257 -400 -257 -397 -257 -399 -257 -401 -257 -248 -257 -175 -257 -373 -257 -374 -257 -261 -257 -262 -257 -414 -257 -415 -257 -282 -257 -416 -257 -258 -258 -169 -258 -309 -258 -328 -258 -211 -258 -255 -258 -387 -258 -402 -258 -329 -258 -171 -258 -403 -258 -281 -258 -177 -258 -389 -258 -404 -258 -282 -258 -405 -258 -165 -258 -259 -259 -172 -259 -214 -259 -336 -259 -337 -259 -260 -259 -410 -259 -411 -259 -178 -259 -283 -259 -412 -259 -413 -259 -230 -259 -352 -259 -267 -259 -429 -259 -286 -259 -431 -259 -260 -260 -172 -260 -214 -260 -336 -260 -337 -260 -259 -260 -410 -260 -411 -260 -171 -260 -333 -260 -281 -260 -407 -260 -178 -260 -283 -260 -412 -260 -413 -260 -165 -260 -409 -260 -261 -261 -175 -261 -257 -261 -262 -261 -374 -261 -401 -261 -414 -261 -415 -261 -177 -261 -282 -261 -399 -261 -416 -261 -165 -261 -283 -261 -417 -261 -418 -261 -178 -261 -419 -261 -262 -262 -175 -262 -257 -262 -261 -262 -374 -262 -401 -262 -414 -262 -415 -262 -283 -262 -178 -262 -418 -262 -419 -262 -249 -262 -268 -262 -375 -262 -439 -262 -286 -262 -440 -262 -263 -263 -99 -263 -135 -263 -150 -263 -227 -263 -244 -263 -157 -263 -159 -263 -349 -263 -228 -263 -426 -263 -264 -263 -246 -263 -362 -263 -427 -263 -265 -263 -428 -263 -266 -263 -264 -264 -227 -264 -150 -264 -349 -264 -228 -264 -263 -264 -159 -264 -426 -264 -265 -264 -427 -264 -428 -264 -266 -264 -355 -264 -592 -264 -433 -264 -684 -264 -434 -264 -686 -264 -265 -265 -244 -265 -157 -265 -159 -265 -263 -265 -246 -265 -362 -265 -427 -265 -426 -265 -264 -265 -428 -265 -266 -265 -615 -265 -378 -265 -435 -265 -688 -265 -438 -265 -689 -265 -266 -266 -263 -266 -159 -266 -426 -266 -264 -266 -265 -266 -427 -266 -428 -266 -433 -266 -684 -266 -434 -266 -686 -266 -688 -266 -435 -266 -438 -266 -689 -266 -443 -266 -700 -266 -267 -267 -173 -267 -230 -267 -352 -267 -353 -267 -284 -267 -429 -267 -430 -267 -172 -267 -337 -267 -259 -267 -411 -267 -166 -267 -286 -267 -431 -267 -432 -267 -178 -267 -413 -267 -268 -268 -176 -268 -249 -268 -285 -268 -376 -268 -375 -268 -439 -268 -436 -268 -175 -268 -262 -268 -374 -268 -415 -268 -178 -268 -286 -268 -419 -268 -440 -268 -166 -268 -437 -268 -269 -269 -288 -269 -291 -269 -294 -269 -295 -269 -160 -269 -293 -269 -298 -269 -296 -269 -297 -269 -299 -269 -167 -269 -137 -269 -139 -269 -115 -269 -100 -269 -140 -269 -101 -269 -270 -269 -303 -269 -306 -269 -201 -269 -307 -269 -202 -269 -270 -270 -138 -270 -289 -270 -160 -270 -115 -270 -141 -270 -300 -270 -102 -270 -142 -270 -301 -270 -168 -270 -103 -270 -292 -270 -293 -270 -302 -270 -303 -270 -304 -270 -305 -270 -298 -270 -269 -270 -306 -270 -201 -270 -308 -270 -203 -270 -271 -271 -140 -271 -297 -271 -310 -271 -143 -271 -101 -271 -167 -271 -104 -271 -311 -271 -312 -271 -161 -271 -272 -271 -296 -271 -314 -271 -299 -271 -316 -271 -315 -271 -317 -271 -202 -271 -307 -271 -326 -271 -210 -271 -327 -271 -273 -271 -272 -272 -143 -272 -310 -272 -311 -272 -312 -272 -104 -272 -271 -272 -161 -272 -144 -272 -313 -272 -105 -272 -170 -272 -322 -272 -323 -272 -324 -272 -325 -272 -319 -272 -321 -272 -212 -272 -213 -272 -334 -272 -335 -272 -273 -272 -331 -272 -273 -273 -271 -273 -316 -273 -317 -273 -161 -273 -210 -273 -326 -273 -327 -273 -211 -273 -328 -273 -329 -273 -171 -273 -320 -273 -321 -273 -330 -273 -331 -273 -332 -273 -333 -273 -272 -273 -324 -273 -213 -273 -334 -273 -214 -273 -336 -273 -274 -274 -148 -274 -144 -274 -313 -274 -341 -274 -106 -274 -105 -274 -170 -274 -146 -274 -338 -274 -116 -274 -162 -274 -342 -274 -343 -274 -344 -274 -345 -274 -323 -274 -325 -274 -275 -274 -229 -274 -350 -274 -351 -274 -212 -274 -335 -274 -275 -275 -147 -275 -116 -275 -162 -275 -340 -275 -149 -275 -107 -275 -348 -275 -150 -275 -108 -275 -173 -275 -349 -275 -274 -275 -344 -275 -345 -275 -229 -275 -350 -275 -351 -275 -230 -275 -352 -275 -353 -275 -347 -275 -354 -275 -355 -275 -276 -276 -154 -276 -155 -276 -109 -276 -110 -276 -359 -276 -360 -276 -174 -276 -152 -276 -117 -276 -357 -276 -163 -276 -367 -276 -368 -276 -369 -276 -370 -276 -364 -276 -365 -276 -247 -276 -277 -276 -371 -276 -372 -276 -248 -276 -373 -276 -277 -277 -153 -277 -117 -277 -111 -277 -156 -277 -358 -277 -163 -277 -361 -277 -112 -277 -157 -277 -176 -277 -362 -277 -276 -277 -247 -277 -365 -277 -370 -277 -371 -277 -372 -277 -249 -277 -375 -277 -376 -277 -366 -277 -377 -277 -378 -277 -278 -278 -142 -278 -301 -278 -168 -278 -103 -278 -158 -278 -379 -278 -113 -278 -380 -278 -381 -278 -164 -278 -279 -278 -304 -278 -305 -278 -382 -278 -383 -278 -384 -278 -385 -278 -308 -278 -203 -278 -386 -278 -254 -278 -388 -278 -280 -278 -279 -279 -158 -279 -379 -279 -278 -279 -113 -279 -380 -279 -381 -279 -164 -279 -155 -279 -109 -279 -360 -279 -174 -279 -390 -279 -391 -279 -392 -279 -393 -279 -368 -279 -369 -279 -256 -279 -248 -279 -400 -279 -373 -279 -280 -279 -397 -279 -280 -280 -278 -280 -383 -280 -386 -280 -254 -280 -164 -280 -385 -280 -388 -280 -387 -280 -255 -280 -389 -280 -177 -280 -392 -280 -395 -280 -396 -280 -397 -280 -398 -280 -399 -280 -279 -280 -256 -280 -393 -280 -400 -280 -257 -280 -401 -280 -281 -281 -211 -281 -328 -281 -329 -281 -171 -281 -258 -281 -402 -281 -403 -281 -282 -281 -404 -281 -405 -281 -165 -281 -332 -281 -333 -281 -406 -281 -407 -281 -408 -281 -409 -281 -214 -281 -336 -281 -260 -281 -410 -281 -283 -281 -412 -281 -282 -282 -255 -282 -387 -282 -402 -282 -258 -282 -177 -282 -389 -282 -404 -282 -403 -282 -281 -282 -405 -282 -165 -282 -257 -282 -261 -282 -401 -282 -399 -282 -416 -282 -414 -282 -283 -282 -417 -282 -418 -282 -398 -282 -420 -282 -421 -282 -283 -283 -259 -283 -260 -283 -410 -283 -411 -283 -178 -283 -412 -283 -413 -283 -281 -283 -407 -283 -165 -283 -409 -283 -261 -283 -282 -283 -414 -283 -416 -283 -417 -283 -418 -283 -262 -283 -415 -283 -419 -283 -424 -283 -425 -283 -423 -283 -284 -284 -150 -284 -108 -284 -173 -284 -349 -284 -159 -284 -114 -284 -426 -284 -427 -284 -285 -284 -166 -284 -428 -284 -230 -284 -352 -284 -353 -284 -267 -284 -429 -284 -430 -284 -286 -284 -431 -284 -432 -284 -355 -284 -433 -284 -434 -284 -285 -285 -157 -285 -112 -285 -114 -285 -159 -285 -362 -285 -176 -285 -427 -285 -284 -285 -426 -285 -166 -285 -428 -285 -378 -285 -376 -285 -436 -285 -435 -285 -437 -285 -438 -285 -249 -285 -268 -285 -375 -285 -439 -285 -286 -285 -440 -285 -286 -286 -284 -286 -267 -286 -429 -286 -430 -286 -166 -286 -431 -286 -432 -286 -259 -286 -411 -286 -178 -286 -413 -286 -268 -286 -262 -286 -439 -286 -415 -286 -419 -286 -440 -286 -285 -286 -436 -286 -437 -286 -441 -286 -442 -286 -425 -286 -287 -287 -179 -287 -180 -287 -187 -287 -185 -287 -186 -287 -188 -287 -136 -287 -189 -287 -190 -287 -288 -287 -137 -287 -191 -287 -192 -287 -289 -287 -138 -287 -160 -287 -115 -287 -451 -287 -517 -287 -518 -287 -290 -287 -520 -287 -291 -287 -522 -287 -292 -287 -293 -287 -288 -288 -185 -288 -187 -288 -189 -288 -190 -288 -136 -288 -287 -288 -137 -288 -138 -288 -289 -288 -160 -288 -115 -288 -517 -288 -520 -288 -290 -288 -291 -288 -292 -288 -293 -288 -525 -288 -193 -288 -294 -288 -295 -288 -298 -288 -269 -288 -195 -288 -139 -288 -100 -288 -289 -289 -186 -289 -188 -289 -287 -289 -136 -289 -191 -289 -192 -289 -138 -289 -288 -289 -137 -289 -160 -289 -115 -289 -518 -289 -290 -289 -522 -289 -292 -289 -291 -289 -293 -289 -197 -289 -198 -289 -300 -289 -141 -289 -270 -289 -102 -289 -531 -289 -302 -289 -303 -289 -290 -290 -180 -290 -451 -290 -517 -290 -187 -290 -188 -290 -518 -290 -287 -290 -444 -290 -452 -290 -453 -290 -519 -290 -454 -290 -520 -290 -521 -290 -291 -290 -189 -290 -288 -290 -192 -290 -522 -290 -292 -290 -289 -290 -455 -290 -523 -290 -524 -290 -293 -290 -160 -290 -291 -291 -517 -291 -452 -291 -454 -291 -520 -291 -290 -291 -519 -291 -521 -291 -187 -291 -189 -291 -287 -291 -288 -291 -292 -291 -523 -291 -524 -291 -293 -291 -289 -291 -160 -291 -525 -291 -193 -291 -294 -291 -295 -291 -456 -291 -526 -291 -298 -291 -269 -291 -529 -291 -292 -292 -188 -292 -518 -292 -290 -292 -287 -292 -192 -292 -522 -292 -289 -292 -453 -292 -519 -292 -455 -292 -523 -292 -521 -292 -291 -292 -524 -292 -293 -292 -288 -292 -160 -292 -198 -292 -531 -292 -302 -292 -300 -292 -458 -292 -532 -292 -533 -292 -303 -292 -270 -292 -293 -293 -290 -293 -519 -293 -521 -293 -291 -293 -292 -293 -523 -293 -524 -293 -287 -293 -288 -293 -289 -293 -160 -293 -294 -293 -295 -293 -298 -293 -269 -293 -526 -293 -529 -293 -302 -293 -532 -293 -533 -293 -303 -293 -300 -293 -270 -293 -306 -293 -201 -293 -537 -293 -294 -294 -189 -294 -520 -294 -525 -294 -193 -294 -288 -294 -291 -294 -295 -294 -454 -294 -456 -294 -521 -294 -526 -294 -457 -294 -527 -294 -528 -294 -296 -294 -194 -294 -297 -294 -160 -294 -293 -294 -298 -294 -269 -294 -524 -294 -529 -294 -530 -294 -299 -294 -167 -294 -295 -295 -189 -295 -520 -295 -525 -295 -193 -295 -288 -295 -291 -295 -294 -295 -527 -295 -194 -295 -296 -295 -297 -295 -160 -295 -293 -295 -298 -295 -269 -295 -299 -295 -167 -295 -190 -295 -195 -295 -137 -295 -139 -295 -196 -295 -140 -295 -115 -295 -100 -295 -101 -295 -296 -296 -525 -296 -456 -296 -457 -296 -527 -296 -294 -296 -526 -296 -528 -296 -193 -296 -194 -296 -295 -296 -297 -296 -298 -296 -529 -296 -530 -296 -299 -296 -269 -296 -167 -296 -541 -296 -206 -296 -314 -296 -310 -296 -460 -296 -542 -296 -316 -296 -271 -296 -545 -296 -297 -297 -193 -297 -525 -297 -527 -297 -194 -297 -295 -297 -294 -297 -296 -297 -269 -297 -298 -297 -299 -297 -167 -297 -195 -297 -196 -297 -139 -297 -140 -297 -100 -297 -101 -297 -206 -297 -204 -297 -310 -297 -143 -297 -271 -297 -104 -297 -541 -297 -314 -297 -316 -297 -298 -298 -288 -298 -291 -298 -294 -298 -295 -298 -160 -298 -293 -298 -269 -298 -521 -298 -526 -298 -524 -298 -529 -298 -528 -298 -296 -298 -530 -298 -299 -298 -297 -298 -167 -298 -270 -298 -303 -298 -306 -298 -201 -298 -533 -298 -537 -298 -538 -298 -307 -298 -202 -298 -299 -299 -294 -299 -526 -299 -528 -299 -296 -299 -298 -299 -529 -299 -530 -299 -295 -299 -297 -299 -269 -299 -167 -299 -306 -299 -537 -299 -538 -299 -307 -299 -201 -299 -202 -299 -314 -299 -310 -299 -316 -299 -271 -299 -542 -299 -545 -299 -326 -299 -210 -299 -561 -299 -300 -300 -191 -300 -192 -300 -289 -300 -138 -300 -197 -300 -198 -300 -141 -300 -160 -300 -115 -300 -270 -300 -102 -300 -199 -300 -200 -300 -301 -300 -142 -300 -168 -300 -103 -300 -522 -300 -292 -300 -531 -300 -302 -300 -293 -300 -303 -300 -534 -300 -304 -300 -305 -300 -301 -301 -197 -301 -198 -301 -300 -301 -141 -301 -199 -301 -200 -301 -142 -301 -270 -301 -102 -301 -168 -301 -103 -301 -531 -301 -302 -301 -534 -301 -304 -301 -303 -301 -305 -301 -250 -301 -251 -301 -379 -301 -158 -301 -278 -301 -113 -301 -618 -301 -382 -301 -383 -301 -302 -302 -192 -302 -522 -302 -292 -302 -289 -302 -198 -302 -531 -302 -300 -302 -455 -302 -523 -302 -458 -302 -532 -302 -524 -302 -293 -302 -533 -302 -303 -302 -160 -302 -270 -302 -200 -302 -534 -302 -304 -302 -301 -302 -459 -302 -535 -302 -536 -302 -305 -302 -168 -302 -303 -303 -292 -303 -523 -303 -524 -303 -293 -303 -302 -303 -532 -303 -533 -303 -289 -303 -160 -303 -300 -303 -270 -303 -304 -303 -535 -303 -536 -303 -305 -303 -301 -303 -168 -303 -298 -303 -269 -303 -306 -303 -201 -303 -529 -303 -537 -303 -308 -303 -203 -303 -539 -303 -304 -304 -198 -304 -531 -304 -302 -304 -300 -304 -200 -304 -534 -304 -301 -304 -458 -304 -532 -304 -459 -304 -535 -304 -533 -304 -303 -304 -536 -304 -305 -304 -270 -304 -168 -304 -251 -304 -618 -304 -382 -304 -379 -304 -488 -304 -619 -304 -620 -304 -383 -304 -278 -304 -305 -305 -302 -305 -532 -305 -533 -305 -303 -305 -304 -305 -535 -305 -536 -305 -300 -305 -270 -305 -301 -305 -168 -305 -306 -305 -201 -305 -308 -305 -203 -305 -537 -305 -539 -305 -382 -305 -619 -305 -620 -305 -383 -305 -379 -305 -278 -305 -386 -305 -254 -305 -624 -305 -306 -306 -160 -306 -293 -306 -298 -306 -269 -306 -270 -306 -303 -306 -201 -306 -524 -306 -529 -306 -533 -306 -537 -306 -530 -306 -299 -306 -538 -306 -307 -306 -167 -306 -202 -306 -168 -306 -305 -306 -308 -306 -203 -306 -536 -306 -539 -306 -540 -306 -309 -306 -169 -306 -307 -307 -298 -307 -529 -307 -530 -307 -299 -307 -306 -307 -537 -307 -538 -307 -269 -307 -167 -307 -201 -307 -202 -307 -308 -307 -539 -307 -540 -307 -309 -307 -203 -307 -169 -307 -316 -307 -271 -307 -326 -307 -210 -307 -545 -307 -561 -307 -328 -307 -211 -307 -563 -307 -308 -308 -270 -308 -303 -308 -306 -308 -201 -308 -168 -308 -305 -308 -203 -308 -533 -308 -537 -308 -536 -308 -539 -308 -538 -308 -307 -308 -540 -308 -309 -308 -202 -308 -169 -308 -278 -308 -383 -308 -386 -308 -254 -308 -620 -308 -624 -308 -625 -308 -387 -308 -255 -308 -309 -309 -306 -309 -537 -309 -538 -309 -307 -309 -308 -309 -539 -309 -540 -309 -201 -309 -202 -309 -203 -309 -169 -309 -326 -309 -210 -309 -328 -309 -211 -309 -561 -309 -563 -309 -386 -309 -624 -309 -625 -309 -387 -309 -254 -309 -255 -309 -402 -309 -258 -309 -647 -309 -310 -310 -196 -310 -194 -310 -206 -310 -204 -310 -140 -310 -297 -310 -143 -310 -207 -310 -208 -310 -311 -310 -312 -310 -101 -310 -167 -310 -271 -310 -104 -310 -161 -310 -272 -310 -527 -310 -541 -310 -296 -310 -314 -310 -543 -310 -315 -310 -299 -310 -316 -310 -317 -310 -311 -311 -204 -311 -206 -311 -207 -311 -208 -311 -143 -311 -310 -311 -312 -311 -104 -311 -271 -311 -161 -311 -272 -311 -541 -311 -543 -311 -314 -311 -315 -311 -316 -311 -317 -311 -547 -311 -548 -311 -318 -311 -319 -311 -320 -311 -321 -311 -555 -311 -322 -311 -324 -311 -312 -312 -204 -312 -206 -312 -207 -312 -208 -312 -143 -312 -310 -312 -311 -312 -205 -312 -209 -312 -144 -312 -313 -312 -104 -312 -271 -312 -161 -312 -272 -312 -105 -312 -170 -312 -555 -312 -556 -312 -322 -312 -323 -312 -548 -312 -319 -312 -324 -312 -325 -312 -321 -312 -313 -313 -205 -313 -204 -313 -208 -313 -209 -313 -144 -313 -143 -313 -312 -313 -105 -313 -104 -313 -272 -313 -170 -313 -555 -313 -556 -313 -322 -313 -323 -313 -324 -313 -325 -313 -223 -313 -224 -313 -148 -313 -341 -313 -106 -313 -274 -313 -575 -313 -342 -313 -344 -313 -314 -314 -194 -314 -527 -314 -541 -314 -206 -314 -297 -314 -296 -314 -310 -314 -457 -314 -460 -314 -528 -314 -542 -314 -461 -314 -543 -314 -544 -314 -315 -314 -207 -314 -311 -314 -167 -314 -299 -314 -316 -314 -271 -314 -530 -314 -545 -314 -546 -314 -317 -314 -161 -314 -315 -315 -541 -315 -460 -315 -461 -315 -543 -315 -314 -315 -542 -315 -544 -315 -206 -315 -207 -315 -310 -315 -311 -315 -316 -315 -545 -315 -546 -315 -317 -315 -271 -315 -161 -315 -547 -315 -548 -315 -318 -315 -319 -315 -462 -315 -549 -315 -320 -315 -321 -315 -552 -315 -316 -316 -297 -316 -296 -316 -314 -316 -310 -316 -167 -316 -299 -316 -271 -316 -528 -316 -542 -316 -530 -316 -545 -316 -544 -316 -315 -316 -546 -316 -317 -316 -311 -316 -161 -316 -202 -316 -307 -316 -326 -316 -210 -316 -538 -316 -561 -316 -562 -316 -327 -316 -273 -316 -317 -317 -314 -317 -542 -317 -544 -317 -315 -317 -316 -317 -545 -317 -546 -317 -310 -317 -311 -317 -271 -317 -161 -317 -318 -317 -319 -317 -320 -317 -321 -317 -549 -317 -552 -317 -326 -317 -561 -317 -562 -317 -327 -317 -210 -317 -273 -317 -330 -317 -331 -317 -565 -317 -318 -318 -207 -318 -543 -318 -547 -318 -548 -318 -311 -318 -315 -318 -319 -318 -461 -318 -462 -318 -544 -318 -549 -318 -445 -318 -463 -318 -464 -318 -550 -318 -465 -318 -551 -318 -161 -318 -317 -318 -320 -318 -321 -318 -546 -318 -552 -318 -466 -318 -553 -318 -554 -318 -319 -319 -207 -319 -543 -319 -547 -319 -548 -319 -311 -319 -315 -319 -318 -319 -463 -319 -465 -319 -550 -319 -551 -319 -161 -319 -317 -319 -320 -319 -321 -319 -553 -319 -554 -319 -208 -319 -555 -319 -312 -319 -322 -319 -467 -319 -557 -319 -272 -319 -324 -319 -559 -319 -320 -320 -311 -320 -315 -320 -318 -320 -319 -320 -161 -320 -317 -320 -321 -320 -544 -320 -549 -320 -546 -320 -552 -320 -464 -320 -550 -320 -466 -320 -553 -320 -551 -320 -554 -320 -273 -320 -327 -320 -330 -320 -331 -320 -562 -320 -565 -320 -469 -320 -566 -320 -567 -320 -321 -321 -311 -321 -315 -321 -318 -321 -319 -321 -161 -321 -317 -321 -320 -321 -550 -321 -551 -321 -553 -321 -554 -321 -312 -321 -322 -321 -272 -321 -324 -321 -557 -321 -559 -321 -273 -321 -327 -321 -330 -321 -331 -321 -566 -321 -567 -321 -213 -321 -334 -321 -571 -321 -322 -322 -209 -322 -208 -322 -555 -322 -556 -322 -313 -322 -312 -322 -323 -322 -207 -322 -548 -322 -311 -322 -319 -322 -465 -322 -467 -322 -551 -322 -557 -322 -468 -322 -558 -322 -170 -322 -272 -322 -324 -322 -325 -322 -161 -322 -321 -322 -554 -322 -559 -322 -560 -322 -323 -323 -209 -323 -208 -323 -555 -323 -556 -323 -313 -323 -312 -323 -322 -323 -467 -323 -468 -323 -557 -323 -558 -323 -170 -323 -272 -323 -324 -323 -325 -323 -559 -323 -560 -323 -224 -323 -575 -323 -341 -323 -342 -323 -471 -323 -577 -323 -274 -323 -344 -323 -579 -323 -324 -324 -313 -324 -312 -324 -322 -324 -323 -324 -170 -324 -272 -324 -325 -324 -311 -324 -319 -324 -161 -324 -321 -324 -551 -324 -557 -324 -554 -324 -559 -324 -558 -324 -560 -324 -212 -324 -213 -324 -334 -324 -335 -324 -273 -324 -331 -324 -567 -324 -571 -324 -572 -324 -325 -325 -313 -325 -312 -325 -322 -325 -323 -325 -170 -325 -272 -325 -324 -325 -557 -325 -558 -325 -559 -325 -560 -325 -212 -325 -213 -325 -334 -325 -335 -325 -571 -325 -572 -325 -341 -325 -342 -325 -274 -325 -344 -325 -577 -325 -579 -325 -229 -325 -350 -325 -586 -325 -326 -326 -167 -326 -299 -326 -316 -326 -271 -326 -202 -326 -307 -326 -210 -326 -530 -326 -545 -326 -538 -326 -561 -326 -546 -326 -317 -326 -562 -326 -327 -326 -161 -326 -273 -326 -169 -326 -309 -326 -328 -326 -211 -326 -540 -326 -563 -326 -564 -326 -329 -326 -171 -326 -327 -327 -316 -327 -545 -327 -546 -327 -317 -327 -326 -327 -561 -327 -562 -327 -271 -327 -161 -327 -210 -327 -273 -327 -328 -327 -563 -327 -564 -327 -329 -327 -211 -327 -171 -327 -320 -327 -321 -327 -330 -327 -331 -327 -552 -327 -565 -327 -332 -327 -333 -327 -568 -327 -328 -328 -202 -328 -307 -328 -326 -328 -210 -328 -169 -328 -309 -328 -211 -328 -538 -328 -561 -328 -540 -328 -563 -328 -562 -328 -327 -328 -564 -328 -329 -328 -273 -328 -171 -328 -255 -328 -387 -328 -402 -328 -258 -328 -625 -328 -647 -328 -648 -328 -403 -328 -281 -328 -329 -329 -326 -329 -561 -329 -562 -329 -327 -329 -328 -329 -563 -329 -564 -329 -210 -329 -273 -329 -211 -329 -171 -329 -330 -329 -331 -329 -332 -329 -333 -329 -565 -329 -568 -329 -402 -329 -647 -329 -648 -329 -403 -329 -258 -329 -281 -329 -406 -329 -407 -329 -651 -329 -330 -330 -161 -330 -317 -330 -320 -330 -321 -330 -273 -330 -327 -330 -331 -330 -546 -330 -552 -330 -562 -330 -565 -330 -466 -330 -553 -330 -469 -330 -566 -330 -554 -330 -567 -330 -171 -330 -329 -330 -332 -330 -333 -330 -564 -330 -568 -330 -470 -330 -569 -330 -570 -330 -331 -331 -161 -331 -317 -331 -320 -331 -321 -331 -273 -331 -327 -331 -330 -331 -553 -331 -554 -331 -566 -331 -567 -331 -171 -331 -329 -331 -332 -331 -333 -331 -569 -331 -570 -331 -272 -331 -324 -331 -213 -331 -334 -331 -559 -331 -571 -331 -214 -331 -336 -331 -573 -331 -332 -332 -273 -332 -327 -332 -330 -332 -331 -332 -171 -332 -329 -332 -333 -332 -562 -332 -565 -332 -564 -332 -568 -332 -469 -332 -566 -332 -470 -332 -569 -332 -567 -332 -570 -332 -281 -332 -403 -332 -406 -332 -407 -332 -648 -332 -651 -332 -498 -332 -652 -332 -653 -332 -333 -333 -273 -333 -327 -333 -330 -333 -331 -333 -171 -333 -329 -333 -332 -333 -566 -333 -567 -333 -569 -333 -570 -333 -213 -333 -334 -333 -214 -333 -336 -333 -571 -333 -573 -333 -281 -333 -403 -333 -406 -333 -407 -333 -652 -333 -653 -333 -260 -333 -410 -333 -657 -333 -334 -334 -170 -334 -272 -334 -324 -334 -325 -334 -212 -334 -213 -334 -335 -334 -161 -334 -321 -334 -273 -334 -331 -334 -554 -334 -559 -334 -567 -334 -571 -334 -560 -334 -572 -334 -172 -334 -214 -334 -336 -334 -337 -334 -171 -334 -333 -334 -570 -334 -573 -334 -574 -334 -335 -335 -170 -335 -272 -335 -324 -335 -325 -335 -212 -335 -213 -335 -334 -335 -559 -335 -560 -335 -571 -335 -572 -335 -172 -335 -214 -335 -336 -335 -337 -335 -573 -335 -574 -335 -274 -335 -344 -335 -229 -335 -350 -335 -579 -335 -586 -335 -230 -335 -352 -335 -588 -335 -336 -336 -212 -336 -213 -336 -334 -336 -335 -336 -172 -336 -214 -336 -337 -336 -273 -336 -331 -336 -171 -336 -333 -336 -567 -336 -571 -336 -570 -336 -573 -336 -572 -336 -574 -336 -259 -336 -260 -336 -410 -336 -411 -336 -281 -336 -407 -336 -653 -336 -657 -336 -658 -336 -337 -337 -212 -337 -213 -337 -334 -337 -335 -337 -172 -337 -214 -337 -336 -337 -571 -337 -572 -337 -573 -337 -574 -337 -229 -337 -350 -337 -230 -337 -352 -337 -586 -337 -588 -337 -259 -337 -260 -337 -410 -337 -411 -337 -657 -337 -658 -337 -267 -337 -429 -337 -680 -337 -338 -338 -215 -338 -217 -338 -218 -338 -219 -338 -145 -338 -146 -338 -339 -338 -147 -338 -116 -338 -162 -338 -340 -338 -223 -338 -224 -338 -148 -338 -341 -338 -106 -338 -274 -338 -575 -338 -576 -338 -342 -338 -343 -338 -344 -338 -345 -338 -581 -338 -346 -338 -347 -338 -339 -339 -215 -339 -217 -339 -218 -339 -219 -339 -145 -339 -146 -339 -338 -339 -181 -339 -182 -339 -216 -339 -220 -339 -147 -339 -116 -339 -162 -339 -340 -339 -221 -339 -222 -339 -581 -339 -473 -339 -346 -339 -582 -339 -576 -339 -343 -339 -347 -339 -584 -339 -345 -339 -340 -340 -145 -340 -146 -340 -338 -340 -339 -340 -147 -340 -116 -340 -162 -340 -216 -340 -220 -340 -221 -340 -222 -340 -346 -340 -582 -340 -347 -340 -584 -340 -343 -340 -345 -340 -149 -340 -107 -340 -275 -340 -348 -340 -225 -340 -226 -340 -354 -340 -590 -340 -351 -340 -341 -341 -223 -341 -205 -341 -209 -341 -224 -341 -148 -341 -144 -341 -313 -341 -217 -341 -218 -341 -146 -341 -338 -341 -106 -341 -105 -341 -170 -341 -274 -341 -116 -341 -162 -341 -575 -341 -576 -341 -342 -341 -343 -341 -556 -341 -323 -341 -344 -341 -345 -341 -325 -341 -342 -342 -218 -342 -224 -342 -575 -342 -576 -342 -338 -342 -341 -342 -343 -342 -209 -342 -556 -342 -313 -342 -323 -342 -468 -342 -471 -342 -558 -342 -577 -342 -472 -342 -578 -342 -162 -342 -274 -342 -344 -342 -345 -342 -170 -342 -325 -342 -560 -342 -579 -342 -580 -342 -343 -343 -218 -343 -224 -343 -575 -343 -576 -343 -338 -343 -341 -343 -342 -343 -471 -343 -472 -343 -577 -343 -578 -343 -162 -343 -274 -343 -344 -343 -345 -343 -579 -343 -580 -343 -219 -343 -581 -343 -339 -343 -346 -343 -474 -343 -583 -343 -340 -343 -347 -343 -585 -343 -344 -344 -338 -344 -341 -344 -342 -344 -343 -344 -162 -344 -274 -344 -345 -344 -313 -344 -323 -344 -170 -344 -325 -344 -558 -344 -577 -344 -560 -344 -579 -344 -578 -344 -580 -344 -275 -344 -229 -344 -350 -344 -351 -344 -212 -344 -335 -344 -572 -344 -586 -344 -587 -344 -345 -345 -338 -345 -341 -345 -342 -345 -343 -345 -162 -345 -274 -345 -344 -345 -577 -345 -578 -345 -579 -345 -580 -345 -339 -345 -346 -345 -340 -345 -347 -345 -583 -345 -585 -345 -275 -345 -229 -345 -350 -345 -351 -345 -586 -345 -587 -345 -348 -345 -354 -345 -591 -345 -346 -346 -182 -346 -219 -346 -581 -346 -473 -346 -220 -346 -339 -346 -582 -346 -218 -346 -576 -346 -338 -346 -343 -346 -472 -346 -474 -346 -578 -346 -583 -346 -446 -346 -475 -346 -222 -346 -340 -346 -347 -346 -584 -346 -162 -346 -345 -346 -580 -346 -585 -346 -476 -346 -347 -347 -220 -347 -339 -347 -346 -347 -582 -347 -222 -347 -340 -347 -584 -347 -338 -347 -343 -347 -162 -347 -345 -347 -578 -347 -583 -347 -580 -347 -585 -347 -475 -347 -476 -347 -226 -347 -348 -347 -354 -347 -590 -347 -275 -347 -351 -347 -587 -347 -591 -347 -477 -347 -348 -348 -147 -348 -116 -348 -162 -348 -340 -348 -149 -348 -107 -348 -275 -348 -221 -348 -222 -348 -225 -348 -226 -348 -150 -348 -108 -348 -173 -348 -349 -348 -227 -348 -228 -348 -347 -348 -584 -348 -354 -348 -590 -348 -345 -348 -351 -348 -355 -348 -592 -348 -353 -348 -349 -349 -149 -349 -107 -349 -275 -349 -348 -349 -150 -349 -108 -349 -173 -349 -225 -349 -226 -349 -227 -349 -228 -349 -354 -349 -590 -349 -355 -349 -592 -349 -351 -349 -353 -349 -159 -349 -114 -349 -284 -349 -426 -349 -263 -349 -264 -349 -433 -349 -684 -349 -430 -349 -350 -350 -162 -350 -274 -350 -344 -350 -345 -350 -275 -350 -229 -350 -351 -350 -170 -350 -325 -350 -212 -350 -335 -350 -560 -350 -579 -350 -572 -350 -586 -350 -580 -350 -587 -350 -173 -350 -230 -350 -352 -350 -353 -350 -172 -350 -337 -350 -574 -350 -588 -350 -589 -350 -351 -351 -162 -351 -274 -351 -344 -351 -345 -351 -275 -351 -229 -351 -350 -351 -579 -351 -580 -351 -586 -351 -587 -351 -173 -351 -230 -351 -352 -351 -353 -351 -588 -351 -589 -351 -340 -351 -347 -351 -348 -351 -354 -351 -585 -351 -591 -351 -349 -351 -355 -351 -593 -351 -352 -352 -275 -352 -229 -352 -350 -352 -351 -352 -173 -352 -230 -352 -353 -352 -212 -352 -335 -352 -172 -352 -337 -352 -572 -352 -586 -352 -574 -352 -588 -352 -587 -352 -589 -352 -284 -352 -267 -352 -429 -352 -430 -352 -259 -352 -411 -352 -658 -352 -680 -352 -681 -352 -353 -353 -275 -353 -229 -353 -350 -353 -351 -353 -173 -353 -230 -353 -352 -353 -586 -353 -587 -353 -588 -353 -589 -353 -348 -353 -354 -353 -349 -353 -355 -353 -591 -353 -593 -353 -284 -353 -267 -353 -429 -353 -430 -353 -680 -353 -681 -353 -426 -353 -433 -353 -685 -353 -354 -354 -222 -354 -340 -354 -347 -354 -584 -354 -226 -354 -348 -354 -590 -354 -162 -354 -345 -354 -275 -354 -351 -354 -580 -354 -585 -354 -587 -354 -591 -354 -476 -354 -477 -354 -228 -354 -349 -354 -355 -354 -592 -354 -173 -354 -353 -354 -589 -354 -593 -354 -478 -354 -355 -355 -226 -355 -348 -355 -354 -355 -590 -355 -228 -355 -349 -355 -592 -355 -275 -355 -351 -355 -173 -355 -353 -355 -587 -355 -591 -355 -589 -355 -593 -355 -477 -355 -478 -355 -264 -355 -426 -355 -433 -355 -684 -355 -284 -355 -430 -355 -681 -355 -685 -355 -508 -355 -356 -356 -183 -356 -231 -356 -151 -356 -232 -356 -184 -356 -235 -356 -236 -356 -233 -356 -152 -356 -237 -356 -357 -356 -117 -356 -153 -356 -163 -356 -358 -356 -234 -356 -238 -356 -479 -356 -594 -356 -363 -356 -595 -356 -596 -356 -364 -356 -365 -356 -366 -356 -597 -356 -357 -357 -231 -357 -233 -357 -152 -357 -151 -357 -235 -357 -237 -357 -356 -357 -117 -357 -153 -357 -163 -357 -358 -357 -239 -357 -154 -357 -241 -357 -359 -357 -110 -357 -276 -357 -594 -357 -596 -357 -364 -357 -363 -357 -365 -357 -366 -357 -602 -357 -367 -357 -370 -357 -358 -358 -151 -358 -152 -358 -117 -358 -153 -358 -356 -358 -357 -358 -163 -358 -232 -358 -234 -358 -236 -358 -238 -358 -156 -358 -243 -358 -361 -358 -245 -358 -111 -358 -277 -358 -363 -358 -364 -358 -365 -358 -366 -358 -595 -358 -597 -358 -377 -358 -614 -358 -372 -358 -359 -359 -233 -359 -239 -359 -154 -359 -152 -359 -237 -359 -241 -359 -357 -359 -240 -359 -155 -359 -242 -359 -360 -359 -109 -359 -110 -359 -174 -359 -276 -359 -117 -359 -163 -359 -596 -359 -602 -359 -367 -359 -364 -359 -603 -359 -368 -359 -369 -359 -370 -359 -365 -359 -360 -360 -239 -360 -240 -360 -155 -360 -154 -360 -241 -360 -242 -360 -359 -360 -109 -360 -110 -360 -174 -360 -276 -360 -602 -360 -603 -360 -368 -360 -367 -360 -369 -360 -370 -360 -250 -360 -158 -360 -252 -360 -380 -360 -113 -360 -279 -360 -628 -360 -390 -360 -393 -360 -361 -361 -234 -361 -153 -361 -156 -361 -243 -361 -238 -361 -358 -361 -245 -361 -117 -361 -111 -361 -163 -361 -277 -361 -112 -361 -157 -361 -176 -361 -362 -361 -244 -361 -246 -361 -597 -361 -366 -361 -377 -361 -614 -361 -365 -361 -372 -361 -376 -361 -378 -361 -615 -361 -362 -362 -156 -362 -111 -362 -112 -362 -157 -362 -361 -362 -277 -362 -176 -362 -243 -362 -244 -362 -245 -362 -246 -362 -377 -362 -372 -362 -376 -362 -378 -362 -614 -362 -615 -362 -159 -362 -263 -362 -427 -362 -265 -362 -114 -362 -285 -362 -435 -362 -688 -362 -436 -362 -363 -363 -184 -363 -235 -363 -356 -363 -236 -363 -479 -363 -594 -363 -595 -363 -237 -363 -357 -363 -596 -363 -364 -363 -163 -363 -358 -363 -365 -363 -366 -363 -238 -363 -597 -363 -447 -363 -480 -363 -598 -363 -481 -363 -482 -363 -599 -363 -600 -363 -601 -363 -483 -363 -364 -364 -235 -364 -237 -364 -357 -364 -356 -364 -594 -364 -596 -364 -363 -364 -163 -364 -358 -364 -365 -364 -366 -364 -480 -364 -482 -364 -599 -364 -598 -364 -600 -364 -601 -364 -241 -364 -359 -364 -602 -364 -367 -364 -276 -364 -370 -364 -484 -364 -604 -364 -607 -364 -365 -365 -356 -365 -357 -365 -163 -365 -358 -365 -363 -365 -364 -365 -366 -365 -598 -365 -599 -365 -600 -365 -601 -365 -359 -365 -276 -365 -367 -365 -370 -365 -604 -365 -607 -365 -247 -365 -277 -365 -371 -365 -372 -365 -608 -365 -609 -365 -361 -365 -377 -365 -616 -365 -366 -366 -356 -366 -357 -366 -163 -366 -358 -366 -363 -366 -364 -366 -365 -366 -236 -366 -238 -366 -595 -366 -597 -366 -598 -366 -599 -366 -600 -366 -601 -366 -481 -366 -483 -366 -361 -366 -245 -366 -377 -366 -614 -366 -277 -366 -372 -366 -616 -366 -486 -366 -609 -366 -367 -367 -237 -367 -241 -367 -359 -367 -357 -367 -596 -367 -602 -367 -364 -367 -242 -367 -360 -367 -603 -367 -368 -367 -174 -367 -276 -367 -369 -367 -370 -367 -163 -367 -365 -367 -482 -367 -484 -367 -604 -367 -599 -367 -485 -367 -605 -367 -606 -367 -607 -367 -600 -367 -368 -368 -241 -368 -242 -368 -360 -368 -359 -368 -602 -368 -603 -368 -367 -368 -174 -368 -276 -368 -369 -368 -370 -368 -484 -368 -485 -368 -605 -368 -604 -368 -606 -368 -607 -368 -252 -368 -380 -368 -628 -368 -390 -368 -279 -368 -393 -368 -490 -368 -630 -368 -633 -368 -369 -369 -359 -369 -360 -369 -174 -369 -276 -369 -367 -369 -368 -369 -370 -369 -604 -369 -605 -369 -606 -369 -607 -369 -248 -369 -247 -369 -373 -369 -371 -369 -610 -369 -608 -369 -380 -369 -279 -369 -390 -369 -393 -369 -630 -369 -633 -369 -256 -369 -400 -369 -645 -369 -370 -370 -359 -370 -360 -370 -174 -370 -276 -370 -367 -370 -368 -370 -369 -370 -357 -370 -163 -370 -364 -370 -365 -370 -604 -370 -605 -370 -606 -370 -607 -370 -599 -370 -600 -370 -247 -370 -277 -370 -371 -370 -372 -370 -248 -370 -373 -370 -608 -370 -609 -370 -610 -370 -371 -371 -163 -371 -276 -371 -247 -371 -277 -371 -365 -371 -370 -371 -372 -371 -174 -371 -248 -371 -369 -371 -373 -371 -175 -371 -249 -371 -374 -371 -375 -371 -176 -371 -376 -371 -600 -371 -607 -371 -608 -371 -609 -371 -606 -371 -610 -371 -611 -371 -612 -371 -613 -371 -372 -372 -163 -372 -276 -372 -247 -372 -277 -372 -365 -372 -370 -372 -371 -372 -249 -372 -176 -372 -375 -372 -376 -372 -600 -372 -607 -372 -608 -372 -609 -372 -612 -372 -613 -372 -358 -372 -361 -372 -366 -372 -377 -372 -362 -372 -378 -372 -601 -372 -616 -372 -617 -372 -373 -373 -276 -373 -174 -373 -248 -373 -247 -373 -370 -373 -369 -373 -371 -373 -175 -373 -249 -373 -374 -373 -375 -373 -607 -373 -606 -373 -610 -373 -608 -373 -611 -373 -612 -373 -279 -373 -256 -373 -393 -373 -400 -373 -257 -373 -401 -373 -633 -373 -645 -373 -646 -373 -374 -374 -247 -374 -248 -374 -175 -374 -249 -374 -371 -374 -373 -374 -375 -374 -608 -374 -610 -374 -611 -374 -612 -374 -256 -374 -257 -374 -400 -374 -401 -374 -645 -374 -646 -374 -261 -374 -262 -374 -414 -374 -415 -374 -661 -374 -662 -374 -268 -374 -439 -374 -694 -374 -375 -375 -247 -375 -248 -375 -175 -375 -249 -375 -371 -375 -373 -375 -374 -375 -277 -375 -176 -375 -372 -375 -376 -375 -608 -375 -610 -375 -611 -375 -612 -375 -609 -375 -613 -375 -268 -375 -285 -375 -439 -375 -436 -375 -262 -375 -415 -375 -694 -375 -691 -375 -662 -375 -376 -376 -277 -376 -247 -376 -249 -376 -176 -376 -372 -376 -371 -376 -375 -376 -609 -376 -608 -376 -612 -376 -613 -376 -361 -376 -362 -376 -377 -376 -378 -376 -616 -376 -617 -376 -285 -376 -427 -376 -436 -376 -435 -376 -691 -376 -690 -376 -268 -376 -439 -376 -694 -376 -377 -377 -238 -377 -358 -377 -361 -377 -245 -377 -597 -377 -366 -377 -614 -377 -163 -377 -277 -377 -365 -377 -372 -377 -176 -377 -362 -377 -376 -377 -378 -377 -246 -377 -615 -377 -483 -377 -601 -377 -616 -377 -486 -377 -600 -377 -609 -377 -613 -377 -617 -377 -487 -377 -378 -378 -361 -378 -277 -378 -176 -378 -362 -378 -377 -378 -372 -378 -376 -378 -245 -378 -246 -378 -614 -378 -615 -378 -616 -378 -609 -378 -613 -378 -617 -378 -486 -378 -487 -378 -427 -378 -265 -378 -435 -378 -688 -378 -285 -378 -436 -378 -690 -378 -510 -378 -691 -378 -379 -379 -199 -379 -200 -379 -301 -379 -142 -379 -250 -379 -251 -379 -158 -379 -168 -379 -103 -379 -278 -379 -113 -379 -252 -379 -253 -379 -381 -379 -380 -379 -164 -379 -279 -379 -534 -379 -304 -379 -618 -379 -382 -379 -305 -379 -383 -379 -621 -379 -384 -379 -385 -379 -380 -380 -240 -380 -250 -380 -158 -380 -155 -380 -242 -380 -252 -380 -360 -380 -251 -380 -379 -380 -253 -380 -381 -380 -278 -380 -113 -380 -164 -380 -279 -380 -109 -380 -174 -380 -603 -380 -628 -380 -390 -380 -368 -380 -629 -380 -391 -380 -392 -380 -393 -380 -369 -380 -381 -381 -250 -381 -251 -381 -379 -381 -158 -381 -252 -381 -253 -381 -380 -381 -278 -381 -113 -381 -164 -381 -279 -381 -618 -381 -382 -381 -621 -381 -384 -381 -383 -381 -385 -381 -628 -381 -629 -381 -391 -381 -390 -381 -392 -381 -393 -381 -634 -381 -394 -381 -395 -381 -382 -382 -200 -382 -534 -382 -304 -382 -301 -382 -251 -382 -618 -382 -379 -382 -459 -382 -535 -382 -488 -382 -619 -382 -536 -382 -305 -382 -620 -382 -383 -382 -168 -382 -278 -382 -253 -382 -621 -382 -384 -382 -381 -382 -489 -382 -622 -382 -623 -382 -385 -382 -164 -382 -383 -383 -304 -383 -535 -383 -536 -383 -305 -383 -382 -383 -619 -383 -620 -383 -301 -383 -168 -383 -379 -383 -278 -383 -384 -383 -622 -383 -623 -383 -385 -383 -381 -383 -164 -383 -308 -383 -203 -383 -386 -383 -254 -383 -539 -383 -624 -383 -388 -383 -280 -383 -626 -383 -384 -384 -251 -384 -618 -384 -382 -384 -379 -384 -253 -384 -621 -384 -381 -384 -488 -384 -619 -384 -489 -384 -622 -384 -620 -384 -383 -384 -623 -384 -385 -384 -278 -384 -164 -384 -629 -384 -634 -384 -394 -384 -391 -384 -492 -384 -635 -384 -636 -384 -395 -384 -392 -384 -385 -385 -382 -385 -619 -385 -620 -385 -383 -385 -384 -385 -622 -385 -623 -385 -379 -385 -278 -385 -381 -385 -164 -385 -386 -385 -254 -385 -388 -385 -280 -385 -624 -385 -626 -385 -394 -385 -635 -385 -636 -385 -395 -385 -391 -385 -392 -385 -396 -385 -397 -385 -639 -385 -386 -386 -168 -386 -305 -386 -308 -386 -203 -386 -278 -386 -383 -386 -254 -386 -536 -386 -539 -386 -620 -386 -624 -386 -540 -386 -309 -386 -625 -386 -387 -386 -169 -386 -255 -386 -164 -386 -385 -386 -388 -386 -280 -386 -623 -386 -626 -386 -627 -386 -389 -386 -177 -386 -387 -387 -308 -387 -539 -387 -540 -387 -309 -387 -386 -387 -624 -387 -625 -387 -203 -387 -169 -387 -254 -387 -255 -387 -388 -387 -626 -387 -627 -387 -389 -387 -280 -387 -177 -387 -328 -387 -211 -387 -402 -387 -258 -387 -563 -387 -647 -387 -404 -387 -282 -387 -649 -387 -388 -388 -278 -388 -383 -388 -386 -388 -254 -388 -164 -388 -385 -388 -280 -388 -620 -388 -624 -388 -623 -388 -626 -388 -625 -388 -387 -388 -627 -388 -389 -388 -255 -388 -177 -388 -392 -388 -395 -388 -396 -388 -397 -388 -636 -388 -639 -388 -640 -388 -398 -388 -399 -388 -389 -389 -386 -389 -624 -389 -625 -389 -387 -389 -388 -389 -626 -389 -627 -389 -254 -389 -255 -389 -280 -389 -177 -389 -396 -389 -639 -389 -640 -389 -398 -389 -397 -389 -399 -389 -402 -389 -258 -389 -404 -389 -282 -389 -647 -389 -649 -389 -420 -389 -416 -389 -667 -389 -390 -390 -242 -390 -252 -390 -380 -390 -360 -390 -603 -390 -628 -390 -368 -390 -253 -390 -381 -390 -629 -390 -391 -390 -164 -390 -279 -390 -392 -390 -393 -390 -174 -390 -369 -390 -485 -390 -490 -390 -630 -390 -605 -390 -491 -390 -631 -390 -632 -390 -633 -390 -606 -390 -391 -391 -252 -391 -253 -391 -381 -391 -380 -391 -628 -391 -629 -391 -390 -391 -164 -391 -279 -391 -392 -391 -393 -391 -490 -391 -491 -391 -631 -391 -630 -391 -632 -391 -633 -391 -621 -391 -384 -391 -634 -391 -394 -391 -385 -391 -395 -391 -493 -391 -637 -391 -638 -391 -392 -392 -380 -392 -381 -392 -164 -392 -279 -392 -390 -392 -391 -392 -393 -392 -630 -392 -631 -392 -632 -392 -633 -392 -384 -392 -385 -392 -394 -392 -395 -392 -637 -392 -638 -392 -388 -392 -280 -392 -396 -392 -397 -392 -641 -392 -642 -392 -256 -392 -400 -392 -645 -392 -393 -393 -380 -393 -381 -393 -164 -393 -279 -393 -390 -393 -391 -393 -392 -393 -360 -393 -174 -393 -368 -393 -369 -393 -630 -393 -631 -393 -632 -393 -633 -393 -605 -393 -606 -393 -256 -393 -248 -393 -400 -393 -373 -393 -280 -393 -397 -393 -645 -393 -610 -393 -642 -393 -394 -394 -253 -394 -621 -394 -384 -394 -381 -394 -629 -394 -634 -394 -391 -394 -489 -394 -622 -394 -492 -394 -635 -394 -623 -394 -385 -394 -636 -394 -395 -394 -164 -394 -392 -394 -491 -394 -493 -394 -637 -394 -631 -394 -448 -394 -494 -394 -495 -394 -638 -394 -632 -394 -395 -395 -384 -395 -622 -395 -623 -395 -385 -395 -394 -395 -635 -395 -636 -395 -381 -395 -164 -395 -391 -395 -392 -395 -637 -395 -494 -395 -495 -395 -638 -395 -631 -395 -632 -395 -388 -395 -280 -395 -396 -395 -397 -395 -626 -395 -639 -395 -641 -395 -642 -395 -496 -395 -396 -396 -164 -396 -385 -396 -388 -396 -280 -396 -392 -396 -395 -396 -397 -396 -623 -396 -626 -396 -636 -396 -639 -396 -627 -396 -389 -396 -640 -396 -398 -396 -177 -396 -399 -396 -632 -396 -638 -396 -641 -396 -642 -396 -495 -396 -496 -396 -497 -396 -643 -396 -644 -396 -397 -397 -164 -397 -385 -397 -388 -397 -280 -397 -392 -397 -395 -397 -396 -397 -389 -397 -177 -397 -398 -397 -399 -397 -632 -397 -638 -397 -641 -397 -642 -397 -643 -397 -644 -397 -279 -397 -256 -397 -393 -397 -400 -397 -257 -397 -401 -397 -633 -397 -645 -397 -646 -397 -398 -398 -388 -398 -626 -398 -627 -398 -389 -398 -396 -398 -639 -398 -640 -398 -280 -398 -177 -398 -397 -398 -399 -398 -641 -398 -496 -398 -497 -398 -643 -398 -642 -398 -644 -398 -404 -398 -282 -398 -420 -398 -416 -398 -649 -398 -667 -398 -669 -398 -663 -398 -500 -398 -399 -399 -280 -399 -388 -399 -389 -399 -177 -399 -397 -399 -396 -399 -398 -399 -642 -399 -641 -399 -643 -399 -644 -399 -256 -399 -257 -399 -400 -399 -401 -399 -645 -399 -646 -399 -282 -399 -261 -399 -416 -399 -414 -399 -663 -399 -661 -399 -404 -399 -420 -399 -669 -399 -400 -400 -174 -400 -279 -400 -256 -400 -248 -400 -369 -400 -393 -400 -373 -400 -164 -400 -280 -400 -392 -400 -397 -400 -177 -400 -257 -400 -399 -400 -401 -400 -175 -400 -374 -400 -606 -400 -633 -400 -645 -400 -610 -400 -632 -400 -642 -400 -644 -400 -646 -400 -611 -400 -401 -401 -256 -401 -280 -401 -177 -401 -257 -401 -400 -401 -397 -401 -399 -401 -248 -401 -175 -401 -373 -401 -374 -401 -645 -401 -642 -401 -644 -401 -646 -401 -610 -401 -611 -401 -261 -401 -262 -401 -414 -401 -415 -401 -282 -401 -416 -401 -661 -401 -662 -401 -663 -401 -402 -402 -169 -402 -309 -402 -328 -402 -211 -402 -255 -402 -387 -402 -258 -402 -540 -402 -563 -402 -625 -402 -647 -402 -564 -402 -329 -402 -648 -402 -403 -402 -171 -402 -281 -402 -177 -402 -389 -402 -404 -402 -282 -402 -627 -402 -649 -402 -650 -402 -405 -402 -165 -402 -403 -403 -328 -403 -563 -403 -564 -403 -329 -403 -402 -403 -647 -403 -648 -403 -211 -403 -171 -403 -258 -403 -281 -403 -404 -403 -649 -403 -650 -403 -405 -403 -282 -403 -165 -403 -332 -403 -333 -403 -406 -403 -407 -403 -568 -403 -651 -403 -408 -403 -409 -403 -654 -403 -404 -404 -255 -404 -387 -404 -402 -404 -258 -404 -177 -404 -389 -404 -282 -404 -625 -404 -647 -404 -627 -404 -649 -404 -648 -404 -403 -404 -650 -404 -405 -404 -281 -404 -165 -404 -399 -404 -398 -404 -420 -404 -416 -404 -640 -404 -667 -404 -668 -404 -421 -404 -417 -404 -405 -405 -402 -405 -647 -405 -648 -405 -403 -405 -404 -405 -649 -405 -650 -405 -258 -405 -281 -405 -282 -405 -165 -405 -406 -405 -407 -405 -408 -405 -409 -405 -651 -405 -654 -405 -420 -405 -667 -405 -668 -405 -421 -405 -416 -405 -417 -405 -422 -405 -423 -405 -671 -405 -406 -406 -171 -406 -329 -406 -332 -406 -333 -406 -281 -406 -403 -406 -407 -406 -564 -406 -568 -406 -648 -406 -651 -406 -470 -406 -569 -406 -498 -406 -652 -406 -570 -406 -653 -406 -165 -406 -405 -406 -408 -406 -409 -406 -650 -406 -654 -406 -499 -406 -655 -406 -656 -406 -407 -407 -171 -407 -329 -407 -332 -407 -333 -407 -281 -407 -403 -407 -406 -407 -569 -407 -570 -407 -652 -407 -653 -407 -165 -407 -405 -407 -408 -407 -409 -407 -655 -407 -656 -407 -214 -407 -336 -407 -260 -407 -410 -407 -573 -407 -657 -407 -283 -407 -412 -407 -659 -407 -408 -408 -281 -408 -403 -408 -406 -408 -407 -408 -165 -408 -405 -408 -409 -408 -648 -408 -651 -408 -650 -408 -654 -408 -498 -408 -652 -408 -499 -408 -655 -408 -653 -408 -656 -408 -417 -408 -421 -408 -422 -408 -423 -408 -668 -408 -671 -408 -502 -408 -672 -408 -673 -408 -409 -409 -281 -409 -403 -409 -406 -409 -407 -409 -165 -409 -405 -409 -408 -409 -652 -409 -653 -409 -655 -409 -656 -409 -260 -409 -410 -409 -283 -409 -412 -409 -657 -409 -659 -409 -417 -409 -421 -409 -422 -409 -423 -409 -672 -409 -673 -409 -418 -409 -424 -409 -676 -409 -410 -410 -172 -410 -214 -410 -336 -410 -337 -410 -259 -410 -260 -410 -411 -410 -171 -410 -333 -410 -281 -410 -407 -410 -570 -410 -573 -410 -653 -410 -657 -410 -574 -410 -658 -410 -178 -410 -283 -410 -412 -410 -413 -410 -165 -410 -409 -410 -656 -410 -659 -410 -660 -410 -411 -411 -172 -411 -214 -411 -336 -411 -337 -411 -259 -411 -260 -411 -410 -411 -573 -411 -574 -411 -657 -411 -658 -411 -178 -411 -283 -411 -412 -411 -413 -411 -659 -411 -660 -411 -230 -411 -352 -411 -267 -411 -429 -411 -588 -411 -680 -411 -286 -411 -431 -411 -682 -411 -412 -412 -259 -412 -260 -412 -410 -412 -411 -412 -178 -412 -283 -412 -413 -412 -281 -412 -407 -412 -165 -412 -409 -412 -653 -412 -657 -412 -656 -412 -659 -412 -658 -412 -660 -412 -419 -412 -418 -412 -424 -412 -425 -412 -417 -412 -423 -412 -673 -412 -676 -412 -677 -412 -413 -413 -259 -413 -260 -413 -410 -413 -411 -413 -178 -413 -283 -413 -412 -413 -657 -413 -658 -413 -659 -413 -660 -413 -419 -413 -418 -413 -424 -413 -425 -413 -676 -413 -677 -413 -267 -413 -429 -413 -286 -413 -431 -413 -680 -413 -682 -413 -440 -413 -441 -413 -696 -413 -414 -414 -175 -414 -257 -414 -261 -414 -262 -414 -374 -414 -401 -414 -415 -414 -177 -414 -282 -414 -399 -414 -416 -414 -165 -414 -283 -414 -417 -414 -418 -414 -178 -414 -419 -414 -611 -414 -646 -414 -661 -414 -662 -414 -644 -414 -663 -414 -664 -414 -665 -414 -666 -414 -415 -415 -175 -415 -257 -415 -261 -415 -262 -415 -374 -415 -401 -415 -414 -415 -283 -415 -178 -415 -418 -415 -419 -415 -611 -415 -646 -415 -661 -415 -662 -415 -665 -415 -666 -415 -249 -415 -268 -415 -375 -415 -439 -415 -286 -415 -440 -415 -612 -415 -694 -415 -695 -415 -416 -416 -257 -416 -177 -416 -282 -416 -261 -416 -401 -416 -399 -416 -414 -416 -165 -416 -283 -416 -417 -416 -418 -416 -646 -416 -644 -416 -663 -416 -661 -416 -664 -416 -665 -416 -389 -416 -404 -416 -398 -416 -420 -416 -405 -416 -421 -416 -643 -416 -669 -416 -670 -416 -417 -417 -261 -417 -282 -417 -165 -417 -283 -417 -414 -417 -416 -417 -418 -417 -661 -417 -663 -417 -664 -417 -665 -417 -404 -417 -405 -417 -420 -417 -421 -417 -669 -417 -670 -417 -408 -417 -409 -417 -422 -417 -423 -417 -674 -417 -675 -417 -412 -417 -424 -417 -678 -417 -418 -418 -261 -418 -282 -418 -165 -418 -283 -418 -414 -418 -416 -418 -417 -418 -262 -418 -178 -418 -415 -418 -419 -418 -661 -418 -663 -418 -664 -418 -665 -418 -662 -418 -666 -418 -412 -418 -413 -418 -424 -418 -425 -418 -409 -418 -423 -418 -678 -418 -679 -418 -675 -418 -419 -419 -262 -419 -261 -419 -283 -419 -178 -419 -415 -419 -414 -419 -418 -419 -662 -419 -661 -419 -665 -419 -666 -419 -412 -419 -413 -419 -424 -419 -425 -419 -678 -419 -679 -419 -268 -419 -286 -419 -439 -419 -440 -419 -694 -419 -695 -419 -431 -419 -441 -419 -698 -419 -420 -420 -177 -420 -389 -420 -404 -420 -282 -420 -399 -420 -398 -420 -416 -420 -627 -420 -649 -420 -640 -420 -667 -420 -650 -420 -405 -420 -668 -420 -421 -420 -165 -420 -417 -420 -644 -420 -643 -420 -669 -420 -663 -420 -497 -420 -500 -420 -501 -420 -670 -420 -664 -420 -421 -421 -404 -421 -649 -421 -650 -421 -405 -421 -420 -421 -667 -421 -668 -421 -282 -421 -165 -421 -416 -421 -417 -421 -669 -421 -500 -421 -501 -421 -670 -421 -663 -421 -664 -421 -408 -421 -409 -421 -422 -421 -423 -421 -654 -421 -671 -421 -674 -421 -675 -421 -503 -421 -422 -422 -165 -422 -405 -422 -408 -422 -409 -422 -417 -422 -421 -422 -423 -422 -650 -422 -654 -422 -668 -422 -671 -422 -499 -422 -655 -422 -502 -422 -672 -422 -656 -422 -673 -422 -664 -422 -670 -422 -674 -422 -675 -422 -501 -422 -503 -422 -449 -422 -504 -422 -505 -422 -423 -423 -165 -423 -405 -423 -408 -423 -409 -423 -417 -423 -421 -423 -422 -423 -655 -423 -656 -423 -672 -423 -673 -423 -664 -423 -670 -423 -674 -423 -675 -423 -504 -423 -505 -423 -283 -423 -412 -423 -418 -423 -424 -423 -659 -423 -676 -423 -665 -423 -678 -423 -506 -423 -424 -424 -178 -424 -283 -424 -412 -424 -413 -424 -419 -424 -418 -424 -425 -424 -165 -424 -409 -424 -417 -424 -423 -424 -656 -424 -659 -424 -673 -424 -676 -424 -660 -424 -677 -424 -666 -424 -665 -424 -678 -424 -679 -424 -664 -424 -675 -424 -505 -424 -506 -424 -507 -424 -425 -425 -178 -425 -283 -425 -412 -425 -413 -425 -419 -425 -418 -425 -424 -425 -659 -425 -660 -425 -676 -425 -677 -425 -666 -425 -665 -425 -678 -425 -679 -425 -506 -425 -507 -425 -286 -425 -431 -425 -440 -425 -441 -425 -682 -425 -696 -425 -695 -425 -698 -425 -512 -425 -426 -426 -150 -426 -108 -426 -173 -426 -349 -426 -159 -426 -114 -426 -284 -426 -227 -426 -228 -426 -263 -426 -264 -426 -427 -426 -285 -426 -166 -426 -428 -426 -265 -426 -266 -426 -355 -426 -592 -426 -433 -426 -684 -426 -353 -426 -430 -426 -434 -426 -686 -426 -432 -426 -427 -427 -244 -427 -157 -427 -159 -427 -263 -427 -246 -427 -362 -427 -265 -427 -112 -427 -114 -427 -176 -427 -285 -427 -284 -427 -426 -427 -166 -427 -428 -427 -264 -427 -266 -427 -615 -427 -378 -427 -435 -427 -688 -427 -376 -427 -436 -427 -437 -427 -438 -427 -689 -427 -428 -428 -159 -428 -114 -428 -284 -428 -426 -428 -427 -428 -285 -428 -166 -428 -263 -428 -264 -428 -265 -428 -266 -428 -433 -428 -684 -428 -434 -428 -686 -428 -430 -428 -432 -428 -435 -428 -436 -428 -437 -428 -438 -428 -688 -428 -689 -428 -443 -428 -700 -428 -442 -428 -429 -429 -173 -429 -230 -429 -352 -429 -353 -429 -284 -429 -267 -429 -430 -429 -172 -429 -337 -429 -259 -429 -411 -429 -574 -429 -588 -429 -658 -429 -680 -429 -589 -429 -681 -429 -166 -429 -286 -429 -431 -429 -432 -429 -178 -429 -413 -429 -660 -429 -682 -429 -683 -429 -430 -430 -173 -430 -230 -430 -352 -430 -353 -430 -284 -430 -267 -430 -429 -430 -588 -430 -589 -430 -680 -430 -681 -430 -166 -430 -286 -430 -431 -430 -432 -430 -682 -430 -683 -430 -349 -430 -355 -430 -426 -430 -433 -430 -593 -430 -685 -430 -428 -430 -434 -430 -687 -430 -431 -431 -284 -431 -267 -431 -429 -431 -430 -431 -166 -431 -286 -431 -432 -431 -259 -431 -411 -431 -178 -431 -413 -431 -658 -431 -680 -431 -660 -431 -682 -431 -681 -431 -683 -431 -437 -431 -440 -431 -441 -431 -442 -431 -419 -431 -425 -431 -677 -431 -696 -431 -697 -431 -432 -432 -284 -432 -267 -432 -429 -432 -430 -432 -166 -432 -286 -432 -431 -432 -680 -432 -681 -432 -682 -432 -683 -432 -426 -432 -433 -432 -428 -432 -434 -432 -685 -432 -687 -432 -437 -432 -440 -432 -441 -432 -442 -432 -696 -432 -697 -432 -438 -432 -443 -432 -701 -432 -433 -433 -228 -433 -349 -433 -355 -433 -592 -433 -264 -433 -426 -433 -684 -433 -173 -433 -353 -433 -284 -433 -430 -433 -589 -433 -593 -433 -681 -433 -685 -433 -478 -433 -508 -433 -266 -433 -428 -433 -434 -433 -686 -433 -166 -433 -432 -433 -683 -433 -687 -433 -509 -433 -434 -434 -264 -434 -426 -434 -433 -434 -684 -434 -266 -434 -428 -434 -686 -434 -284 -434 -430 -434 -166 -434 -432 -434 -681 -434 -685 -434 -683 -434 -687 -434 -508 -434 -509 -434 -689 -434 -438 -434 -443 -434 -700 -434 -437 -434 -442 -434 -697 -434 -701 -434 -514 -434 -435 -435 -246 -435 -362 -435 -427 -435 -265 -435 -615 -435 -378 -435 -688 -435 -176 -435 -285 -435 -376 -435 -436 -435 -166 -435 -428 -435 -437 -435 -438 -435 -266 -435 -689 -435 -487 -435 -617 -435 -690 -435 -510 -435 -613 -435 -691 -435 -692 -435 -693 -435 -511 -435 -436 -436 -362 -436 -176 -436 -285 -436 -427 -436 -378 -436 -376 -436 -435 -436 -166 -436 -428 -436 -437 -436 -438 -436 -617 -436 -613 -436 -691 -436 -690 -436 -692 -436 -693 -436 -249 -436 -268 -436 -375 -436 -439 -436 -286 -436 -440 -436 -612 -436 -694 -436 -695 -436 -437 -437 -427 -437 -285 -437 -166 -437 -428 -437 -435 -437 -436 -437 -438 -437 -690 -437 -691 -437 -692 -437 -693 -437 -268 -437 -286 -437 -439 -437 -440 -437 -694 -437 -695 -437 -431 -437 -432 -437 -441 -437 -442 -437 -698 -437 -699 -437 -434 -437 -443 -437 -702 -437 -438 -438 -427 -438 -285 -438 -166 -438 -428 -438 -435 -438 -436 -438 -437 -438 -265 -438 -266 -438 -688 -438 -689 -438 -690 -438 -691 -438 -692 -438 -693 -438 -510 -438 -511 -438 -434 -438 -686 -438 -443 -438 -700 -438 -432 -438 -442 -438 -702 -438 -515 -438 -699 -438 -439 -439 -176 -439 -249 -439 -268 -439 -285 -439 -376 -439 -375 -439 -436 -439 -175 -439 -262 -439 -374 -439 -415 -439 -178 -439 -286 -439 -419 -439 -440 -439 -166 -439 -437 -439 -613 -439 -612 -439 -694 -439 -691 -439 -611 -439 -662 -439 -666 -439 -695 -439 -692 -439 -440 -440 -268 -440 -262 -440 -178 -440 -286 -440 -439 -440 -415 -440 -419 -440 -285 -440 -166 -440 -436 -440 -437 -440 -694 -440 -662 -440 -666 -440 -695 -440 -691 -440 -692 -440 -431 -440 -432 -440 -441 -440 -442 -440 -413 -440 -425 -440 -698 -440 -699 -440 -679 -440 -441 -441 -166 -441 -286 -441 -431 -441 -432 -441 -437 -441 -440 -441 -442 -441 -178 -441 -413 -441 -419 -441 -425 -441 -660 -441 -682 -441 -677 -441 -696 -441 -683 -441 -697 -441 -692 -441 -695 -441 -698 -441 -699 -441 -666 -441 -679 -441 -507 -441 -512 -441 -513 -441 -442 -442 -166 -442 -286 -442 -431 -442 -432 -442 -437 -442 -440 -442 -441 -442 -682 -442 -683 -442 -696 -442 -697 -442 -692 -442 -695 -442 -698 -442 -699 -442 -512 -442 -513 -442 -428 -442 -434 -442 -438 -442 -443 -442 -687 -442 -701 -442 -693 -442 -702 -442 -516 -442 -443 -443 -266 -443 -428 -443 -434 -443 -686 -443 -689 -443 -438 -443 -700 -443 -166 -443 -432 -443 -437 -443 -442 -443 -683 -443 -687 -443 -697 -443 -701 -443 -509 -443 -514 -443 -511 -443 -693 -443 -702 -443 -515 -443 -692 -443 -699 -443 -513 -443 -516 -443 -450 -443 -444 -444 -451 -444 -452 -444 -517 -444 -518 -444 -453 -444 -519 -444 -290 -444 -445 -445 -547 -445 -462 -445 -463 -445 -318 -445 -549 -445 -464 -445 -550 -445 -446 -446 -473 -446 -581 -446 -474 -446 -582 -446 -346 -446 -583 -446 -475 -446 -447 -447 -479 -447 -594 -447 -363 -447 -595 -447 -480 -447 -598 -447 -481 -447 -448 -448 -634 -448 -492 -448 -635 -448 -394 -448 -493 -448 -494 -448 -637 -448 -449 -449 -422 -449 -671 -449 -502 -449 -672 -449 -674 -449 -503 -449 -504 -449 -450 -450 -700 -450 -443 -450 -701 -450 -514 -450 -515 -450 -702 -450 -516 -450 -451 -451 -180 -451 -517 -451 -187 -451 -188 -451 -518 -451 -290 -451 -287 -451 -444 -451 -452 -451 -453 -451 -519 -451 -452 -452 -451 -452 -444 -452 -517 -452 -518 -452 -453 -452 -519 -452 -290 -452 -454 -452 -520 -452 -521 -452 -291 -452 -453 -453 -451 -453 -444 -453 -452 -453 -517 -453 -518 -453 -519 -453 -290 -453 -522 -453 -455 -453 -523 -453 -292 -453 -454 -454 -517 -454 -452 -454 -520 -454 -290 -454 -519 -454 -521 -454 -291 -454 -456 -454 -525 -454 -526 -454 -294 -454 -455 -455 -518 -455 -453 -455 -519 -455 -290 -455 -522 -455 -523 -455 -292 -455 -531 -455 -458 -455 -532 -455 -302 -455 -456 -456 -520 -456 -454 -456 -525 -456 -291 -456 -521 -456 -526 -456 -294 -456 -457 -456 -527 -456 -528 -456 -296 -456 -457 -457 -525 -457 -456 -457 -527 -457 -294 -457 -526 -457 -528 -457 -296 -457 -460 -457 -541 -457 -542 -457 -314 -457 -458 -458 -522 -458 -455 -458 -523 -458 -292 -458 -531 -458 -532 -458 -302 -458 -534 -458 -459 -458 -535 -458 -304 -458 -459 -459 -531 -459 -458 -459 -532 -459 -302 -459 -534 -459 -535 -459 -304 -459 -618 -459 -488 -459 -619 -459 -382 -459 -460 -460 -527 -460 -457 -460 -541 -460 -296 -460 -528 -460 -542 -460 -314 -460 -461 -460 -543 -460 -544 -460 -315 -460 -461 -461 -541 -461 -460 -461 -543 -461 -314 -461 -542 -461 -544 -461 -315 -461 -462 -461 -547 -461 -549 -461 -318 -461 -462 -462 -543 -462 -461 -462 -547 -462 -315 -462 -544 -462 -549 -462 -318 -462 -445 -462 -463 -462 -464 -462 -550 -462 -463 -463 -547 -463 -462 -463 -445 -463 -318 -463 -549 -463 -464 -463 -550 -463 -548 -463 -465 -463 -319 -463 -551 -463 -464 -464 -547 -464 -462 -464 -445 -464 -463 -464 -318 -464 -549 -464 -550 -464 -320 -464 -552 -464 -466 -464 -553 -464 -465 -465 -548 -465 -547 -465 -463 -465 -319 -465 -318 -465 -550 -465 -551 -465 -555 -465 -467 -465 -322 -465 -557 -465 -466 -466 -318 -466 -549 -466 -464 -466 -550 -466 -320 -466 -552 -466 -553 -466 -330 -466 -565 -466 -469 -466 -566 -466 -467 -467 -555 -467 -548 -467 -465 -467 -322 -467 -319 -467 -551 -467 -557 -467 -556 -467 -468 -467 -323 -467 -558 -467 -468 -468 -556 -468 -555 -468 -467 -468 -323 -468 -322 -468 -557 -468 -558 -468 -575 -468 -471 -468 -342 -468 -577 -468 -469 -469 -320 -469 -552 -469 -466 -469 -553 -469 -330 -469 -565 -469 -566 -469 -332 -469 -568 -469 -470 -469 -569 -469 -470 -470 -330 -470 -565 -470 -469 -470 -566 -470 -332 -470 -568 -470 -569 -470 -406 -470 -651 -470 -498 -470 -652 -470 -471 -471 -575 -471 -556 -471 -468 -471 -342 -471 -323 -471 -558 -471 -577 -471 -576 -471 -472 -471 -343 -471 -578 -471 -472 -472 -576 -472 -575 -472 -471 -472 -343 -472 -342 -472 -577 -472 -578 -472 -581 -472 -474 -472 -346 -472 -583 -472 -473 -473 -182 -473 -219 -473 -581 -473 -220 -473 -339 -473 -346 -473 -582 -473 -474 -473 -446 -473 -583 -473 -475 -473 -474 -474 -581 -474 -576 -474 -472 -474 -346 -474 -343 -474 -578 -474 -583 -474 -473 -474 -446 -474 -582 -474 -475 -474 -475 -475 -473 -475 -581 -475 -474 -475 -446 -475 -582 -475 -346 -475 -583 -475 -584 -475 -347 -475 -585 -475 -476 -475 -476 -476 -582 -476 -346 -476 -583 -476 -475 -476 -584 -476 -347 -476 -585 -476 -590 -476 -354 -476 -591 -476 -477 -476 -477 -477 -584 -477 -347 -477 -585 -477 -476 -477 -590 -477 -354 -477 -591 -477 -592 -477 -355 -477 -593 -477 -478 -477 -478 -478 -590 -478 -354 -478 -591 -478 -477 -478 -592 -478 -355 -478 -593 -478 -684 -478 -433 -478 -685 -478 -508 -478 -479 -479 -184 -479 -235 -479 -356 -479 -236 -479 -594 -479 -363 -479 -595 -479 -447 -479 -480 -479 -598 -479 -481 -479 -480 -480 -479 -480 -594 -480 -363 -480 -595 -480 -447 -480 -598 -480 -481 -480 -596 -480 -364 -480 -482 -480 -599 -480 -481 -481 -479 -481 -594 -481 -363 -481 -595 -481 -447 -481 -480 -481 -598 -481 -366 -481 -597 -481 -601 -481 -483 -481 -482 -482 -594 -482 -596 -482 -364 -482 -363 -482 -480 -482 -599 -482 -598 -482 -602 -482 -367 -482 -484 -482 -604 -482 -483 -483 -595 -483 -363 -483 -366 -483 -597 -483 -481 -483 -598 -483 -601 -483 -377 -483 -614 -483 -616 -483 -486 -483 -484 -484 -596 -484 -602 -484 -367 -484 -364 -484 -482 -484 -604 -484 -599 -484 -603 -484 -368 -484 -485 -484 -605 -484 -485 -485 -602 -485 -603 -485 -368 -485 -367 -485 -484 -485 -605 -485 -604 -485 -628 -485 -390 -485 -490 -485 -630 -485 -486 -486 -597 -486 -366 -486 -377 -486 -614 -486 -483 -486 -601 -486 -616 -486 -378 -486 -615 -486 -617 -486 -487 -486 -487 -487 -614 -487 -377 -487 -378 -487 -615 -487 -486 -487 -616 -487 -617 -487 -435 -487 -688 -487 -690 -487 -510 -487 -488 -488 -534 -488 -459 -488 -535 -488 -304 -488 -618 -488 -619 -488 -382 -488 -621 -488 -489 -488 -622 -488 -384 -488 -489 -489 -618 -489 -488 -489 -619 -489 -382 -489 -621 -489 -622 -489 -384 -489 -634 -489 -492 -489 -635 -489 -394 -489 -490 -490 -603 -490 -628 -490 -390 -490 -368 -490 -485 -490 -630 -490 -605 -490 -629 -490 -391 -490 -491 -490 -631 -490 -491 -491 -628 -491 -629 -491 -391 -491 -390 -491 -490 -491 -631 -491 -630 -491 -634 -491 -394 -491 -493 -491 -637 -491 -492 -492 -621 -492 -489 -492 -622 -492 -384 -492 -634 -492 -635 -492 -394 -492 -493 -492 -448 -492 -494 -492 -637 -492 -493 -493 -629 -493 -634 -493 -394 -493 -391 -493 -491 -493 -637 -493 -631 -493 -492 -493 -635 -493 -448 -493 -494 -493 -494 -494 -634 -494 -492 -494 -635 -494 -394 -494 -493 -494 -448 -494 -637 -494 -636 -494 -395 -494 -495 -494 -638 -494 -495 -495 -394 -495 -635 -495 -636 -495 -395 -495 -637 -495 -494 -495 -638 -495 -639 -495 -396 -495 -496 -495 -641 -495 -496 -496 -395 -496 -636 -496 -639 -496 -396 -496 -638 -496 -495 -496 -641 -496 -640 -496 -398 -496 -497 -496 -643 -496 -497 -497 -396 -497 -639 -497 -640 -497 -398 -497 -641 -497 -496 -497 -643 -497 -667 -497 -420 -497 -500 -497 -669 -497 -498 -498 -332 -498 -568 -498 -470 -498 -569 -498 -406 -498 -651 -498 -652 -498 -408 -498 -654 -498 -499 -498 -655 -498 -499 -499 -406 -499 -651 -499 -498 -499 -652 -499 -408 -499 -654 -499 -655 -499 -422 -499 -671 -499 -502 -499 -672 -499 -500 -500 -398 -500 -640 -500 -667 -500 -420 -500 -643 -500 -497 -500 -669 -500 -668 -500 -421 -500 -501 -500 -670 -500 -501 -501 -420 -501 -667 -501 -668 -501 -421 -501 -669 -501 -500 -501 -670 -501 -671 -501 -422 -501 -503 -501 -674 -501 -502 -502 -408 -502 -654 -502 -499 -502 -655 -502 -422 -502 -671 -502 -672 -502 -674 -502 -503 -502 -449 -502 -504 -502 -503 -503 -421 -503 -668 -503 -671 -503 -422 -503 -670 -503 -501 -503 -674 -503 -502 -503 -672 -503 -449 -503 -504 -503 -504 -504 -422 -504 -671 -504 -502 -504 -672 -504 -674 -504 -503 -504 -449 -504 -423 -504 -673 -504 -675 -504 -505 -504 -505 -505 -423 -505 -422 -505 -672 -505 -673 -505 -675 -505 -674 -505 -504 -505 -424 -505 -676 -505 -678 -505 -506 -505 -506 -506 -424 -506 -423 -506 -673 -506 -676 -506 -678 -506 -675 -506 -505 -506 -425 -506 -677 -506 -679 -506 -507 -506 -507 -507 -425 -507 -424 -507 -676 -507 -677 -507 -679 -507 -678 -507 -506 -507 -441 -507 -696 -507 -698 -507 -512 -507 -508 -508 -592 -508 -355 -508 -593 -508 -478 -508 -684 -508 -433 -508 -685 -508 -686 -508 -434 -508 -687 -508 -509 -508 -509 -509 -684 -509 -433 -509 -685 -509 -508 -509 -686 -509 -434 -509 -687 -509 -700 -509 -443 -509 -701 -509 -514 -509 -510 -510 -615 -510 -378 -510 -435 -510 -688 -510 -487 -510 -617 -510 -690 -510 -438 -510 -689 -510 -693 -510 -511 -510 -511 -511 -688 -511 -435 -511 -438 -511 -689 -511 -510 -511 -690 -511 -693 -511 -443 -511 -700 -511 -702 -511 -515 -511 -512 -512 -441 -512 -425 -512 -677 -512 -696 -512 -698 -512 -679 -512 -507 -512 -442 -512 -697 -512 -699 -512 -513 -512 -513 -513 -442 -513 -441 -513 -696 -513 -697 -513 -699 -513 -698 -513 -512 -513 -443 -513 -701 -513 -702 -513 -516 -513 -514 -514 -686 -514 -434 -514 -687 -514 -509 -514 -700 -514 -443 -514 -701 -514 -515 -514 -702 -514 -516 -514 -450 -514 -515 -515 -689 -515 -438 -515 -443 -515 -700 -515 -511 -515 -693 -515 -702 -515 -701 -515 -514 -515 -516 -515 -450 -515 -516 -516 -443 -516 -442 -516 -697 -516 -701 -516 -702 -516 -699 -516 -513 -516 -700 -516 -514 -516 -515 -516 -450 -516 -517 -517 -180 -517 -451 -517 -187 -517 -188 -517 -518 -517 -290 -517 -287 -517 -444 -517 -452 -517 -453 -517 -519 -517 -454 -517 -520 -517 -521 -517 -291 -517 -189 -517 -288 -517 -518 -518 -180 -518 -451 -518 -517 -518 -187 -518 -188 -518 -290 -518 -287 -518 -444 -518 -452 -518 -453 -518 -519 -518 -192 -518 -522 -518 -292 -518 -289 -518 -455 -518 -523 -518 -519 -519 -451 -519 -444 -519 -452 -519 -517 -519 -518 -519 -453 -519 -290 -519 -454 -519 -520 -519 -521 -519 -291 -519 -522 -519 -455 -519 -523 -519 -292 -519 -524 -519 -293 -519 -520 -520 -517 -520 -452 -520 -454 -520 -290 -520 -519 -520 -521 -520 -291 -520 -187 -520 -189 -520 -287 -520 -288 -520 -525 -520 -193 -520 -294 -520 -295 -520 -456 -520 -526 -520 -521 -521 -517 -521 -452 -521 -454 -521 -520 -521 -290 -521 -519 -521 -291 -521 -292 -521 -523 -521 -524 -521 -293 -521 -456 -521 -525 -521 -526 -521 -294 -521 -529 -521 -298 -521 -522 -522 -188 -522 -518 -522 -290 -522 -287 -522 -192 -522 -292 -522 -289 -522 -453 -522 -519 -522 -455 -522 -523 -522 -198 -522 -531 -522 -302 -522 -300 -522 -458 -522 -532 -522 -523 -523 -518 -523 -453 -523 -519 -523 -290 -523 -522 -523 -455 -523 -292 -523 -521 -523 -291 -523 -524 -523 -293 -523 -531 -523 -458 -523 -532 -523 -302 -523 -533 -523 -303 -523 -524 -524 -290 -524 -519 -524 -521 -524 -291 -524 -292 -524 -523 -524 -293 -524 -526 -524 -294 -524 -529 -524 -298 -524 -302 -524 -532 -524 -533 -524 -303 -524 -537 -524 -306 -524 -525 -525 -189 -525 -520 -525 -193 -525 -288 -525 -291 -525 -294 -525 -295 -525 -454 -525 -456 -525 -521 -525 -526 -525 -457 -525 -527 -525 -528 -525 -296 -525 -194 -525 -297 -525 -526 -526 -520 -526 -454 -526 -456 -526 -525 -526 -291 -526 -521 -526 -294 -526 -457 -526 -527 -526 -528 -526 -296 -526 -293 -526 -524 -526 -529 -526 -298 -526 -530 -526 -299 -526 -527 -527 -525 -527 -456 -527 -457 -527 -294 -527 -526 -527 -528 -527 -296 -527 -193 -527 -194 -527 -295 -527 -297 -527 -541 -527 -206 -527 -314 -527 -310 -527 -460 -527 -542 -527 -528 -528 -525 -528 -456 -528 -457 -528 -527 -528 -294 -528 -526 -528 -296 -528 -298 -528 -529 -528 -530 -528 -299 -528 -460 -528 -541 -528 -542 -528 -314 -528 -545 -528 -316 -528 -529 -529 -291 -529 -521 -529 -526 -529 -294 -529 -293 -529 -524 -529 -298 -529 -528 -529 -296 -529 -530 -529 -299 -529 -303 -529 -533 -529 -537 -529 -306 -529 -538 -529 -307 -529 -530 -530 -294 -530 -526 -530 -528 -530 -296 -530 -298 -530 -529 -530 -299 -530 -306 -530 -537 -530 -538 -530 -307 -530 -542 -530 -314 -530 -545 -530 -316 -530 -561 -530 -326 -530 -531 -531 -192 -531 -522 -531 -292 -531 -289 -531 -198 -531 -302 -531 -300 -531 -455 -531 -523 -531 -458 -531 -532 -531 -200 -531 -534 -531 -304 -531 -301 -531 -459 -531 -535 -531 -532 -532 -522 -532 -455 -532 -523 -532 -292 -532 -531 -532 -458 -532 -302 -532 -524 -532 -293 -532 -533 -532 -303 -532 -534 -532 -459 -532 -535 -532 -304 -532 -536 -532 -305 -532 -533 -533 -292 -533 -523 -533 -524 -533 -293 -533 -302 -533 -532 -533 -303 -533 -304 -533 -535 -533 -536 -533 -305 -533 -529 -533 -298 -533 -537 -533 -306 -533 -539 -533 -308 -533 -534 -534 -198 -534 -531 -534 -302 -534 -300 -534 -200 -534 -304 -534 -301 -534 -458 -534 -532 -534 -459 -534 -535 -534 -251 -534 -618 -534 -382 -534 -379 -534 -488 -534 -619 -534 -535 -535 -531 -535 -458 -535 -532 -535 -302 -535 -534 -535 -459 -535 -304 -535 -533 -535 -303 -535 -536 -535 -305 -535 -618 -535 -488 -535 -619 -535 -382 -535 -620 -535 -383 -535 -536 -536 -302 -536 -532 -536 -533 -536 -303 -536 -304 -536 -535 -536 -305 -536 -537 -536 -306 -536 -539 -536 -308 -536 -382 -536 -619 -536 -620 -536 -383 -536 -624 -536 -386 -536 -537 -537 -293 -537 -524 -537 -529 -537 -298 -537 -303 -537 -533 -537 -306 -537 -530 -537 -299 -537 -538 -537 -307 -537 -305 -537 -536 -537 -539 -537 -308 -537 -540 -537 -309 -537 -538 -538 -298 -538 -529 -538 -530 -538 -299 -538 -306 -538 -537 -538 -307 -538 -308 -538 -539 -538 -540 -538 -309 -538 -545 -538 -316 -538 -561 -538 -326 -538 -563 -538 -328 -538 -539 -539 -303 -539 -533 -539 -537 -539 -306 -539 -305 -539 -536 -539 -308 -539 -538 -539 -307 -539 -540 -539 -309 -539 -383 -539 -620 -539 -624 -539 -386 -539 -625 -539 -387 -539 -540 -540 -306 -540 -537 -540 -538 -540 -307 -540 -308 -540 -539 -540 -309 -540 -561 -540 -326 -540 -563 -540 -328 -540 -386 -540 -624 -540 -625 -540 -387 -540 -647 -540 -402 -540 -541 -541 -194 -541 -527 -541 -206 -541 -297 -541 -296 -541 -314 -541 -310 -541 -457 -541 -460 -541 -528 -541 -542 -541 -461 -541 -543 -541 -544 -541 -315 -541 -207 -541 -311 -541 -542 -542 -527 -542 -457 -542 -460 -542 -541 -542 -296 -542 -528 -542 -314 -542 -461 -542 -543 -542 -544 -542 -315 -542 -299 -542 -530 -542 -545 -542 -316 -542 -546 -542 -317 -542 -543 -543 -541 -543 -460 -543 -461 -543 -314 -543 -542 -543 -544 -543 -315 -543 -206 -543 -207 -543 -310 -543 -311 -543 -547 -543 -548 -543 -318 -543 -319 -543 -462 -543 -549 -543 -544 -544 -541 -544 -460 -544 -461 -544 -543 -544 -314 -544 -542 -544 -315 -544 -316 -544 -545 -544 -546 -544 -317 -544 -462 -544 -547 -544 -549 -544 -318 -544 -552 -544 -320 -544 -545 -545 -296 -545 -528 -545 -542 -545 -314 -545 -299 -545 -530 -545 -316 -545 -544 -545 -315 -545 -546 -545 -317 -545 -307 -545 -538 -545 -561 -545 -326 -545 -562 -545 -327 -545 -546 -546 -314 -546 -542 -546 -544 -546 -315 -546 -316 -546 -545 -546 -317 -546 -549 -546 -318 -546 -552 -546 -320 -546 -326 -546 -561 -546 -562 -546 -327 -546 -565 -546 -330 -546 -547 -547 -207 -547 -543 -547 -548 -547 -311 -547 -315 -547 -318 -547 -319 -547 -461 -547 -462 -547 -544 -547 -549 -547 -445 -547 -463 -547 -464 -547 -550 -547 -465 -547 -551 -547 -548 -548 -207 -548 -543 -548 -547 -548 -311 -548 -315 -548 -318 -548 -319 -548 -463 -548 -465 -548 -550 -548 -551 -548 -208 -548 -555 -548 -312 -548 -322 -548 -467 -548 -557 -548 -549 -549 -543 -549 -461 -549 -462 -549 -547 -549 -315 -549 -544 -549 -318 -549 -445 -549 -463 -549 -464 -549 -550 -549 -317 -549 -546 -549 -552 -549 -320 -549 -466 -549 -553 -549 -550 -550 -547 -550 -462 -550 -445 -550 -463 -550 -318 -550 -549 -550 -464 -550 -548 -550 -465 -550 -319 -550 -551 -550 -320 -550 -552 -550 -466 -550 -553 -550 -321 -550 -554 -550 -551 -551 -548 -551 -547 -551 -463 -551 -465 -551 -319 -551 -318 -551 -550 -551 -321 -551 -320 -551 -553 -551 -554 -551 -555 -551 -467 -551 -322 -551 -557 -551 -324 -551 -559 -551 -552 -552 -315 -552 -544 -552 -549 -552 -318 -552 -317 -552 -546 -552 -320 -552 -464 -552 -550 -552 -466 -552 -553 -552 -327 -552 -562 -552 -565 -552 -330 -552 -469 -552 -566 -552 -553 -553 -318 -553 -549 -553 -464 -553 -550 -553 -320 -553 -552 -553 -466 -553 -319 -553 -551 -553 -321 -553 -554 -553 -330 -553 -565 -553 -469 -553 -566 -553 -331 -553 -567 -553 -554 -554 -319 -554 -318 -554 -550 -554 -551 -554 -321 -554 -320 -554 -553 -554 -322 -554 -557 -554 -324 -554 -559 -554 -331 -554 -330 -554 -566 -554 -567 -554 -334 -554 -571 -554 -555 -555 -209 -555 -208 -555 -556 -555 -313 -555 -312 -555 -322 -555 -323 -555 -207 -555 -548 -555 -311 -555 -319 -555 -465 -555 -467 -555 -551 -555 -557 -555 -468 -555 -558 -555 -556 -556 -209 -556 -208 -556 -555 -556 -313 -556 -312 -556 -322 -556 -323 -556 -467 -556 -468 -556 -557 -556 -558 -556 -224 -556 -575 -556 -341 -556 -342 -556 -471 -556 -577 -556 -557 -557 -555 -557 -548 -557 -465 -557 -467 -557 -322 -557 -319 -557 -551 -557 -556 -557 -468 -557 -323 -557 -558 -557 -324 -557 -321 -557 -554 -557 -559 -557 -325 -557 -560 -557 -558 -558 -556 -558 -555 -558 -467 -558 -468 -558 -323 -558 -322 -558 -557 -558 -325 -558 -324 -558 -559 -558 -560 -558 -575 -558 -471 -558 -342 -558 -577 -558 -344 -558 -579 -558 -559 -559 -322 -559 -319 -559 -551 -559 -557 -559 -324 -559 -321 -559 -554 -559 -323 -559 -558 -559 -325 -559 -560 -559 -334 -559 -331 -559 -567 -559 -571 -559 -335 -559 -572 -559 -560 -560 -323 -560 -322 -560 -557 -560 -558 -560 -325 -560 -324 -560 -559 -560 -335 -560 -334 -560 -571 -560 -572 -560 -342 -560 -577 -560 -344 -560 -579 -560 -350 -560 -586 -560 -561 -561 -299 -561 -530 -561 -545 -561 -316 -561 -307 -561 -538 -561 -326 -561 -546 -561 -317 -561 -562 -561 -327 -561 -309 -561 -540 -561 -563 -561 -328 -561 -564 -561 -329 -561 -562 -562 -316 -562 -545 -562 -546 -562 -317 -562 -326 -562 -561 -562 -327 -562 -328 -562 -563 -562 -564 -562 -329 -562 -552 -562 -320 -562 -565 -562 -330 -562 -568 -562 -332 -562 -563 -563 -307 -563 -538 -563 -561 -563 -326 -563 -309 -563 -540 -563 -328 -563 -562 -563 -327 -563 -564 -563 -329 -563 -387 -563 -625 -563 -647 -563 -402 -563 -648 -563 -403 -563 -564 -564 -326 -564 -561 -564 -562 -564 -327 -564 -328 -564 -563 -564 -329 -564 -565 -564 -330 -564 -568 -564 -332 -564 -402 -564 -647 -564 -648 -564 -403 -564 -651 -564 -406 -564 -565 -565 -317 -565 -546 -565 -552 -565 -320 -565 -327 -565 -562 -565 -330 -565 -466 -565 -553 -565 -469 -565 -566 -565 -329 -565 -564 -565 -568 -565 -332 -565 -470 -565 -569 -565 -566 -566 -320 -566 -552 -566 -466 -566 -553 -566 -330 -566 -565 -566 -469 -566 -321 -566 -554 -566 -331 -566 -567 -566 -332 -566 -568 -566 -470 -566 -569 -566 -333 -566 -570 -566 -567 -567 -321 -567 -320 -567 -553 -567 -554 -567 -331 -567 -330 -567 -566 -567 -333 -567 -332 -567 -569 -567 -570 -567 -324 -567 -559 -567 -334 -567 -571 -567 -336 -567 -573 -567 -568 -568 -327 -568 -562 -568 -565 -568 -330 -568 -329 -568 -564 -568 -332 -568 -469 -568 -566 -568 -470 -568 -569 -568 -403 -568 -648 -568 -651 -568 -406 -568 -498 -568 -652 -568 -569 -569 -330 -569 -565 -569 -469 -569 -566 -569 -332 -569 -568 -569 -470 -569 -331 -569 -567 -569 -333 -569 -570 -569 -406 -569 -651 -569 -498 -569 -652 -569 -407 -569 -653 -569 -570 -570 -331 -570 -330 -570 -566 -570 -567 -570 -333 -570 -332 -570 -569 -570 -334 -570 -571 -570 -336 -570 -573 -570 -407 -570 -406 -570 -652 -570 -653 -570 -410 -570 -657 -570 -571 -571 -324 -571 -321 -571 -554 -571 -559 -571 -334 -571 -331 -571 -567 -571 -325 -571 -560 -571 -335 -571 -572 -571 -336 -571 -333 -571 -570 -571 -573 -571 -337 -571 -574 -571 -572 -572 -325 -572 -324 -572 -559 -572 -560 -572 -335 -572 -334 -572 -571 -572 -337 -572 -336 -572 -573 -572 -574 -572 -344 -572 -579 -572 -350 -572 -586 -572 -352 -572 -588 -572 -573 -573 -334 -573 -331 -573 -567 -573 -571 -573 -336 -573 -333 -573 -570 -573 -335 -573 -572 -573 -337 -573 -574 -573 -410 -573 -407 -573 -653 -573 -657 -573 -411 -573 -658 -573 -574 -574 -335 -574 -334 -574 -571 -574 -572 -574 -337 -574 -336 -574 -573 -574 -350 -574 -586 -574 -352 -574 -588 -574 -411 -574 -410 -574 -657 -574 -658 -574 -429 -574 -680 -574 -575 -575 -218 -575 -224 -575 -576 -575 -338 -575 -341 -575 -342 -575 -343 -575 -209 -575 -556 -575 -313 -575 -323 -575 -468 -575 -471 -575 -558 -575 -577 -575 -472 -575 -578 -575 -576 -576 -218 -576 -224 -576 -575 -576 -338 -576 -341 -576 -342 -576 -343 -576 -471 -576 -472 -576 -577 -576 -578 -576 -219 -576 -581 -576 -339 -576 -346 -576 -474 -576 -583 -576 -577 -577 -575 -577 -556 -577 -468 -577 -471 -577 -342 -577 -323 -577 -558 -577 -576 -577 -472 -577 -343 -577 -578 -577 -344 -577 -325 -577 -560 -577 -579 -577 -345 -577 -580 -577 -578 -578 -576 -578 -575 -578 -471 -578 -472 -578 -343 -578 -342 -578 -577 -578 -345 -578 -344 -578 -579 -578 -580 -578 -581 -578 -474 -578 -346 -578 -583 -578 -347 -578 -585 -578 -579 -579 -342 -579 -323 -579 -558 -579 -577 -579 -344 -579 -325 -579 -560 -579 -343 -579 -578 -579 -345 -579 -580 -579 -350 -579 -335 -579 -572 -579 -586 -579 -351 -579 -587 -579 -580 -580 -343 -580 -342 -580 -577 -580 -578 -580 -345 -580 -344 -580 -579 -580 -346 -580 -583 -580 -347 -580 -585 -580 -351 -580 -350 -580 -586 -580 -587 -580 -354 -580 -591 -580 -581 -581 -182 -581 -219 -581 -473 -581 -220 -581 -339 -581 -346 -581 -582 -581 -218 -581 -576 -581 -338 -581 -343 -581 -472 -581 -474 -581 -578 -581 -583 -581 -446 -581 -475 -581 -582 -582 -182 -582 -219 -582 -581 -582 -473 -582 -220 -582 -339 -582 -346 -582 -474 -582 -446 -582 -583 -582 -475 -582 -222 -582 -340 -582 -347 -582 -584 -582 -585 -582 -476 -582 -583 -583 -581 -583 -576 -583 -472 -583 -474 -583 -346 -583 -343 -583 -578 -583 -473 -583 -446 -583 -582 -583 -475 -583 -347 -583 -345 -583 -580 -583 -585 -583 -584 -583 -476 -583 -584 -584 -220 -584 -339 -584 -346 -584 -582 -584 -222 -584 -340 -584 -347 -584 -583 -584 -475 -584 -585 -584 -476 -584 -226 -584 -348 -584 -354 -584 -590 -584 -591 -584 -477 -584 -585 -585 -346 -585 -343 -585 -578 -585 -583 -585 -347 -585 -345 -585 -580 -585 -582 -585 -475 -585 -584 -585 -476 -585 -354 -585 -351 -585 -587 -585 -591 -585 -590 -585 -477 -585 -586 -586 -344 -586 -325 -586 -560 -586 -579 -586 -350 -586 -335 -586 -572 -586 -345 -586 -580 -586 -351 -586 -587 -586 -352 -586 -337 -586 -574 -586 -588 -586 -353 -586 -589 -586 -587 -587 -345 -587 -344 -587 -579 -587 -580 -587 -351 -587 -350 -587 -586 -587 -353 -587 -352 -587 -588 -587 -589 -587 -347 -587 -585 -587 -354 -587 -591 -587 -355 -587 -593 -587 -588 -588 -350 -588 -335 -588 -572 -588 -586 -588 -352 -588 -337 -588 -574 -588 -351 -588 -587 -588 -353 -588 -589 -588 -429 -588 -411 -588 -658 -588 -680 -588 -430 -588 -681 -588 -589 -589 -351 -589 -350 -589 -586 -589 -587 -589 -353 -589 -352 -589 -588 -589 -354 -589 -591 -589 -355 -589 -593 -589 -430 -589 -429 -589 -680 -589 -681 -589 -433 -589 -685 -589 -590 -590 -222 -590 -340 -590 -347 -590 -584 -590 -226 -590 -348 -590 -354 -590 -585 -590 -476 -590 -591 -590 -477 -590 -228 -590 -349 -590 -355 -590 -592 -590 -593 -590 -478 -590 -591 -591 -347 -591 -345 -591 -580 -591 -585 -591 -354 -591 -351 -591 -587 -591 -584 -591 -476 -591 -590 -591 -477 -591 -355 -591 -353 -591 -589 -591 -593 -591 -592 -591 -478 -591 -592 -592 -226 -592 -348 -592 -354 -592 -590 -592 -228 -592 -349 -592 -355 -592 -591 -592 -477 -592 -593 -592 -478 -592 -264 -592 -426 -592 -433 -592 -684 -592 -685 -592 -508 -592 -593 -593 -354 -593 -351 -593 -587 -593 -591 -593 -355 -593 -353 -593 -589 -593 -590 -593 -477 -593 -592 -593 -478 -593 -433 -593 -430 -593 -681 -593 -685 -593 -684 -593 -508 -593 -594 -594 -184 -594 -235 -594 -356 -594 -236 -594 -479 -594 -363 -594 -595 -594 -237 -594 -357 -594 -596 -594 -364 -594 -447 -594 -480 -594 -598 -594 -481 -594 -482 -594 -599 -594 -595 -595 -184 -595 -235 -595 -356 -595 -236 -595 -479 -595 -594 -595 -363 -595 -358 -595 -238 -595 -366 -595 -597 -595 -447 -595 -480 -595 -598 -595 -481 -595 -601 -595 -483 -595 -596 -596 -235 -596 -237 -596 -357 -596 -356 -596 -594 -596 -364 -596 -363 -596 -480 -596 -482 -596 -599 -596 -598 -596 -241 -596 -359 -596 -602 -596 -367 -596 -484 -596 -604 -596 -597 -597 -236 -597 -356 -597 -358 -597 -238 -597 -595 -597 -363 -597 -366 -597 -481 -597 -598 -597 -601 -597 -483 -597 -361 -597 -245 -597 -377 -597 -614 -597 -616 -597 -486 -597 -598 -598 -479 -598 -594 -598 -363 -598 -595 -598 -447 -598 -480 -598 -481 -598 -596 -598 -364 -598 -482 -598 -599 -598 -365 -598 -366 -598 -600 -598 -601 -598 -597 -598 -483 -598 -599 -599 -594 -599 -596 -599 -364 -599 -363 -599 -480 -599 -482 -599 -598 -599 -365 -599 -366 -599 -600 -599 -601 -599 -602 -599 -367 -599 -484 -599 -604 -599 -370 -599 -607 -599 -600 -600 -363 -600 -364 -600 -365 -600 -366 -600 -598 -600 -599 -600 -601 -600 -367 -600 -370 -600 -604 -600 -607 -600 -371 -600 -372 -600 -608 -600 -609 -600 -377 -600 -616 -600 -601 -601 -363 -601 -364 -601 -365 -601 -366 -601 -598 -601 -599 -601 -600 -601 -595 -601 -597 -601 -481 -601 -483 -601 -377 -601 -614 -601 -616 -601 -486 -601 -372 -601 -609 -601 -602 -602 -237 -602 -241 -602 -359 -602 -357 -602 -596 -602 -367 -602 -364 -602 -242 -602 -360 -602 -603 -602 -368 -602 -482 -602 -484 -602 -604 -602 -599 -602 -485 -602 -605 -602 -603 -603 -241 -603 -242 -603 -360 -603 -359 -603 -602 -603 -368 -603 -367 -603 -484 -603 -485 -603 -605 -603 -604 -603 -252 -603 -380 -603 -628 -603 -390 -603 -490 -603 -630 -603 -604 -604 -596 -604 -602 -604 -367 -604 -364 -604 -482 -604 -484 -604 -599 -604 -603 -604 -368 -604 -485 -604 -605 -604 -369 -604 -370 -604 -606 -604 -607 -604 -365 -604 -600 -604 -605 -605 -602 -605 -603 -605 -368 -605 -367 -605 -484 -605 -485 -605 -604 -605 -369 -605 -370 -605 -606 -605 -607 -605 -628 -605 -390 -605 -490 -605 -630 -605 -393 -605 -633 -605 -606 -606 -367 -606 -368 -606 -369 -606 -370 -606 -604 -606 -605 -606 -607 -606 -373 -606 -371 -606 -610 -606 -608 -606 -390 -606 -393 -606 -630 -606 -633 -606 -400 -606 -645 -606 -607 -607 -367 -607 -368 -607 -369 -607 -370 -607 -604 -607 -605 -607 -606 -607 -364 -607 -365 -607 -599 -607 -600 -607 -371 -607 -372 -607 -608 -607 -609 -607 -373 -607 -610 -607 -608 -608 -365 -608 -370 -608 -371 -608 -372 -608 -600 -608 -607 -608 -609 -608 -369 -608 -373 -608 -606 -608 -610 -608 -374 -608 -375 -608 -611 -608 -612 -608 -376 -608 -613 -608 -609 -609 -365 -609 -370 -609 -371 -609 -372 -609 -600 -609 -607 -609 -608 -609 -375 -609 -376 -609 -612 -609 -613 -609 -366 -609 -377 -609 -601 -609 -616 -609 -378 -609 -617 -609 -610 -610 -370 -610 -369 -610 -373 -610 -371 -610 -607 -610 -606 -610 -608 -610 -374 -610 -375 -610 -611 -610 -612 -610 -393 -610 -400 -610 -633 -610 -645 -610 -401 -610 -646 -610 -611 -611 -371 -611 -373 -611 -374 -611 -375 -611 -608 -611 -610 -611 -612 -611 -400 -611 -401 -611 -645 -611 -646 -611 -414 -611 -415 -611 -661 -611 -662 -611 -439 -611 -694 -611 -612 -612 -371 -612 -373 -612 -374 -612 -375 -612 -608 -612 -610 -612 -611 -612 -372 -612 -376 -612 -609 -612 -613 -612 -439 -612 -436 -612 -694 -612 -691 -612 -415 -612 -662 -612 -613 -613 -372 -613 -371 -613 -375 -613 -376 -613 -609 -613 -608 -613 -612 -613 -377 -613 -378 -613 -616 -613 -617 -613 -436 -613 -435 -613 -691 -613 -690 -613 -439 -613 -694 -613 -614 -614 -238 -614 -358 -614 -361 -614 -245 -614 -597 -614 -366 -614 -377 -614 -362 -614 -246 -614 -378 -614 -615 -614 -483 -614 -601 -614 -616 -614 -486 -614 -617 -614 -487 -614 -615 -615 -245 -615 -361 -615 -362 -615 -246 -615 -614 -615 -377 -615 -378 -615 -486 -615 -616 -615 -617 -615 -487 -615 -427 -615 -265 -615 -435 -615 -688 -615 -690 -615 -510 -615 -616 -616 -597 -616 -366 -616 -377 -616 -614 -616 -483 -616 -601 -616 -486 -616 -365 -616 -372 -616 -600 -616 -609 -616 -376 -616 -378 -616 -613 -616 -617 -616 -615 -616 -487 -616 -617 -617 -377 -617 -372 -617 -376 -617 -378 -617 -616 -617 -609 -617 -613 -617 -614 -617 -615 -617 -486 -617 -487 -617 -435 -617 -688 -617 -690 -617 -510 -617 -436 -617 -691 -617 -618 -618 -200 -618 -534 -618 -304 -618 -301 -618 -251 -618 -382 -618 -379 -618 -459 -618 -535 -618 -488 -618 -619 -618 -253 -618 -621 -618 -384 -618 -381 -618 -489 -618 -622 -618 -619 -619 -534 -619 -459 -619 -535 -619 -304 -619 -618 -619 -488 -619 -382 -619 -536 -619 -305 -619 -620 -619 -383 -619 -621 -619 -489 -619 -622 -619 -384 -619 -623 -619 -385 -619 -620 -620 -304 -620 -535 -620 -536 -620 -305 -620 -382 -620 -619 -620 -383 -620 -384 -620 -622 -620 -623 -620 -385 -620 -539 -620 -308 -620 -624 -620 -386 -620 -626 -620 -388 -620 -621 -621 -251 -621 -618 -621 -382 -621 -379 -621 -253 -621 -384 -621 -381 -621 -488 -621 -619 -621 -489 -621 -622 -621 -629 -621 -634 -621 -394 -621 -391 -621 -492 -621 -635 -621 -622 -622 -618 -622 -488 -622 -619 -622 -382 -622 -621 -622 -489 -622 -384 -622 -620 -622 -383 -622 -623 -622 -385 -622 -634 -622 -492 -622 -635 -622 -394 -622 -636 -622 -395 -622 -623 -623 -382 -623 -619 -623 -620 -623 -383 -623 -384 -623 -622 -623 -385 -623 -624 -623 -386 -623 -626 -623 -388 -623 -394 -623 -635 -623 -636 -623 -395 -623 -639 -623 -396 -623 -624 -624 -305 -624 -536 -624 -539 -624 -308 -624 -383 -624 -620 -624 -386 -624 -540 -624 -309 -624 -625 -624 -387 -624 -385 -624 -623 -624 -626 -624 -388 -624 -627 -624 -389 -624 -625 -625 -308 -625 -539 -625 -540 -625 -309 -625 -386 -625 -624 -625 -387 -625 -388 -625 -626 -625 -627 -625 -389 -625 -563 -625 -328 -625 -647 -625 -402 -625 -649 -625 -404 -625 -626 -626 -383 -626 -620 -626 -624 -626 -386 -626 -385 -626 -623 -626 -388 -626 -625 -626 -387 -626 -627 -626 -389 -626 -395 -626 -636 -626 -639 -626 -396 -626 -640 -626 -398 -626 -627 -627 -386 -627 -624 -627 -625 -627 -387 -627 -388 -627 -626 -627 -389 -627 -396 -627 -639 -627 -640 -627 -398 -627 -647 -627 -402 -627 -649 -627 -404 -627 -667 -627 -420 -627 -628 -628 -242 -628 -252 -628 -380 -628 -360 -628 -603 -628 -390 -628 -368 -628 -253 -628 -381 -628 -629 -628 -391 -628 -485 -628 -490 -628 -630 -628 -605 -628 -491 -628 -631 -628 -629 -629 -252 -629 -253 -629 -381 -629 -380 -629 -628 -629 -391 -629 -390 -629 -490 -629 -491 -629 -631 -629 -630 -629 -621 -629 -384 -629 -634 -629 -394 -629 -493 -629 -637 -629 -630 -630 -603 -630 -628 -630 -390 -630 -368 -630 -485 -630 -490 -630 -605 -630 -629 -630 -391 -630 -491 -630 -631 -630 -392 -630 -393 -630 -632 -630 -633 -630 -369 -630 -606 -630 -631 -631 -628 -631 -629 -631 -391 -631 -390 -631 -490 -631 -491 -631 -630 -631 -392 -631 -393 -631 -632 -631 -633 -631 -634 -631 -394 -631 -493 -631 -637 -631 -395 -631 -638 -631 -632 -632 -390 -632 -391 -632 -392 -632 -393 -632 -630 -632 -631 -632 -633 -632 -394 -632 -395 -632 -637 -632 -638 -632 -396 -632 -397 -632 -641 -632 -642 -632 -400 -632 -645 -632 -633 -633 -390 -633 -391 -633 -392 -633 -393 -633 -630 -633 -631 -633 -632 -633 -368 -633 -369 -633 -605 -633 -606 -633 -400 -633 -373 -633 -645 -633 -610 -633 -397 -633 -642 -633 -634 -634 -253 -634 -621 -634 -384 -634 -381 -634 -629 -634 -394 -634 -391 -634 -489 -634 -622 -634 -492 -634 -635 -634 -491 -634 -493 -634 -637 -634 -631 -634 -448 -634 -494 -634 -635 -635 -621 -635 -489 -635 -622 -635 -384 -635 -634 -635 -492 -635 -394 -635 -623 -635 -385 -635 -636 -635 -395 -635 -493 -635 -448 -635 -494 -635 -637 -635 -495 -635 -638 -635 -636 -636 -384 -636 -622 -636 -623 -636 -385 -636 -394 -636 -635 -636 -395 -636 -637 -636 -494 -636 -495 -636 -638 -636 -626 -636 -388 -636 -639 -636 -396 -636 -496 -636 -641 -636 -637 -637 -629 -637 -634 -637 -394 -637 -391 -637 -491 -637 -493 -637 -631 -637 -492 -637 -635 -637 -448 -637 -494 -637 -636 -637 -395 -637 -495 -637 -638 -637 -392 -637 -632 -637 -638 -638 -394 -638 -635 -638 -636 -638 -395 -638 -637 -638 -494 -638 -495 -638 -391 -638 -392 -638 -631 -638 -632 -638 -396 -638 -397 -638 -641 -638 -642 -638 -639 -638 -496 -638 -639 -639 -385 -639 -623 -639 -626 -639 -388 -639 -395 -639 -636 -639 -396 -639 -627 -639 -389 -639 -640 -639 -398 -639 -638 -639 -495 -639 -496 -639 -641 -639 -497 -639 -643 -639 -640 -640 -388 -640 -626 -640 -627 -640 -389 -640 -396 -640 -639 -640 -398 -640 -641 -640 -496 -640 -497 -640 -643 -640 -649 -640 -404 -640 -667 -640 -420 -640 -500 -640 -669 -640 -641 -641 -392 -641 -395 -641 -396 -641 -397 -641 -632 -641 -638 -641 -642 -641 -636 -641 -639 -641 -495 -641 -496 -641 -640 -641 -398 -641 -497 -641 -643 -641 -399 -641 -644 -641 -642 -642 -392 -642 -395 -642 -396 -642 -397 -642 -632 -642 -638 -642 -641 -642 -398 -642 -399 -642 -643 -642 -644 -642 -393 -642 -400 -642 -633 -642 -645 -642 -401 -642 -646 -642 -643 -643 -396 -643 -639 -643 -640 -643 -398 -643 -641 -643 -496 -643 -497 -643 -397 -643 -399 -643 -642 -643 -644 -643 -420 -643 -416 -643 -669 -643 -663 -643 -667 -643 -500 -643 -644 -644 -397 -644 -396 -644 -398 -644 -399 -644 -642 -644 -641 -644 -643 -644 -400 -644 -401 -644 -645 -644 -646 -644 -416 -644 -414 -644 -663 -644 -661 -644 -420 -644 -669 -644 -645 -645 -369 -645 -393 -645 -400 -645 -373 -645 -606 -645 -633 -645 -610 -645 -392 -645 -397 -645 -632 -645 -642 -645 -399 -645 -401 -645 -644 -645 -646 -645 -374 -645 -611 -645 -646 -646 -400 -646 -397 -646 -399 -646 -401 -646 -645 -646 -642 -646 -644 -646 -373 -646 -374 -646 -610 -646 -611 -646 -414 -646 -415 -646 -661 -646 -662 -646 -416 -646 -663 -646 -647 -647 -309 -647 -540 -647 -563 -647 -328 -647 -387 -647 -625 -647 -402 -647 -564 -647 -329 -647 -648 -647 -403 -647 -389 -647 -627 -647 -649 -647 -404 -647 -650 -647 -405 -647 -648 -648 -328 -648 -563 -648 -564 -648 -329 -648 -402 -648 -647 -648 -403 -648 -404 -648 -649 -648 -650 -648 -405 -648 -568 -648 -332 -648 -651 -648 -406 -648 -654 -648 -408 -648 -649 -649 -387 -649 -625 -649 -647 -649 -402 -649 -389 -649 -627 -649 -404 -649 -648 -649 -403 -649 -650 -649 -405 -649 -398 -649 -640 -649 -667 -649 -420 -649 -668 -649 -421 -649 -650 -650 -402 -650 -647 -650 -648 -650 -403 -650 -404 -650 -649 -650 -405 -650 -651 -650 -406 -650 -654 -650 -408 -650 -420 -650 -667 -650 -668 -650 -421 -650 -671 -650 -422 -650 -651 -651 -329 -651 -564 -651 -568 -651 -332 -651 -403 -651 -648 -651 -406 -651 -470 -651 -569 -651 -498 -651 -652 -651 -405 -651 -650 -651 -654 -651 -408 -651 -499 -651 -655 -651 -652 -652 -332 -652 -568 -652 -470 -652 -569 -652 -406 -652 -651 -652 -498 -652 -333 -652 -570 -652 -407 -652 -653 -652 -408 -652 -654 -652 -499 -652 -655 -652 -409 -652 -656 -652 -653 -653 -333 -653 -332 -653 -569 -653 -570 -653 -407 -653 -406 -653 -652 -653 -409 -653 -408 -653 -655 -653 -656 -653 -336 -653 -573 -653 -410 -653 -657 -653 -412 -653 -659 -653 -654 -654 -403 -654 -648 -654 -651 -654 -406 -654 -405 -654 -650 -654 -408 -654 -498 -654 -652 -654 -499 -654 -655 -654 -421 -654 -668 -654 -671 -654 -422 -654 -502 -654 -672 -654 -655 -655 -406 -655 -651 -655 -498 -655 -652 -655 -408 -655 -654 -655 -499 -655 -407 -655 -653 -655 -409 -655 -656 -655 -422 -655 -671 -655 -502 -655 -672 -655 -423 -655 -673 -655 -656 -656 -407 -656 -406 -656 -652 -656 -653 -656 -409 -656 -408 -656 -655 -656 -410 -656 -657 -656 -412 -656 -659 -656 -423 -656 -422 -656 -672 -656 -673 -656 -424 -656 -676 -656 -657 -657 -336 -657 -333 -657 -570 -657 -573 -657 -410 -657 -407 -657 -653 -657 -337 -657 -574 -657 -411 -657 -658 -657 -412 -657 -409 -657 -656 -657 -659 -657 -413 -657 -660 -657 -658 -658 -337 -658 -336 -658 -573 -658 -574 -658 -411 -658 -410 -658 -657 -658 -413 -658 -412 -658 -659 -658 -660 -658 -352 -658 -588 -658 -429 -658 -680 -658 -431 -658 -682 -658 -659 -659 -410 -659 -407 -659 -653 -659 -657 -659 -412 -659 -409 -659 -656 -659 -411 -659 -658 -659 -413 -659 -660 -659 -424 -659 -423 -659 -673 -659 -676 -659 -425 -659 -677 -659 -660 -660 -411 -660 -410 -660 -657 -660 -658 -660 -413 -660 -412 -660 -659 -660 -425 -660 -424 -660 -676 -660 -677 -660 -429 -660 -680 -660 -431 -660 -682 -660 -441 -660 -696 -660 -661 -661 -374 -661 -401 -661 -414 -661 -415 -661 -611 -661 -646 -661 -662 -661 -399 -661 -416 -661 -644 -661 -663 -661 -417 -661 -418 -661 -664 -661 -665 -661 -419 -661 -666 -661 -662 -662 -374 -662 -401 -662 -414 -662 -415 -662 -611 -662 -646 -662 -661 -662 -418 -662 -419 -662 -665 -662 -666 -662 -375 -662 -439 -662 -612 -662 -694 -662 -440 -662 -695 -662 -663 -663 -401 -663 -399 -663 -416 -663 -414 -663 -646 -663 -644 -663 -661 -663 -417 -663 -418 -663 -664 -663 -665 -663 -398 -663 -420 -663 -643 -663 -669 -663 -421 -663 -670 -663 -664 -664 -414 -664 -416 -664 -417 -664 -418 -664 -661 -664 -663 -664 -665 -664 -420 -664 -421 -664 -669 -664 -670 -664 -422 -664 -423 -664 -674 -664 -675 -664 -424 -664 -678 -664 -665 -665 -414 -665 -416 -665 -417 -665 -418 -665 -661 -665 -663 -665 -664 -665 -415 -665 -419 -665 -662 -665 -666 -665 -424 -665 -425 -665 -678 -665 -679 -665 -423 -665 -675 -665 -666 -666 -415 -666 -414 -666 -418 -666 -419 -666 -662 -666 -661 -666 -665 -666 -424 -666 -425 -666 -678 -666 -679 -666 -439 -666 -440 -666 -694 -666 -695 -666 -441 -666 -698 -666 -667 -667 -389 -667 -627 -667 -649 -667 -404 -667 -398 -667 -640 -667 -420 -667 -650 -667 -405 -667 -668 -667 -421 -667 -643 -667 -497 -667 -500 -667 -669 -667 -501 -667 -670 -667 -668 -668 -404 -668 -649 -668 -650 -668 -405 -668 -420 -668 -667 -668 -421 -668 -669 -668 -500 -668 -501 -668 -670 -668 -654 -668 -408 -668 -671 -668 -422 -668 -503 -668 -674 -668 -669 -669 -399 -669 -398 -669 -420 -669 -416 -669 -644 -669 -643 -669 -663 -669 -640 -669 -667 -669 -497 -669 -500 -669 -668 -669 -421 -669 -501 -669 -670 -669 -417 -669 -664 -669 -670 -670 -420 -670 -667 -670 -668 -670 -421 -670 -669 -670 -500 -670 -501 -670 -416 -670 -417 -670 -663 -670 -664 -670 -422 -670 -423 -670 -674 -670 -675 -670 -671 -670 -503 -670 -671 -671 -405 -671 -650 -671 -654 -671 -408 -671 -421 -671 -668 -671 -422 -671 -499 -671 -655 -671 -502 -671 -672 -671 -670 -671 -501 -671 -503 -671 -674 -671 -449 -671 -504 -671 -672 -672 -408 -672 -654 -672 -499 -672 -655 -672 -422 -672 -671 -672 -502 -672 -409 -672 -656 -672 -423 -672 -673 -672 -674 -672 -503 -672 -449 -672 -504 -672 -675 -672 -505 -672 -673 -673 -409 -673 -408 -673 -655 -673 -656 -673 -423 -673 -422 -673 -672 -673 -675 -673 -674 -673 -504 -673 -505 -673 -412 -673 -659 -673 -424 -673 -676 -673 -678 -673 -506 -673 -674 -674 -417 -674 -421 -674 -422 -674 -423 -674 -664 -674 -670 -674 -675 -674 -668 -674 -671 -674 -501 -674 -503 -674 -502 -674 -672 -674 -449 -674 -504 -674 -673 -674 -505 -674 -675 -675 -417 -675 -421 -675 -422 -675 -423 -675 -664 -675 -670 -675 -674 -675 -672 -675 -673 -675 -504 -675 -505 -675 -418 -675 -424 -675 -665 -675 -678 -675 -676 -675 -506 -675 -676 -676 -412 -676 -409 -676 -656 -676 -659 -676 -424 -676 -423 -676 -673 -676 -413 -676 -660 -676 -425 -676 -677 -676 -678 -676 -675 -676 -505 -676 -506 -676 -679 -676 -507 -676 -677 -677 -413 -677 -412 -677 -659 -677 -660 -677 -425 -677 -424 -677 -676 -677 -679 -677 -678 -677 -506 -677 -507 -677 -431 -677 -682 -677 -441 -677 -696 -677 -698 -677 -512 -677 -678 -678 -419 -678 -418 -678 -424 -678 -425 -678 -666 -678 -665 -678 -679 -678 -417 -678 -423 -678 -664 -678 -675 -678 -673 -678 -676 -678 -505 -678 -506 -678 -677 -678 -507 -678 -679 -679 -419 -679 -418 -679 -424 -679 -425 -679 -666 -679 -665 -679 -678 -679 -676 -679 -677 -679 -506 -679 -507 -679 -440 -679 -441 -679 -695 -679 -698 -679 -696 -679 -512 -679 -680 -680 -352 -680 -337 -680 -574 -680 -588 -680 -429 -680 -411 -680 -658 -680 -353 -680 -589 -680 -430 -680 -681 -680 -431 -680 -413 -680 -660 -680 -682 -680 -432 -680 -683 -680 -681 -681 -353 -681 -352 -681 -588 -681 -589 -681 -430 -681 -429 -681 -680 -681 -432 -681 -431 -681 -682 -681 -683 -681 -355 -681 -593 -681 -433 -681 -685 -681 -434 -681 -687 -681 -682 -682 -429 -682 -411 -682 -658 -682 -680 -682 -431 -682 -413 -682 -660 -682 -430 -682 -681 -682 -432 -682 -683 -682 -441 -682 -425 -682 -677 -682 -696 -682 -442 -682 -697 -682 -683 -683 -430 -683 -429 -683 -680 -683 -681 -683 -432 -683 -431 -683 -682 -683 -433 -683 -685 -683 -434 -683 -687 -683 -442 -683 -441 -683 -696 -683 -697 -683 -443 -683 -701 -683 -684 -684 -228 -684 -349 -684 -355 -684 -592 -684 -264 -684 -426 -684 -433 -684 -593 -684 -478 -684 -685 -684 -508 -684 -266 -684 -428 -684 -434 -684 -686 -684 -687 -684 -509 -684 -685 -685 -355 -685 -353 -685 -589 -685 -593 -685 -433 -685 -430 -685 -681 -685 -592 -685 -478 -685 -684 -685 -508 -685 -434 -685 -432 -685 -683 -685 -687 -685 -686 -685 -509 -685 -686 -686 -264 -686 -426 -686 -433 -686 -684 -686 -266 -686 -428 -686 -434 -686 -685 -686 -508 -686 -687 -686 -509 -686 -689 -686 -438 -686 -443 -686 -700 -686 -701 -686 -514 -686 -687 -687 -433 -687 -430 -687 -681 -687 -685 -687 -434 -687 -432 -687 -683 -687 -684 -687 -508 -687 -686 -687 -509 -687 -443 -687 -442 -687 -697 -687 -701 -687 -700 -687 -514 -687 -688 -688 -246 -688 -362 -688 -427 -688 -265 -688 -615 -688 -378 -688 -435 -688 -428 -688 -266 -688 -438 -688 -689 -688 -487 -688 -617 -688 -690 -688 -510 -688 -693 -688 -511 -688 -689 -689 -265 -689 -427 -689 -428 -689 -266 -689 -688 -689 -435 -689 -438 -689 -510 -689 -690 -689 -693 -689 -511 -689 -434 -689 -686 -689 -443 -689 -700 -689 -702 -689 -515 -689 -690 -690 -615 -690 -378 -690 -435 -690 -688 -690 -487 -690 -617 -690 -510 -690 -376 -690 -436 -690 -613 -690 -691 -690 -437 -690 -438 -690 -692 -690 -693 -690 -689 -690 -511 -690 -691 -691 -378 -691 -376 -691 -436 -691 -435 -691 -617 -691 -613 -691 -690 -691 -437 -691 -438 -691 -692 -691 -693 -691 -375 -691 -439 -691 -612 -691 -694 -691 -440 -691 -695 -691 -692 -692 -435 -692 -436 -692 -437 -692 -438 -692 -690 -692 -691 -692 -693 -692 -439 -692 -440 -692 -694 -692 -695 -692 -441 -692 -442 -692 -698 -692 -699 -692 -443 -692 -702 -692 -693 -693 -435 -693 -436 -693 -437 -693 -438 -693 -690 -693 -691 -693 -692 -693 -688 -693 -689 -693 -510 -693 -511 -693 -443 -693 -700 -693 -702 -693 -515 -693 -442 -693 -699 -693 -694 -694 -376 -694 -375 -694 -439 -694 -436 -694 -613 -694 -612 -694 -691 -694 -374 -694 -415 -694 -611 -694 -662 -694 -419 -694 -440 -694 -666 -694 -695 -694 -437 -694 -692 -694 -695 -695 -439 -695 -415 -695 -419 -695 -440 -695 -694 -695 -662 -695 -666 -695 -436 -695 -437 -695 -691 -695 -692 -695 -441 -695 -442 -695 -698 -695 -699 -695 -425 -695 -679 -695 -696 -696 -431 -696 -413 -696 -660 -696 -682 -696 -441 -696 -425 -696 -677 -696 -432 -696 -683 -696 -442 -696 -697 -696 -698 -696 -679 -696 -507 -696 -512 -696 -699 -696 -513 -696 -697 -697 -432 -697 -431 -697 -682 -697 -683 -697 -442 -697 -441 -697 -696 -697 -699 -697 -698 -697 -512 -697 -513 -697 -434 -697 -687 -697 -443 -697 -701 -697 -702 -697 -516 -697 -698 -698 -437 -698 -440 -698 -441 -698 -442 -698 -692 -698 -695 -698 -699 -698 -419 -698 -425 -698 -666 -698 -679 -698 -677 -698 -696 -698 -507 -698 -512 -698 -697 -698 -513 -698 -699 -699 -437 -699 -440 -699 -441 -699 -442 -699 -692 -699 -695 -699 -698 -699 -696 -699 -697 -699 -512 -699 -513 -699 -438 -699 -443 -699 -693 -699 -702 -699 -701 -699 -516 -699 -700 -700 -266 -700 -428 -700 -434 -700 -686 -700 -689 -700 -438 -700 -443 -700 -687 -700 -509 -700 -701 -700 -514 -700 -511 -700 -693 -700 -702 -700 -515 -700 -516 -700 -450 -700 -701 -701 -434 -701 -432 -701 -683 -701 -687 -701 -443 -701 -442 -701 -697 -701 -686 -701 -509 -701 -700 -701 -514 -701 -702 -701 -699 -701 -513 -701 -516 -701 -515 -701 -450 -701 -702 -702 -689 -702 -438 -702 -443 -702 -700 -702 -511 -702 -693 -702 -515 -702 -437 -702 -442 -702 -692 -702 -699 -702 -697 -702 -701 -702 -513 -702 -516 -702 -514 -702 -450 -702 -DEAL:: Computing constraints... -DEAL:: Writing condensed sparsity pattern... -0 0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -1 -1 -0 -1 -2 -1 -3 -1 -4 -1 -5 -1 -6 -1 -7 -1 -8 -1 -11 -1 -12 -1 -20 -1 -2 -2 -0 -2 -1 -2 -3 -2 -4 -2 -5 -2 -6 -2 -7 -2 -9 -2 -14 -2 -15 -2 -22 -2 -3 -3 -0 -3 -1 -3 -2 -3 -4 -3 -5 -3 -6 -3 -7 -3 -10 -3 -16 -3 -17 -3 -23 -3 -4 -4 -0 -4 -1 -4 -2 -4 -3 -4 -5 -4 -6 -4 -7 -4 -8 -4 -9 -4 -11 -4 -12 -4 -13 -4 -14 -4 -15 -4 -20 -4 -21 -4 -22 -4 -5 -5 -0 -5 -1 -5 -2 -5 -3 -5 -4 -5 -6 -5 -7 -5 -8 -5 -10 -5 -11 -5 -12 -5 -16 -5 -17 -5 -18 -5 -20 -5 -23 -5 -24 -5 -6 -6 -0 -6 -1 -6 -2 -6 -3 -6 -4 -6 -5 -6 -7 -6 -9 -6 -10 -6 -14 -6 -15 -6 -16 -6 -17 -6 -19 -6 -22 -6 -23 -6 -25 -6 -7 -7 -0 -7 -1 -7 -2 -7 -3 -7 -4 -7 -5 -7 -6 -7 -8 -7 -9 -7 -10 -7 -11 -7 -12 -7 -13 -7 -14 -7 -15 -7 -16 -7 -17 -7 -18 -7 -19 -7 -20 -7 -21 -7 -22 -7 -23 -7 -24 -7 -25 -7 -26 -7 -8 -8 -1 -8 -4 -8 -5 -8 -7 -8 -11 -8 -12 -8 -20 -8 -27 -8 -30 -8 -31 -8 -52 -8 -9 -9 -2 -9 -4 -9 -6 -9 -7 -9 -14 -9 -15 -9 -22 -9 -28 -9 -37 -9 -38 -9 -57 -9 -10 -10 -3 -10 -5 -10 -6 -10 -7 -10 -16 -10 -17 -10 -23 -10 -29 -10 -40 -10 -41 -10 -59 -10 -11 -11 -1 -11 -4 -11 -5 -11 -7 -11 -8 -11 -12 -11 -13 -11 -14 -11 -20 -11 -21 -11 -22 -11 -27 -11 -30 -11 -31 -11 -32 -11 -52 -11 -53 -11 -12 -12 -1 -12 -4 -12 -5 -12 -7 -12 -8 -12 -11 -12 -16 -12 -18 -12 -20 -12 -23 -12 -24 -12 -27 -12 -30 -12 -31 -12 -33 -12 -52 -12 -54 -12 -13 -13 -4 -13 -7 -13 -11 -13 -14 -13 -20 -13 -21 -13 -22 -13 -30 -13 -32 -13 -34 -13 -35 -13 -37 -13 -52 -13 -53 -13 -55 -13 -56 -13 -57 -13 -14 -14 -2 -14 -4 -14 -6 -14 -7 -14 -9 -14 -11 -14 -13 -14 -15 -14 -20 -14 -21 -14 -22 -14 -28 -14 -35 -14 -37 -14 -38 -14 -56 -14 -57 -14 -15 -15 -2 -15 -4 -15 -6 -15 -7 -15 -9 -15 -14 -15 -17 -15 -19 -15 -22 -15 -23 -15 -25 -15 -28 -15 -37 -15 -38 -15 -39 -15 -57 -15 -58 -15 -16 -16 -3 -16 -5 -16 -6 -16 -7 -16 -10 -16 -12 -16 -17 -16 -18 -16 -20 -16 -23 -16 -24 -16 -29 -16 -40 -16 -41 -16 -42 -16 -59 -16 -60 -16 -17 -17 -3 -17 -5 -17 -6 -17 -7 -17 -10 -17 -15 -17 -16 -17 -19 -17 -22 -17 -23 -17 -25 -17 -29 -17 -40 -17 -41 -17 -43 -17 -59 -17 -61 -17 -18 -18 -5 -18 -7 -18 -12 -18 -16 -18 -20 -18 -23 -18 -24 -18 -31 -18 -33 -18 -40 -18 -42 -18 -44 -18 -52 -18 -54 -18 -59 -18 -60 -18 -62 -18 -19 -19 -6 -19 -7 -19 -15 -19 -17 -19 -22 -19 -23 -19 -25 -19 -38 -19 -39 -19 -41 -19 -43 -19 -46 -19 -57 -19 -58 -19 -59 -19 -61 -19 -63 -19 -20 -20 -1 -20 -4 -20 -5 -20 -7 -20 -8 -20 -11 -20 -12 -20 -13 -20 -14 -20 -16 -20 -18 -20 -21 -20 -22 -20 -23 -20 -24 -20 -25 -20 -26 -20 -27 -20 -30 -20 -31 -20 -32 -20 -33 -20 -48 -20 -52 -20 -53 -20 -54 -20 -64 -20 -21 -21 -4 -21 -7 -21 -11 -21 -13 -21 -14 -21 -20 -21 -22 -21 -23 -21 -24 -21 -25 -21 -26 -21 -30 -21 -32 -21 -34 -21 -35 -21 -36 -21 -37 -21 -48 -21 -49 -21 -52 -21 -53 -21 -54 -21 -55 -21 -56 -21 -57 -21 -58 -21 -64 -21 -65 -21 -66 -21 -22 -22 -2 -22 -4 -22 -6 -22 -7 -22 -9 -22 -11 -22 -13 -22 -14 -22 -15 -22 -17 -22 -19 -22 -20 -22 -21 -22 -23 -22 -24 -22 -25 -22 -26 -22 -28 -22 -35 -22 -37 -22 -38 -22 -39 -22 -49 -22 -56 -22 -57 -22 -58 -22 -66 -22 -23 -23 -3 -23 -5 -23 -6 -23 -7 -23 -10 -23 -12 -23 -15 -23 -16 -23 -17 -23 -18 -23 -19 -23 -20 -23 -21 -23 -22 -23 -24 -23 -25 -23 -26 -23 -29 -23 -40 -23 -41 -23 -42 -23 -43 -23 -50 -23 -59 -23 -60 -23 -61 -23 -67 -23 -24 -24 -5 -24 -7 -24 -12 -24 -16 -24 -18 -24 -20 -24 -21 -24 -22 -24 -23 -24 -25 -24 -26 -24 -31 -24 -33 -24 -40 -24 -42 -24 -44 -24 -45 -24 -48 -24 -50 -24 -52 -24 -53 -24 -54 -24 -59 -24 -60 -24 -61 -24 -62 -24 -64 -24 -67 -24 -68 -24 -25 -25 -6 -25 -7 -25 -15 -25 -17 -25 -19 -25 -20 -25 -21 -25 -22 -25 -23 -25 -24 -25 -26 -25 -38 -25 -39 -25 -41 -25 -43 -25 -46 -25 -47 -25 -49 -25 -50 -25 -56 -25 -57 -25 -58 -25 -59 -25 -60 -25 -61 -25 -63 -25 -66 -25 -67 -25 -69 -25 -26 -26 -7 -26 -20 -26 -21 -26 -22 -26 -23 -26 -24 -26 -25 -26 -36 -26 -45 -26 -47 -26 -48 -26 -49 -26 -50 -26 -51 -26 -52 -26 -53 -26 -54 -26 -55 -26 -56 -26 -57 -26 -58 -26 -59 -26 -60 -26 -61 -26 -62 -26 -63 -26 -64 -26 -65 -26 -66 -26 -67 -26 -68 -26 -69 -26 -118 -26 -119 -26 -120 -26 -121 -26 -122 -26 -123 -26 -124 -26 -125 -26 -126 -26 -127 -26 -128 -26 -129 -26 -130 -26 -131 -26 -132 -26 -133 -26 -134 -26 -135 -26 -27 -27 -8 -27 -11 -27 -12 -27 -20 -27 -30 -27 -31 -27 -52 -27 -70 -27 -73 -27 -74 -27 -118 -27 -28 -28 -9 -28 -14 -28 -15 -28 -22 -28 -37 -28 -38 -28 -57 -28 -71 -28 -83 -28 -84 -28 -125 -28 -29 -29 -10 -29 -16 -29 -17 -29 -23 -29 -40 -29 -41 -29 -59 -29 -72 -29 -86 -29 -87 -29 -127 -29 -30 -30 -8 -30 -11 -30 -12 -30 -13 -30 -20 -30 -21 -30 -27 -30 -31 -30 -32 -30 -52 -30 -53 -30 -70 -30 -73 -30 -74 -30 -75 -30 -118 -30 -119 -30 -31 -31 -8 -31 -11 -31 -12 -31 -18 -31 -20 -31 -24 -31 -27 -31 -30 -31 -33 -31 -52 -31 -54 -31 -70 -31 -73 -31 -74 -31 -76 -31 -118 -31 -120 -31 -32 -32 -11 -32 -13 -32 -20 -32 -21 -32 -30 -32 -34 -32 -35 -32 -52 -32 -53 -32 -55 -32 -56 -32 -73 -32 -75 -32 -77 -32 -118 -32 -119 -32 -121 -32 -33 -33 -12 -33 -18 -33 -20 -33 -24 -33 -31 -33 -42 -33 -44 -33 -52 -33 -54 -33 -60 -33 -62 -33 -74 -33 -76 -33 -90 -33 -118 -33 -120 -33 -130 -33 -34 -34 -13 -34 -21 -34 -32 -34 -35 -34 -53 -34 -55 -34 -56 -34 -75 -34 -77 -34 -78 -34 -79 -34 -80 -34 -119 -34 -121 -34 -122 -34 -123 -34 -124 -34 -35 -35 -13 -35 -14 -35 -21 -35 -22 -35 -32 -35 -34 -35 -37 -35 -53 -35 -55 -35 -56 -35 -57 -35 -79 -35 -80 -35 -83 -35 -123 -35 -124 -35 -125 -35 -36 -36 -21 -36 -26 -36 -48 -36 -49 -36 -53 -36 -55 -36 -56 -36 -64 -36 -65 -36 -66 -36 -81 -36 -82 -36 -119 -36 -121 -36 -122 -36 -123 -36 -124 -36 -37 -37 -9 -37 -13 -37 -14 -37 -15 -37 -21 -37 -22 -37 -28 -37 -35 -37 -38 -37 -56 -37 -57 -37 -71 -37 -80 -37 -83 -37 -84 -37 -124 -37 -125 -37 -38 -38 -9 -38 -14 -38 -15 -38 -19 -38 -22 -38 -25 -38 -28 -38 -37 -38 -39 -38 -57 -38 -58 -38 -71 -38 -83 -38 -84 -38 -85 -38 -125 -38 -126 -38 -39 -39 -15 -39 -19 -39 -22 -39 -25 -39 -38 -39 -43 -39 -46 -39 -57 -39 -58 -39 -61 -39 -63 -39 -84 -39 -85 -39 -96 -39 -125 -39 -126 -39 -133 -39 -40 -40 -10 -40 -16 -40 -17 -40 -18 -40 -23 -40 -24 -40 -29 -40 -41 -40 -42 -40 -59 -40 -60 -40 -72 -40 -86 -40 -87 -40 -88 -40 -127 -40 -128 -40 -41 -41 -10 -41 -16 -41 -17 -41 -19 -41 -23 -41 -25 -41 -29 -41 -40 -41 -43 -41 -59 -41 -61 -41 -72 -41 -86 -41 -87 -41 -89 -41 -127 -41 -129 -41 -42 -42 -16 -42 -18 -42 -23 -42 -24 -42 -33 -42 -40 -42 -44 -42 -54 -42 -59 -42 -60 -42 -62 -42 -86 -42 -88 -42 -92 -42 -127 -42 -128 -42 -131 -42 -43 -43 -17 -43 -19 -43 -23 -43 -25 -43 -39 -43 -41 -43 -46 -43 -58 -43 -59 -43 -61 -43 -63 -43 -87 -43 -89 -43 -97 -43 -127 -43 -129 -43 -134 -43 -44 -44 -18 -44 -24 -44 -33 -44 -42 -44 -54 -44 -60 -44 -62 -44 -76 -44 -88 -44 -90 -44 -92 -44 -93 -44 -120 -44 -128 -44 -130 -44 -131 -44 -132 -44 -45 -45 -24 -45 -26 -45 -48 -45 -50 -45 -54 -45 -60 -45 -62 -45 -64 -45 -67 -45 -68 -45 -91 -45 -94 -45 -120 -45 -128 -45 -130 -45 -131 -45 -132 -45 -46 -46 -19 -46 -25 -46 -39 -46 -43 -46 -58 -46 -61 -46 -63 -46 -85 -46 -89 -46 -96 -46 -97 -46 -99 -46 -126 -46 -129 -46 -133 -46 -134 -46 -135 -46 -47 -47 -25 -47 -26 -47 -49 -47 -50 -47 -58 -47 -61 -47 -63 -47 -66 -47 -67 -47 -69 -47 -95 -47 -98 -47 -126 -47 -129 -47 -133 -47 -134 -47 -135 -47 -48 -48 -20 -48 -21 -48 -24 -48 -26 -48 -36 -48 -45 -48 -49 -48 -50 -48 -52 -48 -53 -48 -54 -48 -55 -48 -56 -48 -60 -48 -62 -48 -64 -48 -81 -48 -91 -48 -118 -48 -119 -48 -120 -48 -121 -48 -130 -48 -49 -49 -21 -49 -22 -49 -25 -49 -26 -49 -36 -49 -47 -49 -48 -49 -50 -49 -53 -49 -55 -49 -56 -49 -57 -49 -58 -49 -61 -49 -63 -49 -66 -49 -82 -49 -95 -49 -123 -49 -124 -49 -125 -49 -126 -49 -133 -49 -50 -50 -23 -50 -24 -50 -25 -50 -26 -50 -45 -50 -47 -50 -48 -50 -49 -50 -54 -50 -58 -50 -59 -50 -60 -50 -61 -50 -62 -50 -63 -50 -67 -50 -94 -50 -98 -50 -127 -50 -128 -50 -129 -50 -131 -50 -134 -50 -51 -51 -26 -51 -64 -51 -65 -51 -66 -51 -67 -51 -68 -51 -69 -51 -160 -51 -161 -51 -162 -51 -163 -51 -164 -51 -165 -51 -166 -51 -167 -51 -168 -51 -169 -51 -170 -51 -171 -51 -172 -51 -173 -51 -174 -51 -175 -51 -176 -51 -177 -51 -178 -51 -52 -52 -8 -52 -11 -52 -12 -52 -13 -52 -18 -52 -20 -52 -21 -52 -24 -52 -26 -52 -27 -52 -30 -52 -31 -52 -32 -52 -33 -52 -48 -52 -53 -52 -54 -52 -64 -52 -70 -52 -73 -52 -74 -52 -75 -52 -76 -52 -118 -52 -119 -52 -120 -52 -53 -53 -11 -53 -13 -53 -20 -53 -21 -53 -24 -53 -26 -53 -30 -53 -32 -53 -34 -53 -35 -53 -36 -53 -48 -53 -49 -53 -52 -53 -54 -53 -55 -53 -56 -53 -64 -53 -65 -53 -66 -53 -73 -53 -75 -53 -77 -53 -81 -53 -118 -53 -119 -53 -120 -53 -121 -53 -54 -54 -12 -54 -18 -54 -20 -54 -21 -54 -24 -54 -26 -54 -31 -54 -33 -54 -42 -54 -44 -54 -45 -54 -48 -54 -50 -54 -52 -54 -53 -54 -60 -54 -62 -54 -64 -54 -67 -54 -68 -54 -74 -54 -76 -54 -90 -54 -91 -54 -118 -54 -119 -54 -120 -54 -130 -54 -55 -55 -13 -55 -21 -55 -26 -55 -32 -55 -34 -55 -35 -55 -36 -55 -48 -55 -49 -55 -53 -55 -56 -55 -64 -55 -65 -55 -66 -55 -75 -55 -77 -55 -78 -55 -79 -55 -80 -55 -81 -55 -82 -55 -119 -55 -121 -55 -122 -55 -123 -55 -124 -55 -56 -56 -13 -56 -14 -56 -21 -56 -22 -56 -25 -56 -26 -56 -32 -56 -34 -56 -35 -56 -36 -56 -37 -56 -48 -56 -49 -56 -53 -56 -55 -56 -57 -56 -58 -56 -64 -56 -65 -56 -66 -56 -79 -56 -80 -56 -82 -56 -83 -56 -123 -56 -124 -56 -125 -56 -126 -56 -57 -57 -9 -57 -13 -57 -14 -57 -15 -57 -19 -57 -21 -57 -22 -57 -25 -57 -26 -57 -28 -57 -35 -57 -37 -57 -38 -57 -39 -57 -49 -57 -56 -57 -58 -57 -66 -57 -71 -57 -80 -57 -83 -57 -84 -57 -85 -57 -124 -57 -125 -57 -126 -57 -58 -58 -15 -58 -19 -58 -21 -58 -22 -58 -25 -58 -26 -58 -38 -58 -39 -58 -43 -58 -46 -58 -47 -58 -49 -58 -50 -58 -56 -58 -57 -58 -61 -58 -63 -58 -66 -58 -67 -58 -69 -58 -84 -58 -85 -58 -95 -58 -96 -58 -124 -58 -125 -58 -126 -58 -133 -58 -59 -59 -10 -59 -16 -59 -17 -59 -18 -59 -19 -59 -23 -59 -24 -59 -25 -59 -26 -59 -29 -59 -40 -59 -41 -59 -42 -59 -43 -59 -50 -59 -60 -59 -61 -59 -67 -59 -72 -59 -86 -59 -87 -59 -88 -59 -89 -59 -127 -59 -128 -59 -129 -59 -60 -60 -16 -60 -18 -60 -23 -60 -24 -60 -25 -60 -26 -60 -33 -60 -40 -60 -42 -60 -44 -60 -45 -60 -48 -60 -50 -60 -54 -60 -59 -60 -61 -60 -62 -60 -64 -60 -67 -60 -68 -60 -86 -60 -88 -60 -92 -60 -94 -60 -127 -60 -128 -60 -129 -60 -131 -60 -61 -61 -17 -61 -19 -61 -23 -61 -24 -61 -25 -61 -26 -61 -39 -61 -41 -61 -43 -61 -46 -61 -47 -61 -49 -61 -50 -61 -58 -61 -59 -61 -60 -61 -63 -61 -66 -61 -67 -61 -69 -61 -87 -61 -89 -61 -97 -61 -98 -61 -127 -61 -128 -61 -129 -61 -134 -61 -62 -62 -18 -62 -24 -62 -26 -62 -33 -62 -42 -62 -44 -62 -45 -62 -48 -62 -50 -62 -54 -62 -60 -62 -64 -62 -67 -62 -68 -62 -76 -62 -88 -62 -90 -62 -91 -62 -92 -62 -93 -62 -94 -62 -120 -62 -128 -62 -130 -62 -131 -62 -132 -62 -63 -63 -19 -63 -25 -63 -26 -63 -39 -63 -43 -63 -46 -63 -47 -63 -49 -63 -50 -63 -58 -63 -61 -63 -66 -63 -67 -63 -69 -63 -85 -63 -89 -63 -95 -63 -96 -63 -97 -63 -98 -63 -99 -63 -126 -63 -129 -63 -133 -63 -134 -63 -135 -63 -64 -64 -20 -64 -21 -64 -24 -64 -26 -64 -36 -64 -45 -64 -48 -64 -51 -64 -52 -64 -53 -64 -54 -64 -55 -64 -56 -64 -60 -64 -62 -64 -65 -64 -66 -64 -67 -64 -68 -64 -69 -64 -81 -64 -91 -64 -100 -64 -102 -64 -115 -64 -118 -64 -119 -64 -120 -64 -121 -64 -122 -64 -123 -64 -124 -64 -128 -64 -130 -64 -131 -64 -132 -64 -136 -64 -137 -64 -138 -64 -139 -64 -140 -64 -141 -64 -142 -64 -160 -64 -167 -64 -168 -64 -169 -64 -287 -64 -288 -64 -289 -64 -295 -64 -297 -64 -300 -64 -301 -64 -65 -65 -21 -65 -26 -65 -36 -65 -51 -65 -53 -65 -55 -65 -56 -65 -64 -65 -66 -65 -67 -65 -68 -65 -69 -65 -81 -65 -82 -65 -100 -65 -101 -65 -104 -65 -105 -65 -106 -65 -119 -65 -121 -65 -122 -65 -123 -65 -124 -65 -137 -65 -139 -65 -140 -65 -143 -65 -144 -65 -146 -65 -148 -65 -160 -65 -161 -65 -162 -65 -167 -65 -168 -65 -169 -65 -170 -65 -171 -65 -172 -65 -173 -65 -288 -65 -295 -65 -297 -65 -310 -65 -311 -65 -312 -65 -313 -65 -338 -65 -341 -65 -66 -66 -21 -66 -22 -66 -25 -66 -26 -66 -36 -66 -47 -66 -49 -66 -51 -66 -53 -66 -55 -66 -56 -66 -57 -66 -58 -66 -61 -66 -63 -66 -64 -66 -65 -66 -67 -66 -68 -66 -69 -66 -82 -66 -95 -66 -106 -66 -107 -66 -116 -66 -119 -66 -121 -66 -122 -66 -123 -66 -124 -66 -125 -66 -126 -66 -129 -66 -133 -66 -134 -66 -135 -66 -144 -66 -145 -66 -146 -66 -147 -66 -148 -66 -149 -66 -150 -66 -162 -66 -170 -66 -172 -66 -173 -66 -313 -66 -338 -66 -339 -66 -340 -66 -341 -66 -348 -66 -349 -66 -67 -67 -23 -67 -24 -67 -25 -67 -26 -67 -45 -67 -47 -67 -50 -67 -51 -67 -54 -67 -58 -67 -59 -67 -60 -67 -61 -67 -62 -67 -63 -67 -64 -67 -65 -67 -66 -67 -68 -67 -69 -67 -94 -67 -98 -67 -110 -67 -111 -67 -117 -67 -120 -67 -126 -67 -127 -67 -128 -67 -129 -67 -130 -67 -131 -67 -132 -67 -133 -67 -134 -67 -135 -67 -151 -67 -152 -67 -153 -67 -154 -67 -155 -67 -156 -67 -157 -67 -163 -67 -174 -67 -175 -67 -176 -67 -356 -67 -357 -67 -358 -67 -359 -67 -360 -67 -361 -67 -362 -67 -68 -68 -24 -68 -26 -68 -45 -68 -51 -68 -54 -68 -60 -68 -62 -68 -64 -68 -65 -68 -66 -68 -67 -68 -69 -68 -91 -68 -94 -68 -102 -68 -103 -68 -109 -68 -110 -68 -113 -68 -120 -68 -128 -68 -130 -68 -131 -68 -132 -68 -138 -68 -141 -68 -142 -68 -152 -68 -154 -68 -155 -68 -158 -68 -160 -68 -163 -68 -164 -68 -167 -68 -168 -68 -169 -68 -174 -68 -175 -68 -176 -68 -177 -68 -289 -68 -300 -68 -301 -68 -357 -68 -359 -68 -360 -68 -379 -68 -380 -68 -381 -68 -69 -69 -25 -69 -26 -69 -47 -69 -51 -69 -58 -69 -61 -69 -63 -69 -64 -69 -65 -69 -66 -69 -67 -69 -68 -69 -95 -69 -98 -69 -107 -69 -108 -69 -111 -69 -112 -69 -114 -69 -126 -69 -129 -69 -133 -69 -134 -69 -135 -69 -147 -69 -149 -69 -150 -69 -153 -69 -156 -69 -157 -69 -159 -69 -162 -69 -163 -69 -166 -69 -170 -69 -172 -69 -173 -69 -174 -69 -175 -69 -176 -69 -178 -69 -340 -69 -348 -69 -349 -69 -358 -69 -361 -69 -362 -69 -426 -69 -427 -69 -428 -69 -70 -70 -27 -70 -30 -70 -31 -70 -52 -70 -73 -70 -74 -70 -118 -70 -136 -70 -179 -70 -185 -70 -186 -70 -71 -71 -28 -71 -37 -71 -38 -71 -57 -71 -83 -71 -84 -71 -125 -71 -145 -71 -181 -71 -215 -71 -216 -71 -72 -72 -29 -72 -40 -72 -41 -72 -59 -72 -86 -72 -87 -72 -127 -72 -151 -72 -183 -72 -231 -72 -232 -72 -73 -73 -27 -73 -30 -73 -31 -73 -32 -73 -52 -73 -53 -73 -70 -73 -74 -73 -75 -73 -118 -73 -119 -73 -136 -73 -137 -73 -179 -73 -185 -73 -186 -73 -190 -73 -74 -74 -27 -74 -30 -74 -31 -74 -33 -74 -52 -74 -54 -74 -70 -74 -73 -74 -76 -74 -118 -74 -120 -74 -136 -74 -138 -74 -179 -74 -185 -74 -186 -74 -191 -74 -75 -75 -30 -75 -32 -75 -34 -75 -52 -75 -53 -75 -55 -75 -73 -75 -77 -75 -118 -75 -119 -75 -121 -75 -136 -75 -137 -75 -139 -75 -185 -75 -190 -75 -195 -75 -76 -76 -31 -76 -33 -76 -44 -76 -52 -76 -54 -76 -62 -76 -74 -76 -90 -76 -118 -76 -120 -76 -130 -76 -136 -76 -138 -76 -141 -76 -186 -76 -191 -76 -197 -76 -77 -77 -32 -77 -34 -77 -53 -77 -55 -77 -75 -77 -78 -77 -79 -77 -119 -77 -121 -77 -122 -77 -123 -77 -137 -77 -139 -77 -140 -77 -190 -77 -195 -77 -196 -77 -78 -78 -34 -78 -55 -78 -77 -78 -79 -78 -121 -78 -122 -78 -123 -78 -139 -78 -140 -78 -143 -78 -144 -78 -148 -78 -195 -78 -196 -78 -204 -78 -205 -78 -223 -78 -79 -79 -34 -79 -35 -79 -55 -79 -56 -79 -77 -79 -78 -79 -80 -79 -121 -79 -122 -79 -123 -79 -124 -79 -144 -79 -146 -79 -148 -79 -205 -79 -217 -79 -223 -79 -80 -80 -34 -80 -35 -80 -37 -80 -55 -80 -56 -80 -57 -80 -79 -80 -83 -80 -123 -80 -124 -80 -125 -80 -145 -80 -146 -80 -148 -80 -215 -80 -217 -80 -223 -80 -81 -81 -36 -81 -48 -81 -53 -81 -55 -81 -64 -81 -65 -81 -82 -81 -100 -81 -101 -81 -115 -81 -119 -81 -121 -81 -122 -81 -123 -81 -137 -81 -139 -81 -140 -81 -82 -82 -36 -82 -49 -82 -55 -82 -56 -82 -65 -82 -66 -82 -81 -82 -105 -82 -106 -82 -116 -82 -121 -82 -122 -82 -123 -82 -124 -82 -144 -82 -146 -82 -148 -82 -83 -83 -28 -83 -35 -83 -37 -83 -38 -83 -56 -83 -57 -83 -71 -83 -80 -83 -84 -83 -124 -83 -125 -83 -145 -83 -146 -83 -181 -83 -215 -83 -216 -83 -217 -83 -84 -84 -28 -84 -37 -84 -38 -84 -39 -84 -57 -84 -58 -84 -71 -84 -83 -84 -85 -84 -125 -84 -126 -84 -145 -84 -147 -84 -181 -84 -215 -84 -216 -84 -221 -84 -85 -85 -38 -85 -39 -85 -46 -85 -57 -85 -58 -85 -63 -85 -84 -85 -96 -85 -125 -85 -126 -85 -133 -85 -145 -85 -147 -85 -149 -85 -216 -85 -221 -85 -225 -85 -86 -86 -29 -86 -40 -86 -41 -86 -42 -86 -59 -86 -60 -86 -72 -86 -87 -86 -88 -86 -127 -86 -128 -86 -151 -86 -152 -86 -183 -86 -231 -86 -232 -86 -233 -86 -87 -87 -29 -87 -40 -87 -41 -87 -43 -87 -59 -87 -61 -87 -72 -87 -86 -87 -89 -87 -127 -87 -129 -87 -151 -87 -153 -87 -183 -87 -231 -87 -232 -87 -234 -87 -88 -88 -40 -88 -42 -88 -44 -88 -59 -88 -60 -88 -62 -88 -86 -88 -92 -88 -127 -88 -128 -88 -131 -88 -151 -88 -152 -88 -154 -88 -231 -88 -233 -88 -239 -88 -89 -89 -41 -89 -43 -89 -46 -89 -59 -89 -61 -89 -63 -89 -87 -89 -97 -89 -127 -89 -129 -89 -134 -89 -151 -89 -153 -89 -156 -89 -232 -89 -234 -89 -243 -89 -90 -90 -33 -90 -44 -90 -54 -90 -62 -90 -76 -90 -92 -90 -93 -90 -120 -90 -130 -90 -131 -90 -132 -90 -138 -90 -141 -90 -142 -90 -191 -90 -197 -90 -199 -90 -91 -91 -45 -91 -48 -91 -54 -91 -62 -91 -64 -91 -68 -91 -94 -91 -102 -91 -103 -91 -115 -91 -120 -91 -130 -91 -131 -91 -132 -91 -138 -91 -141 -91 -142 -91 -92 -92 -42 -92 -44 -92 -60 -92 -62 -92 -88 -92 -90 -92 -93 -92 -128 -92 -130 -92 -131 -92 -132 -92 -152 -92 -154 -92 -155 -92 -233 -92 -239 -92 -240 -92 -93 -93 -44 -93 -62 -93 -90 -93 -92 -93 -130 -93 -131 -93 -132 -93 -141 -93 -142 -93 -154 -93 -155 -93 -158 -93 -197 -93 -199 -93 -239 -93 -240 -93 -250 -93 -94 -94 -45 -94 -50 -94 -60 -94 -62 -94 -67 -94 -68 -94 -91 -94 -109 -94 -110 -94 -117 -94 -128 -94 -130 -94 -131 -94 -132 -94 -152 -94 -154 -94 -155 -94 -95 -95 -47 -95 -49 -95 -58 -95 -63 -95 -66 -95 -69 -95 -98 -95 -107 -95 -108 -95 -116 -95 -126 -95 -133 -95 -134 -95 -135 -95 -147 -95 -149 -95 -150 -95 -96 -96 -39 -96 -46 -96 -58 -96 -63 -96 -85 -96 -97 -96 -99 -96 -126 -96 -133 -96 -134 -96 -135 -96 -147 -96 -149 -96 -150 -96 -221 -96 -225 -96 -227 -96 -97 -97 -43 -97 -46 -97 -61 -97 -63 -97 -89 -97 -96 -97 -99 -97 -129 -97 -133 -97 -134 -97 -135 -97 -153 -97 -156 -97 -157 -97 -234 -97 -243 -97 -244 -97 -98 -98 -47 -98 -50 -98 -61 -98 -63 -98 -67 -98 -69 -98 -95 -98 -111 -98 -112 -98 -117 -98 -129 -98 -133 -98 -134 -98 -135 -98 -153 -98 -156 -98 -157 -98 -99 -99 -46 -99 -63 -99 -96 -99 -97 -99 -133 -99 -134 -99 -135 -99 -149 -99 -150 -99 -156 -99 -157 -99 -159 -99 -225 -99 -227 -99 -243 -99 -244 -99 -263 -99 -100 -100 -64 -100 -65 -100 -81 -100 -101 -100 -115 -100 -119 -100 -121 -100 -122 -100 -137 -100 -139 -100 -140 -100 -160 -100 -167 -100 -269 -100 -288 -100 -295 -100 -297 -100 -101 -101 -65 -101 -81 -101 -100 -101 -104 -101 -105 -101 -121 -101 -122 -101 -139 -101 -140 -101 -143 -101 -144 -101 -167 -101 -269 -101 -271 -101 -295 -101 -297 -101 -310 -101 -102 -102 -64 -102 -68 -102 -91 -102 -103 -102 -115 -102 -120 -102 -130 -102 -132 -102 -138 -102 -141 -102 -142 -102 -160 -102 -168 -102 -270 -102 -289 -102 -300 -102 -301 -102 -103 -103 -68 -103 -91 -103 -102 -103 -109 -103 -113 -103 -130 -103 -132 -103 -141 -103 -142 -103 -155 -103 -158 -103 -168 -103 -270 -103 -278 -103 -300 -103 -301 -103 -379 -103 -104 -104 -65 -104 -101 -104 -105 -104 -122 -104 -140 -104 -143 -104 -144 -104 -161 -104 -167 -104 -170 -104 -271 -104 -272 -104 -297 -104 -310 -104 -311 -104 -312 -104 -313 -104 -105 -105 -65 -105 -82 -105 -101 -105 -104 -105 -106 -105 -122 -105 -123 -105 -140 -105 -143 -105 -144 -105 -148 -105 -170 -105 -272 -105 -274 -105 -312 -105 -313 -105 -341 -105 -106 -106 -65 -106 -66 -106 -82 -106 -105 -106 -116 -106 -122 -106 -123 -106 -124 -106 -144 -106 -146 -106 -148 -106 -162 -106 -170 -106 -274 -106 -313 -106 -338 -106 -341 -106 -107 -107 -66 -107 -69 -107 -95 -107 -108 -107 -116 -107 -126 -107 -133 -107 -135 -107 -147 -107 -149 -107 -150 -107 -162 -107 -173 -107 -275 -107 -340 -107 -348 -107 -349 -107 -108 -108 -69 -108 -95 -108 -107 -108 -112 -108 -114 -108 -133 -108 -135 -108 -149 -108 -150 -108 -157 -108 -159 -108 -173 -108 -275 -108 -284 -108 -348 -108 -349 -108 -426 -108 -109 -109 -68 -109 -94 -109 -103 -109 -110 -109 -113 -109 -131 -109 -132 -109 -142 -109 -154 -109 -155 -109 -158 -109 -174 -109 -276 -109 -279 -109 -359 -109 -360 -109 -380 -109 -110 -110 -67 -110 -68 -110 -94 -110 -109 -110 -117 -110 -128 -110 -131 -110 -132 -110 -152 -110 -154 -110 -155 -110 -163 -110 -174 -110 -276 -110 -357 -110 -359 -110 -360 -110 -111 -111 -67 -111 -69 -111 -98 -111 -112 -111 -117 -111 -129 -111 -134 -111 -135 -111 -153 -111 -156 -111 -157 -111 -163 -111 -176 -111 -277 -111 -358 -111 -361 -111 -362 -111 -112 -112 -69 -112 -98 -112 -108 -112 -111 -112 -114 -112 -134 -112 -135 -112 -150 -112 -156 -112 -157 -112 -159 -112 -176 -112 -277 -112 -285 -112 -361 -112 -362 -112 -427 -112 -113 -113 -68 -113 -103 -113 -109 -113 -132 -113 -142 -113 -155 -113 -158 -113 -164 -113 -168 -113 -174 -113 -278 -113 -279 -113 -301 -113 -360 -113 -379 -113 -380 -113 -381 -113 -114 -114 -69 -114 -108 -114 -112 -114 -135 -114 -150 -114 -157 -114 -159 -114 -166 -114 -173 -114 -176 -114 -284 -114 -285 -114 -349 -114 -362 -114 -426 -114 -427 -114 -428 -114 -115 -115 -64 -115 -81 -115 -91 -115 -100 -115 -102 -115 -118 -115 -119 -115 -120 -115 -121 -115 -130 -115 -136 -115 -137 -115 -138 -115 -139 -115 -141 -115 -160 -115 -269 -115 -270 -115 -287 -115 -288 -115 -289 -115 -295 -115 -300 -115 -116 -116 -66 -116 -82 -116 -95 -116 -106 -116 -107 -116 -123 -116 -124 -116 -125 -116 -126 -116 -133 -116 -145 -116 -146 -116 -147 -116 -148 -116 -149 -116 -162 -116 -274 -116 -275 -116 -338 -116 -339 -116 -340 -116 -341 -116 -348 -116 -117 -117 -67 -117 -94 -117 -98 -117 -110 -117 -111 -117 -127 -117 -128 -117 -129 -117 -131 -117 -134 -117 -151 -117 -152 -117 -153 -117 -154 -117 -156 -117 -163 -117 -276 -117 -277 -117 -356 -117 -357 -117 -358 -117 -359 -117 -361 -117 -118 -118 -26 -118 -27 -118 -30 -118 -31 -118 -32 -118 -33 -118 -48 -118 -52 -118 -53 -118 -54 -118 -64 -118 -70 -118 -73 -118 -74 -118 -75 -118 -76 -118 -115 -118 -119 -118 -120 -118 -136 -118 -137 -118 -138 -118 -160 -118 -179 -118 -185 -118 -186 -118 -190 -118 -191 -118 -119 -119 -26 -119 -30 -119 -32 -119 -34 -119 -36 -119 -48 -119 -52 -119 -53 -119 -54 -119 -55 -119 -64 -119 -65 -119 -66 -119 -73 -119 -75 -119 -77 -119 -81 -119 -100 -119 -115 -119 -118 -119 -120 -119 -121 -119 -136 -119 -137 -119 -138 -119 -139 -119 -160 -119 -167 -119 -185 -119 -190 -119 -195 -119 -120 -120 -26 -120 -31 -120 -33 -120 -44 -120 -45 -120 -48 -120 -52 -120 -53 -120 -54 -120 -62 -120 -64 -120 -67 -120 -68 -120 -74 -120 -76 -120 -90 -120 -91 -120 -102 -120 -115 -120 -118 -120 -119 -120 -130 -120 -136 -120 -137 -120 -138 -120 -141 -120 -160 -120 -168 -120 -186 -120 -191 -120 -197 -120 -121 -121 -26 -121 -32 -121 -34 -121 -36 -121 -48 -121 -53 -121 -55 -121 -64 -121 -65 -121 -66 -121 -75 -121 -77 -121 -78 -121 -79 -121 -81 -121 -82 -121 -100 -121 -101 -121 -115 -121 -119 -121 -122 -121 -123 -121 -137 -121 -139 -121 -140 -121 -160 -121 -167 -121 -190 -121 -195 -121 -196 -121 -122 -122 -26 -122 -34 -122 -36 -122 -55 -122 -64 -122 -65 -122 -66 -122 -77 -122 -78 -122 -79 -122 -81 -122 -82 -122 -100 -122 -101 -122 -104 -122 -105 -122 -106 -122 -121 -122 -123 -122 -139 -122 -140 -122 -143 -122 -144 -122 -148 -122 -160 -122 -161 -122 -162 -122 -167 -122 -170 -122 -195 -122 -196 -122 -204 -122 -205 -122 -223 -122 -123 -123 -26 -123 -34 -123 -35 -123 -36 -123 -49 -123 -55 -123 -56 -123 -64 -123 -65 -123 -66 -123 -77 -123 -78 -123 -79 -123 -80 -123 -81 -123 -82 -123 -105 -123 -106 -123 -116 -123 -121 -123 -122 -123 -124 -123 -144 -123 -146 -123 -148 -123 -162 -123 -170 -123 -205 -123 -217 -123 -223 -123 -124 -124 -26 -124 -34 -124 -35 -124 -36 -124 -37 -124 -49 -124 -55 -124 -56 -124 -57 -124 -58 -124 -64 -124 -65 -124 -66 -124 -79 -124 -80 -124 -82 -124 -83 -124 -106 -124 -116 -124 -123 -124 -125 -124 -126 -124 -145 -124 -146 -124 -147 -124 -148 -124 -162 -124 -170 -124 -215 -124 -217 -124 -223 -124 -125 -125 -26 -125 -28 -125 -35 -125 -37 -125 -38 -125 -39 -125 -49 -125 -56 -125 -57 -125 -58 -125 -66 -125 -71 -125 -80 -125 -83 -125 -84 -125 -85 -125 -116 -125 -124 -125 -126 -125 -145 -125 -146 -125 -147 -125 -162 -125 -181 -125 -215 -125 -216 -125 -217 -125 -221 -125 -126 -126 -26 -126 -38 -126 -39 -126 -46 -126 -47 -126 -49 -126 -56 -126 -57 -126 -58 -126 -63 -126 -66 -126 -67 -126 -69 -126 -84 -126 -85 -126 -95 -126 -96 -126 -107 -126 -116 -126 -124 -126 -125 -126 -133 -126 -145 -126 -146 -126 -147 -126 -149 -126 -162 -126 -173 -126 -216 -126 -221 -126 -225 -126 -127 -127 -26 -127 -29 -127 -40 -127 -41 -127 -42 -127 -43 -127 -50 -127 -59 -127 -60 -127 -61 -127 -67 -127 -72 -127 -86 -127 -87 -127 -88 -127 -89 -127 -117 -127 -128 -127 -129 -127 -151 -127 -152 -127 -153 -127 -163 -127 -183 -127 -231 -127 -232 -127 -233 -127 -234 -127 -128 -128 -26 -128 -40 -128 -42 -128 -44 -128 -45 -128 -50 -128 -59 -128 -60 -128 -61 -128 -62 -128 -64 -128 -67 -128 -68 -128 -86 -128 -88 -128 -92 -128 -94 -128 -110 -128 -117 -128 -127 -128 -129 -128 -131 -128 -151 -128 -152 -128 -153 -128 -154 -128 -163 -128 -174 -128 -231 -128 -233 -128 -239 -128 -129 -129 -26 -129 -41 -129 -43 -129 -46 -129 -47 -129 -50 -129 -59 -129 -60 -129 -61 -129 -63 -129 -66 -129 -67 -129 -69 -129 -87 -129 -89 -129 -97 -129 -98 -129 -111 -129 -117 -129 -127 -129 -128 -129 -134 -129 -151 -129 -152 -129 -153 -129 -156 -129 -163 -129 -176 -129 -232 -129 -234 -129 -243 -129 -130 -130 -26 -130 -33 -130 -44 -130 -45 -130 -48 -130 -54 -130 -62 -130 -64 -130 -67 -130 -68 -130 -76 -130 -90 -130 -91 -130 -92 -130 -93 -130 -94 -130 -102 -130 -103 -130 -115 -130 -120 -130 -131 -130 -132 -130 -138 -130 -141 -130 -142 -130 -160 -130 -168 -130 -191 -130 -197 -130 -199 -130 -131 -131 -26 -131 -42 -131 -44 -131 -45 -131 -50 -131 -60 -131 -62 -131 -64 -131 -67 -131 -68 -131 -88 -131 -90 -131 -91 -131 -92 -131 -93 -131 -94 -131 -109 -131 -110 -131 -117 -131 -128 -131 -130 -131 -132 -131 -152 -131 -154 -131 -155 -131 -163 -131 -174 -131 -233 -131 -239 -131 -240 -131 -132 -132 -26 -132 -44 -132 -45 -132 -62 -132 -64 -132 -67 -132 -68 -132 -90 -132 -91 -132 -92 -132 -93 -132 -94 -132 -102 -132 -103 -132 -109 -132 -110 -132 -113 -132 -130 -132 -131 -132 -141 -132 -142 -132 -154 -132 -155 -132 -158 -132 -160 -132 -163 -132 -164 -132 -168 -132 -174 -132 -197 -132 -199 -132 -239 -132 -240 -132 -250 -132 -133 -133 -26 -133 -39 -133 -46 -133 -47 -133 -49 -133 -58 -133 -63 -133 -66 -133 -67 -133 -69 -133 -85 -133 -95 -133 -96 -133 -97 -133 -98 -133 -99 -133 -107 -133 -108 -133 -116 -133 -126 -133 -134 -133 -135 -133 -147 -133 -149 -133 -150 -133 -162 -133 -173 -133 -221 -133 -225 -133 -227 -133 -134 -134 -26 -134 -43 -134 -46 -134 -47 -134 -50 -134 -61 -134 -63 -134 -66 -134 -67 -134 -69 -134 -89 -134 -95 -134 -96 -134 -97 -134 -98 -134 -99 -134 -111 -134 -112 -134 -117 -134 -129 -134 -133 -134 -135 -134 -153 -134 -156 -134 -157 -134 -163 -134 -176 -134 -234 -134 -243 -134 -244 -134 -135 -135 -26 -135 -46 -135 -47 -135 -63 -135 -66 -135 -67 -135 -69 -135 -95 -135 -96 -135 -97 -135 -98 -135 -99 -135 -107 -135 -108 -135 -111 -135 -112 -135 -114 -135 -133 -135 -134 -135 -149 -135 -150 -135 -156 -135 -157 -135 -159 -135 -162 -135 -163 -135 -166 -135 -173 -135 -176 -135 -225 -135 -227 -135 -243 -135 -244 -135 -263 -135 -136 -136 -64 -136 -70 -136 -73 -136 -74 -136 -75 -136 -76 -136 -115 -136 -118 -136 -119 -136 -120 -136 -137 -136 -138 -136 -160 -136 -179 -136 -180 -136 -185 -136 -186 -136 -187 -136 -188 -136 -189 -136 -190 -136 -191 -136 -192 -136 -287 -136 -288 -136 -289 -136 -137 -137 -64 -137 -65 -137 -73 -137 -75 -137 -77 -137 -81 -137 -100 -137 -115 -137 -118 -137 -119 -137 -120 -137 -121 -137 -136 -137 -138 -137 -139 -137 -160 -137 -167 -137 -185 -137 -187 -137 -189 -137 -190 -137 -193 -137 -195 -137 -269 -137 -287 -137 -288 -137 -289 -137 -295 -137 -138 -138 -64 -138 -68 -138 -74 -138 -76 -138 -90 -138 -91 -138 -102 -138 -115 -138 -118 -138 -119 -138 -120 -138 -130 -138 -136 -138 -137 -138 -141 -138 -160 -138 -168 -138 -186 -138 -188 -138 -191 -138 -192 -138 -197 -138 -198 -138 -270 -138 -287 -138 -288 -138 -289 -138 -300 -138 -139 -139 -64 -139 -65 -139 -75 -139 -77 -139 -78 -139 -81 -139 -100 -139 -101 -139 -115 -139 -119 -139 -121 -139 -122 -139 -137 -139 -140 -139 -160 -139 -167 -139 -189 -139 -190 -139 -193 -139 -194 -139 -195 -139 -196 -139 -269 -139 -288 -139 -295 -139 -297 -139 -140 -140 -64 -140 -65 -140 -77 -140 -78 -140 -81 -140 -100 -140 -101 -140 -104 -140 -105 -140 -121 -140 -122 -140 -139 -140 -143 -140 -144 -140 -160 -140 -161 -140 -167 -140 -170 -140 -193 -140 -194 -140 -195 -140 -196 -140 -204 -140 -205 -140 -206 -140 -269 -140 -271 -140 -295 -140 -297 -140 -310 -140 -141 -141 -64 -141 -68 -141 -76 -141 -90 -141 -91 -141 -93 -141 -102 -141 -103 -141 -115 -141 -120 -141 -130 -141 -132 -141 -138 -141 -142 -141 -160 -141 -168 -141 -191 -141 -192 -141 -197 -141 -198 -141 -199 -141 -200 -141 -270 -141 -289 -141 -300 -141 -301 -141 -142 -142 -64 -142 -68 -142 -90 -142 -91 -142 -93 -142 -102 -142 -103 -142 -109 -142 -113 -142 -130 -142 -132 -142 -141 -142 -155 -142 -158 -142 -160 -142 -164 -142 -168 -142 -174 -142 -197 -142 -198 -142 -199 -142 -200 -142 -240 -142 -250 -142 -251 -142 -270 -142 -278 -142 -300 -142 -301 -142 -379 -142 -143 -143 -65 -143 -78 -143 -101 -143 -104 -143 -105 -143 -122 -143 -140 -143 -144 -143 -161 -143 -167 -143 -170 -143 -194 -143 -196 -143 -204 -143 -205 -143 -206 -143 -207 -143 -208 -143 -209 -143 -271 -143 -272 -143 -297 -143 -310 -143 -311 -143 -312 -143 -313 -143 -144 -144 -65 -144 -66 -144 -78 -144 -79 -144 -82 -144 -101 -144 -104 -144 -105 -144 -106 -144 -122 -144 -123 -144 -140 -144 -143 -144 -148 -144 -161 -144 -162 -144 -167 -144 -170 -144 -196 -144 -204 -144 -205 -144 -208 -144 -209 -144 -223 -144 -224 -144 -272 -144 -274 -144 -312 -144 -313 -144 -341 -144 -145 -145 -66 -145 -71 -145 -80 -145 -83 -145 -84 -145 -85 -145 -116 -145 -124 -145 -125 -145 -126 -145 -146 -145 -147 -145 -162 -145 -181 -145 -182 -145 -215 -145 -216 -145 -217 -145 -218 -145 -219 -145 -220 -145 -221 -145 -222 -145 -338 -145 -339 -145 -340 -145 -146 -146 -65 -146 -66 -146 -79 -146 -80 -146 -82 -146 -83 -146 -106 -146 -116 -146 -123 -146 -124 -146 -125 -146 -126 -146 -145 -146 -147 -146 -148 -146 -162 -146 -170 -146 -215 -146 -217 -146 -218 -146 -219 -146 -223 -146 -224 -146 -274 -146 -338 -146 -339 -146 -340 -146 -341 -146 -147 -147 -66 -147 -69 -147 -84 -147 -85 -147 -95 -147 -96 -147 -107 -147 -116 -147 -124 -147 -125 -147 -126 -147 -133 -147 -145 -147 -146 -147 -149 -147 -162 -147 -173 -147 -216 -147 -220 -147 -221 -147 -222 -147 -225 -147 -226 -147 -275 -147 -338 -147 -339 -147 -340 -147 -348 -147 -148 -148 -65 -148 -66 -148 -78 -148 -79 -148 -80 -148 -82 -148 -105 -148 -106 -148 -116 -148 -122 -148 -123 -148 -124 -148 -144 -148 -146 -148 -162 -148 -170 -148 -205 -148 -209 -148 -217 -148 -218 -148 -223 -148 -224 -148 -274 -148 -313 -148 -338 -148 -341 -148 -149 -149 -66 -149 -69 -149 -85 -149 -95 -149 -96 -149 -99 -149 -107 -149 -108 -149 -116 -149 -126 -149 -133 -149 -135 -149 -147 -149 -150 -149 -162 -149 -173 -149 -221 -149 -222 -149 -225 -149 -226 -149 -227 -149 -228 -149 -275 -149 -340 -149 -348 -149 -349 -149 -150 -150 -66 -150 -69 -150 -95 -150 -96 -150 -99 -150 -107 -150 -108 -150 -112 -150 -114 -150 -133 -150 -135 -150 -149 -150 -157 -150 -159 -150 -162 -150 -166 -150 -173 -150 -176 -150 -225 -150 -226 -150 -227 -150 -228 -150 -244 -150 -263 -150 -264 -150 -275 -150 -284 -150 -348 -150 -349 -150 -426 -150 -151 -151 -67 -151 -72 -151 -86 -151 -87 -151 -88 -151 -89 -151 -117 -151 -127 -151 -128 -151 -129 -151 -152 -151 -153 -151 -163 -151 -183 -151 -184 -151 -231 -151 -232 -151 -233 -151 -234 -151 -235 -151 -236 -151 -237 -151 -238 -151 -356 -151 -357 -151 -358 -151 -152 -152 -67 -152 -68 -152 -86 -152 -88 -152 -92 -152 -94 -152 -110 -152 -117 -152 -127 -152 -128 -152 -129 -152 -131 -152 -151 -152 -153 -152 -154 -152 -163 -152 -174 -152 -231 -152 -233 -152 -235 -152 -237 -152 -239 -152 -241 -152 -276 -152 -356 -152 -357 -152 -358 -152 -359 -152 -153 -153 -67 -153 -69 -153 -87 -153 -89 -153 -97 -153 -98 -153 -111 -153 -117 -153 -127 -153 -128 -153 -129 -153 -134 -153 -151 -153 -152 -153 -156 -153 -163 -153 -176 -153 -232 -153 -234 -153 -236 -153 -238 -153 -243 -153 -245 -153 -277 -153 -356 -153 -357 -153 -358 -153 -361 -153 -154 -154 -67 -154 -68 -154 -88 -154 -92 -154 -93 -154 -94 -154 -109 -154 -110 -154 -117 -154 -128 -154 -131 -154 -132 -154 -152 -154 -155 -154 -163 -154 -174 -154 -233 -154 -237 -154 -239 -154 -240 -154 -241 -154 -242 -154 -276 -154 -357 -154 -359 -154 -360 -154 -155 -155 -67 -155 -68 -155 -92 -155 -93 -155 -94 -155 -103 -155 -109 -155 -110 -155 -113 -155 -131 -155 -132 -155 -142 -155 -154 -155 -158 -155 -163 -155 -164 -155 -168 -155 -174 -155 -199 -155 -239 -155 -240 -155 -241 -155 -242 -155 -250 -155 -252 -155 -276 -155 -279 -155 -359 -155 -360 -155 -380 -155 -156 -156 -67 -156 -69 -156 -89 -156 -97 -156 -98 -156 -99 -156 -111 -156 -112 -156 -117 -156 -129 -156 -134 -156 -135 -156 -153 -156 -157 -156 -163 -156 -176 -156 -234 -156 -238 -156 -243 -156 -244 -156 -245 -156 -246 -156 -277 -156 -358 -156 -361 -156 -362 -156 -157 -157 -67 -157 -69 -157 -97 -157 -98 -157 -99 -157 -108 -157 -111 -157 -112 -157 -114 -157 -134 -157 -135 -157 -150 -157 -156 -157 -159 -157 -163 -157 -166 -157 -173 -157 -176 -157 -227 -157 -243 -157 -244 -157 -245 -157 -246 -157 -263 -157 -265 -157 -277 -157 -285 -157 -361 -157 -362 -157 -427 -157 -158 -158 -68 -158 -93 -158 -103 -158 -109 -158 -113 -158 -132 -158 -142 -158 -155 -158 -164 -158 -168 -158 -174 -158 -199 -158 -200 -158 -240 -158 -242 -158 -250 -158 -251 -158 -252 -158 -253 -158 -278 -158 -279 -158 -301 -158 -360 -158 -379 -158 -380 -158 -381 -158 -159 -159 -69 -159 -99 -159 -108 -159 -112 -159 -114 -159 -135 -159 -150 -159 -157 -159 -166 -159 -173 -159 -176 -159 -227 -159 -228 -159 -244 -159 -246 -159 -263 -159 -264 -159 -265 -159 -266 -159 -284 -159 -285 -159 -349 -159 -362 -159 -426 -159 -427 -159 -428 -159 -160 -160 -51 -160 -64 -160 -65 -160 -68 -160 -100 -160 -102 -160 -115 -160 -118 -160 -119 -160 -120 -160 -121 -160 -122 -160 -130 -160 -132 -160 -136 -160 -137 -160 -138 -160 -139 -160 -140 -160 -141 -160 -142 -160 -167 -160 -168 -160 -169 -160 -201 -160 -269 -160 -270 -160 -287 -160 -288 -160 -289 -160 -290 -160 -291 -160 -292 -160 -293 -160 -294 -160 -295 -160 -296 -160 -297 -160 -298 -160 -299 -160 -300 -160 -301 -160 -302 -160 -303 -160 -304 -160 -305 -160 -306 -160 -307 -160 -308 -160 -309 -160 -161 -161 -51 -161 -65 -161 -104 -161 -122 -161 -140 -161 -143 -161 -144 -161 -167 -161 -169 -161 -170 -161 -171 -161 -172 -161 -210 -161 -213 -161 -271 -161 -272 -161 -273 -161 -296 -161 -297 -161 -299 -161 -307 -161 -309 -161 -310 -161 -311 -161 -312 -161 -313 -161 -314 -161 -315 -161 -316 -161 -317 -161 -318 -161 -319 -161 -320 -161 -321 -161 -322 -161 -323 -161 -324 -161 -325 -161 -326 -161 -327 -161 -328 -161 -329 -161 -330 -161 -331 -161 -332 -161 -333 -161 -334 -161 -335 -161 -336 -161 -337 -161 -162 -162 -51 -162 -65 -162 -66 -162 -69 -162 -106 -162 -107 -162 -116 -162 -122 -162 -123 -162 -124 -162 -125 -162 -126 -162 -133 -162 -135 -162 -144 -162 -145 -162 -146 -162 -147 -162 -148 -162 -149 -162 -150 -162 -170 -162 -172 -162 -173 -162 -229 -162 -274 -162 -275 -162 -313 -162 -323 -162 -325 -162 -335 -162 -337 -162 -338 -162 -339 -162 -340 -162 -341 -162 -342 -162 -343 -162 -344 -162 -345 -162 -346 -162 -347 -162 -348 -162 -349 -162 -350 -162 -351 -162 -352 -162 -353 -162 -354 -162 -355 -162 -163 -163 -51 -163 -67 -163 -68 -163 -69 -163 -110 -163 -111 -163 -117 -163 -127 -163 -128 -163 -129 -163 -131 -163 -132 -163 -134 -163 -135 -163 -151 -163 -152 -163 -153 -163 -154 -163 -155 -163 -156 -163 -157 -163 -174 -163 -175 -163 -176 -163 -247 -163 -276 -163 -277 -163 -356 -163 -357 -163 -358 -163 -359 -163 -360 -163 -361 -163 -362 -163 -363 -163 -364 -163 -365 -163 -366 -163 -367 -163 -368 -163 -369 -163 -370 -163 -371 -163 -372 -163 -373 -163 -374 -163 -375 -163 -376 -163 -377 -163 -378 -163 -164 -164 -51 -164 -68 -164 -113 -164 -132 -164 -142 -164 -155 -164 -158 -164 -168 -164 -169 -164 -174 -164 -175 -164 -177 -164 -254 -164 -256 -164 -278 -164 -279 -164 -280 -164 -301 -164 -304 -164 -305 -164 -308 -164 -309 -164 -360 -164 -368 -164 -369 -164 -373 -164 -374 -164 -379 -164 -380 -164 -381 -164 -382 -164 -383 -164 -384 -164 -385 -164 -386 -164 -387 -164 -388 -164 -389 -164 -390 -164 -391 -164 -392 -164 -393 -164 -394 -164 -395 -164 -396 -164 -397 -164 -398 -164 -399 -164 -400 -164 -401 -164 -165 -165 -51 -165 -169 -165 -171 -165 -172 -165 -175 -165 -177 -165 -178 -165 -258 -165 -260 -165 -261 -165 -281 -165 -282 -165 -283 -165 -309 -165 -328 -165 -329 -165 -332 -165 -333 -165 -336 -165 -337 -165 -374 -165 -387 -165 -389 -165 -398 -165 -399 -165 -401 -165 -402 -165 -403 -165 -404 -165 -405 -165 -406 -165 -407 -165 -408 -165 -409 -165 -410 -165 -411 -165 -412 -165 -413 -165 -414 -165 -415 -165 -416 -165 -417 -165 -418 -165 -419 -165 -420 -165 -421 -165 -422 -165 -423 -165 -424 -165 -425 -165 -166 -166 -51 -166 -69 -166 -114 -166 -135 -166 -150 -166 -157 -166 -159 -166 -172 -166 -173 -166 -175 -166 -176 -166 -178 -166 -267 -166 -268 -166 -284 -166 -285 -166 -286 -166 -337 -166 -349 -166 -352 -166 -353 -166 -355 -166 -362 -166 -374 -166 -375 -166 -376 -166 -378 -166 -411 -166 -413 -166 -415 -166 -419 -166 -425 -166 -426 -166 -427 -166 -428 -166 -429 -166 -430 -166 -431 -166 -432 -166 -433 -166 -434 -166 -435 -166 -436 -166 -437 -166 -438 -166 -439 -166 -440 -166 -441 -166 -442 -166 -443 -166 -167 -167 -51 -167 -64 -167 -65 -167 -68 -167 -100 -167 -101 -167 -104 -167 -119 -167 -121 -167 -122 -167 -137 -167 -139 -167 -140 -167 -143 -167 -144 -167 -160 -167 -161 -167 -168 -167 -169 -167 -170 -167 -171 -167 -172 -167 -201 -167 -202 -167 -210 -167 -269 -167 -271 -167 -288 -167 -291 -167 -293 -167 -294 -167 -295 -167 -296 -167 -297 -167 -298 -167 -299 -167 -303 -167 -305 -167 -306 -167 -307 -167 -308 -167 -309 -167 -310 -167 -311 -167 -312 -167 -313 -167 -314 -167 -315 -167 -316 -167 -317 -167 -326 -167 -327 -167 -328 -167 -329 -167 -168 -168 -51 -168 -64 -168 -65 -168 -68 -168 -102 -168 -103 -168 -113 -168 -120 -168 -130 -168 -132 -168 -138 -168 -141 -168 -142 -168 -155 -168 -158 -168 -160 -168 -164 -168 -167 -168 -169 -168 -174 -168 -175 -168 -177 -168 -201 -168 -203 -168 -254 -168 -270 -168 -278 -168 -289 -168 -292 -168 -293 -168 -298 -168 -299 -168 -300 -168 -301 -168 -302 -168 -303 -168 -304 -168 -305 -168 -306 -168 -307 -168 -308 -168 -309 -168 -360 -168 -379 -168 -380 -168 -381 -168 -382 -168 -383 -168 -384 -168 -385 -168 -386 -168 -387 -168 -388 -168 -389 -168 -169 -169 -51 -169 -64 -169 -65 -169 -68 -169 -160 -169 -161 -169 -164 -169 -165 -169 -167 -169 -168 -169 -170 -169 -171 -169 -172 -169 -174 -169 -175 -169 -177 -169 -178 -169 -201 -169 -202 -169 -203 -169 -210 -169 -211 -169 -254 -169 -255 -169 -258 -169 -293 -169 -298 -169 -299 -169 -303 -169 -305 -169 -306 -169 -307 -169 -308 -169 -309 -169 -316 -169 -317 -169 -326 -169 -327 -169 -328 -169 -329 -169 -383 -169 -385 -169 -386 -169 -387 -169 -388 -169 -389 -169 -402 -169 -403 -169 -404 -169 -405 -169 -170 -170 -51 -170 -65 -170 -66 -170 -69 -170 -104 -170 -105 -170 -106 -170 -122 -170 -123 -170 -124 -170 -140 -170 -143 -170 -144 -170 -146 -170 -148 -170 -161 -170 -162 -170 -167 -170 -169 -170 -171 -170 -172 -170 -173 -170 -212 -170 -213 -170 -229 -170 -272 -170 -274 -170 -297 -170 -310 -170 -311 -170 -312 -170 -313 -170 -319 -170 -321 -170 -322 -170 -323 -170 -324 -170 -325 -170 -331 -170 -333 -170 -334 -170 -335 -170 -336 -170 -337 -170 -338 -170 -341 -170 -342 -170 -343 -170 -344 -170 -345 -170 -350 -170 -351 -170 -352 -170 -353 -170 -171 -171 -51 -171 -65 -171 -161 -171 -165 -171 -167 -171 -169 -171 -170 -171 -172 -171 -175 -171 -177 -171 -178 -171 -210 -171 -211 -171 -213 -171 -214 -171 -258 -171 -260 -171 -273 -171 -281 -171 -299 -171 -307 -171 -309 -171 -316 -171 -317 -171 -320 -171 -321 -171 -324 -171 -325 -171 -326 -171 -327 -171 -328 -171 -329 -171 -330 -171 -331 -171 -332 -171 -333 -171 -334 -171 -335 -171 -336 -171 -337 -171 -387 -171 -389 -171 -402 -171 -403 -171 -404 -171 -405 -171 -406 -171 -407 -171 -408 -171 -409 -171 -410 -171 -411 -171 -412 -171 -413 -171 -172 -172 -51 -172 -65 -172 -66 -172 -69 -172 -161 -172 -162 -172 -165 -172 -166 -172 -167 -172 -169 -172 -170 -172 -171 -172 -173 -172 -175 -172 -176 -172 -177 -172 -178 -172 -212 -172 -213 -172 -214 -172 -229 -172 -230 -172 -259 -172 -260 -172 -267 -172 -321 -172 -324 -172 -325 -172 -331 -172 -333 -172 -334 -172 -335 -172 -336 -172 -337 -172 -344 -172 -345 -172 -350 -172 -351 -172 -352 -172 -353 -172 -407 -172 -409 -172 -410 -172 -411 -172 -412 -172 -413 -172 -429 -172 -430 -172 -431 -172 -432 -172 -173 -173 -51 -173 -65 -173 -66 -173 -69 -173 -107 -173 -108 -173 -114 -173 -126 -173 -133 -173 -135 -173 -147 -173 -149 -173 -150 -173 -157 -173 -159 -173 -162 -173 -166 -173 -170 -173 -172 -173 -175 -173 -176 -173 -178 -173 -229 -173 -230 -173 -267 -173 -275 -173 -284 -173 -325 -173 -335 -173 -337 -173 -340 -173 -344 -173 -345 -173 -347 -173 -348 -173 -349 -173 -350 -173 -351 -173 -352 -173 -353 -173 -354 -173 -355 -173 -362 -173 -411 -173 -413 -173 -426 -173 -427 -173 -428 -173 -429 -173 -430 -173 -431 -173 -432 -173 -433 -173 -434 -173 -174 -174 -51 -174 -67 -174 -68 -174 -69 -174 -109 -174 -110 -174 -113 -174 -128 -174 -131 -174 -132 -174 -142 -174 -152 -174 -154 -174 -155 -174 -158 -174 -163 -174 -164 -174 -168 -174 -169 -174 -175 -174 -176 -174 -177 -174 -247 -174 -248 -174 -256 -174 -276 -174 -279 -174 -301 -174 -357 -174 -359 -174 -360 -174 -364 -174 -365 -174 -367 -174 -368 -174 -369 -174 -370 -174 -371 -174 -372 -174 -373 -174 -374 -174 -375 -174 -376 -174 -379 -174 -380 -174 -381 -174 -390 -174 -391 -174 -392 -174 -393 -174 -397 -174 -399 -174 -400 -174 -401 -174 -175 -175 -51 -175 -67 -175 -68 -175 -69 -175 -163 -175 -164 -175 -165 -175 -166 -175 -168 -175 -169 -175 -171 -175 -172 -175 -173 -175 -174 -175 -176 -175 -177 -175 -178 -175 -247 -175 -248 -175 -249 -175 -256 -175 -257 -175 -261 -175 -262 -175 -268 -175 -365 -175 -369 -175 -370 -175 -371 -175 -372 -175 -373 -175 -374 -175 -375 -175 -376 -175 -392 -175 -393 -175 -397 -175 -399 -175 -400 -175 -401 -175 -414 -175 -415 -175 -416 -175 -417 -175 -418 -175 -419 -175 -436 -175 -437 -175 -439 -175 -440 -175 -176 -176 -51 -176 -67 -176 -68 -176 -69 -176 -111 -176 -112 -176 -114 -176 -129 -176 -134 -176 -135 -176 -150 -176 -153 -176 -156 -176 -157 -176 -159 -176 -163 -176 -166 -176 -172 -176 -173 -176 -174 -176 -175 -176 -178 -176 -247 -176 -249 -176 -268 -176 -277 -176 -285 -176 -349 -176 -358 -176 -361 -176 -362 -176 -365 -176 -366 -176 -369 -176 -370 -176 -371 -176 -372 -176 -373 -176 -374 -176 -375 -176 -376 -176 -377 -176 -378 -176 -415 -176 -419 -176 -426 -176 -427 -176 -428 -176 -435 -176 -436 -176 -437 -176 -438 -176 -439 -176 -440 -176 -177 -177 -51 -177 -68 -177 -164 -177 -165 -177 -168 -177 -169 -177 -171 -177 -172 -177 -174 -177 -175 -177 -178 -177 -254 -177 -255 -177 -256 -177 -257 -177 -258 -177 -261 -177 -280 -177 -282 -177 -305 -177 -308 -177 -309 -177 -328 -177 -329 -177 -369 -177 -373 -177 -374 -177 -383 -177 -385 -177 -386 -177 -387 -177 -388 -177 -389 -177 -392 -177 -393 -177 -395 -177 -396 -177 -397 -177 -398 -177 -399 -177 -400 -177 -401 -177 -402 -177 -403 -177 -404 -177 -405 -177 -414 -177 -415 -177 -416 -177 -417 -177 -418 -177 -419 -177 -420 -177 -421 -177 -178 -178 -51 -178 -69 -178 -165 -178 -166 -178 -169 -178 -171 -178 -172 -178 -173 -178 -175 -178 -176 -178 -177 -178 -259 -178 -260 -178 -261 -178 -262 -178 -267 -178 -268 -178 -283 -178 -286 -178 -333 -178 -336 -178 -337 -178 -352 -178 -353 -178 -374 -178 -375 -178 -376 -178 -399 -178 -401 -178 -407 -178 -409 -178 -410 -178 -411 -178 -412 -178 -413 -178 -414 -178 -415 -178 -416 -178 -417 -178 -418 -178 -419 -178 -423 -178 -424 -178 -425 -178 -429 -178 -430 -178 -431 -178 -432 -178 -436 -178 -437 -178 -439 -178 -440 -178 -441 -178 -442 -178 -179 -179 -70 -179 -73 -179 -74 -179 -118 -179 -136 -179 -180 -179 -185 -179 -186 -179 -187 -179 -188 -179 -287 -179 -180 -180 -136 -180 -179 -180 -185 -180 -186 -180 -187 -180 -188 -180 -287 -180 -290 -180 -451 -180 -517 -180 -518 -180 -181 -181 -71 -181 -83 -181 -84 -181 -125 -181 -145 -181 -182 -181 -215 -181 -216 -181 -219 -181 -220 -181 -339 -181 -182 -182 -145 -182 -181 -182 -215 -182 -216 -182 -219 -182 -220 -182 -339 -182 -346 -182 -473 -182 -581 -182 -582 -182 -183 -183 -72 -183 -86 -183 -87 -183 -127 -183 -151 -183 -184 -183 -231 -183 -232 -183 -235 -183 -236 -183 -356 -183 -184 -184 -151 -184 -183 -184 -231 -184 -232 -184 -235 -184 -236 -184 -356 -184 -363 -184 -479 -184 -594 -184 -595 -184 -185 -185 -70 -185 -73 -185 -74 -185 -75 -185 -118 -185 -119 -185 -136 -185 -137 -185 -179 -185 -180 -185 -186 -185 -187 -185 -188 -185 -189 -185 -190 -185 -287 -185 -288 -185 -186 -186 -70 -186 -73 -186 -74 -186 -76 -186 -118 -186 -120 -186 -136 -186 -138 -186 -179 -186 -180 -186 -185 -186 -187 -186 -188 -186 -191 -186 -192 -186 -287 -186 -289 -186 -187 -187 -136 -187 -137 -187 -179 -187 -180 -187 -185 -187 -186 -187 -188 -187 -189 -187 -190 -187 -287 -187 -288 -187 -290 -187 -291 -187 -451 -187 -517 -187 -518 -187 -520 -187 -188 -188 -136 -188 -138 -188 -179 -188 -180 -188 -185 -188 -186 -188 -187 -188 -191 -188 -192 -188 -287 -188 -289 -188 -290 -188 -292 -188 -451 -188 -517 -188 -518 -188 -522 -188 -189 -189 -136 -189 -137 -189 -139 -189 -185 -189 -187 -189 -190 -189 -193 -189 -195 -189 -287 -189 -288 -189 -290 -189 -291 -189 -294 -189 -295 -189 -517 -189 -520 -189 -525 -189 -190 -190 -73 -190 -75 -190 -77 -190 -118 -190 -119 -190 -121 -190 -136 -190 -137 -190 -139 -190 -185 -190 -187 -190 -189 -190 -193 -190 -195 -190 -287 -190 -288 -190 -295 -190 -191 -191 -74 -191 -76 -191 -90 -191 -118 -191 -120 -191 -130 -191 -136 -191 -138 -191 -141 -191 -186 -191 -188 -191 -192 -191 -197 -191 -198 -191 -287 -191 -289 -191 -300 -191 -192 -192 -136 -192 -138 -192 -141 -192 -186 -192 -188 -192 -191 -192 -197 -192 -198 -192 -287 -192 -289 -192 -290 -192 -292 -192 -300 -192 -302 -192 -518 -192 -522 -192 -531 -192 -193 -193 -137 -193 -139 -193 -140 -193 -189 -193 -190 -193 -194 -193 -195 -193 -196 -193 -288 -193 -291 -193 -294 -193 -295 -193 -296 -193 -297 -193 -520 -193 -525 -193 -527 -193 -194 -194 -139 -194 -140 -194 -143 -194 -193 -194 -195 -194 -196 -194 -204 -194 -206 -194 -294 -194 -295 -194 -296 -194 -297 -194 -310 -194 -314 -194 -525 -194 -527 -194 -541 -194 -195 -195 -75 -195 -77 -195 -78 -195 -119 -195 -121 -195 -122 -195 -137 -195 -139 -195 -140 -195 -189 -195 -190 -195 -193 -195 -194 -195 -196 -195 -288 -195 -295 -195 -297 -195 -196 -196 -77 -196 -78 -196 -121 -196 -122 -196 -139 -196 -140 -196 -143 -196 -144 -196 -193 -196 -194 -196 -195 -196 -204 -196 -205 -196 -206 -196 -295 -196 -297 -196 -310 -196 -197 -197 -76 -197 -90 -197 -93 -197 -120 -197 -130 -197 -132 -197 -138 -197 -141 -197 -142 -197 -191 -197 -192 -197 -198 -197 -199 -197 -200 -197 -289 -197 -300 -197 -301 -197 -198 -198 -138 -198 -141 -198 -142 -198 -191 -198 -192 -198 -197 -198 -199 -198 -200 -198 -289 -198 -292 -198 -300 -198 -301 -198 -302 -198 -304 -198 -522 -198 -531 -198 -534 -198 -199 -199 -90 -199 -93 -199 -130 -199 -132 -199 -141 -199 -142 -199 -155 -199 -158 -199 -197 -199 -198 -199 -200 -199 -240 -199 -250 -199 -251 -199 -300 -199 -301 -199 -379 -199 -200 -200 -141 -200 -142 -200 -158 -200 -197 -200 -198 -200 -199 -200 -250 -200 -251 -200 -300 -200 -301 -200 -302 -200 -304 -200 -379 -200 -382 -200 -531 -200 -534 -200 -618 -200 -201 -201 -160 -201 -167 -201 -168 -201 -169 -201 -202 -201 -203 -201 -269 -201 -270 -201 -293 -201 -298 -201 -299 -201 -303 -201 -305 -201 -306 -201 -307 -201 -308 -201 -309 -201 -202 -202 -167 -202 -169 -202 -201 -202 -203 -202 -210 -202 -211 -202 -269 -202 -271 -202 -298 -202 -299 -202 -306 -202 -307 -202 -308 -202 -309 -202 -316 -202 -326 -202 -328 -202 -203 -203 -168 -203 -169 -203 -201 -203 -202 -203 -254 -203 -255 -203 -270 -203 -278 -203 -303 -203 -305 -203 -306 -203 -307 -203 -308 -203 -309 -203 -383 -203 -386 -203 -387 -203 -204 -204 -78 -204 -122 -204 -140 -204 -143 -204 -144 -204 -194 -204 -196 -204 -205 -204 -206 -204 -207 -204 -208 -204 -209 -204 -297 -204 -310 -204 -311 -204 -312 -204 -313 -204 -205 -205 -78 -205 -79 -205 -122 -205 -123 -205 -140 -205 -143 -205 -144 -205 -148 -205 -196 -205 -204 -205 -208 -205 -209 -205 -223 -205 -224 -205 -312 -205 -313 -205 -341 -205 -206 -206 -140 -206 -143 -206 -194 -206 -196 -206 -204 -206 -207 -206 -208 -206 -296 -206 -297 -206 -310 -206 -311 -206 -312 -206 -314 -206 -315 -206 -527 -206 -541 -206 -543 -206 -207 -207 -143 -207 -204 -207 -206 -207 -208 -207 -310 -207 -311 -207 -312 -207 -314 -207 -315 -207 -318 -207 -319 -207 -322 -207 -541 -207 -543 -207 -547 -207 -548 -207 -555 -207 -208 -208 -143 -208 -144 -208 -204 -208 -205 -208 -206 -208 -207 -208 -209 -208 -310 -208 -311 -208 -312 -208 -313 -208 -319 -208 -322 -208 -323 -208 -548 -208 -555 -208 -556 -208 -209 -209 -143 -209 -144 -209 -148 -209 -204 -209 -205 -209 -208 -209 -223 -209 -224 -209 -312 -209 -313 -209 -322 -209 -323 -209 -341 -209 -342 -209 -555 -209 -556 -209 -575 -209 -210 -210 -161 -210 -167 -210 -169 -210 -171 -210 -202 -210 -211 -210 -271 -210 -273 -210 -299 -210 -307 -210 -309 -210 -316 -210 -317 -210 -326 -210 -327 -210 -328 -210 -329 -210 -211 -211 -169 -211 -171 -211 -202 -211 -210 -211 -255 -211 -258 -211 -273 -211 -281 -211 -307 -211 -309 -211 -326 -211 -327 -211 -328 -211 -329 -211 -387 -211 -402 -211 -403 -211 -212 -212 -170 -212 -172 -212 -213 -212 -214 -212 -229 -212 -230 -212 -272 -212 -274 -212 -324 -212 -325 -212 -334 -212 -335 -212 -336 -212 -337 -212 -344 -212 -350 -212 -352 -212 -213 -213 -161 -213 -170 -213 -171 -213 -172 -213 -212 -213 -214 -213 -272 -213 -273 -213 -321 -213 -324 -213 -325 -213 -331 -213 -333 -213 -334 -213 -335 -213 -336 -213 -337 -213 -214 -214 -171 -214 -172 -214 -212 -214 -213 -214 -259 -214 -260 -214 -273 -214 -281 -214 -331 -214 -333 -214 -334 -214 -335 -214 -336 -214 -337 -214 -407 -214 -410 -214 -411 -214 -215 -215 -71 -215 -80 -215 -83 -215 -84 -215 -124 -215 -125 -215 -145 -215 -146 -215 -181 -215 -182 -215 -216 -215 -217 -215 -218 -215 -219 -215 -220 -215 -338 -215 -339 -215 -216 -216 -71 -216 -83 -216 -84 -216 -85 -216 -125 -216 -126 -216 -145 -216 -147 -216 -181 -216 -182 -216 -215 -216 -219 -216 -220 -216 -221 -216 -222 -216 -339 -216 -340 -216 -217 -217 -79 -217 -80 -217 -83 -217 -123 -217 -124 -217 -125 -217 -145 -217 -146 -217 -148 -217 -215 -217 -218 -217 -219 -217 -223 -217 -224 -217 -338 -217 -339 -217 -341 -217 -218 -218 -145 -218 -146 -218 -148 -218 -215 -218 -217 -218 -219 -218 -223 -218 -224 -218 -338 -218 -339 -218 -341 -218 -342 -218 -343 -218 -346 -218 -575 -218 -576 -218 -581 -218 -219 -219 -145 -219 -146 -219 -181 -219 -182 -219 -215 -219 -216 -219 -217 -219 -218 -219 -220 -219 -338 -219 -339 -219 -343 -219 -346 -219 -473 -219 -576 -219 -581 -219 -582 -219 -220 -220 -145 -220 -147 -220 -181 -220 -182 -220 -215 -220 -216 -220 -219 -220 -221 -220 -222 -220 -339 -220 -340 -220 -346 -220 -347 -220 -473 -220 -581 -220 -582 -220 -584 -220 -221 -221 -84 -221 -85 -221 -96 -221 -125 -221 -126 -221 -133 -221 -145 -221 -147 -221 -149 -221 -216 -221 -220 -221 -222 -221 -225 -221 -226 -221 -339 -221 -340 -221 -348 -221 -222 -222 -145 -222 -147 -222 -149 -222 -216 -222 -220 -222 -221 -222 -225 -222 -226 -222 -339 -222 -340 -222 -346 -222 -347 -222 -348 -222 -354 -222 -582 -222 -584 -222 -590 -222 -223 -223 -78 -223 -79 -223 -80 -223 -122 -223 -123 -223 -124 -223 -144 -223 -146 -223 -148 -223 -205 -223 -209 -223 -217 -223 -218 -223 -224 -223 -313 -223 -338 -223 -341 -223 -224 -224 -144 -224 -146 -224 -148 -224 -205 -224 -209 -224 -217 -224 -218 -224 -223 -224 -313 -224 -323 -224 -338 -224 -341 -224 -342 -224 -343 -224 -556 -224 -575 -224 -576 -224 -225 -225 -85 -225 -96 -225 -99 -225 -126 -225 -133 -225 -135 -225 -147 -225 -149 -225 -150 -225 -221 -225 -222 -225 -226 -225 -227 -225 -228 -225 -340 -225 -348 -225 -349 -225 -226 -226 -147 -226 -149 -226 -150 -226 -221 -226 -222 -226 -225 -226 -227 -226 -228 -226 -340 -226 -347 -226 -348 -226 -349 -226 -354 -226 -355 -226 -584 -226 -590 -226 -592 -226 -227 -227 -96 -227 -99 -227 -133 -227 -135 -227 -149 -227 -150 -227 -157 -227 -159 -227 -225 -227 -226 -227 -228 -227 -244 -227 -263 -227 -264 -227 -348 -227 -349 -227 -426 -227 -228 -228 -149 -228 -150 -228 -159 -228 -225 -228 -226 -228 -227 -228 -263 -228 -264 -228 -348 -228 -349 -228 -354 -228 -355 -228 -426 -228 -433 -228 -590 -228 -592 -228 -684 -228 -229 -229 -162 -229 -170 -229 -172 -229 -173 -229 -212 -229 -230 -229 -274 -229 -275 -229 -325 -229 -335 -229 -337 -229 -344 -229 -345 -229 -350 -229 -351 -229 -352 -229 -353 -229 -230 -230 -172 -230 -173 -230 -212 -230 -229 -230 -259 -230 -267 -230 -275 -230 -284 -230 -335 -230 -337 -230 -350 -230 -351 -230 -352 -230 -353 -230 -411 -230 -429 -230 -430 -230 -231 -231 -72 -231 -86 -231 -87 -231 -88 -231 -127 -231 -128 -231 -151 -231 -152 -231 -183 -231 -184 -231 -232 -231 -233 -231 -235 -231 -236 -231 -237 -231 -356 -231 -357 -231 -232 -232 -72 -232 -86 -232 -87 -232 -89 -232 -127 -232 -129 -232 -151 -232 -153 -232 -183 -232 -184 -232 -231 -232 -234 -232 -235 -232 -236 -232 -238 -232 -356 -232 -358 -232 -233 -233 -86 -233 -88 -233 -92 -233 -127 -233 -128 -233 -131 -233 -151 -233 -152 -233 -154 -233 -231 -233 -235 -233 -237 -233 -239 -233 -241 -233 -356 -233 -357 -233 -359 -233 -234 -234 -87 -234 -89 -234 -97 -234 -127 -234 -129 -234 -134 -234 -151 -234 -153 -234 -156 -234 -232 -234 -236 -234 -238 -234 -243 -234 -245 -234 -356 -234 -358 -234 -361 -234 -235 -235 -151 -235 -152 -235 -183 -235 -184 -235 -231 -235 -232 -235 -233 -235 -236 -235 -237 -235 -356 -235 -357 -235 -363 -235 -364 -235 -479 -235 -594 -235 -595 -235 -596 -235 -236 -236 -151 -236 -153 -236 -183 -236 -184 -236 -231 -236 -232 -236 -234 -236 -235 -236 -238 -236 -356 -236 -358 -236 -363 -236 -366 -236 -479 -236 -594 -236 -595 -236 -597 -236 -237 -237 -151 -237 -152 -237 -154 -237 -231 -237 -233 -237 -235 -237 -239 -237 -241 -237 -356 -237 -357 -237 -359 -237 -363 -237 -364 -237 -367 -237 -594 -237 -596 -237 -602 -237 -238 -238 -151 -238 -153 -238 -156 -238 -232 -238 -234 -238 -236 -238 -243 -238 -245 -238 -356 -238 -358 -238 -361 -238 -363 -238 -366 -238 -377 -238 -595 -238 -597 -238 -614 -238 -239 -239 -88 -239 -92 -239 -93 -239 -128 -239 -131 -239 -132 -239 -152 -239 -154 -239 -155 -239 -233 -239 -237 -239 -240 -239 -241 -239 -242 -239 -357 -239 -359 -239 -360 -239 -240 -240 -92 -240 -93 -240 -131 -240 -132 -240 -142 -240 -154 -240 -155 -240 -158 -240 -199 -240 -239 -240 -241 -240 -242 -240 -250 -240 -252 -240 -359 -240 -360 -240 -380 -240 -241 -241 -152 -241 -154 -241 -155 -241 -233 -241 -237 -241 -239 -241 -240 -241 -242 -241 -357 -241 -359 -241 -360 -241 -364 -241 -367 -241 -368 -241 -596 -241 -602 -241 -603 -241 -242 -242 -154 -242 -155 -242 -158 -242 -239 -242 -240 -242 -241 -242 -250 -242 -252 -242 -359 -242 -360 -242 -367 -242 -368 -242 -380 -242 -390 -242 -602 -242 -603 -242 -628 -242 -243 -243 -89 -243 -97 -243 -99 -243 -129 -243 -134 -243 -135 -243 -153 -243 -156 -243 -157 -243 -234 -243 -238 -243 -244 -243 -245 -243 -246 -243 -358 -243 -361 -243 -362 -243 -244 -244 -97 -244 -99 -244 -134 -244 -135 -244 -150 -244 -156 -244 -157 -244 -159 -244 -227 -244 -243 -244 -245 -244 -246 -244 -263 -244 -265 -244 -361 -244 -362 -244 -427 -244 -245 -245 -153 -245 -156 -245 -157 -245 -234 -245 -238 -245 -243 -245 -244 -245 -246 -245 -358 -245 -361 -245 -362 -245 -366 -245 -377 -245 -378 -245 -597 -245 -614 -245 -615 -245 -246 -246 -156 -246 -157 -246 -159 -246 -243 -246 -244 -246 -245 -246 -263 -246 -265 -246 -361 -246 -362 -246 -377 -246 -378 -246 -427 -246 -435 -246 -614 -246 -615 -246 -688 -246 -247 -247 -163 -247 -174 -247 -175 -247 -176 -247 -248 -247 -249 -247 -276 -247 -277 -247 -365 -247 -369 -247 -370 -247 -371 -247 -372 -247 -373 -247 -374 -247 -375 -247 -376 -247 -248 -248 -174 -248 -175 -248 -247 -248 -249 -248 -256 -248 -257 -248 -276 -248 -279 -248 -369 -248 -370 -248 -371 -248 -373 -248 -374 -248 -375 -248 -393 -248 -400 -248 -401 -248 -249 -249 -175 -249 -176 -249 -247 -249 -248 -249 -262 -249 -268 -249 -277 -249 -285 -249 -371 -249 -372 -249 -373 -249 -374 -249 -375 -249 -376 -249 -415 -249 -436 -249 -439 -249 -250 -250 -93 -250 -132 -250 -142 -250 -155 -250 -158 -250 -199 -250 -200 -250 -240 -250 -242 -250 -251 -250 -252 -250 -253 -250 -301 -250 -360 -250 -379 -250 -380 -250 -381 -250 -251 -251 -142 -251 -158 -251 -199 -251 -200 -251 -250 -251 -252 -251 -253 -251 -301 -251 -304 -251 -379 -251 -380 -251 -381 -251 -382 -251 -384 -251 -534 -251 -618 -251 -621 -251 -252 -252 -155 -252 -158 -252 -240 -252 -242 -252 -250 -252 -251 -252 -253 -252 -360 -252 -368 -252 -379 -252 -380 -252 -381 -252 -390 -252 -391 -252 -603 -252 -628 -252 -629 -252 -253 -253 -158 -253 -250 -253 -251 -253 -252 -253 -379 -253 -380 -253 -381 -253 -382 -253 -384 -253 -390 -253 -391 -253 -394 -253 -618 -253 -621 -253 -628 -253 -629 -253 -634 -253 -254 -254 -164 -254 -168 -254 -169 -254 -177 -254 -203 -254 -255 -254 -278 -254 -280 -254 -305 -254 -308 -254 -309 -254 -383 -254 -385 -254 -386 -254 -387 -254 -388 -254 -389 -254 -255 -255 -169 -255 -177 -255 -203 -255 -211 -255 -254 -255 -258 -255 -280 -255 -282 -255 -308 -255 -309 -255 -328 -255 -386 -255 -387 -255 -388 -255 -389 -255 -402 -255 -404 -255 -256 -256 -164 -256 -174 -256 -175 -256 -177 -256 -248 -256 -257 -256 -279 -256 -280 -256 -369 -256 -373 -256 -374 -256 -392 -256 -393 -256 -397 -256 -399 -256 -400 -256 -401 -256 -257 -257 -175 -257 -177 -257 -248 -257 -256 -257 -261 -257 -262 -257 -280 -257 -282 -257 -373 -257 -374 -257 -397 -257 -399 -257 -400 -257 -401 -257 -414 -257 -415 -257 -416 -257 -258 -258 -165 -258 -169 -258 -171 -258 -177 -258 -211 -258 -255 -258 -281 -258 -282 -258 -309 -258 -328 -258 -329 -258 -387 -258 -389 -258 -402 -258 -403 -258 -404 -258 -405 -258 -259 -259 -172 -259 -178 -259 -214 -259 -230 -259 -260 -259 -267 -259 -283 -259 -286 -259 -336 -259 -337 -259 -352 -259 -410 -259 -411 -259 -412 -259 -413 -259 -429 -259 -431 -259 -260 -260 -165 -260 -171 -260 -172 -260 -178 -260 -214 -260 -259 -260 -281 -260 -283 -260 -333 -260 -336 -260 -337 -260 -407 -260 -409 -260 -410 -260 -411 -260 -412 -260 -413 -260 -261 -261 -165 -261 -175 -261 -177 -261 -178 -261 -257 -261 -262 -261 -282 -261 -283 -261 -374 -261 -399 -261 -401 -261 -414 -261 -415 -261 -416 -261 -417 -261 -418 -261 -419 -261 -262 -262 -175 -262 -178 -262 -249 -262 -257 -262 -261 -262 -268 -262 -283 -262 -286 -262 -374 -262 -375 -262 -401 -262 -414 -262 -415 -262 -418 -262 -419 -262 -439 -262 -440 -262 -263 -263 -99 -263 -135 -263 -150 -263 -157 -263 -159 -263 -227 -263 -228 -263 -244 -263 -246 -263 -264 -263 -265 -263 -266 -263 -349 -263 -362 -263 -426 -263 -427 -263 -428 -263 -264 -264 -150 -264 -159 -264 -227 -264 -228 -264 -263 -264 -265 -264 -266 -264 -349 -264 -355 -264 -426 -264 -427 -264 -428 -264 -433 -264 -434 -264 -592 -264 -684 -264 -686 -264 -265 -265 -157 -265 -159 -265 -244 -265 -246 -265 -263 -265 -264 -265 -266 -265 -362 -265 -378 -265 -426 -265 -427 -265 -428 -265 -435 -265 -438 -265 -615 -265 -688 -265 -689 -265 -266 -266 -159 -266 -263 -266 -264 -266 -265 -266 -426 -266 -427 -266 -428 -266 -433 -266 -434 -266 -435 -266 -438 -266 -443 -266 -684 -266 -686 -266 -688 -266 -689 -266 -700 -266 -267 -267 -166 -267 -172 -267 -173 -267 -178 -267 -230 -267 -259 -267 -284 -267 -286 -267 -337 -267 -352 -267 -353 -267 -411 -267 -413 -267 -429 -267 -430 -267 -431 -267 -432 -267 -268 -268 -166 -268 -175 -268 -176 -268 -178 -268 -249 -268 -262 -268 -285 -268 -286 -268 -374 -268 -375 -268 -376 -268 -415 -268 -419 -268 -436 -268 -437 -268 -439 -268 -440 -268 -269 -269 -100 -269 -101 -269 -115 -269 -137 -269 -139 -269 -140 -269 -160 -269 -167 -269 -201 -269 -202 -269 -270 -269 -288 -269 -291 -269 -293 -269 -294 -269 -295 -269 -296 -269 -297 -269 -298 -269 -299 -269 -303 -269 -306 -269 -307 -269 -270 -270 -102 -270 -103 -270 -115 -270 -138 -270 -141 -270 -142 -270 -160 -270 -168 -270 -201 -270 -203 -270 -269 -270 -289 -270 -292 -270 -293 -270 -298 -270 -300 -270 -301 -270 -302 -270 -303 -270 -304 -270 -305 -270 -306 -270 -308 -270 -271 -271 -101 -271 -104 -271 -140 -271 -143 -271 -161 -271 -167 -271 -202 -271 -210 -271 -272 -271 -273 -271 -296 -271 -297 -271 -299 -271 -307 -271 -310 -271 -311 -271 -312 -271 -314 -271 -315 -271 -316 -271 -317 -271 -326 -271 -327 -271 -272 -272 -104 -272 -105 -272 -143 -272 -144 -272 -161 -272 -170 -272 -212 -272 -213 -272 -271 -272 -273 -272 -310 -272 -311 -272 -312 -272 -313 -272 -319 -272 -321 -272 -322 -272 -323 -272 -324 -272 -325 -272 -331 -272 -334 -272 -335 -272 -273 -273 -161 -273 -171 -273 -210 -273 -211 -273 -213 -273 -214 -273 -271 -273 -272 -273 -316 -273 -317 -273 -320 -273 -321 -273 -324 -273 -326 -273 -327 -273 -328 -273 -329 -273 -330 -273 -331 -273 -332 -273 -333 -273 -334 -273 -336 -273 -274 -274 -105 -274 -106 -274 -116 -274 -144 -274 -146 -274 -148 -274 -162 -274 -170 -274 -212 -274 -229 -274 -275 -274 -313 -274 -323 -274 -325 -274 -335 -274 -338 -274 -341 -274 -342 -274 -343 -274 -344 -274 -345 -274 -350 -274 -351 -274 -275 -275 -107 -275 -108 -275 -116 -275 -147 -275 -149 -275 -150 -275 -162 -275 -173 -275 -229 -275 -230 -275 -274 -275 -340 -275 -344 -275 -345 -275 -347 -275 -348 -275 -349 -275 -350 -275 -351 -275 -352 -275 -353 -275 -354 -275 -355 -275 -276 -276 -109 -276 -110 -276 -117 -276 -152 -276 -154 -276 -155 -276 -163 -276 -174 -276 -247 -276 -248 -276 -277 -276 -357 -276 -359 -276 -360 -276 -364 -276 -365 -276 -367 -276 -368 -276 -369 -276 -370 -276 -371 -276 -372 -276 -373 -276 -277 -277 -111 -277 -112 -277 -117 -277 -153 -277 -156 -277 -157 -277 -163 -277 -176 -277 -247 -277 -249 -277 -276 -277 -358 -277 -361 -277 -362 -277 -365 -277 -366 -277 -370 -277 -371 -277 -372 -277 -375 -277 -376 -277 -377 -277 -378 -277 -278 -278 -103 -278 -113 -278 -142 -278 -158 -278 -164 -278 -168 -278 -203 -278 -254 -278 -279 -278 -280 -278 -301 -278 -304 -278 -305 -278 -308 -278 -379 -278 -380 -278 -381 -278 -382 -278 -383 -278 -384 -278 -385 -278 -386 -278 -388 -278 -279 -279 -109 -279 -113 -279 -155 -279 -158 -279 -164 -279 -174 -279 -248 -279 -256 -279 -278 -279 -280 -279 -360 -279 -368 -279 -369 -279 -373 -279 -379 -279 -380 -279 -381 -279 -390 -279 -391 -279 -392 -279 -393 -279 -397 -279 -400 -279 -280 -280 -164 -280 -177 -280 -254 -280 -255 -280 -256 -280 -257 -280 -278 -280 -279 -280 -383 -280 -385 -280 -386 -280 -387 -280 -388 -280 -389 -280 -392 -280 -393 -280 -395 -280 -396 -280 -397 -280 -398 -280 -399 -280 -400 -280 -401 -280 -281 -281 -165 -281 -171 -281 -211 -281 -214 -281 -258 -281 -260 -281 -282 -281 -283 -281 -328 -281 -329 -281 -332 -281 -333 -281 -336 -281 -402 -281 -403 -281 -404 -281 -405 -281 -406 -281 -407 -281 -408 -281 -409 -281 -410 -281 -412 -281 -282 -282 -165 -282 -177 -282 -255 -282 -257 -282 -258 -282 -261 -282 -281 -282 -283 -282 -387 -282 -389 -282 -398 -282 -399 -282 -401 -282 -402 -282 -403 -282 -404 -282 -405 -282 -414 -282 -416 -282 -417 -282 -418 -282 -420 -282 -421 -282 -283 -283 -165 -283 -178 -283 -259 -283 -260 -283 -261 -283 -262 -283 -281 -283 -282 -283 -407 -283 -409 -283 -410 -283 -411 -283 -412 -283 -413 -283 -414 -283 -415 -283 -416 -283 -417 -283 -418 -283 -419 -283 -423 -283 -424 -283 -425 -283 -284 -284 -108 -284 -114 -284 -150 -284 -159 -284 -166 -284 -173 -284 -230 -284 -267 -284 -285 -284 -286 -284 -349 -284 -352 -284 -353 -284 -355 -284 -426 -284 -427 -284 -428 -284 -429 -284 -430 -284 -431 -284 -432 -284 -433 -284 -434 -284 -285 -285 -112 -285 -114 -285 -157 -285 -159 -285 -166 -285 -176 -285 -249 -285 -268 -285 -284 -285 -286 -285 -362 -285 -375 -285 -376 -285 -378 -285 -426 -285 -427 -285 -428 -285 -435 -285 -436 -285 -437 -285 -438 -285 -439 -285 -440 -285 -286 -286 -166 -286 -178 -286 -259 -286 -262 -286 -267 -286 -268 -286 -284 -286 -285 -286 -411 -286 -413 -286 -415 -286 -419 -286 -425 -286 -429 -286 -430 -286 -431 -286 -432 -286 -436 -286 -437 -286 -439 -286 -440 -286 -441 -286 -442 -286 -287 -287 -64 -287 -115 -287 -136 -287 -137 -287 -138 -287 -160 -287 -179 -287 -180 -287 -185 -287 -186 -287 -187 -287 -188 -287 -189 -287 -190 -287 -191 -287 -192 -287 -288 -287 -289 -287 -290 -287 -291 -287 -292 -287 -293 -287 -451 -287 -517 -287 -518 -287 -520 -287 -522 -287 -288 -288 -64 -288 -65 -288 -100 -288 -115 -288 -136 -288 -137 -288 -138 -288 -139 -288 -160 -288 -167 -288 -185 -288 -187 -288 -189 -288 -190 -288 -193 -288 -195 -288 -269 -288 -287 -288 -289 -288 -290 -288 -291 -288 -292 -288 -293 -288 -294 -288 -295 -288 -298 -288 -517 -288 -520 -288 -525 -288 -289 -289 -64 -289 -68 -289 -102 -289 -115 -289 -136 -289 -137 -289 -138 -289 -141 -289 -160 -289 -168 -289 -186 -289 -188 -289 -191 -289 -192 -289 -197 -289 -198 -289 -270 -289 -287 -289 -288 -289 -290 -289 -291 -289 -292 -289 -293 -289 -300 -289 -302 -289 -303 -289 -518 -289 -522 -289 -531 -289 -290 -290 -160 -290 -180 -290 -187 -290 -188 -290 -189 -290 -192 -290 -287 -290 -288 -290 -289 -290 -291 -290 -292 -290 -293 -290 -444 -290 -451 -290 -452 -290 -453 -290 -454 -290 -455 -290 -517 -290 -518 -290 -519 -290 -520 -290 -521 -290 -522 -290 -523 -290 -524 -290 -291 -291 -160 -291 -167 -291 -187 -291 -189 -291 -193 -291 -269 -291 -287 -291 -288 -291 -289 -291 -290 -291 -292 -291 -293 -291 -294 -291 -295 -291 -298 -291 -452 -291 -454 -291 -456 -291 -517 -291 -519 -291 -520 -291 -521 -291 -523 -291 -524 -291 -525 -291 -526 -291 -529 -291 -292 -292 -160 -292 -168 -292 -188 -292 -192 -292 -198 -292 -270 -292 -287 -292 -288 -292 -289 -292 -290 -292 -291 -292 -293 -292 -300 -292 -302 -292 -303 -292 -453 -292 -455 -292 -458 -292 -518 -292 -519 -292 -521 -292 -522 -292 -523 -292 -524 -292 -531 -292 -532 -292 -533 -292 -293 -293 -160 -293 -167 -293 -168 -293 -169 -293 -201 -293 -269 -293 -270 -293 -287 -293 -288 -293 -289 -293 -290 -293 -291 -293 -292 -293 -294 -293 -295 -293 -298 -293 -300 -293 -302 -293 -303 -293 -306 -293 -519 -293 -521 -293 -523 -293 -524 -293 -526 -293 -529 -293 -532 -293 -533 -293 -537 -293 -294 -294 -160 -294 -167 -294 -189 -294 -193 -294 -194 -294 -269 -294 -288 -294 -291 -294 -293 -294 -295 -294 -296 -294 -297 -294 -298 -294 -299 -294 -454 -294 -456 -294 -457 -294 -520 -294 -521 -294 -524 -294 -525 -294 -526 -294 -527 -294 -528 -294 -529 -294 -530 -294 -295 -295 -64 -295 -65 -295 -100 -295 -101 -295 -115 -295 -137 -295 -139 -295 -140 -295 -160 -295 -167 -295 -189 -295 -190 -295 -193 -295 -194 -295 -195 -295 -196 -295 -269 -295 -288 -295 -291 -295 -293 -295 -294 -295 -296 -295 -297 -295 -298 -295 -299 -295 -520 -295 -525 -295 -527 -295 -296 -296 -160 -296 -161 -296 -167 -296 -193 -296 -194 -296 -206 -296 -269 -296 -271 -296 -294 -296 -295 -296 -297 -296 -298 -296 -299 -296 -310 -296 -314 -296 -316 -296 -456 -296 -457 -296 -460 -296 -525 -296 -526 -296 -527 -296 -528 -296 -529 -296 -530 -296 -541 -296 -542 -296 -545 -296 -297 -297 -64 -297 -65 -297 -100 -297 -101 -297 -104 -297 -139 -297 -140 -297 -143 -297 -160 -297 -161 -297 -167 -297 -170 -297 -193 -297 -194 -297 -195 -297 -196 -297 -204 -297 -206 -297 -269 -297 -271 -297 -294 -297 -295 -297 -296 -297 -298 -297 -299 -297 -310 -297 -314 -297 -316 -297 -525 -297 -527 -297 -541 -297 -298 -298 -160 -298 -167 -298 -168 -298 -169 -298 -201 -298 -202 -298 -269 -298 -270 -298 -288 -298 -291 -298 -293 -298 -294 -298 -295 -298 -296 -298 -297 -298 -299 -298 -303 -298 -306 -298 -307 -298 -521 -298 -524 -298 -526 -298 -528 -298 -529 -298 -530 -298 -533 -298 -537 -298 -538 -298 -299 -299 -160 -299 -161 -299 -167 -299 -168 -299 -169 -299 -171 -299 -201 -299 -202 -299 -210 -299 -269 -299 -271 -299 -294 -299 -295 -299 -296 -299 -297 -299 -298 -299 -306 -299 -307 -299 -310 -299 -314 -299 -316 -299 -326 -299 -526 -299 -528 -299 -529 -299 -530 -299 -537 -299 -538 -299 -542 -299 -545 -299 -561 -299 -300 -300 -64 -300 -68 -300 -102 -300 -103 -300 -115 -300 -138 -300 -141 -300 -142 -300 -160 -300 -168 -300 -191 -300 -192 -300 -197 -300 -198 -300 -199 -300 -200 -300 -270 -300 -289 -300 -292 -300 -293 -300 -301 -300 -302 -300 -303 -300 -304 -300 -305 -300 -522 -300 -531 -300 -534 -300 -301 -301 -64 -301 -68 -301 -102 -301 -103 -301 -113 -301 -141 -301 -142 -301 -158 -301 -160 -301 -164 -301 -168 -301 -174 -301 -197 -301 -198 -301 -199 -301 -200 -301 -250 -301 -251 -301 -270 -301 -278 -301 -300 -301 -302 -301 -303 -301 -304 -301 -305 -301 -379 -301 -382 -301 -383 -301 -531 -301 -534 -301 -618 -301 -302 -302 -160 -302 -168 -302 -192 -302 -198 -302 -200 -302 -270 -302 -289 -302 -292 -302 -293 -302 -300 -302 -301 -302 -303 -302 -304 -302 -305 -302 -455 -302 -458 -302 -459 -302 -522 -302 -523 -302 -524 -302 -531 -302 -532 -302 -533 -302 -534 -302 -535 -302 -536 -302 -303 -303 -160 -303 -167 -303 -168 -303 -169 -303 -201 -303 -203 -303 -269 -303 -270 -303 -289 -303 -292 -303 -293 -303 -298 -303 -300 -303 -301 -303 -302 -303 -304 -303 -305 -303 -306 -303 -308 -303 -523 -303 -524 -303 -529 -303 -532 -303 -533 -303 -535 -303 -536 -303 -537 -303 -539 -303 -304 -304 -160 -304 -164 -304 -168 -304 -198 -304 -200 -304 -251 -304 -270 -304 -278 -304 -300 -304 -301 -304 -302 -304 -303 -304 -305 -304 -379 -304 -382 -304 -383 -304 -458 -304 -459 -304 -488 -304 -531 -304 -532 -304 -533 -304 -534 -304 -535 -304 -536 -304 -618 -304 -619 -304 -620 -304 -305 -305 -160 -305 -164 -305 -167 -305 -168 -305 -169 -305 -177 -305 -201 -305 -203 -305 -254 -305 -270 -305 -278 -305 -300 -305 -301 -305 -302 -305 -303 -305 -304 -305 -306 -305 -308 -305 -379 -305 -382 -305 -383 -305 -386 -305 -532 -305 -533 -305 -535 -305 -536 -305 -537 -305 -539 -305 -619 -305 -620 -305 -624 -305 -306 -306 -160 -306 -167 -306 -168 -306 -169 -306 -201 -306 -202 -306 -203 -306 -269 -306 -270 -306 -293 -306 -298 -306 -299 -306 -303 -306 -305 -306 -307 -306 -308 -306 -309 -306 -524 -306 -529 -306 -530 -306 -533 -306 -536 -306 -537 -306 -538 -306 -539 -306 -540 -306 -307 -307 -160 -307 -161 -307 -167 -307 -168 -307 -169 -307 -171 -307 -201 -307 -202 -307 -203 -307 -210 -307 -211 -307 -269 -307 -271 -307 -298 -307 -299 -307 -306 -307 -308 -307 -309 -307 -316 -307 -326 -307 -328 -307 -529 -307 -530 -307 -537 -307 -538 -307 -539 -307 -540 -307 -545 -307 -561 -307 -563 -307 -308 -308 -160 -308 -164 -308 -167 -308 -168 -308 -169 -308 -177 -308 -201 -308 -202 -308 -203 -308 -254 -308 -255 -308 -270 -308 -278 -308 -303 -308 -305 -308 -306 -308 -307 -308 -309 -308 -383 -308 -386 -308 -387 -308 -533 -308 -536 -308 -537 -308 -538 -308 -539 -308 -540 -308 -620 -308 -624 -308 -625 -308 -309 -309 -160 -309 -161 -309 -164 -309 -165 -309 -167 -309 -168 -309 -169 -309 -171 -309 -177 -309 -201 -309 -202 -309 -203 -309 -210 -309 -211 -309 -254 -309 -255 -309 -258 -309 -306 -309 -307 -309 -308 -309 -326 -309 -328 -309 -386 -309 -387 -309 -402 -309 -537 -309 -538 -309 -539 -309 -540 -309 -561 -309 -563 -309 -624 -309 -625 -309 -647 -309 -310 -310 -65 -310 -101 -310 -104 -310 -140 -310 -143 -310 -161 -310 -167 -310 -170 -310 -194 -310 -196 -310 -204 -310 -206 -310 -207 -310 -208 -310 -271 -310 -272 -310 -296 -310 -297 -310 -299 -310 -311 -310 -312 -310 -314 -310 -315 -310 -316 -310 -317 -310 -527 -310 -541 -310 -543 -310 -311 -311 -65 -311 -104 -311 -143 -311 -161 -311 -167 -311 -170 -311 -204 -311 -206 -311 -207 -311 -208 -311 -271 -311 -272 -311 -310 -311 -312 -311 -314 -311 -315 -311 -316 -311 -317 -311 -318 -311 -319 -311 -320 -311 -321 -311 -322 -311 -324 -311 -541 -311 -543 -311 -547 -311 -548 -311 -555 -311 -312 -312 -65 -312 -104 -312 -105 -312 -143 -312 -144 -312 -161 -312 -167 -312 -170 -312 -204 -312 -205 -312 -206 -312 -207 -312 -208 -312 -209 -312 -271 -312 -272 -312 -310 -312 -311 -312 -313 -312 -319 -312 -321 -312 -322 -312 -323 -312 -324 -312 -325 -312 -548 -312 -555 -312 -556 -312 -313 -313 -65 -313 -66 -313 -104 -313 -105 -313 -106 -313 -143 -313 -144 -313 -148 -313 -161 -313 -162 -313 -167 -313 -170 -313 -204 -313 -205 -313 -208 -313 -209 -313 -223 -313 -224 -313 -272 -313 -274 -313 -312 -313 -322 -313 -323 -313 -324 -313 -325 -313 -341 -313 -342 -313 -344 -313 -555 -313 -556 -313 -575 -313 -314 -314 -161 -314 -167 -314 -194 -314 -206 -314 -207 -314 -271 -314 -296 -314 -297 -314 -299 -314 -310 -314 -311 -314 -315 -314 -316 -314 -317 -314 -457 -314 -460 -314 -461 -314 -527 -314 -528 -314 -530 -314 -541 -314 -542 -314 -543 -314 -544 -314 -545 -314 -546 -314 -315 -315 -161 -315 -167 -315 -206 -315 -207 -315 -271 -315 -310 -315 -311 -315 -314 -315 -316 -315 -317 -315 -318 -315 -319 -315 -320 -315 -321 -315 -460 -315 -461 -315 -462 -315 -541 -315 -542 -315 -543 -315 -544 -315 -545 -315 -546 -315 -547 -315 -548 -315 -549 -315 -552 -315 -316 -316 -161 -316 -167 -316 -169 -316 -171 -316 -202 -316 -210 -316 -271 -316 -273 -316 -296 -316 -297 -316 -299 -316 -307 -316 -310 -316 -311 -316 -314 -316 -315 -316 -317 -316 -326 -316 -327 -316 -528 -316 -530 -316 -538 -316 -542 -316 -544 -316 -545 -316 -546 -316 -561 -316 -562 -316 -317 -317 -161 -317 -167 -317 -169 -317 -171 -317 -210 -317 -271 -317 -273 -317 -310 -317 -311 -317 -314 -317 -315 -317 -316 -317 -318 -317 -319 -317 -320 -317 -321 -317 -326 -317 -327 -317 -330 -317 -331 -317 -542 -317 -544 -317 -545 -317 -546 -317 -549 -317 -552 -317 -561 -317 -562 -317 -565 -317 -318 -318 -161 -318 -207 -318 -311 -318 -315 -318 -317 -318 -319 -318 -320 -318 -321 -318 -445 -318 -461 -318 -462 -318 -463 -318 -464 -318 -465 -318 -466 -318 -543 -318 -544 -318 -546 -318 -547 -318 -548 -318 -549 -318 -550 -318 -551 -318 -552 -318 -553 -318 -554 -318 -319 -319 -161 -319 -170 -319 -207 -319 -208 -319 -272 -319 -311 -319 -312 -319 -315 -319 -317 -319 -318 -319 -320 -319 -321 -319 -322 -319 -324 -319 -463 -319 -465 -319 -467 -319 -543 -319 -547 -319 -548 -319 -550 -319 -551 -319 -553 -319 -554 -319 -555 -319 -557 -319 -559 -319 -320 -320 -161 -320 -171 -320 -273 -320 -311 -320 -315 -320 -317 -320 -318 -320 -319 -320 -321 -320 -327 -320 -330 -320 -331 -320 -464 -320 -466 -320 -469 -320 -544 -320 -546 -320 -549 -320 -550 -320 -551 -320 -552 -320 -553 -320 -554 -320 -562 -320 -565 -320 -566 -320 -567 -320 -321 -321 -161 -321 -170 -321 -171 -321 -172 -321 -213 -321 -272 -321 -273 -321 -311 -321 -312 -321 -315 -321 -317 -321 -318 -321 -319 -321 -320 -321 -322 -321 -324 -321 -327 -321 -330 -321 -331 -321 -334 -321 -550 -321 -551 -321 -553 -321 -554 -321 -557 -321 -559 -321 -566 -321 -567 -321 -571 -321 -322 -322 -161 -322 -170 -322 -207 -322 -208 -322 -209 -322 -272 -322 -311 -322 -312 -322 -313 -322 -319 -322 -321 -322 -323 -322 -324 -322 -325 -322 -465 -322 -467 -322 -468 -322 -548 -322 -551 -322 -554 -322 -555 -322 -556 -322 -557 -322 -558 -322 -559 -322 -560 -322 -323 -323 -161 -323 -162 -323 -170 -323 -208 -323 -209 -323 -224 -323 -272 -323 -274 -323 -312 -323 -313 -323 -322 -323 -324 -323 -325 -323 -341 -323 -342 -323 -344 -323 -467 -323 -468 -323 -471 -323 -555 -323 -556 -323 -557 -323 -558 -323 -559 -323 -560 -323 -575 -323 -577 -323 -579 -323 -324 -324 -161 -324 -170 -324 -171 -324 -172 -324 -212 -324 -213 -324 -272 -324 -273 -324 -311 -324 -312 -324 -313 -324 -319 -324 -321 -324 -322 -324 -323 -324 -325 -324 -331 -324 -334 -324 -335 -324 -551 -324 -554 -324 -557 -324 -558 -324 -559 -324 -560 -324 -567 -324 -571 -324 -572 -324 -325 -325 -161 -325 -162 -325 -170 -325 -171 -325 -172 -325 -173 -325 -212 -325 -213 -325 -229 -325 -272 -325 -274 -325 -312 -325 -313 -325 -322 -325 -323 -325 -324 -325 -334 -325 -335 -325 -341 -325 -342 -325 -344 -325 -350 -325 -557 -325 -558 -325 -559 -325 -560 -325 -571 -325 -572 -325 -577 -325 -579 -325 -586 -325 -326 -326 -161 -326 -167 -326 -169 -326 -171 -326 -202 -326 -210 -326 -211 -326 -271 -326 -273 -326 -299 -326 -307 -326 -309 -326 -316 -326 -317 -326 -327 -326 -328 -326 -329 -326 -530 -326 -538 -326 -540 -326 -545 -326 -546 -326 -561 -326 -562 -326 -563 -326 -564 -326 -327 -327 -161 -327 -167 -327 -169 -327 -171 -327 -210 -327 -211 -327 -271 -327 -273 -327 -316 -327 -317 -327 -320 -327 -321 -327 -326 -327 -328 -327 -329 -327 -330 -327 -331 -327 -332 -327 -333 -327 -545 -327 -546 -327 -552 -327 -561 -327 -562 -327 -563 -327 -564 -327 -565 -327 -568 -327 -328 -328 -161 -328 -165 -328 -167 -328 -169 -328 -171 -328 -177 -328 -202 -328 -210 -328 -211 -328 -255 -328 -258 -328 -273 -328 -281 -328 -307 -328 -309 -328 -326 -328 -327 -328 -329 -328 -387 -328 -402 -328 -403 -328 -538 -328 -540 -328 -561 -328 -562 -328 -563 -328 -564 -328 -625 -328 -647 -328 -648 -328 -329 -329 -161 -329 -165 -329 -167 -329 -169 -329 -171 -329 -177 -329 -210 -329 -211 -329 -258 -329 -273 -329 -281 -329 -326 -329 -327 -329 -328 -329 -330 -329 -331 -329 -332 -329 -333 -329 -402 -329 -403 -329 -406 -329 -407 -329 -561 -329 -562 -329 -563 -329 -564 -329 -565 -329 -568 -329 -647 -329 -648 -329 -651 -329 -330 -330 -161 -330 -171 -330 -273 -330 -317 -330 -320 -330 -321 -330 -327 -330 -329 -330 -331 -330 -332 -330 -333 -330 -466 -330 -469 -330 -470 -330 -546 -330 -552 -330 -553 -330 -554 -330 -562 -330 -564 -330 -565 -330 -566 -330 -567 -330 -568 -330 -569 -330 -570 -330 -331 -331 -161 -331 -170 -331 -171 -331 -172 -331 -213 -331 -214 -331 -272 -331 -273 -331 -317 -331 -320 -331 -321 -331 -324 -331 -327 -331 -329 -331 -330 -331 -332 -331 -333 -331 -334 -331 -336 -331 -553 -331 -554 -331 -559 -331 -566 -331 -567 -331 -569 -331 -570 -331 -571 -331 -573 -331 -332 -332 -161 -332 -165 -332 -171 -332 -273 -332 -281 -332 -327 -332 -329 -332 -330 -332 -331 -332 -333 -332 -403 -332 -406 -332 -407 -332 -469 -332 -470 -332 -498 -332 -562 -332 -564 -332 -565 -332 -566 -332 -567 -332 -568 -332 -569 -332 -570 -332 -648 -332 -651 -332 -652 -332 -653 -332 -333 -333 -161 -333 -165 -333 -170 -333 -171 -333 -172 -333 -178 -333 -213 -333 -214 -333 -260 -333 -273 -333 -281 -333 -327 -333 -329 -333 -330 -333 -331 -333 -332 -333 -334 -333 -336 -333 -403 -333 -406 -333 -407 -333 -410 -333 -566 -333 -567 -333 -569 -333 -570 -333 -571 -333 -573 -333 -652 -333 -653 -333 -657 -333 -334 -334 -161 -334 -170 -334 -171 -334 -172 -334 -212 -334 -213 -334 -214 -334 -272 -334 -273 -334 -321 -334 -324 -334 -325 -334 -331 -334 -333 -334 -335 -334 -336 -334 -337 -334 -554 -334 -559 -334 -560 -334 -567 -334 -570 -334 -571 -334 -572 -334 -573 -334 -574 -334 -335 -335 -161 -335 -162 -335 -170 -335 -171 -335 -172 -335 -173 -335 -212 -335 -213 -335 -214 -335 -229 -335 -230 -335 -272 -335 -274 -335 -324 -335 -325 -335 -334 -335 -336 -335 -337 -335 -344 -335 -350 -335 -352 -335 -559 -335 -560 -335 -571 -335 -572 -335 -573 -335 -574 -335 -579 -335 -586 -335 -588 -335 -336 -336 -161 -336 -165 -336 -170 -336 -171 -336 -172 -336 -178 -336 -212 -336 -213 -336 -214 -336 -259 -336 -260 -336 -273 -336 -281 -336 -331 -336 -333 -336 -334 -336 -335 -336 -337 -336 -407 -336 -410 -336 -411 -336 -567 -336 -570 -336 -571 -336 -572 -336 -573 -336 -574 -336 -653 -336 -657 -336 -658 -336 -337 -337 -161 -337 -162 -337 -165 -337 -166 -337 -170 -337 -171 -337 -172 -337 -173 -337 -178 -337 -212 -337 -213 -337 -214 -337 -229 -337 -230 -337 -259 -337 -260 -337 -267 -337 -334 -337 -335 -337 -336 -337 -350 -337 -352 -337 -410 -337 -411 -337 -429 -337 -571 -337 -572 -337 -573 -337 -574 -337 -586 -337 -588 -337 -657 -337 -658 -337 -680 -337 -338 -338 -65 -338 -66 -338 -106 -338 -116 -338 -145 -338 -146 -338 -147 -338 -148 -338 -162 -338 -170 -338 -215 -338 -217 -338 -218 -338 -219 -338 -223 -338 -224 -338 -274 -338 -339 -338 -340 -338 -341 -338 -342 -338 -343 -338 -344 -338 -345 -338 -346 -338 -347 -338 -575 -338 -576 -338 -581 -338 -339 -339 -66 -339 -116 -339 -145 -339 -146 -339 -147 -339 -162 -339 -181 -339 -182 -339 -215 -339 -216 -339 -217 -339 -218 -339 -219 -339 -220 -339 -221 -339 -222 -339 -338 -339 -340 -339 -343 -339 -345 -339 -346 -339 -347 -339 -473 -339 -576 -339 -581 -339 -582 -339 -584 -339 -340 -340 -66 -340 -69 -340 -107 -340 -116 -340 -145 -340 -146 -340 -147 -340 -149 -340 -162 -340 -173 -340 -216 -340 -220 -340 -221 -340 -222 -340 -225 -340 -226 -340 -275 -340 -338 -340 -339 -340 -343 -340 -345 -340 -346 -340 -347 -340 -348 -340 -351 -340 -354 -340 -582 -340 -584 -340 -590 -340 -341 -341 -65 -341 -66 -341 -105 -341 -106 -341 -116 -341 -144 -341 -146 -341 -148 -341 -162 -341 -170 -341 -205 -341 -209 -341 -217 -341 -218 -341 -223 -341 -224 -341 -274 -341 -313 -341 -323 -341 -325 -341 -338 -341 -342 -341 -343 -341 -344 -341 -345 -341 -556 -341 -575 -341 -576 -341 -342 -342 -162 -342 -170 -342 -209 -342 -218 -342 -224 -342 -274 -342 -313 -342 -323 -342 -325 -342 -338 -342 -341 -342 -343 -342 -344 -342 -345 -342 -468 -342 -471 -342 -472 -342 -556 -342 -558 -342 -560 -342 -575 -342 -576 -342 -577 -342 -578 -342 -579 -342 -580 -342 -343 -343 -162 -343 -170 -343 -218 -343 -219 -343 -224 -343 -274 -343 -338 -343 -339 -343 -340 -343 -341 -343 -342 -343 -344 -343 -345 -343 -346 -343 -347 -343 -471 -343 -472 -343 -474 -343 -575 -343 -576 -343 -577 -343 -578 -343 -579 -343 -580 -343 -581 -343 -583 -343 -585 -343 -344 -344 -162 -344 -170 -344 -172 -344 -173 -344 -212 -344 -229 -344 -274 -344 -275 -344 -313 -344 -323 -344 -325 -344 -335 -344 -338 -344 -341 -344 -342 -344 -343 -344 -345 -344 -350 -344 -351 -344 -558 -344 -560 -344 -572 -344 -577 -344 -578 -344 -579 -344 -580 -344 -586 -344 -587 -344 -345 -345 -162 -345 -170 -345 -172 -345 -173 -345 -229 -345 -274 -345 -275 -345 -338 -345 -339 -345 -340 -345 -341 -345 -342 -345 -343 -345 -344 -345 -346 -345 -347 -345 -348 -345 -350 -345 -351 -345 -354 -345 -577 -345 -578 -345 -579 -345 -580 -345 -583 -345 -585 -345 -586 -345 -587 -345 -591 -345 -346 -346 -162 -346 -182 -346 -218 -346 -219 -346 -220 -346 -222 -346 -338 -346 -339 -346 -340 -346 -343 -346 -345 -346 -347 -346 -446 -346 -472 -346 -473 -346 -474 -346 -475 -346 -476 -346 -576 -346 -578 -346 -580 -346 -581 -346 -582 -346 -583 -346 -584 -346 -585 -346 -347 -347 -162 -347 -173 -347 -220 -347 -222 -347 -226 -347 -275 -347 -338 -347 -339 -347 -340 -347 -343 -347 -345 -347 -346 -347 -348 -347 -351 -347 -354 -347 -475 -347 -476 -347 -477 -347 -578 -347 -580 -347 -582 -347 -583 -347 -584 -347 -585 -347 -587 -347 -590 -347 -591 -347 -348 -348 -66 -348 -69 -348 -107 -348 -108 -348 -116 -348 -147 -348 -149 -348 -150 -348 -162 -348 -173 -348 -221 -348 -222 -348 -225 -348 -226 -348 -227 -348 -228 -348 -275 -348 -340 -348 -345 -348 -347 -348 -349 -348 -351 -348 -353 -348 -354 -348 -355 -348 -584 -348 -590 -348 -592 -348 -349 -349 -66 -349 -69 -349 -107 -349 -108 -349 -114 -349 -149 -349 -150 -349 -159 -349 -162 -349 -166 -349 -173 -349 -176 -349 -225 -349 -226 -349 -227 -349 -228 -349 -263 -349 -264 -349 -275 -349 -284 -349 -348 -349 -351 -349 -353 -349 -354 -349 -355 -349 -426 -349 -430 -349 -433 -349 -590 -349 -592 -349 -684 -349 -350 -350 -162 -350 -170 -350 -172 -350 -173 -350 -212 -350 -229 -350 -230 -350 -274 -350 -275 -350 -325 -350 -335 -350 -337 -350 -344 -350 -345 -350 -351 -350 -352 -350 -353 -350 -560 -350 -572 -350 -574 -350 -579 -350 -580 -350 -586 -350 -587 -350 -588 -350 -589 -350 -351 -351 -162 -351 -170 -351 -172 -351 -173 -351 -229 -351 -230 -351 -274 -351 -275 -351 -340 -351 -344 -351 -345 -351 -347 -351 -348 -351 -349 -351 -350 -351 -352 -351 -353 -351 -354 -351 -355 -351 -579 -351 -580 -351 -585 -351 -586 -351 -587 -351 -588 -351 -589 -351 -591 -351 -593 -351 -352 -352 -162 -352 -166 -352 -170 -352 -172 -352 -173 -352 -178 -352 -212 -352 -229 -352 -230 -352 -259 -352 -267 -352 -275 -352 -284 -352 -335 -352 -337 -352 -350 -352 -351 -352 -353 -352 -411 -352 -429 -352 -430 -352 -572 -352 -574 -352 -586 -352 -587 -352 -588 -352 -589 -352 -658 -352 -680 -352 -681 -352 -353 -353 -162 -353 -166 -353 -170 -353 -172 -353 -173 -353 -178 -353 -229 -353 -230 -353 -267 -353 -275 -353 -284 -353 -348 -353 -349 -353 -350 -353 -351 -353 -352 -353 -354 -353 -355 -353 -426 -353 -429 -353 -430 -353 -433 -353 -586 -353 -587 -353 -588 -353 -589 -353 -591 -353 -593 -353 -680 -353 -681 -353 -685 -353 -354 -354 -162 -354 -173 -354 -222 -354 -226 -354 -228 -354 -275 -354 -340 -354 -345 -354 -347 -354 -348 -354 -349 -354 -351 -354 -353 -354 -355 -354 -476 -354 -477 -354 -478 -354 -580 -354 -584 -354 -585 -354 -587 -354 -589 -354 -590 -354 -591 -354 -592 -354 -593 -354 -355 -355 -162 -355 -166 -355 -173 -355 -226 -355 -228 -355 -264 -355 -275 -355 -284 -355 -348 -355 -349 -355 -351 -355 -353 -355 -354 -355 -426 -355 -430 -355 -433 -355 -477 -355 -478 -355 -508 -355 -587 -355 -589 -355 -590 -355 -591 -355 -592 -355 -593 -355 -681 -355 -684 -355 -685 -355 -356 -356 -67 -356 -117 -356 -151 -356 -152 -356 -153 -356 -163 -356 -183 -356 -184 -356 -231 -356 -232 -356 -233 -356 -234 -356 -235 -356 -236 -356 -237 -356 -238 -356 -357 -356 -358 -356 -363 -356 -364 -356 -365 -356 -366 -356 -479 -356 -594 -356 -595 -356 -596 -356 -597 -356 -357 -357 -67 -357 -68 -357 -110 -357 -117 -357 -151 -357 -152 -357 -153 -357 -154 -357 -163 -357 -174 -357 -231 -357 -233 -357 -235 -357 -237 -357 -239 -357 -241 -357 -276 -357 -356 -357 -358 -357 -359 -357 -363 -357 -364 -357 -365 -357 -366 -357 -367 -357 -370 -357 -594 -357 -596 -357 -602 -357 -358 -358 -67 -358 -69 -358 -111 -358 -117 -358 -151 -358 -152 -358 -153 -358 -156 -358 -163 -358 -176 -358 -232 -358 -234 -358 -236 -358 -238 -358 -243 -358 -245 -358 -277 -358 -356 -358 -357 -358 -361 -358 -363 -358 -364 -358 -365 -358 -366 -358 -372 -358 -377 -358 -595 -358 -597 -358 -614 -358 -359 -359 -67 -359 -68 -359 -109 -359 -110 -359 -117 -359 -152 -359 -154 -359 -155 -359 -163 -359 -174 -359 -233 -359 -237 -359 -239 -359 -240 -359 -241 -359 -242 -359 -276 -359 -357 -359 -360 -359 -364 -359 -365 -359 -367 -359 -368 -359 -369 -359 -370 -359 -596 -359 -602 -359 -603 -359 -360 -360 -67 -360 -68 -360 -109 -360 -110 -360 -113 -360 -154 -360 -155 -360 -158 -360 -163 -360 -164 -360 -168 -360 -174 -360 -239 -360 -240 -360 -241 -360 -242 -360 -250 -360 -252 -360 -276 -360 -279 -360 -359 -360 -367 -360 -368 -360 -369 -360 -370 -360 -380 -360 -390 -360 -393 -360 -602 -360 -603 -360 -628 -360 -361 -361 -67 -361 -69 -361 -111 -361 -112 -361 -117 -361 -153 -361 -156 -361 -157 -361 -163 -361 -176 -361 -234 -361 -238 -361 -243 -361 -244 -361 -245 -361 -246 -361 -277 -361 -358 -361 -362 -361 -365 -361 -366 -361 -372 -361 -376 -361 -377 -361 -378 -361 -597 -361 -614 -361 -615 -361 -362 -362 -67 -362 -69 -362 -111 -362 -112 -362 -114 -362 -156 -362 -157 -362 -159 -362 -163 -362 -166 -362 -173 -362 -176 -362 -243 -362 -244 -362 -245 -362 -246 -362 -263 -362 -265 -362 -277 -362 -285 -362 -361 -362 -372 -362 -376 -362 -377 -362 -378 -362 -427 -362 -435 -362 -436 -362 -614 -362 -615 -362 -688 -362 -363 -363 -163 -363 -184 -363 -235 -363 -236 -363 -237 -363 -238 -363 -356 -363 -357 -363 -358 -363 -364 -363 -365 -363 -366 -363 -447 -363 -479 -363 -480 -363 -481 -363 -482 -363 -483 -363 -594 -363 -595 -363 -596 -363 -597 -363 -598 -363 -599 -363 -600 -363 -601 -363 -364 -364 -163 -364 -174 -364 -235 -364 -237 -364 -241 -364 -276 -364 -356 -364 -357 -364 -358 -364 -359 -364 -363 -364 -365 -364 -366 -364 -367 -364 -370 -364 -480 -364 -482 -364 -484 -364 -594 -364 -596 -364 -598 -364 -599 -364 -600 -364 -601 -364 -602 -364 -604 -364 -607 -364 -365 -365 -163 -365 -174 -365 -175 -365 -176 -365 -247 -365 -276 -365 -277 -365 -356 -365 -357 -365 -358 -365 -359 -365 -361 -365 -363 -365 -364 -365 -366 -365 -367 -365 -370 -365 -371 -365 -372 -365 -377 -365 -598 -365 -599 -365 -600 -365 -601 -365 -604 -365 -607 -365 -608 -365 -609 -365 -616 -365 -366 -366 -163 -366 -176 -366 -236 -366 -238 -366 -245 -366 -277 -366 -356 -366 -357 -366 -358 -366 -361 -366 -363 -366 -364 -366 -365 -366 -372 -366 -377 -366 -481 -366 -483 -366 -486 -366 -595 -366 -597 -366 -598 -366 -599 -366 -600 -366 -601 -366 -609 -366 -614 -366 -616 -366 -367 -367 -163 -367 -174 -367 -237 -367 -241 -367 -242 -367 -276 -367 -357 -367 -359 -367 -360 -367 -364 -367 -365 -367 -368 -367 -369 -367 -370 -367 -482 -367 -484 -367 -485 -367 -596 -367 -599 -367 -600 -367 -602 -367 -603 -367 -604 -367 -605 -367 -606 -367 -607 -367 -368 -368 -163 -368 -164 -368 -174 -368 -241 -368 -242 -368 -252 -368 -276 -368 -279 -368 -359 -368 -360 -368 -367 -368 -369 -368 -370 -368 -380 -368 -390 -368 -393 -368 -484 -368 -485 -368 -490 -368 -602 -368 -603 -368 -604 -368 -605 -368 -606 -368 -607 -368 -628 -368 -630 -368 -633 -368 -369 -369 -163 -369 -164 -369 -174 -369 -175 -369 -176 -369 -177 -369 -247 -369 -248 -369 -256 -369 -276 -369 -279 -369 -359 -369 -360 -369 -367 -369 -368 -369 -370 -369 -371 -369 -373 -369 -380 -369 -390 -369 -393 -369 -400 -369 -604 -369 -605 -369 -606 -369 -607 -369 -608 -369 -610 -369 -630 -369 -633 -369 -645 -369 -370 -370 -163 -370 -174 -370 -175 -370 -176 -370 -247 -370 -248 -370 -276 -370 -277 -370 -357 -370 -359 -370 -360 -370 -364 -370 -365 -370 -367 -370 -368 -370 -369 -370 -371 -370 -372 -370 -373 -370 -599 -370 -600 -370 -604 -370 -605 -370 -606 -370 -607 -370 -608 -370 -609 -370 -610 -370 -371 -371 -163 -371 -174 -371 -175 -371 -176 -371 -247 -371 -248 -371 -249 -371 -276 -371 -277 -371 -365 -371 -369 -371 -370 -371 -372 -371 -373 -371 -374 -371 -375 -371 -376 -371 -600 -371 -606 -371 -607 -371 -608 -371 -609 -371 -610 -371 -611 -371 -612 -371 -613 -371 -372 -372 -163 -372 -174 -372 -175 -372 -176 -372 -247 -372 -249 -372 -276 -372 -277 -372 -358 -372 -361 -372 -362 -372 -365 -372 -366 -372 -370 -372 -371 -372 -375 -372 -376 -372 -377 -372 -378 -372 -600 -372 -601 -372 -607 -372 -608 -372 -609 -372 -612 -372 -613 -372 -616 -372 -617 -372 -373 -373 -163 -373 -164 -373 -174 -373 -175 -373 -176 -373 -177 -373 -247 -373 -248 -373 -249 -373 -256 -373 -257 -373 -276 -373 -279 -373 -369 -373 -370 -373 -371 -373 -374 -373 -375 -373 -393 -373 -400 -373 -401 -373 -606 -373 -607 -373 -608 -373 -610 -373 -611 -373 -612 -373 -633 -373 -645 -373 -646 -373 -374 -374 -163 -374 -164 -374 -165 -374 -166 -374 -174 -374 -175 -374 -176 -374 -177 -374 -178 -374 -247 -374 -248 -374 -249 -374 -256 -374 -257 -374 -261 -374 -262 -374 -268 -374 -371 -374 -373 -374 -375 -374 -400 -374 -401 -374 -414 -374 -415 -374 -439 -374 -608 -374 -610 -374 -611 -374 -612 -374 -645 -374 -646 -374 -661 -374 -662 -374 -694 -374 -375 -375 -163 -375 -166 -375 -174 -375 -175 -375 -176 -375 -178 -375 -247 -375 -248 -375 -249 -375 -262 -375 -268 -375 -277 -375 -285 -375 -371 -375 -372 -375 -373 -375 -374 -375 -376 -375 -415 -375 -436 -375 -439 -375 -608 -375 -609 -375 -610 -375 -611 -375 -612 -375 -613 -375 -662 -375 -691 -375 -694 -375 -376 -376 -163 -376 -166 -376 -174 -376 -175 -376 -176 -376 -178 -376 -247 -376 -249 -376 -268 -376 -277 -376 -285 -376 -361 -376 -362 -376 -371 -376 -372 -376 -375 -376 -377 -376 -378 -376 -427 -376 -435 -376 -436 -376 -439 -376 -608 -376 -609 -376 -612 -376 -613 -376 -616 -376 -617 -376 -690 -376 -691 -376 -694 -376 -377 -377 -163 -377 -176 -377 -238 -377 -245 -377 -246 -377 -277 -377 -358 -377 -361 -377 -362 -377 -365 -377 -366 -377 -372 -377 -376 -377 -378 -377 -483 -377 -486 -377 -487 -377 -597 -377 -600 -377 -601 -377 -609 -377 -613 -377 -614 -377 -615 -377 -616 -377 -617 -377 -378 -378 -163 -378 -166 -378 -176 -378 -245 -378 -246 -378 -265 -378 -277 -378 -285 -378 -361 -378 -362 -378 -372 -378 -376 -378 -377 -378 -427 -378 -435 -378 -436 -378 -486 -378 -487 -378 -510 -378 -609 -378 -613 -378 -614 -378 -615 -378 -616 -378 -617 -378 -688 -378 -690 -378 -691 -378 -379 -379 -68 -379 -103 -379 -113 -379 -142 -379 -158 -379 -164 -379 -168 -379 -174 -379 -199 -379 -200 -379 -250 -379 -251 -379 -252 -379 -253 -379 -278 -379 -279 -379 -301 -379 -304 -379 -305 -379 -380 -379 -381 -379 -382 -379 -383 -379 -384 -379 -385 -379 -534 -379 -618 -379 -621 -379 -380 -380 -68 -380 -109 -380 -113 -380 -155 -380 -158 -380 -164 -380 -168 -380 -174 -380 -240 -380 -242 -380 -250 -380 -251 -380 -252 -380 -253 -380 -278 -380 -279 -380 -360 -380 -368 -380 -369 -380 -379 -380 -381 -380 -390 -380 -391 -380 -392 -380 -393 -380 -603 -380 -628 -380 -629 -380 -381 -381 -68 -381 -113 -381 -158 -381 -164 -381 -168 -381 -174 -381 -250 -381 -251 -381 -252 -381 -253 -381 -278 -381 -279 -381 -379 -381 -380 -381 -382 -381 -383 -381 -384 -381 -385 -381 -390 -381 -391 -381 -392 -381 -393 -381 -394 -381 -395 -381 -618 -381 -621 -381 -628 -381 -629 -381 -634 -381 -382 -382 -164 -382 -168 -382 -200 -382 -251 -382 -253 -382 -278 -382 -301 -382 -304 -382 -305 -382 -379 -382 -381 -382 -383 -382 -384 -382 -385 -382 -459 -382 -488 -382 -489 -382 -534 -382 -535 -382 -536 -382 -618 -382 -619 -382 -620 -382 -621 -382 -622 -382 -623 -382 -383 -383 -164 -383 -168 -383 -169 -383 -177 -383 -203 -383 -254 -383 -278 -383 -280 -383 -301 -383 -304 -383 -305 -383 -308 -383 -379 -383 -381 -383 -382 -383 -384 -383 -385 -383 -386 -383 -388 -383 -535 -383 -536 -383 -539 -383 -619 -383 -620 -383 -622 -383 -623 -383 -624 -383 -626 -383 -384 -384 -164 -384 -168 -384 -251 -384 -253 -384 -278 -384 -379 -384 -381 -384 -382 -384 -383 -384 -385 -384 -391 -384 -392 -384 -394 -384 -395 -384 -488 -384 -489 -384 -492 -384 -618 -384 -619 -384 -620 -384 -621 -384 -622 -384 -623 -384 -629 -384 -634 -384 -635 -384 -636 -384 -385 -385 -164 -385 -168 -385 -169 -385 -177 -385 -254 -385 -278 -385 -280 -385 -379 -385 -381 -385 -382 -385 -383 -385 -384 -385 -386 -385 -388 -385 -391 -385 -392 -385 -394 -385 -395 -385 -396 -385 -397 -385 -619 -385 -620 -385 -622 -385 -623 -385 -624 -385 -626 -385 -635 -385 -636 -385 -639 -385 -386 -386 -164 -386 -168 -386 -169 -386 -177 -386 -203 -386 -254 -386 -255 -386 -278 -386 -280 -386 -305 -386 -308 -386 -309 -386 -383 -386 -385 -386 -387 -386 -388 -386 -389 -386 -536 -386 -539 -386 -540 -386 -620 -386 -623 -386 -624 -386 -625 -386 -626 -386 -627 -386 -387 -387 -164 -387 -165 -387 -168 -387 -169 -387 -171 -387 -177 -387 -203 -387 -211 -387 -254 -387 -255 -387 -258 -387 -280 -387 -282 -387 -308 -387 -309 -387 -328 -387 -386 -387 -388 -387 -389 -387 -402 -387 -404 -387 -539 -387 -540 -387 -563 -387 -624 -387 -625 -387 -626 -387 -627 -387 -647 -387 -649 -387 -388 -388 -164 -388 -168 -388 -169 -388 -177 -388 -254 -388 -255 -388 -278 -388 -280 -388 -383 -388 -385 -388 -386 -388 -387 -388 -389 -388 -392 -388 -395 -388 -396 -388 -397 -388 -398 -388 -399 -388 -620 -388 -623 -388 -624 -388 -625 -388 -626 -388 -627 -388 -636 -388 -639 -388 -640 -388 -389 -389 -164 -389 -165 -389 -168 -389 -169 -389 -171 -389 -177 -389 -254 -389 -255 -389 -258 -389 -280 -389 -282 -389 -386 -389 -387 -389 -388 -389 -396 -389 -397 -389 -398 -389 -399 -389 -402 -389 -404 -389 -416 -389 -420 -389 -624 -389 -625 -389 -626 -389 -627 -389 -639 -389 -640 -389 -647 -389 -649 -389 -667 -389 -390 -390 -164 -390 -174 -390 -242 -390 -252 -390 -253 -390 -279 -390 -360 -390 -368 -390 -369 -390 -380 -390 -381 -390 -391 -390 -392 -390 -393 -390 -485 -390 -490 -390 -491 -390 -603 -390 -605 -390 -606 -390 -628 -390 -629 -390 -630 -390 -631 -390 -632 -390 -633 -390 -391 -391 -164 -391 -174 -391 -252 -391 -253 -391 -279 -391 -380 -391 -381 -391 -384 -391 -385 -391 -390 -391 -392 -391 -393 -391 -394 -391 -395 -391 -490 -391 -491 -391 -493 -391 -621 -391 -628 -391 -629 -391 -630 -391 -631 -391 -632 -391 -633 -391 -634 -391 -637 -391 -638 -391 -392 -392 -164 -392 -174 -392 -175 -392 -177 -392 -256 -392 -279 -392 -280 -392 -380 -392 -381 -392 -384 -392 -385 -392 -388 -392 -390 -392 -391 -392 -393 -392 -394 -392 -395 -392 -396 -392 -397 -392 -400 -392 -630 -392 -631 -392 -632 -392 -633 -392 -637 -392 -638 -392 -641 -392 -642 -392 -645 -392 -393 -393 -164 -393 -174 -393 -175 -393 -177 -393 -248 -393 -256 -393 -279 -393 -280 -393 -360 -393 -368 -393 -369 -393 -373 -393 -380 -393 -381 -393 -390 -393 -391 -393 -392 -393 -397 -393 -400 -393 -605 -393 -606 -393 -610 -393 -630 -393 -631 -393 -632 -393 -633 -393 -642 -393 -645 -393 -394 -394 -164 -394 -253 -394 -381 -394 -384 -394 -385 -394 -391 -394 -392 -394 -395 -394 -448 -394 -489 -394 -491 -394 -492 -394 -493 -394 -494 -394 -495 -394 -621 -394 -622 -394 -623 -394 -629 -394 -631 -394 -632 -394 -634 -394 -635 -394 -636 -394 -637 -394 -638 -394 -395 -395 -164 -395 -177 -395 -280 -395 -381 -395 -384 -395 -385 -395 -388 -395 -391 -395 -392 -395 -394 -395 -396 -395 -397 -395 -494 -395 -495 -395 -496 -395 -622 -395 -623 -395 -626 -395 -631 -395 -632 -395 -635 -395 -636 -395 -637 -395 -638 -395 -639 -395 -641 -395 -642 -395 -396 -396 -164 -396 -177 -396 -280 -396 -385 -396 -388 -396 -389 -396 -392 -396 -395 -396 -397 -396 -398 -396 -399 -396 -495 -396 -496 -396 -497 -396 -623 -396 -626 -396 -627 -396 -632 -396 -636 -396 -638 -396 -639 -396 -640 -396 -641 -396 -642 -396 -643 -396 -644 -396 -397 -397 -164 -397 -174 -397 -175 -397 -177 -397 -256 -397 -257 -397 -279 -397 -280 -397 -385 -397 -388 -397 -389 -397 -392 -397 -393 -397 -395 -397 -396 -397 -398 -397 -399 -397 -400 -397 -401 -397 -632 -397 -633 -397 -638 -397 -641 -397 -642 -397 -643 -397 -644 -397 -645 -397 -646 -397 -398 -398 -164 -398 -165 -398 -177 -398 -280 -398 -282 -398 -388 -398 -389 -398 -396 -398 -397 -398 -399 -398 -404 -398 -416 -398 -420 -398 -496 -398 -497 -398 -500 -398 -626 -398 -627 -398 -639 -398 -640 -398 -641 -398 -642 -398 -643 -398 -644 -398 -649 -398 -663 -398 -667 -398 -669 -398 -399 -399 -164 -399 -165 -399 -174 -399 -175 -399 -177 -399 -178 -399 -256 -399 -257 -399 -261 -399 -280 -399 -282 -399 -388 -399 -389 -399 -396 -399 -397 -399 -398 -399 -400 -399 -401 -399 -404 -399 -414 -399 -416 -399 -420 -399 -641 -399 -642 -399 -643 -399 -644 -399 -645 -399 -646 -399 -661 -399 -663 -399 -669 -399 -400 -400 -164 -400 -174 -400 -175 -400 -177 -400 -248 -400 -256 -400 -257 -400 -279 -400 -280 -400 -369 -400 -373 -400 -374 -400 -392 -400 -393 -400 -397 -400 -399 -400 -401 -400 -606 -400 -610 -400 -611 -400 -632 -400 -633 -400 -642 -400 -644 -400 -645 -400 -646 -400 -401 -401 -164 -401 -165 -401 -174 -401 -175 -401 -177 -401 -178 -401 -248 -401 -256 -401 -257 -401 -261 -401 -262 -401 -280 -401 -282 -401 -373 -401 -374 -401 -397 -401 -399 -401 -400 -401 -414 -401 -415 -401 -416 -401 -610 -401 -611 -401 -642 -401 -644 -401 -645 -401 -646 -401 -661 -401 -662 -401 -663 -401 -402 -402 -165 -402 -169 -402 -171 -402 -177 -402 -211 -402 -255 -402 -258 -402 -281 -402 -282 -402 -309 -402 -328 -402 -329 -402 -387 -402 -389 -402 -403 -402 -404 -402 -405 -402 -540 -402 -563 -402 -564 -402 -625 -402 -627 -402 -647 -402 -648 -402 -649 -402 -650 -402 -403 -403 -165 -403 -169 -403 -171 -403 -177 -403 -211 -403 -258 -403 -281 -403 -282 -403 -328 -403 -329 -403 -332 -403 -333 -403 -402 -403 -404 -403 -405 -403 -406 -403 -407 -403 -408 -403 -409 -403 -563 -403 -564 -403 -568 -403 -647 -403 -648 -403 -649 -403 -650 -403 -651 -403 -654 -403 -404 -404 -165 -404 -169 -404 -171 -404 -177 -404 -255 -404 -258 -404 -281 -404 -282 -404 -387 -404 -389 -404 -398 -404 -399 -404 -402 -404 -403 -404 -405 -404 -416 -404 -417 -404 -420 -404 -421 -404 -625 -404 -627 -404 -640 -404 -647 -404 -648 -404 -649 -404 -650 -404 -667 -404 -668 -404 -405 -405 -165 -405 -169 -405 -171 -405 -177 -405 -258 -405 -281 -405 -282 -405 -402 -405 -403 -405 -404 -405 -406 -405 -407 -405 -408 -405 -409 -405 -416 -405 -417 -405 -420 -405 -421 -405 -422 -405 -423 -405 -647 -405 -648 -405 -649 -405 -650 -405 -651 -405 -654 -405 -667 -405 -668 -405 -671 -405 -406 -406 -165 -406 -171 -406 -281 -406 -329 -406 -332 -406 -333 -406 -403 -406 -405 -406 -407 -406 -408 -406 -409 -406 -470 -406 -498 -406 -499 -406 -564 -406 -568 -406 -569 -406 -570 -406 -648 -406 -650 -406 -651 -406 -652 -406 -653 -406 -654 -406 -655 -406 -656 -406 -407 -407 -165 -407 -171 -407 -172 -407 -178 -407 -214 -407 -260 -407 -281 -407 -283 -407 -329 -407 -332 -407 -333 -407 -336 -407 -403 -407 -405 -407 -406 -407 -408 -407 -409 -407 -410 -407 -412 -407 -569 -407 -570 -407 -573 -407 -652 -407 -653 -407 -655 -407 -656 -407 -657 -407 -659 -407 -408 -408 -165 -408 -171 -408 -281 -408 -403 -408 -405 -408 -406 -408 -407 -408 -409 -408 -417 -408 -421 -408 -422 -408 -423 -408 -498 -408 -499 -408 -502 -408 -648 -408 -650 -408 -651 -408 -652 -408 -653 -408 -654 -408 -655 -408 -656 -408 -668 -408 -671 -408 -672 -408 -673 -408 -409 -409 -165 -409 -171 -409 -172 -409 -178 -409 -260 -409 -281 -409 -283 -409 -403 -409 -405 -409 -406 -409 -407 -409 -408 -409 -410 -409 -412 -409 -417 -409 -418 -409 -421 -409 -422 -409 -423 -409 -424 -409 -652 -409 -653 -409 -655 -409 -656 -409 -657 -409 -659 -409 -672 -409 -673 -409 -676 -409 -410 -410 -165 -410 -171 -410 -172 -410 -178 -410 -214 -410 -259 -410 -260 -410 -281 -410 -283 -410 -333 -410 -336 -410 -337 -410 -407 -410 -409 -410 -411 -410 -412 -410 -413 -410 -570 -410 -573 -410 -574 -410 -653 -410 -656 -410 -657 -410 -658 -410 -659 -410 -660 -410 -411 -411 -165 -411 -166 -411 -171 -411 -172 -411 -173 -411 -178 -411 -214 -411 -230 -411 -259 -411 -260 -411 -267 -411 -283 -411 -286 -411 -336 -411 -337 -411 -352 -411 -410 -411 -412 -411 -413 -411 -429 -411 -431 -411 -573 -411 -574 -411 -588 -411 -657 -411 -658 -411 -659 -411 -660 -411 -680 -411 -682 -411 -412 -412 -165 -412 -171 -412 -172 -412 -178 -412 -259 -412 -260 -412 -281 -412 -283 -412 -407 -412 -409 -412 -410 -412 -411 -412 -413 -412 -417 -412 -418 -412 -419 -412 -423 -412 -424 -412 -425 -412 -653 -412 -656 -412 -657 -412 -658 -412 -659 -412 -660 -412 -673 -412 -676 -412 -677 -412 -413 -413 -165 -413 -166 -413 -171 -413 -172 -413 -173 -413 -178 -413 -259 -413 -260 -413 -267 -413 -283 -413 -286 -413 -410 -413 -411 -413 -412 -413 -418 -413 -419 -413 -424 -413 -425 -413 -429 -413 -431 -413 -440 -413 -441 -413 -657 -413 -658 -413 -659 -413 -660 -413 -676 -413 -677 -413 -680 -413 -682 -413 -696 -413 -414 -414 -165 -414 -175 -414 -177 -414 -178 -414 -257 -414 -261 -414 -262 -414 -282 -414 -283 -414 -374 -414 -399 -414 -401 -414 -415 -414 -416 -414 -417 -414 -418 -414 -419 -414 -611 -414 -644 -414 -646 -414 -661 -414 -662 -414 -663 -414 -664 -414 -665 -414 -666 -414 -415 -415 -165 -415 -166 -415 -175 -415 -176 -415 -177 -415 -178 -415 -249 -415 -257 -415 -261 -415 -262 -415 -268 -415 -283 -415 -286 -415 -374 -415 -375 -415 -401 -415 -414 -415 -418 -415 -419 -415 -439 -415 -440 -415 -611 -415 -612 -415 -646 -415 -661 -415 -662 -415 -665 -415 -666 -415 -694 -415 -695 -415 -416 -416 -165 -416 -175 -416 -177 -416 -178 -416 -257 -416 -261 -416 -282 -416 -283 -416 -389 -416 -398 -416 -399 -416 -401 -416 -404 -416 -405 -416 -414 -416 -417 -416 -418 -416 -420 -416 -421 -416 -643 -416 -644 -416 -646 -416 -661 -416 -663 -416 -664 -416 -665 -416 -669 -416 -670 -416 -417 -417 -165 -417 -175 -417 -177 -417 -178 -417 -261 -417 -282 -417 -283 -417 -404 -417 -405 -417 -408 -417 -409 -417 -412 -417 -414 -417 -416 -417 -418 -417 -420 -417 -421 -417 -422 -417 -423 -417 -424 -417 -661 -417 -663 -417 -664 -417 -665 -417 -669 -417 -670 -417 -674 -417 -675 -417 -678 -417 -418 -418 -165 -418 -175 -418 -177 -418 -178 -418 -261 -418 -262 -418 -282 -418 -283 -418 -409 -418 -412 -418 -413 -418 -414 -418 -415 -418 -416 -418 -417 -418 -419 -418 -423 -418 -424 -418 -425 -418 -661 -418 -662 -418 -663 -418 -664 -418 -665 -418 -666 -418 -675 -418 -678 -418 -679 -418 -419 -419 -165 -419 -166 -419 -175 -419 -176 -419 -177 -419 -178 -419 -261 -419 -262 -419 -268 -419 -283 -419 -286 -419 -412 -419 -413 -419 -414 -419 -415 -419 -418 -419 -424 -419 -425 -419 -431 -419 -439 -419 -440 -419 -441 -419 -661 -419 -662 -419 -665 -419 -666 -419 -678 -419 -679 -419 -694 -419 -695 -419 -698 -419 -420 -420 -165 -420 -177 -420 -282 -420 -389 -420 -398 -420 -399 -420 -404 -420 -405 -420 -416 -420 -417 -420 -421 -420 -497 -420 -500 -420 -501 -420 -627 -420 -640 -420 -643 -420 -644 -420 -649 -420 -650 -420 -663 -420 -664 -420 -667 -420 -668 -420 -669 -420 -670 -420 -421 -421 -165 -421 -177 -421 -282 -421 -404 -421 -405 -421 -408 -421 -409 -421 -416 -421 -417 -421 -420 -421 -422 -421 -423 -421 -500 -421 -501 -421 -503 -421 -649 -421 -650 -421 -654 -421 -663 -421 -664 -421 -667 -421 -668 -421 -669 -421 -670 -421 -671 -421 -674 -421 -675 -421 -422 -422 -165 -422 -405 -422 -408 -422 -409 -422 -417 -422 -421 -422 -423 -422 -449 -422 -499 -422 -501 -422 -502 -422 -503 -422 -504 -422 -505 -422 -650 -422 -654 -422 -655 -422 -656 -422 -664 -422 -668 -422 -670 -422 -671 -422 -672 -422 -673 -422 -674 -422 -675 -422 -423 -423 -165 -423 -178 -423 -283 -423 -405 -423 -408 -423 -409 -423 -412 -423 -417 -423 -418 -423 -421 -423 -422 -423 -424 -423 -504 -423 -505 -423 -506 -423 -655 -423 -656 -423 -659 -423 -664 -423 -665 -423 -670 -423 -672 -423 -673 -423 -674 -423 -675 -423 -676 -423 -678 -423 -424 -424 -165 -424 -178 -424 -283 -424 -409 -424 -412 -424 -413 -424 -417 -424 -418 -424 -419 -424 -423 -424 -425 -424 -505 -424 -506 -424 -507 -424 -656 -424 -659 -424 -660 -424 -664 -424 -665 -424 -666 -424 -673 -424 -675 -424 -676 -424 -677 -424 -678 -424 -679 -424 -425 -425 -165 -425 -166 -425 -178 -425 -283 -425 -286 -425 -412 -425 -413 -425 -418 -425 -419 -425 -424 -425 -431 -425 -440 -425 -441 -425 -506 -425 -507 -425 -512 -425 -659 -425 -660 -425 -665 -425 -666 -425 -676 -425 -677 -425 -678 -425 -679 -425 -682 -425 -695 -425 -696 -425 -698 -425 -426 -426 -69 -426 -108 -426 -114 -426 -150 -426 -159 -426 -166 -426 -173 -426 -176 -426 -227 -426 -228 -426 -263 -426 -264 -426 -265 -426 -266 -426 -284 -426 -285 -426 -349 -426 -353 -426 -355 -426 -427 -426 -428 -426 -430 -426 -432 -426 -433 -426 -434 -426 -592 -426 -684 -426 -686 -426 -427 -427 -69 -427 -112 -427 -114 -427 -157 -427 -159 -427 -166 -427 -173 -427 -176 -427 -244 -427 -246 -427 -263 -427 -264 -427 -265 -427 -266 -427 -284 -427 -285 -427 -362 -427 -376 -427 -378 -427 -426 -427 -428 -427 -435 -427 -436 -427 -437 -427 -438 -427 -615 -427 -688 -427 -689 -427 -428 -428 -69 -428 -114 -428 -159 -428 -166 -428 -173 -428 -176 -428 -263 -428 -264 -428 -265 -428 -266 -428 -284 -428 -285 -428 -426 -428 -427 -428 -430 -428 -432 -428 -433 -428 -434 -428 -435 -428 -436 -428 -437 -428 -438 -428 -442 -428 -443 -428 -684 -428 -686 -428 -688 -428 -689 -428 -700 -428 -429 -429 -166 -429 -172 -429 -173 -429 -178 -429 -230 -429 -259 -429 -267 -429 -284 -429 -286 -429 -337 -429 -352 -429 -353 -429 -411 -429 -413 -429 -430 -429 -431 -429 -432 -429 -574 -429 -588 -429 -589 -429 -658 -429 -660 -429 -680 -429 -681 -429 -682 -429 -683 -429 -430 -430 -166 -430 -172 -430 -173 -430 -178 -430 -230 -430 -267 -430 -284 -430 -286 -430 -349 -430 -352 -430 -353 -430 -355 -430 -426 -430 -428 -430 -429 -430 -431 -430 -432 -430 -433 -430 -434 -430 -588 -430 -589 -430 -593 -430 -680 -430 -681 -430 -682 -430 -683 -430 -685 -430 -687 -430 -431 -431 -166 -431 -172 -431 -173 -431 -178 -431 -259 -431 -267 -431 -284 -431 -286 -431 -411 -431 -413 -431 -419 -431 -425 -431 -429 -431 -430 -431 -432 -431 -437 -431 -440 -431 -441 -431 -442 -431 -658 -431 -660 -431 -677 -431 -680 -431 -681 -431 -682 -431 -683 -431 -696 -431 -697 -431 -432 -432 -166 -432 -172 -432 -173 -432 -178 -432 -267 -432 -284 -432 -286 -432 -426 -432 -428 -432 -429 -432 -430 -432 -431 -432 -433 -432 -434 -432 -437 -432 -438 -432 -440 -432 -441 -432 -442 -432 -443 -432 -680 -432 -681 -432 -682 -432 -683 -432 -685 -432 -687 -432 -696 -432 -697 -432 -701 -432 -433 -433 -166 -433 -173 -433 -228 -433 -264 -433 -266 -433 -284 -433 -349 -433 -353 -433 -355 -433 -426 -433 -428 -433 -430 -433 -432 -433 -434 -433 -478 -433 -508 -433 -509 -433 -589 -433 -592 -433 -593 -433 -681 -433 -683 -433 -684 -433 -685 -433 -686 -433 -687 -433 -434 -434 -166 -434 -173 -434 -264 -434 -266 -434 -284 -434 -426 -434 -428 -434 -430 -434 -432 -434 -433 -434 -437 -434 -438 -434 -442 -434 -443 -434 -508 -434 -509 -434 -514 -434 -681 -434 -683 -434 -684 -434 -685 -434 -686 -434 -687 -434 -689 -434 -697 -434 -700 -434 -701 -434 -435 -435 -166 -435 -176 -435 -246 -435 -265 -435 -266 -435 -285 -435 -362 -435 -376 -435 -378 -435 -427 -435 -428 -435 -436 -435 -437 -435 -438 -435 -487 -435 -510 -435 -511 -435 -613 -435 -615 -435 -617 -435 -688 -435 -689 -435 -690 -435 -691 -435 -692 -435 -693 -435 -436 -436 -166 -436 -175 -436 -176 -436 -178 -436 -249 -436 -268 -436 -285 -436 -286 -436 -362 -436 -375 -436 -376 -436 -378 -436 -427 -436 -428 -436 -435 -436 -437 -436 -438 -436 -439 -436 -440 -436 -612 -436 -613 -436 -617 -436 -690 -436 -691 -436 -692 -436 -693 -436 -694 -436 -695 -436 -437 -437 -166 -437 -175 -437 -176 -437 -178 -437 -268 -437 -285 -437 -286 -437 -427 -437 -428 -437 -431 -437 -432 -437 -434 -437 -435 -437 -436 -437 -438 -437 -439 -437 -440 -437 -441 -437 -442 -437 -443 -437 -690 -437 -691 -437 -692 -437 -693 -437 -694 -437 -695 -437 -698 -437 -699 -437 -702 -437 -438 -438 -166 -438 -176 -438 -265 -438 -266 -438 -285 -438 -427 -438 -428 -438 -432 -438 -434 -438 -435 -438 -436 -438 -437 -438 -442 -438 -443 -438 -510 -438 -511 -438 -515 -438 -686 -438 -688 -438 -689 -438 -690 -438 -691 -438 -692 -438 -693 -438 -699 -438 -700 -438 -702 -438 -439 -439 -166 -439 -175 -439 -176 -439 -178 -439 -249 -439 -262 -439 -268 -439 -285 -439 -286 -439 -374 -439 -375 -439 -376 -439 -415 -439 -419 -439 -436 -439 -437 -439 -440 -439 -611 -439 -612 -439 -613 -439 -662 -439 -666 -439 -691 -439 -692 -439 -694 -439 -695 -439 -440 -440 -166 -440 -175 -440 -176 -440 -178 -440 -262 -440 -268 -440 -285 -440 -286 -440 -413 -440 -415 -440 -419 -440 -425 -440 -431 -440 -432 -440 -436 -440 -437 -440 -439 -440 -441 -440 -442 -440 -662 -440 -666 -440 -679 -440 -691 -440 -692 -440 -694 -440 -695 -440 -698 -440 -699 -440 -441 -441 -166 -441 -178 -441 -286 -441 -413 -441 -419 -441 -425 -441 -431 -441 -432 -441 -437 -441 -440 -441 -442 -441 -507 -441 -512 -441 -513 -441 -660 -441 -666 -441 -677 -441 -679 -441 -682 -441 -683 -441 -692 -441 -695 -441 -696 -441 -697 -441 -698 -441 -699 -441 -442 -442 -166 -442 -178 -442 -286 -442 -428 -442 -431 -442 -432 -442 -434 -442 -437 -442 -438 -442 -440 -442 -441 -442 -443 -442 -512 -442 -513 -442 -516 -442 -682 -442 -683 -442 -687 -442 -692 -442 -693 -442 -695 -442 -696 -442 -697 -442 -698 -442 -699 -442 -701 -442 -702 -442 -443 -443 -166 -443 -266 -443 -428 -443 -432 -443 -434 -443 -437 -443 -438 -443 -442 -443 -450 -443 -509 -443 -511 -443 -513 -443 -514 -443 -515 -443 -516 -443 -683 -443 -686 -443 -687 -443 -689 -443 -692 -443 -693 -443 -697 -443 -699 -443 -700 -443 -701 -443 -702 -443 -444 -444 -290 -444 -451 -444 -452 -444 -453 -444 -517 -444 -518 -444 -519 -444 -445 -445 -318 -445 -462 -445 -463 -445 -464 -445 -547 -445 -549 -445 -550 -445 -446 -446 -346 -446 -473 -446 -474 -446 -475 -446 -581 -446 -582 -446 -583 -446 -447 -447 -363 -447 -479 -447 -480 -447 -481 -447 -594 -447 -595 -447 -598 -447 -448 -448 -394 -448 -492 -448 -493 -448 -494 -448 -634 -448 -635 -448 -637 -448 -449 -449 -422 -449 -502 -449 -503 -449 -504 -449 -671 -449 -672 -449 -674 -449 -450 -450 -443 -450 -514 -450 -515 -450 -516 -450 -700 -450 -701 -450 -702 -450 -451 -451 -180 -451 -187 -451 -188 -451 -287 -451 -290 -451 -444 -451 -452 -451 -453 -451 -517 -451 -518 -451 -519 -451 -452 -452 -290 -452 -291 -452 -444 -452 -451 -452 -453 -452 -454 -452 -517 -452 -518 -452 -519 -452 -520 -452 -521 -452 -453 -453 -290 -453 -292 -453 -444 -453 -451 -453 -452 -453 -455 -453 -517 -453 -518 -453 -519 -453 -522 -453 -523 -453 -454 -454 -290 -454 -291 -454 -294 -454 -452 -454 -456 -454 -517 -454 -519 -454 -520 -454 -521 -454 -525 -454 -526 -454 -455 -455 -290 -455 -292 -455 -302 -455 -453 -455 -458 -455 -518 -455 -519 -455 -522 -455 -523 -455 -531 -455 -532 -455 -456 -456 -291 -456 -294 -456 -296 -456 -454 -456 -457 -456 -520 -456 -521 -456 -525 -456 -526 -456 -527 -456 -528 -456 -457 -457 -294 -457 -296 -457 -314 -457 -456 -457 -460 -457 -525 -457 -526 -457 -527 -457 -528 -457 -541 -457 -542 -457 -458 -458 -292 -458 -302 -458 -304 -458 -455 -458 -459 -458 -522 -458 -523 -458 -531 -458 -532 -458 -534 -458 -535 -458 -459 -459 -302 -459 -304 -459 -382 -459 -458 -459 -488 -459 -531 -459 -532 -459 -534 -459 -535 -459 -618 -459 -619 -459 -460 -460 -296 -460 -314 -460 -315 -460 -457 -460 -461 -460 -527 -460 -528 -460 -541 -460 -542 -460 -543 -460 -544 -460 -461 -461 -314 -461 -315 -461 -318 -461 -460 -461 -462 -461 -541 -461 -542 -461 -543 -461 -544 -461 -547 -461 -549 -461 -462 -462 -315 -462 -318 -462 -445 -462 -461 -462 -463 -462 -464 -462 -543 -462 -544 -462 -547 -462 -549 -462 -550 -462 -463 -463 -318 -463 -319 -463 -445 -463 -462 -463 -464 -463 -465 -463 -547 -463 -548 -463 -549 -463 -550 -463 -551 -463 -464 -464 -318 -464 -320 -464 -445 -464 -462 -464 -463 -464 -466 -464 -547 -464 -549 -464 -550 -464 -552 -464 -553 -464 -465 -465 -318 -465 -319 -465 -322 -465 -463 -465 -467 -465 -547 -465 -548 -465 -550 -465 -551 -465 -555 -465 -557 -465 -466 -466 -318 -466 -320 -466 -330 -466 -464 -466 -469 -466 -549 -466 -550 -466 -552 -466 -553 -466 -565 -466 -566 -466 -467 -467 -319 -467 -322 -467 -323 -467 -465 -467 -468 -467 -548 -467 -551 -467 -555 -467 -556 -467 -557 -467 -558 -467 -468 -468 -322 -468 -323 -468 -342 -468 -467 -468 -471 -468 -555 -468 -556 -468 -557 -468 -558 -468 -575 -468 -577 -468 -469 -469 -320 -469 -330 -469 -332 -469 -466 -469 -470 -469 -552 -469 -553 -469 -565 -469 -566 -469 -568 -469 -569 -469 -470 -470 -330 -470 -332 -470 -406 -470 -469 -470 -498 -470 -565 -470 -566 -470 -568 -470 -569 -470 -651 -470 -652 -470 -471 -471 -323 -471 -342 -471 -343 -471 -468 -471 -472 -471 -556 -471 -558 -471 -575 -471 -576 -471 -577 -471 -578 -471 -472 -472 -342 -472 -343 -472 -346 -472 -471 -472 -474 -472 -575 -472 -576 -472 -577 -472 -578 -472 -581 -472 -583 -472 -473 -473 -182 -473 -219 -473 -220 -473 -339 -473 -346 -473 -446 -473 -474 -473 -475 -473 -581 -473 -582 -473 -583 -473 -474 -474 -343 -474 -346 -474 -446 -474 -472 -474 -473 -474 -475 -474 -576 -474 -578 -474 -581 -474 -582 -474 -583 -474 -475 -475 -346 -475 -347 -475 -446 -475 -473 -475 -474 -475 -476 -475 -581 -475 -582 -475 -583 -475 -584 -475 -585 -475 -476 -476 -346 -476 -347 -476 -354 -476 -475 -476 -477 -476 -582 -476 -583 -476 -584 -476 -585 -476 -590 -476 -591 -476 -477 -477 -347 -477 -354 -477 -355 -477 -476 -477 -478 -477 -584 -477 -585 -477 -590 -477 -591 -477 -592 -477 -593 -477 -478 -478 -354 -478 -355 -478 -433 -478 -477 -478 -508 -478 -590 -478 -591 -478 -592 -478 -593 -478 -684 -478 -685 -478 -479 -479 -184 -479 -235 -479 -236 -479 -356 -479 -363 -479 -447 -479 -480 -479 -481 -479 -594 -479 -595 -479 -598 -479 -480 -480 -363 -480 -364 -480 -447 -480 -479 -480 -481 -480 -482 -480 -594 -480 -595 -480 -596 -480 -598 -480 -599 -480 -481 -481 -363 -481 -366 -481 -447 -481 -479 -481 -480 -481 -483 -481 -594 -481 -595 -481 -597 -481 -598 -481 -601 -481 -482 -482 -363 -482 -364 -482 -367 -482 -480 -482 -484 -482 -594 -482 -596 -482 -598 -482 -599 -482 -602 -482 -604 -482 -483 -483 -363 -483 -366 -483 -377 -483 -481 -483 -486 -483 -595 -483 -597 -483 -598 -483 -601 -483 -614 -483 -616 -483 -484 -484 -364 -484 -367 -484 -368 -484 -482 -484 -485 -484 -596 -484 -599 -484 -602 -484 -603 -484 -604 -484 -605 -484 -485 -485 -367 -485 -368 -485 -390 -485 -484 -485 -490 -485 -602 -485 -603 -485 -604 -485 -605 -485 -628 -485 -630 -485 -486 -486 -366 -486 -377 -486 -378 -486 -483 -486 -487 -486 -597 -486 -601 -486 -614 -486 -615 -486 -616 -486 -617 -486 -487 -487 -377 -487 -378 -487 -435 -487 -486 -487 -510 -487 -614 -487 -615 -487 -616 -487 -617 -487 -688 -487 -690 -487 -488 -488 -304 -488 -382 -488 -384 -488 -459 -488 -489 -488 -534 -488 -535 -488 -618 -488 -619 -488 -621 -488 -622 -488 -489 -489 -382 -489 -384 -489 -394 -489 -488 -489 -492 -489 -618 -489 -619 -489 -621 -489 -622 -489 -634 -489 -635 -489 -490 -490 -368 -490 -390 -490 -391 -490 -485 -490 -491 -490 -603 -490 -605 -490 -628 -490 -629 -490 -630 -490 -631 -490 -491 -491 -390 -491 -391 -491 -394 -491 -490 -491 -493 -491 -628 -491 -629 -491 -630 -491 -631 -491 -634 -491 -637 -491 -492 -492 -384 -492 -394 -492 -448 -492 -489 -492 -493 -492 -494 -492 -621 -492 -622 -492 -634 -492 -635 -492 -637 -492 -493 -493 -391 -493 -394 -493 -448 -493 -491 -493 -492 -493 -494 -493 -629 -493 -631 -493 -634 -493 -635 -493 -637 -493 -494 -494 -394 -494 -395 -494 -448 -494 -492 -494 -493 -494 -495 -494 -634 -494 -635 -494 -636 -494 -637 -494 -638 -494 -495 -495 -394 -495 -395 -495 -396 -495 -494 -495 -496 -495 -635 -495 -636 -495 -637 -495 -638 -495 -639 -495 -641 -495 -496 -496 -395 -496 -396 -496 -398 -496 -495 -496 -497 -496 -636 -496 -638 -496 -639 -496 -640 -496 -641 -496 -643 -496 -497 -497 -396 -497 -398 -497 -420 -497 -496 -497 -500 -497 -639 -497 -640 -497 -641 -497 -643 -497 -667 -497 -669 -497 -498 -498 -332 -498 -406 -498 -408 -498 -470 -498 -499 -498 -568 -498 -569 -498 -651 -498 -652 -498 -654 -498 -655 -498 -499 -499 -406 -499 -408 -499 -422 -499 -498 -499 -502 -499 -651 -499 -652 -499 -654 -499 -655 -499 -671 -499 -672 -499 -500 -500 -398 -500 -420 -500 -421 -500 -497 -500 -501 -500 -640 -500 -643 -500 -667 -500 -668 -500 -669 -500 -670 -500 -501 -501 -420 -501 -421 -501 -422 -501 -500 -501 -503 -501 -667 -501 -668 -501 -669 -501 -670 -501 -671 -501 -674 -501 -502 -502 -408 -502 -422 -502 -449 -502 -499 -502 -503 -502 -504 -502 -654 -502 -655 -502 -671 -502 -672 -502 -674 -502 -503 -503 -421 -503 -422 -503 -449 -503 -501 -503 -502 -503 -504 -503 -668 -503 -670 -503 -671 -503 -672 -503 -674 -503 -504 -504 -422 -504 -423 -504 -449 -504 -502 -504 -503 -504 -505 -504 -671 -504 -672 -504 -673 -504 -674 -504 -675 -504 -505 -505 -422 -505 -423 -505 -424 -505 -504 -505 -506 -505 -672 -505 -673 -505 -674 -505 -675 -505 -676 -505 -678 -505 -506 -506 -423 -506 -424 -506 -425 -506 -505 -506 -507 -506 -673 -506 -675 -506 -676 -506 -677 -506 -678 -506 -679 -506 -507 -507 -424 -507 -425 -507 -441 -507 -506 -507 -512 -507 -676 -507 -677 -507 -678 -507 -679 -507 -696 -507 -698 -507 -508 -508 -355 -508 -433 -508 -434 -508 -478 -508 -509 -508 -592 -508 -593 -508 -684 -508 -685 -508 -686 -508 -687 -508 -509 -509 -433 -509 -434 -509 -443 -509 -508 -509 -514 -509 -684 -509 -685 -509 -686 -509 -687 -509 -700 -509 -701 -509 -510 -510 -378 -510 -435 -510 -438 -510 -487 -510 -511 -510 -615 -510 -617 -510 -688 -510 -689 -510 -690 -510 -693 -510 -511 -511 -435 -511 -438 -511 -443 -511 -510 -511 -515 -511 -688 -511 -689 -511 -690 -511 -693 -511 -700 -511 -702 -511 -512 -512 -425 -512 -441 -512 -442 -512 -507 -512 -513 -512 -677 -512 -679 -512 -696 -512 -697 -512 -698 -512 -699 -512 -513 -513 -441 -513 -442 -513 -443 -513 -512 -513 -516 -513 -696 -513 -697 -513 -698 -513 -699 -513 -701 -513 -702 -513 -514 -514 -434 -514 -443 -514 -450 -514 -509 -514 -515 -514 -516 -514 -686 -514 -687 -514 -700 -514 -701 -514 -702 -514 -515 -515 -438 -515 -443 -515 -450 -515 -511 -515 -514 -515 -516 -515 -689 -515 -693 -515 -700 -515 -701 -515 -702 -515 -516 -516 -442 -516 -443 -516 -450 -516 -513 -516 -514 -516 -515 -516 -697 -516 -699 -516 -700 -516 -701 -516 -702 -516 -517 -517 -180 -517 -187 -517 -188 -517 -189 -517 -287 -517 -288 -517 -290 -517 -291 -517 -444 -517 -451 -517 -452 -517 -453 -517 -454 -517 -518 -517 -519 -517 -520 -517 -521 -517 -518 -518 -180 -518 -187 -518 -188 -518 -192 -518 -287 -518 -289 -518 -290 -518 -292 -518 -444 -518 -451 -518 -452 -518 -453 -518 -455 -518 -517 -518 -519 -518 -522 -518 -523 -518 -519 -519 -290 -519 -291 -519 -292 -519 -293 -519 -444 -519 -451 -519 -452 -519 -453 -519 -454 -519 -455 -519 -517 -519 -518 -519 -520 -519 -521 -519 -522 -519 -523 -519 -524 -519 -520 -520 -187 -520 -189 -520 -193 -520 -287 -520 -288 -520 -290 -520 -291 -520 -294 -520 -295 -520 -452 -520 -454 -520 -456 -520 -517 -520 -519 -520 -521 -520 -525 -520 -526 -520 -521 -521 -290 -521 -291 -521 -292 -521 -293 -521 -294 -521 -298 -521 -452 -521 -454 -521 -456 -521 -517 -521 -519 -521 -520 -521 -523 -521 -524 -521 -525 -521 -526 -521 -529 -521 -522 -522 -188 -522 -192 -522 -198 -522 -287 -522 -289 -522 -290 -522 -292 -522 -300 -522 -302 -522 -453 -522 -455 -522 -458 -522 -518 -522 -519 -522 -523 -522 -531 -522 -532 -522 -523 -523 -290 -523 -291 -523 -292 -523 -293 -523 -302 -523 -303 -523 -453 -523 -455 -523 -458 -523 -518 -523 -519 -523 -521 -523 -522 -523 -524 -523 -531 -523 -532 -523 -533 -523 -524 -524 -290 -524 -291 -524 -292 -524 -293 -524 -294 -524 -298 -524 -302 -524 -303 -524 -306 -524 -519 -524 -521 -524 -523 -524 -526 -524 -529 -524 -532 -524 -533 -524 -537 -524 -525 -525 -189 -525 -193 -525 -194 -525 -288 -525 -291 -525 -294 -525 -295 -525 -296 -525 -297 -525 -454 -525 -456 -525 -457 -525 -520 -525 -521 -525 -526 -525 -527 -525 -528 -525 -526 -526 -291 -526 -293 -526 -294 -526 -296 -526 -298 -526 -299 -526 -454 -526 -456 -526 -457 -526 -520 -526 -521 -526 -524 -526 -525 -526 -527 -526 -528 -526 -529 -526 -530 -526 -527 -527 -193 -527 -194 -527 -206 -527 -294 -527 -295 -527 -296 -527 -297 -527 -310 -527 -314 -527 -456 -527 -457 -527 -460 -527 -525 -527 -526 -527 -528 -527 -541 -527 -542 -527 -528 -528 -294 -528 -296 -528 -298 -528 -299 -528 -314 -528 -316 -528 -456 -528 -457 -528 -460 -528 -525 -528 -526 -528 -527 -528 -529 -528 -530 -528 -541 -528 -542 -528 -545 -528 -529 -529 -291 -529 -293 -529 -294 -529 -296 -529 -298 -529 -299 -529 -303 -529 -306 -529 -307 -529 -521 -529 -524 -529 -526 -529 -528 -529 -530 -529 -533 -529 -537 -529 -538 -529 -530 -530 -294 -530 -296 -530 -298 -530 -299 -530 -306 -530 -307 -530 -314 -530 -316 -530 -326 -530 -526 -530 -528 -530 -529 -530 -537 -530 -538 -530 -542 -530 -545 -530 -561 -530 -531 -531 -192 -531 -198 -531 -200 -531 -289 -531 -292 -531 -300 -531 -301 -531 -302 -531 -304 -531 -455 -531 -458 -531 -459 -531 -522 -531 -523 -531 -532 -531 -534 -531 -535 -531 -532 -532 -292 -532 -293 -532 -302 -532 -303 -532 -304 -532 -305 -532 -455 -532 -458 -532 -459 -532 -522 -532 -523 -532 -524 -532 -531 -532 -533 -532 -534 -532 -535 -532 -536 -532 -533 -533 -292 -533 -293 -533 -298 -533 -302 -533 -303 -533 -304 -533 -305 -533 -306 -533 -308 -533 -523 -533 -524 -533 -529 -533 -532 -533 -535 -533 -536 -533 -537 -533 -539 -533 -534 -534 -198 -534 -200 -534 -251 -534 -300 -534 -301 -534 -302 -534 -304 -534 -379 -534 -382 -534 -458 -534 -459 -534 -488 -534 -531 -534 -532 -534 -535 -534 -618 -534 -619 -534 -535 -535 -302 -535 -303 -535 -304 -535 -305 -535 -382 -535 -383 -535 -458 -535 -459 -535 -488 -535 -531 -535 -532 -535 -533 -535 -534 -535 -536 -535 -618 -535 -619 -535 -620 -535 -536 -536 -302 -536 -303 -536 -304 -536 -305 -536 -306 -536 -308 -536 -382 -536 -383 -536 -386 -536 -532 -536 -533 -536 -535 -536 -537 -536 -539 -536 -619 -536 -620 -536 -624 -536 -537 -537 -293 -537 -298 -537 -299 -537 -303 -537 -305 -537 -306 -537 -307 -537 -308 -537 -309 -537 -524 -537 -529 -537 -530 -537 -533 -537 -536 -537 -538 -537 -539 -537 -540 -537 -538 -538 -298 -538 -299 -538 -306 -538 -307 -538 -308 -538 -309 -538 -316 -538 -326 -538 -328 -538 -529 -538 -530 -538 -537 -538 -539 -538 -540 -538 -545 -538 -561 -538 -563 -538 -539 -539 -303 -539 -305 -539 -306 -539 -307 -539 -308 -539 -309 -539 -383 -539 -386 -539 -387 -539 -533 -539 -536 -539 -537 -539 -538 -539 -540 -539 -620 -539 -624 -539 -625 -539 -540 -540 -306 -540 -307 -540 -308 -540 -309 -540 -326 -540 -328 -540 -386 -540 -387 -540 -402 -540 -537 -540 -538 -540 -539 -540 -561 -540 -563 -540 -624 -540 -625 -540 -647 -540 -541 -541 -194 -541 -206 -541 -207 -541 -296 -541 -297 -541 -310 -541 -311 -541 -314 -541 -315 -541 -457 -541 -460 -541 -461 -541 -527 -541 -528 -541 -542 -541 -543 -541 -544 -541 -542 -542 -296 -542 -299 -542 -314 -542 -315 -542 -316 -542 -317 -542 -457 -542 -460 -542 -461 -542 -527 -542 -528 -542 -530 -542 -541 -542 -543 -542 -544 -542 -545 -542 -546 -542 -543 -543 -206 -543 -207 -543 -310 -543 -311 -543 -314 -543 -315 -543 -318 -543 -319 -543 -460 -543 -461 -543 -462 -543 -541 -543 -542 -543 -544 -543 -547 -543 -548 -543 -549 -543 -544 -544 -314 -544 -315 -544 -316 -544 -317 -544 -318 -544 -320 -544 -460 -544 -461 -544 -462 -544 -541 -544 -542 -544 -543 -544 -545 -544 -546 -544 -547 -544 -549 -544 -552 -544 -545 -545 -296 -545 -299 -545 -307 -545 -314 -545 -315 -545 -316 -545 -317 -545 -326 -545 -327 -545 -528 -545 -530 -545 -538 -545 -542 -545 -544 -545 -546 -545 -561 -545 -562 -545 -546 -546 -314 -546 -315 -546 -316 -546 -317 -546 -318 -546 -320 -546 -326 -546 -327 -546 -330 -546 -542 -546 -544 -546 -545 -546 -549 -546 -552 -546 -561 -546 -562 -546 -565 -546 -547 -547 -207 -547 -311 -547 -315 -547 -318 -547 -319 -547 -445 -547 -461 -547 -462 -547 -463 -547 -464 -547 -465 -547 -543 -547 -544 -547 -548 -547 -549 -547 -550 -547 -551 -547 -548 -548 -207 -548 -208 -548 -311 -548 -312 -548 -315 -548 -318 -548 -319 -548 -322 -548 -463 -548 -465 -548 -467 -548 -543 -548 -547 -548 -550 -548 -551 -548 -555 -548 -557 -548 -549 -549 -315 -549 -317 -549 -318 -549 -320 -549 -445 -549 -461 -549 -462 -549 -463 -549 -464 -549 -466 -549 -543 -549 -544 -549 -546 -549 -547 -549 -550 -549 -552 -549 -553 -549 -550 -550 -318 -550 -319 -550 -320 -550 -321 -550 -445 -550 -462 -550 -463 -550 -464 -550 -465 -550 -466 -550 -547 -550 -548 -550 -549 -550 -551 -550 -552 -550 -553 -550 -554 -550 -551 -551 -318 -551 -319 -551 -320 -551 -321 -551 -322 -551 -324 -551 -463 -551 -465 -551 -467 -551 -547 -551 -548 -551 -550 -551 -553 -551 -554 -551 -555 -551 -557 -551 -559 -551 -552 -552 -315 -552 -317 -552 -318 -552 -320 -552 -327 -552 -330 -552 -464 -552 -466 -552 -469 -552 -544 -552 -546 -552 -549 -552 -550 -552 -553 -552 -562 -552 -565 -552 -566 -552 -553 -553 -318 -553 -319 -553 -320 -553 -321 -553 -330 -553 -331 -553 -464 -553 -466 -553 -469 -553 -549 -553 -550 -553 -551 -553 -552 -553 -554 -553 -565 -553 -566 -553 -567 -553 -554 -554 -318 -554 -319 -554 -320 -554 -321 -554 -322 -554 -324 -554 -330 -554 -331 -554 -334 -554 -550 -554 -551 -554 -553 -554 -557 -554 -559 -554 -566 -554 -567 -554 -571 -554 -555 -555 -207 -555 -208 -555 -209 -555 -311 -555 -312 -555 -313 -555 -319 -555 -322 -555 -323 -555 -465 -555 -467 -555 -468 -555 -548 -555 -551 -555 -556 -555 -557 -555 -558 -555 -556 -556 -208 -556 -209 -556 -224 -556 -312 -556 -313 -556 -322 -556 -323 -556 -341 -556 -342 -556 -467 -556 -468 -556 -471 -556 -555 -556 -557 -556 -558 -556 -575 -556 -577 -556 -557 -557 -319 -557 -321 -557 -322 -557 -323 -557 -324 -557 -325 -557 -465 -557 -467 -557 -468 -557 -548 -557 -551 -557 -554 -557 -555 -557 -556 -557 -558 -557 -559 -557 -560 -557 -558 -558 -322 -558 -323 -558 -324 -558 -325 -558 -342 -558 -344 -558 -467 -558 -468 -558 -471 -558 -555 -558 -556 -558 -557 -558 -559 -558 -560 -558 -575 -558 -577 -558 -579 -558 -559 -559 -319 -559 -321 -559 -322 -559 -323 -559 -324 -559 -325 -559 -331 -559 -334 -559 -335 -559 -551 -559 -554 -559 -557 -559 -558 -559 -560 -559 -567 -559 -571 -559 -572 -559 -560 -560 -322 -560 -323 -560 -324 -560 -325 -560 -334 -560 -335 -560 -342 -560 -344 -560 -350 -560 -557 -560 -558 -560 -559 -560 -571 -560 -572 -560 -577 -560 -579 -560 -586 -560 -561 -561 -299 -561 -307 -561 -309 -561 -316 -561 -317 -561 -326 -561 -327 -561 -328 -561 -329 -561 -530 -561 -538 -561 -540 -561 -545 -561 -546 -561 -562 -561 -563 -561 -564 -561 -562 -562 -316 -562 -317 -562 -320 -562 -326 -562 -327 -562 -328 -562 -329 -562 -330 -562 -332 -562 -545 -562 -546 -562 -552 -562 -561 -562 -563 -562 -564 -562 -565 -562 -568 -562 -563 -563 -307 -563 -309 -563 -326 -563 -327 -563 -328 -563 -329 -563 -387 -563 -402 -563 -403 -563 -538 -563 -540 -563 -561 -563 -562 -563 -564 -563 -625 -563 -647 -563 -648 -563 -564 -564 -326 -564 -327 -564 -328 -564 -329 -564 -330 -564 -332 -564 -402 -564 -403 -564 -406 -564 -561 -564 -562 -564 -563 -564 -565 -564 -568 -564 -647 -564 -648 -564 -651 -564 -565 -565 -317 -565 -320 -565 -327 -565 -329 -565 -330 -565 -332 -565 -466 -565 -469 -565 -470 -565 -546 -565 -552 -565 -553 -565 -562 -565 -564 -565 -566 -565 -568 -565 -569 -565 -566 -566 -320 -566 -321 -566 -330 -566 -331 -566 -332 -566 -333 -566 -466 -566 -469 -566 -470 -566 -552 -566 -553 -566 -554 -566 -565 -566 -567 -566 -568 -566 -569 -566 -570 -566 -567 -567 -320 -567 -321 -567 -324 -567 -330 -567 -331 -567 -332 -567 -333 -567 -334 -567 -336 -567 -553 -567 -554 -567 -559 -567 -566 -567 -569 -567 -570 -567 -571 -567 -573 -567 -568 -568 -327 -568 -329 -568 -330 -568 -332 -568 -403 -568 -406 -568 -469 -568 -470 -568 -498 -568 -562 -568 -564 -568 -565 -568 -566 -568 -569 -568 -648 -568 -651 -568 -652 -568 -569 -569 -330 -569 -331 -569 -332 -569 -333 -569 -406 -569 -407 -569 -469 -569 -470 -569 -498 -569 -565 -569 -566 -569 -567 -569 -568 -569 -570 -569 -651 -569 -652 -569 -653 -569 -570 -570 -330 -570 -331 -570 -332 -570 -333 -570 -334 -570 -336 -570 -406 -570 -407 -570 -410 -570 -566 -570 -567 -570 -569 -570 -571 -570 -573 -570 -652 -570 -653 -570 -657 -570 -571 -571 -321 -571 -324 -571 -325 -571 -331 -571 -333 -571 -334 -571 -335 -571 -336 -571 -337 -571 -554 -571 -559 -571 -560 -571 -567 -571 -570 -571 -572 -571 -573 -571 -574 -571 -572 -572 -324 -572 -325 -572 -334 -572 -335 -572 -336 -572 -337 -572 -344 -572 -350 -572 -352 -572 -559 -572 -560 -572 -571 -572 -573 -572 -574 -572 -579 -572 -586 -572 -588 -572 -573 -573 -331 -573 -333 -573 -334 -573 -335 -573 -336 -573 -337 -573 -407 -573 -410 -573 -411 -573 -567 -573 -570 -573 -571 -573 -572 -573 -574 -573 -653 -573 -657 -573 -658 -573 -574 -574 -334 -574 -335 -574 -336 -574 -337 -574 -350 -574 -352 -574 -410 -574 -411 -574 -429 -574 -571 -574 -572 -574 -573 -574 -586 -574 -588 -574 -657 -574 -658 -574 -680 -574 -575 -575 -209 -575 -218 -575 -224 -575 -313 -575 -323 -575 -338 -575 -341 -575 -342 -575 -343 -575 -468 -575 -471 -575 -472 -575 -556 -575 -558 -575 -576 -575 -577 -575 -578 -575 -576 -576 -218 -576 -219 -576 -224 -576 -338 -576 -339 -576 -341 -576 -342 -576 -343 -576 -346 -576 -471 -576 -472 -576 -474 -576 -575 -576 -577 -576 -578 -576 -581 -576 -583 -576 -577 -577 -323 -577 -325 -577 -342 -577 -343 -577 -344 -577 -345 -577 -468 -577 -471 -577 -472 -577 -556 -577 -558 -577 -560 -577 -575 -577 -576 -577 -578 -577 -579 -577 -580 -577 -578 -578 -342 -578 -343 -578 -344 -578 -345 -578 -346 -578 -347 -578 -471 -578 -472 -578 -474 -578 -575 -578 -576 -578 -577 -578 -579 -578 -580 -578 -581 -578 -583 -578 -585 -578 -579 -579 -323 -579 -325 -579 -335 -579 -342 -579 -343 -579 -344 -579 -345 -579 -350 -579 -351 -579 -558 -579 -560 -579 -572 -579 -577 -579 -578 -579 -580 -579 -586 -579 -587 -579 -580 -580 -342 -580 -343 -580 -344 -580 -345 -580 -346 -580 -347 -580 -350 -580 -351 -580 -354 -580 -577 -580 -578 -580 -579 -580 -583 -580 -585 -580 -586 -580 -587 -580 -591 -580 -581 -581 -182 -581 -218 -581 -219 -581 -220 -581 -338 -581 -339 -581 -343 -581 -346 -581 -446 -581 -472 -581 -473 -581 -474 -581 -475 -581 -576 -581 -578 -581 -582 -581 -583 -581 -582 -582 -182 -582 -219 -582 -220 -582 -222 -582 -339 -582 -340 -582 -346 -582 -347 -582 -446 -582 -473 -582 -474 -582 -475 -582 -476 -582 -581 -582 -583 -582 -584 -582 -585 -582 -583 -583 -343 -583 -345 -583 -346 -583 -347 -583 -446 -583 -472 -583 -473 -583 -474 -583 -475 -583 -476 -583 -576 -583 -578 -583 -580 -583 -581 -583 -582 -583 -584 -583 -585 -583 -584 -584 -220 -584 -222 -584 -226 -584 -339 -584 -340 -584 -346 -584 -347 -584 -348 -584 -354 -584 -475 -584 -476 -584 -477 -584 -582 -584 -583 -584 -585 -584 -590 -584 -591 -584 -585 -585 -343 -585 -345 -585 -346 -585 -347 -585 -351 -585 -354 -585 -475 -585 -476 -585 -477 -585 -578 -585 -580 -585 -582 -585 -583 -585 -584 -585 -587 -585 -590 -585 -591 -585 -586 -586 -325 -586 -335 -586 -337 -586 -344 -586 -345 -586 -350 -586 -351 -586 -352 -586 -353 -586 -560 -586 -572 -586 -574 -586 -579 -586 -580 -586 -587 -586 -588 -586 -589 -586 -587 -587 -344 -587 -345 -587 -347 -587 -350 -587 -351 -587 -352 -587 -353 -587 -354 -587 -355 -587 -579 -587 -580 -587 -585 -587 -586 -587 -588 -587 -589 -587 -591 -587 -593 -587 -588 -588 -335 -588 -337 -588 -350 -588 -351 -588 -352 -588 -353 -588 -411 -588 -429 -588 -430 -588 -572 -588 -574 -588 -586 -588 -587 -588 -589 -588 -658 -588 -680 -588 -681 -588 -589 -589 -350 -589 -351 -589 -352 -589 -353 -589 -354 -589 -355 -589 -429 -589 -430 -589 -433 -589 -586 -589 -587 -589 -588 -589 -591 -589 -593 -589 -680 -589 -681 -589 -685 -589 -590 -590 -222 -590 -226 -590 -228 -590 -340 -590 -347 -590 -348 -590 -349 -590 -354 -590 -355 -590 -476 -590 -477 -590 -478 -590 -584 -590 -585 -590 -591 -590 -592 -590 -593 -590 -591 -591 -345 -591 -347 -591 -351 -591 -353 -591 -354 -591 -355 -591 -476 -591 -477 -591 -478 -591 -580 -591 -584 -591 -585 -591 -587 -591 -589 -591 -590 -591 -592 -591 -593 -591 -592 -592 -226 -592 -228 -592 -264 -592 -348 -592 -349 -592 -354 -592 -355 -592 -426 -592 -433 -592 -477 -592 -478 -592 -508 -592 -590 -592 -591 -592 -593 -592 -684 -592 -685 -592 -593 -593 -351 -593 -353 -593 -354 -593 -355 -593 -430 -593 -433 -593 -477 -593 -478 -593 -508 -593 -587 -593 -589 -593 -590 -593 -591 -593 -592 -593 -681 -593 -684 -593 -685 -593 -594 -594 -184 -594 -235 -594 -236 -594 -237 -594 -356 -594 -357 -594 -363 -594 -364 -594 -447 -594 -479 -594 -480 -594 -481 -594 -482 -594 -595 -594 -596 -594 -598 -594 -599 -594 -595 -595 -184 -595 -235 -595 -236 -595 -238 -595 -356 -595 -358 -595 -363 -595 -366 -595 -447 -595 -479 -595 -480 -595 -481 -595 -483 -595 -594 -595 -597 -595 -598 -595 -601 -595 -596 -596 -235 -596 -237 -596 -241 -596 -356 -596 -357 -596 -359 -596 -363 -596 -364 -596 -367 -596 -480 -596 -482 -596 -484 -596 -594 -596 -598 -596 -599 -596 -602 -596 -604 -596 -597 -597 -236 -597 -238 -597 -245 -597 -356 -597 -358 -597 -361 -597 -363 -597 -366 -597 -377 -597 -481 -597 -483 -597 -486 -597 -595 -597 -598 -597 -601 -597 -614 -597 -616 -597 -598 -598 -363 -598 -364 -598 -365 -598 -366 -598 -447 -598 -479 -598 -480 -598 -481 -598 -482 -598 -483 -598 -594 -598 -595 -598 -596 -598 -597 -598 -599 -598 -600 -598 -601 -598 -599 -599 -363 -599 -364 -599 -365 -599 -366 -599 -367 -599 -370 -599 -480 -599 -482 -599 -484 -599 -594 -599 -596 -599 -598 -599 -600 -599 -601 -599 -602 -599 -604 -599 -607 -599 -600 -600 -363 -600 -364 -600 -365 -600 -366 -600 -367 -600 -370 -600 -371 -600 -372 -600 -377 -600 -598 -600 -599 -600 -601 -600 -604 -600 -607 -600 -608 -600 -609 -600 -616 -600 -601 -601 -363 -601 -364 -601 -365 -601 -366 -601 -372 -601 -377 -601 -481 -601 -483 -601 -486 -601 -595 -601 -597 -601 -598 -601 -599 -601 -600 -601 -609 -601 -614 -601 -616 -601 -602 -602 -237 -602 -241 -602 -242 -602 -357 -602 -359 -602 -360 -602 -364 -602 -367 -602 -368 -602 -482 -602 -484 -602 -485 -602 -596 -602 -599 -602 -603 -602 -604 -602 -605 -602 -603 -603 -241 -603 -242 -603 -252 -603 -359 -603 -360 -603 -367 -603 -368 -603 -380 -603 -390 -603 -484 -603 -485 -603 -490 -603 -602 -603 -604 -603 -605 -603 -628 -603 -630 -603 -604 -604 -364 -604 -365 -604 -367 -604 -368 -604 -369 -604 -370 -604 -482 -604 -484 -604 -485 -604 -596 -604 -599 -604 -600 -604 -602 -604 -603 -604 -605 -604 -606 -604 -607 -604 -605 -605 -367 -605 -368 -605 -369 -605 -370 -605 -390 -605 -393 -605 -484 -605 -485 -605 -490 -605 -602 -605 -603 -605 -604 -605 -606 -605 -607 -605 -628 -605 -630 -605 -633 -605 -606 -606 -367 -606 -368 -606 -369 -606 -370 -606 -371 -606 -373 -606 -390 -606 -393 -606 -400 -606 -604 -606 -605 -606 -607 -606 -608 -606 -610 -606 -630 -606 -633 -606 -645 -606 -607 -607 -364 -607 -365 -607 -367 -607 -368 -607 -369 -607 -370 -607 -371 -607 -372 -607 -373 -607 -599 -607 -600 -607 -604 -607 -605 -607 -606 -607 -608 -607 -609 -607 -610 -607 -608 -608 -365 -608 -369 -608 -370 -608 -371 -608 -372 -608 -373 -608 -374 -608 -375 -608 -376 -608 -600 -608 -606 -608 -607 -608 -609 -608 -610 -608 -611 -608 -612 -608 -613 -608 -609 -609 -365 -609 -366 -609 -370 -609 -371 -609 -372 -609 -375 -609 -376 -609 -377 -609 -378 -609 -600 -609 -601 -609 -607 -609 -608 -609 -612 -609 -613 -609 -616 -609 -617 -609 -610 -610 -369 -610 -370 -610 -371 -610 -373 -610 -374 -610 -375 -610 -393 -610 -400 -610 -401 -610 -606 -610 -607 -610 -608 -610 -611 -610 -612 -610 -633 -610 -645 -610 -646 -610 -611 -611 -371 -611 -373 -611 -374 -611 -375 -611 -400 -611 -401 -611 -414 -611 -415 -611 -439 -611 -608 -611 -610 -611 -612 -611 -645 -611 -646 -611 -661 -611 -662 -611 -694 -611 -612 -612 -371 -612 -372 -612 -373 -612 -374 -612 -375 -612 -376 -612 -415 -612 -436 -612 -439 -612 -608 -612 -609 -612 -610 -612 -611 -612 -613 -612 -662 -612 -691 -612 -694 -612 -613 -613 -371 -613 -372 -613 -375 -613 -376 -613 -377 -613 -378 -613 -435 -613 -436 -613 -439 -613 -608 -613 -609 -613 -612 -613 -616 -613 -617 -613 -690 -613 -691 -613 -694 -613 -614 -614 -238 -614 -245 -614 -246 -614 -358 -614 -361 -614 -362 -614 -366 -614 -377 -614 -378 -614 -483 -614 -486 -614 -487 -614 -597 -614 -601 -614 -615 -614 -616 -614 -617 -614 -615 -615 -245 -615 -246 -615 -265 -615 -361 -615 -362 -615 -377 -615 -378 -615 -427 -615 -435 -615 -486 -615 -487 -615 -510 -615 -614 -615 -616 -615 -617 -615 -688 -615 -690 -615 -616 -616 -365 -616 -366 -616 -372 -616 -376 -616 -377 -616 -378 -616 -483 -616 -486 -616 -487 -616 -597 -616 -600 -616 -601 -616 -609 -616 -613 -616 -614 -616 -615 -616 -617 -616 -617 -617 -372 -617 -376 -617 -377 -617 -378 -617 -435 -617 -436 -617 -486 -617 -487 -617 -510 -617 -609 -617 -613 -617 -614 -617 -615 -617 -616 -617 -688 -617 -690 -617 -691 -617 -618 -618 -200 -618 -251 -618 -253 -618 -301 -618 -304 -618 -379 -618 -381 -618 -382 -618 -384 -618 -459 -618 -488 -618 -489 -618 -534 -618 -535 -618 -619 -618 -621 -618 -622 -618 -619 -619 -304 -619 -305 -619 -382 -619 -383 -619 -384 -619 -385 -619 -459 -619 -488 -619 -489 -619 -534 -619 -535 -619 -536 -619 -618 -619 -620 -619 -621 -619 -622 -619 -623 -619 -620 -620 -304 -620 -305 -620 -308 -620 -382 -620 -383 -620 -384 -620 -385 -620 -386 -620 -388 -620 -535 -620 -536 -620 -539 -620 -619 -620 -622 -620 -623 -620 -624 -620 -626 -620 -621 -621 -251 -621 -253 -621 -379 -621 -381 -621 -382 -621 -384 -621 -391 -621 -394 -621 -488 -621 -489 -621 -492 -621 -618 -621 -619 -621 -622 -621 -629 -621 -634 -621 -635 -621 -622 -622 -382 -622 -383 -622 -384 -622 -385 -622 -394 -622 -395 -622 -488 -622 -489 -622 -492 -622 -618 -622 -619 -622 -620 -622 -621 -622 -623 -622 -634 -622 -635 -622 -636 -622 -623 -623 -382 -623 -383 -623 -384 -623 -385 -623 -386 -623 -388 -623 -394 -623 -395 -623 -396 -623 -619 -623 -620 -623 -622 -623 -624 -623 -626 -623 -635 -623 -636 -623 -639 -623 -624 -624 -305 -624 -308 -624 -309 -624 -383 -624 -385 -624 -386 -624 -387 -624 -388 -624 -389 -624 -536 -624 -539 -624 -540 -624 -620 -624 -623 -624 -625 -624 -626 -624 -627 -624 -625 -625 -308 -625 -309 -625 -328 -625 -386 -625 -387 -625 -388 -625 -389 -625 -402 -625 -404 -625 -539 -625 -540 -625 -563 -625 -624 -625 -626 -625 -627 -625 -647 -625 -649 -625 -626 -626 -383 -626 -385 -626 -386 -626 -387 -626 -388 -626 -389 -626 -395 -626 -396 -626 -398 -626 -620 -626 -623 -626 -624 -626 -625 -626 -627 -626 -636 -626 -639 -626 -640 -626 -627 -627 -386 -627 -387 -627 -388 -627 -389 -627 -396 -627 -398 -627 -402 -627 -404 -627 -420 -627 -624 -627 -625 -627 -626 -627 -639 -627 -640 -627 -647 -627 -649 -627 -667 -627 -628 -628 -242 -628 -252 -628 -253 -628 -360 -628 -368 -628 -380 -628 -381 -628 -390 -628 -391 -628 -485 -628 -490 -628 -491 -628 -603 -628 -605 -628 -629 -628 -630 -628 -631 -628 -629 -629 -252 -629 -253 -629 -380 -629 -381 -629 -384 -629 -390 -629 -391 -629 -394 -629 -490 -629 -491 -629 -493 -629 -621 -629 -628 -629 -630 -629 -631 -629 -634 -629 -637 -629 -630 -630 -368 -630 -369 -630 -390 -630 -391 -630 -392 -630 -393 -630 -485 -630 -490 -630 -491 -630 -603 -630 -605 -630 -606 -630 -628 -630 -629 -630 -631 -630 -632 -630 -633 -630 -631 -631 -390 -631 -391 -631 -392 -631 -393 -631 -394 -631 -395 -631 -490 -631 -491 -631 -493 -631 -628 -631 -629 -631 -630 -631 -632 -631 -633 -631 -634 -631 -637 -631 -638 -631 -632 -632 -390 -632 -391 -632 -392 -632 -393 -632 -394 -632 -395 -632 -396 -632 -397 -632 -400 -632 -630 -632 -631 -632 -633 -632 -637 -632 -638 -632 -641 -632 -642 -632 -645 -632 -633 -633 -368 -633 -369 -633 -373 -633 -390 -633 -391 -633 -392 -633 -393 -633 -397 -633 -400 -633 -605 -633 -606 -633 -610 -633 -630 -633 -631 -633 -632 -633 -642 -633 -645 -633 -634 -634 -253 -634 -381 -634 -384 -634 -391 -634 -394 -634 -448 -634 -489 -634 -491 -634 -492 -634 -493 -634 -494 -634 -621 -634 -622 -634 -629 -634 -631 -634 -635 -634 -637 -634 -635 -635 -384 -635 -385 -635 -394 -635 -395 -635 -448 -635 -489 -635 -492 -635 -493 -635 -494 -635 -495 -635 -621 -635 -622 -635 -623 -635 -634 -635 -636 -635 -637 -635 -638 -635 -636 -636 -384 -636 -385 -636 -388 -636 -394 -636 -395 -636 -396 -636 -494 -636 -495 -636 -496 -636 -622 -636 -623 -636 -626 -636 -635 -636 -637 -636 -638 -636 -639 -636 -641 -636 -637 -637 -391 -637 -392 -637 -394 -637 -395 -637 -448 -637 -491 -637 -492 -637 -493 -637 -494 -637 -495 -637 -629 -637 -631 -637 -632 -637 -634 -637 -635 -637 -636 -637 -638 -637 -638 -638 -391 -638 -392 -638 -394 -638 -395 -638 -396 -638 -397 -638 -494 -638 -495 -638 -496 -638 -631 -638 -632 -638 -635 -638 -636 -638 -637 -638 -639 -638 -641 -638 -642 -638 -639 -639 -385 -639 -388 -639 -389 -639 -395 -639 -396 -639 -398 -639 -495 -639 -496 -639 -497 -639 -623 -639 -626 -639 -627 -639 -636 -639 -638 -639 -640 -639 -641 -639 -643 -639 -640 -640 -388 -640 -389 -640 -396 -640 -398 -640 -404 -640 -420 -640 -496 -640 -497 -640 -500 -640 -626 -640 -627 -640 -639 -640 -641 -640 -643 -640 -649 -640 -667 -640 -669 -640 -641 -641 -392 -641 -395 -641 -396 -641 -397 -641 -398 -641 -399 -641 -495 -641 -496 -641 -497 -641 -632 -641 -636 -641 -638 -641 -639 -641 -640 -641 -642 -641 -643 -641 -644 -641 -642 -642 -392 -642 -393 -642 -395 -642 -396 -642 -397 -642 -398 -642 -399 -642 -400 -642 -401 -642 -632 -642 -633 -642 -638 -642 -641 -642 -643 -642 -644 -642 -645 -642 -646 -642 -643 -643 -396 -643 -397 -643 -398 -643 -399 -643 -416 -643 -420 -643 -496 -643 -497 -643 -500 -643 -639 -643 -640 -643 -641 -643 -642 -643 -644 -643 -663 -643 -667 -643 -669 -643 -644 -644 -396 -644 -397 -644 -398 -644 -399 -644 -400 -644 -401 -644 -414 -644 -416 -644 -420 -644 -641 -644 -642 -644 -643 -644 -645 -644 -646 -644 -661 -644 -663 -644 -669 -644 -645 -645 -369 -645 -373 -645 -374 -645 -392 -645 -393 -645 -397 -645 -399 -645 -400 -645 -401 -645 -606 -645 -610 -645 -611 -645 -632 -645 -633 -645 -642 -645 -644 -645 -646 -645 -646 -646 -373 -646 -374 -646 -397 -646 -399 -646 -400 -646 -401 -646 -414 -646 -415 -646 -416 -646 -610 -646 -611 -646 -642 -646 -644 -646 -645 -646 -661 -646 -662 -646 -663 -646 -647 -647 -309 -647 -328 -647 -329 -647 -387 -647 -389 -647 -402 -647 -403 -647 -404 -647 -405 -647 -540 -647 -563 -647 -564 -647 -625 -647 -627 -647 -648 -647 -649 -647 -650 -647 -648 -648 -328 -648 -329 -648 -332 -648 -402 -648 -403 -648 -404 -648 -405 -648 -406 -648 -408 -648 -563 -648 -564 -648 -568 -648 -647 -648 -649 -648 -650 -648 -651 -648 -654 -648 -649 -649 -387 -649 -389 -649 -398 -649 -402 -649 -403 -649 -404 -649 -405 -649 -420 -649 -421 -649 -625 -649 -627 -649 -640 -649 -647 -649 -648 -649 -650 -649 -667 -649 -668 -649 -650 -650 -402 -650 -403 -650 -404 -650 -405 -650 -406 -650 -408 -650 -420 -650 -421 -650 -422 -650 -647 -650 -648 -650 -649 -650 -651 -650 -654 -650 -667 -650 -668 -650 -671 -650 -651 -651 -329 -651 -332 -651 -403 -651 -405 -651 -406 -651 -408 -651 -470 -651 -498 -651 -499 -651 -564 -651 -568 -651 -569 -651 -648 -651 -650 -651 -652 -651 -654 -651 -655 -651 -652 -652 -332 -652 -333 -652 -406 -652 -407 -652 -408 -652 -409 -652 -470 -652 -498 -652 -499 -652 -568 -652 -569 -652 -570 -652 -651 -652 -653 -652 -654 -652 -655 -652 -656 -652 -653 -653 -332 -653 -333 -653 -336 -653 -406 -653 -407 -653 -408 -653 -409 -653 -410 -653 -412 -653 -569 -653 -570 -653 -573 -653 -652 -653 -655 -653 -656 -653 -657 -653 -659 -653 -654 -654 -403 -654 -405 -654 -406 -654 -408 -654 -421 -654 -422 -654 -498 -654 -499 -654 -502 -654 -648 -654 -650 -654 -651 -654 -652 -654 -655 -654 -668 -654 -671 -654 -672 -654 -655 -655 -406 -655 -407 -655 -408 -655 -409 -655 -422 -655 -423 -655 -498 -655 -499 -655 -502 -655 -651 -655 -652 -655 -653 -655 -654 -655 -656 -655 -671 -655 -672 -655 -673 -655 -656 -656 -406 -656 -407 -656 -408 -656 -409 -656 -410 -656 -412 -656 -422 -656 -423 -656 -424 -656 -652 -656 -653 -656 -655 -656 -657 -656 -659 -656 -672 -656 -673 -656 -676 -656 -657 -657 -333 -657 -336 -657 -337 -657 -407 -657 -409 -657 -410 -657 -411 -657 -412 -657 -413 -657 -570 -657 -573 -657 -574 -657 -653 -657 -656 -657 -658 -657 -659 -657 -660 -657 -658 -658 -336 -658 -337 -658 -352 -658 -410 -658 -411 -658 -412 -658 -413 -658 -429 -658 -431 -658 -573 -658 -574 -658 -588 -658 -657 -658 -659 -658 -660 -658 -680 -658 -682 -658 -659 -659 -407 -659 -409 -659 -410 -659 -411 -659 -412 -659 -413 -659 -423 -659 -424 -659 -425 -659 -653 -659 -656 -659 -657 -659 -658 -659 -660 -659 -673 -659 -676 -659 -677 -659 -660 -660 -410 -660 -411 -660 -412 -660 -413 -660 -424 -660 -425 -660 -429 -660 -431 -660 -441 -660 -657 -660 -658 -660 -659 -660 -676 -660 -677 -660 -680 -660 -682 -660 -696 -660 -661 -661 -374 -661 -399 -661 -401 -661 -414 -661 -415 -661 -416 -661 -417 -661 -418 -661 -419 -661 -611 -661 -644 -661 -646 -661 -662 -661 -663 -661 -664 -661 -665 -661 -666 -661 -662 -662 -374 -662 -375 -662 -401 -662 -414 -662 -415 -662 -418 -662 -419 -662 -439 -662 -440 -662 -611 -662 -612 -662 -646 -662 -661 -662 -665 -662 -666 -662 -694 -662 -695 -662 -663 -663 -398 -663 -399 -663 -401 -663 -414 -663 -416 -663 -417 -663 -418 -663 -420 -663 -421 -663 -643 -663 -644 -663 -646 -663 -661 -663 -664 -663 -665 -663 -669 -663 -670 -663 -664 -664 -414 -664 -416 -664 -417 -664 -418 -664 -420 -664 -421 -664 -422 -664 -423 -664 -424 -664 -661 -664 -663 -664 -665 -664 -669 -664 -670 -664 -674 -664 -675 -664 -678 -664 -665 -665 -414 -665 -415 -665 -416 -665 -417 -665 -418 -665 -419 -665 -423 -665 -424 -665 -425 -665 -661 -665 -662 -665 -663 -665 -664 -665 -666 -665 -675 -665 -678 -665 -679 -665 -666 -666 -414 -666 -415 -666 -418 -666 -419 -666 -424 -666 -425 -666 -439 -666 -440 -666 -441 -666 -661 -666 -662 -666 -665 -666 -678 -666 -679 -666 -694 -666 -695 -666 -698 -666 -667 -667 -389 -667 -398 -667 -404 -667 -405 -667 -420 -667 -421 -667 -497 -667 -500 -667 -501 -667 -627 -667 -640 -667 -643 -667 -649 -667 -650 -667 -668 -667 -669 -667 -670 -667 -668 -668 -404 -668 -405 -668 -408 -668 -420 -668 -421 -668 -422 -668 -500 -668 -501 -668 -503 -668 -649 -668 -650 -668 -654 -668 -667 -668 -669 -668 -670 -668 -671 -668 -674 -668 -669 -669 -398 -669 -399 -669 -416 -669 -417 -669 -420 -669 -421 -669 -497 -669 -500 -669 -501 -669 -640 -669 -643 -669 -644 -669 -663 -669 -664 -669 -667 -669 -668 -669 -670 -669 -670 -670 -416 -670 -417 -670 -420 -670 -421 -670 -422 -670 -423 -670 -500 -670 -501 -670 -503 -670 -663 -670 -664 -670 -667 -670 -668 -670 -669 -670 -671 -670 -674 -670 -675 -670 -671 -671 -405 -671 -408 -671 -421 -671 -422 -671 -449 -671 -499 -671 -501 -671 -502 -671 -503 -671 -504 -671 -650 -671 -654 -671 -655 -671 -668 -671 -670 -671 -672 -671 -674 -671 -672 -672 -408 -672 -409 -672 -422 -672 -423 -672 -449 -672 -499 -672 -502 -672 -503 -672 -504 -672 -505 -672 -654 -672 -655 -672 -656 -672 -671 -672 -673 -672 -674 -672 -675 -672 -673 -673 -408 -673 -409 -673 -412 -673 -422 -673 -423 -673 -424 -673 -504 -673 -505 -673 -506 -673 -655 -673 -656 -673 -659 -673 -672 -673 -674 -673 -675 -673 -676 -673 -678 -673 -674 -674 -417 -674 -421 -674 -422 -674 -423 -674 -449 -674 -501 -674 -502 -674 -503 -674 -504 -674 -505 -674 -664 -674 -668 -674 -670 -674 -671 -674 -672 -674 -673 -674 -675 -674 -675 -675 -417 -675 -418 -675 -421 -675 -422 -675 -423 -675 -424 -675 -504 -675 -505 -675 -506 -675 -664 -675 -665 -675 -670 -675 -672 -675 -673 -675 -674 -675 -676 -675 -678 -675 -676 -676 -409 -676 -412 -676 -413 -676 -423 -676 -424 -676 -425 -676 -505 -676 -506 -676 -507 -676 -656 -676 -659 -676 -660 -676 -673 -676 -675 -676 -677 -676 -678 -676 -679 -676 -677 -677 -412 -677 -413 -677 -424 -677 -425 -677 -431 -677 -441 -677 -506 -677 -507 -677 -512 -677 -659 -677 -660 -677 -676 -677 -678 -677 -679 -677 -682 -677 -696 -677 -698 -677 -678 -678 -417 -678 -418 -678 -419 -678 -423 -678 -424 -678 -425 -678 -505 -678 -506 -678 -507 -678 -664 -678 -665 -678 -666 -678 -673 -678 -675 -678 -676 -678 -677 -678 -679 -678 -679 -679 -418 -679 -419 -679 -424 -679 -425 -679 -440 -679 -441 -679 -506 -679 -507 -679 -512 -679 -665 -679 -666 -679 -676 -679 -677 -679 -678 -679 -695 -679 -696 -679 -698 -679 -680 -680 -337 -680 -352 -680 -353 -680 -411 -680 -413 -680 -429 -680 -430 -680 -431 -680 -432 -680 -574 -680 -588 -680 -589 -680 -658 -680 -660 -680 -681 -680 -682 -680 -683 -680 -681 -681 -352 -681 -353 -681 -355 -681 -429 -681 -430 -681 -431 -681 -432 -681 -433 -681 -434 -681 -588 -681 -589 -681 -593 -681 -680 -681 -682 -681 -683 -681 -685 -681 -687 -681 -682 -682 -411 -682 -413 -682 -425 -682 -429 -682 -430 -682 -431 -682 -432 -682 -441 -682 -442 -682 -658 -682 -660 -682 -677 -682 -680 -682 -681 -682 -683 -682 -696 -682 -697 -682 -683 -683 -429 -683 -430 -683 -431 -683 -432 -683 -433 -683 -434 -683 -441 -683 -442 -683 -443 -683 -680 -683 -681 -683 -682 -683 -685 -683 -687 -683 -696 -683 -697 -683 -701 -683 -684 -684 -228 -684 -264 -684 -266 -684 -349 -684 -355 -684 -426 -684 -428 -684 -433 -684 -434 -684 -478 -684 -508 -684 -509 -684 -592 -684 -593 -684 -685 -684 -686 -684 -687 -684 -685 -685 -353 -685 -355 -685 -430 -685 -432 -685 -433 -685 -434 -685 -478 -685 -508 -685 -509 -685 -589 -685 -592 -685 -593 -685 -681 -685 -683 -685 -684 -685 -686 -685 -687 -685 -686 -686 -264 -686 -266 -686 -426 -686 -428 -686 -433 -686 -434 -686 -438 -686 -443 -686 -508 -686 -509 -686 -514 -686 -684 -686 -685 -686 -687 -686 -689 -686 -700 -686 -701 -686 -687 -687 -430 -687 -432 -687 -433 -687 -434 -687 -442 -687 -443 -687 -508 -687 -509 -687 -514 -687 -681 -687 -683 -687 -684 -687 -685 -687 -686 -687 -697 -687 -700 -687 -701 -687 -688 -688 -246 -688 -265 -688 -266 -688 -362 -688 -378 -688 -427 -688 -428 -688 -435 -688 -438 -688 -487 -688 -510 -688 -511 -688 -615 -688 -617 -688 -689 -688 -690 -688 -693 -688 -689 -689 -265 -689 -266 -689 -427 -689 -428 -689 -434 -689 -435 -689 -438 -689 -443 -689 -510 -689 -511 -689 -515 -689 -686 -689 -688 -689 -690 -689 -693 -689 -700 -689 -702 -689 -690 -690 -376 -690 -378 -690 -435 -690 -436 -690 -437 -690 -438 -690 -487 -690 -510 -690 -511 -690 -613 -690 -615 -690 -617 -690 -688 -690 -689 -690 -691 -690 -692 -690 -693 -690 -691 -691 -375 -691 -376 -691 -378 -691 -435 -691 -436 -691 -437 -691 -438 -691 -439 -691 -440 -691 -612 -691 -613 -691 -617 -691 -690 -691 -692 -691 -693 -691 -694 -691 -695 -691 -692 -692 -435 -692 -436 -692 -437 -692 -438 -692 -439 -692 -440 -692 -441 -692 -442 -692 -443 -692 -690 -692 -691 -692 -693 -692 -694 -692 -695 -692 -698 -692 -699 -692 -702 -692 -693 -693 -435 -693 -436 -693 -437 -693 -438 -693 -442 -693 -443 -693 -510 -693 -511 -693 -515 -693 -688 -693 -689 -693 -690 -693 -691 -693 -692 -693 -699 -693 -700 -693 -702 -693 -694 -694 -374 -694 -375 -694 -376 -694 -415 -694 -419 -694 -436 -694 -437 -694 -439 -694 -440 -694 -611 -694 -612 -694 -613 -694 -662 -694 -666 -694 -691 -694 -692 -694 -695 -694 -695 -695 -415 -695 -419 -695 -425 -695 -436 -695 -437 -695 -439 -695 -440 -695 -441 -695 -442 -695 -662 -695 -666 -695 -679 -695 -691 -695 -692 -695 -694 -695 -698 -695 -699 -695 -696 -696 -413 -696 -425 -696 -431 -696 -432 -696 -441 -696 -442 -696 -507 -696 -512 -696 -513 -696 -660 -696 -677 -696 -679 -696 -682 -696 -683 -696 -697 -696 -698 -696 -699 -696 -697 -697 -431 -697 -432 -697 -434 -697 -441 -697 -442 -697 -443 -697 -512 -697 -513 -697 -516 -697 -682 -697 -683 -697 -687 -697 -696 -697 -698 -697 -699 -697 -701 -697 -702 -697 -698 -698 -419 -698 -425 -698 -437 -698 -440 -698 -441 -698 -442 -698 -507 -698 -512 -698 -513 -698 -666 -698 -677 -698 -679 -698 -692 -698 -695 -698 -696 -698 -697 -698 -699 -698 -699 -699 -437 -699 -438 -699 -440 -699 -441 -699 -442 -699 -443 -699 -512 -699 -513 -699 -516 -699 -692 -699 -693 -699 -695 -699 -696 -699 -697 -699 -698 -699 -701 -699 -702 -699 -700 -700 -266 -700 -428 -700 -434 -700 -438 -700 -443 -700 -450 -700 -509 -700 -511 -700 -514 -700 -515 -700 -516 -700 -686 -700 -687 -700 -689 -700 -693 -700 -701 -700 -702 -700 -701 -701 -432 -701 -434 -701 -442 -701 -443 -701 -450 -701 -509 -701 -513 -701 -514 -701 -515 -701 -516 -701 -683 -701 -686 -701 -687 -701 -697 -701 -699 -701 -700 -701 -702 -701 -702 -702 -437 -702 -438 -702 -442 -702 -443 -702 -450 -702 -511 -702 -513 -702 -514 -702 -515 -702 -516 -702 -689 -702 -692 -702 -693 -702 -697 -702 -699 -702 -700 -702 -701 -702 - -DEAL:: Total number of cells = 521 -DEAL:: Total number of active cells = 456 -DEAL:: Number of DoFs = 703 -DEAL:: Number of constraints = 72 -DEAL:: Unconstrained matrix bandwidth= 456 -DEAL:: Constrained matrix bandwidth = 456 - -DEAL::Dimension = 3, Test case = 3 - -DEAL:: Making grid... -DEAL:: Distributing degrees of freedom... -DEAL:: Renumbering degrees of freedom... -DEAL:: Writing sparsity pattern... -0 0 -1 0 -4 0 -2 0 -3 0 -5 0 -7 0 -6 0 -1 -1 -0 -1 -4 -1 -2 -1 -3 -1 -5 -1 -7 -1 -6 -1 -8 -1 -11 -1 -12 -1 -20 -1 -2 -2 -0 -2 -1 -2 -4 -2 -3 -2 -5 -2 -7 -2 -6 -2 -14 -2 -9 -2 -22 -2 -15 -2 -3 -3 -0 -3 -1 -3 -4 -3 -2 -3 -5 -3 -7 -3 -6 -3 -10 -3 -16 -3 -23 -3 -17 -3 -4 -4 -0 -4 -1 -4 -2 -4 -3 -4 -5 -4 -7 -4 -6 -4 -8 -4 -11 -4 -12 -4 -20 -4 -13 -4 -14 -4 -21 -4 -22 -4 -9 -4 -15 -4 -5 -5 -0 -5 -1 -5 -4 -5 -2 -5 -3 -5 -7 -5 -6 -5 -8 -5 -11 -5 -12 -5 -20 -5 -10 -5 -16 -5 -23 -5 -17 -5 -18 -5 -24 -5 -6 -6 -0 -6 -1 -6 -4 -6 -2 -6 -3 -6 -5 -6 -7 -6 -14 -6 -9 -6 -22 -6 -15 -6 -10 -6 -16 -6 -23 -6 -17 -6 -25 -6 -19 -6 -7 -7 -0 -7 -1 -7 -4 -7 -2 -7 -3 -7 -5 -7 -6 -7 -8 -7 -11 -7 -12 -7 -20 -7 -13 -7 -14 -7 -21 -7 -22 -7 -9 -7 -15 -7 -10 -7 -16 -7 -23 -7 -17 -7 -18 -7 -24 -7 -26 -7 -25 -7 -19 -7 -8 -8 -1 -8 -11 -8 -4 -8 -5 -8 -12 -8 -20 -8 -7 -8 -27 -8 -30 -8 -31 -8 -52 -8 -9 -9 -2 -9 -4 -9 -14 -9 -6 -9 -7 -9 -22 -9 -15 -9 -37 -9 -28 -9 -57 -9 -38 -9 -10 -10 -3 -10 -5 -10 -7 -10 -6 -10 -16 -10 -23 -10 -17 -10 -29 -10 -40 -10 -59 -10 -41 -10 -11 -11 -1 -11 -8 -11 -4 -11 -5 -11 -12 -11 -20 -11 -7 -11 -13 -11 -14 -11 -21 -11 -22 -11 -27 -11 -30 -11 -31 -11 -52 -11 -32 -11 -53 -11 -12 -12 -1 -12 -8 -12 -11 -12 -4 -12 -5 -12 -20 -12 -7 -12 -16 -12 -18 -12 -24 -12 -23 -12 -27 -12 -30 -12 -31 -12 -52 -12 -33 -12 -54 -12 -13 -13 -4 -13 -11 -13 -14 -13 -7 -13 -20 -13 -21 -13 -22 -13 -30 -13 -32 -13 -52 -13 -53 -13 -34 -13 -35 -13 -55 -13 -56 -13 -37 -13 -57 -13 -14 -14 -4 -14 -11 -14 -13 -14 -7 -14 -20 -14 -21 -14 -22 -14 -2 -14 -9 -14 -6 -14 -15 -14 -37 -14 -28 -14 -57 -14 -38 -14 -35 -14 -56 -14 -15 -15 -2 -15 -4 -15 -14 -15 -9 -15 -6 -15 -7 -15 -22 -15 -17 -15 -23 -15 -25 -15 -19 -15 -37 -15 -28 -15 -57 -15 -38 -15 -58 -15 -39 -15 -16 -16 -3 -16 -5 -16 -7 -16 -6 -16 -10 -16 -23 -16 -17 -16 -12 -16 -20 -16 -18 -16 -24 -16 -29 -16 -40 -16 -59 -16 -41 -16 -42 -16 -60 -16 -17 -17 -3 -17 -5 -17 -7 -17 -6 -17 -10 -17 -16 -17 -23 -17 -22 -17 -15 -17 -25 -17 -19 -17 -29 -17 -40 -17 -59 -17 -41 -17 -61 -17 -43 -17 -18 -18 -5 -18 -12 -18 -20 -18 -7 -18 -16 -18 -24 -18 -23 -18 -31 -18 -52 -18 -33 -18 -54 -18 -40 -18 -42 -18 -60 -18 -59 -18 -44 -18 -62 -18 -19 -19 -6 -19 -7 -19 -22 -19 -15 -19 -17 -19 -23 -19 -25 -19 -57 -19 -38 -19 -58 -19 -39 -19 -41 -19 -59 -19 -61 -19 -43 -19 -63 -19 -46 -19 -20 -20 -1 -20 -8 -20 -11 -20 -4 -20 -5 -20 -12 -20 -7 -20 -13 -20 -14 -20 -21 -20 -22 -20 -16 -20 -18 -20 -24 -20 -23 -20 -26 -20 -25 -20 -27 -20 -30 -20 -31 -20 -52 -20 -32 -20 -53 -20 -33 -20 -54 -20 -48 -20 -21 -21 -4 -21 -11 -21 -13 -21 -14 -21 -7 -21 -20 -21 -22 -21 -23 -21 -24 -21 -26 -21 -25 -21 -30 -21 -32 -21 -52 -21 -53 -21 -54 -21 -48 -21 -34 -21 -35 -21 -55 -21 -56 -21 -36 -21 -49 -21 -37 -21 -57 -21 -58 -21 -22 -22 -4 -22 -11 -22 -13 -22 -14 -22 -7 -22 -20 -22 -21 -22 -2 -22 -9 -22 -6 -22 -15 -22 -23 -22 -24 -22 -26 -22 -25 -22 -17 -22 -19 -22 -37 -22 -28 -22 -57 -22 -38 -22 -35 -22 -56 -22 -58 -22 -39 -22 -49 -22 -23 -23 -3 -23 -5 -23 -7 -23 -6 -23 -10 -23 -16 -23 -17 -23 -12 -23 -20 -23 -18 -23 -24 -23 -21 -23 -22 -23 -26 -23 -25 -23 -15 -23 -19 -23 -29 -23 -40 -23 -59 -23 -41 -23 -42 -23 -60 -23 -50 -23 -61 -23 -43 -23 -24 -24 -5 -24 -12 -24 -20 -24 -7 -24 -16 -24 -18 -24 -23 -24 -21 -24 -22 -24 -26 -24 -25 -24 -31 -24 -52 -24 -33 -24 -54 -24 -53 -24 -48 -24 -40 -24 -42 -24 -60 -24 -59 -24 -50 -24 -61 -24 -44 -24 -62 -24 -45 -24 -25 -25 -7 -25 -20 -25 -21 -25 -22 -25 -23 -25 -24 -25 -26 -25 -6 -25 -15 -25 -17 -25 -19 -25 -57 -25 -38 -25 -58 -25 -39 -25 -56 -25 -49 -25 -59 -25 -60 -25 -50 -25 -61 -25 -41 -25 -43 -25 -63 -25 -46 -25 -47 -25 -26 -26 -64 -26 -65 -26 -66 -26 -67 -26 -68 -26 -51 -26 -69 -26 -7 -26 -20 -26 -21 -26 -22 -26 -23 -26 -24 -26 -25 -26 -52 -26 -53 -26 -54 -26 -48 -26 -55 -26 -56 -26 -36 -26 -49 -26 -57 -26 -58 -26 -59 -26 -60 -26 -50 -26 -61 -26 -62 -26 -45 -26 -47 -26 -63 -26 -27 -27 -8 -27 -30 -27 -11 -27 -12 -27 -31 -27 -52 -27 -20 -27 -70 -27 -73 -27 -74 -27 -118 -27 -28 -28 -9 -28 -14 -28 -37 -28 -15 -28 -22 -28 -57 -28 -38 -28 -83 -28 -71 -28 -125 -28 -84 -28 -29 -29 -10 -29 -16 -29 -23 -29 -17 -29 -40 -29 -59 -29 -41 -29 -72 -29 -86 -29 -127 -29 -87 -29 -30 -30 -8 -30 -27 -30 -11 -30 -12 -30 -31 -30 -52 -30 -20 -30 -70 -30 -73 -30 -74 -30 -118 -30 -75 -30 -32 -30 -119 -30 -53 -30 -13 -30 -21 -30 -31 -31 -8 -31 -27 -31 -30 -31 -11 -31 -12 -31 -52 -31 -20 -31 -70 -31 -73 -31 -74 -31 -118 -31 -18 -31 -33 -31 -54 -31 -24 -31 -76 -31 -120 -31 -32 -32 -30 -32 -73 -32 -75 -32 -52 -32 -118 -32 -119 -32 -53 -32 -11 -32 -13 -32 -20 -32 -21 -32 -34 -32 -35 -32 -55 -32 -56 -32 -77 -32 -121 -32 -33 -33 -12 -33 -31 -33 -52 -33 -20 -33 -18 -33 -54 -33 -24 -33 -74 -33 -118 -33 -76 -33 -120 -33 -42 -33 -44 -33 -62 -33 -60 -33 -90 -33 -130 -33 -34 -34 -13 -34 -32 -34 -35 -34 -21 -34 -53 -34 -55 -34 -56 -34 -75 -34 -77 -34 -119 -34 -121 -34 -78 -34 -79 -34 -122 -34 -123 -34 -80 -34 -124 -34 -35 -35 -13 -35 -32 -35 -34 -35 -21 -35 -53 -35 -55 -35 -56 -35 -79 -35 -80 -35 -123 -35 -124 -35 -14 -35 -37 -35 -22 -35 -57 -35 -83 -35 -125 -35 -36 -36 -21 -36 -53 -36 -55 -36 -56 -36 -26 -36 -48 -36 -49 -36 -119 -36 -121 -36 -64 -36 -81 -36 -122 -36 -123 -36 -65 -36 -82 -36 -124 -36 -66 -36 -37 -37 -9 -37 -14 -37 -28 -37 -15 -37 -22 -37 -57 -37 -38 -37 -13 -37 -35 -37 -21 -37 -56 -37 -80 -37 -83 -37 -124 -37 -125 -37 -71 -37 -84 -37 -38 -38 -9 -38 -14 -38 -37 -38 -28 -38 -15 -38 -22 -38 -57 -38 -83 -38 -71 -38 -125 -38 -84 -38 -19 -38 -25 -38 -58 -38 -39 -38 -126 -38 -85 -38 -39 -39 -15 -39 -22 -39 -57 -39 -38 -39 -19 -39 -25 -39 -58 -39 -125 -39 -84 -39 -126 -39 -85 -39 -43 -39 -61 -39 -63 -39 -46 -39 -133 -39 -96 -39 -40 -40 -10 -40 -16 -40 -23 -40 -17 -40 -29 -40 -59 -40 -41 -40 -18 -40 -24 -40 -42 -40 -60 -40 -72 -40 -86 -40 -127 -40 -87 -40 -88 -40 -128 -40 -41 -41 -10 -41 -16 -41 -23 -41 -17 -41 -29 -41 -40 -41 -59 -41 -25 -41 -19 -41 -61 -41 -43 -41 -72 -41 -86 -41 -127 -41 -87 -41 -129 -41 -89 -41 -42 -42 -16 -42 -18 -42 -24 -42 -23 -42 -40 -42 -60 -42 -59 -42 -86 -42 -88 -42 -128 -42 -127 -42 -33 -42 -54 -42 -44 -42 -62 -42 -92 -42 -131 -42 -43 -43 -17 -43 -23 -43 -25 -43 -19 -43 -41 -43 -59 -43 -61 -43 -87 -43 -127 -43 -129 -43 -89 -43 -58 -43 -39 -43 -63 -43 -46 -43 -134 -43 -97 -43 -44 -44 -18 -44 -33 -44 -54 -44 -24 -44 -42 -44 -62 -44 -60 -44 -76 -44 -120 -44 -90 -44 -130 -44 -88 -44 -92 -44 -131 -44 -128 -44 -93 -44 -132 -44 -45 -45 -54 -45 -120 -45 -64 -45 -48 -45 -62 -45 -130 -45 -91 -45 -24 -45 -26 -45 -60 -45 -50 -45 -131 -45 -132 -45 -68 -45 -94 -45 -128 -45 -67 -45 -46 -46 -19 -46 -25 -46 -58 -46 -39 -46 -43 -46 -61 -46 -63 -46 -126 -46 -85 -46 -133 -46 -96 -46 -89 -46 -129 -46 -134 -46 -97 -46 -135 -46 -99 -46 -47 -47 -25 -47 -26 -47 -49 -47 -58 -47 -61 -47 -50 -47 -63 -47 -66 -47 -126 -47 -95 -47 -133 -47 -129 -47 -67 -47 -98 -47 -134 -47 -69 -47 -135 -47 -48 -48 -52 -48 -118 -48 -119 -48 -53 -48 -54 -48 -120 -48 -64 -48 -20 -48 -21 -48 -24 -48 -26 -48 -55 -48 -56 -48 -36 -48 -49 -48 -121 -48 -81 -48 -62 -48 -130 -48 -91 -48 -45 -48 -60 -48 -50 -48 -49 -49 -21 -49 -53 -49 -55 -49 -56 -49 -26 -49 -48 -49 -36 -49 -123 -49 -124 -49 -82 -49 -66 -49 -22 -49 -57 -49 -25 -49 -58 -49 -125 -49 -126 -49 -61 -49 -50 -49 -47 -49 -63 -49 -95 -49 -133 -49 -50 -50 -23 -50 -24 -50 -26 -50 -25 -50 -59 -50 -60 -50 -61 -50 -127 -50 -128 -50 -67 -50 -129 -50 -54 -50 -48 -50 -62 -50 -45 -50 -131 -50 -94 -50 -49 -50 -58 -50 -47 -50 -63 -50 -98 -50 -134 -50 -51 -51 -26 -51 -64 -51 -65 -51 -66 -51 -67 -51 -68 -51 -69 -51 -160 -51 -167 -51 -168 -51 -169 -51 -161 -51 -170 -51 -171 -51 -172 -51 -162 -51 -173 -51 -163 -51 -174 -51 -175 -51 -176 -51 -164 -51 -177 -51 -165 -51 -178 -51 -166 -51 -52 -52 -8 -52 -27 -52 -30 -52 -11 -52 -12 -52 -31 -52 -20 -52 -70 -52 -73 -52 -74 -52 -118 -52 -75 -52 -32 -52 -119 -52 -53 -52 -13 -52 -21 -52 -18 -52 -33 -52 -54 -52 -24 -52 -76 -52 -120 -52 -64 -52 -48 -52 -26 -52 -53 -53 -30 -53 -73 -53 -75 -53 -32 -53 -52 -53 -118 -53 -119 -53 -11 -53 -13 -53 -20 -53 -21 -53 -54 -53 -120 -53 -64 -53 -48 -53 -24 -53 -26 -53 -34 -53 -35 -53 -55 -53 -56 -53 -77 -53 -121 -53 -36 -53 -49 -53 -81 -53 -54 -54 -12 -54 -31 -54 -52 -54 -20 -54 -18 -54 -33 -54 -24 -54 -74 -54 -118 -54 -76 -54 -120 -54 -119 -54 -53 -54 -64 -54 -48 -54 -21 -54 -26 -54 -42 -54 -44 -54 -62 -54 -60 -54 -90 -54 -130 -54 -91 -54 -45 -54 -50 -54 -55 -55 -13 -55 -32 -55 -34 -55 -35 -55 -21 -55 -53 -55 -56 -55 -75 -55 -77 -55 -119 -55 -121 -55 -78 -55 -79 -55 -122 -55 -123 -55 -80 -55 -124 -55 -26 -55 -48 -55 -36 -55 -49 -55 -64 -55 -81 -55 -65 -55 -82 -55 -66 -55 -56 -56 -13 -56 -32 -56 -34 -56 -35 -56 -21 -56 -53 -56 -55 -56 -79 -56 -80 -56 -123 -56 -124 -56 -26 -56 -48 -56 -36 -56 -49 -56 -82 -56 -66 -56 -14 -56 -37 -56 -22 -56 -57 -56 -83 -56 -125 -56 -25 -56 -58 -56 -126 -56 -57 -57 -9 -57 -14 -57 -37 -57 -28 -57 -15 -57 -22 -57 -38 -57 -13 -57 -35 -57 -21 -57 -56 -57 -80 -57 -83 -57 -124 -57 -125 -57 -71 -57 -84 -57 -19 -57 -25 -57 -58 -57 -39 -57 -26 -57 -49 -57 -66 -57 -126 -57 -85 -57 -58 -58 -15 -58 -22 -58 -57 -58 -38 -58 -19 -58 -25 -58 -39 -58 -21 -58 -56 -58 -26 -58 -49 -58 -124 -58 -125 -58 -66 -58 -126 -58 -84 -58 -85 -58 -43 -58 -61 -58 -63 -58 -46 -58 -50 -58 -47 -58 -95 -58 -133 -58 -96 -58 -59 -59 -10 -59 -16 -59 -23 -59 -17 -59 -29 -59 -40 -59 -41 -59 -18 -59 -24 -59 -42 -59 -60 -59 -26 -59 -25 -59 -50 -59 -61 -59 -19 -59 -43 -59 -72 -59 -86 -59 -127 -59 -87 -59 -88 -59 -128 -59 -67 -59 -129 -59 -89 -59 -60 -60 -16 -60 -18 -60 -24 -60 -23 -60 -40 -60 -42 -60 -59 -60 -26 -60 -25 -60 -50 -60 -61 -60 -86 -60 -88 -60 -128 -60 -127 -60 -67 -60 -129 -60 -33 -60 -54 -60 -44 -60 -62 -60 -48 -60 -45 -60 -92 -60 -131 -60 -94 -60 -61 -61 -23 -61 -24 -61 -26 -61 -25 -61 -59 -61 -60 -61 -50 -61 -17 -61 -19 -61 -41 -61 -43 -61 -127 -61 -128 -61 -67 -61 -129 -61 -87 -61 -89 -61 -58 -61 -39 -61 -63 -61 -46 -61 -49 -61 -47 -61 -134 -61 -97 -61 -98 -61 -62 -62 -18 -62 -33 -62 -54 -62 -24 -62 -42 -62 -44 -62 -60 -62 -76 -62 -120 -62 -90 -62 -130 -62 -64 -62 -48 -62 -91 -62 -45 -62 -26 -62 -50 -62 -88 -62 -92 -62 -131 -62 -128 -62 -93 -62 -132 -62 -68 -62 -94 -62 -67 -62 -63 -63 -19 -63 -25 -63 -58 -63 -39 -63 -43 -63 -61 -63 -46 -63 -26 -63 -49 -63 -50 -63 -47 -63 -66 -63 -126 -63 -95 -63 -133 -63 -85 -63 -96 -63 -89 -63 -129 -63 -134 -63 -97 -63 -67 -63 -98 -63 -69 -63 -135 -63 -99 -63 -64 -64 -26 -64 -65 -64 -66 -64 -67 -64 -68 -64 -51 -64 -69 -64 -160 -64 -167 -64 -168 -64 -169 -64 -52 -64 -118 -64 -119 -64 -53 -64 -54 -64 -120 -64 -48 -64 -121 -64 -55 -64 -81 -64 -36 -64 -62 -64 -130 -64 -91 -64 -45 -64 -136 -64 -137 -64 -138 -64 -115 -64 -139 -64 -100 -64 -141 -64 -102 -64 -65 -65 -26 -65 -64 -65 -66 -65 -67 -65 -68 -65 -51 -65 -69 -65 -160 -65 -167 -65 -168 -65 -169 -65 -161 -65 -170 -65 -171 -65 -172 -65 -162 -65 -173 -65 -55 -65 -121 -65 -122 -65 -123 -65 -36 -65 -81 -65 -82 -65 -139 -65 -140 -65 -100 -65 -101 -65 -143 -65 -144 -65 -104 -65 -105 -65 -148 -65 -106 -65 -66 -66 -26 -66 -64 -66 -65 -66 -67 -66 -68 -66 -51 -66 -69 -66 -170 -66 -162 -66 -172 -66 -173 -66 -56 -66 -55 -66 -123 -66 -124 -66 -49 -66 -36 -66 -82 -66 -57 -66 -125 -66 -58 -66 -126 -66 -63 -66 -47 -66 -95 -66 -133 -66 -146 -66 -145 -66 -116 -66 -147 -66 -148 -66 -106 -66 -107 -66 -149 -66 -67 -67 -26 -67 -64 -67 -65 -67 -66 -67 -68 -67 -51 -67 -69 -67 -163 -67 -174 -67 -175 -67 -176 -67 -59 -67 -60 -67 -50 -67 -61 -67 -127 -67 -128 -67 -129 -67 -62 -67 -45 -67 -131 -67 -94 -67 -47 -67 -63 -67 -98 -67 -134 -67 -151 -67 -152 -67 -117 -67 -153 -67 -154 -67 -110 -67 -111 -67 -156 -67 -68 -68 -26 -68 -64 -68 -65 -68 -66 -68 -67 -68 -51 -68 -69 -68 -160 -68 -167 -68 -168 -68 -169 -68 -163 -68 -174 -68 -175 -68 -176 -68 -164 -68 -177 -68 -62 -68 -130 -68 -91 -68 -45 -68 -131 -68 -132 -68 -94 -68 -141 -68 -102 -68 -142 -68 -103 -68 -154 -68 -155 -68 -109 -68 -110 -68 -158 -68 -113 -68 -69 -69 -26 -69 -64 -69 -65 -69 -66 -69 -67 -69 -68 -69 -51 -69 -170 -69 -162 -69 -172 -69 -173 -69 -163 -69 -174 -69 -175 -69 -176 -69 -178 -69 -166 -69 -63 -69 -47 -69 -95 -69 -133 -69 -134 -69 -98 -69 -135 -69 -107 -69 -149 -69 -108 -69 -150 -69 -156 -69 -111 -69 -112 -69 -157 -69 -114 -69 -159 -69 -70 -70 -27 -70 -73 -70 -30 -70 -31 -70 -74 -70 -118 -70 -52 -70 -179 -70 -185 -70 -186 -70 -136 -70 -71 -71 -28 -71 -37 -71 -83 -71 -38 -71 -57 -71 -125 -71 -84 -71 -215 -71 -181 -71 -145 -71 -216 -71 -72 -72 -29 -72 -40 -72 -59 -72 -41 -72 -86 -72 -127 -72 -87 -72 -183 -72 -231 -72 -151 -72 -232 -72 -73 -73 -27 -73 -70 -73 -30 -73 -31 -73 -74 -73 -118 -73 -52 -73 -75 -73 -32 -73 -119 -73 -53 -73 -179 -73 -185 -73 -186 -73 -136 -73 -190 -73 -137 -73 -74 -74 -27 -74 -70 -74 -73 -74 -30 -74 -31 -74 -118 -74 -52 -74 -33 -74 -76 -74 -120 -74 -54 -74 -179 -74 -185 -74 -186 -74 -136 -74 -191 -74 -138 -74 -75 -75 -30 -75 -73 -75 -32 -75 -52 -75 -118 -75 -119 -75 -53 -75 -77 -75 -34 -75 -121 -75 -55 -75 -185 -75 -190 -75 -136 -75 -137 -75 -195 -75 -139 -75 -76 -76 -31 -76 -74 -76 -118 -76 -52 -76 -33 -76 -120 -76 -54 -76 -44 -76 -90 -76 -130 -76 -62 -76 -186 -76 -136 -76 -191 -76 -138 -76 -197 -76 -141 -76 -77 -77 -32 -77 -75 -77 -34 -77 -53 -77 -119 -77 -121 -77 -55 -77 -78 -77 -79 -77 -122 -77 -123 -77 -190 -77 -195 -77 -137 -77 -139 -77 -196 -77 -140 -77 -78 -78 -34 -78 -77 -78 -79 -78 -55 -78 -121 -78 -122 -78 -123 -78 -195 -78 -196 -78 -139 -78 -140 -78 -204 -78 -205 -78 -143 -78 -144 -78 -223 -78 -148 -78 -79 -79 -34 -79 -77 -79 -78 -79 -55 -79 -121 -79 -122 -79 -123 -79 -35 -79 -80 -79 -56 -79 -124 -79 -223 -79 -217 -79 -148 -79 -146 -79 -205 -79 -144 -79 -80 -80 -35 -80 -34 -80 -79 -80 -56 -80 -55 -80 -123 -80 -124 -80 -37 -80 -83 -80 -57 -80 -125 -80 -217 -80 -215 -80 -146 -80 -145 -80 -223 -80 -148 -80 -81 -81 -53 -81 -119 -81 -121 -81 -55 -81 -48 -81 -64 -81 -36 -81 -122 -81 -123 -81 -65 -81 -82 -81 -137 -81 -139 -81 -115 -81 -100 -81 -140 -81 -101 -81 -82 -82 -55 -82 -121 -82 -122 -82 -123 -82 -36 -82 -81 -82 -65 -82 -56 -82 -124 -82 -49 -82 -66 -82 -148 -82 -146 -82 -106 -82 -116 -82 -144 -82 -105 -82 -83 -83 -37 -83 -35 -83 -80 -83 -57 -83 -56 -83 -124 -83 -125 -83 -28 -83 -71 -83 -38 -83 -84 -83 -215 -83 -181 -83 -145 -83 -216 -83 -217 -83 -146 -83 -84 -84 -28 -84 -37 -84 -83 -84 -71 -84 -38 -84 -57 -84 -125 -84 -39 -84 -58 -84 -126 -84 -85 -84 -215 -84 -181 -84 -145 -84 -216 -84 -147 -84 -221 -84 -85 -85 -38 -85 -57 -85 -125 -85 -84 -85 -39 -85 -58 -85 -126 -85 -46 -85 -63 -85 -133 -85 -96 -85 -145 -85 -216 -85 -147 -85 -221 -85 -149 -85 -225 -85 -86 -86 -29 -86 -40 -86 -59 -86 -41 -86 -72 -86 -127 -86 -87 -86 -42 -86 -60 -86 -88 -86 -128 -86 -183 -86 -231 -86 -151 -86 -232 -86 -233 -86 -152 -86 -87 -87 -29 -87 -40 -87 -59 -87 -41 -87 -72 -87 -86 -87 -127 -87 -61 -87 -43 -87 -129 -87 -89 -87 -183 -87 -231 -87 -151 -87 -232 -87 -153 -87 -234 -87 -88 -88 -40 -88 -42 -88 -60 -88 -59 -88 -86 -88 -128 -88 -127 -88 -44 -88 -62 -88 -92 -88 -131 -88 -231 -88 -233 -88 -152 -88 -151 -88 -239 -88 -154 -88 -89 -89 -41 -89 -59 -89 -61 -89 -43 -89 -87 -89 -127 -89 -129 -89 -63 -89 -46 -89 -134 -89 -97 -89 -232 -89 -151 -89 -153 -89 -234 -89 -156 -89 -243 -89 -90 -90 -33 -90 -76 -90 -120 -90 -54 -90 -44 -90 -130 -90 -62 -90 -92 -90 -93 -90 -132 -90 -131 -90 -191 -90 -138 -90 -197 -90 -141 -90 -199 -90 -142 -90 -91 -91 -54 -91 -120 -91 -64 -91 -48 -91 -62 -91 -130 -91 -45 -91 -131 -91 -132 -91 -68 -91 -94 -91 -138 -91 -115 -91 -141 -91 -102 -91 -142 -91 -103 -91 -92 -92 -42 -92 -44 -92 -62 -92 -60 -92 -88 -92 -131 -92 -128 -92 -90 -92 -130 -92 -93 -92 -132 -92 -233 -92 -239 -92 -154 -92 -152 -92 -240 -92 -155 -92 -93 -93 -44 -93 -90 -93 -130 -93 -62 -93 -92 -93 -132 -93 -131 -93 -197 -93 -141 -93 -199 -93 -142 -93 -239 -93 -240 -93 -155 -93 -154 -93 -250 -93 -158 -93 -94 -94 -62 -94 -130 -94 -91 -94 -45 -94 -131 -94 -132 -94 -68 -94 -60 -94 -50 -94 -128 -94 -67 -94 -154 -94 -155 -94 -109 -94 -110 -94 -152 -94 -117 -94 -95 -95 -58 -95 -49 -95 -66 -95 -126 -95 -63 -95 -47 -95 -133 -95 -134 -95 -98 -95 -69 -95 -135 -95 -116 -95 -147 -95 -107 -95 -149 -95 -108 -95 -150 -95 -96 -96 -39 -96 -58 -96 -126 -96 -85 -96 -46 -96 -63 -96 -133 -96 -97 -96 -134 -96 -135 -96 -99 -96 -147 -96 -221 -96 -149 -96 -225 -96 -150 -96 -227 -96 -97 -97 -43 -97 -61 -97 -63 -97 -46 -97 -89 -97 -129 -97 -134 -97 -133 -97 -96 -97 -135 -97 -99 -97 -234 -97 -153 -97 -156 -97 -243 -97 -157 -97 -244 -97 -98 -98 -61 -98 -50 -98 -47 -98 -63 -98 -129 -98 -67 -98 -134 -98 -95 -98 -133 -98 -69 -98 -135 -98 -153 -98 -117 -98 -111 -98 -156 -98 -112 -98 -157 -98 -99 -99 -46 -99 -63 -99 -133 -99 -96 -99 -97 -99 -134 -99 -135 -99 -149 -99 -225 -99 -150 -99 -227 -99 -243 -99 -156 -99 -157 -99 -244 -99 -159 -99 -263 -99 -100 -100 -119 -100 -137 -100 -139 -100 -121 -100 -64 -100 -115 -100 -81 -100 -288 -100 -295 -100 -160 -100 -269 -100 -297 -100 -140 -100 -167 -100 -101 -100 -122 -100 -65 -100 -101 -101 -139 -101 -295 -101 -297 -101 -140 -101 -100 -101 -269 -101 -167 -101 -121 -101 -122 -101 -81 -101 -65 -101 -143 -101 -144 -101 -104 -101 -105 -101 -310 -101 -271 -101 -102 -102 -138 -102 -289 -102 -160 -102 -115 -102 -141 -102 -300 -102 -270 -102 -120 -102 -64 -102 -130 -102 -91 -102 -142 -102 -301 -102 -168 -102 -103 -102 -132 -102 -68 -102 -103 -103 -141 -103 -300 -103 -270 -103 -102 -103 -142 -103 -301 -103 -168 -103 -130 -103 -91 -103 -132 -103 -68 -103 -158 -103 -379 -103 -278 -103 -113 -103 -155 -103 -109 -103 -104 -104 -122 -104 -140 -104 -143 -104 -144 -104 -65 -104 -101 -104 -105 -104 -297 -104 -310 -104 -167 -104 -271 -104 -311 -104 -312 -104 -161 -104 -272 -104 -313 -104 -170 -104 -105 -105 -122 -105 -140 -105 -143 -105 -144 -105 -65 -105 -101 -105 -104 -105 -312 -105 -313 -105 -272 -105 -170 -105 -123 -105 -148 -105 -82 -105 -106 -105 -341 -105 -274 -105 -106 -106 -124 -106 -123 -106 -148 -106 -146 -106 -66 -106 -82 -106 -116 -106 -122 -106 -144 -106 -65 -106 -105 -106 -313 -106 -341 -106 -170 -106 -274 -106 -338 -106 -162 -106 -107 -107 -126 -107 -66 -107 -116 -107 -147 -107 -133 -107 -95 -107 -149 -107 -162 -107 -340 -107 -275 -107 -348 -107 -135 -107 -69 -107 -108 -107 -150 -107 -173 -107 -349 -107 -108 -108 -133 -108 -95 -108 -107 -108 -149 -108 -135 -108 -69 -108 -150 -108 -275 -108 -348 -108 -173 -108 -349 -108 -157 -108 -112 -108 -114 -108 -159 -108 -284 -108 -426 -108 -109 -109 -131 -109 -132 -109 -68 -109 -94 -109 -154 -109 -155 -109 -110 -109 -359 -109 -360 -109 -174 -109 -276 -109 -142 -109 -103 -109 -158 -109 -113 -109 -380 -109 -279 -109 -110 -110 -131 -110 -132 -110 -68 -110 -94 -110 -154 -110 -155 -110 -109 -110 -128 -110 -67 -110 -152 -110 -117 -110 -359 -110 -360 -110 -174 -110 -276 -110 -357 -110 -163 -110 -111 -111 -129 -111 -67 -111 -98 -111 -134 -111 -153 -111 -117 -111 -156 -111 -69 -111 -135 -111 -112 -111 -157 -111 -358 -111 -163 -111 -277 -111 -361 -111 -176 -111 -362 -111 -112 -112 -134 -112 -98 -112 -69 -112 -135 -112 -156 -112 -111 -112 -157 -112 -361 -112 -277 -112 -176 -112 -362 -112 -108 -112 -150 -112 -114 -112 -159 -112 -285 -112 -427 -112 -113 -113 -142 -113 -301 -113 -168 -113 -103 -113 -158 -113 -379 -113 -278 -113 -132 -113 -68 -113 -155 -113 -109 -113 -380 -113 -381 -113 -164 -113 -279 -113 -360 -113 -174 -113 -114 -114 -135 -114 -69 -114 -108 -114 -150 -114 -157 -114 -112 -114 -159 -114 -173 -114 -349 -114 -284 -114 -426 -114 -362 -114 -176 -114 -285 -114 -427 -114 -166 -114 -428 -114 -115 -115 -136 -115 -287 -115 -288 -115 -137 -115 -138 -115 -289 -115 -160 -115 -118 -115 -119 -115 -120 -115 -64 -115 -139 -115 -121 -115 -100 -115 -81 -115 -295 -115 -269 -115 -141 -115 -300 -115 -270 -115 -102 -115 -130 -115 -91 -115 -116 -116 -125 -116 -124 -116 -146 -116 -145 -116 -126 -116 -66 -116 -147 -116 -338 -116 -339 -116 -162 -116 -340 -116 -123 -116 -148 -116 -82 -116 -106 -116 -341 -116 -274 -116 -133 -116 -95 -116 -107 -116 -149 -116 -275 -116 -348 -116 -117 -117 -127 -117 -128 -117 -67 -117 -129 -117 -151 -117 -152 -117 -153 -117 -356 -117 -357 -117 -163 -117 -358 -117 -131 -117 -94 -117 -154 -117 -110 -117 -359 -117 -276 -117 -98 -117 -134 -117 -111 -117 -156 -117 -277 -117 -361 -117 -118 -118 -27 -118 -70 -118 -73 -118 -30 -118 -31 -118 -74 -118 -52 -118 -75 -118 -32 -118 -119 -118 -53 -118 -33 -118 -76 -118 -120 -118 -54 -118 -64 -118 -48 -118 -179 -118 -185 -118 -186 -118 -136 -118 -190 -118 -137 -118 -191 -118 -138 -118 -115 -118 -119 -119 -30 -119 -73 -119 -75 -119 -32 -119 -52 -119 -118 -119 -53 -119 -54 -119 -120 -119 -64 -119 -48 -119 -77 -119 -34 -119 -121 -119 -55 -119 -81 -119 -36 -119 -185 -119 -190 -119 -136 -119 -137 -119 -138 -119 -115 -119 -195 -119 -139 -119 -100 -119 -120 -120 -31 -120 -74 -120 -118 -120 -52 -120 -33 -120 -76 -120 -54 -120 -119 -120 -53 -120 -64 -120 -48 -120 -44 -120 -90 -120 -130 -120 -62 -120 -91 -120 -45 -120 -186 -120 -136 -120 -191 -120 -138 -120 -137 -120 -115 -120 -197 -120 -141 -120 -102 -120 -121 -121 -32 -121 -75 -121 -77 -121 -34 -121 -53 -121 -119 -121 -55 -121 -78 -121 -79 -121 -122 -121 -123 -121 -48 -121 -64 -121 -81 -121 -36 -121 -65 -121 -82 -121 -190 -121 -195 -121 -137 -121 -139 -121 -196 -121 -140 -121 -115 -121 -100 -121 -101 -121 -122 -122 -34 -122 -77 -122 -78 -122 -79 -122 -55 -122 -121 -122 -123 -122 -36 -122 -81 -122 -65 -122 -82 -122 -195 -122 -196 -122 -139 -122 -140 -122 -100 -122 -101 -122 -204 -122 -205 -122 -143 -122 -144 -122 -104 -122 -105 -122 -223 -122 -148 -122 -106 -122 -123 -123 -34 -123 -77 -123 -78 -123 -79 -123 -55 -123 -121 -123 -122 -123 -35 -123 -80 -123 -56 -123 -124 -123 -36 -123 -81 -123 -65 -123 -82 -123 -49 -123 -66 -123 -223 -123 -217 -123 -148 -123 -146 -123 -205 -123 -144 -123 -106 -123 -116 -123 -105 -123 -124 -124 -35 -124 -34 -124 -79 -124 -80 -124 -56 -124 -55 -124 -123 -124 -49 -124 -36 -124 -82 -124 -66 -124 -37 -124 -83 -124 -57 -124 -125 -124 -58 -124 -126 -124 -217 -124 -215 -124 -146 -124 -145 -124 -116 -124 -147 -124 -223 -124 -148 -124 -106 -124 -125 -125 -37 -125 -35 -125 -80 -125 -83 -125 -57 -125 -56 -125 -124 -125 -28 -125 -71 -125 -38 -125 -84 -125 -58 -125 -49 -125 -66 -125 -126 -125 -39 -125 -85 -125 -215 -125 -181 -125 -145 -125 -216 -125 -217 -125 -146 -125 -147 -125 -221 -125 -116 -125 -126 -126 -57 -126 -56 -126 -124 -126 -125 -126 -58 -126 -49 -126 -66 -126 -38 -126 -84 -126 -39 -126 -85 -126 -63 -126 -47 -126 -95 -126 -133 -126 -46 -126 -96 -126 -145 -126 -216 -126 -147 -126 -221 -126 -146 -126 -116 -126 -149 -126 -225 -126 -107 -126 -127 -127 -29 -127 -40 -127 -59 -127 -41 -127 -72 -127 -86 -127 -87 -127 -42 -127 -60 -127 -88 -127 -128 -127 -50 -127 -61 -127 -67 -127 -129 -127 -43 -127 -89 -127 -183 -127 -231 -127 -151 -127 -232 -127 -233 -127 -152 -127 -117 -127 -153 -127 -234 -127 -128 -128 -40 -128 -42 -128 -60 -128 -59 -128 -86 -128 -88 -128 -127 -128 -50 -128 -61 -128 -67 -128 -129 -128 -44 -128 -62 -128 -92 -128 -131 -128 -45 -128 -94 -128 -231 -128 -233 -128 -152 -128 -151 -128 -117 -128 -153 -128 -239 -128 -154 -128 -110 -128 -129 -129 -59 -129 -60 -129 -50 -129 -61 -129 -127 -129 -128 -129 -67 -129 -41 -129 -43 -129 -87 -129 -89 -129 -63 -129 -46 -129 -134 -129 -97 -129 -47 -129 -98 -129 -151 -129 -152 -129 -117 -129 -153 -129 -232 -129 -234 -129 -156 -129 -243 -129 -111 -129 -130 -130 -33 -130 -76 -130 -120 -130 -54 -130 -44 -130 -90 -130 -62 -130 -64 -130 -48 -130 -91 -130 -45 -130 -92 -130 -93 -130 -132 -130 -131 -130 -68 -130 -94 -130 -191 -130 -138 -130 -197 -130 -141 -130 -115 -130 -102 -130 -199 -130 -142 -130 -103 -130 -131 -131 -42 -131 -44 -131 -62 -131 -60 -131 -88 -131 -92 -131 -128 -131 -90 -131 -130 -131 -93 -131 -132 -131 -91 -131 -45 -131 -68 -131 -94 -131 -50 -131 -67 -131 -233 -131 -239 -131 -154 -131 -152 -131 -240 -131 -155 -131 -109 -131 -110 -131 -117 -131 -132 -132 -44 -132 -90 -132 -130 -132 -62 -132 -92 -132 -93 -132 -131 -132 -91 -132 -45 -132 -68 -132 -94 -132 -197 -132 -141 -132 -199 -132 -142 -132 -102 -132 -103 -132 -239 -132 -240 -132 -155 -132 -154 -132 -109 -132 -110 -132 -250 -132 -158 -132 -113 -132 -133 -133 -58 -133 -49 -133 -66 -133 -126 -133 -63 -133 -47 -133 -95 -133 -39 -133 -85 -133 -46 -133 -96 -133 -134 -133 -98 -133 -69 -133 -135 -133 -97 -133 -99 -133 -147 -133 -221 -133 -149 -133 -225 -133 -116 -133 -107 -133 -150 -133 -227 -133 -108 -133 -134 -134 -43 -134 -61 -134 -63 -134 -46 -134 -89 -134 -129 -134 -97 -134 -50 -134 -47 -134 -67 -134 -98 -134 -95 -134 -133 -134 -69 -134 -135 -134 -96 -134 -99 -134 -234 -134 -153 -134 -156 -134 -243 -134 -117 -134 -111 -134 -112 -134 -157 -134 -244 -134 -135 -135 -63 -135 -47 -135 -95 -135 -133 -135 -134 -135 -98 -135 -69 -135 -46 -135 -96 -135 -97 -135 -99 -135 -149 -135 -225 -135 -150 -135 -227 -135 -107 -135 -108 -135 -156 -135 -111 -135 -112 -135 -157 -135 -243 -135 -244 -135 -159 -135 -263 -135 -114 -135 -136 -136 -70 -136 -179 -136 -185 -136 -73 -136 -74 -136 -186 -136 -118 -136 -180 -136 -187 -136 -188 -136 -287 -136 -189 -136 -190 -136 -288 -136 -137 -136 -75 -136 -119 -136 -76 -136 -191 -136 -138 -136 -120 -136 -192 -136 -289 -136 -160 -136 -115 -136 -64 -136 -137 -137 -185 -137 -187 -137 -189 -137 -190 -137 -136 -137 -287 -137 -288 -137 -73 -137 -75 -137 -118 -137 -119 -137 -138 -137 -289 -137 -160 -137 -115 -137 -120 -137 -64 -137 -195 -137 -77 -137 -139 -137 -121 -137 -193 -137 -295 -137 -100 -137 -81 -137 -269 -137 -138 -138 -74 -138 -186 -138 -136 -138 -118 -138 -76 -138 -191 -138 -120 -138 -188 -138 -287 -138 -192 -138 -289 -138 -288 -138 -137 -138 -160 -138 -115 -138 -119 -138 -64 -138 -90 -138 -197 -138 -141 -138 -130 -138 -198 -138 -300 -138 -270 -138 -102 -138 -91 -138 -139 -139 -75 -139 -190 -139 -195 -139 -77 -139 -119 -139 -137 -139 -121 -139 -189 -139 -193 -139 -288 -139 -295 -139 -194 -139 -196 -139 -297 -139 -140 -139 -78 -139 -122 -139 -64 -139 -115 -139 -100 -139 -81 -139 -160 -139 -269 -139 -167 -139 -101 -139 -65 -139 -140 -140 -195 -140 -193 -140 -194 -140 -196 -140 -139 -140 -295 -140 -297 -140 -77 -140 -78 -140 -121 -140 -122 -140 -100 -140 -269 -140 -167 -140 -101 -140 -81 -140 -65 -140 -204 -140 -205 -140 -143 -140 -144 -140 -206 -140 -310 -140 -104 -140 -105 -140 -271 -140 -141 -141 -76 -141 -191 -141 -138 -141 -120 -141 -90 -141 -197 -141 -130 -141 -192 -141 -289 -141 -198 -141 -300 -141 -160 -141 -115 -141 -270 -141 -102 -141 -64 -141 -91 -141 -93 -141 -199 -141 -142 -141 -132 -141 -200 -141 -301 -141 -168 -141 -103 -141 -68 -141 -142 -142 -90 -142 -197 -142 -141 -142 -130 -142 -93 -142 -199 -142 -132 -142 -198 -142 -300 -142 -200 -142 -301 -142 -270 -142 -102 -142 -168 -142 -103 -142 -91 -142 -68 -142 -240 -142 -250 -142 -158 -142 -155 -142 -251 -142 -379 -142 -278 -142 -113 -142 -109 -142 -143 -143 -78 -143 -196 -143 -204 -143 -205 -143 -122 -143 -140 -143 -144 -143 -194 -143 -206 -143 -297 -143 -310 -143 -207 -143 -208 -143 -311 -143 -312 -143 -209 -143 -313 -143 -65 -143 -101 -143 -104 -143 -105 -143 -167 -143 -271 -143 -161 -143 -272 -143 -170 -143 -144 -144 -78 -144 -196 -144 -204 -144 -205 -144 -122 -144 -140 -144 -143 -144 -208 -144 -209 -144 -312 -144 -313 -144 -65 -144 -101 -144 -104 -144 -105 -144 -272 -144 -170 -144 -79 -144 -223 -144 -123 -144 -148 -144 -224 -144 -341 -144 -82 -144 -106 -144 -274 -144 -145 -145 -71 -145 -83 -145 -215 -145 -181 -145 -84 -145 -125 -145 -216 -145 -80 -145 -217 -145 -124 -145 -146 -145 -218 -145 -219 -145 -338 -145 -339 -145 -182 -145 -220 -145 -85 -145 -126 -145 -147 -145 -221 -145 -66 -145 -116 -145 -162 -145 -340 -145 -222 -145 -146 -146 -83 -146 -80 -146 -217 -146 -215 -146 -125 -146 -124 -146 -145 -146 -218 -146 -219 -146 -338 -146 -339 -146 -126 -146 -66 -146 -116 -146 -147 -146 -162 -146 -340 -146 -79 -146 -223 -146 -123 -146 -148 -146 -224 -146 -341 -146 -82 -146 -106 -146 -274 -146 -147 -147 -84 -147 -125 -147 -145 -147 -216 -147 -85 -147 -126 -147 -221 -147 -124 -147 -146 -147 -66 -147 -116 -147 -338 -147 -339 -147 -162 -147 -340 -147 -220 -147 -222 -147 -96 -147 -133 -147 -149 -147 -225 -147 -95 -147 -107 -147 -275 -147 -348 -147 -226 -147 -148 -148 -80 -148 -79 -148 -223 -148 -217 -148 -124 -148 -123 -148 -146 -148 -78 -148 -205 -148 -122 -148 -144 -148 -209 -148 -224 -148 -313 -148 -341 -148 -218 -148 -338 -148 -66 -148 -82 -148 -106 -148 -116 -148 -65 -148 -105 -148 -170 -148 -274 -148 -162 -148 -149 -149 -85 -149 -126 -149 -147 -149 -221 -149 -96 -149 -133 -149 -225 -149 -66 -149 -116 -149 -95 -149 -107 -149 -162 -149 -340 -149 -275 -149 -348 -149 -222 -149 -226 -149 -99 -149 -135 -149 -150 -149 -227 -149 -69 -149 -108 -149 -173 -149 -349 -149 -228 -149 -150 -150 -96 -150 -133 -150 -149 -150 -225 -150 -99 -150 -135 -150 -227 -150 -95 -150 -107 -150 -69 -150 -108 -150 -275 -150 -348 -150 -173 -150 -349 -150 -226 -150 -228 -150 -244 -150 -157 -150 -159 -150 -263 -150 -112 -150 -114 -150 -284 -150 -426 -150 -264 -150 -151 -151 -72 -151 -86 -151 -127 -151 -87 -151 -183 -151 -231 -151 -232 -151 -88 -151 -128 -151 -233 -151 -152 -151 -67 -151 -129 -151 -117 -151 -153 -151 -89 -151 -234 -151 -184 -151 -235 -151 -356 -151 -236 -151 -237 -151 -357 -151 -163 -151 -358 -151 -238 -151 -152 -152 -86 -152 -88 -152 -128 -152 -127 -152 -231 -152 -233 -152 -151 -152 -67 -152 -129 -152 -117 -152 -153 -152 -235 -152 -237 -152 -357 -152 -356 -152 -163 -152 -358 -152 -92 -152 -131 -152 -239 -152 -154 -152 -94 -152 -110 -152 -241 -152 -359 -152 -276 -152 -153 -153 -127 -153 -128 -153 -67 -153 -129 -153 -151 -153 -152 -153 -117 -153 -87 -153 -89 -153 -232 -153 -234 -153 -356 -153 -357 -153 -163 -153 -358 -153 -236 -153 -238 -153 -134 -153 -97 -153 -156 -153 -243 -153 -98 -153 -111 -153 -361 -153 -245 -153 -277 -153 -154 -154 -88 -154 -92 -154 -131 -154 -128 -154 -233 -154 -239 -154 -152 -154 -93 -154 -132 -154 -240 -154 -155 -154 -68 -154 -94 -154 -109 -154 -110 -154 -67 -154 -117 -154 -237 -154 -241 -154 -359 -154 -357 -154 -242 -154 -360 -154 -174 -154 -276 -154 -163 -154 -155 -155 -92 -155 -93 -155 -132 -155 -131 -155 -239 -155 -240 -155 -154 -155 -68 -155 -94 -155 -109 -155 -110 -155 -241 -155 -242 -155 -360 -155 -359 -155 -174 -155 -276 -155 -199 -155 -142 -155 -250 -155 -158 -155 -103 -155 -113 -155 -252 -155 -380 -155 -279 -155 -156 -156 -89 -156 -129 -156 -134 -156 -97 -156 -234 -156 -153 -156 -243 -156 -67 -156 -98 -156 -117 -156 -111 -156 -69 -156 -135 -156 -112 -156 -157 -156 -99 -156 -244 -156 -238 -156 -358 -156 -361 -156 -245 -156 -163 -156 -277 -156 -176 -156 -362 -156 -246 -156 -157 -157 -134 -157 -98 -157 -69 -157 -135 -157 -156 -157 -111 -157 -112 -157 -97 -157 -99 -157 -243 -157 -244 -157 -361 -157 -277 -157 -176 -157 -362 -157 -245 -157 -246 -157 -150 -157 -227 -157 -159 -157 -263 -157 -108 -157 -114 -157 -427 -157 -265 -157 -285 -157 -158 -158 -93 -158 -199 -158 -142 -158 -132 -158 -240 -158 -250 -158 -155 -158 -200 -158 -301 -158 -251 -158 -379 -158 -168 -158 -103 -158 -278 -158 -113 -158 -68 -158 -109 -158 -242 -158 -252 -158 -380 -158 -360 -158 -253 -158 -381 -158 -164 -158 -279 -158 -174 -158 -159 -159 -99 -159 -135 -159 -150 -159 -227 -159 -244 -159 -157 -159 -263 -159 -69 -159 -108 -159 -112 -159 -114 -159 -173 -159 -349 -159 -284 -159 -426 -159 -228 -159 -264 -159 -246 -159 -362 -159 -427 -159 -265 -159 -176 -159 -285 -159 -166 -159 -428 -159 -266 -159 -160 -160 -64 -160 -167 -160 -65 -160 -68 -160 -168 -160 -169 -160 -51 -160 -136 -160 -287 -160 -288 -160 -137 -160 -138 -160 -289 -160 -115 -160 -290 -160 -291 -160 -292 -160 -293 -160 -294 -160 -295 -160 -298 -160 -269 -160 -139 -160 -100 -160 -141 -160 -300 -160 -270 -160 -102 -160 -302 -160 -303 -160 -306 -160 -201 -160 -161 -161 -65 -161 -167 -161 -170 -161 -51 -161 -169 -161 -171 -161 -172 -161 -143 -161 -310 -161 -311 -161 -312 -161 -104 -161 -271 -161 -272 -161 -314 -161 -315 -161 -316 -161 -317 -161 -318 -161 -319 -161 -320 -161 -321 -161 -322 -161 -324 -161 -210 -161 -326 -161 -327 -161 -273 -161 -330 -161 -331 -161 -213 -161 -334 -161 -162 -162 -66 -162 -65 -162 -170 -162 -69 -162 -51 -162 -172 -162 -173 -162 -145 -162 -146 -162 -338 -162 -339 -162 -147 -162 -116 -162 -340 -162 -148 -162 -341 -162 -106 -162 -274 -162 -342 -162 -343 -162 -344 -162 -345 -162 -346 -162 -347 -162 -149 -162 -107 -162 -275 -162 -348 -162 -229 -162 -350 -162 -351 -162 -354 -162 -163 -163 -67 -163 -68 -163 -51 -163 -69 -163 -174 -163 -175 -163 -176 -163 -151 -163 -152 -163 -117 -163 -153 -163 -356 -163 -357 -163 -358 -163 -154 -163 -110 -163 -359 -163 -276 -163 -111 -163 -156 -163 -277 -163 -361 -163 -363 -163 -364 -163 -365 -163 -366 -163 -367 -163 -370 -163 -247 -163 -371 -163 -372 -163 -377 -163 -164 -164 -68 -164 -168 -164 -169 -164 -51 -164 -174 -164 -177 -164 -175 -164 -158 -164 -379 -164 -278 -164 -113 -164 -380 -164 -381 -164 -279 -164 -382 -164 -383 -164 -384 -164 -385 -164 -386 -164 -254 -164 -388 -164 -280 -164 -390 -164 -391 -164 -392 -164 -393 -164 -394 -164 -395 -164 -396 -164 -397 -164 -256 -164 -400 -164 -165 -165 -51 -165 -169 -165 -171 -165 -172 -165 -175 -165 -177 -165 -178 -165 -258 -165 -402 -165 -403 -165 -281 -165 -282 -165 -404 -165 -405 -165 -406 -165 -407 -165 -408 -165 -409 -165 -260 -165 -410 -165 -283 -165 -412 -165 -261 -165 -414 -165 -416 -165 -417 -165 -418 -165 -420 -165 -421 -165 -422 -165 -423 -165 -424 -165 -166 -166 -69 -166 -51 -166 -172 -166 -173 -166 -176 -166 -175 -166 -178 -166 -159 -166 -114 -166 -284 -166 -426 -166 -427 -166 -285 -166 -428 -166 -267 -166 -429 -166 -430 -166 -286 -166 -431 -166 -432 -166 -433 -166 -434 -166 -435 -166 -436 -166 -437 -166 -438 -166 -268 -166 -439 -166 -440 -166 -441 -166 -442 -166 -443 -166 -167 -167 -64 -167 -160 -167 -65 -167 -68 -167 -168 -167 -169 -167 -51 -167 -161 -167 -170 -167 -171 -167 -172 -167 -295 -167 -294 -167 -296 -167 -297 -167 -269 -167 -298 -167 -299 -167 -139 -167 -140 -167 -100 -167 -101 -167 -201 -167 -306 -167 -307 -167 -202 -167 -310 -167 -143 -167 -271 -167 -104 -167 -314 -167 -316 -167 -326 -167 -210 -167 -168 -168 -64 -168 -160 -168 -167 -168 -65 -168 -68 -168 -169 -168 -51 -168 -174 -168 -164 -168 -177 -168 -175 -168 -141 -168 -300 -168 -270 -168 -102 -168 -142 -168 -301 -168 -103 -168 -302 -168 -303 -168 -304 -168 -305 -168 -306 -168 -201 -168 -308 -168 -203 -168 -158 -168 -379 -168 -278 -168 -113 -168 -382 -168 -383 -168 -386 -168 -254 -168 -169 -169 -64 -169 -160 -169 -167 -169 -65 -169 -68 -169 -168 -169 -51 -169 -161 -169 -170 -169 -171 -169 -172 -169 -174 -169 -164 -169 -177 -169 -175 -169 -165 -169 -178 -169 -201 -169 -306 -169 -307 -169 -202 -169 -203 -169 -308 -169 -309 -169 -326 -169 -210 -169 -328 -169 -211 -169 -254 -169 -386 -169 -387 -169 -255 -169 -402 -169 -258 -169 -170 -170 -65 -170 -167 -170 -161 -170 -51 -170 -169 -170 -171 -170 -172 -170 -66 -170 -162 -170 -69 -170 -173 -170 -144 -170 -143 -170 -312 -170 -313 -170 -105 -170 -104 -170 -272 -170 -322 -170 -323 -170 -324 -170 -325 -170 -212 -170 -213 -170 -334 -170 -335 -170 -148 -170 -341 -170 -106 -170 -274 -170 -342 -170 -344 -170 -229 -170 -350 -170 -171 -171 -65 -171 -167 -171 -161 -171 -170 -171 -51 -171 -169 -171 -172 -171 -175 -171 -177 -171 -165 -171 -178 -171 -210 -171 -326 -171 -327 -171 -273 -171 -211 -171 -328 -171 -329 -171 -330 -171 -331 -171 -332 -171 -333 -171 -213 -171 -334 -171 -214 -171 -336 -171 -258 -171 -402 -171 -403 -171 -281 -171 -406 -171 -407 -171 -260 -171 -410 -171 -172 -172 -65 -172 -167 -172 -161 -172 -170 -172 -51 -172 -169 -172 -171 -172 -66 -172 -162 -172 -69 -172 -173 -172 -175 -172 -177 -172 -165 -172 -178 -172 -176 -172 -166 -172 -212 -172 -213 -172 -334 -172 -335 -172 -214 -172 -336 -172 -337 -172 -229 -172 -350 -172 -230 -172 -352 -172 -259 -172 -260 -172 -410 -172 -411 -172 -267 -172 -429 -172 -173 -173 -66 -173 -65 -173 -170 -173 -162 -173 -69 -173 -51 -173 -172 -173 -176 -173 -175 -173 -178 -173 -166 -173 -149 -173 -107 -173 -275 -173 -348 -173 -150 -173 -108 -173 -349 -173 -229 -173 -350 -173 -351 -173 -230 -173 -352 -173 -353 -173 -354 -173 -355 -173 -159 -173 -114 -173 -284 -173 -426 -173 -267 -173 -429 -173 -430 -173 -433 -173 -174 -174 -67 -174 -68 -174 -51 -174 -69 -174 -163 -174 -175 -174 -176 -174 -168 -174 -169 -174 -164 -174 -177 -174 -154 -174 -155 -174 -109 -174 -110 -174 -359 -174 -360 -174 -276 -174 -367 -174 -368 -174 -369 -174 -370 -174 -248 -174 -247 -174 -373 -174 -371 -174 -158 -174 -113 -174 -380 -174 -279 -174 -390 -174 -393 -174 -256 -174 -400 -174 -175 -175 -67 -175 -68 -175 -51 -175 -69 -175 -163 -175 -174 -175 -176 -175 -168 -175 -169 -175 -164 -175 -177 -175 -171 -175 -172 -175 -165 -175 -178 -175 -173 -175 -166 -175 -247 -175 -248 -175 -249 -175 -371 -175 -373 -175 -374 -175 -375 -175 -256 -175 -257 -175 -400 -175 -401 -175 -261 -175 -262 -175 -414 -175 -415 -175 -268 -175 -439 -175 -176 -176 -67 -176 -68 -176 -51 -176 -69 -176 -163 -176 -174 -176 -175 -176 -172 -176 -173 -176 -178 -176 -166 -176 -156 -176 -111 -176 -112 -176 -157 -176 -361 -176 -277 -176 -362 -176 -247 -176 -249 -176 -372 -176 -371 -176 -375 -176 -376 -176 -377 -176 -378 -176 -114 -176 -159 -176 -285 -176 -427 -176 -436 -176 -435 -176 -268 -176 -439 -176 -177 -177 -68 -177 -168 -177 -169 -177 -51 -177 -174 -177 -164 -177 -175 -177 -171 -177 -172 -177 -165 -177 -178 -177 -254 -177 -386 -177 -387 -177 -255 -177 -280 -177 -388 -177 -389 -177 -397 -177 -396 -177 -398 -177 -399 -177 -256 -177 -257 -177 -400 -177 -401 -177 -402 -177 -258 -177 -404 -177 -282 -177 -261 -177 -416 -177 -414 -177 -420 -177 -178 -178 -51 -178 -169 -178 -171 -178 -172 -178 -175 -178 -177 -178 -165 -178 -69 -178 -173 -178 -176 -178 -166 -178 -259 -178 -260 -178 -410 -178 -411 -178 -283 -178 -412 -178 -413 -178 -262 -178 -261 -178 -415 -178 -414 -178 -418 -178 -419 -178 -424 -178 -425 -178 -267 -178 -429 -178 -286 -178 -431 -178 -268 -178 -439 -178 -440 -178 -441 -178 -179 -179 -70 -179 -185 -179 -73 -179 -74 -179 -186 -179 -136 -179 -118 -179 -180 -179 -187 -179 -188 -179 -287 -179 -180 -180 -179 -180 -187 -180 -185 -180 -186 -180 -188 -180 -287 -180 -136 -180 -451 -180 -517 -180 -518 -180 -290 -180 -181 -181 -71 -181 -83 -181 -215 -181 -84 -181 -125 -181 -145 -181 -216 -181 -219 -181 -182 -181 -339 -181 -220 -181 -182 -182 -181 -182 -215 -182 -219 -182 -216 -182 -145 -182 -339 -182 -220 -182 -581 -182 -473 -182 -346 -182 -582 -182 -183 -183 -72 -183 -86 -183 -127 -183 -87 -183 -231 -183 -151 -183 -232 -183 -184 -183 -235 -183 -356 -183 -236 -183 -184 -184 -183 -184 -231 -184 -151 -184 -232 -184 -235 -184 -356 -184 -236 -184 -479 -184 -594 -184 -363 -184 -595 -184 -185 -185 -70 -185 -179 -185 -73 -185 -74 -185 -186 -185 -136 -185 -118 -185 -180 -185 -187 -185 -188 -185 -287 -185 -189 -185 -190 -185 -288 -185 -137 -185 -75 -185 -119 -185 -186 -186 -70 -186 -179 -186 -185 -186 -73 -186 -74 -186 -136 -186 -118 -186 -180 -186 -187 -186 -188 -186 -287 -186 -76 -186 -191 -186 -138 -186 -120 -186 -192 -186 -289 -186 -187 -187 -179 -187 -180 -187 -185 -187 -186 -187 -188 -187 -287 -187 -136 -187 -189 -187 -190 -187 -288 -187 -137 -187 -451 -187 -517 -187 -518 -187 -290 -187 -520 -187 -291 -187 -188 -188 -179 -188 -180 -188 -187 -188 -185 -188 -186 -188 -287 -188 -136 -188 -191 -188 -192 -188 -289 -188 -138 -188 -451 -188 -517 -188 -518 -188 -290 -188 -522 -188 -292 -188 -189 -189 -185 -189 -187 -189 -190 -189 -136 -189 -287 -189 -288 -189 -137 -189 -517 -189 -520 -189 -290 -189 -291 -189 -525 -189 -193 -189 -294 -189 -295 -189 -195 -189 -139 -189 -190 -190 -185 -190 -187 -190 -189 -190 -136 -190 -287 -190 -288 -190 -137 -190 -73 -190 -75 -190 -118 -190 -119 -190 -195 -190 -77 -190 -139 -190 -121 -190 -193 -190 -295 -190 -191 -191 -74 -191 -186 -191 -136 -191 -118 -191 -76 -191 -138 -191 -120 -191 -188 -191 -287 -191 -192 -191 -289 -191 -90 -191 -197 -191 -141 -191 -130 -191 -198 -191 -300 -191 -192 -192 -186 -192 -188 -192 -287 -192 -136 -192 -191 -192 -289 -192 -138 -192 -518 -192 -290 -192 -522 -192 -292 -192 -197 -192 -198 -192 -300 -192 -141 -192 -531 -192 -302 -192 -193 -193 -189 -193 -520 -193 -525 -193 -288 -193 -291 -193 -294 -193 -295 -193 -527 -193 -194 -193 -296 -193 -297 -193 -190 -193 -195 -193 -137 -193 -139 -193 -196 -193 -140 -193 -194 -194 -193 -194 -525 -194 -527 -194 -295 -194 -294 -194 -296 -194 -297 -194 -195 -194 -196 -194 -139 -194 -140 -194 -206 -194 -204 -194 -310 -194 -143 -194 -541 -194 -314 -194 -195 -195 -75 -195 -190 -195 -77 -195 -119 -195 -137 -195 -139 -195 -121 -195 -189 -195 -193 -195 -288 -195 -295 -195 -194 -195 -196 -195 -297 -195 -140 -195 -78 -195 -122 -195 -196 -196 -195 -196 -193 -196 -194 -196 -139 -196 -295 -196 -297 -196 -140 -196 -77 -196 -78 -196 -121 -196 -122 -196 -204 -196 -205 -196 -143 -196 -144 -196 -206 -196 -310 -196 -197 -197 -76 -197 -191 -197 -138 -197 -120 -197 -90 -197 -141 -197 -130 -197 -192 -197 -289 -197 -198 -197 -300 -197 -93 -197 -199 -197 -142 -197 -132 -197 -200 -197 -301 -197 -198 -198 -191 -198 -192 -198 -289 -198 -138 -198 -197 -198 -300 -198 -141 -198 -199 -198 -200 -198 -301 -198 -142 -198 -522 -198 -292 -198 -531 -198 -302 -198 -534 -198 -304 -198 -199 -199 -90 -199 -197 -199 -141 -199 -130 -199 -93 -199 -142 -199 -132 -199 -198 -199 -300 -199 -200 -199 -301 -199 -240 -199 -250 -199 -158 -199 -155 -199 -251 -199 -379 -199 -200 -200 -197 -200 -198 -200 -300 -200 -141 -200 -199 -200 -301 -200 -142 -200 -531 -200 -302 -200 -534 -200 -304 -200 -250 -200 -251 -200 -379 -200 -158 -200 -618 -200 -382 -200 -201 -201 -160 -201 -293 -201 -298 -201 -269 -201 -270 -201 -303 -201 -306 -201 -299 -201 -167 -201 -307 -201 -202 -201 -168 -201 -305 -201 -308 -201 -203 -201 -309 -201 -169 -201 -202 -202 -269 -202 -298 -202 -299 -202 -167 -202 -201 -202 -306 -202 -307 -202 -203 -202 -308 -202 -309 -202 -169 -202 -316 -202 -271 -202 -326 -202 -210 -202 -328 -202 -211 -202 -203 -203 -270 -203 -303 -203 -306 -203 -201 -203 -168 -203 -305 -203 -308 -203 -307 -203 -202 -203 -309 -203 -169 -203 -278 -203 -383 -203 -386 -203 -254 -203 -387 -203 -255 -203 -204 -204 -78 -204 -196 -204 -205 -204 -122 -204 -140 -204 -143 -204 -144 -204 -194 -204 -206 -204 -297 -204 -310 -204 -207 -204 -208 -204 -311 -204 -312 -204 -209 -204 -313 -204 -205 -205 -78 -205 -196 -205 -204 -205 -122 -205 -140 -205 -143 -205 -144 -205 -208 -205 -209 -205 -312 -205 -313 -205 -79 -205 -223 -205 -123 -205 -148 -205 -224 -205 -341 -205 -206 -206 -196 -206 -194 -206 -204 -206 -140 -206 -297 -206 -310 -206 -143 -206 -207 -206 -208 -206 -311 -206 -312 -206 -527 -206 -541 -206 -296 -206 -314 -206 -543 -206 -315 -206 -207 -207 -204 -207 -206 -207 -208 -207 -143 -207 -310 -207 -311 -207 -312 -207 -541 -207 -543 -207 -314 -207 -315 -207 -547 -207 -548 -207 -318 -207 -319 -207 -555 -207 -322 -207 -208 -208 -204 -208 -206 -208 -207 -208 -143 -208 -310 -208 -311 -208 -312 -208 -205 -208 -209 -208 -144 -208 -313 -208 -555 -208 -556 -208 -322 -208 -323 -208 -548 -208 -319 -208 -209 -209 -205 -209 -204 -209 -208 -209 -144 -209 -143 -209 -312 -209 -313 -209 -555 -209 -556 -209 -322 -209 -323 -209 -223 -209 -224 -209 -148 -209 -341 -209 -575 -209 -342 -209 -210 -210 -167 -210 -299 -210 -316 -210 -271 -210 -202 -210 -307 -210 -326 -210 -317 -210 -161 -210 -327 -210 -273 -210 -169 -210 -309 -210 -328 -210 -211 -210 -329 -210 -171 -210 -211 -211 -202 -211 -307 -211 -326 -211 -210 -211 -169 -211 -309 -211 -328 -211 -327 -211 -273 -211 -329 -211 -171 -211 -255 -211 -387 -211 -402 -211 -258 -211 -403 -211 -281 -211 -212 -212 -170 -212 -272 -212 -324 -212 -325 -212 -213 -212 -334 -212 -335 -212 -172 -212 -214 -212 -336 -212 -337 -212 -274 -212 -344 -212 -229 -212 -350 -212 -230 -212 -352 -212 -213 -213 -170 -213 -272 -213 -324 -213 -325 -213 -212 -213 -334 -213 -335 -213 -161 -213 -321 -213 -273 -213 -331 -213 -172 -213 -214 -213 -336 -213 -337 -213 -171 -213 -333 -213 -214 -214 -212 -214 -213 -214 -334 -214 -335 -214 -172 -214 -336 -214 -337 -214 -273 -214 -331 -214 -171 -214 -333 -214 -259 -214 -260 -214 -410 -214 -411 -214 -281 -214 -407 -214 -215 -215 -71 -215 -83 -215 -181 -215 -84 -215 -125 -215 -145 -215 -216 -215 -80 -215 -217 -215 -124 -215 -146 -215 -218 -215 -219 -215 -338 -215 -339 -215 -182 -215 -220 -215 -216 -216 -71 -216 -83 -216 -215 -216 -181 -216 -84 -216 -125 -216 -145 -216 -219 -216 -182 -216 -339 -216 -220 -216 -85 -216 -126 -216 -147 -216 -221 -216 -340 -216 -222 -216 -217 -217 -83 -217 -80 -217 -215 -217 -125 -217 -124 -217 -146 -217 -145 -217 -218 -217 -219 -217 -338 -217 -339 -217 -79 -217 -223 -217 -123 -217 -148 -217 -224 -217 -341 -217 -218 -218 -215 -218 -217 -218 -219 -218 -145 -218 -146 -218 -338 -218 -339 -218 -223 -218 -224 -218 -148 -218 -341 -218 -575 -218 -576 -218 -342 -218 -343 -218 -581 -218 -346 -218 -219 -219 -215 -219 -217 -219 -218 -219 -145 -219 -146 -219 -338 -219 -339 -219 -181 -219 -182 -219 -216 -219 -220 -219 -581 -219 -473 -219 -346 -219 -582 -219 -576 -219 -343 -219 -220 -220 -181 -220 -215 -220 -219 -220 -182 -220 -216 -220 -145 -220 -339 -220 -221 -220 -147 -220 -340 -220 -222 -220 -581 -220 -473 -220 -346 -220 -582 -220 -347 -220 -584 -220 -221 -221 -84 -221 -125 -221 -145 -221 -216 -221 -85 -221 -126 -221 -147 -221 -339 -221 -220 -221 -340 -221 -222 -221 -96 -221 -133 -221 -149 -221 -225 -221 -348 -221 -226 -221 -222 -222 -216 -222 -145 -222 -339 -222 -220 -222 -221 -222 -147 -222 -340 -222 -346 -222 -582 -222 -347 -222 -584 -222 -225 -222 -149 -222 -348 -222 -226 -222 -354 -222 -590 -222 -223 -223 -80 -223 -79 -223 -217 -223 -124 -223 -123 -223 -148 -223 -146 -223 -78 -223 -205 -223 -122 -223 -144 -223 -209 -223 -224 -223 -313 -223 -341 -223 -218 -223 -338 -223 -224 -224 -223 -224 -205 -224 -209 -224 -148 -224 -144 -224 -313 -224 -341 -224 -217 -224 -218 -224 -146 -224 -338 -224 -575 -224 -576 -224 -342 -224 -343 -224 -556 -224 -323 -224 -225 -225 -85 -225 -126 -225 -147 -225 -221 -225 -96 -225 -133 -225 -149 -225 -340 -225 -222 -225 -348 -225 -226 -225 -99 -225 -135 -225 -150 -225 -227 -225 -349 -225 -228 -225 -226 -226 -221 -226 -147 -226 -340 -226 -222 -226 -225 -226 -149 -226 -348 -226 -227 -226 -150 -226 -349 -226 -228 -226 -347 -226 -584 -226 -354 -226 -590 -226 -355 -226 -592 -226 -227 -227 -96 -227 -133 -227 -149 -227 -225 -227 -99 -227 -135 -227 -150 -227 -348 -227 -226 -227 -349 -227 -228 -227 -244 -227 -157 -227 -159 -227 -263 -227 -426 -227 -264 -227 -228 -228 -225 -228 -149 -228 -348 -228 -226 -228 -227 -228 -150 -228 -349 -228 -354 -228 -590 -228 -355 -228 -592 -228 -263 -228 -159 -228 -426 -228 -264 -228 -433 -228 -684 -228 -229 -229 -162 -229 -274 -229 -344 -229 -345 -229 -275 -229 -350 -229 -351 -229 -170 -229 -325 -229 -212 -229 -335 -229 -173 -229 -230 -229 -352 -229 -353 -229 -172 -229 -337 -229 -230 -230 -275 -230 -229 -230 -350 -230 -351 -230 -173 -230 -352 -230 -353 -230 -212 -230 -335 -230 -172 -230 -337 -230 -284 -230 -267 -230 -429 -230 -430 -230 -259 -230 -411 -230 -231 -231 -72 -231 -86 -231 -127 -231 -87 -231 -183 -231 -151 -231 -232 -231 -88 -231 -128 -231 -233 -231 -152 -231 -184 -231 -235 -231 -356 -231 -236 -231 -237 -231 -357 -231 -232 -232 -72 -232 -86 -232 -127 -232 -87 -232 -183 -232 -231 -232 -151 -232 -129 -232 -89 -232 -153 -232 -234 -232 -184 -232 -235 -232 -356 -232 -236 -232 -358 -232 -238 -232 -233 -233 -86 -233 -88 -233 -128 -233 -127 -233 -231 -233 -152 -233 -151 -233 -235 -233 -237 -233 -357 -233 -356 -233 -92 -233 -131 -233 -239 -233 -154 -233 -241 -233 -359 -233 -234 -234 -87 -234 -127 -234 -129 -234 -89 -234 -232 -234 -151 -234 -153 -234 -236 -234 -356 -234 -358 -234 -238 -234 -134 -234 -97 -234 -156 -234 -243 -234 -361 -234 -245 -234 -235 -235 -183 -235 -231 -235 -151 -235 -232 -235 -184 -235 -356 -235 -236 -235 -233 -235 -152 -235 -237 -235 -357 -235 -479 -235 -594 -235 -363 -235 -595 -235 -596 -235 -364 -235 -236 -236 -183 -236 -231 -236 -151 -236 -232 -236 -184 -236 -235 -236 -356 -236 -153 -236 -234 -236 -358 -236 -238 -236 -479 -236 -594 -236 -363 -236 -595 -236 -366 -236 -597 -236 -237 -237 -231 -237 -233 -237 -152 -237 -151 -237 -235 -237 -357 -237 -356 -237 -239 -237 -154 -237 -241 -237 -359 -237 -594 -237 -596 -237 -364 -237 -363 -237 -602 -237 -367 -237 -238 -238 -232 -238 -151 -238 -153 -238 -234 -238 -236 -238 -356 -238 -358 -238 -156 -238 -243 -238 -361 -238 -245 -238 -595 -238 -363 -238 -366 -238 -597 -238 -377 -238 -614 -238 -239 -239 -88 -239 -92 -239 -131 -239 -128 -239 -233 -239 -154 -239 -152 -239 -93 -239 -132 -239 -240 -239 -155 -239 -237 -239 -241 -239 -359 -239 -357 -239 -242 -239 -360 -239 -240 -240 -92 -240 -93 -240 -132 -240 -131 -240 -239 -240 -155 -240 -154 -240 -241 -240 -242 -240 -360 -240 -359 -240 -199 -240 -142 -240 -250 -240 -158 -240 -252 -240 -380 -240 -241 -241 -233 -241 -239 -241 -154 -241 -152 -241 -237 -241 -359 -241 -357 -241 -240 -241 -155 -241 -242 -241 -360 -241 -596 -241 -602 -241 -367 -241 -364 -241 -603 -241 -368 -241 -242 -242 -239 -242 -240 -242 -155 -242 -154 -242 -241 -242 -360 -242 -359 -242 -602 -242 -603 -242 -368 -242 -367 -242 -250 -242 -158 -242 -252 -242 -380 -242 -628 -242 -390 -242 -243 -243 -89 -243 -129 -243 -134 -243 -97 -243 -234 -243 -153 -243 -156 -243 -135 -243 -99 -243 -157 -243 -244 -243 -238 -243 -358 -243 -361 -243 -245 -243 -362 -243 -246 -243 -244 -244 -97 -244 -134 -244 -135 -244 -99 -244 -243 -244 -156 -244 -157 -244 -245 -244 -361 -244 -362 -244 -246 -244 -150 -244 -227 -244 -159 -244 -263 -244 -427 -244 -265 -244 -245 -245 -234 -245 -153 -245 -156 -245 -243 -245 -238 -245 -358 -245 -361 -245 -157 -245 -244 -245 -362 -245 -246 -245 -597 -245 -366 -245 -377 -245 -614 -245 -378 -245 -615 -245 -246 -246 -243 -246 -156 -246 -157 -246 -244 -246 -245 -246 -361 -246 -362 -246 -614 -246 -377 -246 -378 -246 -615 -246 -159 -246 -263 -246 -427 -246 -265 -246 -435 -246 -688 -246 -247 -247 -163 -247 -276 -247 -277 -247 -365 -247 -370 -247 -371 -247 -372 -247 -174 -247 -248 -247 -369 -247 -373 -247 -175 -247 -249 -247 -374 -247 -375 -247 -176 -247 -376 -247 -248 -248 -276 -248 -174 -248 -247 -248 -370 -248 -369 -248 -373 -248 -371 -248 -175 -248 -249 -248 -374 -248 -375 -248 -279 -248 -256 -248 -393 -248 -400 -248 -257 -248 -401 -248 -249 -249 -247 -249 -248 -249 -175 -249 -371 -249 -373 -249 -374 -249 -375 -249 -277 -249 -176 -249 -372 -249 -376 -249 -268 -249 -285 -249 -439 -249 -436 -249 -262 -249 -415 -249 -250 -250 -93 -250 -199 -250 -142 -250 -132 -250 -240 -250 -158 -250 -155 -250 -200 -250 -301 -250 -251 -250 -379 -250 -242 -250 -252 -250 -380 -250 -360 -250 -253 -250 -381 -250 -251 -251 -199 -251 -200 -251 -301 -251 -142 -251 -250 -251 -379 -251 -158 -251 -252 -251 -253 -251 -381 -251 -380 -251 -534 -251 -304 -251 -618 -251 -382 -251 -621 -251 -384 -251 -252 -252 -240 -252 -250 -252 -158 -252 -155 -252 -242 -252 -380 -252 -360 -252 -251 -252 -379 -252 -253 -252 -381 -252 -603 -252 -628 -252 -390 -252 -368 -252 -629 -252 -391 -252 -253 -253 -250 -253 -251 -253 -379 -253 -158 -253 -252 -253 -381 -253 -380 -253 -618 -253 -382 -253 -621 -253 -384 -253 -628 -253 -629 -253 -391 -253 -390 -253 -634 -253 -394 -253 -254 -254 -168 -254 -305 -254 -308 -254 -203 -254 -278 -254 -383 -254 -386 -254 -309 -254 -169 -254 -387 -254 -255 -254 -164 -254 -385 -254 -388 -254 -280 -254 -389 -254 -177 -254 -255 -255 -203 -255 -308 -255 -309 -255 -169 -255 -254 -255 -386 -255 -387 -255 -280 -255 -388 -255 -389 -255 -177 -255 -328 -255 -211 -255 -402 -255 -258 -255 -404 -255 -282 -255 -256 -256 -174 -256 -279 -256 -248 -256 -369 -256 -393 -256 -400 -256 -373 -256 -164 -256 -280 -256 -392 -256 -397 -256 -177 -256 -257 -256 -399 -256 -401 -256 -175 -256 -374 -256 -257 -257 -256 -257 -280 -257 -177 -257 -400 -257 -397 -257 -399 -257 -401 -257 -248 -257 -175 -257 -373 -257 -374 -257 -261 -257 -262 -257 -414 -257 -415 -257 -282 -257 -416 -257 -258 -258 -169 -258 -309 -258 -328 -258 -211 -258 -255 -258 -387 -258 -402 -258 -329 -258 -171 -258 -403 -258 -281 -258 -177 -258 -389 -258 -404 -258 -282 -258 -405 -258 -165 -258 -259 -259 -172 -259 -214 -259 -336 -259 -337 -259 -260 -259 -410 -259 -411 -259 -178 -259 -283 -259 -412 -259 -413 -259 -230 -259 -352 -259 -267 -259 -429 -259 -286 -259 -431 -259 -260 -260 -172 -260 -214 -260 -336 -260 -337 -260 -259 -260 -410 -260 -411 -260 -171 -260 -333 -260 -281 -260 -407 -260 -178 -260 -283 -260 -412 -260 -413 -260 -165 -260 -409 -260 -261 -261 -175 -261 -257 -261 -262 -261 -374 -261 -401 -261 -414 -261 -415 -261 -177 -261 -282 -261 -399 -261 -416 -261 -165 -261 -283 -261 -417 -261 -418 -261 -178 -261 -419 -261 -262 -262 -175 -262 -257 -262 -261 -262 -374 -262 -401 -262 -414 -262 -415 -262 -283 -262 -178 -262 -418 -262 -419 -262 -249 -262 -268 -262 -375 -262 -439 -262 -286 -262 -440 -262 -263 -263 -99 -263 -135 -263 -150 -263 -227 -263 -244 -263 -157 -263 -159 -263 -349 -263 -228 -263 -426 -263 -264 -263 -246 -263 -362 -263 -427 -263 -265 -263 -428 -263 -266 -263 -264 -264 -227 -264 -150 -264 -349 -264 -228 -264 -263 -264 -159 -264 -426 -264 -265 -264 -427 -264 -428 -264 -266 -264 -355 -264 -592 -264 -433 -264 -684 -264 -434 -264 -686 -264 -265 -265 -244 -265 -157 -265 -159 -265 -263 -265 -246 -265 -362 -265 -427 -265 -426 -265 -264 -265 -428 -265 -266 -265 -615 -265 -378 -265 -435 -265 -688 -265 -438 -265 -689 -265 -266 -266 -263 -266 -159 -266 -426 -266 -264 -266 -265 -266 -427 -266 -428 -266 -433 -266 -684 -266 -434 -266 -686 -266 -688 -266 -435 -266 -438 -266 -689 -266 -443 -266 -700 -266 -267 -267 -173 -267 -230 -267 -352 -267 -353 -267 -284 -267 -429 -267 -430 -267 -172 -267 -337 -267 -259 -267 -411 -267 -166 -267 -286 -267 -431 -267 -432 -267 -178 -267 -413 -267 -268 -268 -176 -268 -249 -268 -285 -268 -376 -268 -375 -268 -439 -268 -436 -268 -175 -268 -262 -268 -374 -268 -415 -268 -178 -268 -286 -268 -419 -268 -440 -268 -166 -268 -437 -268 -269 -269 -288 -269 -291 -269 -294 -269 -295 -269 -160 -269 -293 -269 -298 -269 -296 -269 -297 -269 -299 -269 -167 -269 -137 -269 -139 -269 -115 -269 -100 -269 -140 -269 -101 -269 -270 -269 -303 -269 -306 -269 -201 -269 -307 -269 -202 -269 -270 -270 -138 -270 -289 -270 -160 -270 -115 -270 -141 -270 -300 -270 -102 -270 -142 -270 -301 -270 -168 -270 -103 -270 -292 -270 -293 -270 -302 -270 -303 -270 -304 -270 -305 -270 -298 -270 -269 -270 -306 -270 -201 -270 -308 -270 -203 -270 -271 -271 -140 -271 -297 -271 -310 -271 -143 -271 -101 -271 -167 -271 -104 -271 -311 -271 -312 -271 -161 -271 -272 -271 -296 -271 -314 -271 -299 -271 -316 -271 -315 -271 -317 -271 -202 -271 -307 -271 -326 -271 -210 -271 -327 -271 -273 -271 -272 -272 -143 -272 -310 -272 -311 -272 -312 -272 -104 -272 -271 -272 -161 -272 -144 -272 -313 -272 -105 -272 -170 -272 -322 -272 -323 -272 -324 -272 -325 -272 -319 -272 -321 -272 -212 -272 -213 -272 -334 -272 -335 -272 -273 -272 -331 -272 -273 -273 -271 -273 -316 -273 -317 -273 -161 -273 -210 -273 -326 -273 -327 -273 -211 -273 -328 -273 -329 -273 -171 -273 -320 -273 -321 -273 -330 -273 -331 -273 -332 -273 -333 -273 -272 -273 -324 -273 -213 -273 -334 -273 -214 -273 -336 -273 -274 -274 -148 -274 -144 -274 -313 -274 -341 -274 -106 -274 -105 -274 -170 -274 -146 -274 -338 -274 -116 -274 -162 -274 -342 -274 -343 -274 -344 -274 -345 -274 -323 -274 -325 -274 -275 -274 -229 -274 -350 -274 -351 -274 -212 -274 -335 -274 -275 -275 -147 -275 -116 -275 -162 -275 -340 -275 -149 -275 -107 -275 -348 -275 -150 -275 -108 -275 -173 -275 -349 -275 -274 -275 -344 -275 -345 -275 -229 -275 -350 -275 -351 -275 -230 -275 -352 -275 -353 -275 -347 -275 -354 -275 -355 -275 -276 -276 -154 -276 -155 -276 -109 -276 -110 -276 -359 -276 -360 -276 -174 -276 -152 -276 -117 -276 -357 -276 -163 -276 -367 -276 -368 -276 -369 -276 -370 -276 -364 -276 -365 -276 -247 -276 -277 -276 -371 -276 -372 -276 -248 -276 -373 -276 -277 -277 -153 -277 -117 -277 -111 -277 -156 -277 -358 -277 -163 -277 -361 -277 -112 -277 -157 -277 -176 -277 -362 -277 -276 -277 -247 -277 -365 -277 -370 -277 -371 -277 -372 -277 -249 -277 -375 -277 -376 -277 -366 -277 -377 -277 -378 -277 -278 -278 -142 -278 -301 -278 -168 -278 -103 -278 -158 -278 -379 -278 -113 -278 -380 -278 -381 -278 -164 -278 -279 -278 -304 -278 -305 -278 -382 -278 -383 -278 -384 -278 -385 -278 -308 -278 -203 -278 -386 -278 -254 -278 -388 -278 -280 -278 -279 -279 -158 -279 -379 -279 -278 -279 -113 -279 -380 -279 -381 -279 -164 -279 -155 -279 -109 -279 -360 -279 -174 -279 -390 -279 -391 -279 -392 -279 -393 -279 -368 -279 -369 -279 -256 -279 -248 -279 -400 -279 -373 -279 -280 -279 -397 -279 -280 -280 -278 -280 -383 -280 -386 -280 -254 -280 -164 -280 -385 -280 -388 -280 -387 -280 -255 -280 -389 -280 -177 -280 -392 -280 -395 -280 -396 -280 -397 -280 -398 -280 -399 -280 -279 -280 -256 -280 -393 -280 -400 -280 -257 -280 -401 -280 -281 -281 -211 -281 -328 -281 -329 -281 -171 -281 -258 -281 -402 -281 -403 -281 -282 -281 -404 -281 -405 -281 -165 -281 -332 -281 -333 -281 -406 -281 -407 -281 -408 -281 -409 -281 -214 -281 -336 -281 -260 -281 -410 -281 -283 -281 -412 -281 -282 -282 -255 -282 -387 -282 -402 -282 -258 -282 -177 -282 -389 -282 -404 -282 -403 -282 -281 -282 -405 -282 -165 -282 -257 -282 -261 -282 -401 -282 -399 -282 -416 -282 -414 -282 -283 -282 -417 -282 -418 -282 -398 -282 -420 -282 -421 -282 -283 -283 -259 -283 -260 -283 -410 -283 -411 -283 -178 -283 -412 -283 -413 -283 -281 -283 -407 -283 -165 -283 -409 -283 -261 -283 -282 -283 -414 -283 -416 -283 -417 -283 -418 -283 -262 -283 -415 -283 -419 -283 -424 -283 -425 -283 -423 -283 -284 -284 -150 -284 -108 -284 -173 -284 -349 -284 -159 -284 -114 -284 -426 -284 -427 -284 -285 -284 -166 -284 -428 -284 -230 -284 -352 -284 -353 -284 -267 -284 -429 -284 -430 -284 -286 -284 -431 -284 -432 -284 -355 -284 -433 -284 -434 -284 -285 -285 -157 -285 -112 -285 -114 -285 -159 -285 -362 -285 -176 -285 -427 -285 -284 -285 -426 -285 -166 -285 -428 -285 -378 -285 -376 -285 -436 -285 -435 -285 -437 -285 -438 -285 -249 -285 -268 -285 -375 -285 -439 -285 -286 -285 -440 -285 -286 -286 -284 -286 -267 -286 -429 -286 -430 -286 -166 -286 -431 -286 -432 -286 -259 -286 -411 -286 -178 -286 -413 -286 -268 -286 -262 -286 -439 -286 -415 -286 -419 -286 -440 -286 -285 -286 -436 -286 -437 -286 -441 -286 -442 -286 -425 -286 -287 -287 -179 -287 -180 -287 -187 -287 -185 -287 -186 -287 -188 -287 -136 -287 -189 -287 -190 -287 -288 -287 -137 -287 -191 -287 -192 -287 -289 -287 -138 -287 -160 -287 -115 -287 -451 -287 -517 -287 -518 -287 -290 -287 -520 -287 -291 -287 -522 -287 -292 -287 -293 -287 -288 -288 -185 -288 -187 -288 -189 -288 -190 -288 -136 -288 -287 -288 -137 -288 -138 -288 -289 -288 -160 -288 -115 -288 -517 -288 -520 -288 -290 -288 -291 -288 -292 -288 -293 -288 -525 -288 -193 -288 -294 -288 -295 -288 -298 -288 -269 -288 -195 -288 -139 -288 -100 -288 -289 -289 -186 -289 -188 -289 -287 -289 -136 -289 -191 -289 -192 -289 -138 -289 -288 -289 -137 -289 -160 -289 -115 -289 -518 -289 -290 -289 -522 -289 -292 -289 -291 -289 -293 -289 -197 -289 -198 -289 -300 -289 -141 -289 -270 -289 -102 -289 -531 -289 -302 -289 -303 -289 -290 -290 -180 -290 -451 -290 -517 -290 -187 -290 -188 -290 -518 -290 -287 -290 -444 -290 -452 -290 -453 -290 -519 -290 -454 -290 -520 -290 -521 -290 -291 -290 -189 -290 -288 -290 -192 -290 -522 -290 -292 -290 -289 -290 -455 -290 -523 -290 -524 -290 -293 -290 -160 -290 -291 -291 -517 -291 -452 -291 -454 -291 -520 -291 -290 -291 -519 -291 -521 -291 -187 -291 -189 -291 -287 -291 -288 -291 -292 -291 -523 -291 -524 -291 -293 -291 -289 -291 -160 -291 -525 -291 -193 -291 -294 -291 -295 -291 -456 -291 -526 -291 -298 -291 -269 -291 -529 -291 -292 -292 -188 -292 -518 -292 -290 -292 -287 -292 -192 -292 -522 -292 -289 -292 -453 -292 -519 -292 -455 -292 -523 -292 -521 -292 -291 -292 -524 -292 -293 -292 -288 -292 -160 -292 -198 -292 -531 -292 -302 -292 -300 -292 -458 -292 -532 -292 -533 -292 -303 -292 -270 -292 -293 -293 -290 -293 -519 -293 -521 -293 -291 -293 -292 -293 -523 -293 -524 -293 -287 -293 -288 -293 -289 -293 -160 -293 -294 -293 -295 -293 -298 -293 -269 -293 -526 -293 -529 -293 -302 -293 -532 -293 -533 -293 -303 -293 -300 -293 -270 -293 -306 -293 -201 -293 -537 -293 -294 -294 -189 -294 -520 -294 -525 -294 -193 -294 -288 -294 -291 -294 -295 -294 -454 -294 -456 -294 -521 -294 -526 -294 -457 -294 -527 -294 -528 -294 -296 -294 -194 -294 -297 -294 -160 -294 -293 -294 -298 -294 -269 -294 -524 -294 -529 -294 -530 -294 -299 -294 -167 -294 -295 -295 -189 -295 -520 -295 -525 -295 -193 -295 -288 -295 -291 -295 -294 -295 -527 -295 -194 -295 -296 -295 -297 -295 -160 -295 -293 -295 -298 -295 -269 -295 -299 -295 -167 -295 -190 -295 -195 -295 -137 -295 -139 -295 -196 -295 -140 -295 -115 -295 -100 -295 -101 -295 -296 -296 -525 -296 -456 -296 -457 -296 -527 -296 -294 -296 -526 -296 -528 -296 -193 -296 -194 -296 -295 -296 -297 -296 -298 -296 -529 -296 -530 -296 -299 -296 -269 -296 -167 -296 -541 -296 -206 -296 -314 -296 -310 -296 -460 -296 -542 -296 -316 -296 -271 -296 -545 -296 -297 -297 -193 -297 -525 -297 -527 -297 -194 -297 -295 -297 -294 -297 -296 -297 -269 -297 -298 -297 -299 -297 -167 -297 -195 -297 -196 -297 -139 -297 -140 -297 -100 -297 -101 -297 -206 -297 -204 -297 -310 -297 -143 -297 -271 -297 -104 -297 -541 -297 -314 -297 -316 -297 -298 -298 -288 -298 -291 -298 -294 -298 -295 -298 -160 -298 -293 -298 -269 -298 -521 -298 -526 -298 -524 -298 -529 -298 -528 -298 -296 -298 -530 -298 -299 -298 -297 -298 -167 -298 -270 -298 -303 -298 -306 -298 -201 -298 -533 -298 -537 -298 -538 -298 -307 -298 -202 -298 -299 -299 -294 -299 -526 -299 -528 -299 -296 -299 -298 -299 -529 -299 -530 -299 -295 -299 -297 -299 -269 -299 -167 -299 -306 -299 -537 -299 -538 -299 -307 -299 -201 -299 -202 -299 -314 -299 -310 -299 -316 -299 -271 -299 -542 -299 -545 -299 -326 -299 -210 -299 -561 -299 -300 -300 -191 -300 -192 -300 -289 -300 -138 -300 -197 -300 -198 -300 -141 -300 -160 -300 -115 -300 -270 -300 -102 -300 -199 -300 -200 -300 -301 -300 -142 -300 -168 -300 -103 -300 -522 -300 -292 -300 -531 -300 -302 -300 -293 -300 -303 -300 -534 -300 -304 -300 -305 -300 -301 -301 -197 -301 -198 -301 -300 -301 -141 -301 -199 -301 -200 -301 -142 -301 -270 -301 -102 -301 -168 -301 -103 -301 -531 -301 -302 -301 -534 -301 -304 -301 -303 -301 -305 -301 -250 -301 -251 -301 -379 -301 -158 -301 -278 -301 -113 -301 -618 -301 -382 -301 -383 -301 -302 -302 -192 -302 -522 -302 -292 -302 -289 -302 -198 -302 -531 -302 -300 -302 -455 -302 -523 -302 -458 -302 -532 -302 -524 -302 -293 -302 -533 -302 -303 -302 -160 -302 -270 -302 -200 -302 -534 -302 -304 -302 -301 -302 -459 -302 -535 -302 -536 -302 -305 -302 -168 -302 -303 -303 -292 -303 -523 -303 -524 -303 -293 -303 -302 -303 -532 -303 -533 -303 -289 -303 -160 -303 -300 -303 -270 -303 -304 -303 -535 -303 -536 -303 -305 -303 -301 -303 -168 -303 -298 -303 -269 -303 -306 -303 -201 -303 -529 -303 -537 -303 -308 -303 -203 -303 -539 -303 -304 -304 -198 -304 -531 -304 -302 -304 -300 -304 -200 -304 -534 -304 -301 -304 -458 -304 -532 -304 -459 -304 -535 -304 -533 -304 -303 -304 -536 -304 -305 -304 -270 -304 -168 -304 -251 -304 -618 -304 -382 -304 -379 -304 -488 -304 -619 -304 -620 -304 -383 -304 -278 -304 -305 -305 -302 -305 -532 -305 -533 -305 -303 -305 -304 -305 -535 -305 -536 -305 -300 -305 -270 -305 -301 -305 -168 -305 -306 -305 -201 -305 -308 -305 -203 -305 -537 -305 -539 -305 -382 -305 -619 -305 -620 -305 -383 -305 -379 -305 -278 -305 -386 -305 -254 -305 -624 -305 -306 -306 -160 -306 -293 -306 -298 -306 -269 -306 -270 -306 -303 -306 -201 -306 -524 -306 -529 -306 -533 -306 -537 -306 -530 -306 -299 -306 -538 -306 -307 -306 -167 -306 -202 -306 -168 -306 -305 -306 -308 -306 -203 -306 -536 -306 -539 -306 -540 -306 -309 -306 -169 -306 -307 -307 -298 -307 -529 -307 -530 -307 -299 -307 -306 -307 -537 -307 -538 -307 -269 -307 -167 -307 -201 -307 -202 -307 -308 -307 -539 -307 -540 -307 -309 -307 -203 -307 -169 -307 -316 -307 -271 -307 -326 -307 -210 -307 -545 -307 -561 -307 -328 -307 -211 -307 -563 -307 -308 -308 -270 -308 -303 -308 -306 -308 -201 -308 -168 -308 -305 -308 -203 -308 -533 -308 -537 -308 -536 -308 -539 -308 -538 -308 -307 -308 -540 -308 -309 -308 -202 -308 -169 -308 -278 -308 -383 -308 -386 -308 -254 -308 -620 -308 -624 -308 -625 -308 -387 -308 -255 -308 -309 -309 -306 -309 -537 -309 -538 -309 -307 -309 -308 -309 -539 -309 -540 -309 -201 -309 -202 -309 -203 -309 -169 -309 -326 -309 -210 -309 -328 -309 -211 -309 -561 -309 -563 -309 -386 -309 -624 -309 -625 -309 -387 -309 -254 -309 -255 -309 -402 -309 -258 -309 -647 -309 -310 -310 -196 -310 -194 -310 -206 -310 -204 -310 -140 -310 -297 -310 -143 -310 -207 -310 -208 -310 -311 -310 -312 -310 -101 -310 -167 -310 -271 -310 -104 -310 -161 -310 -272 -310 -527 -310 -541 -310 -296 -310 -314 -310 -543 -310 -315 -310 -299 -310 -316 -310 -317 -310 -311 -311 -204 -311 -206 -311 -207 -311 -208 -311 -143 -311 -310 -311 -312 -311 -104 -311 -271 -311 -161 -311 -272 -311 -541 -311 -543 -311 -314 -311 -315 -311 -316 -311 -317 -311 -547 -311 -548 -311 -318 -311 -319 -311 -320 -311 -321 -311 -555 -311 -322 -311 -324 -311 -312 -312 -204 -312 -206 -312 -207 -312 -208 -312 -143 -312 -310 -312 -311 -312 -205 -312 -209 -312 -144 -312 -313 -312 -104 -312 -271 -312 -161 -312 -272 -312 -105 -312 -170 -312 -555 -312 -556 -312 -322 -312 -323 -312 -548 -312 -319 -312 -324 -312 -325 -312 -321 -312 -313 -313 -205 -313 -204 -313 -208 -313 -209 -313 -144 -313 -143 -313 -312 -313 -105 -313 -104 -313 -272 -313 -170 -313 -555 -313 -556 -313 -322 -313 -323 -313 -324 -313 -325 -313 -223 -313 -224 -313 -148 -313 -341 -313 -106 -313 -274 -313 -575 -313 -342 -313 -344 -313 -314 -314 -194 -314 -527 -314 -541 -314 -206 -314 -297 -314 -296 -314 -310 -314 -457 -314 -460 -314 -528 -314 -542 -314 -461 -314 -543 -314 -544 -314 -315 -314 -207 -314 -311 -314 -167 -314 -299 -314 -316 -314 -271 -314 -530 -314 -545 -314 -546 -314 -317 -314 -161 -314 -315 -315 -541 -315 -460 -315 -461 -315 -543 -315 -314 -315 -542 -315 -544 -315 -206 -315 -207 -315 -310 -315 -311 -315 -316 -315 -545 -315 -546 -315 -317 -315 -271 -315 -161 -315 -547 -315 -548 -315 -318 -315 -319 -315 -462 -315 -549 -315 -320 -315 -321 -315 -552 -315 -316 -316 -297 -316 -296 -316 -314 -316 -310 -316 -167 -316 -299 -316 -271 -316 -528 -316 -542 -316 -530 -316 -545 -316 -544 -316 -315 -316 -546 -316 -317 -316 -311 -316 -161 -316 -202 -316 -307 -316 -326 -316 -210 -316 -538 -316 -561 -316 -562 -316 -327 -316 -273 -316 -317 -317 -314 -317 -542 -317 -544 -317 -315 -317 -316 -317 -545 -317 -546 -317 -310 -317 -311 -317 -271 -317 -161 -317 -318 -317 -319 -317 -320 -317 -321 -317 -549 -317 -552 -317 -326 -317 -561 -317 -562 -317 -327 -317 -210 -317 -273 -317 -330 -317 -331 -317 -565 -317 -318 -318 -207 -318 -543 -318 -547 -318 -548 -318 -311 -318 -315 -318 -319 -318 -461 -318 -462 -318 -544 -318 -549 -318 -445 -318 -463 -318 -464 -318 -550 -318 -465 -318 -551 -318 -161 -318 -317 -318 -320 -318 -321 -318 -546 -318 -552 -318 -466 -318 -553 -318 -554 -318 -319 -319 -207 -319 -543 -319 -547 -319 -548 -319 -311 -319 -315 -319 -318 -319 -463 -319 -465 -319 -550 -319 -551 -319 -161 -319 -317 -319 -320 -319 -321 -319 -553 -319 -554 -319 -208 -319 -555 -319 -312 -319 -322 -319 -467 -319 -557 -319 -272 -319 -324 -319 -559 -319 -320 -320 -311 -320 -315 -320 -318 -320 -319 -320 -161 -320 -317 -320 -321 -320 -544 -320 -549 -320 -546 -320 -552 -320 -464 -320 -550 -320 -466 -320 -553 -320 -551 -320 -554 -320 -273 -320 -327 -320 -330 -320 -331 -320 -562 -320 -565 -320 -469 -320 -566 -320 -567 -320 -321 -321 -311 -321 -315 -321 -318 -321 -319 -321 -161 -321 -317 -321 -320 -321 -550 -321 -551 -321 -553 -321 -554 -321 -312 -321 -322 -321 -272 -321 -324 -321 -557 -321 -559 -321 -273 -321 -327 -321 -330 -321 -331 -321 -566 -321 -567 -321 -213 -321 -334 -321 -571 -321 -322 -322 -209 -322 -208 -322 -555 -322 -556 -322 -313 -322 -312 -322 -323 -322 -207 -322 -548 -322 -311 -322 -319 -322 -465 -322 -467 -322 -551 -322 -557 -322 -468 -322 -558 -322 -170 -322 -272 -322 -324 -322 -325 -322 -161 -322 -321 -322 -554 -322 -559 -322 -560 -322 -323 -323 -209 -323 -208 -323 -555 -323 -556 -323 -313 -323 -312 -323 -322 -323 -467 -323 -468 -323 -557 -323 -558 -323 -170 -323 -272 -323 -324 -323 -325 -323 -559 -323 -560 -323 -224 -323 -575 -323 -341 -323 -342 -323 -471 -323 -577 -323 -274 -323 -344 -323 -579 -323 -324 -324 -313 -324 -312 -324 -322 -324 -323 -324 -170 -324 -272 -324 -325 -324 -311 -324 -319 -324 -161 -324 -321 -324 -551 -324 -557 -324 -554 -324 -559 -324 -558 -324 -560 -324 -212 -324 -213 -324 -334 -324 -335 -324 -273 -324 -331 -324 -567 -324 -571 -324 -572 -324 -325 -325 -313 -325 -312 -325 -322 -325 -323 -325 -170 -325 -272 -325 -324 -325 -557 -325 -558 -325 -559 -325 -560 -325 -212 -325 -213 -325 -334 -325 -335 -325 -571 -325 -572 -325 -341 -325 -342 -325 -274 -325 -344 -325 -577 -325 -579 -325 -229 -325 -350 -325 -586 -325 -326 -326 -167 -326 -299 -326 -316 -326 -271 -326 -202 -326 -307 -326 -210 -326 -530 -326 -545 -326 -538 -326 -561 -326 -546 -326 -317 -326 -562 -326 -327 -326 -161 -326 -273 -326 -169 -326 -309 -326 -328 -326 -211 -326 -540 -326 -563 -326 -564 -326 -329 -326 -171 -326 -327 -327 -316 -327 -545 -327 -546 -327 -317 -327 -326 -327 -561 -327 -562 -327 -271 -327 -161 -327 -210 -327 -273 -327 -328 -327 -563 -327 -564 -327 -329 -327 -211 -327 -171 -327 -320 -327 -321 -327 -330 -327 -331 -327 -552 -327 -565 -327 -332 -327 -333 -327 -568 -327 -328 -328 -202 -328 -307 -328 -326 -328 -210 -328 -169 -328 -309 -328 -211 -328 -538 -328 -561 -328 -540 -328 -563 -328 -562 -328 -327 -328 -564 -328 -329 -328 -273 -328 -171 -328 -255 -328 -387 -328 -402 -328 -258 -328 -625 -328 -647 -328 -648 -328 -403 -328 -281 -328 -329 -329 -326 -329 -561 -329 -562 -329 -327 -329 -328 -329 -563 -329 -564 -329 -210 -329 -273 -329 -211 -329 -171 -329 -330 -329 -331 -329 -332 -329 -333 -329 -565 -329 -568 -329 -402 -329 -647 -329 -648 -329 -403 -329 -258 -329 -281 -329 -406 -329 -407 -329 -651 -329 -330 -330 -161 -330 -317 -330 -320 -330 -321 -330 -273 -330 -327 -330 -331 -330 -546 -330 -552 -330 -562 -330 -565 -330 -466 -330 -553 -330 -469 -330 -566 -330 -554 -330 -567 -330 -171 -330 -329 -330 -332 -330 -333 -330 -564 -330 -568 -330 -470 -330 -569 -330 -570 -330 -331 -331 -161 -331 -317 -331 -320 -331 -321 -331 -273 -331 -327 -331 -330 -331 -553 -331 -554 -331 -566 -331 -567 -331 -171 -331 -329 -331 -332 -331 -333 -331 -569 -331 -570 -331 -272 -331 -324 -331 -213 -331 -334 -331 -559 -331 -571 -331 -214 -331 -336 -331 -573 -331 -332 -332 -273 -332 -327 -332 -330 -332 -331 -332 -171 -332 -329 -332 -333 -332 -562 -332 -565 -332 -564 -332 -568 -332 -469 -332 -566 -332 -470 -332 -569 -332 -567 -332 -570 -332 -281 -332 -403 -332 -406 -332 -407 -332 -648 -332 -651 -332 -498 -332 -652 -332 -653 -332 -333 -333 -273 -333 -327 -333 -330 -333 -331 -333 -171 -333 -329 -333 -332 -333 -566 -333 -567 -333 -569 -333 -570 -333 -213 -333 -334 -333 -214 -333 -336 -333 -571 -333 -573 -333 -281 -333 -403 -333 -406 -333 -407 -333 -652 -333 -653 -333 -260 -333 -410 -333 -657 -333 -334 -334 -170 -334 -272 -334 -324 -334 -325 -334 -212 -334 -213 -334 -335 -334 -161 -334 -321 -334 -273 -334 -331 -334 -554 -334 -559 -334 -567 -334 -571 -334 -560 -334 -572 -334 -172 -334 -214 -334 -336 -334 -337 -334 -171 -334 -333 -334 -570 -334 -573 -334 -574 -334 -335 -335 -170 -335 -272 -335 -324 -335 -325 -335 -212 -335 -213 -335 -334 -335 -559 -335 -560 -335 -571 -335 -572 -335 -172 -335 -214 -335 -336 -335 -337 -335 -573 -335 -574 -335 -274 -335 -344 -335 -229 -335 -350 -335 -579 -335 -586 -335 -230 -335 -352 -335 -588 -335 -336 -336 -212 -336 -213 -336 -334 -336 -335 -336 -172 -336 -214 -336 -337 -336 -273 -336 -331 -336 -171 -336 -333 -336 -567 -336 -571 -336 -570 -336 -573 -336 -572 -336 -574 -336 -259 -336 -260 -336 -410 -336 -411 -336 -281 -336 -407 -336 -653 -336 -657 -336 -658 -336 -337 -337 -212 -337 -213 -337 -334 -337 -335 -337 -172 -337 -214 -337 -336 -337 -571 -337 -572 -337 -573 -337 -574 -337 -229 -337 -350 -337 -230 -337 -352 -337 -586 -337 -588 -337 -259 -337 -260 -337 -410 -337 -411 -337 -657 -337 -658 -337 -267 -337 -429 -337 -680 -337 -338 -338 -215 -338 -217 -338 -218 -338 -219 -338 -145 -338 -146 -338 -339 -338 -147 -338 -116 -338 -162 -338 -340 -338 -223 -338 -224 -338 -148 -338 -341 -338 -106 -338 -274 -338 -575 -338 -576 -338 -342 -338 -343 -338 -344 -338 -345 -338 -581 -338 -346 -338 -347 -338 -339 -339 -215 -339 -217 -339 -218 -339 -219 -339 -145 -339 -146 -339 -338 -339 -181 -339 -182 -339 -216 -339 -220 -339 -147 -339 -116 -339 -162 -339 -340 -339 -221 -339 -222 -339 -581 -339 -473 -339 -346 -339 -582 -339 -576 -339 -343 -339 -347 -339 -584 -339 -345 -339 -340 -340 -145 -340 -146 -340 -338 -340 -339 -340 -147 -340 -116 -340 -162 -340 -216 -340 -220 -340 -221 -340 -222 -340 -346 -340 -582 -340 -347 -340 -584 -340 -343 -340 -345 -340 -149 -340 -107 -340 -275 -340 -348 -340 -225 -340 -226 -340 -354 -340 -590 -340 -351 -340 -341 -341 -223 -341 -205 -341 -209 -341 -224 -341 -148 -341 -144 -341 -313 -341 -217 -341 -218 -341 -146 -341 -338 -341 -106 -341 -105 -341 -170 -341 -274 -341 -116 -341 -162 -341 -575 -341 -576 -341 -342 -341 -343 -341 -556 -341 -323 -341 -344 -341 -345 -341 -325 -341 -342 -342 -218 -342 -224 -342 -575 -342 -576 -342 -338 -342 -341 -342 -343 -342 -209 -342 -556 -342 -313 -342 -323 -342 -468 -342 -471 -342 -558 -342 -577 -342 -472 -342 -578 -342 -162 -342 -274 -342 -344 -342 -345 -342 -170 -342 -325 -342 -560 -342 -579 -342 -580 -342 -343 -343 -218 -343 -224 -343 -575 -343 -576 -343 -338 -343 -341 -343 -342 -343 -471 -343 -472 -343 -577 -343 -578 -343 -162 -343 -274 -343 -344 -343 -345 -343 -579 -343 -580 -343 -219 -343 -581 -343 -339 -343 -346 -343 -474 -343 -583 -343 -340 -343 -347 -343 -585 -343 -344 -344 -338 -344 -341 -344 -342 -344 -343 -344 -162 -344 -274 -344 -345 -344 -313 -344 -323 -344 -170 -344 -325 -344 -558 -344 -577 -344 -560 -344 -579 -344 -578 -344 -580 -344 -275 -344 -229 -344 -350 -344 -351 -344 -212 -344 -335 -344 -572 -344 -586 -344 -587 -344 -345 -345 -338 -345 -341 -345 -342 -345 -343 -345 -162 -345 -274 -345 -344 -345 -577 -345 -578 -345 -579 -345 -580 -345 -339 -345 -346 -345 -340 -345 -347 -345 -583 -345 -585 -345 -275 -345 -229 -345 -350 -345 -351 -345 -586 -345 -587 -345 -348 -345 -354 -345 -591 -345 -346 -346 -182 -346 -219 -346 -581 -346 -473 -346 -220 -346 -339 -346 -582 -346 -218 -346 -576 -346 -338 -346 -343 -346 -472 -346 -474 -346 -578 -346 -583 -346 -446 -346 -475 -346 -222 -346 -340 -346 -347 -346 -584 -346 -162 -346 -345 -346 -580 -346 -585 -346 -476 -346 -347 -347 -220 -347 -339 -347 -346 -347 -582 -347 -222 -347 -340 -347 -584 -347 -338 -347 -343 -347 -162 -347 -345 -347 -578 -347 -583 -347 -580 -347 -585 -347 -475 -347 -476 -347 -226 -347 -348 -347 -354 -347 -590 -347 -275 -347 -351 -347 -587 -347 -591 -347 -477 -347 -348 -348 -147 -348 -116 -348 -162 -348 -340 -348 -149 -348 -107 -348 -275 -348 -221 -348 -222 -348 -225 -348 -226 -348 -150 -348 -108 -348 -173 -348 -349 -348 -227 -348 -228 -348 -347 -348 -584 -348 -354 -348 -590 -348 -345 -348 -351 -348 -355 -348 -592 -348 -353 -348 -349 -349 -149 -349 -107 -349 -275 -349 -348 -349 -150 -349 -108 -349 -173 -349 -225 -349 -226 -349 -227 -349 -228 -349 -354 -349 -590 -349 -355 -349 -592 -349 -351 -349 -353 -349 -159 -349 -114 -349 -284 -349 -426 -349 -263 -349 -264 -349 -433 -349 -684 -349 -430 -349 -350 -350 -162 -350 -274 -350 -344 -350 -345 -350 -275 -350 -229 -350 -351 -350 -170 -350 -325 -350 -212 -350 -335 -350 -560 -350 -579 -350 -572 -350 -586 -350 -580 -350 -587 -350 -173 -350 -230 -350 -352 -350 -353 -350 -172 -350 -337 -350 -574 -350 -588 -350 -589 -350 -351 -351 -162 -351 -274 -351 -344 -351 -345 -351 -275 -351 -229 -351 -350 -351 -579 -351 -580 -351 -586 -351 -587 -351 -173 -351 -230 -351 -352 -351 -353 -351 -588 -351 -589 -351 -340 -351 -347 -351 -348 -351 -354 -351 -585 -351 -591 -351 -349 -351 -355 -351 -593 -351 -352 -352 -275 -352 -229 -352 -350 -352 -351 -352 -173 -352 -230 -352 -353 -352 -212 -352 -335 -352 -172 -352 -337 -352 -572 -352 -586 -352 -574 -352 -588 -352 -587 -352 -589 -352 -284 -352 -267 -352 -429 -352 -430 -352 -259 -352 -411 -352 -658 -352 -680 -352 -681 -352 -353 -353 -275 -353 -229 -353 -350 -353 -351 -353 -173 -353 -230 -353 -352 -353 -586 -353 -587 -353 -588 -353 -589 -353 -348 -353 -354 -353 -349 -353 -355 -353 -591 -353 -593 -353 -284 -353 -267 -353 -429 -353 -430 -353 -680 -353 -681 -353 -426 -353 -433 -353 -685 -353 -354 -354 -222 -354 -340 -354 -347 -354 -584 -354 -226 -354 -348 -354 -590 -354 -162 -354 -345 -354 -275 -354 -351 -354 -580 -354 -585 -354 -587 -354 -591 -354 -476 -354 -477 -354 -228 -354 -349 -354 -355 -354 -592 -354 -173 -354 -353 -354 -589 -354 -593 -354 -478 -354 -355 -355 -226 -355 -348 -355 -354 -355 -590 -355 -228 -355 -349 -355 -592 -355 -275 -355 -351 -355 -173 -355 -353 -355 -587 -355 -591 -355 -589 -355 -593 -355 -477 -355 -478 -355 -264 -355 -426 -355 -433 -355 -684 -355 -284 -355 -430 -355 -681 -355 -685 -355 -508 -355 -356 -356 -183 -356 -231 -356 -151 -356 -232 -356 -184 -356 -235 -356 -236 -356 -233 -356 -152 -356 -237 -356 -357 -356 -117 -356 -153 -356 -163 -356 -358 -356 -234 -356 -238 -356 -479 -356 -594 -356 -363 -356 -595 -356 -596 -356 -364 -356 -365 -356 -366 -356 -597 -356 -357 -357 -231 -357 -233 -357 -152 -357 -151 -357 -235 -357 -237 -357 -356 -357 -117 -357 -153 -357 -163 -357 -358 -357 -239 -357 -154 -357 -241 -357 -359 -357 -110 -357 -276 -357 -594 -357 -596 -357 -364 -357 -363 -357 -365 -357 -366 -357 -602 -357 -367 -357 -370 -357 -358 -358 -151 -358 -152 -358 -117 -358 -153 -358 -356 -358 -357 -358 -163 -358 -232 -358 -234 -358 -236 -358 -238 -358 -156 -358 -243 -358 -361 -358 -245 -358 -111 -358 -277 -358 -363 -358 -364 -358 -365 -358 -366 -358 -595 -358 -597 -358 -377 -358 -614 -358 -372 -358 -359 -359 -233 -359 -239 -359 -154 -359 -152 -359 -237 -359 -241 -359 -357 -359 -240 -359 -155 -359 -242 -359 -360 -359 -109 -359 -110 -359 -174 -359 -276 -359 -117 -359 -163 -359 -596 -359 -602 -359 -367 -359 -364 -359 -603 -359 -368 -359 -369 -359 -370 -359 -365 -359 -360 -360 -239 -360 -240 -360 -155 -360 -154 -360 -241 -360 -242 -360 -359 -360 -109 -360 -110 -360 -174 -360 -276 -360 -602 -360 -603 -360 -368 -360 -367 -360 -369 -360 -370 -360 -250 -360 -158 -360 -252 -360 -380 -360 -113 -360 -279 -360 -628 -360 -390 -360 -393 -360 -361 -361 -234 -361 -153 -361 -156 -361 -243 -361 -238 -361 -358 -361 -245 -361 -117 -361 -111 -361 -163 -361 -277 -361 -112 -361 -157 -361 -176 -361 -362 -361 -244 -361 -246 -361 -597 -361 -366 -361 -377 -361 -614 -361 -365 -361 -372 -361 -376 -361 -378 -361 -615 -361 -362 -362 -156 -362 -111 -362 -112 -362 -157 -362 -361 -362 -277 -362 -176 -362 -243 -362 -244 -362 -245 -362 -246 -362 -377 -362 -372 -362 -376 -362 -378 -362 -614 -362 -615 -362 -159 -362 -263 -362 -427 -362 -265 -362 -114 -362 -285 -362 -435 -362 -688 -362 -436 -362 -363 -363 -184 -363 -235 -363 -356 -363 -236 -363 -479 -363 -594 -363 -595 -363 -237 -363 -357 -363 -596 -363 -364 -363 -163 -363 -358 -363 -365 -363 -366 -363 -238 -363 -597 -363 -447 -363 -480 -363 -598 -363 -481 -363 -482 -363 -599 -363 -600 -363 -601 -363 -483 -363 -364 -364 -235 -364 -237 -364 -357 -364 -356 -364 -594 -364 -596 -364 -363 -364 -163 -364 -358 -364 -365 -364 -366 -364 -480 -364 -482 -364 -599 -364 -598 -364 -600 -364 -601 -364 -241 -364 -359 -364 -602 -364 -367 -364 -276 -364 -370 -364 -484 -364 -604 -364 -607 -364 -365 -365 -356 -365 -357 -365 -163 -365 -358 -365 -363 -365 -364 -365 -366 -365 -598 -365 -599 -365 -600 -365 -601 -365 -359 -365 -276 -365 -367 -365 -370 -365 -604 -365 -607 -365 -247 -365 -277 -365 -371 -365 -372 -365 -608 -365 -609 -365 -361 -365 -377 -365 -616 -365 -366 -366 -356 -366 -357 -366 -163 -366 -358 -366 -363 -366 -364 -366 -365 -366 -236 -366 -238 -366 -595 -366 -597 -366 -598 -366 -599 -366 -600 -366 -601 -366 -481 -366 -483 -366 -361 -366 -245 -366 -377 -366 -614 -366 -277 -366 -372 -366 -616 -366 -486 -366 -609 -366 -367 -367 -237 -367 -241 -367 -359 -367 -357 -367 -596 -367 -602 -367 -364 -367 -242 -367 -360 -367 -603 -367 -368 -367 -174 -367 -276 -367 -369 -367 -370 -367 -163 -367 -365 -367 -482 -367 -484 -367 -604 -367 -599 -367 -485 -367 -605 -367 -606 -367 -607 -367 -600 -367 -368 -368 -241 -368 -242 -368 -360 -368 -359 -368 -602 -368 -603 -368 -367 -368 -174 -368 -276 -368 -369 -368 -370 -368 -484 -368 -485 -368 -605 -368 -604 -368 -606 -368 -607 -368 -252 -368 -380 -368 -628 -368 -390 -368 -279 -368 -393 -368 -490 -368 -630 -368 -633 -368 -369 -369 -359 -369 -360 -369 -174 -369 -276 -369 -367 -369 -368 -369 -370 -369 -604 -369 -605 -369 -606 -369 -607 -369 -248 -369 -247 -369 -373 -369 -371 -369 -610 -369 -608 -369 -380 -369 -279 -369 -390 -369 -393 -369 -630 -369 -633 -369 -256 -369 -400 -369 -645 -369 -370 -370 -359 -370 -360 -370 -174 -370 -276 -370 -367 -370 -368 -370 -369 -370 -357 -370 -163 -370 -364 -370 -365 -370 -604 -370 -605 -370 -606 -370 -607 -370 -599 -370 -600 -370 -247 -370 -277 -370 -371 -370 -372 -370 -248 -370 -373 -370 -608 -370 -609 -370 -610 -370 -371 -371 -163 -371 -276 -371 -247 -371 -277 -371 -365 -371 -370 -371 -372 -371 -174 -371 -248 -371 -369 -371 -373 -371 -175 -371 -249 -371 -374 -371 -375 -371 -176 -371 -376 -371 -600 -371 -607 -371 -608 -371 -609 -371 -606 -371 -610 -371 -611 -371 -612 -371 -613 -371 -372 -372 -163 -372 -276 -372 -247 -372 -277 -372 -365 -372 -370 -372 -371 -372 -249 -372 -176 -372 -375 -372 -376 -372 -600 -372 -607 -372 -608 -372 -609 -372 -612 -372 -613 -372 -358 -372 -361 -372 -366 -372 -377 -372 -362 -372 -378 -372 -601 -372 -616 -372 -617 -372 -373 -373 -276 -373 -174 -373 -248 -373 -247 -373 -370 -373 -369 -373 -371 -373 -175 -373 -249 -373 -374 -373 -375 -373 -607 -373 -606 -373 -610 -373 -608 -373 -611 -373 -612 -373 -279 -373 -256 -373 -393 -373 -400 -373 -257 -373 -401 -373 -633 -373 -645 -373 -646 -373 -374 -374 -247 -374 -248 -374 -175 -374 -249 -374 -371 -374 -373 -374 -375 -374 -608 -374 -610 -374 -611 -374 -612 -374 -256 -374 -257 -374 -400 -374 -401 -374 -645 -374 -646 -374 -261 -374 -262 -374 -414 -374 -415 -374 -661 -374 -662 -374 -268 -374 -439 -374 -694 -374 -375 -375 -247 -375 -248 -375 -175 -375 -249 -375 -371 -375 -373 -375 -374 -375 -277 -375 -176 -375 -372 -375 -376 -375 -608 -375 -610 -375 -611 -375 -612 -375 -609 -375 -613 -375 -268 -375 -285 -375 -439 -375 -436 -375 -262 -375 -415 -375 -694 -375 -691 -375 -662 -375 -376 -376 -277 -376 -247 -376 -249 -376 -176 -376 -372 -376 -371 -376 -375 -376 -609 -376 -608 -376 -612 -376 -613 -376 -361 -376 -362 -376 -377 -376 -378 -376 -616 -376 -617 -376 -285 -376 -427 -376 -436 -376 -435 -376 -691 -376 -690 -376 -268 -376 -439 -376 -694 -376 -377 -377 -238 -377 -358 -377 -361 -377 -245 -377 -597 -377 -366 -377 -614 -377 -163 -377 -277 -377 -365 -377 -372 -377 -176 -377 -362 -377 -376 -377 -378 -377 -246 -377 -615 -377 -483 -377 -601 -377 -616 -377 -486 -377 -600 -377 -609 -377 -613 -377 -617 -377 -487 -377 -378 -378 -361 -378 -277 -378 -176 -378 -362 -378 -377 -378 -372 -378 -376 -378 -245 -378 -246 -378 -614 -378 -615 -378 -616 -378 -609 -378 -613 -378 -617 -378 -486 -378 -487 -378 -427 -378 -265 -378 -435 -378 -688 -378 -285 -378 -436 -378 -690 -378 -510 -378 -691 -378 -379 -379 -199 -379 -200 -379 -301 -379 -142 -379 -250 -379 -251 -379 -158 -379 -168 -379 -103 -379 -278 -379 -113 -379 -252 -379 -253 -379 -381 -379 -380 -379 -164 -379 -279 -379 -534 -379 -304 -379 -618 -379 -382 -379 -305 -379 -383 -379 -621 -379 -384 -379 -385 -379 -380 -380 -240 -380 -250 -380 -158 -380 -155 -380 -242 -380 -252 -380 -360 -380 -251 -380 -379 -380 -253 -380 -381 -380 -278 -380 -113 -380 -164 -380 -279 -380 -109 -380 -174 -380 -603 -380 -628 -380 -390 -380 -368 -380 -629 -380 -391 -380 -392 -380 -393 -380 -369 -380 -381 -381 -250 -381 -251 -381 -379 -381 -158 -381 -252 -381 -253 -381 -380 -381 -278 -381 -113 -381 -164 -381 -279 -381 -618 -381 -382 -381 -621 -381 -384 -381 -383 -381 -385 -381 -628 -381 -629 -381 -391 -381 -390 -381 -392 -381 -393 -381 -634 -381 -394 -381 -395 -381 -382 -382 -200 -382 -534 -382 -304 -382 -301 -382 -251 -382 -618 -382 -379 -382 -459 -382 -535 -382 -488 -382 -619 -382 -536 -382 -305 -382 -620 -382 -383 -382 -168 -382 -278 -382 -253 -382 -621 -382 -384 -382 -381 -382 -489 -382 -622 -382 -623 -382 -385 -382 -164 -382 -383 -383 -304 -383 -535 -383 -536 -383 -305 -383 -382 -383 -619 -383 -620 -383 -301 -383 -168 -383 -379 -383 -278 -383 -384 -383 -622 -383 -623 -383 -385 -383 -381 -383 -164 -383 -308 -383 -203 -383 -386 -383 -254 -383 -539 -383 -624 -383 -388 -383 -280 -383 -626 -383 -384 -384 -251 -384 -618 -384 -382 -384 -379 -384 -253 -384 -621 -384 -381 -384 -488 -384 -619 -384 -489 -384 -622 -384 -620 -384 -383 -384 -623 -384 -385 -384 -278 -384 -164 -384 -629 -384 -634 -384 -394 -384 -391 -384 -492 -384 -635 -384 -636 -384 -395 -384 -392 -384 -385 -385 -382 -385 -619 -385 -620 -385 -383 -385 -384 -385 -622 -385 -623 -385 -379 -385 -278 -385 -381 -385 -164 -385 -386 -385 -254 -385 -388 -385 -280 -385 -624 -385 -626 -385 -394 -385 -635 -385 -636 -385 -395 -385 -391 -385 -392 -385 -396 -385 -397 -385 -639 -385 -386 -386 -168 -386 -305 -386 -308 -386 -203 -386 -278 -386 -383 -386 -254 -386 -536 -386 -539 -386 -620 -386 -624 -386 -540 -386 -309 -386 -625 -386 -387 -386 -169 -386 -255 -386 -164 -386 -385 -386 -388 -386 -280 -386 -623 -386 -626 -386 -627 -386 -389 -386 -177 -386 -387 -387 -308 -387 -539 -387 -540 -387 -309 -387 -386 -387 -624 -387 -625 -387 -203 -387 -169 -387 -254 -387 -255 -387 -388 -387 -626 -387 -627 -387 -389 -387 -280 -387 -177 -387 -328 -387 -211 -387 -402 -387 -258 -387 -563 -387 -647 -387 -404 -387 -282 -387 -649 -387 -388 -388 -278 -388 -383 -388 -386 -388 -254 -388 -164 -388 -385 -388 -280 -388 -620 -388 -624 -388 -623 -388 -626 -388 -625 -388 -387 -388 -627 -388 -389 -388 -255 -388 -177 -388 -392 -388 -395 -388 -396 -388 -397 -388 -636 -388 -639 -388 -640 -388 -398 -388 -399 -388 -389 -389 -386 -389 -624 -389 -625 -389 -387 -389 -388 -389 -626 -389 -627 -389 -254 -389 -255 -389 -280 -389 -177 -389 -396 -389 -639 -389 -640 -389 -398 -389 -397 -389 -399 -389 -402 -389 -258 -389 -404 -389 -282 -389 -647 -389 -649 -389 -420 -389 -416 -389 -667 -389 -390 -390 -242 -390 -252 -390 -380 -390 -360 -390 -603 -390 -628 -390 -368 -390 -253 -390 -381 -390 -629 -390 -391 -390 -164 -390 -279 -390 -392 -390 -393 -390 -174 -390 -369 -390 -485 -390 -490 -390 -630 -390 -605 -390 -491 -390 -631 -390 -632 -390 -633 -390 -606 -390 -391 -391 -252 -391 -253 -391 -381 -391 -380 -391 -628 -391 -629 -391 -390 -391 -164 -391 -279 -391 -392 -391 -393 -391 -490 -391 -491 -391 -631 -391 -630 -391 -632 -391 -633 -391 -621 -391 -384 -391 -634 -391 -394 -391 -385 -391 -395 -391 -493 -391 -637 -391 -638 -391 -392 -392 -380 -392 -381 -392 -164 -392 -279 -392 -390 -392 -391 -392 -393 -392 -630 -392 -631 -392 -632 -392 -633 -392 -384 -392 -385 -392 -394 -392 -395 -392 -637 -392 -638 -392 -388 -392 -280 -392 -396 -392 -397 -392 -641 -392 -642 -392 -256 -392 -400 -392 -645 -392 -393 -393 -380 -393 -381 -393 -164 -393 -279 -393 -390 -393 -391 -393 -392 -393 -360 -393 -174 -393 -368 -393 -369 -393 -630 -393 -631 -393 -632 -393 -633 -393 -605 -393 -606 -393 -256 -393 -248 -393 -400 -393 -373 -393 -280 -393 -397 -393 -645 -393 -610 -393 -642 -393 -394 -394 -253 -394 -621 -394 -384 -394 -381 -394 -629 -394 -634 -394 -391 -394 -489 -394 -622 -394 -492 -394 -635 -394 -623 -394 -385 -394 -636 -394 -395 -394 -164 -394 -392 -394 -491 -394 -493 -394 -637 -394 -631 -394 -448 -394 -494 -394 -495 -394 -638 -394 -632 -394 -395 -395 -384 -395 -622 -395 -623 -395 -385 -395 -394 -395 -635 -395 -636 -395 -381 -395 -164 -395 -391 -395 -392 -395 -637 -395 -494 -395 -495 -395 -638 -395 -631 -395 -632 -395 -388 -395 -280 -395 -396 -395 -397 -395 -626 -395 -639 -395 -641 -395 -642 -395 -496 -395 -396 -396 -164 -396 -385 -396 -388 -396 -280 -396 -392 -396 -395 -396 -397 -396 -623 -396 -626 -396 -636 -396 -639 -396 -627 -396 -389 -396 -640 -396 -398 -396 -177 -396 -399 -396 -632 -396 -638 -396 -641 -396 -642 -396 -495 -396 -496 -396 -497 -396 -643 -396 -644 -396 -397 -397 -164 -397 -385 -397 -388 -397 -280 -397 -392 -397 -395 -397 -396 -397 -389 -397 -177 -397 -398 -397 -399 -397 -632 -397 -638 -397 -641 -397 -642 -397 -643 -397 -644 -397 -279 -397 -256 -397 -393 -397 -400 -397 -257 -397 -401 -397 -633 -397 -645 -397 -646 -397 -398 -398 -388 -398 -626 -398 -627 -398 -389 -398 -396 -398 -639 -398 -640 -398 -280 -398 -177 -398 -397 -398 -399 -398 -641 -398 -496 -398 -497 -398 -643 -398 -642 -398 -644 -398 -404 -398 -282 -398 -420 -398 -416 -398 -649 -398 -667 -398 -669 -398 -663 -398 -500 -398 -399 -399 -280 -399 -388 -399 -389 -399 -177 -399 -397 -399 -396 -399 -398 -399 -642 -399 -641 -399 -643 -399 -644 -399 -256 -399 -257 -399 -400 -399 -401 -399 -645 -399 -646 -399 -282 -399 -261 -399 -416 -399 -414 -399 -663 -399 -661 -399 -404 -399 -420 -399 -669 -399 -400 -400 -174 -400 -279 -400 -256 -400 -248 -400 -369 -400 -393 -400 -373 -400 -164 -400 -280 -400 -392 -400 -397 -400 -177 -400 -257 -400 -399 -400 -401 -400 -175 -400 -374 -400 -606 -400 -633 -400 -645 -400 -610 -400 -632 -400 -642 -400 -644 -400 -646 -400 -611 -400 -401 -401 -256 -401 -280 -401 -177 -401 -257 -401 -400 -401 -397 -401 -399 -401 -248 -401 -175 -401 -373 -401 -374 -401 -645 -401 -642 -401 -644 -401 -646 -401 -610 -401 -611 -401 -261 -401 -262 -401 -414 -401 -415 -401 -282 -401 -416 -401 -661 -401 -662 -401 -663 -401 -402 -402 -169 -402 -309 -402 -328 -402 -211 -402 -255 -402 -387 -402 -258 -402 -540 -402 -563 -402 -625 -402 -647 -402 -564 -402 -329 -402 -648 -402 -403 -402 -171 -402 -281 -402 -177 -402 -389 -402 -404 -402 -282 -402 -627 -402 -649 -402 -650 -402 -405 -402 -165 -402 -403 -403 -328 -403 -563 -403 -564 -403 -329 -403 -402 -403 -647 -403 -648 -403 -211 -403 -171 -403 -258 -403 -281 -403 -404 -403 -649 -403 -650 -403 -405 -403 -282 -403 -165 -403 -332 -403 -333 -403 -406 -403 -407 -403 -568 -403 -651 -403 -408 -403 -409 -403 -654 -403 -404 -404 -255 -404 -387 -404 -402 -404 -258 -404 -177 -404 -389 -404 -282 -404 -625 -404 -647 -404 -627 -404 -649 -404 -648 -404 -403 -404 -650 -404 -405 -404 -281 -404 -165 -404 -399 -404 -398 -404 -420 -404 -416 -404 -640 -404 -667 -404 -668 -404 -421 -404 -417 -404 -405 -405 -402 -405 -647 -405 -648 -405 -403 -405 -404 -405 -649 -405 -650 -405 -258 -405 -281 -405 -282 -405 -165 -405 -406 -405 -407 -405 -408 -405 -409 -405 -651 -405 -654 -405 -420 -405 -667 -405 -668 -405 -421 -405 -416 -405 -417 -405 -422 -405 -423 -405 -671 -405 -406 -406 -171 -406 -329 -406 -332 -406 -333 -406 -281 -406 -403 -406 -407 -406 -564 -406 -568 -406 -648 -406 -651 -406 -470 -406 -569 -406 -498 -406 -652 -406 -570 -406 -653 -406 -165 -406 -405 -406 -408 -406 -409 -406 -650 -406 -654 -406 -499 -406 -655 -406 -656 -406 -407 -407 -171 -407 -329 -407 -332 -407 -333 -407 -281 -407 -403 -407 -406 -407 -569 -407 -570 -407 -652 -407 -653 -407 -165 -407 -405 -407 -408 -407 -409 -407 -655 -407 -656 -407 -214 -407 -336 -407 -260 -407 -410 -407 -573 -407 -657 -407 -283 -407 -412 -407 -659 -407 -408 -408 -281 -408 -403 -408 -406 -408 -407 -408 -165 -408 -405 -408 -409 -408 -648 -408 -651 -408 -650 -408 -654 -408 -498 -408 -652 -408 -499 -408 -655 -408 -653 -408 -656 -408 -417 -408 -421 -408 -422 -408 -423 -408 -668 -408 -671 -408 -502 -408 -672 -408 -673 -408 -409 -409 -281 -409 -403 -409 -406 -409 -407 -409 -165 -409 -405 -409 -408 -409 -652 -409 -653 -409 -655 -409 -656 -409 -260 -409 -410 -409 -283 -409 -412 -409 -657 -409 -659 -409 -417 -409 -421 -409 -422 -409 -423 -409 -672 -409 -673 -409 -418 -409 -424 -409 -676 -409 -410 -410 -172 -410 -214 -410 -336 -410 -337 -410 -259 -410 -260 -410 -411 -410 -171 -410 -333 -410 -281 -410 -407 -410 -570 -410 -573 -410 -653 -410 -657 -410 -574 -410 -658 -410 -178 -410 -283 -410 -412 -410 -413 -410 -165 -410 -409 -410 -656 -410 -659 -410 -660 -410 -411 -411 -172 -411 -214 -411 -336 -411 -337 -411 -259 -411 -260 -411 -410 -411 -573 -411 -574 -411 -657 -411 -658 -411 -178 -411 -283 -411 -412 -411 -413 -411 -659 -411 -660 -411 -230 -411 -352 -411 -267 -411 -429 -411 -588 -411 -680 -411 -286 -411 -431 -411 -682 -411 -412 -412 -259 -412 -260 -412 -410 -412 -411 -412 -178 -412 -283 -412 -413 -412 -281 -412 -407 -412 -165 -412 -409 -412 -653 -412 -657 -412 -656 -412 -659 -412 -658 -412 -660 -412 -419 -412 -418 -412 -424 -412 -425 -412 -417 -412 -423 -412 -673 -412 -676 -412 -677 -412 -413 -413 -259 -413 -260 -413 -410 -413 -411 -413 -178 -413 -283 -413 -412 -413 -657 -413 -658 -413 -659 -413 -660 -413 -419 -413 -418 -413 -424 -413 -425 -413 -676 -413 -677 -413 -267 -413 -429 -413 -286 -413 -431 -413 -680 -413 -682 -413 -440 -413 -441 -413 -696 -413 -414 -414 -175 -414 -257 -414 -261 -414 -262 -414 -374 -414 -401 -414 -415 -414 -177 -414 -282 -414 -399 -414 -416 -414 -165 -414 -283 -414 -417 -414 -418 -414 -178 -414 -419 -414 -611 -414 -646 -414 -661 -414 -662 -414 -644 -414 -663 -414 -664 -414 -665 -414 -666 -414 -415 -415 -175 -415 -257 -415 -261 -415 -262 -415 -374 -415 -401 -415 -414 -415 -283 -415 -178 -415 -418 -415 -419 -415 -611 -415 -646 -415 -661 -415 -662 -415 -665 -415 -666 -415 -249 -415 -268 -415 -375 -415 -439 -415 -286 -415 -440 -415 -612 -415 -694 -415 -695 -415 -416 -416 -257 -416 -177 -416 -282 -416 -261 -416 -401 -416 -399 -416 -414 -416 -165 -416 -283 -416 -417 -416 -418 -416 -646 -416 -644 -416 -663 -416 -661 -416 -664 -416 -665 -416 -389 -416 -404 -416 -398 -416 -420 -416 -405 -416 -421 -416 -643 -416 -669 -416 -670 -416 -417 -417 -261 -417 -282 -417 -165 -417 -283 -417 -414 -417 -416 -417 -418 -417 -661 -417 -663 -417 -664 -417 -665 -417 -404 -417 -405 -417 -420 -417 -421 -417 -669 -417 -670 -417 -408 -417 -409 -417 -422 -417 -423 -417 -674 -417 -675 -417 -412 -417 -424 -417 -678 -417 -418 -418 -261 -418 -282 -418 -165 -418 -283 -418 -414 -418 -416 -418 -417 -418 -262 -418 -178 -418 -415 -418 -419 -418 -661 -418 -663 -418 -664 -418 -665 -418 -662 -418 -666 -418 -412 -418 -413 -418 -424 -418 -425 -418 -409 -418 -423 -418 -678 -418 -679 -418 -675 -418 -419 -419 -262 -419 -261 -419 -283 -419 -178 -419 -415 -419 -414 -419 -418 -419 -662 -419 -661 -419 -665 -419 -666 -419 -412 -419 -413 -419 -424 -419 -425 -419 -678 -419 -679 -419 -268 -419 -286 -419 -439 -419 -440 -419 -694 -419 -695 -419 -431 -419 -441 -419 -698 -419 -420 -420 -177 -420 -389 -420 -404 -420 -282 -420 -399 -420 -398 -420 -416 -420 -627 -420 -649 -420 -640 -420 -667 -420 -650 -420 -405 -420 -668 -420 -421 -420 -165 -420 -417 -420 -644 -420 -643 -420 -669 -420 -663 -420 -497 -420 -500 -420 -501 -420 -670 -420 -664 -420 -421 -421 -404 -421 -649 -421 -650 -421 -405 -421 -420 -421 -667 -421 -668 -421 -282 -421 -165 -421 -416 -421 -417 -421 -669 -421 -500 -421 -501 -421 -670 -421 -663 -421 -664 -421 -408 -421 -409 -421 -422 -421 -423 -421 -654 -421 -671 -421 -674 -421 -675 -421 -503 -421 -422 -422 -165 -422 -405 -422 -408 -422 -409 -422 -417 -422 -421 -422 -423 -422 -650 -422 -654 -422 -668 -422 -671 -422 -499 -422 -655 -422 -502 -422 -672 -422 -656 -422 -673 -422 -664 -422 -670 -422 -674 -422 -675 -422 -501 -422 -503 -422 -449 -422 -504 -422 -505 -422 -423 -423 -165 -423 -405 -423 -408 -423 -409 -423 -417 -423 -421 -423 -422 -423 -655 -423 -656 -423 -672 -423 -673 -423 -664 -423 -670 -423 -674 -423 -675 -423 -504 -423 -505 -423 -283 -423 -412 -423 -418 -423 -424 -423 -659 -423 -676 -423 -665 -423 -678 -423 -506 -423 -424 -424 -178 -424 -283 -424 -412 -424 -413 -424 -419 -424 -418 -424 -425 -424 -165 -424 -409 -424 -417 -424 -423 -424 -656 -424 -659 -424 -673 -424 -676 -424 -660 -424 -677 -424 -666 -424 -665 -424 -678 -424 -679 -424 -664 -424 -675 -424 -505 -424 -506 -424 -507 -424 -425 -425 -178 -425 -283 -425 -412 -425 -413 -425 -419 -425 -418 -425 -424 -425 -659 -425 -660 -425 -676 -425 -677 -425 -666 -425 -665 -425 -678 -425 -679 -425 -506 -425 -507 -425 -286 -425 -431 -425 -440 -425 -441 -425 -682 -425 -696 -425 -695 -425 -698 -425 -512 -425 -426 -426 -150 -426 -108 -426 -173 -426 -349 -426 -159 -426 -114 -426 -284 -426 -227 -426 -228 -426 -263 -426 -264 -426 -427 -426 -285 -426 -166 -426 -428 -426 -265 -426 -266 -426 -355 -426 -592 -426 -433 -426 -684 -426 -353 -426 -430 -426 -434 -426 -686 -426 -432 -426 -427 -427 -244 -427 -157 -427 -159 -427 -263 -427 -246 -427 -362 -427 -265 -427 -112 -427 -114 -427 -176 -427 -285 -427 -284 -427 -426 -427 -166 -427 -428 -427 -264 -427 -266 -427 -615 -427 -378 -427 -435 -427 -688 -427 -376 -427 -436 -427 -437 -427 -438 -427 -689 -427 -428 -428 -159 -428 -114 -428 -284 -428 -426 -428 -427 -428 -285 -428 -166 -428 -263 -428 -264 -428 -265 -428 -266 -428 -433 -428 -684 -428 -434 -428 -686 -428 -430 -428 -432 -428 -435 -428 -436 -428 -437 -428 -438 -428 -688 -428 -689 -428 -443 -428 -700 -428 -442 -428 -429 -429 -173 -429 -230 -429 -352 -429 -353 -429 -284 -429 -267 -429 -430 -429 -172 -429 -337 -429 -259 -429 -411 -429 -574 -429 -588 -429 -658 -429 -680 -429 -589 -429 -681 -429 -166 -429 -286 -429 -431 -429 -432 -429 -178 -429 -413 -429 -660 -429 -682 -429 -683 -429 -430 -430 -173 -430 -230 -430 -352 -430 -353 -430 -284 -430 -267 -430 -429 -430 -588 -430 -589 -430 -680 -430 -681 -430 -166 -430 -286 -430 -431 -430 -432 -430 -682 -430 -683 -430 -349 -430 -355 -430 -426 -430 -433 -430 -593 -430 -685 -430 -428 -430 -434 -430 -687 -430 -431 -431 -284 -431 -267 -431 -429 -431 -430 -431 -166 -431 -286 -431 -432 -431 -259 -431 -411 -431 -178 -431 -413 -431 -658 -431 -680 -431 -660 -431 -682 -431 -681 -431 -683 -431 -437 -431 -440 -431 -441 -431 -442 -431 -419 -431 -425 -431 -677 -431 -696 -431 -697 -431 -432 -432 -284 -432 -267 -432 -429 -432 -430 -432 -166 -432 -286 -432 -431 -432 -680 -432 -681 -432 -682 -432 -683 -432 -426 -432 -433 -432 -428 -432 -434 -432 -685 -432 -687 -432 -437 -432 -440 -432 -441 -432 -442 -432 -696 -432 -697 -432 -438 -432 -443 -432 -701 -432 -433 -433 -228 -433 -349 -433 -355 -433 -592 -433 -264 -433 -426 -433 -684 -433 -173 -433 -353 -433 -284 -433 -430 -433 -589 -433 -593 -433 -681 -433 -685 -433 -478 -433 -508 -433 -266 -433 -428 -433 -434 -433 -686 -433 -166 -433 -432 -433 -683 -433 -687 -433 -509 -433 -434 -434 -264 -434 -426 -434 -433 -434 -684 -434 -266 -434 -428 -434 -686 -434 -284 -434 -430 -434 -166 -434 -432 -434 -681 -434 -685 -434 -683 -434 -687 -434 -508 -434 -509 -434 -689 -434 -438 -434 -443 -434 -700 -434 -437 -434 -442 -434 -697 -434 -701 -434 -514 -434 -435 -435 -246 -435 -362 -435 -427 -435 -265 -435 -615 -435 -378 -435 -688 -435 -176 -435 -285 -435 -376 -435 -436 -435 -166 -435 -428 -435 -437 -435 -438 -435 -266 -435 -689 -435 -487 -435 -617 -435 -690 -435 -510 -435 -613 -435 -691 -435 -692 -435 -693 -435 -511 -435 -436 -436 -362 -436 -176 -436 -285 -436 -427 -436 -378 -436 -376 -436 -435 -436 -166 -436 -428 -436 -437 -436 -438 -436 -617 -436 -613 -436 -691 -436 -690 -436 -692 -436 -693 -436 -249 -436 -268 -436 -375 -436 -439 -436 -286 -436 -440 -436 -612 -436 -694 -436 -695 -436 -437 -437 -427 -437 -285 -437 -166 -437 -428 -437 -435 -437 -436 -437 -438 -437 -690 -437 -691 -437 -692 -437 -693 -437 -268 -437 -286 -437 -439 -437 -440 -437 -694 -437 -695 -437 -431 -437 -432 -437 -441 -437 -442 -437 -698 -437 -699 -437 -434 -437 -443 -437 -702 -437 -438 -438 -427 -438 -285 -438 -166 -438 -428 -438 -435 -438 -436 -438 -437 -438 -265 -438 -266 -438 -688 -438 -689 -438 -690 -438 -691 -438 -692 -438 -693 -438 -510 -438 -511 -438 -434 -438 -686 -438 -443 -438 -700 -438 -432 -438 -442 -438 -702 -438 -515 -438 -699 -438 -439 -439 -176 -439 -249 -439 -268 -439 -285 -439 -376 -439 -375 -439 -436 -439 -175 -439 -262 -439 -374 -439 -415 -439 -178 -439 -286 -439 -419 -439 -440 -439 -166 -439 -437 -439 -613 -439 -612 -439 -694 -439 -691 -439 -611 -439 -662 -439 -666 -439 -695 -439 -692 -439 -440 -440 -268 -440 -262 -440 -178 -440 -286 -440 -439 -440 -415 -440 -419 -440 -285 -440 -166 -440 -436 -440 -437 -440 -694 -440 -662 -440 -666 -440 -695 -440 -691 -440 -692 -440 -431 -440 -432 -440 -441 -440 -442 -440 -413 -440 -425 -440 -698 -440 -699 -440 -679 -440 -441 -441 -166 -441 -286 -441 -431 -441 -432 -441 -437 -441 -440 -441 -442 -441 -178 -441 -413 -441 -419 -441 -425 -441 -660 -441 -682 -441 -677 -441 -696 -441 -683 -441 -697 -441 -692 -441 -695 -441 -698 -441 -699 -441 -666 -441 -679 -441 -507 -441 -512 -441 -513 -441 -442 -442 -166 -442 -286 -442 -431 -442 -432 -442 -437 -442 -440 -442 -441 -442 -682 -442 -683 -442 -696 -442 -697 -442 -692 -442 -695 -442 -698 -442 -699 -442 -512 -442 -513 -442 -428 -442 -434 -442 -438 -442 -443 -442 -687 -442 -701 -442 -693 -442 -702 -442 -516 -442 -443 -443 -266 -443 -428 -443 -434 -443 -686 -443 -689 -443 -438 -443 -700 -443 -166 -443 -432 -443 -437 -443 -442 -443 -683 -443 -687 -443 -697 -443 -701 -443 -509 -443 -514 -443 -511 -443 -693 -443 -702 -443 -515 -443 -692 -443 -699 -443 -513 -443 -516 -443 -450 -443 -444 -444 -451 -444 -452 -444 -517 -444 -518 -444 -453 -444 -519 -444 -290 -444 -445 -445 -547 -445 -462 -445 -463 -445 -318 -445 -549 -445 -464 -445 -550 -445 -446 -446 -473 -446 -581 -446 -474 -446 -582 -446 -346 -446 -583 -446 -475 -446 -447 -447 -479 -447 -594 -447 -363 -447 -595 -447 -480 -447 -598 -447 -481 -447 -448 -448 -634 -448 -492 -448 -635 -448 -394 -448 -493 -448 -494 -448 -637 -448 -449 -449 -422 -449 -671 -449 -502 -449 -672 -449 -674 -449 -503 -449 -504 -449 -450 -450 -700 -450 -443 -450 -701 -450 -514 -450 -515 -450 -702 -450 -516 -450 -451 -451 -180 -451 -517 -451 -187 -451 -188 -451 -518 -451 -290 -451 -287 -451 -444 -451 -452 -451 -453 -451 -519 -451 -452 -452 -451 -452 -444 -452 -517 -452 -518 -452 -453 -452 -519 -452 -290 -452 -454 -452 -520 -452 -521 -452 -291 -452 -453 -453 -451 -453 -444 -453 -452 -453 -517 -453 -518 -453 -519 -453 -290 -453 -522 -453 -455 -453 -523 -453 -292 -453 -454 -454 -517 -454 -452 -454 -520 -454 -290 -454 -519 -454 -521 -454 -291 -454 -456 -454 -525 -454 -526 -454 -294 -454 -455 -455 -518 -455 -453 -455 -519 -455 -290 -455 -522 -455 -523 -455 -292 -455 -531 -455 -458 -455 -532 -455 -302 -455 -456 -456 -520 -456 -454 -456 -525 -456 -291 -456 -521 -456 -526 -456 -294 -456 -457 -456 -527 -456 -528 -456 -296 -456 -457 -457 -525 -457 -456 -457 -527 -457 -294 -457 -526 -457 -528 -457 -296 -457 -460 -457 -541 -457 -542 -457 -314 -457 -458 -458 -522 -458 -455 -458 -523 -458 -292 -458 -531 -458 -532 -458 -302 -458 -534 -458 -459 -458 -535 -458 -304 -458 -459 -459 -531 -459 -458 -459 -532 -459 -302 -459 -534 -459 -535 -459 -304 -459 -618 -459 -488 -459 -619 -459 -382 -459 -460 -460 -527 -460 -457 -460 -541 -460 -296 -460 -528 -460 -542 -460 -314 -460 -461 -460 -543 -460 -544 -460 -315 -460 -461 -461 -541 -461 -460 -461 -543 -461 -314 -461 -542 -461 -544 -461 -315 -461 -462 -461 -547 -461 -549 -461 -318 -461 -462 -462 -543 -462 -461 -462 -547 -462 -315 -462 -544 -462 -549 -462 -318 -462 -445 -462 -463 -462 -464 -462 -550 -462 -463 -463 -547 -463 -462 -463 -445 -463 -318 -463 -549 -463 -464 -463 -550 -463 -548 -463 -465 -463 -319 -463 -551 -463 -464 -464 -547 -464 -462 -464 -445 -464 -463 -464 -318 -464 -549 -464 -550 -464 -320 -464 -552 -464 -466 -464 -553 -464 -465 -465 -548 -465 -547 -465 -463 -465 -319 -465 -318 -465 -550 -465 -551 -465 -555 -465 -467 -465 -322 -465 -557 -465 -466 -466 -318 -466 -549 -466 -464 -466 -550 -466 -320 -466 -552 -466 -553 -466 -330 -466 -565 -466 -469 -466 -566 -466 -467 -467 -555 -467 -548 -467 -465 -467 -322 -467 -319 -467 -551 -467 -557 -467 -556 -467 -468 -467 -323 -467 -558 -467 -468 -468 -556 -468 -555 -468 -467 -468 -323 -468 -322 -468 -557 -468 -558 -468 -575 -468 -471 -468 -342 -468 -577 -468 -469 -469 -320 -469 -552 -469 -466 -469 -553 -469 -330 -469 -565 -469 -566 -469 -332 -469 -568 -469 -470 -469 -569 -469 -470 -470 -330 -470 -565 -470 -469 -470 -566 -470 -332 -470 -568 -470 -569 -470 -406 -470 -651 -470 -498 -470 -652 -470 -471 -471 -575 -471 -556 -471 -468 -471 -342 -471 -323 -471 -558 -471 -577 -471 -576 -471 -472 -471 -343 -471 -578 -471 -472 -472 -576 -472 -575 -472 -471 -472 -343 -472 -342 -472 -577 -472 -578 -472 -581 -472 -474 -472 -346 -472 -583 -472 -473 -473 -182 -473 -219 -473 -581 -473 -220 -473 -339 -473 -346 -473 -582 -473 -474 -473 -446 -473 -583 -473 -475 -473 -474 -474 -581 -474 -576 -474 -472 -474 -346 -474 -343 -474 -578 -474 -583 -474 -473 -474 -446 -474 -582 -474 -475 -474 -475 -475 -473 -475 -581 -475 -474 -475 -446 -475 -582 -475 -346 -475 -583 -475 -584 -475 -347 -475 -585 -475 -476 -475 -476 -476 -582 -476 -346 -476 -583 -476 -475 -476 -584 -476 -347 -476 -585 -476 -590 -476 -354 -476 -591 -476 -477 -476 -477 -477 -584 -477 -347 -477 -585 -477 -476 -477 -590 -477 -354 -477 -591 -477 -592 -477 -355 -477 -593 -477 -478 -477 -478 -478 -590 -478 -354 -478 -591 -478 -477 -478 -592 -478 -355 -478 -593 -478 -684 -478 -433 -478 -685 -478 -508 -478 -479 -479 -184 -479 -235 -479 -356 -479 -236 -479 -594 -479 -363 -479 -595 -479 -447 -479 -480 -479 -598 -479 -481 -479 -480 -480 -479 -480 -594 -480 -363 -480 -595 -480 -447 -480 -598 -480 -481 -480 -596 -480 -364 -480 -482 -480 -599 -480 -481 -481 -479 -481 -594 -481 -363 -481 -595 -481 -447 -481 -480 -481 -598 -481 -366 -481 -597 -481 -601 -481 -483 -481 -482 -482 -594 -482 -596 -482 -364 -482 -363 -482 -480 -482 -599 -482 -598 -482 -602 -482 -367 -482 -484 -482 -604 -482 -483 -483 -595 -483 -363 -483 -366 -483 -597 -483 -481 -483 -598 -483 -601 -483 -377 -483 -614 -483 -616 -483 -486 -483 -484 -484 -596 -484 -602 -484 -367 -484 -364 -484 -482 -484 -604 -484 -599 -484 -603 -484 -368 -484 -485 -484 -605 -484 -485 -485 -602 -485 -603 -485 -368 -485 -367 -485 -484 -485 -605 -485 -604 -485 -628 -485 -390 -485 -490 -485 -630 -485 -486 -486 -597 -486 -366 -486 -377 -486 -614 -486 -483 -486 -601 -486 -616 -486 -378 -486 -615 -486 -617 -486 -487 -486 -487 -487 -614 -487 -377 -487 -378 -487 -615 -487 -486 -487 -616 -487 -617 -487 -435 -487 -688 -487 -690 -487 -510 -487 -488 -488 -534 -488 -459 -488 -535 -488 -304 -488 -618 -488 -619 -488 -382 -488 -621 -488 -489 -488 -622 -488 -384 -488 -489 -489 -618 -489 -488 -489 -619 -489 -382 -489 -621 -489 -622 -489 -384 -489 -634 -489 -492 -489 -635 -489 -394 -489 -490 -490 -603 -490 -628 -490 -390 -490 -368 -490 -485 -490 -630 -490 -605 -490 -629 -490 -391 -490 -491 -490 -631 -490 -491 -491 -628 -491 -629 -491 -391 -491 -390 -491 -490 -491 -631 -491 -630 -491 -634 -491 -394 -491 -493 -491 -637 -491 -492 -492 -621 -492 -489 -492 -622 -492 -384 -492 -634 -492 -635 -492 -394 -492 -493 -492 -448 -492 -494 -492 -637 -492 -493 -493 -629 -493 -634 -493 -394 -493 -391 -493 -491 -493 -637 -493 -631 -493 -492 -493 -635 -493 -448 -493 -494 -493 -494 -494 -634 -494 -492 -494 -635 -494 -394 -494 -493 -494 -448 -494 -637 -494 -636 -494 -395 -494 -495 -494 -638 -494 -495 -495 -394 -495 -635 -495 -636 -495 -395 -495 -637 -495 -494 -495 -638 -495 -639 -495 -396 -495 -496 -495 -641 -495 -496 -496 -395 -496 -636 -496 -639 -496 -396 -496 -638 -496 -495 -496 -641 -496 -640 -496 -398 -496 -497 -496 -643 -496 -497 -497 -396 -497 -639 -497 -640 -497 -398 -497 -641 -497 -496 -497 -643 -497 -667 -497 -420 -497 -500 -497 -669 -497 -498 -498 -332 -498 -568 -498 -470 -498 -569 -498 -406 -498 -651 -498 -652 -498 -408 -498 -654 -498 -499 -498 -655 -498 -499 -499 -406 -499 -651 -499 -498 -499 -652 -499 -408 -499 -654 -499 -655 -499 -422 -499 -671 -499 -502 -499 -672 -499 -500 -500 -398 -500 -640 -500 -667 -500 -420 -500 -643 -500 -497 -500 -669 -500 -668 -500 -421 -500 -501 -500 -670 -500 -501 -501 -420 -501 -667 -501 -668 -501 -421 -501 -669 -501 -500 -501 -670 -501 -671 -501 -422 -501 -503 -501 -674 -501 -502 -502 -408 -502 -654 -502 -499 -502 -655 -502 -422 -502 -671 -502 -672 -502 -674 -502 -503 -502 -449 -502 -504 -502 -503 -503 -421 -503 -668 -503 -671 -503 -422 -503 -670 -503 -501 -503 -674 -503 -502 -503 -672 -503 -449 -503 -504 -503 -504 -504 -422 -504 -671 -504 -502 -504 -672 -504 -674 -504 -503 -504 -449 -504 -423 -504 -673 -504 -675 -504 -505 -504 -505 -505 -423 -505 -422 -505 -672 -505 -673 -505 -675 -505 -674 -505 -504 -505 -424 -505 -676 -505 -678 -505 -506 -505 -506 -506 -424 -506 -423 -506 -673 -506 -676 -506 -678 -506 -675 -506 -505 -506 -425 -506 -677 -506 -679 -506 -507 -506 -507 -507 -425 -507 -424 -507 -676 -507 -677 -507 -679 -507 -678 -507 -506 -507 -441 -507 -696 -507 -698 -507 -512 -507 -508 -508 -592 -508 -355 -508 -593 -508 -478 -508 -684 -508 -433 -508 -685 -508 -686 -508 -434 -508 -687 -508 -509 -508 -509 -509 -684 -509 -433 -509 -685 -509 -508 -509 -686 -509 -434 -509 -687 -509 -700 -509 -443 -509 -701 -509 -514 -509 -510 -510 -615 -510 -378 -510 -435 -510 -688 -510 -487 -510 -617 -510 -690 -510 -438 -510 -689 -510 -693 -510 -511 -510 -511 -511 -688 -511 -435 -511 -438 -511 -689 -511 -510 -511 -690 -511 -693 -511 -443 -511 -700 -511 -702 -511 -515 -511 -512 -512 -441 -512 -425 -512 -677 -512 -696 -512 -698 -512 -679 -512 -507 -512 -442 -512 -697 -512 -699 -512 -513 -512 -513 -513 -442 -513 -441 -513 -696 -513 -697 -513 -699 -513 -698 -513 -512 -513 -443 -513 -701 -513 -702 -513 -516 -513 -514 -514 -686 -514 -434 -514 -687 -514 -509 -514 -700 -514 -443 -514 -701 -514 -515 -514 -702 -514 -516 -514 -450 -514 -515 -515 -689 -515 -438 -515 -443 -515 -700 -515 -511 -515 -693 -515 -702 -515 -701 -515 -514 -515 -516 -515 -450 -515 -516 -516 -443 -516 -442 -516 -697 -516 -701 -516 -702 -516 -699 -516 -513 -516 -700 -516 -514 -516 -515 -516 -450 -516 -517 -517 -180 -517 -451 -517 -187 -517 -188 -517 -518 -517 -290 -517 -287 -517 -444 -517 -452 -517 -453 -517 -519 -517 -454 -517 -520 -517 -521 -517 -291 -517 -189 -517 -288 -517 -518 -518 -180 -518 -451 -518 -517 -518 -187 -518 -188 -518 -290 -518 -287 -518 -444 -518 -452 -518 -453 -518 -519 -518 -192 -518 -522 -518 -292 -518 -289 -518 -455 -518 -523 -518 -519 -519 -451 -519 -444 -519 -452 -519 -517 -519 -518 -519 -453 -519 -290 -519 -454 -519 -520 -519 -521 -519 -291 -519 -522 -519 -455 -519 -523 -519 -292 -519 -524 -519 -293 -519 -520 -520 -517 -520 -452 -520 -454 -520 -290 -520 -519 -520 -521 -520 -291 -520 -187 -520 -189 -520 -287 -520 -288 -520 -525 -520 -193 -520 -294 -520 -295 -520 -456 -520 -526 -520 -521 -521 -517 -521 -452 -521 -454 -521 -520 -521 -290 -521 -519 -521 -291 -521 -292 -521 -523 -521 -524 -521 -293 -521 -456 -521 -525 -521 -526 -521 -294 -521 -529 -521 -298 -521 -522 -522 -188 -522 -518 -522 -290 -522 -287 -522 -192 -522 -292 -522 -289 -522 -453 -522 -519 -522 -455 -522 -523 -522 -198 -522 -531 -522 -302 -522 -300 -522 -458 -522 -532 -522 -523 -523 -518 -523 -453 -523 -519 -523 -290 -523 -522 -523 -455 -523 -292 -523 -521 -523 -291 -523 -524 -523 -293 -523 -531 -523 -458 -523 -532 -523 -302 -523 -533 -523 -303 -523 -524 -524 -290 -524 -519 -524 -521 -524 -291 -524 -292 -524 -523 -524 -293 -524 -526 -524 -294 -524 -529 -524 -298 -524 -302 -524 -532 -524 -533 -524 -303 -524 -537 -524 -306 -524 -525 -525 -189 -525 -520 -525 -193 -525 -288 -525 -291 -525 -294 -525 -295 -525 -454 -525 -456 -525 -521 -525 -526 -525 -457 -525 -527 -525 -528 -525 -296 -525 -194 -525 -297 -525 -526 -526 -520 -526 -454 -526 -456 -526 -525 -526 -291 -526 -521 -526 -294 -526 -457 -526 -527 -526 -528 -526 -296 -526 -293 -526 -524 -526 -529 -526 -298 -526 -530 -526 -299 -526 -527 -527 -525 -527 -456 -527 -457 -527 -294 -527 -526 -527 -528 -527 -296 -527 -193 -527 -194 -527 -295 -527 -297 -527 -541 -527 -206 -527 -314 -527 -310 -527 -460 -527 -542 -527 -528 -528 -525 -528 -456 -528 -457 -528 -527 -528 -294 -528 -526 -528 -296 -528 -298 -528 -529 -528 -530 -528 -299 -528 -460 -528 -541 -528 -542 -528 -314 -528 -545 -528 -316 -528 -529 -529 -291 -529 -521 -529 -526 -529 -294 -529 -293 -529 -524 -529 -298 -529 -528 -529 -296 -529 -530 -529 -299 -529 -303 -529 -533 -529 -537 -529 -306 -529 -538 -529 -307 -529 -530 -530 -294 -530 -526 -530 -528 -530 -296 -530 -298 -530 -529 -530 -299 -530 -306 -530 -537 -530 -538 -530 -307 -530 -542 -530 -314 -530 -545 -530 -316 -530 -561 -530 -326 -530 -531 -531 -192 -531 -522 -531 -292 -531 -289 -531 -198 -531 -302 -531 -300 -531 -455 -531 -523 -531 -458 -531 -532 -531 -200 -531 -534 -531 -304 -531 -301 -531 -459 -531 -535 -531 -532 -532 -522 -532 -455 -532 -523 -532 -292 -532 -531 -532 -458 -532 -302 -532 -524 -532 -293 -532 -533 -532 -303 -532 -534 -532 -459 -532 -535 -532 -304 -532 -536 -532 -305 -532 -533 -533 -292 -533 -523 -533 -524 -533 -293 -533 -302 -533 -532 -533 -303 -533 -304 -533 -535 -533 -536 -533 -305 -533 -529 -533 -298 -533 -537 -533 -306 -533 -539 -533 -308 -533 -534 -534 -198 -534 -531 -534 -302 -534 -300 -534 -200 -534 -304 -534 -301 -534 -458 -534 -532 -534 -459 -534 -535 -534 -251 -534 -618 -534 -382 -534 -379 -534 -488 -534 -619 -534 -535 -535 -531 -535 -458 -535 -532 -535 -302 -535 -534 -535 -459 -535 -304 -535 -533 -535 -303 -535 -536 -535 -305 -535 -618 -535 -488 -535 -619 -535 -382 -535 -620 -535 -383 -535 -536 -536 -302 -536 -532 -536 -533 -536 -303 -536 -304 -536 -535 -536 -305 -536 -537 -536 -306 -536 -539 -536 -308 -536 -382 -536 -619 -536 -620 -536 -383 -536 -624 -536 -386 -536 -537 -537 -293 -537 -524 -537 -529 -537 -298 -537 -303 -537 -533 -537 -306 -537 -530 -537 -299 -537 -538 -537 -307 -537 -305 -537 -536 -537 -539 -537 -308 -537 -540 -537 -309 -537 -538 -538 -298 -538 -529 -538 -530 -538 -299 -538 -306 -538 -537 -538 -307 -538 -308 -538 -539 -538 -540 -538 -309 -538 -545 -538 -316 -538 -561 -538 -326 -538 -563 -538 -328 -538 -539 -539 -303 -539 -533 -539 -537 -539 -306 -539 -305 -539 -536 -539 -308 -539 -538 -539 -307 -539 -540 -539 -309 -539 -383 -539 -620 -539 -624 -539 -386 -539 -625 -539 -387 -539 -540 -540 -306 -540 -537 -540 -538 -540 -307 -540 -308 -540 -539 -540 -309 -540 -561 -540 -326 -540 -563 -540 -328 -540 -386 -540 -624 -540 -625 -540 -387 -540 -647 -540 -402 -540 -541 -541 -194 -541 -527 -541 -206 -541 -297 -541 -296 -541 -314 -541 -310 -541 -457 -541 -460 -541 -528 -541 -542 -541 -461 -541 -543 -541 -544 -541 -315 -541 -207 -541 -311 -541 -542 -542 -527 -542 -457 -542 -460 -542 -541 -542 -296 -542 -528 -542 -314 -542 -461 -542 -543 -542 -544 -542 -315 -542 -299 -542 -530 -542 -545 -542 -316 -542 -546 -542 -317 -542 -543 -543 -541 -543 -460 -543 -461 -543 -314 -543 -542 -543 -544 -543 -315 -543 -206 -543 -207 -543 -310 -543 -311 -543 -547 -543 -548 -543 -318 -543 -319 -543 -462 -543 -549 -543 -544 -544 -541 -544 -460 -544 -461 -544 -543 -544 -314 -544 -542 -544 -315 -544 -316 -544 -545 -544 -546 -544 -317 -544 -462 -544 -547 -544 -549 -544 -318 -544 -552 -544 -320 -544 -545 -545 -296 -545 -528 -545 -542 -545 -314 -545 -299 -545 -530 -545 -316 -545 -544 -545 -315 -545 -546 -545 -317 -545 -307 -545 -538 -545 -561 -545 -326 -545 -562 -545 -327 -545 -546 -546 -314 -546 -542 -546 -544 -546 -315 -546 -316 -546 -545 -546 -317 -546 -549 -546 -318 -546 -552 -546 -320 -546 -326 -546 -561 -546 -562 -546 -327 -546 -565 -546 -330 -546 -547 -547 -207 -547 -543 -547 -548 -547 -311 -547 -315 -547 -318 -547 -319 -547 -461 -547 -462 -547 -544 -547 -549 -547 -445 -547 -463 -547 -464 -547 -550 -547 -465 -547 -551 -547 -548 -548 -207 -548 -543 -548 -547 -548 -311 -548 -315 -548 -318 -548 -319 -548 -463 -548 -465 -548 -550 -548 -551 -548 -208 -548 -555 -548 -312 -548 -322 -548 -467 -548 -557 -548 -549 -549 -543 -549 -461 -549 -462 -549 -547 -549 -315 -549 -544 -549 -318 -549 -445 -549 -463 -549 -464 -549 -550 -549 -317 -549 -546 -549 -552 -549 -320 -549 -466 -549 -553 -549 -550 -550 -547 -550 -462 -550 -445 -550 -463 -550 -318 -550 -549 -550 -464 -550 -548 -550 -465 -550 -319 -550 -551 -550 -320 -550 -552 -550 -466 -550 -553 -550 -321 -550 -554 -550 -551 -551 -548 -551 -547 -551 -463 -551 -465 -551 -319 -551 -318 -551 -550 -551 -321 -551 -320 -551 -553 -551 -554 -551 -555 -551 -467 -551 -322 -551 -557 -551 -324 -551 -559 -551 -552 -552 -315 -552 -544 -552 -549 -552 -318 -552 -317 -552 -546 -552 -320 -552 -464 -552 -550 -552 -466 -552 -553 -552 -327 -552 -562 -552 -565 -552 -330 -552 -469 -552 -566 -552 -553 -553 -318 -553 -549 -553 -464 -553 -550 -553 -320 -553 -552 -553 -466 -553 -319 -553 -551 -553 -321 -553 -554 -553 -330 -553 -565 -553 -469 -553 -566 -553 -331 -553 -567 -553 -554 -554 -319 -554 -318 -554 -550 -554 -551 -554 -321 -554 -320 -554 -553 -554 -322 -554 -557 -554 -324 -554 -559 -554 -331 -554 -330 -554 -566 -554 -567 -554 -334 -554 -571 -554 -555 -555 -209 -555 -208 -555 -556 -555 -313 -555 -312 -555 -322 -555 -323 -555 -207 -555 -548 -555 -311 -555 -319 -555 -465 -555 -467 -555 -551 -555 -557 -555 -468 -555 -558 -555 -556 -556 -209 -556 -208 -556 -555 -556 -313 -556 -312 -556 -322 -556 -323 -556 -467 -556 -468 -556 -557 -556 -558 -556 -224 -556 -575 -556 -341 -556 -342 -556 -471 -556 -577 -556 -557 -557 -555 -557 -548 -557 -465 -557 -467 -557 -322 -557 -319 -557 -551 -557 -556 -557 -468 -557 -323 -557 -558 -557 -324 -557 -321 -557 -554 -557 -559 -557 -325 -557 -560 -557 -558 -558 -556 -558 -555 -558 -467 -558 -468 -558 -323 -558 -322 -558 -557 -558 -325 -558 -324 -558 -559 -558 -560 -558 -575 -558 -471 -558 -342 -558 -577 -558 -344 -558 -579 -558 -559 -559 -322 -559 -319 -559 -551 -559 -557 -559 -324 -559 -321 -559 -554 -559 -323 -559 -558 -559 -325 -559 -560 -559 -334 -559 -331 -559 -567 -559 -571 -559 -335 -559 -572 -559 -560 -560 -323 -560 -322 -560 -557 -560 -558 -560 -325 -560 -324 -560 -559 -560 -335 -560 -334 -560 -571 -560 -572 -560 -342 -560 -577 -560 -344 -560 -579 -560 -350 -560 -586 -560 -561 -561 -299 -561 -530 -561 -545 -561 -316 -561 -307 -561 -538 -561 -326 -561 -546 -561 -317 -561 -562 -561 -327 -561 -309 -561 -540 -561 -563 -561 -328 -561 -564 -561 -329 -561 -562 -562 -316 -562 -545 -562 -546 -562 -317 -562 -326 -562 -561 -562 -327 -562 -328 -562 -563 -562 -564 -562 -329 -562 -552 -562 -320 -562 -565 -562 -330 -562 -568 -562 -332 -562 -563 -563 -307 -563 -538 -563 -561 -563 -326 -563 -309 -563 -540 -563 -328 -563 -562 -563 -327 -563 -564 -563 -329 -563 -387 -563 -625 -563 -647 -563 -402 -563 -648 -563 -403 -563 -564 -564 -326 -564 -561 -564 -562 -564 -327 -564 -328 -564 -563 -564 -329 -564 -565 -564 -330 -564 -568 -564 -332 -564 -402 -564 -647 -564 -648 -564 -403 -564 -651 -564 -406 -564 -565 -565 -317 -565 -546 -565 -552 -565 -320 -565 -327 -565 -562 -565 -330 -565 -466 -565 -553 -565 -469 -565 -566 -565 -329 -565 -564 -565 -568 -565 -332 -565 -470 -565 -569 -565 -566 -566 -320 -566 -552 -566 -466 -566 -553 -566 -330 -566 -565 -566 -469 -566 -321 -566 -554 -566 -331 -566 -567 -566 -332 -566 -568 -566 -470 -566 -569 -566 -333 -566 -570 -566 -567 -567 -321 -567 -320 -567 -553 -567 -554 -567 -331 -567 -330 -567 -566 -567 -333 -567 -332 -567 -569 -567 -570 -567 -324 -567 -559 -567 -334 -567 -571 -567 -336 -567 -573 -567 -568 -568 -327 -568 -562 -568 -565 -568 -330 -568 -329 -568 -564 -568 -332 -568 -469 -568 -566 -568 -470 -568 -569 -568 -403 -568 -648 -568 -651 -568 -406 -568 -498 -568 -652 -568 -569 -569 -330 -569 -565 -569 -469 -569 -566 -569 -332 -569 -568 -569 -470 -569 -331 -569 -567 -569 -333 -569 -570 -569 -406 -569 -651 -569 -498 -569 -652 -569 -407 -569 -653 -569 -570 -570 -331 -570 -330 -570 -566 -570 -567 -570 -333 -570 -332 -570 -569 -570 -334 -570 -571 -570 -336 -570 -573 -570 -407 -570 -406 -570 -652 -570 -653 -570 -410 -570 -657 -570 -571 -571 -324 -571 -321 -571 -554 -571 -559 -571 -334 -571 -331 -571 -567 -571 -325 -571 -560 -571 -335 -571 -572 -571 -336 -571 -333 -571 -570 -571 -573 -571 -337 -571 -574 -571 -572 -572 -325 -572 -324 -572 -559 -572 -560 -572 -335 -572 -334 -572 -571 -572 -337 -572 -336 -572 -573 -572 -574 -572 -344 -572 -579 -572 -350 -572 -586 -572 -352 -572 -588 -572 -573 -573 -334 -573 -331 -573 -567 -573 -571 -573 -336 -573 -333 -573 -570 -573 -335 -573 -572 -573 -337 -573 -574 -573 -410 -573 -407 -573 -653 -573 -657 -573 -411 -573 -658 -573 -574 -574 -335 -574 -334 -574 -571 -574 -572 -574 -337 -574 -336 -574 -573 -574 -350 -574 -586 -574 -352 -574 -588 -574 -411 -574 -410 -574 -657 -574 -658 -574 -429 -574 -680 -574 -575 -575 -218 -575 -224 -575 -576 -575 -338 -575 -341 -575 -342 -575 -343 -575 -209 -575 -556 -575 -313 -575 -323 -575 -468 -575 -471 -575 -558 -575 -577 -575 -472 -575 -578 -575 -576 -576 -218 -576 -224 -576 -575 -576 -338 -576 -341 -576 -342 -576 -343 -576 -471 -576 -472 -576 -577 -576 -578 -576 -219 -576 -581 -576 -339 -576 -346 -576 -474 -576 -583 -576 -577 -577 -575 -577 -556 -577 -468 -577 -471 -577 -342 -577 -323 -577 -558 -577 -576 -577 -472 -577 -343 -577 -578 -577 -344 -577 -325 -577 -560 -577 -579 -577 -345 -577 -580 -577 -578 -578 -576 -578 -575 -578 -471 -578 -472 -578 -343 -578 -342 -578 -577 -578 -345 -578 -344 -578 -579 -578 -580 -578 -581 -578 -474 -578 -346 -578 -583 -578 -347 -578 -585 -578 -579 -579 -342 -579 -323 -579 -558 -579 -577 -579 -344 -579 -325 -579 -560 -579 -343 -579 -578 -579 -345 -579 -580 -579 -350 -579 -335 -579 -572 -579 -586 -579 -351 -579 -587 -579 -580 -580 -343 -580 -342 -580 -577 -580 -578 -580 -345 -580 -344 -580 -579 -580 -346 -580 -583 -580 -347 -580 -585 -580 -351 -580 -350 -580 -586 -580 -587 -580 -354 -580 -591 -580 -581 -581 -182 -581 -219 -581 -473 -581 -220 -581 -339 -581 -346 -581 -582 -581 -218 -581 -576 -581 -338 -581 -343 -581 -472 -581 -474 -581 -578 -581 -583 -581 -446 -581 -475 -581 -582 -582 -182 -582 -219 -582 -581 -582 -473 -582 -220 -582 -339 -582 -346 -582 -474 -582 -446 -582 -583 -582 -475 -582 -222 -582 -340 -582 -347 -582 -584 -582 -585 -582 -476 -582 -583 -583 -581 -583 -576 -583 -472 -583 -474 -583 -346 -583 -343 -583 -578 -583 -473 -583 -446 -583 -582 -583 -475 -583 -347 -583 -345 -583 -580 -583 -585 -583 -584 -583 -476 -583 -584 -584 -220 -584 -339 -584 -346 -584 -582 -584 -222 -584 -340 -584 -347 -584 -583 -584 -475 -584 -585 -584 -476 -584 -226 -584 -348 -584 -354 -584 -590 -584 -591 -584 -477 -584 -585 -585 -346 -585 -343 -585 -578 -585 -583 -585 -347 -585 -345 -585 -580 -585 -582 -585 -475 -585 -584 -585 -476 -585 -354 -585 -351 -585 -587 -585 -591 -585 -590 -585 -477 -585 -586 -586 -344 -586 -325 -586 -560 -586 -579 -586 -350 -586 -335 -586 -572 -586 -345 -586 -580 -586 -351 -586 -587 -586 -352 -586 -337 -586 -574 -586 -588 -586 -353 -586 -589 -586 -587 -587 -345 -587 -344 -587 -579 -587 -580 -587 -351 -587 -350 -587 -586 -587 -353 -587 -352 -587 -588 -587 -589 -587 -347 -587 -585 -587 -354 -587 -591 -587 -355 -587 -593 -587 -588 -588 -350 -588 -335 -588 -572 -588 -586 -588 -352 -588 -337 -588 -574 -588 -351 -588 -587 -588 -353 -588 -589 -588 -429 -588 -411 -588 -658 -588 -680 -588 -430 -588 -681 -588 -589 -589 -351 -589 -350 -589 -586 -589 -587 -589 -353 -589 -352 -589 -588 -589 -354 -589 -591 -589 -355 -589 -593 -589 -430 -589 -429 -589 -680 -589 -681 -589 -433 -589 -685 -589 -590 -590 -222 -590 -340 -590 -347 -590 -584 -590 -226 -590 -348 -590 -354 -590 -585 -590 -476 -590 -591 -590 -477 -590 -228 -590 -349 -590 -355 -590 -592 -590 -593 -590 -478 -590 -591 -591 -347 -591 -345 -591 -580 -591 -585 -591 -354 -591 -351 -591 -587 -591 -584 -591 -476 -591 -590 -591 -477 -591 -355 -591 -353 -591 -589 -591 -593 -591 -592 -591 -478 -591 -592 -592 -226 -592 -348 -592 -354 -592 -590 -592 -228 -592 -349 -592 -355 -592 -591 -592 -477 -592 -593 -592 -478 -592 -264 -592 -426 -592 -433 -592 -684 -592 -685 -592 -508 -592 -593 -593 -354 -593 -351 -593 -587 -593 -591 -593 -355 -593 -353 -593 -589 -593 -590 -593 -477 -593 -592 -593 -478 -593 -433 -593 -430 -593 -681 -593 -685 -593 -684 -593 -508 -593 -594 -594 -184 -594 -235 -594 -356 -594 -236 -594 -479 -594 -363 -594 -595 -594 -237 -594 -357 -594 -596 -594 -364 -594 -447 -594 -480 -594 -598 -594 -481 -594 -482 -594 -599 -594 -595 -595 -184 -595 -235 -595 -356 -595 -236 -595 -479 -595 -594 -595 -363 -595 -358 -595 -238 -595 -366 -595 -597 -595 -447 -595 -480 -595 -598 -595 -481 -595 -601 -595 -483 -595 -596 -596 -235 -596 -237 -596 -357 -596 -356 -596 -594 -596 -364 -596 -363 -596 -480 -596 -482 -596 -599 -596 -598 -596 -241 -596 -359 -596 -602 -596 -367 -596 -484 -596 -604 -596 -597 -597 -236 -597 -356 -597 -358 -597 -238 -597 -595 -597 -363 -597 -366 -597 -481 -597 -598 -597 -601 -597 -483 -597 -361 -597 -245 -597 -377 -597 -614 -597 -616 -597 -486 -597 -598 -598 -479 -598 -594 -598 -363 -598 -595 -598 -447 -598 -480 -598 -481 -598 -596 -598 -364 -598 -482 -598 -599 -598 -365 -598 -366 -598 -600 -598 -601 -598 -597 -598 -483 -598 -599 -599 -594 -599 -596 -599 -364 -599 -363 -599 -480 -599 -482 -599 -598 -599 -365 -599 -366 -599 -600 -599 -601 -599 -602 -599 -367 -599 -484 -599 -604 -599 -370 -599 -607 -599 -600 -600 -363 -600 -364 -600 -365 -600 -366 -600 -598 -600 -599 -600 -601 -600 -367 -600 -370 -600 -604 -600 -607 -600 -371 -600 -372 -600 -608 -600 -609 -600 -377 -600 -616 -600 -601 -601 -363 -601 -364 -601 -365 -601 -366 -601 -598 -601 -599 -601 -600 -601 -595 -601 -597 -601 -481 -601 -483 -601 -377 -601 -614 -601 -616 -601 -486 -601 -372 -601 -609 -601 -602 -602 -237 -602 -241 -602 -359 -602 -357 -602 -596 -602 -367 -602 -364 -602 -242 -602 -360 -602 -603 -602 -368 -602 -482 -602 -484 -602 -604 -602 -599 -602 -485 -602 -605 -602 -603 -603 -241 -603 -242 -603 -360 -603 -359 -603 -602 -603 -368 -603 -367 -603 -484 -603 -485 -603 -605 -603 -604 -603 -252 -603 -380 -603 -628 -603 -390 -603 -490 -603 -630 -603 -604 -604 -596 -604 -602 -604 -367 -604 -364 -604 -482 -604 -484 -604 -599 -604 -603 -604 -368 -604 -485 -604 -605 -604 -369 -604 -370 -604 -606 -604 -607 -604 -365 -604 -600 -604 -605 -605 -602 -605 -603 -605 -368 -605 -367 -605 -484 -605 -485 -605 -604 -605 -369 -605 -370 -605 -606 -605 -607 -605 -628 -605 -390 -605 -490 -605 -630 -605 -393 -605 -633 -605 -606 -606 -367 -606 -368 -606 -369 -606 -370 -606 -604 -606 -605 -606 -607 -606 -373 -606 -371 -606 -610 -606 -608 -606 -390 -606 -393 -606 -630 -606 -633 -606 -400 -606 -645 -606 -607 -607 -367 -607 -368 -607 -369 -607 -370 -607 -604 -607 -605 -607 -606 -607 -364 -607 -365 -607 -599 -607 -600 -607 -371 -607 -372 -607 -608 -607 -609 -607 -373 -607 -610 -607 -608 -608 -365 -608 -370 -608 -371 -608 -372 -608 -600 -608 -607 -608 -609 -608 -369 -608 -373 -608 -606 -608 -610 -608 -374 -608 -375 -608 -611 -608 -612 -608 -376 -608 -613 -608 -609 -609 -365 -609 -370 -609 -371 -609 -372 -609 -600 -609 -607 -609 -608 -609 -375 -609 -376 -609 -612 -609 -613 -609 -366 -609 -377 -609 -601 -609 -616 -609 -378 -609 -617 -609 -610 -610 -370 -610 -369 -610 -373 -610 -371 -610 -607 -610 -606 -610 -608 -610 -374 -610 -375 -610 -611 -610 -612 -610 -393 -610 -400 -610 -633 -610 -645 -610 -401 -610 -646 -610 -611 -611 -371 -611 -373 -611 -374 -611 -375 -611 -608 -611 -610 -611 -612 -611 -400 -611 -401 -611 -645 -611 -646 -611 -414 -611 -415 -611 -661 -611 -662 -611 -439 -611 -694 -611 -612 -612 -371 -612 -373 -612 -374 -612 -375 -612 -608 -612 -610 -612 -611 -612 -372 -612 -376 -612 -609 -612 -613 -612 -439 -612 -436 -612 -694 -612 -691 -612 -415 -612 -662 -612 -613 -613 -372 -613 -371 -613 -375 -613 -376 -613 -609 -613 -608 -613 -612 -613 -377 -613 -378 -613 -616 -613 -617 -613 -436 -613 -435 -613 -691 -613 -690 -613 -439 -613 -694 -613 -614 -614 -238 -614 -358 -614 -361 -614 -245 -614 -597 -614 -366 -614 -377 -614 -362 -614 -246 -614 -378 -614 -615 -614 -483 -614 -601 -614 -616 -614 -486 -614 -617 -614 -487 -614 -615 -615 -245 -615 -361 -615 -362 -615 -246 -615 -614 -615 -377 -615 -378 -615 -486 -615 -616 -615 -617 -615 -487 -615 -427 -615 -265 -615 -435 -615 -688 -615 -690 -615 -510 -615 -616 -616 -597 -616 -366 -616 -377 -616 -614 -616 -483 -616 -601 -616 -486 -616 -365 -616 -372 -616 -600 -616 -609 -616 -376 -616 -378 -616 -613 -616 -617 -616 -615 -616 -487 -616 -617 -617 -377 -617 -372 -617 -376 -617 -378 -617 -616 -617 -609 -617 -613 -617 -614 -617 -615 -617 -486 -617 -487 -617 -435 -617 -688 -617 -690 -617 -510 -617 -436 -617 -691 -617 -618 -618 -200 -618 -534 -618 -304 -618 -301 -618 -251 -618 -382 -618 -379 -618 -459 -618 -535 -618 -488 -618 -619 -618 -253 -618 -621 -618 -384 -618 -381 -618 -489 -618 -622 -618 -619 -619 -534 -619 -459 -619 -535 -619 -304 -619 -618 -619 -488 -619 -382 -619 -536 -619 -305 -619 -620 -619 -383 -619 -621 -619 -489 -619 -622 -619 -384 -619 -623 -619 -385 -619 -620 -620 -304 -620 -535 -620 -536 -620 -305 -620 -382 -620 -619 -620 -383 -620 -384 -620 -622 -620 -623 -620 -385 -620 -539 -620 -308 -620 -624 -620 -386 -620 -626 -620 -388 -620 -621 -621 -251 -621 -618 -621 -382 -621 -379 -621 -253 -621 -384 -621 -381 -621 -488 -621 -619 -621 -489 -621 -622 -621 -629 -621 -634 -621 -394 -621 -391 -621 -492 -621 -635 -621 -622 -622 -618 -622 -488 -622 -619 -622 -382 -622 -621 -622 -489 -622 -384 -622 -620 -622 -383 -622 -623 -622 -385 -622 -634 -622 -492 -622 -635 -622 -394 -622 -636 -622 -395 -622 -623 -623 -382 -623 -619 -623 -620 -623 -383 -623 -384 -623 -622 -623 -385 -623 -624 -623 -386 -623 -626 -623 -388 -623 -394 -623 -635 -623 -636 -623 -395 -623 -639 -623 -396 -623 -624 -624 -305 -624 -536 -624 -539 -624 -308 -624 -383 -624 -620 -624 -386 -624 -540 -624 -309 -624 -625 -624 -387 -624 -385 -624 -623 -624 -626 -624 -388 -624 -627 -624 -389 -624 -625 -625 -308 -625 -539 -625 -540 -625 -309 -625 -386 -625 -624 -625 -387 -625 -388 -625 -626 -625 -627 -625 -389 -625 -563 -625 -328 -625 -647 -625 -402 -625 -649 -625 -404 -625 -626 -626 -383 -626 -620 -626 -624 -626 -386 -626 -385 -626 -623 -626 -388 -626 -625 -626 -387 -626 -627 -626 -389 -626 -395 -626 -636 -626 -639 -626 -396 -626 -640 -626 -398 -626 -627 -627 -386 -627 -624 -627 -625 -627 -387 -627 -388 -627 -626 -627 -389 -627 -396 -627 -639 -627 -640 -627 -398 -627 -647 -627 -402 -627 -649 -627 -404 -627 -667 -627 -420 -627 -628 -628 -242 -628 -252 -628 -380 -628 -360 -628 -603 -628 -390 -628 -368 -628 -253 -628 -381 -628 -629 -628 -391 -628 -485 -628 -490 -628 -630 -628 -605 -628 -491 -628 -631 -628 -629 -629 -252 -629 -253 -629 -381 -629 -380 -629 -628 -629 -391 -629 -390 -629 -490 -629 -491 -629 -631 -629 -630 -629 -621 -629 -384 -629 -634 -629 -394 -629 -493 -629 -637 -629 -630 -630 -603 -630 -628 -630 -390 -630 -368 -630 -485 -630 -490 -630 -605 -630 -629 -630 -391 -630 -491 -630 -631 -630 -392 -630 -393 -630 -632 -630 -633 -630 -369 -630 -606 -630 -631 -631 -628 -631 -629 -631 -391 -631 -390 -631 -490 -631 -491 -631 -630 -631 -392 -631 -393 -631 -632 -631 -633 -631 -634 -631 -394 -631 -493 -631 -637 -631 -395 -631 -638 -631 -632 -632 -390 -632 -391 -632 -392 -632 -393 -632 -630 -632 -631 -632 -633 -632 -394 -632 -395 -632 -637 -632 -638 -632 -396 -632 -397 -632 -641 -632 -642 -632 -400 -632 -645 -632 -633 -633 -390 -633 -391 -633 -392 -633 -393 -633 -630 -633 -631 -633 -632 -633 -368 -633 -369 -633 -605 -633 -606 -633 -400 -633 -373 -633 -645 -633 -610 -633 -397 -633 -642 -633 -634 -634 -253 -634 -621 -634 -384 -634 -381 -634 -629 -634 -394 -634 -391 -634 -489 -634 -622 -634 -492 -634 -635 -634 -491 -634 -493 -634 -637 -634 -631 -634 -448 -634 -494 -634 -635 -635 -621 -635 -489 -635 -622 -635 -384 -635 -634 -635 -492 -635 -394 -635 -623 -635 -385 -635 -636 -635 -395 -635 -493 -635 -448 -635 -494 -635 -637 -635 -495 -635 -638 -635 -636 -636 -384 -636 -622 -636 -623 -636 -385 -636 -394 -636 -635 -636 -395 -636 -637 -636 -494 -636 -495 -636 -638 -636 -626 -636 -388 -636 -639 -636 -396 -636 -496 -636 -641 -636 -637 -637 -629 -637 -634 -637 -394 -637 -391 -637 -491 -637 -493 -637 -631 -637 -492 -637 -635 -637 -448 -637 -494 -637 -636 -637 -395 -637 -495 -637 -638 -637 -392 -637 -632 -637 -638 -638 -394 -638 -635 -638 -636 -638 -395 -638 -637 -638 -494 -638 -495 -638 -391 -638 -392 -638 -631 -638 -632 -638 -396 -638 -397 -638 -641 -638 -642 -638 -639 -638 -496 -638 -639 -639 -385 -639 -623 -639 -626 -639 -388 -639 -395 -639 -636 -639 -396 -639 -627 -639 -389 -639 -640 -639 -398 -639 -638 -639 -495 -639 -496 -639 -641 -639 -497 -639 -643 -639 -640 -640 -388 -640 -626 -640 -627 -640 -389 -640 -396 -640 -639 -640 -398 -640 -641 -640 -496 -640 -497 -640 -643 -640 -649 -640 -404 -640 -667 -640 -420 -640 -500 -640 -669 -640 -641 -641 -392 -641 -395 -641 -396 -641 -397 -641 -632 -641 -638 -641 -642 -641 -636 -641 -639 -641 -495 -641 -496 -641 -640 -641 -398 -641 -497 -641 -643 -641 -399 -641 -644 -641 -642 -642 -392 -642 -395 -642 -396 -642 -397 -642 -632 -642 -638 -642 -641 -642 -398 -642 -399 -642 -643 -642 -644 -642 -393 -642 -400 -642 -633 -642 -645 -642 -401 -642 -646 -642 -643 -643 -396 -643 -639 -643 -640 -643 -398 -643 -641 -643 -496 -643 -497 -643 -397 -643 -399 -643 -642 -643 -644 -643 -420 -643 -416 -643 -669 -643 -663 -643 -667 -643 -500 -643 -644 -644 -397 -644 -396 -644 -398 -644 -399 -644 -642 -644 -641 -644 -643 -644 -400 -644 -401 -644 -645 -644 -646 -644 -416 -644 -414 -644 -663 -644 -661 -644 -420 -644 -669 -644 -645 -645 -369 -645 -393 -645 -400 -645 -373 -645 -606 -645 -633 -645 -610 -645 -392 -645 -397 -645 -632 -645 -642 -645 -399 -645 -401 -645 -644 -645 -646 -645 -374 -645 -611 -645 -646 -646 -400 -646 -397 -646 -399 -646 -401 -646 -645 -646 -642 -646 -644 -646 -373 -646 -374 -646 -610 -646 -611 -646 -414 -646 -415 -646 -661 -646 -662 -646 -416 -646 -663 -646 -647 -647 -309 -647 -540 -647 -563 -647 -328 -647 -387 -647 -625 -647 -402 -647 -564 -647 -329 -647 -648 -647 -403 -647 -389 -647 -627 -647 -649 -647 -404 -647 -650 -647 -405 -647 -648 -648 -328 -648 -563 -648 -564 -648 -329 -648 -402 -648 -647 -648 -403 -648 -404 -648 -649 -648 -650 -648 -405 -648 -568 -648 -332 -648 -651 -648 -406 -648 -654 -648 -408 -648 -649 -649 -387 -649 -625 -649 -647 -649 -402 -649 -389 -649 -627 -649 -404 -649 -648 -649 -403 -649 -650 -649 -405 -649 -398 -649 -640 -649 -667 -649 -420 -649 -668 -649 -421 -649 -650 -650 -402 -650 -647 -650 -648 -650 -403 -650 -404 -650 -649 -650 -405 -650 -651 -650 -406 -650 -654 -650 -408 -650 -420 -650 -667 -650 -668 -650 -421 -650 -671 -650 -422 -650 -651 -651 -329 -651 -564 -651 -568 -651 -332 -651 -403 -651 -648 -651 -406 -651 -470 -651 -569 -651 -498 -651 -652 -651 -405 -651 -650 -651 -654 -651 -408 -651 -499 -651 -655 -651 -652 -652 -332 -652 -568 -652 -470 -652 -569 -652 -406 -652 -651 -652 -498 -652 -333 -652 -570 -652 -407 -652 -653 -652 -408 -652 -654 -652 -499 -652 -655 -652 -409 -652 -656 -652 -653 -653 -333 -653 -332 -653 -569 -653 -570 -653 -407 -653 -406 -653 -652 -653 -409 -653 -408 -653 -655 -653 -656 -653 -336 -653 -573 -653 -410 -653 -657 -653 -412 -653 -659 -653 -654 -654 -403 -654 -648 -654 -651 -654 -406 -654 -405 -654 -650 -654 -408 -654 -498 -654 -652 -654 -499 -654 -655 -654 -421 -654 -668 -654 -671 -654 -422 -654 -502 -654 -672 -654 -655 -655 -406 -655 -651 -655 -498 -655 -652 -655 -408 -655 -654 -655 -499 -655 -407 -655 -653 -655 -409 -655 -656 -655 -422 -655 -671 -655 -502 -655 -672 -655 -423 -655 -673 -655 -656 -656 -407 -656 -406 -656 -652 -656 -653 -656 -409 -656 -408 -656 -655 -656 -410 -656 -657 -656 -412 -656 -659 -656 -423 -656 -422 -656 -672 -656 -673 -656 -424 -656 -676 -656 -657 -657 -336 -657 -333 -657 -570 -657 -573 -657 -410 -657 -407 -657 -653 -657 -337 -657 -574 -657 -411 -657 -658 -657 -412 -657 -409 -657 -656 -657 -659 -657 -413 -657 -660 -657 -658 -658 -337 -658 -336 -658 -573 -658 -574 -658 -411 -658 -410 -658 -657 -658 -413 -658 -412 -658 -659 -658 -660 -658 -352 -658 -588 -658 -429 -658 -680 -658 -431 -658 -682 -658 -659 -659 -410 -659 -407 -659 -653 -659 -657 -659 -412 -659 -409 -659 -656 -659 -411 -659 -658 -659 -413 -659 -660 -659 -424 -659 -423 -659 -673 -659 -676 -659 -425 -659 -677 -659 -660 -660 -411 -660 -410 -660 -657 -660 -658 -660 -413 -660 -412 -660 -659 -660 -425 -660 -424 -660 -676 -660 -677 -660 -429 -660 -680 -660 -431 -660 -682 -660 -441 -660 -696 -660 -661 -661 -374 -661 -401 -661 -414 -661 -415 -661 -611 -661 -646 -661 -662 -661 -399 -661 -416 -661 -644 -661 -663 -661 -417 -661 -418 -661 -664 -661 -665 -661 -419 -661 -666 -661 -662 -662 -374 -662 -401 -662 -414 -662 -415 -662 -611 -662 -646 -662 -661 -662 -418 -662 -419 -662 -665 -662 -666 -662 -375 -662 -439 -662 -612 -662 -694 -662 -440 -662 -695 -662 -663 -663 -401 -663 -399 -663 -416 -663 -414 -663 -646 -663 -644 -663 -661 -663 -417 -663 -418 -663 -664 -663 -665 -663 -398 -663 -420 -663 -643 -663 -669 -663 -421 -663 -670 -663 -664 -664 -414 -664 -416 -664 -417 -664 -418 -664 -661 -664 -663 -664 -665 -664 -420 -664 -421 -664 -669 -664 -670 -664 -422 -664 -423 -664 -674 -664 -675 -664 -424 -664 -678 -664 -665 -665 -414 -665 -416 -665 -417 -665 -418 -665 -661 -665 -663 -665 -664 -665 -415 -665 -419 -665 -662 -665 -666 -665 -424 -665 -425 -665 -678 -665 -679 -665 -423 -665 -675 -665 -666 -666 -415 -666 -414 -666 -418 -666 -419 -666 -662 -666 -661 -666 -665 -666 -424 -666 -425 -666 -678 -666 -679 -666 -439 -666 -440 -666 -694 -666 -695 -666 -441 -666 -698 -666 -667 -667 -389 -667 -627 -667 -649 -667 -404 -667 -398 -667 -640 -667 -420 -667 -650 -667 -405 -667 -668 -667 -421 -667 -643 -667 -497 -667 -500 -667 -669 -667 -501 -667 -670 -667 -668 -668 -404 -668 -649 -668 -650 -668 -405 -668 -420 -668 -667 -668 -421 -668 -669 -668 -500 -668 -501 -668 -670 -668 -654 -668 -408 -668 -671 -668 -422 -668 -503 -668 -674 -668 -669 -669 -399 -669 -398 -669 -420 -669 -416 -669 -644 -669 -643 -669 -663 -669 -640 -669 -667 -669 -497 -669 -500 -669 -668 -669 -421 -669 -501 -669 -670 -669 -417 -669 -664 -669 -670 -670 -420 -670 -667 -670 -668 -670 -421 -670 -669 -670 -500 -670 -501 -670 -416 -670 -417 -670 -663 -670 -664 -670 -422 -670 -423 -670 -674 -670 -675 -670 -671 -670 -503 -670 -671 -671 -405 -671 -650 -671 -654 -671 -408 -671 -421 -671 -668 -671 -422 -671 -499 -671 -655 -671 -502 -671 -672 -671 -670 -671 -501 -671 -503 -671 -674 -671 -449 -671 -504 -671 -672 -672 -408 -672 -654 -672 -499 -672 -655 -672 -422 -672 -671 -672 -502 -672 -409 -672 -656 -672 -423 -672 -673 -672 -674 -672 -503 -672 -449 -672 -504 -672 -675 -672 -505 -672 -673 -673 -409 -673 -408 -673 -655 -673 -656 -673 -423 -673 -422 -673 -672 -673 -675 -673 -674 -673 -504 -673 -505 -673 -412 -673 -659 -673 -424 -673 -676 -673 -678 -673 -506 -673 -674 -674 -417 -674 -421 -674 -422 -674 -423 -674 -664 -674 -670 -674 -675 -674 -668 -674 -671 -674 -501 -674 -503 -674 -502 -674 -672 -674 -449 -674 -504 -674 -673 -674 -505 -674 -675 -675 -417 -675 -421 -675 -422 -675 -423 -675 -664 -675 -670 -675 -674 -675 -672 -675 -673 -675 -504 -675 -505 -675 -418 -675 -424 -675 -665 -675 -678 -675 -676 -675 -506 -675 -676 -676 -412 -676 -409 -676 -656 -676 -659 -676 -424 -676 -423 -676 -673 -676 -413 -676 -660 -676 -425 -676 -677 -676 -678 -676 -675 -676 -505 -676 -506 -676 -679 -676 -507 -676 -677 -677 -413 -677 -412 -677 -659 -677 -660 -677 -425 -677 -424 -677 -676 -677 -679 -677 -678 -677 -506 -677 -507 -677 -431 -677 -682 -677 -441 -677 -696 -677 -698 -677 -512 -677 -678 -678 -419 -678 -418 -678 -424 -678 -425 -678 -666 -678 -665 -678 -679 -678 -417 -678 -423 -678 -664 -678 -675 -678 -673 -678 -676 -678 -505 -678 -506 -678 -677 -678 -507 -678 -679 -679 -419 -679 -418 -679 -424 -679 -425 -679 -666 -679 -665 -679 -678 -679 -676 -679 -677 -679 -506 -679 -507 -679 -440 -679 -441 -679 -695 -679 -698 -679 -696 -679 -512 -679 -680 -680 -352 -680 -337 -680 -574 -680 -588 -680 -429 -680 -411 -680 -658 -680 -353 -680 -589 -680 -430 -680 -681 -680 -431 -680 -413 -680 -660 -680 -682 -680 -432 -680 -683 -680 -681 -681 -353 -681 -352 -681 -588 -681 -589 -681 -430 -681 -429 -681 -680 -681 -432 -681 -431 -681 -682 -681 -683 -681 -355 -681 -593 -681 -433 -681 -685 -681 -434 -681 -687 -681 -682 -682 -429 -682 -411 -682 -658 -682 -680 -682 -431 -682 -413 -682 -660 -682 -430 -682 -681 -682 -432 -682 -683 -682 -441 -682 -425 -682 -677 -682 -696 -682 -442 -682 -697 -682 -683 -683 -430 -683 -429 -683 -680 -683 -681 -683 -432 -683 -431 -683 -682 -683 -433 -683 -685 -683 -434 -683 -687 -683 -442 -683 -441 -683 -696 -683 -697 -683 -443 -683 -701 -683 -684 -684 -228 -684 -349 -684 -355 -684 -592 -684 -264 -684 -426 -684 -433 -684 -593 -684 -478 -684 -685 -684 -508 -684 -266 -684 -428 -684 -434 -684 -686 -684 -687 -684 -509 -684 -685 -685 -355 -685 -353 -685 -589 -685 -593 -685 -433 -685 -430 -685 -681 -685 -592 -685 -478 -685 -684 -685 -508 -685 -434 -685 -432 -685 -683 -685 -687 -685 -686 -685 -509 -685 -686 -686 -264 -686 -426 -686 -433 -686 -684 -686 -266 -686 -428 -686 -434 -686 -685 -686 -508 -686 -687 -686 -509 -686 -689 -686 -438 -686 -443 -686 -700 -686 -701 -686 -514 -686 -687 -687 -433 -687 -430 -687 -681 -687 -685 -687 -434 -687 -432 -687 -683 -687 -684 -687 -508 -687 -686 -687 -509 -687 -443 -687 -442 -687 -697 -687 -701 -687 -700 -687 -514 -687 -688 -688 -246 -688 -362 -688 -427 -688 -265 -688 -615 -688 -378 -688 -435 -688 -428 -688 -266 -688 -438 -688 -689 -688 -487 -688 -617 -688 -690 -688 -510 -688 -693 -688 -511 -688 -689 -689 -265 -689 -427 -689 -428 -689 -266 -689 -688 -689 -435 -689 -438 -689 -510 -689 -690 -689 -693 -689 -511 -689 -434 -689 -686 -689 -443 -689 -700 -689 -702 -689 -515 -689 -690 -690 -615 -690 -378 -690 -435 -690 -688 -690 -487 -690 -617 -690 -510 -690 -376 -690 -436 -690 -613 -690 -691 -690 -437 -690 -438 -690 -692 -690 -693 -690 -689 -690 -511 -690 -691 -691 -378 -691 -376 -691 -436 -691 -435 -691 -617 -691 -613 -691 -690 -691 -437 -691 -438 -691 -692 -691 -693 -691 -375 -691 -439 -691 -612 -691 -694 -691 -440 -691 -695 -691 -692 -692 -435 -692 -436 -692 -437 -692 -438 -692 -690 -692 -691 -692 -693 -692 -439 -692 -440 -692 -694 -692 -695 -692 -441 -692 -442 -692 -698 -692 -699 -692 -443 -692 -702 -692 -693 -693 -435 -693 -436 -693 -437 -693 -438 -693 -690 -693 -691 -693 -692 -693 -688 -693 -689 -693 -510 -693 -511 -693 -443 -693 -700 -693 -702 -693 -515 -693 -442 -693 -699 -693 -694 -694 -376 -694 -375 -694 -439 -694 -436 -694 -613 -694 -612 -694 -691 -694 -374 -694 -415 -694 -611 -694 -662 -694 -419 -694 -440 -694 -666 -694 -695 -694 -437 -694 -692 -694 -695 -695 -439 -695 -415 -695 -419 -695 -440 -695 -694 -695 -662 -695 -666 -695 -436 -695 -437 -695 -691 -695 -692 -695 -441 -695 -442 -695 -698 -695 -699 -695 -425 -695 -679 -695 -696 -696 -431 -696 -413 -696 -660 -696 -682 -696 -441 -696 -425 -696 -677 -696 -432 -696 -683 -696 -442 -696 -697 -696 -698 -696 -679 -696 -507 -696 -512 -696 -699 -696 -513 -696 -697 -697 -432 -697 -431 -697 -682 -697 -683 -697 -442 -697 -441 -697 -696 -697 -699 -697 -698 -697 -512 -697 -513 -697 -434 -697 -687 -697 -443 -697 -701 -697 -702 -697 -516 -697 -698 -698 -437 -698 -440 -698 -441 -698 -442 -698 -692 -698 -695 -698 -699 -698 -419 -698 -425 -698 -666 -698 -679 -698 -677 -698 -696 -698 -507 -698 -512 -698 -697 -698 -513 -698 -699 -699 -437 -699 -440 -699 -441 -699 -442 -699 -692 -699 -695 -699 -698 -699 -696 -699 -697 -699 -512 -699 -513 -699 -438 -699 -443 -699 -693 -699 -702 -699 -701 -699 -516 -699 -700 -700 -266 -700 -428 -700 -434 -700 -686 -700 -689 -700 -438 -700 -443 -700 -687 -700 -509 -700 -701 -700 -514 -700 -511 -700 -693 -700 -702 -700 -515 -700 -516 -700 -450 -700 -701 -701 -434 -701 -432 -701 -683 -701 -687 -701 -443 -701 -442 -701 -697 -701 -686 -701 -509 -701 -700 -701 -514 -701 -702 -701 -699 -701 -513 -701 -516 -701 -515 -701 -450 -701 -702 -702 -689 -702 -438 -702 -443 -702 -700 -702 -511 -702 -693 -702 -515 -702 -437 -702 -442 -702 -692 -702 -699 -702 -697 -702 -701 -702 -513 -702 -516 -702 -514 -702 -450 -702 -DEAL:: Computing constraints... -DEAL:: Writing condensed sparsity pattern... -0 0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -1 -1 -0 -1 -2 -1 -3 -1 -4 -1 -5 -1 -6 -1 -7 -1 -8 -1 -11 -1 -12 -1 -20 -1 -2 -2 -0 -2 -1 -2 -3 -2 -4 -2 -5 -2 -6 -2 -7 -2 -9 -2 -14 -2 -15 -2 -22 -2 -3 -3 -0 -3 -1 -3 -2 -3 -4 -3 -5 -3 -6 -3 -7 -3 -10 -3 -16 -3 -17 -3 -23 -3 -4 -4 -0 -4 -1 -4 -2 -4 -3 -4 -5 -4 -6 -4 -7 -4 -8 -4 -9 -4 -11 -4 -12 -4 -13 -4 -14 -4 -15 -4 -20 -4 -21 -4 -22 -4 -5 -5 -0 -5 -1 -5 -2 -5 -3 -5 -4 -5 -6 -5 -7 -5 -8 -5 -10 -5 -11 -5 -12 -5 -16 -5 -17 -5 -18 -5 -20 -5 -23 -5 -24 -5 -6 -6 -0 -6 -1 -6 -2 -6 -3 -6 -4 -6 -5 -6 -7 -6 -9 -6 -10 -6 -14 -6 -15 -6 -16 -6 -17 -6 -19 -6 -22 -6 -23 -6 -25 -6 -7 -7 -0 -7 -1 -7 -2 -7 -3 -7 -4 -7 -5 -7 -6 -7 -8 -7 -9 -7 -10 -7 -11 -7 -12 -7 -13 -7 -14 -7 -15 -7 -16 -7 -17 -7 -18 -7 -19 -7 -20 -7 -21 -7 -22 -7 -23 -7 -24 -7 -25 -7 -26 -7 -8 -8 -1 -8 -4 -8 -5 -8 -7 -8 -11 -8 -12 -8 -20 -8 -27 -8 -30 -8 -31 -8 -52 -8 -9 -9 -2 -9 -4 -9 -6 -9 -7 -9 -14 -9 -15 -9 -22 -9 -28 -9 -37 -9 -38 -9 -57 -9 -10 -10 -3 -10 -5 -10 -6 -10 -7 -10 -16 -10 -17 -10 -23 -10 -29 -10 -40 -10 -41 -10 -59 -10 -11 -11 -1 -11 -4 -11 -5 -11 -7 -11 -8 -11 -12 -11 -13 -11 -14 -11 -20 -11 -21 -11 -22 -11 -27 -11 -30 -11 -31 -11 -32 -11 -52 -11 -53 -11 -12 -12 -1 -12 -4 -12 -5 -12 -7 -12 -8 -12 -11 -12 -16 -12 -18 -12 -20 -12 -23 -12 -24 -12 -27 -12 -30 -12 -31 -12 -33 -12 -52 -12 -54 -12 -13 -13 -4 -13 -7 -13 -11 -13 -14 -13 -20 -13 -21 -13 -22 -13 -30 -13 -32 -13 -34 -13 -35 -13 -37 -13 -52 -13 -53 -13 -55 -13 -56 -13 -57 -13 -14 -14 -2 -14 -4 -14 -6 -14 -7 -14 -9 -14 -11 -14 -13 -14 -15 -14 -20 -14 -21 -14 -22 -14 -28 -14 -35 -14 -37 -14 -38 -14 -56 -14 -57 -14 -15 -15 -2 -15 -4 -15 -6 -15 -7 -15 -9 -15 -14 -15 -17 -15 -19 -15 -22 -15 -23 -15 -25 -15 -28 -15 -37 -15 -38 -15 -39 -15 -57 -15 -58 -15 -16 -16 -3 -16 -5 -16 -6 -16 -7 -16 -10 -16 -12 -16 -17 -16 -18 -16 -20 -16 -23 -16 -24 -16 -29 -16 -40 -16 -41 -16 -42 -16 -59 -16 -60 -16 -17 -17 -3 -17 -5 -17 -6 -17 -7 -17 -10 -17 -15 -17 -16 -17 -19 -17 -22 -17 -23 -17 -25 -17 -29 -17 -40 -17 -41 -17 -43 -17 -59 -17 -61 -17 -18 -18 -5 -18 -7 -18 -12 -18 -16 -18 -20 -18 -23 -18 -24 -18 -31 -18 -33 -18 -40 -18 -42 -18 -44 -18 -52 -18 -54 -18 -59 -18 -60 -18 -62 -18 -19 -19 -6 -19 -7 -19 -15 -19 -17 -19 -22 -19 -23 -19 -25 -19 -38 -19 -39 -19 -41 -19 -43 -19 -46 -19 -57 -19 -58 -19 -59 -19 -61 -19 -63 -19 -20 -20 -1 -20 -4 -20 -5 -20 -7 -20 -8 -20 -11 -20 -12 -20 -13 -20 -14 -20 -16 -20 -18 -20 -21 -20 -22 -20 -23 -20 -24 -20 -25 -20 -26 -20 -27 -20 -30 -20 -31 -20 -32 -20 -33 -20 -48 -20 -52 -20 -53 -20 -54 -20 -64 -20 -21 -21 -4 -21 -7 -21 -11 -21 -13 -21 -14 -21 -20 -21 -22 -21 -23 -21 -24 -21 -25 -21 -26 -21 -30 -21 -32 -21 -34 -21 -35 -21 -36 -21 -37 -21 -48 -21 -49 -21 -52 -21 -53 -21 -54 -21 -55 -21 -56 -21 -57 -21 -58 -21 -64 -21 -65 -21 -66 -21 -22 -22 -2 -22 -4 -22 -6 -22 -7 -22 -9 -22 -11 -22 -13 -22 -14 -22 -15 -22 -17 -22 -19 -22 -20 -22 -21 -22 -23 -22 -24 -22 -25 -22 -26 -22 -28 -22 -35 -22 -37 -22 -38 -22 -39 -22 -49 -22 -56 -22 -57 -22 -58 -22 -66 -22 -23 -23 -3 -23 -5 -23 -6 -23 -7 -23 -10 -23 -12 -23 -15 -23 -16 -23 -17 -23 -18 -23 -19 -23 -20 -23 -21 -23 -22 -23 -24 -23 -25 -23 -26 -23 -29 -23 -40 -23 -41 -23 -42 -23 -43 -23 -50 -23 -59 -23 -60 -23 -61 -23 -67 -23 -24 -24 -5 -24 -7 -24 -12 -24 -16 -24 -18 -24 -20 -24 -21 -24 -22 -24 -23 -24 -25 -24 -26 -24 -31 -24 -33 -24 -40 -24 -42 -24 -44 -24 -45 -24 -48 -24 -50 -24 -52 -24 -53 -24 -54 -24 -59 -24 -60 -24 -61 -24 -62 -24 -64 -24 -67 -24 -68 -24 -25 -25 -6 -25 -7 -25 -15 -25 -17 -25 -19 -25 -20 -25 -21 -25 -22 -25 -23 -25 -24 -25 -26 -25 -38 -25 -39 -25 -41 -25 -43 -25 -46 -25 -47 -25 -49 -25 -50 -25 -56 -25 -57 -25 -58 -25 -59 -25 -60 -25 -61 -25 -63 -25 -66 -25 -67 -25 -69 -25 -26 -26 -7 -26 -20 -26 -21 -26 -22 -26 -23 -26 -24 -26 -25 -26 -36 -26 -45 -26 -47 -26 -48 -26 -49 -26 -50 -26 -51 -26 -52 -26 -53 -26 -54 -26 -55 -26 -56 -26 -57 -26 -58 -26 -59 -26 -60 -26 -61 -26 -62 -26 -63 -26 -64 -26 -65 -26 -66 -26 -67 -26 -68 -26 -69 -26 -118 -26 -119 -26 -120 -26 -121 -26 -122 -26 -123 -26 -124 -26 -125 -26 -126 -26 -127 -26 -128 -26 -129 -26 -130 -26 -131 -26 -132 -26 -133 -26 -134 -26 -135 -26 -27 -27 -8 -27 -11 -27 -12 -27 -20 -27 -30 -27 -31 -27 -52 -27 -70 -27 -73 -27 -74 -27 -118 -27 -28 -28 -9 -28 -14 -28 -15 -28 -22 -28 -37 -28 -38 -28 -57 -28 -71 -28 -83 -28 -84 -28 -125 -28 -29 -29 -10 -29 -16 -29 -17 -29 -23 -29 -40 -29 -41 -29 -59 -29 -72 -29 -86 -29 -87 -29 -127 -29 -30 -30 -8 -30 -11 -30 -12 -30 -13 -30 -20 -30 -21 -30 -27 -30 -31 -30 -32 -30 -52 -30 -53 -30 -70 -30 -73 -30 -74 -30 -75 -30 -118 -30 -119 -30 -31 -31 -8 -31 -11 -31 -12 -31 -18 -31 -20 -31 -24 -31 -27 -31 -30 -31 -33 -31 -52 -31 -54 -31 -70 -31 -73 -31 -74 -31 -76 -31 -118 -31 -120 -31 -32 -32 -11 -32 -13 -32 -20 -32 -21 -32 -30 -32 -34 -32 -35 -32 -52 -32 -53 -32 -55 -32 -56 -32 -73 -32 -75 -32 -77 -32 -118 -32 -119 -32 -121 -32 -33 -33 -12 -33 -18 -33 -20 -33 -24 -33 -31 -33 -42 -33 -44 -33 -52 -33 -54 -33 -60 -33 -62 -33 -74 -33 -76 -33 -90 -33 -118 -33 -120 -33 -130 -33 -34 -34 -13 -34 -21 -34 -32 -34 -35 -34 -53 -34 -55 -34 -56 -34 -75 -34 -77 -34 -78 -34 -79 -34 -80 -34 -119 -34 -121 -34 -122 -34 -123 -34 -124 -34 -35 -35 -13 -35 -14 -35 -21 -35 -22 -35 -32 -35 -34 -35 -37 -35 -53 -35 -55 -35 -56 -35 -57 -35 -79 -35 -80 -35 -83 -35 -123 -35 -124 -35 -125 -35 -36 -36 -21 -36 -26 -36 -48 -36 -49 -36 -53 -36 -55 -36 -56 -36 -64 -36 -65 -36 -66 -36 -81 -36 -82 -36 -119 -36 -121 -36 -122 -36 -123 -36 -124 -36 -37 -37 -9 -37 -13 -37 -14 -37 -15 -37 -21 -37 -22 -37 -28 -37 -35 -37 -38 -37 -56 -37 -57 -37 -71 -37 -80 -37 -83 -37 -84 -37 -124 -37 -125 -37 -38 -38 -9 -38 -14 -38 -15 -38 -19 -38 -22 -38 -25 -38 -28 -38 -37 -38 -39 -38 -57 -38 -58 -38 -71 -38 -83 -38 -84 -38 -85 -38 -125 -38 -126 -38 -39 -39 -15 -39 -19 -39 -22 -39 -25 -39 -38 -39 -43 -39 -46 -39 -57 -39 -58 -39 -61 -39 -63 -39 -84 -39 -85 -39 -96 -39 -125 -39 -126 -39 -133 -39 -40 -40 -10 -40 -16 -40 -17 -40 -18 -40 -23 -40 -24 -40 -29 -40 -41 -40 -42 -40 -59 -40 -60 -40 -72 -40 -86 -40 -87 -40 -88 -40 -127 -40 -128 -40 -41 -41 -10 -41 -16 -41 -17 -41 -19 -41 -23 -41 -25 -41 -29 -41 -40 -41 -43 -41 -59 -41 -61 -41 -72 -41 -86 -41 -87 -41 -89 -41 -127 -41 -129 -41 -42 -42 -16 -42 -18 -42 -23 -42 -24 -42 -33 -42 -40 -42 -44 -42 -54 -42 -59 -42 -60 -42 -62 -42 -86 -42 -88 -42 -92 -42 -127 -42 -128 -42 -131 -42 -43 -43 -17 -43 -19 -43 -23 -43 -25 -43 -39 -43 -41 -43 -46 -43 -58 -43 -59 -43 -61 -43 -63 -43 -87 -43 -89 -43 -97 -43 -127 -43 -129 -43 -134 -43 -44 -44 -18 -44 -24 -44 -33 -44 -42 -44 -54 -44 -60 -44 -62 -44 -76 -44 -88 -44 -90 -44 -92 -44 -93 -44 -120 -44 -128 -44 -130 -44 -131 -44 -132 -44 -45 -45 -24 -45 -26 -45 -48 -45 -50 -45 -54 -45 -60 -45 -62 -45 -64 -45 -67 -45 -68 -45 -91 -45 -94 -45 -120 -45 -128 -45 -130 -45 -131 -45 -132 -45 -46 -46 -19 -46 -25 -46 -39 -46 -43 -46 -58 -46 -61 -46 -63 -46 -85 -46 -89 -46 -96 -46 -97 -46 -99 -46 -126 -46 -129 -46 -133 -46 -134 -46 -135 -46 -47 -47 -25 -47 -26 -47 -49 -47 -50 -47 -58 -47 -61 -47 -63 -47 -66 -47 -67 -47 -69 -47 -95 -47 -98 -47 -126 -47 -129 -47 -133 -47 -134 -47 -135 -47 -48 -48 -20 -48 -21 -48 -24 -48 -26 -48 -36 -48 -45 -48 -49 -48 -50 -48 -52 -48 -53 -48 -54 -48 -55 -48 -56 -48 -60 -48 -62 -48 -64 -48 -81 -48 -91 -48 -118 -48 -119 -48 -120 -48 -121 -48 -130 -48 -49 -49 -21 -49 -22 -49 -25 -49 -26 -49 -36 -49 -47 -49 -48 -49 -50 -49 -53 -49 -55 -49 -56 -49 -57 -49 -58 -49 -61 -49 -63 -49 -66 -49 -82 -49 -95 -49 -123 -49 -124 -49 -125 -49 -126 -49 -133 -49 -50 -50 -23 -50 -24 -50 -25 -50 -26 -50 -45 -50 -47 -50 -48 -50 -49 -50 -54 -50 -58 -50 -59 -50 -60 -50 -61 -50 -62 -50 -63 -50 -67 -50 -94 -50 -98 -50 -127 -50 -128 -50 -129 -50 -131 -50 -134 -50 -51 -51 -26 -51 -64 -51 -65 -51 -66 -51 -67 -51 -68 -51 -69 -51 -160 -51 -161 -51 -162 -51 -163 -51 -164 -51 -165 -51 -166 -51 -167 -51 -168 -51 -169 -51 -170 -51 -171 -51 -172 -51 -173 -51 -174 -51 -175 -51 -176 -51 -177 -51 -178 -51 -52 -52 -8 -52 -11 -52 -12 -52 -13 -52 -18 -52 -20 -52 -21 -52 -24 -52 -26 -52 -27 -52 -30 -52 -31 -52 -32 -52 -33 -52 -48 -52 -53 -52 -54 -52 -64 -52 -70 -52 -73 -52 -74 -52 -75 -52 -76 -52 -118 -52 -119 -52 -120 -52 -53 -53 -11 -53 -13 -53 -20 -53 -21 -53 -24 -53 -26 -53 -30 -53 -32 -53 -34 -53 -35 -53 -36 -53 -48 -53 -49 -53 -52 -53 -54 -53 -55 -53 -56 -53 -64 -53 -65 -53 -66 -53 -73 -53 -75 -53 -77 -53 -81 -53 -118 -53 -119 -53 -120 -53 -121 -53 -54 -54 -12 -54 -18 -54 -20 -54 -21 -54 -24 -54 -26 -54 -31 -54 -33 -54 -42 -54 -44 -54 -45 -54 -48 -54 -50 -54 -52 -54 -53 -54 -60 -54 -62 -54 -64 -54 -67 -54 -68 -54 -74 -54 -76 -54 -90 -54 -91 -54 -118 -54 -119 -54 -120 -54 -130 -54 -55 -55 -13 -55 -21 -55 -26 -55 -32 -55 -34 -55 -35 -55 -36 -55 -48 -55 -49 -55 -53 -55 -56 -55 -64 -55 -65 -55 -66 -55 -75 -55 -77 -55 -78 -55 -79 -55 -80 -55 -81 -55 -82 -55 -119 -55 -121 -55 -122 -55 -123 -55 -124 -55 -56 -56 -13 -56 -14 -56 -21 -56 -22 -56 -25 -56 -26 -56 -32 -56 -34 -56 -35 -56 -36 -56 -37 -56 -48 -56 -49 -56 -53 -56 -55 -56 -57 -56 -58 -56 -64 -56 -65 -56 -66 -56 -79 -56 -80 -56 -82 -56 -83 -56 -123 -56 -124 -56 -125 -56 -126 -56 -57 -57 -9 -57 -13 -57 -14 -57 -15 -57 -19 -57 -21 -57 -22 -57 -25 -57 -26 -57 -28 -57 -35 -57 -37 -57 -38 -57 -39 -57 -49 -57 -56 -57 -58 -57 -66 -57 -71 -57 -80 -57 -83 -57 -84 -57 -85 -57 -124 -57 -125 -57 -126 -57 -58 -58 -15 -58 -19 -58 -21 -58 -22 -58 -25 -58 -26 -58 -38 -58 -39 -58 -43 -58 -46 -58 -47 -58 -49 -58 -50 -58 -56 -58 -57 -58 -61 -58 -63 -58 -66 -58 -67 -58 -69 -58 -84 -58 -85 -58 -95 -58 -96 -58 -124 -58 -125 -58 -126 -58 -133 -58 -59 -59 -10 -59 -16 -59 -17 -59 -18 -59 -19 -59 -23 -59 -24 -59 -25 -59 -26 -59 -29 -59 -40 -59 -41 -59 -42 -59 -43 -59 -50 -59 -60 -59 -61 -59 -67 -59 -72 -59 -86 -59 -87 -59 -88 -59 -89 -59 -127 -59 -128 -59 -129 -59 -60 -60 -16 -60 -18 -60 -23 -60 -24 -60 -25 -60 -26 -60 -33 -60 -40 -60 -42 -60 -44 -60 -45 -60 -48 -60 -50 -60 -54 -60 -59 -60 -61 -60 -62 -60 -64 -60 -67 -60 -68 -60 -86 -60 -88 -60 -92 -60 -94 -60 -127 -60 -128 -60 -129 -60 -131 -60 -61 -61 -17 -61 -19 -61 -23 -61 -24 -61 -25 -61 -26 -61 -39 -61 -41 -61 -43 -61 -46 -61 -47 -61 -49 -61 -50 -61 -58 -61 -59 -61 -60 -61 -63 -61 -66 -61 -67 -61 -69 -61 -87 -61 -89 -61 -97 -61 -98 -61 -127 -61 -128 -61 -129 -61 -134 -61 -62 -62 -18 -62 -24 -62 -26 -62 -33 -62 -42 -62 -44 -62 -45 -62 -48 -62 -50 -62 -54 -62 -60 -62 -64 -62 -67 -62 -68 -62 -76 -62 -88 -62 -90 -62 -91 -62 -92 -62 -93 -62 -94 -62 -120 -62 -128 -62 -130 -62 -131 -62 -132 -62 -63 -63 -19 -63 -25 -63 -26 -63 -39 -63 -43 -63 -46 -63 -47 -63 -49 -63 -50 -63 -58 -63 -61 -63 -66 -63 -67 -63 -69 -63 -85 -63 -89 -63 -95 -63 -96 -63 -97 -63 -98 -63 -99 -63 -126 -63 -129 -63 -133 -63 -134 -63 -135 -63 -64 -64 -20 -64 -21 -64 -24 -64 -26 -64 -36 -64 -45 -64 -48 -64 -51 -64 -52 -64 -53 -64 -54 -64 -55 -64 -56 -64 -60 -64 -62 -64 -65 -64 -66 -64 -67 -64 -68 -64 -69 -64 -81 -64 -91 -64 -100 -64 -102 -64 -115 -64 -118 -64 -119 -64 -120 -64 -121 -64 -122 -64 -123 -64 -124 -64 -128 -64 -130 -64 -131 -64 -132 -64 -136 -64 -137 -64 -138 -64 -139 -64 -140 -64 -141 -64 -142 -64 -160 -64 -167 -64 -168 -64 -169 -64 -287 -64 -288 -64 -289 -64 -295 -64 -297 -64 -300 -64 -301 -64 -65 -65 -21 -65 -26 -65 -36 -65 -51 -65 -53 -65 -55 -65 -56 -65 -64 -65 -66 -65 -67 -65 -68 -65 -69 -65 -81 -65 -82 -65 -100 -65 -101 -65 -104 -65 -105 -65 -106 -65 -119 -65 -121 -65 -122 -65 -123 -65 -124 -65 -137 -65 -139 -65 -140 -65 -143 -65 -144 -65 -146 -65 -148 -65 -160 -65 -161 -65 -162 -65 -167 -65 -168 -65 -169 -65 -170 -65 -171 -65 -172 -65 -173 -65 -288 -65 -295 -65 -297 -65 -310 -65 -311 -65 -312 -65 -313 -65 -338 -65 -341 -65 -66 -66 -21 -66 -22 -66 -25 -66 -26 -66 -36 -66 -47 -66 -49 -66 -51 -66 -53 -66 -55 -66 -56 -66 -57 -66 -58 -66 -61 -66 -63 -66 -64 -66 -65 -66 -67 -66 -68 -66 -69 -66 -82 -66 -95 -66 -106 -66 -107 -66 -116 -66 -119 -66 -121 -66 -122 -66 -123 -66 -124 -66 -125 -66 -126 -66 -129 -66 -133 -66 -134 -66 -135 -66 -144 -66 -145 -66 -146 -66 -147 -66 -148 -66 -149 -66 -150 -66 -162 -66 -170 -66 -172 -66 -173 -66 -313 -66 -338 -66 -339 -66 -340 -66 -341 -66 -348 -66 -349 -66 -67 -67 -23 -67 -24 -67 -25 -67 -26 -67 -45 -67 -47 -67 -50 -67 -51 -67 -54 -67 -58 -67 -59 -67 -60 -67 -61 -67 -62 -67 -63 -67 -64 -67 -65 -67 -66 -67 -68 -67 -69 -67 -94 -67 -98 -67 -110 -67 -111 -67 -117 -67 -120 -67 -126 -67 -127 -67 -128 -67 -129 -67 -130 -67 -131 -67 -132 -67 -133 -67 -134 -67 -135 -67 -151 -67 -152 -67 -153 -67 -154 -67 -155 -67 -156 -67 -157 -67 -163 -67 -174 -67 -175 -67 -176 -67 -356 -67 -357 -67 -358 -67 -359 -67 -360 -67 -361 -67 -362 -67 -68 -68 -24 -68 -26 -68 -45 -68 -51 -68 -54 -68 -60 -68 -62 -68 -64 -68 -65 -68 -66 -68 -67 -68 -69 -68 -91 -68 -94 -68 -102 -68 -103 -68 -109 -68 -110 -68 -113 -68 -120 -68 -128 -68 -130 -68 -131 -68 -132 -68 -138 -68 -141 -68 -142 -68 -152 -68 -154 -68 -155 -68 -158 -68 -160 -68 -163 -68 -164 -68 -167 -68 -168 -68 -169 -68 -174 -68 -175 -68 -176 -68 -177 -68 -289 -68 -300 -68 -301 -68 -357 -68 -359 -68 -360 -68 -379 -68 -380 -68 -381 -68 -69 -69 -25 -69 -26 -69 -47 -69 -51 -69 -58 -69 -61 -69 -63 -69 -64 -69 -65 -69 -66 -69 -67 -69 -68 -69 -95 -69 -98 -69 -107 -69 -108 -69 -111 -69 -112 -69 -114 -69 -126 -69 -129 -69 -133 -69 -134 -69 -135 -69 -147 -69 -149 -69 -150 -69 -153 -69 -156 -69 -157 -69 -159 -69 -162 -69 -163 -69 -166 -69 -170 -69 -172 -69 -173 -69 -174 -69 -175 -69 -176 -69 -178 -69 -340 -69 -348 -69 -349 -69 -358 -69 -361 -69 -362 -69 -426 -69 -427 -69 -428 -69 -70 -70 -27 -70 -30 -70 -31 -70 -52 -70 -73 -70 -74 -70 -118 -70 -136 -70 -179 -70 -185 -70 -186 -70 -71 -71 -28 -71 -37 -71 -38 -71 -57 -71 -83 -71 -84 -71 -125 -71 -145 -71 -181 -71 -215 -71 -216 -71 -72 -72 -29 -72 -40 -72 -41 -72 -59 -72 -86 -72 -87 -72 -127 -72 -151 -72 -183 -72 -231 -72 -232 -72 -73 -73 -27 -73 -30 -73 -31 -73 -32 -73 -52 -73 -53 -73 -70 -73 -74 -73 -75 -73 -118 -73 -119 -73 -136 -73 -137 -73 -179 -73 -185 -73 -186 -73 -190 -73 -74 -74 -27 -74 -30 -74 -31 -74 -33 -74 -52 -74 -54 -74 -70 -74 -73 -74 -76 -74 -118 -74 -120 -74 -136 -74 -138 -74 -179 -74 -185 -74 -186 -74 -191 -74 -75 -75 -30 -75 -32 -75 -34 -75 -52 -75 -53 -75 -55 -75 -73 -75 -77 -75 -118 -75 -119 -75 -121 -75 -136 -75 -137 -75 -139 -75 -185 -75 -190 -75 -195 -75 -76 -76 -31 -76 -33 -76 -44 -76 -52 -76 -54 -76 -62 -76 -74 -76 -90 -76 -118 -76 -120 -76 -130 -76 -136 -76 -138 -76 -141 -76 -186 -76 -191 -76 -197 -76 -77 -77 -32 -77 -34 -77 -53 -77 -55 -77 -75 -77 -78 -77 -79 -77 -119 -77 -121 -77 -122 -77 -123 -77 -137 -77 -139 -77 -140 -77 -190 -77 -195 -77 -196 -77 -78 -78 -34 -78 -55 -78 -77 -78 -79 -78 -121 -78 -122 -78 -123 -78 -139 -78 -140 -78 -143 -78 -144 -78 -148 -78 -195 -78 -196 -78 -204 -78 -205 -78 -223 -78 -79 -79 -34 -79 -35 -79 -55 -79 -56 -79 -77 -79 -78 -79 -80 -79 -121 -79 -122 -79 -123 -79 -124 -79 -144 -79 -146 -79 -148 -79 -205 -79 -217 -79 -223 -79 -80 -80 -34 -80 -35 -80 -37 -80 -55 -80 -56 -80 -57 -80 -79 -80 -83 -80 -123 -80 -124 -80 -125 -80 -145 -80 -146 -80 -148 -80 -215 -80 -217 -80 -223 -80 -81 -81 -36 -81 -48 -81 -53 -81 -55 -81 -64 -81 -65 -81 -82 -81 -100 -81 -101 -81 -115 -81 -119 -81 -121 -81 -122 -81 -123 -81 -137 -81 -139 -81 -140 -81 -82 -82 -36 -82 -49 -82 -55 -82 -56 -82 -65 -82 -66 -82 -81 -82 -105 -82 -106 -82 -116 -82 -121 -82 -122 -82 -123 -82 -124 -82 -144 -82 -146 -82 -148 -82 -83 -83 -28 -83 -35 -83 -37 -83 -38 -83 -56 -83 -57 -83 -71 -83 -80 -83 -84 -83 -124 -83 -125 -83 -145 -83 -146 -83 -181 -83 -215 -83 -216 -83 -217 -83 -84 -84 -28 -84 -37 -84 -38 -84 -39 -84 -57 -84 -58 -84 -71 -84 -83 -84 -85 -84 -125 -84 -126 -84 -145 -84 -147 -84 -181 -84 -215 -84 -216 -84 -221 -84 -85 -85 -38 -85 -39 -85 -46 -85 -57 -85 -58 -85 -63 -85 -84 -85 -96 -85 -125 -85 -126 -85 -133 -85 -145 -85 -147 -85 -149 -85 -216 -85 -221 -85 -225 -85 -86 -86 -29 -86 -40 -86 -41 -86 -42 -86 -59 -86 -60 -86 -72 -86 -87 -86 -88 -86 -127 -86 -128 -86 -151 -86 -152 -86 -183 -86 -231 -86 -232 -86 -233 -86 -87 -87 -29 -87 -40 -87 -41 -87 -43 -87 -59 -87 -61 -87 -72 -87 -86 -87 -89 -87 -127 -87 -129 -87 -151 -87 -153 -87 -183 -87 -231 -87 -232 -87 -234 -87 -88 -88 -40 -88 -42 -88 -44 -88 -59 -88 -60 -88 -62 -88 -86 -88 -92 -88 -127 -88 -128 -88 -131 -88 -151 -88 -152 -88 -154 -88 -231 -88 -233 -88 -239 -88 -89 -89 -41 -89 -43 -89 -46 -89 -59 -89 -61 -89 -63 -89 -87 -89 -97 -89 -127 -89 -129 -89 -134 -89 -151 -89 -153 -89 -156 -89 -232 -89 -234 -89 -243 -89 -90 -90 -33 -90 -44 -90 -54 -90 -62 -90 -76 -90 -92 -90 -93 -90 -120 -90 -130 -90 -131 -90 -132 -90 -138 -90 -141 -90 -142 -90 -191 -90 -197 -90 -199 -90 -91 -91 -45 -91 -48 -91 -54 -91 -62 -91 -64 -91 -68 -91 -94 -91 -102 -91 -103 -91 -115 -91 -120 -91 -130 -91 -131 -91 -132 -91 -138 -91 -141 -91 -142 -91 -92 -92 -42 -92 -44 -92 -60 -92 -62 -92 -88 -92 -90 -92 -93 -92 -128 -92 -130 -92 -131 -92 -132 -92 -152 -92 -154 -92 -155 -92 -233 -92 -239 -92 -240 -92 -93 -93 -44 -93 -62 -93 -90 -93 -92 -93 -130 -93 -131 -93 -132 -93 -141 -93 -142 -93 -154 -93 -155 -93 -158 -93 -197 -93 -199 -93 -239 -93 -240 -93 -250 -93 -94 -94 -45 -94 -50 -94 -60 -94 -62 -94 -67 -94 -68 -94 -91 -94 -109 -94 -110 -94 -117 -94 -128 -94 -130 -94 -131 -94 -132 -94 -152 -94 -154 -94 -155 -94 -95 -95 -47 -95 -49 -95 -58 -95 -63 -95 -66 -95 -69 -95 -98 -95 -107 -95 -108 -95 -116 -95 -126 -95 -133 -95 -134 -95 -135 -95 -147 -95 -149 -95 -150 -95 -96 -96 -39 -96 -46 -96 -58 -96 -63 -96 -85 -96 -97 -96 -99 -96 -126 -96 -133 -96 -134 -96 -135 -96 -147 -96 -149 -96 -150 -96 -221 -96 -225 -96 -227 -96 -97 -97 -43 -97 -46 -97 -61 -97 -63 -97 -89 -97 -96 -97 -99 -97 -129 -97 -133 -97 -134 -97 -135 -97 -153 -97 -156 -97 -157 -97 -234 -97 -243 -97 -244 -97 -98 -98 -47 -98 -50 -98 -61 -98 -63 -98 -67 -98 -69 -98 -95 -98 -111 -98 -112 -98 -117 -98 -129 -98 -133 -98 -134 -98 -135 -98 -153 -98 -156 -98 -157 -98 -99 -99 -46 -99 -63 -99 -96 -99 -97 -99 -133 -99 -134 -99 -135 -99 -149 -99 -150 -99 -156 -99 -157 -99 -159 -99 -225 -99 -227 -99 -243 -99 -244 -99 -263 -99 -100 -100 -64 -100 -65 -100 -81 -100 -101 -100 -115 -100 -119 -100 -121 -100 -122 -100 -137 -100 -139 -100 -140 -100 -160 -100 -167 -100 -269 -100 -288 -100 -295 -100 -297 -100 -101 -101 -65 -101 -81 -101 -100 -101 -104 -101 -105 -101 -121 -101 -122 -101 -139 -101 -140 -101 -143 -101 -144 -101 -167 -101 -269 -101 -271 -101 -295 -101 -297 -101 -310 -101 -102 -102 -64 -102 -68 -102 -91 -102 -103 -102 -115 -102 -120 -102 -130 -102 -132 -102 -138 -102 -141 -102 -142 -102 -160 -102 -168 -102 -270 -102 -289 -102 -300 -102 -301 -102 -103 -103 -68 -103 -91 -103 -102 -103 -109 -103 -113 -103 -130 -103 -132 -103 -141 -103 -142 -103 -155 -103 -158 -103 -168 -103 -270 -103 -278 -103 -300 -103 -301 -103 -379 -103 -104 -104 -65 -104 -101 -104 -105 -104 -122 -104 -140 -104 -143 -104 -144 -104 -161 -104 -167 -104 -170 -104 -271 -104 -272 -104 -297 -104 -310 -104 -311 -104 -312 -104 -313 -104 -105 -105 -65 -105 -82 -105 -101 -105 -104 -105 -106 -105 -122 -105 -123 -105 -140 -105 -143 -105 -144 -105 -148 -105 -170 -105 -272 -105 -274 -105 -312 -105 -313 -105 -341 -105 -106 -106 -65 -106 -66 -106 -82 -106 -105 -106 -116 -106 -122 -106 -123 -106 -124 -106 -144 -106 -146 -106 -148 -106 -162 -106 -170 -106 -274 -106 -313 -106 -338 -106 -341 -106 -107 -107 -66 -107 -69 -107 -95 -107 -108 -107 -116 -107 -126 -107 -133 -107 -135 -107 -147 -107 -149 -107 -150 -107 -162 -107 -173 -107 -275 -107 -340 -107 -348 -107 -349 -107 -108 -108 -69 -108 -95 -108 -107 -108 -112 -108 -114 -108 -133 -108 -135 -108 -149 -108 -150 -108 -157 -108 -159 -108 -173 -108 -275 -108 -284 -108 -348 -108 -349 -108 -426 -108 -109 -109 -68 -109 -94 -109 -103 -109 -110 -109 -113 -109 -131 -109 -132 -109 -142 -109 -154 -109 -155 -109 -158 -109 -174 -109 -276 -109 -279 -109 -359 -109 -360 -109 -380 -109 -110 -110 -67 -110 -68 -110 -94 -110 -109 -110 -117 -110 -128 -110 -131 -110 -132 -110 -152 -110 -154 -110 -155 -110 -163 -110 -174 -110 -276 -110 -357 -110 -359 -110 -360 -110 -111 -111 -67 -111 -69 -111 -98 -111 -112 -111 -117 -111 -129 -111 -134 -111 -135 -111 -153 -111 -156 -111 -157 -111 -163 -111 -176 -111 -277 -111 -358 -111 -361 -111 -362 -111 -112 -112 -69 -112 -98 -112 -108 -112 -111 -112 -114 -112 -134 -112 -135 -112 -150 -112 -156 -112 -157 -112 -159 -112 -176 -112 -277 -112 -285 -112 -361 -112 -362 -112 -427 -112 -113 -113 -68 -113 -103 -113 -109 -113 -132 -113 -142 -113 -155 -113 -158 -113 -164 -113 -168 -113 -174 -113 -278 -113 -279 -113 -301 -113 -360 -113 -379 -113 -380 -113 -381 -113 -114 -114 -69 -114 -108 -114 -112 -114 -135 -114 -150 -114 -157 -114 -159 -114 -166 -114 -173 -114 -176 -114 -284 -114 -285 -114 -349 -114 -362 -114 -426 -114 -427 -114 -428 -114 -115 -115 -64 -115 -81 -115 -91 -115 -100 -115 -102 -115 -118 -115 -119 -115 -120 -115 -121 -115 -130 -115 -136 -115 -137 -115 -138 -115 -139 -115 -141 -115 -160 -115 -269 -115 -270 -115 -287 -115 -288 -115 -289 -115 -295 -115 -300 -115 -116 -116 -66 -116 -82 -116 -95 -116 -106 -116 -107 -116 -123 -116 -124 -116 -125 -116 -126 -116 -133 -116 -145 -116 -146 -116 -147 -116 -148 -116 -149 -116 -162 -116 -274 -116 -275 -116 -338 -116 -339 -116 -340 -116 -341 -116 -348 -116 -117 -117 -67 -117 -94 -117 -98 -117 -110 -117 -111 -117 -127 -117 -128 -117 -129 -117 -131 -117 -134 -117 -151 -117 -152 -117 -153 -117 -154 -117 -156 -117 -163 -117 -276 -117 -277 -117 -356 -117 -357 -117 -358 -117 -359 -117 -361 -117 -118 -118 -26 -118 -27 -118 -30 -118 -31 -118 -32 -118 -33 -118 -48 -118 -52 -118 -53 -118 -54 -118 -64 -118 -70 -118 -73 -118 -74 -118 -75 -118 -76 -118 -115 -118 -119 -118 -120 -118 -136 -118 -137 -118 -138 -118 -160 -118 -179 -118 -185 -118 -186 -118 -190 -118 -191 -118 -119 -119 -26 -119 -30 -119 -32 -119 -34 -119 -36 -119 -48 -119 -52 -119 -53 -119 -54 -119 -55 -119 -64 -119 -65 -119 -66 -119 -73 -119 -75 -119 -77 -119 -81 -119 -100 -119 -115 -119 -118 -119 -120 -119 -121 -119 -136 -119 -137 -119 -138 -119 -139 -119 -160 -119 -167 -119 -185 -119 -190 -119 -195 -119 -120 -120 -26 -120 -31 -120 -33 -120 -44 -120 -45 -120 -48 -120 -52 -120 -53 -120 -54 -120 -62 -120 -64 -120 -67 -120 -68 -120 -74 -120 -76 -120 -90 -120 -91 -120 -102 -120 -115 -120 -118 -120 -119 -120 -130 -120 -136 -120 -137 -120 -138 -120 -141 -120 -160 -120 -168 -120 -186 -120 -191 -120 -197 -120 -121 -121 -26 -121 -32 -121 -34 -121 -36 -121 -48 -121 -53 -121 -55 -121 -64 -121 -65 -121 -66 -121 -75 -121 -77 -121 -78 -121 -79 -121 -81 -121 -82 -121 -100 -121 -101 -121 -115 -121 -119 -121 -122 -121 -123 -121 -137 -121 -139 -121 -140 -121 -160 -121 -167 -121 -190 -121 -195 -121 -196 -121 -122 -122 -26 -122 -34 -122 -36 -122 -55 -122 -64 -122 -65 -122 -66 -122 -77 -122 -78 -122 -79 -122 -81 -122 -82 -122 -100 -122 -101 -122 -104 -122 -105 -122 -106 -122 -121 -122 -123 -122 -139 -122 -140 -122 -143 -122 -144 -122 -148 -122 -160 -122 -161 -122 -162 -122 -167 -122 -170 -122 -195 -122 -196 -122 -204 -122 -205 -122 -223 -122 -123 -123 -26 -123 -34 -123 -35 -123 -36 -123 -49 -123 -55 -123 -56 -123 -64 -123 -65 -123 -66 -123 -77 -123 -78 -123 -79 -123 -80 -123 -81 -123 -82 -123 -105 -123 -106 -123 -116 -123 -121 -123 -122 -123 -124 -123 -144 -123 -146 -123 -148 -123 -162 -123 -170 -123 -205 -123 -217 -123 -223 -123 -124 -124 -26 -124 -34 -124 -35 -124 -36 -124 -37 -124 -49 -124 -55 -124 -56 -124 -57 -124 -58 -124 -64 -124 -65 -124 -66 -124 -79 -124 -80 -124 -82 -124 -83 -124 -106 -124 -116 -124 -123 -124 -125 -124 -126 -124 -145 -124 -146 -124 -147 -124 -148 -124 -162 -124 -170 -124 -215 -124 -217 -124 -223 -124 -125 -125 -26 -125 -28 -125 -35 -125 -37 -125 -38 -125 -39 -125 -49 -125 -56 -125 -57 -125 -58 -125 -66 -125 -71 -125 -80 -125 -83 -125 -84 -125 -85 -125 -116 -125 -124 -125 -126 -125 -145 -125 -146 -125 -147 -125 -162 -125 -181 -125 -215 -125 -216 -125 -217 -125 -221 -125 -126 -126 -26 -126 -38 -126 -39 -126 -46 -126 -47 -126 -49 -126 -56 -126 -57 -126 -58 -126 -63 -126 -66 -126 -67 -126 -69 -126 -84 -126 -85 -126 -95 -126 -96 -126 -107 -126 -116 -126 -124 -126 -125 -126 -133 -126 -145 -126 -146 -126 -147 -126 -149 -126 -162 -126 -173 -126 -216 -126 -221 -126 -225 -126 -127 -127 -26 -127 -29 -127 -40 -127 -41 -127 -42 -127 -43 -127 -50 -127 -59 -127 -60 -127 -61 -127 -67 -127 -72 -127 -86 -127 -87 -127 -88 -127 -89 -127 -117 -127 -128 -127 -129 -127 -151 -127 -152 -127 -153 -127 -163 -127 -183 -127 -231 -127 -232 -127 -233 -127 -234 -127 -128 -128 -26 -128 -40 -128 -42 -128 -44 -128 -45 -128 -50 -128 -59 -128 -60 -128 -61 -128 -62 -128 -64 -128 -67 -128 -68 -128 -86 -128 -88 -128 -92 -128 -94 -128 -110 -128 -117 -128 -127 -128 -129 -128 -131 -128 -151 -128 -152 -128 -153 -128 -154 -128 -163 -128 -174 -128 -231 -128 -233 -128 -239 -128 -129 -129 -26 -129 -41 -129 -43 -129 -46 -129 -47 -129 -50 -129 -59 -129 -60 -129 -61 -129 -63 -129 -66 -129 -67 -129 -69 -129 -87 -129 -89 -129 -97 -129 -98 -129 -111 -129 -117 -129 -127 -129 -128 -129 -134 -129 -151 -129 -152 -129 -153 -129 -156 -129 -163 -129 -176 -129 -232 -129 -234 -129 -243 -129 -130 -130 -26 -130 -33 -130 -44 -130 -45 -130 -48 -130 -54 -130 -62 -130 -64 -130 -67 -130 -68 -130 -76 -130 -90 -130 -91 -130 -92 -130 -93 -130 -94 -130 -102 -130 -103 -130 -115 -130 -120 -130 -131 -130 -132 -130 -138 -130 -141 -130 -142 -130 -160 -130 -168 -130 -191 -130 -197 -130 -199 -130 -131 -131 -26 -131 -42 -131 -44 -131 -45 -131 -50 -131 -60 -131 -62 -131 -64 -131 -67 -131 -68 -131 -88 -131 -90 -131 -91 -131 -92 -131 -93 -131 -94 -131 -109 -131 -110 -131 -117 -131 -128 -131 -130 -131 -132 -131 -152 -131 -154 -131 -155 -131 -163 -131 -174 -131 -233 -131 -239 -131 -240 -131 -132 -132 -26 -132 -44 -132 -45 -132 -62 -132 -64 -132 -67 -132 -68 -132 -90 -132 -91 -132 -92 -132 -93 -132 -94 -132 -102 -132 -103 -132 -109 -132 -110 -132 -113 -132 -130 -132 -131 -132 -141 -132 -142 -132 -154 -132 -155 -132 -158 -132 -160 -132 -163 -132 -164 -132 -168 -132 -174 -132 -197 -132 -199 -132 -239 -132 -240 -132 -250 -132 -133 -133 -26 -133 -39 -133 -46 -133 -47 -133 -49 -133 -58 -133 -63 -133 -66 -133 -67 -133 -69 -133 -85 -133 -95 -133 -96 -133 -97 -133 -98 -133 -99 -133 -107 -133 -108 -133 -116 -133 -126 -133 -134 -133 -135 -133 -147 -133 -149 -133 -150 -133 -162 -133 -173 -133 -221 -133 -225 -133 -227 -133 -134 -134 -26 -134 -43 -134 -46 -134 -47 -134 -50 -134 -61 -134 -63 -134 -66 -134 -67 -134 -69 -134 -89 -134 -95 -134 -96 -134 -97 -134 -98 -134 -99 -134 -111 -134 -112 -134 -117 -134 -129 -134 -133 -134 -135 -134 -153 -134 -156 -134 -157 -134 -163 -134 -176 -134 -234 -134 -243 -134 -244 -134 -135 -135 -26 -135 -46 -135 -47 -135 -63 -135 -66 -135 -67 -135 -69 -135 -95 -135 -96 -135 -97 -135 -98 -135 -99 -135 -107 -135 -108 -135 -111 -135 -112 -135 -114 -135 -133 -135 -134 -135 -149 -135 -150 -135 -156 -135 -157 -135 -159 -135 -162 -135 -163 -135 -166 -135 -173 -135 -176 -135 -225 -135 -227 -135 -243 -135 -244 -135 -263 -135 -136 -136 -64 -136 -70 -136 -73 -136 -74 -136 -75 -136 -76 -136 -115 -136 -118 -136 -119 -136 -120 -136 -137 -136 -138 -136 -160 -136 -179 -136 -180 -136 -185 -136 -186 -136 -187 -136 -188 -136 -189 -136 -190 -136 -191 -136 -192 -136 -287 -136 -288 -136 -289 -136 -137 -137 -64 -137 -65 -137 -73 -137 -75 -137 -77 -137 -81 -137 -100 -137 -115 -137 -118 -137 -119 -137 -120 -137 -121 -137 -136 -137 -138 -137 -139 -137 -160 -137 -167 -137 -185 -137 -187 -137 -189 -137 -190 -137 -193 -137 -195 -137 -269 -137 -287 -137 -288 -137 -289 -137 -295 -137 -138 -138 -64 -138 -68 -138 -74 -138 -76 -138 -90 -138 -91 -138 -102 -138 -115 -138 -118 -138 -119 -138 -120 -138 -130 -138 -136 -138 -137 -138 -141 -138 -160 -138 -168 -138 -186 -138 -188 -138 -191 -138 -192 -138 -197 -138 -198 -138 -270 -138 -287 -138 -288 -138 -289 -138 -300 -138 -139 -139 -64 -139 -65 -139 -75 -139 -77 -139 -78 -139 -81 -139 -100 -139 -101 -139 -115 -139 -119 -139 -121 -139 -122 -139 -137 -139 -140 -139 -160 -139 -167 -139 -189 -139 -190 -139 -193 -139 -194 -139 -195 -139 -196 -139 -269 -139 -288 -139 -295 -139 -297 -139 -140 -140 -64 -140 -65 -140 -77 -140 -78 -140 -81 -140 -100 -140 -101 -140 -104 -140 -105 -140 -121 -140 -122 -140 -139 -140 -143 -140 -144 -140 -160 -140 -161 -140 -167 -140 -170 -140 -193 -140 -194 -140 -195 -140 -196 -140 -204 -140 -205 -140 -206 -140 -269 -140 -271 -140 -295 -140 -297 -140 -310 -140 -141 -141 -64 -141 -68 -141 -76 -141 -90 -141 -91 -141 -93 -141 -102 -141 -103 -141 -115 -141 -120 -141 -130 -141 -132 -141 -138 -141 -142 -141 -160 -141 -168 -141 -191 -141 -192 -141 -197 -141 -198 -141 -199 -141 -200 -141 -270 -141 -289 -141 -300 -141 -301 -141 -142 -142 -64 -142 -68 -142 -90 -142 -91 -142 -93 -142 -102 -142 -103 -142 -109 -142 -113 -142 -130 -142 -132 -142 -141 -142 -155 -142 -158 -142 -160 -142 -164 -142 -168 -142 -174 -142 -197 -142 -198 -142 -199 -142 -200 -142 -240 -142 -250 -142 -251 -142 -270 -142 -278 -142 -300 -142 -301 -142 -379 -142 -143 -143 -65 -143 -78 -143 -101 -143 -104 -143 -105 -143 -122 -143 -140 -143 -144 -143 -161 -143 -167 -143 -170 -143 -194 -143 -196 -143 -204 -143 -205 -143 -206 -143 -207 -143 -208 -143 -209 -143 -271 -143 -272 -143 -297 -143 -310 -143 -311 -143 -312 -143 -313 -143 -144 -144 -65 -144 -66 -144 -78 -144 -79 -144 -82 -144 -101 -144 -104 -144 -105 -144 -106 -144 -122 -144 -123 -144 -140 -144 -143 -144 -148 -144 -161 -144 -162 -144 -167 -144 -170 -144 -196 -144 -204 -144 -205 -144 -208 -144 -209 -144 -223 -144 -224 -144 -272 -144 -274 -144 -312 -144 -313 -144 -341 -144 -145 -145 -66 -145 -71 -145 -80 -145 -83 -145 -84 -145 -85 -145 -116 -145 -124 -145 -125 -145 -126 -145 -146 -145 -147 -145 -162 -145 -181 -145 -182 -145 -215 -145 -216 -145 -217 -145 -218 -145 -219 -145 -220 -145 -221 -145 -222 -145 -338 -145 -339 -145 -340 -145 -146 -146 -65 -146 -66 -146 -79 -146 -80 -146 -82 -146 -83 -146 -106 -146 -116 -146 -123 -146 -124 -146 -125 -146 -126 -146 -145 -146 -147 -146 -148 -146 -162 -146 -170 -146 -215 -146 -217 -146 -218 -146 -219 -146 -223 -146 -224 -146 -274 -146 -338 -146 -339 -146 -340 -146 -341 -146 -147 -147 -66 -147 -69 -147 -84 -147 -85 -147 -95 -147 -96 -147 -107 -147 -116 -147 -124 -147 -125 -147 -126 -147 -133 -147 -145 -147 -146 -147 -149 -147 -162 -147 -173 -147 -216 -147 -220 -147 -221 -147 -222 -147 -225 -147 -226 -147 -275 -147 -338 -147 -339 -147 -340 -147 -348 -147 -148 -148 -65 -148 -66 -148 -78 -148 -79 -148 -80 -148 -82 -148 -105 -148 -106 -148 -116 -148 -122 -148 -123 -148 -124 -148 -144 -148 -146 -148 -162 -148 -170 -148 -205 -148 -209 -148 -217 -148 -218 -148 -223 -148 -224 -148 -274 -148 -313 -148 -338 -148 -341 -148 -149 -149 -66 -149 -69 -149 -85 -149 -95 -149 -96 -149 -99 -149 -107 -149 -108 -149 -116 -149 -126 -149 -133 -149 -135 -149 -147 -149 -150 -149 -162 -149 -173 -149 -221 -149 -222 -149 -225 -149 -226 -149 -227 -149 -228 -149 -275 -149 -340 -149 -348 -149 -349 -149 -150 -150 -66 -150 -69 -150 -95 -150 -96 -150 -99 -150 -107 -150 -108 -150 -112 -150 -114 -150 -133 -150 -135 -150 -149 -150 -157 -150 -159 -150 -162 -150 -166 -150 -173 -150 -176 -150 -225 -150 -226 -150 -227 -150 -228 -150 -244 -150 -263 -150 -264 -150 -275 -150 -284 -150 -348 -150 -349 -150 -426 -150 -151 -151 -67 -151 -72 -151 -86 -151 -87 -151 -88 -151 -89 -151 -117 -151 -127 -151 -128 -151 -129 -151 -152 -151 -153 -151 -163 -151 -183 -151 -184 -151 -231 -151 -232 -151 -233 -151 -234 -151 -235 -151 -236 -151 -237 -151 -238 -151 -356 -151 -357 -151 -358 -151 -152 -152 -67 -152 -68 -152 -86 -152 -88 -152 -92 -152 -94 -152 -110 -152 -117 -152 -127 -152 -128 -152 -129 -152 -131 -152 -151 -152 -153 -152 -154 -152 -163 -152 -174 -152 -231 -152 -233 -152 -235 -152 -237 -152 -239 -152 -241 -152 -276 -152 -356 -152 -357 -152 -358 -152 -359 -152 -153 -153 -67 -153 -69 -153 -87 -153 -89 -153 -97 -153 -98 -153 -111 -153 -117 -153 -127 -153 -128 -153 -129 -153 -134 -153 -151 -153 -152 -153 -156 -153 -163 -153 -176 -153 -232 -153 -234 -153 -236 -153 -238 -153 -243 -153 -245 -153 -277 -153 -356 -153 -357 -153 -358 -153 -361 -153 -154 -154 -67 -154 -68 -154 -88 -154 -92 -154 -93 -154 -94 -154 -109 -154 -110 -154 -117 -154 -128 -154 -131 -154 -132 -154 -152 -154 -155 -154 -163 -154 -174 -154 -233 -154 -237 -154 -239 -154 -240 -154 -241 -154 -242 -154 -276 -154 -357 -154 -359 -154 -360 -154 -155 -155 -67 -155 -68 -155 -92 -155 -93 -155 -94 -155 -103 -155 -109 -155 -110 -155 -113 -155 -131 -155 -132 -155 -142 -155 -154 -155 -158 -155 -163 -155 -164 -155 -168 -155 -174 -155 -199 -155 -239 -155 -240 -155 -241 -155 -242 -155 -250 -155 -252 -155 -276 -155 -279 -155 -359 -155 -360 -155 -380 -155 -156 -156 -67 -156 -69 -156 -89 -156 -97 -156 -98 -156 -99 -156 -111 -156 -112 -156 -117 -156 -129 -156 -134 -156 -135 -156 -153 -156 -157 -156 -163 -156 -176 -156 -234 -156 -238 -156 -243 -156 -244 -156 -245 -156 -246 -156 -277 -156 -358 -156 -361 -156 -362 -156 -157 -157 -67 -157 -69 -157 -97 -157 -98 -157 -99 -157 -108 -157 -111 -157 -112 -157 -114 -157 -134 -157 -135 -157 -150 -157 -156 -157 -159 -157 -163 -157 -166 -157 -173 -157 -176 -157 -227 -157 -243 -157 -244 -157 -245 -157 -246 -157 -263 -157 -265 -157 -277 -157 -285 -157 -361 -157 -362 -157 -427 -157 -158 -158 -68 -158 -93 -158 -103 -158 -109 -158 -113 -158 -132 -158 -142 -158 -155 -158 -164 -158 -168 -158 -174 -158 -199 -158 -200 -158 -240 -158 -242 -158 -250 -158 -251 -158 -252 -158 -253 -158 -278 -158 -279 -158 -301 -158 -360 -158 -379 -158 -380 -158 -381 -158 -159 -159 -69 -159 -99 -159 -108 -159 -112 -159 -114 -159 -135 -159 -150 -159 -157 -159 -166 -159 -173 -159 -176 -159 -227 -159 -228 -159 -244 -159 -246 -159 -263 -159 -264 -159 -265 -159 -266 -159 -284 -159 -285 -159 -349 -159 -362 -159 -426 -159 -427 -159 -428 -159 -160 -160 -51 -160 -64 -160 -65 -160 -68 -160 -100 -160 -102 -160 -115 -160 -118 -160 -119 -160 -120 -160 -121 -160 -122 -160 -130 -160 -132 -160 -136 -160 -137 -160 -138 -160 -139 -160 -140 -160 -141 -160 -142 -160 -167 -160 -168 -160 -169 -160 -201 -160 -269 -160 -270 -160 -287 -160 -288 -160 -289 -160 -290 -160 -291 -160 -292 -160 -293 -160 -294 -160 -295 -160 -296 -160 -297 -160 -298 -160 -299 -160 -300 -160 -301 -160 -302 -160 -303 -160 -304 -160 -305 -160 -306 -160 -307 -160 -308 -160 -309 -160 -161 -161 -51 -161 -65 -161 -104 -161 -122 -161 -140 -161 -143 -161 -144 -161 -167 -161 -169 -161 -170 -161 -171 -161 -172 -161 -210 -161 -213 -161 -271 -161 -272 -161 -273 -161 -296 -161 -297 -161 -299 -161 -307 -161 -309 -161 -310 -161 -311 -161 -312 -161 -313 -161 -314 -161 -315 -161 -316 -161 -317 -161 -318 -161 -319 -161 -320 -161 -321 -161 -322 -161 -323 -161 -324 -161 -325 -161 -326 -161 -327 -161 -328 -161 -329 -161 -330 -161 -331 -161 -332 -161 -333 -161 -334 -161 -335 -161 -336 -161 -337 -161 -162 -162 -51 -162 -65 -162 -66 -162 -69 -162 -106 -162 -107 -162 -116 -162 -122 -162 -123 -162 -124 -162 -125 -162 -126 -162 -133 -162 -135 -162 -144 -162 -145 -162 -146 -162 -147 -162 -148 -162 -149 -162 -150 -162 -170 -162 -172 -162 -173 -162 -229 -162 -274 -162 -275 -162 -313 -162 -323 -162 -325 -162 -335 -162 -337 -162 -338 -162 -339 -162 -340 -162 -341 -162 -342 -162 -343 -162 -344 -162 -345 -162 -346 -162 -347 -162 -348 -162 -349 -162 -350 -162 -351 -162 -352 -162 -353 -162 -354 -162 -355 -162 -163 -163 -51 -163 -67 -163 -68 -163 -69 -163 -110 -163 -111 -163 -117 -163 -127 -163 -128 -163 -129 -163 -131 -163 -132 -163 -134 -163 -135 -163 -151 -163 -152 -163 -153 -163 -154 -163 -155 -163 -156 -163 -157 -163 -174 -163 -175 -163 -176 -163 -247 -163 -276 -163 -277 -163 -356 -163 -357 -163 -358 -163 -359 -163 -360 -163 -361 -163 -362 -163 -363 -163 -364 -163 -365 -163 -366 -163 -367 -163 -368 -163 -369 -163 -370 -163 -371 -163 -372 -163 -373 -163 -374 -163 -375 -163 -376 -163 -377 -163 -378 -163 -164 -164 -51 -164 -68 -164 -113 -164 -132 -164 -142 -164 -155 -164 -158 -164 -168 -164 -169 -164 -174 -164 -175 -164 -177 -164 -254 -164 -256 -164 -278 -164 -279 -164 -280 -164 -301 -164 -304 -164 -305 -164 -308 -164 -309 -164 -360 -164 -368 -164 -369 -164 -373 -164 -374 -164 -379 -164 -380 -164 -381 -164 -382 -164 -383 -164 -384 -164 -385 -164 -386 -164 -387 -164 -388 -164 -389 -164 -390 -164 -391 -164 -392 -164 -393 -164 -394 -164 -395 -164 -396 -164 -397 -164 -398 -164 -399 -164 -400 -164 -401 -164 -165 -165 -51 -165 -169 -165 -171 -165 -172 -165 -175 -165 -177 -165 -178 -165 -258 -165 -260 -165 -261 -165 -281 -165 -282 -165 -283 -165 -309 -165 -328 -165 -329 -165 -332 -165 -333 -165 -336 -165 -337 -165 -374 -165 -387 -165 -389 -165 -398 -165 -399 -165 -401 -165 -402 -165 -403 -165 -404 -165 -405 -165 -406 -165 -407 -165 -408 -165 -409 -165 -410 -165 -411 -165 -412 -165 -413 -165 -414 -165 -415 -165 -416 -165 -417 -165 -418 -165 -419 -165 -420 -165 -421 -165 -422 -165 -423 -165 -424 -165 -425 -165 -166 -166 -51 -166 -69 -166 -114 -166 -135 -166 -150 -166 -157 -166 -159 -166 -172 -166 -173 -166 -175 -166 -176 -166 -178 -166 -267 -166 -268 -166 -284 -166 -285 -166 -286 -166 -337 -166 -349 -166 -352 -166 -353 -166 -355 -166 -362 -166 -374 -166 -375 -166 -376 -166 -378 -166 -411 -166 -413 -166 -415 -166 -419 -166 -425 -166 -426 -166 -427 -166 -428 -166 -429 -166 -430 -166 -431 -166 -432 -166 -433 -166 -434 -166 -435 -166 -436 -166 -437 -166 -438 -166 -439 -166 -440 -166 -441 -166 -442 -166 -443 -166 -167 -167 -51 -167 -64 -167 -65 -167 -68 -167 -100 -167 -101 -167 -104 -167 -119 -167 -121 -167 -122 -167 -137 -167 -139 -167 -140 -167 -143 -167 -144 -167 -160 -167 -161 -167 -168 -167 -169 -167 -170 -167 -171 -167 -172 -167 -201 -167 -202 -167 -210 -167 -269 -167 -271 -167 -288 -167 -291 -167 -293 -167 -294 -167 -295 -167 -296 -167 -297 -167 -298 -167 -299 -167 -303 -167 -305 -167 -306 -167 -307 -167 -308 -167 -309 -167 -310 -167 -311 -167 -312 -167 -313 -167 -314 -167 -315 -167 -316 -167 -317 -167 -326 -167 -327 -167 -328 -167 -329 -167 -168 -168 -51 -168 -64 -168 -65 -168 -68 -168 -102 -168 -103 -168 -113 -168 -120 -168 -130 -168 -132 -168 -138 -168 -141 -168 -142 -168 -155 -168 -158 -168 -160 -168 -164 -168 -167 -168 -169 -168 -174 -168 -175 -168 -177 -168 -201 -168 -203 -168 -254 -168 -270 -168 -278 -168 -289 -168 -292 -168 -293 -168 -298 -168 -299 -168 -300 -168 -301 -168 -302 -168 -303 -168 -304 -168 -305 -168 -306 -168 -307 -168 -308 -168 -309 -168 -360 -168 -379 -168 -380 -168 -381 -168 -382 -168 -383 -168 -384 -168 -385 -168 -386 -168 -387 -168 -388 -168 -389 -168 -169 -169 -51 -169 -64 -169 -65 -169 -68 -169 -160 -169 -161 -169 -164 -169 -165 -169 -167 -169 -168 -169 -170 -169 -171 -169 -172 -169 -174 -169 -175 -169 -177 -169 -178 -169 -201 -169 -202 -169 -203 -169 -210 -169 -211 -169 -254 -169 -255 -169 -258 -169 -293 -169 -298 -169 -299 -169 -303 -169 -305 -169 -306 -169 -307 -169 -308 -169 -309 -169 -316 -169 -317 -169 -326 -169 -327 -169 -328 -169 -329 -169 -383 -169 -385 -169 -386 -169 -387 -169 -388 -169 -389 -169 -402 -169 -403 -169 -404 -169 -405 -169 -170 -170 -51 -170 -65 -170 -66 -170 -69 -170 -104 -170 -105 -170 -106 -170 -122 -170 -123 -170 -124 -170 -140 -170 -143 -170 -144 -170 -146 -170 -148 -170 -161 -170 -162 -170 -167 -170 -169 -170 -171 -170 -172 -170 -173 -170 -212 -170 -213 -170 -229 -170 -272 -170 -274 -170 -297 -170 -310 -170 -311 -170 -312 -170 -313 -170 -319 -170 -321 -170 -322 -170 -323 -170 -324 -170 -325 -170 -331 -170 -333 -170 -334 -170 -335 -170 -336 -170 -337 -170 -338 -170 -341 -170 -342 -170 -343 -170 -344 -170 -345 -170 -350 -170 -351 -170 -352 -170 -353 -170 -171 -171 -51 -171 -65 -171 -161 -171 -165 -171 -167 -171 -169 -171 -170 -171 -172 -171 -175 -171 -177 -171 -178 -171 -210 -171 -211 -171 -213 -171 -214 -171 -258 -171 -260 -171 -273 -171 -281 -171 -299 -171 -307 -171 -309 -171 -316 -171 -317 -171 -320 -171 -321 -171 -324 -171 -325 -171 -326 -171 -327 -171 -328 -171 -329 -171 -330 -171 -331 -171 -332 -171 -333 -171 -334 -171 -335 -171 -336 -171 -337 -171 -387 -171 -389 -171 -402 -171 -403 -171 -404 -171 -405 -171 -406 -171 -407 -171 -408 -171 -409 -171 -410 -171 -411 -171 -412 -171 -413 -171 -172 -172 -51 -172 -65 -172 -66 -172 -69 -172 -161 -172 -162 -172 -165 -172 -166 -172 -167 -172 -169 -172 -170 -172 -171 -172 -173 -172 -175 -172 -176 -172 -177 -172 -178 -172 -212 -172 -213 -172 -214 -172 -229 -172 -230 -172 -259 -172 -260 -172 -267 -172 -321 -172 -324 -172 -325 -172 -331 -172 -333 -172 -334 -172 -335 -172 -336 -172 -337 -172 -344 -172 -345 -172 -350 -172 -351 -172 -352 -172 -353 -172 -407 -172 -409 -172 -410 -172 -411 -172 -412 -172 -413 -172 -429 -172 -430 -172 -431 -172 -432 -172 -173 -173 -51 -173 -65 -173 -66 -173 -69 -173 -107 -173 -108 -173 -114 -173 -126 -173 -133 -173 -135 -173 -147 -173 -149 -173 -150 -173 -157 -173 -159 -173 -162 -173 -166 -173 -170 -173 -172 -173 -175 -173 -176 -173 -178 -173 -229 -173 -230 -173 -267 -173 -275 -173 -284 -173 -325 -173 -335 -173 -337 -173 -340 -173 -344 -173 -345 -173 -347 -173 -348 -173 -349 -173 -350 -173 -351 -173 -352 -173 -353 -173 -354 -173 -355 -173 -362 -173 -411 -173 -413 -173 -426 -173 -427 -173 -428 -173 -429 -173 -430 -173 -431 -173 -432 -173 -433 -173 -434 -173 -174 -174 -51 -174 -67 -174 -68 -174 -69 -174 -109 -174 -110 -174 -113 -174 -128 -174 -131 -174 -132 -174 -142 -174 -152 -174 -154 -174 -155 -174 -158 -174 -163 -174 -164 -174 -168 -174 -169 -174 -175 -174 -176 -174 -177 -174 -247 -174 -248 -174 -256 -174 -276 -174 -279 -174 -301 -174 -357 -174 -359 -174 -360 -174 -364 -174 -365 -174 -367 -174 -368 -174 -369 -174 -370 -174 -371 -174 -372 -174 -373 -174 -374 -174 -375 -174 -376 -174 -379 -174 -380 -174 -381 -174 -390 -174 -391 -174 -392 -174 -393 -174 -397 -174 -399 -174 -400 -174 -401 -174 -175 -175 -51 -175 -67 -175 -68 -175 -69 -175 -163 -175 -164 -175 -165 -175 -166 -175 -168 -175 -169 -175 -171 -175 -172 -175 -173 -175 -174 -175 -176 -175 -177 -175 -178 -175 -247 -175 -248 -175 -249 -175 -256 -175 -257 -175 -261 -175 -262 -175 -268 -175 -365 -175 -369 -175 -370 -175 -371 -175 -372 -175 -373 -175 -374 -175 -375 -175 -376 -175 -392 -175 -393 -175 -397 -175 -399 -175 -400 -175 -401 -175 -414 -175 -415 -175 -416 -175 -417 -175 -418 -175 -419 -175 -436 -175 -437 -175 -439 -175 -440 -175 -176 -176 -51 -176 -67 -176 -68 -176 -69 -176 -111 -176 -112 -176 -114 -176 -129 -176 -134 -176 -135 -176 -150 -176 -153 -176 -156 -176 -157 -176 -159 -176 -163 -176 -166 -176 -172 -176 -173 -176 -174 -176 -175 -176 -178 -176 -247 -176 -249 -176 -268 -176 -277 -176 -285 -176 -349 -176 -358 -176 -361 -176 -362 -176 -365 -176 -366 -176 -369 -176 -370 -176 -371 -176 -372 -176 -373 -176 -374 -176 -375 -176 -376 -176 -377 -176 -378 -176 -415 -176 -419 -176 -426 -176 -427 -176 -428 -176 -435 -176 -436 -176 -437 -176 -438 -176 -439 -176 -440 -176 -177 -177 -51 -177 -68 -177 -164 -177 -165 -177 -168 -177 -169 -177 -171 -177 -172 -177 -174 -177 -175 -177 -178 -177 -254 -177 -255 -177 -256 -177 -257 -177 -258 -177 -261 -177 -280 -177 -282 -177 -305 -177 -308 -177 -309 -177 -328 -177 -329 -177 -369 -177 -373 -177 -374 -177 -383 -177 -385 -177 -386 -177 -387 -177 -388 -177 -389 -177 -392 -177 -393 -177 -395 -177 -396 -177 -397 -177 -398 -177 -399 -177 -400 -177 -401 -177 -402 -177 -403 -177 -404 -177 -405 -177 -414 -177 -415 -177 -416 -177 -417 -177 -418 -177 -419 -177 -420 -177 -421 -177 -178 -178 -51 -178 -69 -178 -165 -178 -166 -178 -169 -178 -171 -178 -172 -178 -173 -178 -175 -178 -176 -178 -177 -178 -259 -178 -260 -178 -261 -178 -262 -178 -267 -178 -268 -178 -283 -178 -286 -178 -333 -178 -336 -178 -337 -178 -352 -178 -353 -178 -374 -178 -375 -178 -376 -178 -399 -178 -401 -178 -407 -178 -409 -178 -410 -178 -411 -178 -412 -178 -413 -178 -414 -178 -415 -178 -416 -178 -417 -178 -418 -178 -419 -178 -423 -178 -424 -178 -425 -178 -429 -178 -430 -178 -431 -178 -432 -178 -436 -178 -437 -178 -439 -178 -440 -178 -441 -178 -442 -178 -179 -179 -70 -179 -73 -179 -74 -179 -118 -179 -136 -179 -180 -179 -185 -179 -186 -179 -187 -179 -188 -179 -287 -179 -180 -180 -136 -180 -179 -180 -185 -180 -186 -180 -187 -180 -188 -180 -287 -180 -290 -180 -451 -180 -517 -180 -518 -180 -181 -181 -71 -181 -83 -181 -84 -181 -125 -181 -145 -181 -182 -181 -215 -181 -216 -181 -219 -181 -220 -181 -339 -181 -182 -182 -145 -182 -181 -182 -215 -182 -216 -182 -219 -182 -220 -182 -339 -182 -346 -182 -473 -182 -581 -182 -582 -182 -183 -183 -72 -183 -86 -183 -87 -183 -127 -183 -151 -183 -184 -183 -231 -183 -232 -183 -235 -183 -236 -183 -356 -183 -184 -184 -151 -184 -183 -184 -231 -184 -232 -184 -235 -184 -236 -184 -356 -184 -363 -184 -479 -184 -594 -184 -595 -184 -185 -185 -70 -185 -73 -185 -74 -185 -75 -185 -118 -185 -119 -185 -136 -185 -137 -185 -179 -185 -180 -185 -186 -185 -187 -185 -188 -185 -189 -185 -190 -185 -287 -185 -288 -185 -186 -186 -70 -186 -73 -186 -74 -186 -76 -186 -118 -186 -120 -186 -136 -186 -138 -186 -179 -186 -180 -186 -185 -186 -187 -186 -188 -186 -191 -186 -192 -186 -287 -186 -289 -186 -187 -187 -136 -187 -137 -187 -179 -187 -180 -187 -185 -187 -186 -187 -188 -187 -189 -187 -190 -187 -287 -187 -288 -187 -290 -187 -291 -187 -451 -187 -517 -187 -518 -187 -520 -187 -188 -188 -136 -188 -138 -188 -179 -188 -180 -188 -185 -188 -186 -188 -187 -188 -191 -188 -192 -188 -287 -188 -289 -188 -290 -188 -292 -188 -451 -188 -517 -188 -518 -188 -522 -188 -189 -189 -136 -189 -137 -189 -139 -189 -185 -189 -187 -189 -190 -189 -193 -189 -195 -189 -287 -189 -288 -189 -290 -189 -291 -189 -294 -189 -295 -189 -517 -189 -520 -189 -525 -189 -190 -190 -73 -190 -75 -190 -77 -190 -118 -190 -119 -190 -121 -190 -136 -190 -137 -190 -139 -190 -185 -190 -187 -190 -189 -190 -193 -190 -195 -190 -287 -190 -288 -190 -295 -190 -191 -191 -74 -191 -76 -191 -90 -191 -118 -191 -120 -191 -130 -191 -136 -191 -138 -191 -141 -191 -186 -191 -188 -191 -192 -191 -197 -191 -198 -191 -287 -191 -289 -191 -300 -191 -192 -192 -136 -192 -138 -192 -141 -192 -186 -192 -188 -192 -191 -192 -197 -192 -198 -192 -287 -192 -289 -192 -290 -192 -292 -192 -300 -192 -302 -192 -518 -192 -522 -192 -531 -192 -193 -193 -137 -193 -139 -193 -140 -193 -189 -193 -190 -193 -194 -193 -195 -193 -196 -193 -288 -193 -291 -193 -294 -193 -295 -193 -296 -193 -297 -193 -520 -193 -525 -193 -527 -193 -194 -194 -139 -194 -140 -194 -143 -194 -193 -194 -195 -194 -196 -194 -204 -194 -206 -194 -294 -194 -295 -194 -296 -194 -297 -194 -310 -194 -314 -194 -525 -194 -527 -194 -541 -194 -195 -195 -75 -195 -77 -195 -78 -195 -119 -195 -121 -195 -122 -195 -137 -195 -139 -195 -140 -195 -189 -195 -190 -195 -193 -195 -194 -195 -196 -195 -288 -195 -295 -195 -297 -195 -196 -196 -77 -196 -78 -196 -121 -196 -122 -196 -139 -196 -140 -196 -143 -196 -144 -196 -193 -196 -194 -196 -195 -196 -204 -196 -205 -196 -206 -196 -295 -196 -297 -196 -310 -196 -197 -197 -76 -197 -90 -197 -93 -197 -120 -197 -130 -197 -132 -197 -138 -197 -141 -197 -142 -197 -191 -197 -192 -197 -198 -197 -199 -197 -200 -197 -289 -197 -300 -197 -301 -197 -198 -198 -138 -198 -141 -198 -142 -198 -191 -198 -192 -198 -197 -198 -199 -198 -200 -198 -289 -198 -292 -198 -300 -198 -301 -198 -302 -198 -304 -198 -522 -198 -531 -198 -534 -198 -199 -199 -90 -199 -93 -199 -130 -199 -132 -199 -141 -199 -142 -199 -155 -199 -158 -199 -197 -199 -198 -199 -200 -199 -240 -199 -250 -199 -251 -199 -300 -199 -301 -199 -379 -199 -200 -200 -141 -200 -142 -200 -158 -200 -197 -200 -198 -200 -199 -200 -250 -200 -251 -200 -300 -200 -301 -200 -302 -200 -304 -200 -379 -200 -382 -200 -531 -200 -534 -200 -618 -200 -201 -201 -160 -201 -167 -201 -168 -201 -169 -201 -202 -201 -203 -201 -269 -201 -270 -201 -293 -201 -298 -201 -299 -201 -303 -201 -305 -201 -306 -201 -307 -201 -308 -201 -309 -201 -202 -202 -167 -202 -169 -202 -201 -202 -203 -202 -210 -202 -211 -202 -269 -202 -271 -202 -298 -202 -299 -202 -306 -202 -307 -202 -308 -202 -309 -202 -316 -202 -326 -202 -328 -202 -203 -203 -168 -203 -169 -203 -201 -203 -202 -203 -254 -203 -255 -203 -270 -203 -278 -203 -303 -203 -305 -203 -306 -203 -307 -203 -308 -203 -309 -203 -383 -203 -386 -203 -387 -203 -204 -204 -78 -204 -122 -204 -140 -204 -143 -204 -144 -204 -194 -204 -196 -204 -205 -204 -206 -204 -207 -204 -208 -204 -209 -204 -297 -204 -310 -204 -311 -204 -312 -204 -313 -204 -205 -205 -78 -205 -79 -205 -122 -205 -123 -205 -140 -205 -143 -205 -144 -205 -148 -205 -196 -205 -204 -205 -208 -205 -209 -205 -223 -205 -224 -205 -312 -205 -313 -205 -341 -205 -206 -206 -140 -206 -143 -206 -194 -206 -196 -206 -204 -206 -207 -206 -208 -206 -296 -206 -297 -206 -310 -206 -311 -206 -312 -206 -314 -206 -315 -206 -527 -206 -541 -206 -543 -206 -207 -207 -143 -207 -204 -207 -206 -207 -208 -207 -310 -207 -311 -207 -312 -207 -314 -207 -315 -207 -318 -207 -319 -207 -322 -207 -541 -207 -543 -207 -547 -207 -548 -207 -555 -207 -208 -208 -143 -208 -144 -208 -204 -208 -205 -208 -206 -208 -207 -208 -209 -208 -310 -208 -311 -208 -312 -208 -313 -208 -319 -208 -322 -208 -323 -208 -548 -208 -555 -208 -556 -208 -209 -209 -143 -209 -144 -209 -148 -209 -204 -209 -205 -209 -208 -209 -223 -209 -224 -209 -312 -209 -313 -209 -322 -209 -323 -209 -341 -209 -342 -209 -555 -209 -556 -209 -575 -209 -210 -210 -161 -210 -167 -210 -169 -210 -171 -210 -202 -210 -211 -210 -271 -210 -273 -210 -299 -210 -307 -210 -309 -210 -316 -210 -317 -210 -326 -210 -327 -210 -328 -210 -329 -210 -211 -211 -169 -211 -171 -211 -202 -211 -210 -211 -255 -211 -258 -211 -273 -211 -281 -211 -307 -211 -309 -211 -326 -211 -327 -211 -328 -211 -329 -211 -387 -211 -402 -211 -403 -211 -212 -212 -170 -212 -172 -212 -213 -212 -214 -212 -229 -212 -230 -212 -272 -212 -274 -212 -324 -212 -325 -212 -334 -212 -335 -212 -336 -212 -337 -212 -344 -212 -350 -212 -352 -212 -213 -213 -161 -213 -170 -213 -171 -213 -172 -213 -212 -213 -214 -213 -272 -213 -273 -213 -321 -213 -324 -213 -325 -213 -331 -213 -333 -213 -334 -213 -335 -213 -336 -213 -337 -213 -214 -214 -171 -214 -172 -214 -212 -214 -213 -214 -259 -214 -260 -214 -273 -214 -281 -214 -331 -214 -333 -214 -334 -214 -335 -214 -336 -214 -337 -214 -407 -214 -410 -214 -411 -214 -215 -215 -71 -215 -80 -215 -83 -215 -84 -215 -124 -215 -125 -215 -145 -215 -146 -215 -181 -215 -182 -215 -216 -215 -217 -215 -218 -215 -219 -215 -220 -215 -338 -215 -339 -215 -216 -216 -71 -216 -83 -216 -84 -216 -85 -216 -125 -216 -126 -216 -145 -216 -147 -216 -181 -216 -182 -216 -215 -216 -219 -216 -220 -216 -221 -216 -222 -216 -339 -216 -340 -216 -217 -217 -79 -217 -80 -217 -83 -217 -123 -217 -124 -217 -125 -217 -145 -217 -146 -217 -148 -217 -215 -217 -218 -217 -219 -217 -223 -217 -224 -217 -338 -217 -339 -217 -341 -217 -218 -218 -145 -218 -146 -218 -148 -218 -215 -218 -217 -218 -219 -218 -223 -218 -224 -218 -338 -218 -339 -218 -341 -218 -342 -218 -343 -218 -346 -218 -575 -218 -576 -218 -581 -218 -219 -219 -145 -219 -146 -219 -181 -219 -182 -219 -215 -219 -216 -219 -217 -219 -218 -219 -220 -219 -338 -219 -339 -219 -343 -219 -346 -219 -473 -219 -576 -219 -581 -219 -582 -219 -220 -220 -145 -220 -147 -220 -181 -220 -182 -220 -215 -220 -216 -220 -219 -220 -221 -220 -222 -220 -339 -220 -340 -220 -346 -220 -347 -220 -473 -220 -581 -220 -582 -220 -584 -220 -221 -221 -84 -221 -85 -221 -96 -221 -125 -221 -126 -221 -133 -221 -145 -221 -147 -221 -149 -221 -216 -221 -220 -221 -222 -221 -225 -221 -226 -221 -339 -221 -340 -221 -348 -221 -222 -222 -145 -222 -147 -222 -149 -222 -216 -222 -220 -222 -221 -222 -225 -222 -226 -222 -339 -222 -340 -222 -346 -222 -347 -222 -348 -222 -354 -222 -582 -222 -584 -222 -590 -222 -223 -223 -78 -223 -79 -223 -80 -223 -122 -223 -123 -223 -124 -223 -144 -223 -146 -223 -148 -223 -205 -223 -209 -223 -217 -223 -218 -223 -224 -223 -313 -223 -338 -223 -341 -223 -224 -224 -144 -224 -146 -224 -148 -224 -205 -224 -209 -224 -217 -224 -218 -224 -223 -224 -313 -224 -323 -224 -338 -224 -341 -224 -342 -224 -343 -224 -556 -224 -575 -224 -576 -224 -225 -225 -85 -225 -96 -225 -99 -225 -126 -225 -133 -225 -135 -225 -147 -225 -149 -225 -150 -225 -221 -225 -222 -225 -226 -225 -227 -225 -228 -225 -340 -225 -348 -225 -349 -225 -226 -226 -147 -226 -149 -226 -150 -226 -221 -226 -222 -226 -225 -226 -227 -226 -228 -226 -340 -226 -347 -226 -348 -226 -349 -226 -354 -226 -355 -226 -584 -226 -590 -226 -592 -226 -227 -227 -96 -227 -99 -227 -133 -227 -135 -227 -149 -227 -150 -227 -157 -227 -159 -227 -225 -227 -226 -227 -228 -227 -244 -227 -263 -227 -264 -227 -348 -227 -349 -227 -426 -227 -228 -228 -149 -228 -150 -228 -159 -228 -225 -228 -226 -228 -227 -228 -263 -228 -264 -228 -348 -228 -349 -228 -354 -228 -355 -228 -426 -228 -433 -228 -590 -228 -592 -228 -684 -228 -229 -229 -162 -229 -170 -229 -172 -229 -173 -229 -212 -229 -230 -229 -274 -229 -275 -229 -325 -229 -335 -229 -337 -229 -344 -229 -345 -229 -350 -229 -351 -229 -352 -229 -353 -229 -230 -230 -172 -230 -173 -230 -212 -230 -229 -230 -259 -230 -267 -230 -275 -230 -284 -230 -335 -230 -337 -230 -350 -230 -351 -230 -352 -230 -353 -230 -411 -230 -429 -230 -430 -230 -231 -231 -72 -231 -86 -231 -87 -231 -88 -231 -127 -231 -128 -231 -151 -231 -152 -231 -183 -231 -184 -231 -232 -231 -233 -231 -235 -231 -236 -231 -237 -231 -356 -231 -357 -231 -232 -232 -72 -232 -86 -232 -87 -232 -89 -232 -127 -232 -129 -232 -151 -232 -153 -232 -183 -232 -184 -232 -231 -232 -234 -232 -235 -232 -236 -232 -238 -232 -356 -232 -358 -232 -233 -233 -86 -233 -88 -233 -92 -233 -127 -233 -128 -233 -131 -233 -151 -233 -152 -233 -154 -233 -231 -233 -235 -233 -237 -233 -239 -233 -241 -233 -356 -233 -357 -233 -359 -233 -234 -234 -87 -234 -89 -234 -97 -234 -127 -234 -129 -234 -134 -234 -151 -234 -153 -234 -156 -234 -232 -234 -236 -234 -238 -234 -243 -234 -245 -234 -356 -234 -358 -234 -361 -234 -235 -235 -151 -235 -152 -235 -183 -235 -184 -235 -231 -235 -232 -235 -233 -235 -236 -235 -237 -235 -356 -235 -357 -235 -363 -235 -364 -235 -479 -235 -594 -235 -595 -235 -596 -235 -236 -236 -151 -236 -153 -236 -183 -236 -184 -236 -231 -236 -232 -236 -234 -236 -235 -236 -238 -236 -356 -236 -358 -236 -363 -236 -366 -236 -479 -236 -594 -236 -595 -236 -597 -236 -237 -237 -151 -237 -152 -237 -154 -237 -231 -237 -233 -237 -235 -237 -239 -237 -241 -237 -356 -237 -357 -237 -359 -237 -363 -237 -364 -237 -367 -237 -594 -237 -596 -237 -602 -237 -238 -238 -151 -238 -153 -238 -156 -238 -232 -238 -234 -238 -236 -238 -243 -238 -245 -238 -356 -238 -358 -238 -361 -238 -363 -238 -366 -238 -377 -238 -595 -238 -597 -238 -614 -238 -239 -239 -88 -239 -92 -239 -93 -239 -128 -239 -131 -239 -132 -239 -152 -239 -154 -239 -155 -239 -233 -239 -237 -239 -240 -239 -241 -239 -242 -239 -357 -239 -359 -239 -360 -239 -240 -240 -92 -240 -93 -240 -131 -240 -132 -240 -142 -240 -154 -240 -155 -240 -158 -240 -199 -240 -239 -240 -241 -240 -242 -240 -250 -240 -252 -240 -359 -240 -360 -240 -380 -240 -241 -241 -152 -241 -154 -241 -155 -241 -233 -241 -237 -241 -239 -241 -240 -241 -242 -241 -357 -241 -359 -241 -360 -241 -364 -241 -367 -241 -368 -241 -596 -241 -602 -241 -603 -241 -242 -242 -154 -242 -155 -242 -158 -242 -239 -242 -240 -242 -241 -242 -250 -242 -252 -242 -359 -242 -360 -242 -367 -242 -368 -242 -380 -242 -390 -242 -602 -242 -603 -242 -628 -242 -243 -243 -89 -243 -97 -243 -99 -243 -129 -243 -134 -243 -135 -243 -153 -243 -156 -243 -157 -243 -234 -243 -238 -243 -244 -243 -245 -243 -246 -243 -358 -243 -361 -243 -362 -243 -244 -244 -97 -244 -99 -244 -134 -244 -135 -244 -150 -244 -156 -244 -157 -244 -159 -244 -227 -244 -243 -244 -245 -244 -246 -244 -263 -244 -265 -244 -361 -244 -362 -244 -427 -244 -245 -245 -153 -245 -156 -245 -157 -245 -234 -245 -238 -245 -243 -245 -244 -245 -246 -245 -358 -245 -361 -245 -362 -245 -366 -245 -377 -245 -378 -245 -597 -245 -614 -245 -615 -245 -246 -246 -156 -246 -157 -246 -159 -246 -243 -246 -244 -246 -245 -246 -263 -246 -265 -246 -361 -246 -362 -246 -377 -246 -378 -246 -427 -246 -435 -246 -614 -246 -615 -246 -688 -246 -247 -247 -163 -247 -174 -247 -175 -247 -176 -247 -248 -247 -249 -247 -276 -247 -277 -247 -365 -247 -369 -247 -370 -247 -371 -247 -372 -247 -373 -247 -374 -247 -375 -247 -376 -247 -248 -248 -174 -248 -175 -248 -247 -248 -249 -248 -256 -248 -257 -248 -276 -248 -279 -248 -369 -248 -370 -248 -371 -248 -373 -248 -374 -248 -375 -248 -393 -248 -400 -248 -401 -248 -249 -249 -175 -249 -176 -249 -247 -249 -248 -249 -262 -249 -268 -249 -277 -249 -285 -249 -371 -249 -372 -249 -373 -249 -374 -249 -375 -249 -376 -249 -415 -249 -436 -249 -439 -249 -250 -250 -93 -250 -132 -250 -142 -250 -155 -250 -158 -250 -199 -250 -200 -250 -240 -250 -242 -250 -251 -250 -252 -250 -253 -250 -301 -250 -360 -250 -379 -250 -380 -250 -381 -250 -251 -251 -142 -251 -158 -251 -199 -251 -200 -251 -250 -251 -252 -251 -253 -251 -301 -251 -304 -251 -379 -251 -380 -251 -381 -251 -382 -251 -384 -251 -534 -251 -618 -251 -621 -251 -252 -252 -155 -252 -158 -252 -240 -252 -242 -252 -250 -252 -251 -252 -253 -252 -360 -252 -368 -252 -379 -252 -380 -252 -381 -252 -390 -252 -391 -252 -603 -252 -628 -252 -629 -252 -253 -253 -158 -253 -250 -253 -251 -253 -252 -253 -379 -253 -380 -253 -381 -253 -382 -253 -384 -253 -390 -253 -391 -253 -394 -253 -618 -253 -621 -253 -628 -253 -629 -253 -634 -253 -254 -254 -164 -254 -168 -254 -169 -254 -177 -254 -203 -254 -255 -254 -278 -254 -280 -254 -305 -254 -308 -254 -309 -254 -383 -254 -385 -254 -386 -254 -387 -254 -388 -254 -389 -254 -255 -255 -169 -255 -177 -255 -203 -255 -211 -255 -254 -255 -258 -255 -280 -255 -282 -255 -308 -255 -309 -255 -328 -255 -386 -255 -387 -255 -388 -255 -389 -255 -402 -255 -404 -255 -256 -256 -164 -256 -174 -256 -175 -256 -177 -256 -248 -256 -257 -256 -279 -256 -280 -256 -369 -256 -373 -256 -374 -256 -392 -256 -393 -256 -397 -256 -399 -256 -400 -256 -401 -256 -257 -257 -175 -257 -177 -257 -248 -257 -256 -257 -261 -257 -262 -257 -280 -257 -282 -257 -373 -257 -374 -257 -397 -257 -399 -257 -400 -257 -401 -257 -414 -257 -415 -257 -416 -257 -258 -258 -165 -258 -169 -258 -171 -258 -177 -258 -211 -258 -255 -258 -281 -258 -282 -258 -309 -258 -328 -258 -329 -258 -387 -258 -389 -258 -402 -258 -403 -258 -404 -258 -405 -258 -259 -259 -172 -259 -178 -259 -214 -259 -230 -259 -260 -259 -267 -259 -283 -259 -286 -259 -336 -259 -337 -259 -352 -259 -410 -259 -411 -259 -412 -259 -413 -259 -429 -259 -431 -259 -260 -260 -165 -260 -171 -260 -172 -260 -178 -260 -214 -260 -259 -260 -281 -260 -283 -260 -333 -260 -336 -260 -337 -260 -407 -260 -409 -260 -410 -260 -411 -260 -412 -260 -413 -260 -261 -261 -165 -261 -175 -261 -177 -261 -178 -261 -257 -261 -262 -261 -282 -261 -283 -261 -374 -261 -399 -261 -401 -261 -414 -261 -415 -261 -416 -261 -417 -261 -418 -261 -419 -261 -262 -262 -175 -262 -178 -262 -249 -262 -257 -262 -261 -262 -268 -262 -283 -262 -286 -262 -374 -262 -375 -262 -401 -262 -414 -262 -415 -262 -418 -262 -419 -262 -439 -262 -440 -262 -263 -263 -99 -263 -135 -263 -150 -263 -157 -263 -159 -263 -227 -263 -228 -263 -244 -263 -246 -263 -264 -263 -265 -263 -266 -263 -349 -263 -362 -263 -426 -263 -427 -263 -428 -263 -264 -264 -150 -264 -159 -264 -227 -264 -228 -264 -263 -264 -265 -264 -266 -264 -349 -264 -355 -264 -426 -264 -427 -264 -428 -264 -433 -264 -434 -264 -592 -264 -684 -264 -686 -264 -265 -265 -157 -265 -159 -265 -244 -265 -246 -265 -263 -265 -264 -265 -266 -265 -362 -265 -378 -265 -426 -265 -427 -265 -428 -265 -435 -265 -438 -265 -615 -265 -688 -265 -689 -265 -266 -266 -159 -266 -263 -266 -264 -266 -265 -266 -426 -266 -427 -266 -428 -266 -433 -266 -434 -266 -435 -266 -438 -266 -443 -266 -684 -266 -686 -266 -688 -266 -689 -266 -700 -266 -267 -267 -166 -267 -172 -267 -173 -267 -178 -267 -230 -267 -259 -267 -284 -267 -286 -267 -337 -267 -352 -267 -353 -267 -411 -267 -413 -267 -429 -267 -430 -267 -431 -267 -432 -267 -268 -268 -166 -268 -175 -268 -176 -268 -178 -268 -249 -268 -262 -268 -285 -268 -286 -268 -374 -268 -375 -268 -376 -268 -415 -268 -419 -268 -436 -268 -437 -268 -439 -268 -440 -268 -269 -269 -100 -269 -101 -269 -115 -269 -137 -269 -139 -269 -140 -269 -160 -269 -167 -269 -201 -269 -202 -269 -270 -269 -288 -269 -291 -269 -293 -269 -294 -269 -295 -269 -296 -269 -297 -269 -298 -269 -299 -269 -303 -269 -306 -269 -307 -269 -270 -270 -102 -270 -103 -270 -115 -270 -138 -270 -141 -270 -142 -270 -160 -270 -168 -270 -201 -270 -203 -270 -269 -270 -289 -270 -292 -270 -293 -270 -298 -270 -300 -270 -301 -270 -302 -270 -303 -270 -304 -270 -305 -270 -306 -270 -308 -270 -271 -271 -101 -271 -104 -271 -140 -271 -143 -271 -161 -271 -167 -271 -202 -271 -210 -271 -272 -271 -273 -271 -296 -271 -297 -271 -299 -271 -307 -271 -310 -271 -311 -271 -312 -271 -314 -271 -315 -271 -316 -271 -317 -271 -326 -271 -327 -271 -272 -272 -104 -272 -105 -272 -143 -272 -144 -272 -161 -272 -170 -272 -212 -272 -213 -272 -271 -272 -273 -272 -310 -272 -311 -272 -312 -272 -313 -272 -319 -272 -321 -272 -322 -272 -323 -272 -324 -272 -325 -272 -331 -272 -334 -272 -335 -272 -273 -273 -161 -273 -171 -273 -210 -273 -211 -273 -213 -273 -214 -273 -271 -273 -272 -273 -316 -273 -317 -273 -320 -273 -321 -273 -324 -273 -326 -273 -327 -273 -328 -273 -329 -273 -330 -273 -331 -273 -332 -273 -333 -273 -334 -273 -336 -273 -274 -274 -105 -274 -106 -274 -116 -274 -144 -274 -146 -274 -148 -274 -162 -274 -170 -274 -212 -274 -229 -274 -275 -274 -313 -274 -323 -274 -325 -274 -335 -274 -338 -274 -341 -274 -342 -274 -343 -274 -344 -274 -345 -274 -350 -274 -351 -274 -275 -275 -107 -275 -108 -275 -116 -275 -147 -275 -149 -275 -150 -275 -162 -275 -173 -275 -229 -275 -230 -275 -274 -275 -340 -275 -344 -275 -345 -275 -347 -275 -348 -275 -349 -275 -350 -275 -351 -275 -352 -275 -353 -275 -354 -275 -355 -275 -276 -276 -109 -276 -110 -276 -117 -276 -152 -276 -154 -276 -155 -276 -163 -276 -174 -276 -247 -276 -248 -276 -277 -276 -357 -276 -359 -276 -360 -276 -364 -276 -365 -276 -367 -276 -368 -276 -369 -276 -370 -276 -371 -276 -372 -276 -373 -276 -277 -277 -111 -277 -112 -277 -117 -277 -153 -277 -156 -277 -157 -277 -163 -277 -176 -277 -247 -277 -249 -277 -276 -277 -358 -277 -361 -277 -362 -277 -365 -277 -366 -277 -370 -277 -371 -277 -372 -277 -375 -277 -376 -277 -377 -277 -378 -277 -278 -278 -103 -278 -113 -278 -142 -278 -158 -278 -164 -278 -168 -278 -203 -278 -254 -278 -279 -278 -280 -278 -301 -278 -304 -278 -305 -278 -308 -278 -379 -278 -380 -278 -381 -278 -382 -278 -383 -278 -384 -278 -385 -278 -386 -278 -388 -278 -279 -279 -109 -279 -113 -279 -155 -279 -158 -279 -164 -279 -174 -279 -248 -279 -256 -279 -278 -279 -280 -279 -360 -279 -368 -279 -369 -279 -373 -279 -379 -279 -380 -279 -381 -279 -390 -279 -391 -279 -392 -279 -393 -279 -397 -279 -400 -279 -280 -280 -164 -280 -177 -280 -254 -280 -255 -280 -256 -280 -257 -280 -278 -280 -279 -280 -383 -280 -385 -280 -386 -280 -387 -280 -388 -280 -389 -280 -392 -280 -393 -280 -395 -280 -396 -280 -397 -280 -398 -280 -399 -280 -400 -280 -401 -280 -281 -281 -165 -281 -171 -281 -211 -281 -214 -281 -258 -281 -260 -281 -282 -281 -283 -281 -328 -281 -329 -281 -332 -281 -333 -281 -336 -281 -402 -281 -403 -281 -404 -281 -405 -281 -406 -281 -407 -281 -408 -281 -409 -281 -410 -281 -412 -281 -282 -282 -165 -282 -177 -282 -255 -282 -257 -282 -258 -282 -261 -282 -281 -282 -283 -282 -387 -282 -389 -282 -398 -282 -399 -282 -401 -282 -402 -282 -403 -282 -404 -282 -405 -282 -414 -282 -416 -282 -417 -282 -418 -282 -420 -282 -421 -282 -283 -283 -165 -283 -178 -283 -259 -283 -260 -283 -261 -283 -262 -283 -281 -283 -282 -283 -407 -283 -409 -283 -410 -283 -411 -283 -412 -283 -413 -283 -414 -283 -415 -283 -416 -283 -417 -283 -418 -283 -419 -283 -423 -283 -424 -283 -425 -283 -284 -284 -108 -284 -114 -284 -150 -284 -159 -284 -166 -284 -173 -284 -230 -284 -267 -284 -285 -284 -286 -284 -349 -284 -352 -284 -353 -284 -355 -284 -426 -284 -427 -284 -428 -284 -429 -284 -430 -284 -431 -284 -432 -284 -433 -284 -434 -284 -285 -285 -112 -285 -114 -285 -157 -285 -159 -285 -166 -285 -176 -285 -249 -285 -268 -285 -284 -285 -286 -285 -362 -285 -375 -285 -376 -285 -378 -285 -426 -285 -427 -285 -428 -285 -435 -285 -436 -285 -437 -285 -438 -285 -439 -285 -440 -285 -286 -286 -166 -286 -178 -286 -259 -286 -262 -286 -267 -286 -268 -286 -284 -286 -285 -286 -411 -286 -413 -286 -415 -286 -419 -286 -425 -286 -429 -286 -430 -286 -431 -286 -432 -286 -436 -286 -437 -286 -439 -286 -440 -286 -441 -286 -442 -286 -287 -287 -64 -287 -115 -287 -136 -287 -137 -287 -138 -287 -160 -287 -179 -287 -180 -287 -185 -287 -186 -287 -187 -287 -188 -287 -189 -287 -190 -287 -191 -287 -192 -287 -288 -287 -289 -287 -290 -287 -291 -287 -292 -287 -293 -287 -451 -287 -517 -287 -518 -287 -520 -287 -522 -287 -288 -288 -64 -288 -65 -288 -100 -288 -115 -288 -136 -288 -137 -288 -138 -288 -139 -288 -160 -288 -167 -288 -185 -288 -187 -288 -189 -288 -190 -288 -193 -288 -195 -288 -269 -288 -287 -288 -289 -288 -290 -288 -291 -288 -292 -288 -293 -288 -294 -288 -295 -288 -298 -288 -517 -288 -520 -288 -525 -288 -289 -289 -64 -289 -68 -289 -102 -289 -115 -289 -136 -289 -137 -289 -138 -289 -141 -289 -160 -289 -168 -289 -186 -289 -188 -289 -191 -289 -192 -289 -197 -289 -198 -289 -270 -289 -287 -289 -288 -289 -290 -289 -291 -289 -292 -289 -293 -289 -300 -289 -302 -289 -303 -289 -518 -289 -522 -289 -531 -289 -290 -290 -160 -290 -180 -290 -187 -290 -188 -290 -189 -290 -192 -290 -287 -290 -288 -290 -289 -290 -291 -290 -292 -290 -293 -290 -444 -290 -451 -290 -452 -290 -453 -290 -454 -290 -455 -290 -517 -290 -518 -290 -519 -290 -520 -290 -521 -290 -522 -290 -523 -290 -524 -290 -291 -291 -160 -291 -167 -291 -187 -291 -189 -291 -193 -291 -269 -291 -287 -291 -288 -291 -289 -291 -290 -291 -292 -291 -293 -291 -294 -291 -295 -291 -298 -291 -452 -291 -454 -291 -456 -291 -517 -291 -519 -291 -520 -291 -521 -291 -523 -291 -524 -291 -525 -291 -526 -291 -529 -291 -292 -292 -160 -292 -168 -292 -188 -292 -192 -292 -198 -292 -270 -292 -287 -292 -288 -292 -289 -292 -290 -292 -291 -292 -293 -292 -300 -292 -302 -292 -303 -292 -453 -292 -455 -292 -458 -292 -518 -292 -519 -292 -521 -292 -522 -292 -523 -292 -524 -292 -531 -292 -532 -292 -533 -292 -293 -293 -160 -293 -167 -293 -168 -293 -169 -293 -201 -293 -269 -293 -270 -293 -287 -293 -288 -293 -289 -293 -290 -293 -291 -293 -292 -293 -294 -293 -295 -293 -298 -293 -300 -293 -302 -293 -303 -293 -306 -293 -519 -293 -521 -293 -523 -293 -524 -293 -526 -293 -529 -293 -532 -293 -533 -293 -537 -293 -294 -294 -160 -294 -167 -294 -189 -294 -193 -294 -194 -294 -269 -294 -288 -294 -291 -294 -293 -294 -295 -294 -296 -294 -297 -294 -298 -294 -299 -294 -454 -294 -456 -294 -457 -294 -520 -294 -521 -294 -524 -294 -525 -294 -526 -294 -527 -294 -528 -294 -529 -294 -530 -294 -295 -295 -64 -295 -65 -295 -100 -295 -101 -295 -115 -295 -137 -295 -139 -295 -140 -295 -160 -295 -167 -295 -189 -295 -190 -295 -193 -295 -194 -295 -195 -295 -196 -295 -269 -295 -288 -295 -291 -295 -293 -295 -294 -295 -296 -295 -297 -295 -298 -295 -299 -295 -520 -295 -525 -295 -527 -295 -296 -296 -160 -296 -161 -296 -167 -296 -193 -296 -194 -296 -206 -296 -269 -296 -271 -296 -294 -296 -295 -296 -297 -296 -298 -296 -299 -296 -310 -296 -314 -296 -316 -296 -456 -296 -457 -296 -460 -296 -525 -296 -526 -296 -527 -296 -528 -296 -529 -296 -530 -296 -541 -296 -542 -296 -545 -296 -297 -297 -64 -297 -65 -297 -100 -297 -101 -297 -104 -297 -139 -297 -140 -297 -143 -297 -160 -297 -161 -297 -167 -297 -170 -297 -193 -297 -194 -297 -195 -297 -196 -297 -204 -297 -206 -297 -269 -297 -271 -297 -294 -297 -295 -297 -296 -297 -298 -297 -299 -297 -310 -297 -314 -297 -316 -297 -525 -297 -527 -297 -541 -297 -298 -298 -160 -298 -167 -298 -168 -298 -169 -298 -201 -298 -202 -298 -269 -298 -270 -298 -288 -298 -291 -298 -293 -298 -294 -298 -295 -298 -296 -298 -297 -298 -299 -298 -303 -298 -306 -298 -307 -298 -521 -298 -524 -298 -526 -298 -528 -298 -529 -298 -530 -298 -533 -298 -537 -298 -538 -298 -299 -299 -160 -299 -161 -299 -167 -299 -168 -299 -169 -299 -171 -299 -201 -299 -202 -299 -210 -299 -269 -299 -271 -299 -294 -299 -295 -299 -296 -299 -297 -299 -298 -299 -306 -299 -307 -299 -310 -299 -314 -299 -316 -299 -326 -299 -526 -299 -528 -299 -529 -299 -530 -299 -537 -299 -538 -299 -542 -299 -545 -299 -561 -299 -300 -300 -64 -300 -68 -300 -102 -300 -103 -300 -115 -300 -138 -300 -141 -300 -142 -300 -160 -300 -168 -300 -191 -300 -192 -300 -197 -300 -198 -300 -199 -300 -200 -300 -270 -300 -289 -300 -292 -300 -293 -300 -301 -300 -302 -300 -303 -300 -304 -300 -305 -300 -522 -300 -531 -300 -534 -300 -301 -301 -64 -301 -68 -301 -102 -301 -103 -301 -113 -301 -141 -301 -142 -301 -158 -301 -160 -301 -164 -301 -168 -301 -174 -301 -197 -301 -198 -301 -199 -301 -200 -301 -250 -301 -251 -301 -270 -301 -278 -301 -300 -301 -302 -301 -303 -301 -304 -301 -305 -301 -379 -301 -382 -301 -383 -301 -531 -301 -534 -301 -618 -301 -302 -302 -160 -302 -168 -302 -192 -302 -198 -302 -200 -302 -270 -302 -289 -302 -292 -302 -293 -302 -300 -302 -301 -302 -303 -302 -304 -302 -305 -302 -455 -302 -458 -302 -459 -302 -522 -302 -523 -302 -524 -302 -531 -302 -532 -302 -533 -302 -534 -302 -535 -302 -536 -302 -303 -303 -160 -303 -167 -303 -168 -303 -169 -303 -201 -303 -203 -303 -269 -303 -270 -303 -289 -303 -292 -303 -293 -303 -298 -303 -300 -303 -301 -303 -302 -303 -304 -303 -305 -303 -306 -303 -308 -303 -523 -303 -524 -303 -529 -303 -532 -303 -533 -303 -535 -303 -536 -303 -537 -303 -539 -303 -304 -304 -160 -304 -164 -304 -168 -304 -198 -304 -200 -304 -251 -304 -270 -304 -278 -304 -300 -304 -301 -304 -302 -304 -303 -304 -305 -304 -379 -304 -382 -304 -383 -304 -458 -304 -459 -304 -488 -304 -531 -304 -532 -304 -533 -304 -534 -304 -535 -304 -536 -304 -618 -304 -619 -304 -620 -304 -305 -305 -160 -305 -164 -305 -167 -305 -168 -305 -169 -305 -177 -305 -201 -305 -203 -305 -254 -305 -270 -305 -278 -305 -300 -305 -301 -305 -302 -305 -303 -305 -304 -305 -306 -305 -308 -305 -379 -305 -382 -305 -383 -305 -386 -305 -532 -305 -533 -305 -535 -305 -536 -305 -537 -305 -539 -305 -619 -305 -620 -305 -624 -305 -306 -306 -160 -306 -167 -306 -168 -306 -169 -306 -201 -306 -202 -306 -203 -306 -269 -306 -270 -306 -293 -306 -298 -306 -299 -306 -303 -306 -305 -306 -307 -306 -308 -306 -309 -306 -524 -306 -529 -306 -530 -306 -533 -306 -536 -306 -537 -306 -538 -306 -539 -306 -540 -306 -307 -307 -160 -307 -161 -307 -167 -307 -168 -307 -169 -307 -171 -307 -201 -307 -202 -307 -203 -307 -210 -307 -211 -307 -269 -307 -271 -307 -298 -307 -299 -307 -306 -307 -308 -307 -309 -307 -316 -307 -326 -307 -328 -307 -529 -307 -530 -307 -537 -307 -538 -307 -539 -307 -540 -307 -545 -307 -561 -307 -563 -307 -308 -308 -160 -308 -164 -308 -167 -308 -168 -308 -169 -308 -177 -308 -201 -308 -202 -308 -203 -308 -254 -308 -255 -308 -270 -308 -278 -308 -303 -308 -305 -308 -306 -308 -307 -308 -309 -308 -383 -308 -386 -308 -387 -308 -533 -308 -536 -308 -537 -308 -538 -308 -539 -308 -540 -308 -620 -308 -624 -308 -625 -308 -309 -309 -160 -309 -161 -309 -164 -309 -165 -309 -167 -309 -168 -309 -169 -309 -171 -309 -177 -309 -201 -309 -202 -309 -203 -309 -210 -309 -211 -309 -254 -309 -255 -309 -258 -309 -306 -309 -307 -309 -308 -309 -326 -309 -328 -309 -386 -309 -387 -309 -402 -309 -537 -309 -538 -309 -539 -309 -540 -309 -561 -309 -563 -309 -624 -309 -625 -309 -647 -309 -310 -310 -65 -310 -101 -310 -104 -310 -140 -310 -143 -310 -161 -310 -167 -310 -170 -310 -194 -310 -196 -310 -204 -310 -206 -310 -207 -310 -208 -310 -271 -310 -272 -310 -296 -310 -297 -310 -299 -310 -311 -310 -312 -310 -314 -310 -315 -310 -316 -310 -317 -310 -527 -310 -541 -310 -543 -310 -311 -311 -65 -311 -104 -311 -143 -311 -161 -311 -167 -311 -170 -311 -204 -311 -206 -311 -207 -311 -208 -311 -271 -311 -272 -311 -310 -311 -312 -311 -314 -311 -315 -311 -316 -311 -317 -311 -318 -311 -319 -311 -320 -311 -321 -311 -322 -311 -324 -311 -541 -311 -543 -311 -547 -311 -548 -311 -555 -311 -312 -312 -65 -312 -104 -312 -105 -312 -143 -312 -144 -312 -161 -312 -167 -312 -170 -312 -204 -312 -205 -312 -206 -312 -207 -312 -208 -312 -209 -312 -271 -312 -272 -312 -310 -312 -311 -312 -313 -312 -319 -312 -321 -312 -322 -312 -323 -312 -324 -312 -325 -312 -548 -312 -555 -312 -556 -312 -313 -313 -65 -313 -66 -313 -104 -313 -105 -313 -106 -313 -143 -313 -144 -313 -148 -313 -161 -313 -162 -313 -167 -313 -170 -313 -204 -313 -205 -313 -208 -313 -209 -313 -223 -313 -224 -313 -272 -313 -274 -313 -312 -313 -322 -313 -323 -313 -324 -313 -325 -313 -341 -313 -342 -313 -344 -313 -555 -313 -556 -313 -575 -313 -314 -314 -161 -314 -167 -314 -194 -314 -206 -314 -207 -314 -271 -314 -296 -314 -297 -314 -299 -314 -310 -314 -311 -314 -315 -314 -316 -314 -317 -314 -457 -314 -460 -314 -461 -314 -527 -314 -528 -314 -530 -314 -541 -314 -542 -314 -543 -314 -544 -314 -545 -314 -546 -314 -315 -315 -161 -315 -167 -315 -206 -315 -207 -315 -271 -315 -310 -315 -311 -315 -314 -315 -316 -315 -317 -315 -318 -315 -319 -315 -320 -315 -321 -315 -460 -315 -461 -315 -462 -315 -541 -315 -542 -315 -543 -315 -544 -315 -545 -315 -546 -315 -547 -315 -548 -315 -549 -315 -552 -315 -316 -316 -161 -316 -167 -316 -169 -316 -171 -316 -202 -316 -210 -316 -271 -316 -273 -316 -296 -316 -297 -316 -299 -316 -307 -316 -310 -316 -311 -316 -314 -316 -315 -316 -317 -316 -326 -316 -327 -316 -528 -316 -530 -316 -538 -316 -542 -316 -544 -316 -545 -316 -546 -316 -561 -316 -562 -316 -317 -317 -161 -317 -167 -317 -169 -317 -171 -317 -210 -317 -271 -317 -273 -317 -310 -317 -311 -317 -314 -317 -315 -317 -316 -317 -318 -317 -319 -317 -320 -317 -321 -317 -326 -317 -327 -317 -330 -317 -331 -317 -542 -317 -544 -317 -545 -317 -546 -317 -549 -317 -552 -317 -561 -317 -562 -317 -565 -317 -318 -318 -161 -318 -207 -318 -311 -318 -315 -318 -317 -318 -319 -318 -320 -318 -321 -318 -445 -318 -461 -318 -462 -318 -463 -318 -464 -318 -465 -318 -466 -318 -543 -318 -544 -318 -546 -318 -547 -318 -548 -318 -549 -318 -550 -318 -551 -318 -552 -318 -553 -318 -554 -318 -319 -319 -161 -319 -170 -319 -207 -319 -208 -319 -272 -319 -311 -319 -312 -319 -315 -319 -317 -319 -318 -319 -320 -319 -321 -319 -322 -319 -324 -319 -463 -319 -465 -319 -467 -319 -543 -319 -547 -319 -548 -319 -550 -319 -551 -319 -553 -319 -554 -319 -555 -319 -557 -319 -559 -319 -320 -320 -161 -320 -171 -320 -273 -320 -311 -320 -315 -320 -317 -320 -318 -320 -319 -320 -321 -320 -327 -320 -330 -320 -331 -320 -464 -320 -466 -320 -469 -320 -544 -320 -546 -320 -549 -320 -550 -320 -551 -320 -552 -320 -553 -320 -554 -320 -562 -320 -565 -320 -566 -320 -567 -320 -321 -321 -161 -321 -170 -321 -171 -321 -172 -321 -213 -321 -272 -321 -273 -321 -311 -321 -312 -321 -315 -321 -317 -321 -318 -321 -319 -321 -320 -321 -322 -321 -324 -321 -327 -321 -330 -321 -331 -321 -334 -321 -550 -321 -551 -321 -553 -321 -554 -321 -557 -321 -559 -321 -566 -321 -567 -321 -571 -321 -322 -322 -161 -322 -170 -322 -207 -322 -208 -322 -209 -322 -272 -322 -311 -322 -312 -322 -313 -322 -319 -322 -321 -322 -323 -322 -324 -322 -325 -322 -465 -322 -467 -322 -468 -322 -548 -322 -551 -322 -554 -322 -555 -322 -556 -322 -557 -322 -558 -322 -559 -322 -560 -322 -323 -323 -161 -323 -162 -323 -170 -323 -208 -323 -209 -323 -224 -323 -272 -323 -274 -323 -312 -323 -313 -323 -322 -323 -324 -323 -325 -323 -341 -323 -342 -323 -344 -323 -467 -323 -468 -323 -471 -323 -555 -323 -556 -323 -557 -323 -558 -323 -559 -323 -560 -323 -575 -323 -577 -323 -579 -323 -324 -324 -161 -324 -170 -324 -171 -324 -172 -324 -212 -324 -213 -324 -272 -324 -273 -324 -311 -324 -312 -324 -313 -324 -319 -324 -321 -324 -322 -324 -323 -324 -325 -324 -331 -324 -334 -324 -335 -324 -551 -324 -554 -324 -557 -324 -558 -324 -559 -324 -560 -324 -567 -324 -571 -324 -572 -324 -325 -325 -161 -325 -162 -325 -170 -325 -171 -325 -172 -325 -173 -325 -212 -325 -213 -325 -229 -325 -272 -325 -274 -325 -312 -325 -313 -325 -322 -325 -323 -325 -324 -325 -334 -325 -335 -325 -341 -325 -342 -325 -344 -325 -350 -325 -557 -325 -558 -325 -559 -325 -560 -325 -571 -325 -572 -325 -577 -325 -579 -325 -586 -325 -326 -326 -161 -326 -167 -326 -169 -326 -171 -326 -202 -326 -210 -326 -211 -326 -271 -326 -273 -326 -299 -326 -307 -326 -309 -326 -316 -326 -317 -326 -327 -326 -328 -326 -329 -326 -530 -326 -538 -326 -540 -326 -545 -326 -546 -326 -561 -326 -562 -326 -563 -326 -564 -326 -327 -327 -161 -327 -167 -327 -169 -327 -171 -327 -210 -327 -211 -327 -271 -327 -273 -327 -316 -327 -317 -327 -320 -327 -321 -327 -326 -327 -328 -327 -329 -327 -330 -327 -331 -327 -332 -327 -333 -327 -545 -327 -546 -327 -552 -327 -561 -327 -562 -327 -563 -327 -564 -327 -565 -327 -568 -327 -328 -328 -161 -328 -165 -328 -167 -328 -169 -328 -171 -328 -177 -328 -202 -328 -210 -328 -211 -328 -255 -328 -258 -328 -273 -328 -281 -328 -307 -328 -309 -328 -326 -328 -327 -328 -329 -328 -387 -328 -402 -328 -403 -328 -538 -328 -540 -328 -561 -328 -562 -328 -563 -328 -564 -328 -625 -328 -647 -328 -648 -328 -329 -329 -161 -329 -165 -329 -167 -329 -169 -329 -171 -329 -177 -329 -210 -329 -211 -329 -258 -329 -273 -329 -281 -329 -326 -329 -327 -329 -328 -329 -330 -329 -331 -329 -332 -329 -333 -329 -402 -329 -403 -329 -406 -329 -407 -329 -561 -329 -562 -329 -563 -329 -564 -329 -565 -329 -568 -329 -647 -329 -648 -329 -651 -329 -330 -330 -161 -330 -171 -330 -273 -330 -317 -330 -320 -330 -321 -330 -327 -330 -329 -330 -331 -330 -332 -330 -333 -330 -466 -330 -469 -330 -470 -330 -546 -330 -552 -330 -553 -330 -554 -330 -562 -330 -564 -330 -565 -330 -566 -330 -567 -330 -568 -330 -569 -330 -570 -330 -331 -331 -161 -331 -170 -331 -171 -331 -172 -331 -213 -331 -214 -331 -272 -331 -273 -331 -317 -331 -320 -331 -321 -331 -324 -331 -327 -331 -329 -331 -330 -331 -332 -331 -333 -331 -334 -331 -336 -331 -553 -331 -554 -331 -559 -331 -566 -331 -567 -331 -569 -331 -570 -331 -571 -331 -573 -331 -332 -332 -161 -332 -165 -332 -171 -332 -273 -332 -281 -332 -327 -332 -329 -332 -330 -332 -331 -332 -333 -332 -403 -332 -406 -332 -407 -332 -469 -332 -470 -332 -498 -332 -562 -332 -564 -332 -565 -332 -566 -332 -567 -332 -568 -332 -569 -332 -570 -332 -648 -332 -651 -332 -652 -332 -653 -332 -333 -333 -161 -333 -165 -333 -170 -333 -171 -333 -172 -333 -178 -333 -213 -333 -214 -333 -260 -333 -273 -333 -281 -333 -327 -333 -329 -333 -330 -333 -331 -333 -332 -333 -334 -333 -336 -333 -403 -333 -406 -333 -407 -333 -410 -333 -566 -333 -567 -333 -569 -333 -570 -333 -571 -333 -573 -333 -652 -333 -653 -333 -657 -333 -334 -334 -161 -334 -170 -334 -171 -334 -172 -334 -212 -334 -213 -334 -214 -334 -272 -334 -273 -334 -321 -334 -324 -334 -325 -334 -331 -334 -333 -334 -335 -334 -336 -334 -337 -334 -554 -334 -559 -334 -560 -334 -567 -334 -570 -334 -571 -334 -572 -334 -573 -334 -574 -334 -335 -335 -161 -335 -162 -335 -170 -335 -171 -335 -172 -335 -173 -335 -212 -335 -213 -335 -214 -335 -229 -335 -230 -335 -272 -335 -274 -335 -324 -335 -325 -335 -334 -335 -336 -335 -337 -335 -344 -335 -350 -335 -352 -335 -559 -335 -560 -335 -571 -335 -572 -335 -573 -335 -574 -335 -579 -335 -586 -335 -588 -335 -336 -336 -161 -336 -165 -336 -170 -336 -171 -336 -172 -336 -178 -336 -212 -336 -213 -336 -214 -336 -259 -336 -260 -336 -273 -336 -281 -336 -331 -336 -333 -336 -334 -336 -335 -336 -337 -336 -407 -336 -410 -336 -411 -336 -567 -336 -570 -336 -571 -336 -572 -336 -573 -336 -574 -336 -653 -336 -657 -336 -658 -336 -337 -337 -161 -337 -162 -337 -165 -337 -166 -337 -170 -337 -171 -337 -172 -337 -173 -337 -178 -337 -212 -337 -213 -337 -214 -337 -229 -337 -230 -337 -259 -337 -260 -337 -267 -337 -334 -337 -335 -337 -336 -337 -350 -337 -352 -337 -410 -337 -411 -337 -429 -337 -571 -337 -572 -337 -573 -337 -574 -337 -586 -337 -588 -337 -657 -337 -658 -337 -680 -337 -338 -338 -65 -338 -66 -338 -106 -338 -116 -338 -145 -338 -146 -338 -147 -338 -148 -338 -162 -338 -170 -338 -215 -338 -217 -338 -218 -338 -219 -338 -223 -338 -224 -338 -274 -338 -339 -338 -340 -338 -341 -338 -342 -338 -343 -338 -344 -338 -345 -338 -346 -338 -347 -338 -575 -338 -576 -338 -581 -338 -339 -339 -66 -339 -116 -339 -145 -339 -146 -339 -147 -339 -162 -339 -181 -339 -182 -339 -215 -339 -216 -339 -217 -339 -218 -339 -219 -339 -220 -339 -221 -339 -222 -339 -338 -339 -340 -339 -343 -339 -345 -339 -346 -339 -347 -339 -473 -339 -576 -339 -581 -339 -582 -339 -584 -339 -340 -340 -66 -340 -69 -340 -107 -340 -116 -340 -145 -340 -146 -340 -147 -340 -149 -340 -162 -340 -173 -340 -216 -340 -220 -340 -221 -340 -222 -340 -225 -340 -226 -340 -275 -340 -338 -340 -339 -340 -343 -340 -345 -340 -346 -340 -347 -340 -348 -340 -351 -340 -354 -340 -582 -340 -584 -340 -590 -340 -341 -341 -65 -341 -66 -341 -105 -341 -106 -341 -116 -341 -144 -341 -146 -341 -148 -341 -162 -341 -170 -341 -205 -341 -209 -341 -217 -341 -218 -341 -223 -341 -224 -341 -274 -341 -313 -341 -323 -341 -325 -341 -338 -341 -342 -341 -343 -341 -344 -341 -345 -341 -556 -341 -575 -341 -576 -341 -342 -342 -162 -342 -170 -342 -209 -342 -218 -342 -224 -342 -274 -342 -313 -342 -323 -342 -325 -342 -338 -342 -341 -342 -343 -342 -344 -342 -345 -342 -468 -342 -471 -342 -472 -342 -556 -342 -558 -342 -560 -342 -575 -342 -576 -342 -577 -342 -578 -342 -579 -342 -580 -342 -343 -343 -162 -343 -170 -343 -218 -343 -219 -343 -224 -343 -274 -343 -338 -343 -339 -343 -340 -343 -341 -343 -342 -343 -344 -343 -345 -343 -346 -343 -347 -343 -471 -343 -472 -343 -474 -343 -575 -343 -576 -343 -577 -343 -578 -343 -579 -343 -580 -343 -581 -343 -583 -343 -585 -343 -344 -344 -162 -344 -170 -344 -172 -344 -173 -344 -212 -344 -229 -344 -274 -344 -275 -344 -313 -344 -323 -344 -325 -344 -335 -344 -338 -344 -341 -344 -342 -344 -343 -344 -345 -344 -350 -344 -351 -344 -558 -344 -560 -344 -572 -344 -577 -344 -578 -344 -579 -344 -580 -344 -586 -344 -587 -344 -345 -345 -162 -345 -170 -345 -172 -345 -173 -345 -229 -345 -274 -345 -275 -345 -338 -345 -339 -345 -340 -345 -341 -345 -342 -345 -343 -345 -344 -345 -346 -345 -347 -345 -348 -345 -350 -345 -351 -345 -354 -345 -577 -345 -578 -345 -579 -345 -580 -345 -583 -345 -585 -345 -586 -345 -587 -345 -591 -345 -346 -346 -162 -346 -182 -346 -218 -346 -219 -346 -220 -346 -222 -346 -338 -346 -339 -346 -340 -346 -343 -346 -345 -346 -347 -346 -446 -346 -472 -346 -473 -346 -474 -346 -475 -346 -476 -346 -576 -346 -578 -346 -580 -346 -581 -346 -582 -346 -583 -346 -584 -346 -585 -346 -347 -347 -162 -347 -173 -347 -220 -347 -222 -347 -226 -347 -275 -347 -338 -347 -339 -347 -340 -347 -343 -347 -345 -347 -346 -347 -348 -347 -351 -347 -354 -347 -475 -347 -476 -347 -477 -347 -578 -347 -580 -347 -582 -347 -583 -347 -584 -347 -585 -347 -587 -347 -590 -347 -591 -347 -348 -348 -66 -348 -69 -348 -107 -348 -108 -348 -116 -348 -147 -348 -149 -348 -150 -348 -162 -348 -173 -348 -221 -348 -222 -348 -225 -348 -226 -348 -227 -348 -228 -348 -275 -348 -340 -348 -345 -348 -347 -348 -349 -348 -351 -348 -353 -348 -354 -348 -355 -348 -584 -348 -590 -348 -592 -348 -349 -349 -66 -349 -69 -349 -107 -349 -108 -349 -114 -349 -149 -349 -150 -349 -159 -349 -162 -349 -166 -349 -173 -349 -176 -349 -225 -349 -226 -349 -227 -349 -228 -349 -263 -349 -264 -349 -275 -349 -284 -349 -348 -349 -351 -349 -353 -349 -354 -349 -355 -349 -426 -349 -430 -349 -433 -349 -590 -349 -592 -349 -684 -349 -350 -350 -162 -350 -170 -350 -172 -350 -173 -350 -212 -350 -229 -350 -230 -350 -274 -350 -275 -350 -325 -350 -335 -350 -337 -350 -344 -350 -345 -350 -351 -350 -352 -350 -353 -350 -560 -350 -572 -350 -574 -350 -579 -350 -580 -350 -586 -350 -587 -350 -588 -350 -589 -350 -351 -351 -162 -351 -170 -351 -172 -351 -173 -351 -229 -351 -230 -351 -274 -351 -275 -351 -340 -351 -344 -351 -345 -351 -347 -351 -348 -351 -349 -351 -350 -351 -352 -351 -353 -351 -354 -351 -355 -351 -579 -351 -580 -351 -585 -351 -586 -351 -587 -351 -588 -351 -589 -351 -591 -351 -593 -351 -352 -352 -162 -352 -166 -352 -170 -352 -172 -352 -173 -352 -178 -352 -212 -352 -229 -352 -230 -352 -259 -352 -267 -352 -275 -352 -284 -352 -335 -352 -337 -352 -350 -352 -351 -352 -353 -352 -411 -352 -429 -352 -430 -352 -572 -352 -574 -352 -586 -352 -587 -352 -588 -352 -589 -352 -658 -352 -680 -352 -681 -352 -353 -353 -162 -353 -166 -353 -170 -353 -172 -353 -173 -353 -178 -353 -229 -353 -230 -353 -267 -353 -275 -353 -284 -353 -348 -353 -349 -353 -350 -353 -351 -353 -352 -353 -354 -353 -355 -353 -426 -353 -429 -353 -430 -353 -433 -353 -586 -353 -587 -353 -588 -353 -589 -353 -591 -353 -593 -353 -680 -353 -681 -353 -685 -353 -354 -354 -162 -354 -173 -354 -222 -354 -226 -354 -228 -354 -275 -354 -340 -354 -345 -354 -347 -354 -348 -354 -349 -354 -351 -354 -353 -354 -355 -354 -476 -354 -477 -354 -478 -354 -580 -354 -584 -354 -585 -354 -587 -354 -589 -354 -590 -354 -591 -354 -592 -354 -593 -354 -355 -355 -162 -355 -166 -355 -173 -355 -226 -355 -228 -355 -264 -355 -275 -355 -284 -355 -348 -355 -349 -355 -351 -355 -353 -355 -354 -355 -426 -355 -430 -355 -433 -355 -477 -355 -478 -355 -508 -355 -587 -355 -589 -355 -590 -355 -591 -355 -592 -355 -593 -355 -681 -355 -684 -355 -685 -355 -356 -356 -67 -356 -117 -356 -151 -356 -152 -356 -153 -356 -163 -356 -183 -356 -184 -356 -231 -356 -232 -356 -233 -356 -234 -356 -235 -356 -236 -356 -237 -356 -238 -356 -357 -356 -358 -356 -363 -356 -364 -356 -365 -356 -366 -356 -479 -356 -594 -356 -595 -356 -596 -356 -597 -356 -357 -357 -67 -357 -68 -357 -110 -357 -117 -357 -151 -357 -152 -357 -153 -357 -154 -357 -163 -357 -174 -357 -231 -357 -233 -357 -235 -357 -237 -357 -239 -357 -241 -357 -276 -357 -356 -357 -358 -357 -359 -357 -363 -357 -364 -357 -365 -357 -366 -357 -367 -357 -370 -357 -594 -357 -596 -357 -602 -357 -358 -358 -67 -358 -69 -358 -111 -358 -117 -358 -151 -358 -152 -358 -153 -358 -156 -358 -163 -358 -176 -358 -232 -358 -234 -358 -236 -358 -238 -358 -243 -358 -245 -358 -277 -358 -356 -358 -357 -358 -361 -358 -363 -358 -364 -358 -365 -358 -366 -358 -372 -358 -377 -358 -595 -358 -597 -358 -614 -358 -359 -359 -67 -359 -68 -359 -109 -359 -110 -359 -117 -359 -152 -359 -154 -359 -155 -359 -163 -359 -174 -359 -233 -359 -237 -359 -239 -359 -240 -359 -241 -359 -242 -359 -276 -359 -357 -359 -360 -359 -364 -359 -365 -359 -367 -359 -368 -359 -369 -359 -370 -359 -596 -359 -602 -359 -603 -359 -360 -360 -67 -360 -68 -360 -109 -360 -110 -360 -113 -360 -154 -360 -155 -360 -158 -360 -163 -360 -164 -360 -168 -360 -174 -360 -239 -360 -240 -360 -241 -360 -242 -360 -250 -360 -252 -360 -276 -360 -279 -360 -359 -360 -367 -360 -368 -360 -369 -360 -370 -360 -380 -360 -390 -360 -393 -360 -602 -360 -603 -360 -628 -360 -361 -361 -67 -361 -69 -361 -111 -361 -112 -361 -117 -361 -153 -361 -156 -361 -157 -361 -163 -361 -176 -361 -234 -361 -238 -361 -243 -361 -244 -361 -245 -361 -246 -361 -277 -361 -358 -361 -362 -361 -365 -361 -366 -361 -372 -361 -376 -361 -377 -361 -378 -361 -597 -361 -614 -361 -615 -361 -362 -362 -67 -362 -69 -362 -111 -362 -112 -362 -114 -362 -156 -362 -157 -362 -159 -362 -163 -362 -166 -362 -173 -362 -176 -362 -243 -362 -244 -362 -245 -362 -246 -362 -263 -362 -265 -362 -277 -362 -285 -362 -361 -362 -372 -362 -376 -362 -377 -362 -378 -362 -427 -362 -435 -362 -436 -362 -614 -362 -615 -362 -688 -362 -363 -363 -163 -363 -184 -363 -235 -363 -236 -363 -237 -363 -238 -363 -356 -363 -357 -363 -358 -363 -364 -363 -365 -363 -366 -363 -447 -363 -479 -363 -480 -363 -481 -363 -482 -363 -483 -363 -594 -363 -595 -363 -596 -363 -597 -363 -598 -363 -599 -363 -600 -363 -601 -363 -364 -364 -163 -364 -174 -364 -235 -364 -237 -364 -241 -364 -276 -364 -356 -364 -357 -364 -358 -364 -359 -364 -363 -364 -365 -364 -366 -364 -367 -364 -370 -364 -480 -364 -482 -364 -484 -364 -594 -364 -596 -364 -598 -364 -599 -364 -600 -364 -601 -364 -602 -364 -604 -364 -607 -364 -365 -365 -163 -365 -174 -365 -175 -365 -176 -365 -247 -365 -276 -365 -277 -365 -356 -365 -357 -365 -358 -365 -359 -365 -361 -365 -363 -365 -364 -365 -366 -365 -367 -365 -370 -365 -371 -365 -372 -365 -377 -365 -598 -365 -599 -365 -600 -365 -601 -365 -604 -365 -607 -365 -608 -365 -609 -365 -616 -365 -366 -366 -163 -366 -176 -366 -236 -366 -238 -366 -245 -366 -277 -366 -356 -366 -357 -366 -358 -366 -361 -366 -363 -366 -364 -366 -365 -366 -372 -366 -377 -366 -481 -366 -483 -366 -486 -366 -595 -366 -597 -366 -598 -366 -599 -366 -600 -366 -601 -366 -609 -366 -614 -366 -616 -366 -367 -367 -163 -367 -174 -367 -237 -367 -241 -367 -242 -367 -276 -367 -357 -367 -359 -367 -360 -367 -364 -367 -365 -367 -368 -367 -369 -367 -370 -367 -482 -367 -484 -367 -485 -367 -596 -367 -599 -367 -600 -367 -602 -367 -603 -367 -604 -367 -605 -367 -606 -367 -607 -367 -368 -368 -163 -368 -164 -368 -174 -368 -241 -368 -242 -368 -252 -368 -276 -368 -279 -368 -359 -368 -360 -368 -367 -368 -369 -368 -370 -368 -380 -368 -390 -368 -393 -368 -484 -368 -485 -368 -490 -368 -602 -368 -603 -368 -604 -368 -605 -368 -606 -368 -607 -368 -628 -368 -630 -368 -633 -368 -369 -369 -163 -369 -164 -369 -174 -369 -175 -369 -176 -369 -177 -369 -247 -369 -248 -369 -256 -369 -276 -369 -279 -369 -359 -369 -360 -369 -367 -369 -368 -369 -370 -369 -371 -369 -373 -369 -380 -369 -390 -369 -393 -369 -400 -369 -604 -369 -605 -369 -606 -369 -607 -369 -608 -369 -610 -369 -630 -369 -633 -369 -645 -369 -370 -370 -163 -370 -174 -370 -175 -370 -176 -370 -247 -370 -248 -370 -276 -370 -277 -370 -357 -370 -359 -370 -360 -370 -364 -370 -365 -370 -367 -370 -368 -370 -369 -370 -371 -370 -372 -370 -373 -370 -599 -370 -600 -370 -604 -370 -605 -370 -606 -370 -607 -370 -608 -370 -609 -370 -610 -370 -371 -371 -163 -371 -174 -371 -175 -371 -176 -371 -247 -371 -248 -371 -249 -371 -276 -371 -277 -371 -365 -371 -369 -371 -370 -371 -372 -371 -373 -371 -374 -371 -375 -371 -376 -371 -600 -371 -606 -371 -607 -371 -608 -371 -609 -371 -610 -371 -611 -371 -612 -371 -613 -371 -372 -372 -163 -372 -174 -372 -175 -372 -176 -372 -247 -372 -249 -372 -276 -372 -277 -372 -358 -372 -361 -372 -362 -372 -365 -372 -366 -372 -370 -372 -371 -372 -375 -372 -376 -372 -377 -372 -378 -372 -600 -372 -601 -372 -607 -372 -608 -372 -609 -372 -612 -372 -613 -372 -616 -372 -617 -372 -373 -373 -163 -373 -164 -373 -174 -373 -175 -373 -176 -373 -177 -373 -247 -373 -248 -373 -249 -373 -256 -373 -257 -373 -276 -373 -279 -373 -369 -373 -370 -373 -371 -373 -374 -373 -375 -373 -393 -373 -400 -373 -401 -373 -606 -373 -607 -373 -608 -373 -610 -373 -611 -373 -612 -373 -633 -373 -645 -373 -646 -373 -374 -374 -163 -374 -164 -374 -165 -374 -166 -374 -174 -374 -175 -374 -176 -374 -177 -374 -178 -374 -247 -374 -248 -374 -249 -374 -256 -374 -257 -374 -261 -374 -262 -374 -268 -374 -371 -374 -373 -374 -375 -374 -400 -374 -401 -374 -414 -374 -415 -374 -439 -374 -608 -374 -610 -374 -611 -374 -612 -374 -645 -374 -646 -374 -661 -374 -662 -374 -694 -374 -375 -375 -163 -375 -166 -375 -174 -375 -175 -375 -176 -375 -178 -375 -247 -375 -248 -375 -249 -375 -262 -375 -268 -375 -277 -375 -285 -375 -371 -375 -372 -375 -373 -375 -374 -375 -376 -375 -415 -375 -436 -375 -439 -375 -608 -375 -609 -375 -610 -375 -611 -375 -612 -375 -613 -375 -662 -375 -691 -375 -694 -375 -376 -376 -163 -376 -166 -376 -174 -376 -175 -376 -176 -376 -178 -376 -247 -376 -249 -376 -268 -376 -277 -376 -285 -376 -361 -376 -362 -376 -371 -376 -372 -376 -375 -376 -377 -376 -378 -376 -427 -376 -435 -376 -436 -376 -439 -376 -608 -376 -609 -376 -612 -376 -613 -376 -616 -376 -617 -376 -690 -376 -691 -376 -694 -376 -377 -377 -163 -377 -176 -377 -238 -377 -245 -377 -246 -377 -277 -377 -358 -377 -361 -377 -362 -377 -365 -377 -366 -377 -372 -377 -376 -377 -378 -377 -483 -377 -486 -377 -487 -377 -597 -377 -600 -377 -601 -377 -609 -377 -613 -377 -614 -377 -615 -377 -616 -377 -617 -377 -378 -378 -163 -378 -166 -378 -176 -378 -245 -378 -246 -378 -265 -378 -277 -378 -285 -378 -361 -378 -362 -378 -372 -378 -376 -378 -377 -378 -427 -378 -435 -378 -436 -378 -486 -378 -487 -378 -510 -378 -609 -378 -613 -378 -614 -378 -615 -378 -616 -378 -617 -378 -688 -378 -690 -378 -691 -378 -379 -379 -68 -379 -103 -379 -113 -379 -142 -379 -158 -379 -164 -379 -168 -379 -174 -379 -199 -379 -200 -379 -250 -379 -251 -379 -252 -379 -253 -379 -278 -379 -279 -379 -301 -379 -304 -379 -305 -379 -380 -379 -381 -379 -382 -379 -383 -379 -384 -379 -385 -379 -534 -379 -618 -379 -621 -379 -380 -380 -68 -380 -109 -380 -113 -380 -155 -380 -158 -380 -164 -380 -168 -380 -174 -380 -240 -380 -242 -380 -250 -380 -251 -380 -252 -380 -253 -380 -278 -380 -279 -380 -360 -380 -368 -380 -369 -380 -379 -380 -381 -380 -390 -380 -391 -380 -392 -380 -393 -380 -603 -380 -628 -380 -629 -380 -381 -381 -68 -381 -113 -381 -158 -381 -164 -381 -168 -381 -174 -381 -250 -381 -251 -381 -252 -381 -253 -381 -278 -381 -279 -381 -379 -381 -380 -381 -382 -381 -383 -381 -384 -381 -385 -381 -390 -381 -391 -381 -392 -381 -393 -381 -394 -381 -395 -381 -618 -381 -621 -381 -628 -381 -629 -381 -634 -381 -382 -382 -164 -382 -168 -382 -200 -382 -251 -382 -253 -382 -278 -382 -301 -382 -304 -382 -305 -382 -379 -382 -381 -382 -383 -382 -384 -382 -385 -382 -459 -382 -488 -382 -489 -382 -534 -382 -535 -382 -536 -382 -618 -382 -619 -382 -620 -382 -621 -382 -622 -382 -623 -382 -383 -383 -164 -383 -168 -383 -169 -383 -177 -383 -203 -383 -254 -383 -278 -383 -280 -383 -301 -383 -304 -383 -305 -383 -308 -383 -379 -383 -381 -383 -382 -383 -384 -383 -385 -383 -386 -383 -388 -383 -535 -383 -536 -383 -539 -383 -619 -383 -620 -383 -622 -383 -623 -383 -624 -383 -626 -383 -384 -384 -164 -384 -168 -384 -251 -384 -253 -384 -278 -384 -379 -384 -381 -384 -382 -384 -383 -384 -385 -384 -391 -384 -392 -384 -394 -384 -395 -384 -488 -384 -489 -384 -492 -384 -618 -384 -619 -384 -620 -384 -621 -384 -622 -384 -623 -384 -629 -384 -634 -384 -635 -384 -636 -384 -385 -385 -164 -385 -168 -385 -169 -385 -177 -385 -254 -385 -278 -385 -280 -385 -379 -385 -381 -385 -382 -385 -383 -385 -384 -385 -386 -385 -388 -385 -391 -385 -392 -385 -394 -385 -395 -385 -396 -385 -397 -385 -619 -385 -620 -385 -622 -385 -623 -385 -624 -385 -626 -385 -635 -385 -636 -385 -639 -385 -386 -386 -164 -386 -168 -386 -169 -386 -177 -386 -203 -386 -254 -386 -255 -386 -278 -386 -280 -386 -305 -386 -308 -386 -309 -386 -383 -386 -385 -386 -387 -386 -388 -386 -389 -386 -536 -386 -539 -386 -540 -386 -620 -386 -623 -386 -624 -386 -625 -386 -626 -386 -627 -386 -387 -387 -164 -387 -165 -387 -168 -387 -169 -387 -171 -387 -177 -387 -203 -387 -211 -387 -254 -387 -255 -387 -258 -387 -280 -387 -282 -387 -308 -387 -309 -387 -328 -387 -386 -387 -388 -387 -389 -387 -402 -387 -404 -387 -539 -387 -540 -387 -563 -387 -624 -387 -625 -387 -626 -387 -627 -387 -647 -387 -649 -387 -388 -388 -164 -388 -168 -388 -169 -388 -177 -388 -254 -388 -255 -388 -278 -388 -280 -388 -383 -388 -385 -388 -386 -388 -387 -388 -389 -388 -392 -388 -395 -388 -396 -388 -397 -388 -398 -388 -399 -388 -620 -388 -623 -388 -624 -388 -625 -388 -626 -388 -627 -388 -636 -388 -639 -388 -640 -388 -389 -389 -164 -389 -165 -389 -168 -389 -169 -389 -171 -389 -177 -389 -254 -389 -255 -389 -258 -389 -280 -389 -282 -389 -386 -389 -387 -389 -388 -389 -396 -389 -397 -389 -398 -389 -399 -389 -402 -389 -404 -389 -416 -389 -420 -389 -624 -389 -625 -389 -626 -389 -627 -389 -639 -389 -640 -389 -647 -389 -649 -389 -667 -389 -390 -390 -164 -390 -174 -390 -242 -390 -252 -390 -253 -390 -279 -390 -360 -390 -368 -390 -369 -390 -380 -390 -381 -390 -391 -390 -392 -390 -393 -390 -485 -390 -490 -390 -491 -390 -603 -390 -605 -390 -606 -390 -628 -390 -629 -390 -630 -390 -631 -390 -632 -390 -633 -390 -391 -391 -164 -391 -174 -391 -252 -391 -253 -391 -279 -391 -380 -391 -381 -391 -384 -391 -385 -391 -390 -391 -392 -391 -393 -391 -394 -391 -395 -391 -490 -391 -491 -391 -493 -391 -621 -391 -628 -391 -629 -391 -630 -391 -631 -391 -632 -391 -633 -391 -634 -391 -637 -391 -638 -391 -392 -392 -164 -392 -174 -392 -175 -392 -177 -392 -256 -392 -279 -392 -280 -392 -380 -392 -381 -392 -384 -392 -385 -392 -388 -392 -390 -392 -391 -392 -393 -392 -394 -392 -395 -392 -396 -392 -397 -392 -400 -392 -630 -392 -631 -392 -632 -392 -633 -392 -637 -392 -638 -392 -641 -392 -642 -392 -645 -392 -393 -393 -164 -393 -174 -393 -175 -393 -177 -393 -248 -393 -256 -393 -279 -393 -280 -393 -360 -393 -368 -393 -369 -393 -373 -393 -380 -393 -381 -393 -390 -393 -391 -393 -392 -393 -397 -393 -400 -393 -605 -393 -606 -393 -610 -393 -630 -393 -631 -393 -632 -393 -633 -393 -642 -393 -645 -393 -394 -394 -164 -394 -253 -394 -381 -394 -384 -394 -385 -394 -391 -394 -392 -394 -395 -394 -448 -394 -489 -394 -491 -394 -492 -394 -493 -394 -494 -394 -495 -394 -621 -394 -622 -394 -623 -394 -629 -394 -631 -394 -632 -394 -634 -394 -635 -394 -636 -394 -637 -394 -638 -394 -395 -395 -164 -395 -177 -395 -280 -395 -381 -395 -384 -395 -385 -395 -388 -395 -391 -395 -392 -395 -394 -395 -396 -395 -397 -395 -494 -395 -495 -395 -496 -395 -622 -395 -623 -395 -626 -395 -631 -395 -632 -395 -635 -395 -636 -395 -637 -395 -638 -395 -639 -395 -641 -395 -642 -395 -396 -396 -164 -396 -177 -396 -280 -396 -385 -396 -388 -396 -389 -396 -392 -396 -395 -396 -397 -396 -398 -396 -399 -396 -495 -396 -496 -396 -497 -396 -623 -396 -626 -396 -627 -396 -632 -396 -636 -396 -638 -396 -639 -396 -640 -396 -641 -396 -642 -396 -643 -396 -644 -396 -397 -397 -164 -397 -174 -397 -175 -397 -177 -397 -256 -397 -257 -397 -279 -397 -280 -397 -385 -397 -388 -397 -389 -397 -392 -397 -393 -397 -395 -397 -396 -397 -398 -397 -399 -397 -400 -397 -401 -397 -632 -397 -633 -397 -638 -397 -641 -397 -642 -397 -643 -397 -644 -397 -645 -397 -646 -397 -398 -398 -164 -398 -165 -398 -177 -398 -280 -398 -282 -398 -388 -398 -389 -398 -396 -398 -397 -398 -399 -398 -404 -398 -416 -398 -420 -398 -496 -398 -497 -398 -500 -398 -626 -398 -627 -398 -639 -398 -640 -398 -641 -398 -642 -398 -643 -398 -644 -398 -649 -398 -663 -398 -667 -398 -669 -398 -399 -399 -164 -399 -165 -399 -174 -399 -175 -399 -177 -399 -178 -399 -256 -399 -257 -399 -261 -399 -280 -399 -282 -399 -388 -399 -389 -399 -396 -399 -397 -399 -398 -399 -400 -399 -401 -399 -404 -399 -414 -399 -416 -399 -420 -399 -641 -399 -642 -399 -643 -399 -644 -399 -645 -399 -646 -399 -661 -399 -663 -399 -669 -399 -400 -400 -164 -400 -174 -400 -175 -400 -177 -400 -248 -400 -256 -400 -257 -400 -279 -400 -280 -400 -369 -400 -373 -400 -374 -400 -392 -400 -393 -400 -397 -400 -399 -400 -401 -400 -606 -400 -610 -400 -611 -400 -632 -400 -633 -400 -642 -400 -644 -400 -645 -400 -646 -400 -401 -401 -164 -401 -165 -401 -174 -401 -175 -401 -177 -401 -178 -401 -248 -401 -256 -401 -257 -401 -261 -401 -262 -401 -280 -401 -282 -401 -373 -401 -374 -401 -397 -401 -399 -401 -400 -401 -414 -401 -415 -401 -416 -401 -610 -401 -611 -401 -642 -401 -644 -401 -645 -401 -646 -401 -661 -401 -662 -401 -663 -401 -402 -402 -165 -402 -169 -402 -171 -402 -177 -402 -211 -402 -255 -402 -258 -402 -281 -402 -282 -402 -309 -402 -328 -402 -329 -402 -387 -402 -389 -402 -403 -402 -404 -402 -405 -402 -540 -402 -563 -402 -564 -402 -625 -402 -627 -402 -647 -402 -648 -402 -649 -402 -650 -402 -403 -403 -165 -403 -169 -403 -171 -403 -177 -403 -211 -403 -258 -403 -281 -403 -282 -403 -328 -403 -329 -403 -332 -403 -333 -403 -402 -403 -404 -403 -405 -403 -406 -403 -407 -403 -408 -403 -409 -403 -563 -403 -564 -403 -568 -403 -647 -403 -648 -403 -649 -403 -650 -403 -651 -403 -654 -403 -404 -404 -165 -404 -169 -404 -171 -404 -177 -404 -255 -404 -258 -404 -281 -404 -282 -404 -387 -404 -389 -404 -398 -404 -399 -404 -402 -404 -403 -404 -405 -404 -416 -404 -417 -404 -420 -404 -421 -404 -625 -404 -627 -404 -640 -404 -647 -404 -648 -404 -649 -404 -650 -404 -667 -404 -668 -404 -405 -405 -165 -405 -169 -405 -171 -405 -177 -405 -258 -405 -281 -405 -282 -405 -402 -405 -403 -405 -404 -405 -406 -405 -407 -405 -408 -405 -409 -405 -416 -405 -417 -405 -420 -405 -421 -405 -422 -405 -423 -405 -647 -405 -648 -405 -649 -405 -650 -405 -651 -405 -654 -405 -667 -405 -668 -405 -671 -405 -406 -406 -165 -406 -171 -406 -281 -406 -329 -406 -332 -406 -333 -406 -403 -406 -405 -406 -407 -406 -408 -406 -409 -406 -470 -406 -498 -406 -499 -406 -564 -406 -568 -406 -569 -406 -570 -406 -648 -406 -650 -406 -651 -406 -652 -406 -653 -406 -654 -406 -655 -406 -656 -406 -407 -407 -165 -407 -171 -407 -172 -407 -178 -407 -214 -407 -260 -407 -281 -407 -283 -407 -329 -407 -332 -407 -333 -407 -336 -407 -403 -407 -405 -407 -406 -407 -408 -407 -409 -407 -410 -407 -412 -407 -569 -407 -570 -407 -573 -407 -652 -407 -653 -407 -655 -407 -656 -407 -657 -407 -659 -407 -408 -408 -165 -408 -171 -408 -281 -408 -403 -408 -405 -408 -406 -408 -407 -408 -409 -408 -417 -408 -421 -408 -422 -408 -423 -408 -498 -408 -499 -408 -502 -408 -648 -408 -650 -408 -651 -408 -652 -408 -653 -408 -654 -408 -655 -408 -656 -408 -668 -408 -671 -408 -672 -408 -673 -408 -409 -409 -165 -409 -171 -409 -172 -409 -178 -409 -260 -409 -281 -409 -283 -409 -403 -409 -405 -409 -406 -409 -407 -409 -408 -409 -410 -409 -412 -409 -417 -409 -418 -409 -421 -409 -422 -409 -423 -409 -424 -409 -652 -409 -653 -409 -655 -409 -656 -409 -657 -409 -659 -409 -672 -409 -673 -409 -676 -409 -410 -410 -165 -410 -171 -410 -172 -410 -178 -410 -214 -410 -259 -410 -260 -410 -281 -410 -283 -410 -333 -410 -336 -410 -337 -410 -407 -410 -409 -410 -411 -410 -412 -410 -413 -410 -570 -410 -573 -410 -574 -410 -653 -410 -656 -410 -657 -410 -658 -410 -659 -410 -660 -410 -411 -411 -165 -411 -166 -411 -171 -411 -172 -411 -173 -411 -178 -411 -214 -411 -230 -411 -259 -411 -260 -411 -267 -411 -283 -411 -286 -411 -336 -411 -337 -411 -352 -411 -410 -411 -412 -411 -413 -411 -429 -411 -431 -411 -573 -411 -574 -411 -588 -411 -657 -411 -658 -411 -659 -411 -660 -411 -680 -411 -682 -411 -412 -412 -165 -412 -171 -412 -172 -412 -178 -412 -259 -412 -260 -412 -281 -412 -283 -412 -407 -412 -409 -412 -410 -412 -411 -412 -413 -412 -417 -412 -418 -412 -419 -412 -423 -412 -424 -412 -425 -412 -653 -412 -656 -412 -657 -412 -658 -412 -659 -412 -660 -412 -673 -412 -676 -412 -677 -412 -413 -413 -165 -413 -166 -413 -171 -413 -172 -413 -173 -413 -178 -413 -259 -413 -260 -413 -267 -413 -283 -413 -286 -413 -410 -413 -411 -413 -412 -413 -418 -413 -419 -413 -424 -413 -425 -413 -429 -413 -431 -413 -440 -413 -441 -413 -657 -413 -658 -413 -659 -413 -660 -413 -676 -413 -677 -413 -680 -413 -682 -413 -696 -413 -414 -414 -165 -414 -175 -414 -177 -414 -178 -414 -257 -414 -261 -414 -262 -414 -282 -414 -283 -414 -374 -414 -399 -414 -401 -414 -415 -414 -416 -414 -417 -414 -418 -414 -419 -414 -611 -414 -644 -414 -646 -414 -661 -414 -662 -414 -663 -414 -664 -414 -665 -414 -666 -414 -415 -415 -165 -415 -166 -415 -175 -415 -176 -415 -177 -415 -178 -415 -249 -415 -257 -415 -261 -415 -262 -415 -268 -415 -283 -415 -286 -415 -374 -415 -375 -415 -401 -415 -414 -415 -418 -415 -419 -415 -439 -415 -440 -415 -611 -415 -612 -415 -646 -415 -661 -415 -662 -415 -665 -415 -666 -415 -694 -415 -695 -415 -416 -416 -165 -416 -175 -416 -177 -416 -178 -416 -257 -416 -261 -416 -282 -416 -283 -416 -389 -416 -398 -416 -399 -416 -401 -416 -404 -416 -405 -416 -414 -416 -417 -416 -418 -416 -420 -416 -421 -416 -643 -416 -644 -416 -646 -416 -661 -416 -663 -416 -664 -416 -665 -416 -669 -416 -670 -416 -417 -417 -165 -417 -175 -417 -177 -417 -178 -417 -261 -417 -282 -417 -283 -417 -404 -417 -405 -417 -408 -417 -409 -417 -412 -417 -414 -417 -416 -417 -418 -417 -420 -417 -421 -417 -422 -417 -423 -417 -424 -417 -661 -417 -663 -417 -664 -417 -665 -417 -669 -417 -670 -417 -674 -417 -675 -417 -678 -417 -418 -418 -165 -418 -175 -418 -177 -418 -178 -418 -261 -418 -262 -418 -282 -418 -283 -418 -409 -418 -412 -418 -413 -418 -414 -418 -415 -418 -416 -418 -417 -418 -419 -418 -423 -418 -424 -418 -425 -418 -661 -418 -662 -418 -663 -418 -664 -418 -665 -418 -666 -418 -675 -418 -678 -418 -679 -418 -419 -419 -165 -419 -166 -419 -175 -419 -176 -419 -177 -419 -178 -419 -261 -419 -262 -419 -268 -419 -283 -419 -286 -419 -412 -419 -413 -419 -414 -419 -415 -419 -418 -419 -424 -419 -425 -419 -431 -419 -439 -419 -440 -419 -441 -419 -661 -419 -662 -419 -665 -419 -666 -419 -678 -419 -679 -419 -694 -419 -695 -419 -698 -419 -420 -420 -165 -420 -177 -420 -282 -420 -389 -420 -398 -420 -399 -420 -404 -420 -405 -420 -416 -420 -417 -420 -421 -420 -497 -420 -500 -420 -501 -420 -627 -420 -640 -420 -643 -420 -644 -420 -649 -420 -650 -420 -663 -420 -664 -420 -667 -420 -668 -420 -669 -420 -670 -420 -421 -421 -165 -421 -177 -421 -282 -421 -404 -421 -405 -421 -408 -421 -409 -421 -416 -421 -417 -421 -420 -421 -422 -421 -423 -421 -500 -421 -501 -421 -503 -421 -649 -421 -650 -421 -654 -421 -663 -421 -664 -421 -667 -421 -668 -421 -669 -421 -670 -421 -671 -421 -674 -421 -675 -421 -422 -422 -165 -422 -405 -422 -408 -422 -409 -422 -417 -422 -421 -422 -423 -422 -449 -422 -499 -422 -501 -422 -502 -422 -503 -422 -504 -422 -505 -422 -650 -422 -654 -422 -655 -422 -656 -422 -664 -422 -668 -422 -670 -422 -671 -422 -672 -422 -673 -422 -674 -422 -675 -422 -423 -423 -165 -423 -178 -423 -283 -423 -405 -423 -408 -423 -409 -423 -412 -423 -417 -423 -418 -423 -421 -423 -422 -423 -424 -423 -504 -423 -505 -423 -506 -423 -655 -423 -656 -423 -659 -423 -664 -423 -665 -423 -670 -423 -672 -423 -673 -423 -674 -423 -675 -423 -676 -423 -678 -423 -424 -424 -165 -424 -178 -424 -283 -424 -409 -424 -412 -424 -413 -424 -417 -424 -418 -424 -419 -424 -423 -424 -425 -424 -505 -424 -506 -424 -507 -424 -656 -424 -659 -424 -660 -424 -664 -424 -665 -424 -666 -424 -673 -424 -675 -424 -676 -424 -677 -424 -678 -424 -679 -424 -425 -425 -165 -425 -166 -425 -178 -425 -283 -425 -286 -425 -412 -425 -413 -425 -418 -425 -419 -425 -424 -425 -431 -425 -440 -425 -441 -425 -506 -425 -507 -425 -512 -425 -659 -425 -660 -425 -665 -425 -666 -425 -676 -425 -677 -425 -678 -425 -679 -425 -682 -425 -695 -425 -696 -425 -698 -425 -426 -426 -69 -426 -108 -426 -114 -426 -150 -426 -159 -426 -166 -426 -173 -426 -176 -426 -227 -426 -228 -426 -263 -426 -264 -426 -265 -426 -266 -426 -284 -426 -285 -426 -349 -426 -353 -426 -355 -426 -427 -426 -428 -426 -430 -426 -432 -426 -433 -426 -434 -426 -592 -426 -684 -426 -686 -426 -427 -427 -69 -427 -112 -427 -114 -427 -157 -427 -159 -427 -166 -427 -173 -427 -176 -427 -244 -427 -246 -427 -263 -427 -264 -427 -265 -427 -266 -427 -284 -427 -285 -427 -362 -427 -376 -427 -378 -427 -426 -427 -428 -427 -435 -427 -436 -427 -437 -427 -438 -427 -615 -427 -688 -427 -689 -427 -428 -428 -69 -428 -114 -428 -159 -428 -166 -428 -173 -428 -176 -428 -263 -428 -264 -428 -265 -428 -266 -428 -284 -428 -285 -428 -426 -428 -427 -428 -430 -428 -432 -428 -433 -428 -434 -428 -435 -428 -436 -428 -437 -428 -438 -428 -442 -428 -443 -428 -684 -428 -686 -428 -688 -428 -689 -428 -700 -428 -429 -429 -166 -429 -172 -429 -173 -429 -178 -429 -230 -429 -259 -429 -267 -429 -284 -429 -286 -429 -337 -429 -352 -429 -353 -429 -411 -429 -413 -429 -430 -429 -431 -429 -432 -429 -574 -429 -588 -429 -589 -429 -658 -429 -660 -429 -680 -429 -681 -429 -682 -429 -683 -429 -430 -430 -166 -430 -172 -430 -173 -430 -178 -430 -230 -430 -267 -430 -284 -430 -286 -430 -349 -430 -352 -430 -353 -430 -355 -430 -426 -430 -428 -430 -429 -430 -431 -430 -432 -430 -433 -430 -434 -430 -588 -430 -589 -430 -593 -430 -680 -430 -681 -430 -682 -430 -683 -430 -685 -430 -687 -430 -431 -431 -166 -431 -172 -431 -173 -431 -178 -431 -259 -431 -267 -431 -284 -431 -286 -431 -411 -431 -413 -431 -419 -431 -425 -431 -429 -431 -430 -431 -432 -431 -437 -431 -440 -431 -441 -431 -442 -431 -658 -431 -660 -431 -677 -431 -680 -431 -681 -431 -682 -431 -683 -431 -696 -431 -697 -431 -432 -432 -166 -432 -172 -432 -173 -432 -178 -432 -267 -432 -284 -432 -286 -432 -426 -432 -428 -432 -429 -432 -430 -432 -431 -432 -433 -432 -434 -432 -437 -432 -438 -432 -440 -432 -441 -432 -442 -432 -443 -432 -680 -432 -681 -432 -682 -432 -683 -432 -685 -432 -687 -432 -696 -432 -697 -432 -701 -432 -433 -433 -166 -433 -173 -433 -228 -433 -264 -433 -266 -433 -284 -433 -349 -433 -353 -433 -355 -433 -426 -433 -428 -433 -430 -433 -432 -433 -434 -433 -478 -433 -508 -433 -509 -433 -589 -433 -592 -433 -593 -433 -681 -433 -683 -433 -684 -433 -685 -433 -686 -433 -687 -433 -434 -434 -166 -434 -173 -434 -264 -434 -266 -434 -284 -434 -426 -434 -428 -434 -430 -434 -432 -434 -433 -434 -437 -434 -438 -434 -442 -434 -443 -434 -508 -434 -509 -434 -514 -434 -681 -434 -683 -434 -684 -434 -685 -434 -686 -434 -687 -434 -689 -434 -697 -434 -700 -434 -701 -434 -435 -435 -166 -435 -176 -435 -246 -435 -265 -435 -266 -435 -285 -435 -362 -435 -376 -435 -378 -435 -427 -435 -428 -435 -436 -435 -437 -435 -438 -435 -487 -435 -510 -435 -511 -435 -613 -435 -615 -435 -617 -435 -688 -435 -689 -435 -690 -435 -691 -435 -692 -435 -693 -435 -436 -436 -166 -436 -175 -436 -176 -436 -178 -436 -249 -436 -268 -436 -285 -436 -286 -436 -362 -436 -375 -436 -376 -436 -378 -436 -427 -436 -428 -436 -435 -436 -437 -436 -438 -436 -439 -436 -440 -436 -612 -436 -613 -436 -617 -436 -690 -436 -691 -436 -692 -436 -693 -436 -694 -436 -695 -436 -437 -437 -166 -437 -175 -437 -176 -437 -178 -437 -268 -437 -285 -437 -286 -437 -427 -437 -428 -437 -431 -437 -432 -437 -434 -437 -435 -437 -436 -437 -438 -437 -439 -437 -440 -437 -441 -437 -442 -437 -443 -437 -690 -437 -691 -437 -692 -437 -693 -437 -694 -437 -695 -437 -698 -437 -699 -437 -702 -437 -438 -438 -166 -438 -176 -438 -265 -438 -266 -438 -285 -438 -427 -438 -428 -438 -432 -438 -434 -438 -435 -438 -436 -438 -437 -438 -442 -438 -443 -438 -510 -438 -511 -438 -515 -438 -686 -438 -688 -438 -689 -438 -690 -438 -691 -438 -692 -438 -693 -438 -699 -438 -700 -438 -702 -438 -439 -439 -166 -439 -175 -439 -176 -439 -178 -439 -249 -439 -262 -439 -268 -439 -285 -439 -286 -439 -374 -439 -375 -439 -376 -439 -415 -439 -419 -439 -436 -439 -437 -439 -440 -439 -611 -439 -612 -439 -613 -439 -662 -439 -666 -439 -691 -439 -692 -439 -694 -439 -695 -439 -440 -440 -166 -440 -175 -440 -176 -440 -178 -440 -262 -440 -268 -440 -285 -440 -286 -440 -413 -440 -415 -440 -419 -440 -425 -440 -431 -440 -432 -440 -436 -440 -437 -440 -439 -440 -441 -440 -442 -440 -662 -440 -666 -440 -679 -440 -691 -440 -692 -440 -694 -440 -695 -440 -698 -440 -699 -440 -441 -441 -166 -441 -178 -441 -286 -441 -413 -441 -419 -441 -425 -441 -431 -441 -432 -441 -437 -441 -440 -441 -442 -441 -507 -441 -512 -441 -513 -441 -660 -441 -666 -441 -677 -441 -679 -441 -682 -441 -683 -441 -692 -441 -695 -441 -696 -441 -697 -441 -698 -441 -699 -441 -442 -442 -166 -442 -178 -442 -286 -442 -428 -442 -431 -442 -432 -442 -434 -442 -437 -442 -438 -442 -440 -442 -441 -442 -443 -442 -512 -442 -513 -442 -516 -442 -682 -442 -683 -442 -687 -442 -692 -442 -693 -442 -695 -442 -696 -442 -697 -442 -698 -442 -699 -442 -701 -442 -702 -442 -443 -443 -166 -443 -266 -443 -428 -443 -432 -443 -434 -443 -437 -443 -438 -443 -442 -443 -450 -443 -509 -443 -511 -443 -513 -443 -514 -443 -515 -443 -516 -443 -683 -443 -686 -443 -687 -443 -689 -443 -692 -443 -693 -443 -697 -443 -699 -443 -700 -443 -701 -443 -702 -443 -444 -444 -290 -444 -451 -444 -452 -444 -453 -444 -517 -444 -518 -444 -519 -444 -445 -445 -318 -445 -462 -445 -463 -445 -464 -445 -547 -445 -549 -445 -550 -445 -446 -446 -346 -446 -473 -446 -474 -446 -475 -446 -581 -446 -582 -446 -583 -446 -447 -447 -363 -447 -479 -447 -480 -447 -481 -447 -594 -447 -595 -447 -598 -447 -448 -448 -394 -448 -492 -448 -493 -448 -494 -448 -634 -448 -635 -448 -637 -448 -449 -449 -422 -449 -502 -449 -503 -449 -504 -449 -671 -449 -672 -449 -674 -449 -450 -450 -443 -450 -514 -450 -515 -450 -516 -450 -700 -450 -701 -450 -702 -450 -451 -451 -180 -451 -187 -451 -188 -451 -287 -451 -290 -451 -444 -451 -452 -451 -453 -451 -517 -451 -518 -451 -519 -451 -452 -452 -290 -452 -291 -452 -444 -452 -451 -452 -453 -452 -454 -452 -517 -452 -518 -452 -519 -452 -520 -452 -521 -452 -453 -453 -290 -453 -292 -453 -444 -453 -451 -453 -452 -453 -455 -453 -517 -453 -518 -453 -519 -453 -522 -453 -523 -453 -454 -454 -290 -454 -291 -454 -294 -454 -452 -454 -456 -454 -517 -454 -519 -454 -520 -454 -521 -454 -525 -454 -526 -454 -455 -455 -290 -455 -292 -455 -302 -455 -453 -455 -458 -455 -518 -455 -519 -455 -522 -455 -523 -455 -531 -455 -532 -455 -456 -456 -291 -456 -294 -456 -296 -456 -454 -456 -457 -456 -520 -456 -521 -456 -525 -456 -526 -456 -527 -456 -528 -456 -457 -457 -294 -457 -296 -457 -314 -457 -456 -457 -460 -457 -525 -457 -526 -457 -527 -457 -528 -457 -541 -457 -542 -457 -458 -458 -292 -458 -302 -458 -304 -458 -455 -458 -459 -458 -522 -458 -523 -458 -531 -458 -532 -458 -534 -458 -535 -458 -459 -459 -302 -459 -304 -459 -382 -459 -458 -459 -488 -459 -531 -459 -532 -459 -534 -459 -535 -459 -618 -459 -619 -459 -460 -460 -296 -460 -314 -460 -315 -460 -457 -460 -461 -460 -527 -460 -528 -460 -541 -460 -542 -460 -543 -460 -544 -460 -461 -461 -314 -461 -315 -461 -318 -461 -460 -461 -462 -461 -541 -461 -542 -461 -543 -461 -544 -461 -547 -461 -549 -461 -462 -462 -315 -462 -318 -462 -445 -462 -461 -462 -463 -462 -464 -462 -543 -462 -544 -462 -547 -462 -549 -462 -550 -462 -463 -463 -318 -463 -319 -463 -445 -463 -462 -463 -464 -463 -465 -463 -547 -463 -548 -463 -549 -463 -550 -463 -551 -463 -464 -464 -318 -464 -320 -464 -445 -464 -462 -464 -463 -464 -466 -464 -547 -464 -549 -464 -550 -464 -552 -464 -553 -464 -465 -465 -318 -465 -319 -465 -322 -465 -463 -465 -467 -465 -547 -465 -548 -465 -550 -465 -551 -465 -555 -465 -557 -465 -466 -466 -318 -466 -320 -466 -330 -466 -464 -466 -469 -466 -549 -466 -550 -466 -552 -466 -553 -466 -565 -466 -566 -466 -467 -467 -319 -467 -322 -467 -323 -467 -465 -467 -468 -467 -548 -467 -551 -467 -555 -467 -556 -467 -557 -467 -558 -467 -468 -468 -322 -468 -323 -468 -342 -468 -467 -468 -471 -468 -555 -468 -556 -468 -557 -468 -558 -468 -575 -468 -577 -468 -469 -469 -320 -469 -330 -469 -332 -469 -466 -469 -470 -469 -552 -469 -553 -469 -565 -469 -566 -469 -568 -469 -569 -469 -470 -470 -330 -470 -332 -470 -406 -470 -469 -470 -498 -470 -565 -470 -566 -470 -568 -470 -569 -470 -651 -470 -652 -470 -471 -471 -323 -471 -342 -471 -343 -471 -468 -471 -472 -471 -556 -471 -558 -471 -575 -471 -576 -471 -577 -471 -578 -471 -472 -472 -342 -472 -343 -472 -346 -472 -471 -472 -474 -472 -575 -472 -576 -472 -577 -472 -578 -472 -581 -472 -583 -472 -473 -473 -182 -473 -219 -473 -220 -473 -339 -473 -346 -473 -446 -473 -474 -473 -475 -473 -581 -473 -582 -473 -583 -473 -474 -474 -343 -474 -346 -474 -446 -474 -472 -474 -473 -474 -475 -474 -576 -474 -578 -474 -581 -474 -582 -474 -583 -474 -475 -475 -346 -475 -347 -475 -446 -475 -473 -475 -474 -475 -476 -475 -581 -475 -582 -475 -583 -475 -584 -475 -585 -475 -476 -476 -346 -476 -347 -476 -354 -476 -475 -476 -477 -476 -582 -476 -583 -476 -584 -476 -585 -476 -590 -476 -591 -476 -477 -477 -347 -477 -354 -477 -355 -477 -476 -477 -478 -477 -584 -477 -585 -477 -590 -477 -591 -477 -592 -477 -593 -477 -478 -478 -354 -478 -355 -478 -433 -478 -477 -478 -508 -478 -590 -478 -591 -478 -592 -478 -593 -478 -684 -478 -685 -478 -479 -479 -184 -479 -235 -479 -236 -479 -356 -479 -363 -479 -447 -479 -480 -479 -481 -479 -594 -479 -595 -479 -598 -479 -480 -480 -363 -480 -364 -480 -447 -480 -479 -480 -481 -480 -482 -480 -594 -480 -595 -480 -596 -480 -598 -480 -599 -480 -481 -481 -363 -481 -366 -481 -447 -481 -479 -481 -480 -481 -483 -481 -594 -481 -595 -481 -597 -481 -598 -481 -601 -481 -482 -482 -363 -482 -364 -482 -367 -482 -480 -482 -484 -482 -594 -482 -596 -482 -598 -482 -599 -482 -602 -482 -604 -482 -483 -483 -363 -483 -366 -483 -377 -483 -481 -483 -486 -483 -595 -483 -597 -483 -598 -483 -601 -483 -614 -483 -616 -483 -484 -484 -364 -484 -367 -484 -368 -484 -482 -484 -485 -484 -596 -484 -599 -484 -602 -484 -603 -484 -604 -484 -605 -484 -485 -485 -367 -485 -368 -485 -390 -485 -484 -485 -490 -485 -602 -485 -603 -485 -604 -485 -605 -485 -628 -485 -630 -485 -486 -486 -366 -486 -377 -486 -378 -486 -483 -486 -487 -486 -597 -486 -601 -486 -614 -486 -615 -486 -616 -486 -617 -486 -487 -487 -377 -487 -378 -487 -435 -487 -486 -487 -510 -487 -614 -487 -615 -487 -616 -487 -617 -487 -688 -487 -690 -487 -488 -488 -304 -488 -382 -488 -384 -488 -459 -488 -489 -488 -534 -488 -535 -488 -618 -488 -619 -488 -621 -488 -622 -488 -489 -489 -382 -489 -384 -489 -394 -489 -488 -489 -492 -489 -618 -489 -619 -489 -621 -489 -622 -489 -634 -489 -635 -489 -490 -490 -368 -490 -390 -490 -391 -490 -485 -490 -491 -490 -603 -490 -605 -490 -628 -490 -629 -490 -630 -490 -631 -490 -491 -491 -390 -491 -391 -491 -394 -491 -490 -491 -493 -491 -628 -491 -629 -491 -630 -491 -631 -491 -634 -491 -637 -491 -492 -492 -384 -492 -394 -492 -448 -492 -489 -492 -493 -492 -494 -492 -621 -492 -622 -492 -634 -492 -635 -492 -637 -492 -493 -493 -391 -493 -394 -493 -448 -493 -491 -493 -492 -493 -494 -493 -629 -493 -631 -493 -634 -493 -635 -493 -637 -493 -494 -494 -394 -494 -395 -494 -448 -494 -492 -494 -493 -494 -495 -494 -634 -494 -635 -494 -636 -494 -637 -494 -638 -494 -495 -495 -394 -495 -395 -495 -396 -495 -494 -495 -496 -495 -635 -495 -636 -495 -637 -495 -638 -495 -639 -495 -641 -495 -496 -496 -395 -496 -396 -496 -398 -496 -495 -496 -497 -496 -636 -496 -638 -496 -639 -496 -640 -496 -641 -496 -643 -496 -497 -497 -396 -497 -398 -497 -420 -497 -496 -497 -500 -497 -639 -497 -640 -497 -641 -497 -643 -497 -667 -497 -669 -497 -498 -498 -332 -498 -406 -498 -408 -498 -470 -498 -499 -498 -568 -498 -569 -498 -651 -498 -652 -498 -654 -498 -655 -498 -499 -499 -406 -499 -408 -499 -422 -499 -498 -499 -502 -499 -651 -499 -652 -499 -654 -499 -655 -499 -671 -499 -672 -499 -500 -500 -398 -500 -420 -500 -421 -500 -497 -500 -501 -500 -640 -500 -643 -500 -667 -500 -668 -500 -669 -500 -670 -500 -501 -501 -420 -501 -421 -501 -422 -501 -500 -501 -503 -501 -667 -501 -668 -501 -669 -501 -670 -501 -671 -501 -674 -501 -502 -502 -408 -502 -422 -502 -449 -502 -499 -502 -503 -502 -504 -502 -654 -502 -655 -502 -671 -502 -672 -502 -674 -502 -503 -503 -421 -503 -422 -503 -449 -503 -501 -503 -502 -503 -504 -503 -668 -503 -670 -503 -671 -503 -672 -503 -674 -503 -504 -504 -422 -504 -423 -504 -449 -504 -502 -504 -503 -504 -505 -504 -671 -504 -672 -504 -673 -504 -674 -504 -675 -504 -505 -505 -422 -505 -423 -505 -424 -505 -504 -505 -506 -505 -672 -505 -673 -505 -674 -505 -675 -505 -676 -505 -678 -505 -506 -506 -423 -506 -424 -506 -425 -506 -505 -506 -507 -506 -673 -506 -675 -506 -676 -506 -677 -506 -678 -506 -679 -506 -507 -507 -424 -507 -425 -507 -441 -507 -506 -507 -512 -507 -676 -507 -677 -507 -678 -507 -679 -507 -696 -507 -698 -507 -508 -508 -355 -508 -433 -508 -434 -508 -478 -508 -509 -508 -592 -508 -593 -508 -684 -508 -685 -508 -686 -508 -687 -508 -509 -509 -433 -509 -434 -509 -443 -509 -508 -509 -514 -509 -684 -509 -685 -509 -686 -509 -687 -509 -700 -509 -701 -509 -510 -510 -378 -510 -435 -510 -438 -510 -487 -510 -511 -510 -615 -510 -617 -510 -688 -510 -689 -510 -690 -510 -693 -510 -511 -511 -435 -511 -438 -511 -443 -511 -510 -511 -515 -511 -688 -511 -689 -511 -690 -511 -693 -511 -700 -511 -702 -511 -512 -512 -425 -512 -441 -512 -442 -512 -507 -512 -513 -512 -677 -512 -679 -512 -696 -512 -697 -512 -698 -512 -699 -512 -513 -513 -441 -513 -442 -513 -443 -513 -512 -513 -516 -513 -696 -513 -697 -513 -698 -513 -699 -513 -701 -513 -702 -513 -514 -514 -434 -514 -443 -514 -450 -514 -509 -514 -515 -514 -516 -514 -686 -514 -687 -514 -700 -514 -701 -514 -702 -514 -515 -515 -438 -515 -443 -515 -450 -515 -511 -515 -514 -515 -516 -515 -689 -515 -693 -515 -700 -515 -701 -515 -702 -515 -516 -516 -442 -516 -443 -516 -450 -516 -513 -516 -514 -516 -515 -516 -697 -516 -699 -516 -700 -516 -701 -516 -702 -516 -517 -517 -180 -517 -187 -517 -188 -517 -189 -517 -287 -517 -288 -517 -290 -517 -291 -517 -444 -517 -451 -517 -452 -517 -453 -517 -454 -517 -518 -517 -519 -517 -520 -517 -521 -517 -518 -518 -180 -518 -187 -518 -188 -518 -192 -518 -287 -518 -289 -518 -290 -518 -292 -518 -444 -518 -451 -518 -452 -518 -453 -518 -455 -518 -517 -518 -519 -518 -522 -518 -523 -518 -519 -519 -290 -519 -291 -519 -292 -519 -293 -519 -444 -519 -451 -519 -452 -519 -453 -519 -454 -519 -455 -519 -517 -519 -518 -519 -520 -519 -521 -519 -522 -519 -523 -519 -524 -519 -520 -520 -187 -520 -189 -520 -193 -520 -287 -520 -288 -520 -290 -520 -291 -520 -294 -520 -295 -520 -452 -520 -454 -520 -456 -520 -517 -520 -519 -520 -521 -520 -525 -520 -526 -520 -521 -521 -290 -521 -291 -521 -292 -521 -293 -521 -294 -521 -298 -521 -452 -521 -454 -521 -456 -521 -517 -521 -519 -521 -520 -521 -523 -521 -524 -521 -525 -521 -526 -521 -529 -521 -522 -522 -188 -522 -192 -522 -198 -522 -287 -522 -289 -522 -290 -522 -292 -522 -300 -522 -302 -522 -453 -522 -455 -522 -458 -522 -518 -522 -519 -522 -523 -522 -531 -522 -532 -522 -523 -523 -290 -523 -291 -523 -292 -523 -293 -523 -302 -523 -303 -523 -453 -523 -455 -523 -458 -523 -518 -523 -519 -523 -521 -523 -522 -523 -524 -523 -531 -523 -532 -523 -533 -523 -524 -524 -290 -524 -291 -524 -292 -524 -293 -524 -294 -524 -298 -524 -302 -524 -303 -524 -306 -524 -519 -524 -521 -524 -523 -524 -526 -524 -529 -524 -532 -524 -533 -524 -537 -524 -525 -525 -189 -525 -193 -525 -194 -525 -288 -525 -291 -525 -294 -525 -295 -525 -296 -525 -297 -525 -454 -525 -456 -525 -457 -525 -520 -525 -521 -525 -526 -525 -527 -525 -528 -525 -526 -526 -291 -526 -293 -526 -294 -526 -296 -526 -298 -526 -299 -526 -454 -526 -456 -526 -457 -526 -520 -526 -521 -526 -524 -526 -525 -526 -527 -526 -528 -526 -529 -526 -530 -526 -527 -527 -193 -527 -194 -527 -206 -527 -294 -527 -295 -527 -296 -527 -297 -527 -310 -527 -314 -527 -456 -527 -457 -527 -460 -527 -525 -527 -526 -527 -528 -527 -541 -527 -542 -527 -528 -528 -294 -528 -296 -528 -298 -528 -299 -528 -314 -528 -316 -528 -456 -528 -457 -528 -460 -528 -525 -528 -526 -528 -527 -528 -529 -528 -530 -528 -541 -528 -542 -528 -545 -528 -529 -529 -291 -529 -293 -529 -294 -529 -296 -529 -298 -529 -299 -529 -303 -529 -306 -529 -307 -529 -521 -529 -524 -529 -526 -529 -528 -529 -530 -529 -533 -529 -537 -529 -538 -529 -530 -530 -294 -530 -296 -530 -298 -530 -299 -530 -306 -530 -307 -530 -314 -530 -316 -530 -326 -530 -526 -530 -528 -530 -529 -530 -537 -530 -538 -530 -542 -530 -545 -530 -561 -530 -531 -531 -192 -531 -198 -531 -200 -531 -289 -531 -292 -531 -300 -531 -301 -531 -302 -531 -304 -531 -455 -531 -458 -531 -459 -531 -522 -531 -523 -531 -532 -531 -534 -531 -535 -531 -532 -532 -292 -532 -293 -532 -302 -532 -303 -532 -304 -532 -305 -532 -455 -532 -458 -532 -459 -532 -522 -532 -523 -532 -524 -532 -531 -532 -533 -532 -534 -532 -535 -532 -536 -532 -533 -533 -292 -533 -293 -533 -298 -533 -302 -533 -303 -533 -304 -533 -305 -533 -306 -533 -308 -533 -523 -533 -524 -533 -529 -533 -532 -533 -535 -533 -536 -533 -537 -533 -539 -533 -534 -534 -198 -534 -200 -534 -251 -534 -300 -534 -301 -534 -302 -534 -304 -534 -379 -534 -382 -534 -458 -534 -459 -534 -488 -534 -531 -534 -532 -534 -535 -534 -618 -534 -619 -534 -535 -535 -302 -535 -303 -535 -304 -535 -305 -535 -382 -535 -383 -535 -458 -535 -459 -535 -488 -535 -531 -535 -532 -535 -533 -535 -534 -535 -536 -535 -618 -535 -619 -535 -620 -535 -536 -536 -302 -536 -303 -536 -304 -536 -305 -536 -306 -536 -308 -536 -382 -536 -383 -536 -386 -536 -532 -536 -533 -536 -535 -536 -537 -536 -539 -536 -619 -536 -620 -536 -624 -536 -537 -537 -293 -537 -298 -537 -299 -537 -303 -537 -305 -537 -306 -537 -307 -537 -308 -537 -309 -537 -524 -537 -529 -537 -530 -537 -533 -537 -536 -537 -538 -537 -539 -537 -540 -537 -538 -538 -298 -538 -299 -538 -306 -538 -307 -538 -308 -538 -309 -538 -316 -538 -326 -538 -328 -538 -529 -538 -530 -538 -537 -538 -539 -538 -540 -538 -545 -538 -561 -538 -563 -538 -539 -539 -303 -539 -305 -539 -306 -539 -307 -539 -308 -539 -309 -539 -383 -539 -386 -539 -387 -539 -533 -539 -536 -539 -537 -539 -538 -539 -540 -539 -620 -539 -624 -539 -625 -539 -540 -540 -306 -540 -307 -540 -308 -540 -309 -540 -326 -540 -328 -540 -386 -540 -387 -540 -402 -540 -537 -540 -538 -540 -539 -540 -561 -540 -563 -540 -624 -540 -625 -540 -647 -540 -541 -541 -194 -541 -206 -541 -207 -541 -296 -541 -297 -541 -310 -541 -311 -541 -314 -541 -315 -541 -457 -541 -460 -541 -461 -541 -527 -541 -528 -541 -542 -541 -543 -541 -544 -541 -542 -542 -296 -542 -299 -542 -314 -542 -315 -542 -316 -542 -317 -542 -457 -542 -460 -542 -461 -542 -527 -542 -528 -542 -530 -542 -541 -542 -543 -542 -544 -542 -545 -542 -546 -542 -543 -543 -206 -543 -207 -543 -310 -543 -311 -543 -314 -543 -315 -543 -318 -543 -319 -543 -460 -543 -461 -543 -462 -543 -541 -543 -542 -543 -544 -543 -547 -543 -548 -543 -549 -543 -544 -544 -314 -544 -315 -544 -316 -544 -317 -544 -318 -544 -320 -544 -460 -544 -461 -544 -462 -544 -541 -544 -542 -544 -543 -544 -545 -544 -546 -544 -547 -544 -549 -544 -552 -544 -545 -545 -296 -545 -299 -545 -307 -545 -314 -545 -315 -545 -316 -545 -317 -545 -326 -545 -327 -545 -528 -545 -530 -545 -538 -545 -542 -545 -544 -545 -546 -545 -561 -545 -562 -545 -546 -546 -314 -546 -315 -546 -316 -546 -317 -546 -318 -546 -320 -546 -326 -546 -327 -546 -330 -546 -542 -546 -544 -546 -545 -546 -549 -546 -552 -546 -561 -546 -562 -546 -565 -546 -547 -547 -207 -547 -311 -547 -315 -547 -318 -547 -319 -547 -445 -547 -461 -547 -462 -547 -463 -547 -464 -547 -465 -547 -543 -547 -544 -547 -548 -547 -549 -547 -550 -547 -551 -547 -548 -548 -207 -548 -208 -548 -311 -548 -312 -548 -315 -548 -318 -548 -319 -548 -322 -548 -463 -548 -465 -548 -467 -548 -543 -548 -547 -548 -550 -548 -551 -548 -555 -548 -557 -548 -549 -549 -315 -549 -317 -549 -318 -549 -320 -549 -445 -549 -461 -549 -462 -549 -463 -549 -464 -549 -466 -549 -543 -549 -544 -549 -546 -549 -547 -549 -550 -549 -552 -549 -553 -549 -550 -550 -318 -550 -319 -550 -320 -550 -321 -550 -445 -550 -462 -550 -463 -550 -464 -550 -465 -550 -466 -550 -547 -550 -548 -550 -549 -550 -551 -550 -552 -550 -553 -550 -554 -550 -551 -551 -318 -551 -319 -551 -320 -551 -321 -551 -322 -551 -324 -551 -463 -551 -465 -551 -467 -551 -547 -551 -548 -551 -550 -551 -553 -551 -554 -551 -555 -551 -557 -551 -559 -551 -552 -552 -315 -552 -317 -552 -318 -552 -320 -552 -327 -552 -330 -552 -464 -552 -466 -552 -469 -552 -544 -552 -546 -552 -549 -552 -550 -552 -553 -552 -562 -552 -565 -552 -566 -552 -553 -553 -318 -553 -319 -553 -320 -553 -321 -553 -330 -553 -331 -553 -464 -553 -466 -553 -469 -553 -549 -553 -550 -553 -551 -553 -552 -553 -554 -553 -565 -553 -566 -553 -567 -553 -554 -554 -318 -554 -319 -554 -320 -554 -321 -554 -322 -554 -324 -554 -330 -554 -331 -554 -334 -554 -550 -554 -551 -554 -553 -554 -557 -554 -559 -554 -566 -554 -567 -554 -571 -554 -555 -555 -207 -555 -208 -555 -209 -555 -311 -555 -312 -555 -313 -555 -319 -555 -322 -555 -323 -555 -465 -555 -467 -555 -468 -555 -548 -555 -551 -555 -556 -555 -557 -555 -558 -555 -556 -556 -208 -556 -209 -556 -224 -556 -312 -556 -313 -556 -322 -556 -323 -556 -341 -556 -342 -556 -467 -556 -468 -556 -471 -556 -555 -556 -557 -556 -558 -556 -575 -556 -577 -556 -557 -557 -319 -557 -321 -557 -322 -557 -323 -557 -324 -557 -325 -557 -465 -557 -467 -557 -468 -557 -548 -557 -551 -557 -554 -557 -555 -557 -556 -557 -558 -557 -559 -557 -560 -557 -558 -558 -322 -558 -323 -558 -324 -558 -325 -558 -342 -558 -344 -558 -467 -558 -468 -558 -471 -558 -555 -558 -556 -558 -557 -558 -559 -558 -560 -558 -575 -558 -577 -558 -579 -558 -559 -559 -319 -559 -321 -559 -322 -559 -323 -559 -324 -559 -325 -559 -331 -559 -334 -559 -335 -559 -551 -559 -554 -559 -557 -559 -558 -559 -560 -559 -567 -559 -571 -559 -572 -559 -560 -560 -322 -560 -323 -560 -324 -560 -325 -560 -334 -560 -335 -560 -342 -560 -344 -560 -350 -560 -557 -560 -558 -560 -559 -560 -571 -560 -572 -560 -577 -560 -579 -560 -586 -560 -561 -561 -299 -561 -307 -561 -309 -561 -316 -561 -317 -561 -326 -561 -327 -561 -328 -561 -329 -561 -530 -561 -538 -561 -540 -561 -545 -561 -546 -561 -562 -561 -563 -561 -564 -561 -562 -562 -316 -562 -317 -562 -320 -562 -326 -562 -327 -562 -328 -562 -329 -562 -330 -562 -332 -562 -545 -562 -546 -562 -552 -562 -561 -562 -563 -562 -564 -562 -565 -562 -568 -562 -563 -563 -307 -563 -309 -563 -326 -563 -327 -563 -328 -563 -329 -563 -387 -563 -402 -563 -403 -563 -538 -563 -540 -563 -561 -563 -562 -563 -564 -563 -625 -563 -647 -563 -648 -563 -564 -564 -326 -564 -327 -564 -328 -564 -329 -564 -330 -564 -332 -564 -402 -564 -403 -564 -406 -564 -561 -564 -562 -564 -563 -564 -565 -564 -568 -564 -647 -564 -648 -564 -651 -564 -565 -565 -317 -565 -320 -565 -327 -565 -329 -565 -330 -565 -332 -565 -466 -565 -469 -565 -470 -565 -546 -565 -552 -565 -553 -565 -562 -565 -564 -565 -566 -565 -568 -565 -569 -565 -566 -566 -320 -566 -321 -566 -330 -566 -331 -566 -332 -566 -333 -566 -466 -566 -469 -566 -470 -566 -552 -566 -553 -566 -554 -566 -565 -566 -567 -566 -568 -566 -569 -566 -570 -566 -567 -567 -320 -567 -321 -567 -324 -567 -330 -567 -331 -567 -332 -567 -333 -567 -334 -567 -336 -567 -553 -567 -554 -567 -559 -567 -566 -567 -569 -567 -570 -567 -571 -567 -573 -567 -568 -568 -327 -568 -329 -568 -330 -568 -332 -568 -403 -568 -406 -568 -469 -568 -470 -568 -498 -568 -562 -568 -564 -568 -565 -568 -566 -568 -569 -568 -648 -568 -651 -568 -652 -568 -569 -569 -330 -569 -331 -569 -332 -569 -333 -569 -406 -569 -407 -569 -469 -569 -470 -569 -498 -569 -565 -569 -566 -569 -567 -569 -568 -569 -570 -569 -651 -569 -652 -569 -653 -569 -570 -570 -330 -570 -331 -570 -332 -570 -333 -570 -334 -570 -336 -570 -406 -570 -407 -570 -410 -570 -566 -570 -567 -570 -569 -570 -571 -570 -573 -570 -652 -570 -653 -570 -657 -570 -571 -571 -321 -571 -324 -571 -325 -571 -331 -571 -333 -571 -334 -571 -335 -571 -336 -571 -337 -571 -554 -571 -559 -571 -560 -571 -567 -571 -570 -571 -572 -571 -573 -571 -574 -571 -572 -572 -324 -572 -325 -572 -334 -572 -335 -572 -336 -572 -337 -572 -344 -572 -350 -572 -352 -572 -559 -572 -560 -572 -571 -572 -573 -572 -574 -572 -579 -572 -586 -572 -588 -572 -573 -573 -331 -573 -333 -573 -334 -573 -335 -573 -336 -573 -337 -573 -407 -573 -410 -573 -411 -573 -567 -573 -570 -573 -571 -573 -572 -573 -574 -573 -653 -573 -657 -573 -658 -573 -574 -574 -334 -574 -335 -574 -336 -574 -337 -574 -350 -574 -352 -574 -410 -574 -411 -574 -429 -574 -571 -574 -572 -574 -573 -574 -586 -574 -588 -574 -657 -574 -658 -574 -680 -574 -575 -575 -209 -575 -218 -575 -224 -575 -313 -575 -323 -575 -338 -575 -341 -575 -342 -575 -343 -575 -468 -575 -471 -575 -472 -575 -556 -575 -558 -575 -576 -575 -577 -575 -578 -575 -576 -576 -218 -576 -219 -576 -224 -576 -338 -576 -339 -576 -341 -576 -342 -576 -343 -576 -346 -576 -471 -576 -472 -576 -474 -576 -575 -576 -577 -576 -578 -576 -581 -576 -583 -576 -577 -577 -323 -577 -325 -577 -342 -577 -343 -577 -344 -577 -345 -577 -468 -577 -471 -577 -472 -577 -556 -577 -558 -577 -560 -577 -575 -577 -576 -577 -578 -577 -579 -577 -580 -577 -578 -578 -342 -578 -343 -578 -344 -578 -345 -578 -346 -578 -347 -578 -471 -578 -472 -578 -474 -578 -575 -578 -576 -578 -577 -578 -579 -578 -580 -578 -581 -578 -583 -578 -585 -578 -579 -579 -323 -579 -325 -579 -335 -579 -342 -579 -343 -579 -344 -579 -345 -579 -350 -579 -351 -579 -558 -579 -560 -579 -572 -579 -577 -579 -578 -579 -580 -579 -586 -579 -587 -579 -580 -580 -342 -580 -343 -580 -344 -580 -345 -580 -346 -580 -347 -580 -350 -580 -351 -580 -354 -580 -577 -580 -578 -580 -579 -580 -583 -580 -585 -580 -586 -580 -587 -580 -591 -580 -581 -581 -182 -581 -218 -581 -219 -581 -220 -581 -338 -581 -339 -581 -343 -581 -346 -581 -446 -581 -472 -581 -473 -581 -474 -581 -475 -581 -576 -581 -578 -581 -582 -581 -583 -581 -582 -582 -182 -582 -219 -582 -220 -582 -222 -582 -339 -582 -340 -582 -346 -582 -347 -582 -446 -582 -473 -582 -474 -582 -475 -582 -476 -582 -581 -582 -583 -582 -584 -582 -585 -582 -583 -583 -343 -583 -345 -583 -346 -583 -347 -583 -446 -583 -472 -583 -473 -583 -474 -583 -475 -583 -476 -583 -576 -583 -578 -583 -580 -583 -581 -583 -582 -583 -584 -583 -585 -583 -584 -584 -220 -584 -222 -584 -226 -584 -339 -584 -340 -584 -346 -584 -347 -584 -348 -584 -354 -584 -475 -584 -476 -584 -477 -584 -582 -584 -583 -584 -585 -584 -590 -584 -591 -584 -585 -585 -343 -585 -345 -585 -346 -585 -347 -585 -351 -585 -354 -585 -475 -585 -476 -585 -477 -585 -578 -585 -580 -585 -582 -585 -583 -585 -584 -585 -587 -585 -590 -585 -591 -585 -586 -586 -325 -586 -335 -586 -337 -586 -344 -586 -345 -586 -350 -586 -351 -586 -352 -586 -353 -586 -560 -586 -572 -586 -574 -586 -579 -586 -580 -586 -587 -586 -588 -586 -589 -586 -587 -587 -344 -587 -345 -587 -347 -587 -350 -587 -351 -587 -352 -587 -353 -587 -354 -587 -355 -587 -579 -587 -580 -587 -585 -587 -586 -587 -588 -587 -589 -587 -591 -587 -593 -587 -588 -588 -335 -588 -337 -588 -350 -588 -351 -588 -352 -588 -353 -588 -411 -588 -429 -588 -430 -588 -572 -588 -574 -588 -586 -588 -587 -588 -589 -588 -658 -588 -680 -588 -681 -588 -589 -589 -350 -589 -351 -589 -352 -589 -353 -589 -354 -589 -355 -589 -429 -589 -430 -589 -433 -589 -586 -589 -587 -589 -588 -589 -591 -589 -593 -589 -680 -589 -681 -589 -685 -589 -590 -590 -222 -590 -226 -590 -228 -590 -340 -590 -347 -590 -348 -590 -349 -590 -354 -590 -355 -590 -476 -590 -477 -590 -478 -590 -584 -590 -585 -590 -591 -590 -592 -590 -593 -590 -591 -591 -345 -591 -347 -591 -351 -591 -353 -591 -354 -591 -355 -591 -476 -591 -477 -591 -478 -591 -580 -591 -584 -591 -585 -591 -587 -591 -589 -591 -590 -591 -592 -591 -593 -591 -592 -592 -226 -592 -228 -592 -264 -592 -348 -592 -349 -592 -354 -592 -355 -592 -426 -592 -433 -592 -477 -592 -478 -592 -508 -592 -590 -592 -591 -592 -593 -592 -684 -592 -685 -592 -593 -593 -351 -593 -353 -593 -354 -593 -355 -593 -430 -593 -433 -593 -477 -593 -478 -593 -508 -593 -587 -593 -589 -593 -590 -593 -591 -593 -592 -593 -681 -593 -684 -593 -685 -593 -594 -594 -184 -594 -235 -594 -236 -594 -237 -594 -356 -594 -357 -594 -363 -594 -364 -594 -447 -594 -479 -594 -480 -594 -481 -594 -482 -594 -595 -594 -596 -594 -598 -594 -599 -594 -595 -595 -184 -595 -235 -595 -236 -595 -238 -595 -356 -595 -358 -595 -363 -595 -366 -595 -447 -595 -479 -595 -480 -595 -481 -595 -483 -595 -594 -595 -597 -595 -598 -595 -601 -595 -596 -596 -235 -596 -237 -596 -241 -596 -356 -596 -357 -596 -359 -596 -363 -596 -364 -596 -367 -596 -480 -596 -482 -596 -484 -596 -594 -596 -598 -596 -599 -596 -602 -596 -604 -596 -597 -597 -236 -597 -238 -597 -245 -597 -356 -597 -358 -597 -361 -597 -363 -597 -366 -597 -377 -597 -481 -597 -483 -597 -486 -597 -595 -597 -598 -597 -601 -597 -614 -597 -616 -597 -598 -598 -363 -598 -364 -598 -365 -598 -366 -598 -447 -598 -479 -598 -480 -598 -481 -598 -482 -598 -483 -598 -594 -598 -595 -598 -596 -598 -597 -598 -599 -598 -600 -598 -601 -598 -599 -599 -363 -599 -364 -599 -365 -599 -366 -599 -367 -599 -370 -599 -480 -599 -482 -599 -484 -599 -594 -599 -596 -599 -598 -599 -600 -599 -601 -599 -602 -599 -604 -599 -607 -599 -600 -600 -363 -600 -364 -600 -365 -600 -366 -600 -367 -600 -370 -600 -371 -600 -372 -600 -377 -600 -598 -600 -599 -600 -601 -600 -604 -600 -607 -600 -608 -600 -609 -600 -616 -600 -601 -601 -363 -601 -364 -601 -365 -601 -366 -601 -372 -601 -377 -601 -481 -601 -483 -601 -486 -601 -595 -601 -597 -601 -598 -601 -599 -601 -600 -601 -609 -601 -614 -601 -616 -601 -602 -602 -237 -602 -241 -602 -242 -602 -357 -602 -359 -602 -360 -602 -364 -602 -367 -602 -368 -602 -482 -602 -484 -602 -485 -602 -596 -602 -599 -602 -603 -602 -604 -602 -605 -602 -603 -603 -241 -603 -242 -603 -252 -603 -359 -603 -360 -603 -367 -603 -368 -603 -380 -603 -390 -603 -484 -603 -485 -603 -490 -603 -602 -603 -604 -603 -605 -603 -628 -603 -630 -603 -604 -604 -364 -604 -365 -604 -367 -604 -368 -604 -369 -604 -370 -604 -482 -604 -484 -604 -485 -604 -596 -604 -599 -604 -600 -604 -602 -604 -603 -604 -605 -604 -606 -604 -607 -604 -605 -605 -367 -605 -368 -605 -369 -605 -370 -605 -390 -605 -393 -605 -484 -605 -485 -605 -490 -605 -602 -605 -603 -605 -604 -605 -606 -605 -607 -605 -628 -605 -630 -605 -633 -605 -606 -606 -367 -606 -368 -606 -369 -606 -370 -606 -371 -606 -373 -606 -390 -606 -393 -606 -400 -606 -604 -606 -605 -606 -607 -606 -608 -606 -610 -606 -630 -606 -633 -606 -645 -606 -607 -607 -364 -607 -365 -607 -367 -607 -368 -607 -369 -607 -370 -607 -371 -607 -372 -607 -373 -607 -599 -607 -600 -607 -604 -607 -605 -607 -606 -607 -608 -607 -609 -607 -610 -607 -608 -608 -365 -608 -369 -608 -370 -608 -371 -608 -372 -608 -373 -608 -374 -608 -375 -608 -376 -608 -600 -608 -606 -608 -607 -608 -609 -608 -610 -608 -611 -608 -612 -608 -613 -608 -609 -609 -365 -609 -366 -609 -370 -609 -371 -609 -372 -609 -375 -609 -376 -609 -377 -609 -378 -609 -600 -609 -601 -609 -607 -609 -608 -609 -612 -609 -613 -609 -616 -609 -617 -609 -610 -610 -369 -610 -370 -610 -371 -610 -373 -610 -374 -610 -375 -610 -393 -610 -400 -610 -401 -610 -606 -610 -607 -610 -608 -610 -611 -610 -612 -610 -633 -610 -645 -610 -646 -610 -611 -611 -371 -611 -373 -611 -374 -611 -375 -611 -400 -611 -401 -611 -414 -611 -415 -611 -439 -611 -608 -611 -610 -611 -612 -611 -645 -611 -646 -611 -661 -611 -662 -611 -694 -611 -612 -612 -371 -612 -372 -612 -373 -612 -374 -612 -375 -612 -376 -612 -415 -612 -436 -612 -439 -612 -608 -612 -609 -612 -610 -612 -611 -612 -613 -612 -662 -612 -691 -612 -694 -612 -613 -613 -371 -613 -372 -613 -375 -613 -376 -613 -377 -613 -378 -613 -435 -613 -436 -613 -439 -613 -608 -613 -609 -613 -612 -613 -616 -613 -617 -613 -690 -613 -691 -613 -694 -613 -614 -614 -238 -614 -245 -614 -246 -614 -358 -614 -361 -614 -362 -614 -366 -614 -377 -614 -378 -614 -483 -614 -486 -614 -487 -614 -597 -614 -601 -614 -615 -614 -616 -614 -617 -614 -615 -615 -245 -615 -246 -615 -265 -615 -361 -615 -362 -615 -377 -615 -378 -615 -427 -615 -435 -615 -486 -615 -487 -615 -510 -615 -614 -615 -616 -615 -617 -615 -688 -615 -690 -615 -616 -616 -365 -616 -366 -616 -372 -616 -376 -616 -377 -616 -378 -616 -483 -616 -486 -616 -487 -616 -597 -616 -600 -616 -601 -616 -609 -616 -613 -616 -614 -616 -615 -616 -617 -616 -617 -617 -372 -617 -376 -617 -377 -617 -378 -617 -435 -617 -436 -617 -486 -617 -487 -617 -510 -617 -609 -617 -613 -617 -614 -617 -615 -617 -616 -617 -688 -617 -690 -617 -691 -617 -618 -618 -200 -618 -251 -618 -253 -618 -301 -618 -304 -618 -379 -618 -381 -618 -382 -618 -384 -618 -459 -618 -488 -618 -489 -618 -534 -618 -535 -618 -619 -618 -621 -618 -622 -618 -619 -619 -304 -619 -305 -619 -382 -619 -383 -619 -384 -619 -385 -619 -459 -619 -488 -619 -489 -619 -534 -619 -535 -619 -536 -619 -618 -619 -620 -619 -621 -619 -622 -619 -623 -619 -620 -620 -304 -620 -305 -620 -308 -620 -382 -620 -383 -620 -384 -620 -385 -620 -386 -620 -388 -620 -535 -620 -536 -620 -539 -620 -619 -620 -622 -620 -623 -620 -624 -620 -626 -620 -621 -621 -251 -621 -253 -621 -379 -621 -381 -621 -382 -621 -384 -621 -391 -621 -394 -621 -488 -621 -489 -621 -492 -621 -618 -621 -619 -621 -622 -621 -629 -621 -634 -621 -635 -621 -622 -622 -382 -622 -383 -622 -384 -622 -385 -622 -394 -622 -395 -622 -488 -622 -489 -622 -492 -622 -618 -622 -619 -622 -620 -622 -621 -622 -623 -622 -634 -622 -635 -622 -636 -622 -623 -623 -382 -623 -383 -623 -384 -623 -385 -623 -386 -623 -388 -623 -394 -623 -395 -623 -396 -623 -619 -623 -620 -623 -622 -623 -624 -623 -626 -623 -635 -623 -636 -623 -639 -623 -624 -624 -305 -624 -308 -624 -309 -624 -383 -624 -385 -624 -386 -624 -387 -624 -388 -624 -389 -624 -536 -624 -539 -624 -540 -624 -620 -624 -623 -624 -625 -624 -626 -624 -627 -624 -625 -625 -308 -625 -309 -625 -328 -625 -386 -625 -387 -625 -388 -625 -389 -625 -402 -625 -404 -625 -539 -625 -540 -625 -563 -625 -624 -625 -626 -625 -627 -625 -647 -625 -649 -625 -626 -626 -383 -626 -385 -626 -386 -626 -387 -626 -388 -626 -389 -626 -395 -626 -396 -626 -398 -626 -620 -626 -623 -626 -624 -626 -625 -626 -627 -626 -636 -626 -639 -626 -640 -626 -627 -627 -386 -627 -387 -627 -388 -627 -389 -627 -396 -627 -398 -627 -402 -627 -404 -627 -420 -627 -624 -627 -625 -627 -626 -627 -639 -627 -640 -627 -647 -627 -649 -627 -667 -627 -628 -628 -242 -628 -252 -628 -253 -628 -360 -628 -368 -628 -380 -628 -381 -628 -390 -628 -391 -628 -485 -628 -490 -628 -491 -628 -603 -628 -605 -628 -629 -628 -630 -628 -631 -628 -629 -629 -252 -629 -253 -629 -380 -629 -381 -629 -384 -629 -390 -629 -391 -629 -394 -629 -490 -629 -491 -629 -493 -629 -621 -629 -628 -629 -630 -629 -631 -629 -634 -629 -637 -629 -630 -630 -368 -630 -369 -630 -390 -630 -391 -630 -392 -630 -393 -630 -485 -630 -490 -630 -491 -630 -603 -630 -605 -630 -606 -630 -628 -630 -629 -630 -631 -630 -632 -630 -633 -630 -631 -631 -390 -631 -391 -631 -392 -631 -393 -631 -394 -631 -395 -631 -490 -631 -491 -631 -493 -631 -628 -631 -629 -631 -630 -631 -632 -631 -633 -631 -634 -631 -637 -631 -638 -631 -632 -632 -390 -632 -391 -632 -392 -632 -393 -632 -394 -632 -395 -632 -396 -632 -397 -632 -400 -632 -630 -632 -631 -632 -633 -632 -637 -632 -638 -632 -641 -632 -642 -632 -645 -632 -633 -633 -368 -633 -369 -633 -373 -633 -390 -633 -391 -633 -392 -633 -393 -633 -397 -633 -400 -633 -605 -633 -606 -633 -610 -633 -630 -633 -631 -633 -632 -633 -642 -633 -645 -633 -634 -634 -253 -634 -381 -634 -384 -634 -391 -634 -394 -634 -448 -634 -489 -634 -491 -634 -492 -634 -493 -634 -494 -634 -621 -634 -622 -634 -629 -634 -631 -634 -635 -634 -637 -634 -635 -635 -384 -635 -385 -635 -394 -635 -395 -635 -448 -635 -489 -635 -492 -635 -493 -635 -494 -635 -495 -635 -621 -635 -622 -635 -623 -635 -634 -635 -636 -635 -637 -635 -638 -635 -636 -636 -384 -636 -385 -636 -388 -636 -394 -636 -395 -636 -396 -636 -494 -636 -495 -636 -496 -636 -622 -636 -623 -636 -626 -636 -635 -636 -637 -636 -638 -636 -639 -636 -641 -636 -637 -637 -391 -637 -392 -637 -394 -637 -395 -637 -448 -637 -491 -637 -492 -637 -493 -637 -494 -637 -495 -637 -629 -637 -631 -637 -632 -637 -634 -637 -635 -637 -636 -637 -638 -637 -638 -638 -391 -638 -392 -638 -394 -638 -395 -638 -396 -638 -397 -638 -494 -638 -495 -638 -496 -638 -631 -638 -632 -638 -635 -638 -636 -638 -637 -638 -639 -638 -641 -638 -642 -638 -639 -639 -385 -639 -388 -639 -389 -639 -395 -639 -396 -639 -398 -639 -495 -639 -496 -639 -497 -639 -623 -639 -626 -639 -627 -639 -636 -639 -638 -639 -640 -639 -641 -639 -643 -639 -640 -640 -388 -640 -389 -640 -396 -640 -398 -640 -404 -640 -420 -640 -496 -640 -497 -640 -500 -640 -626 -640 -627 -640 -639 -640 -641 -640 -643 -640 -649 -640 -667 -640 -669 -640 -641 -641 -392 -641 -395 -641 -396 -641 -397 -641 -398 -641 -399 -641 -495 -641 -496 -641 -497 -641 -632 -641 -636 -641 -638 -641 -639 -641 -640 -641 -642 -641 -643 -641 -644 -641 -642 -642 -392 -642 -393 -642 -395 -642 -396 -642 -397 -642 -398 -642 -399 -642 -400 -642 -401 -642 -632 -642 -633 -642 -638 -642 -641 -642 -643 -642 -644 -642 -645 -642 -646 -642 -643 -643 -396 -643 -397 -643 -398 -643 -399 -643 -416 -643 -420 -643 -496 -643 -497 -643 -500 -643 -639 -643 -640 -643 -641 -643 -642 -643 -644 -643 -663 -643 -667 -643 -669 -643 -644 -644 -396 -644 -397 -644 -398 -644 -399 -644 -400 -644 -401 -644 -414 -644 -416 -644 -420 -644 -641 -644 -642 -644 -643 -644 -645 -644 -646 -644 -661 -644 -663 -644 -669 -644 -645 -645 -369 -645 -373 -645 -374 -645 -392 -645 -393 -645 -397 -645 -399 -645 -400 -645 -401 -645 -606 -645 -610 -645 -611 -645 -632 -645 -633 -645 -642 -645 -644 -645 -646 -645 -646 -646 -373 -646 -374 -646 -397 -646 -399 -646 -400 -646 -401 -646 -414 -646 -415 -646 -416 -646 -610 -646 -611 -646 -642 -646 -644 -646 -645 -646 -661 -646 -662 -646 -663 -646 -647 -647 -309 -647 -328 -647 -329 -647 -387 -647 -389 -647 -402 -647 -403 -647 -404 -647 -405 -647 -540 -647 -563 -647 -564 -647 -625 -647 -627 -647 -648 -647 -649 -647 -650 -647 -648 -648 -328 -648 -329 -648 -332 -648 -402 -648 -403 -648 -404 -648 -405 -648 -406 -648 -408 -648 -563 -648 -564 -648 -568 -648 -647 -648 -649 -648 -650 -648 -651 -648 -654 -648 -649 -649 -387 -649 -389 -649 -398 -649 -402 -649 -403 -649 -404 -649 -405 -649 -420 -649 -421 -649 -625 -649 -627 -649 -640 -649 -647 -649 -648 -649 -650 -649 -667 -649 -668 -649 -650 -650 -402 -650 -403 -650 -404 -650 -405 -650 -406 -650 -408 -650 -420 -650 -421 -650 -422 -650 -647 -650 -648 -650 -649 -650 -651 -650 -654 -650 -667 -650 -668 -650 -671 -650 -651 -651 -329 -651 -332 -651 -403 -651 -405 -651 -406 -651 -408 -651 -470 -651 -498 -651 -499 -651 -564 -651 -568 -651 -569 -651 -648 -651 -650 -651 -652 -651 -654 -651 -655 -651 -652 -652 -332 -652 -333 -652 -406 -652 -407 -652 -408 -652 -409 -652 -470 -652 -498 -652 -499 -652 -568 -652 -569 -652 -570 -652 -651 -652 -653 -652 -654 -652 -655 -652 -656 -652 -653 -653 -332 -653 -333 -653 -336 -653 -406 -653 -407 -653 -408 -653 -409 -653 -410 -653 -412 -653 -569 -653 -570 -653 -573 -653 -652 -653 -655 -653 -656 -653 -657 -653 -659 -653 -654 -654 -403 -654 -405 -654 -406 -654 -408 -654 -421 -654 -422 -654 -498 -654 -499 -654 -502 -654 -648 -654 -650 -654 -651 -654 -652 -654 -655 -654 -668 -654 -671 -654 -672 -654 -655 -655 -406 -655 -407 -655 -408 -655 -409 -655 -422 -655 -423 -655 -498 -655 -499 -655 -502 -655 -651 -655 -652 -655 -653 -655 -654 -655 -656 -655 -671 -655 -672 -655 -673 -655 -656 -656 -406 -656 -407 -656 -408 -656 -409 -656 -410 -656 -412 -656 -422 -656 -423 -656 -424 -656 -652 -656 -653 -656 -655 -656 -657 -656 -659 -656 -672 -656 -673 -656 -676 -656 -657 -657 -333 -657 -336 -657 -337 -657 -407 -657 -409 -657 -410 -657 -411 -657 -412 -657 -413 -657 -570 -657 -573 -657 -574 -657 -653 -657 -656 -657 -658 -657 -659 -657 -660 -657 -658 -658 -336 -658 -337 -658 -352 -658 -410 -658 -411 -658 -412 -658 -413 -658 -429 -658 -431 -658 -573 -658 -574 -658 -588 -658 -657 -658 -659 -658 -660 -658 -680 -658 -682 -658 -659 -659 -407 -659 -409 -659 -410 -659 -411 -659 -412 -659 -413 -659 -423 -659 -424 -659 -425 -659 -653 -659 -656 -659 -657 -659 -658 -659 -660 -659 -673 -659 -676 -659 -677 -659 -660 -660 -410 -660 -411 -660 -412 -660 -413 -660 -424 -660 -425 -660 -429 -660 -431 -660 -441 -660 -657 -660 -658 -660 -659 -660 -676 -660 -677 -660 -680 -660 -682 -660 -696 -660 -661 -661 -374 -661 -399 -661 -401 -661 -414 -661 -415 -661 -416 -661 -417 -661 -418 -661 -419 -661 -611 -661 -644 -661 -646 -661 -662 -661 -663 -661 -664 -661 -665 -661 -666 -661 -662 -662 -374 -662 -375 -662 -401 -662 -414 -662 -415 -662 -418 -662 -419 -662 -439 -662 -440 -662 -611 -662 -612 -662 -646 -662 -661 -662 -665 -662 -666 -662 -694 -662 -695 -662 -663 -663 -398 -663 -399 -663 -401 -663 -414 -663 -416 -663 -417 -663 -418 -663 -420 -663 -421 -663 -643 -663 -644 -663 -646 -663 -661 -663 -664 -663 -665 -663 -669 -663 -670 -663 -664 -664 -414 -664 -416 -664 -417 -664 -418 -664 -420 -664 -421 -664 -422 -664 -423 -664 -424 -664 -661 -664 -663 -664 -665 -664 -669 -664 -670 -664 -674 -664 -675 -664 -678 -664 -665 -665 -414 -665 -415 -665 -416 -665 -417 -665 -418 -665 -419 -665 -423 -665 -424 -665 -425 -665 -661 -665 -662 -665 -663 -665 -664 -665 -666 -665 -675 -665 -678 -665 -679 -665 -666 -666 -414 -666 -415 -666 -418 -666 -419 -666 -424 -666 -425 -666 -439 -666 -440 -666 -441 -666 -661 -666 -662 -666 -665 -666 -678 -666 -679 -666 -694 -666 -695 -666 -698 -666 -667 -667 -389 -667 -398 -667 -404 -667 -405 -667 -420 -667 -421 -667 -497 -667 -500 -667 -501 -667 -627 -667 -640 -667 -643 -667 -649 -667 -650 -667 -668 -667 -669 -667 -670 -667 -668 -668 -404 -668 -405 -668 -408 -668 -420 -668 -421 -668 -422 -668 -500 -668 -501 -668 -503 -668 -649 -668 -650 -668 -654 -668 -667 -668 -669 -668 -670 -668 -671 -668 -674 -668 -669 -669 -398 -669 -399 -669 -416 -669 -417 -669 -420 -669 -421 -669 -497 -669 -500 -669 -501 -669 -640 -669 -643 -669 -644 -669 -663 -669 -664 -669 -667 -669 -668 -669 -670 -669 -670 -670 -416 -670 -417 -670 -420 -670 -421 -670 -422 -670 -423 -670 -500 -670 -501 -670 -503 -670 -663 -670 -664 -670 -667 -670 -668 -670 -669 -670 -671 -670 -674 -670 -675 -670 -671 -671 -405 -671 -408 -671 -421 -671 -422 -671 -449 -671 -499 -671 -501 -671 -502 -671 -503 -671 -504 -671 -650 -671 -654 -671 -655 -671 -668 -671 -670 -671 -672 -671 -674 -671 -672 -672 -408 -672 -409 -672 -422 -672 -423 -672 -449 -672 -499 -672 -502 -672 -503 -672 -504 -672 -505 -672 -654 -672 -655 -672 -656 -672 -671 -672 -673 -672 -674 -672 -675 -672 -673 -673 -408 -673 -409 -673 -412 -673 -422 -673 -423 -673 -424 -673 -504 -673 -505 -673 -506 -673 -655 -673 -656 -673 -659 -673 -672 -673 -674 -673 -675 -673 -676 -673 -678 -673 -674 -674 -417 -674 -421 -674 -422 -674 -423 -674 -449 -674 -501 -674 -502 -674 -503 -674 -504 -674 -505 -674 -664 -674 -668 -674 -670 -674 -671 -674 -672 -674 -673 -674 -675 -674 -675 -675 -417 -675 -418 -675 -421 -675 -422 -675 -423 -675 -424 -675 -504 -675 -505 -675 -506 -675 -664 -675 -665 -675 -670 -675 -672 -675 -673 -675 -674 -675 -676 -675 -678 -675 -676 -676 -409 -676 -412 -676 -413 -676 -423 -676 -424 -676 -425 -676 -505 -676 -506 -676 -507 -676 -656 -676 -659 -676 -660 -676 -673 -676 -675 -676 -677 -676 -678 -676 -679 -676 -677 -677 -412 -677 -413 -677 -424 -677 -425 -677 -431 -677 -441 -677 -506 -677 -507 -677 -512 -677 -659 -677 -660 -677 -676 -677 -678 -677 -679 -677 -682 -677 -696 -677 -698 -677 -678 -678 -417 -678 -418 -678 -419 -678 -423 -678 -424 -678 -425 -678 -505 -678 -506 -678 -507 -678 -664 -678 -665 -678 -666 -678 -673 -678 -675 -678 -676 -678 -677 -678 -679 -678 -679 -679 -418 -679 -419 -679 -424 -679 -425 -679 -440 -679 -441 -679 -506 -679 -507 -679 -512 -679 -665 -679 -666 -679 -676 -679 -677 -679 -678 -679 -695 -679 -696 -679 -698 -679 -680 -680 -337 -680 -352 -680 -353 -680 -411 -680 -413 -680 -429 -680 -430 -680 -431 -680 -432 -680 -574 -680 -588 -680 -589 -680 -658 -680 -660 -680 -681 -680 -682 -680 -683 -680 -681 -681 -352 -681 -353 -681 -355 -681 -429 -681 -430 -681 -431 -681 -432 -681 -433 -681 -434 -681 -588 -681 -589 -681 -593 -681 -680 -681 -682 -681 -683 -681 -685 -681 -687 -681 -682 -682 -411 -682 -413 -682 -425 -682 -429 -682 -430 -682 -431 -682 -432 -682 -441 -682 -442 -682 -658 -682 -660 -682 -677 -682 -680 -682 -681 -682 -683 -682 -696 -682 -697 -682 -683 -683 -429 -683 -430 -683 -431 -683 -432 -683 -433 -683 -434 -683 -441 -683 -442 -683 -443 -683 -680 -683 -681 -683 -682 -683 -685 -683 -687 -683 -696 -683 -697 -683 -701 -683 -684 -684 -228 -684 -264 -684 -266 -684 -349 -684 -355 -684 -426 -684 -428 -684 -433 -684 -434 -684 -478 -684 -508 -684 -509 -684 -592 -684 -593 -684 -685 -684 -686 -684 -687 -684 -685 -685 -353 -685 -355 -685 -430 -685 -432 -685 -433 -685 -434 -685 -478 -685 -508 -685 -509 -685 -589 -685 -592 -685 -593 -685 -681 -685 -683 -685 -684 -685 -686 -685 -687 -685 -686 -686 -264 -686 -266 -686 -426 -686 -428 -686 -433 -686 -434 -686 -438 -686 -443 -686 -508 -686 -509 -686 -514 -686 -684 -686 -685 -686 -687 -686 -689 -686 -700 -686 -701 -686 -687 -687 -430 -687 -432 -687 -433 -687 -434 -687 -442 -687 -443 -687 -508 -687 -509 -687 -514 -687 -681 -687 -683 -687 -684 -687 -685 -687 -686 -687 -697 -687 -700 -687 -701 -687 -688 -688 -246 -688 -265 -688 -266 -688 -362 -688 -378 -688 -427 -688 -428 -688 -435 -688 -438 -688 -487 -688 -510 -688 -511 -688 -615 -688 -617 -688 -689 -688 -690 -688 -693 -688 -689 -689 -265 -689 -266 -689 -427 -689 -428 -689 -434 -689 -435 -689 -438 -689 -443 -689 -510 -689 -511 -689 -515 -689 -686 -689 -688 -689 -690 -689 -693 -689 -700 -689 -702 -689 -690 -690 -376 -690 -378 -690 -435 -690 -436 -690 -437 -690 -438 -690 -487 -690 -510 -690 -511 -690 -613 -690 -615 -690 -617 -690 -688 -690 -689 -690 -691 -690 -692 -690 -693 -690 -691 -691 -375 -691 -376 -691 -378 -691 -435 -691 -436 -691 -437 -691 -438 -691 -439 -691 -440 -691 -612 -691 -613 -691 -617 -691 -690 -691 -692 -691 -693 -691 -694 -691 -695 -691 -692 -692 -435 -692 -436 -692 -437 -692 -438 -692 -439 -692 -440 -692 -441 -692 -442 -692 -443 -692 -690 -692 -691 -692 -693 -692 -694 -692 -695 -692 -698 -692 -699 -692 -702 -692 -693 -693 -435 -693 -436 -693 -437 -693 -438 -693 -442 -693 -443 -693 -510 -693 -511 -693 -515 -693 -688 -693 -689 -693 -690 -693 -691 -693 -692 -693 -699 -693 -700 -693 -702 -693 -694 -694 -374 -694 -375 -694 -376 -694 -415 -694 -419 -694 -436 -694 -437 -694 -439 -694 -440 -694 -611 -694 -612 -694 -613 -694 -662 -694 -666 -694 -691 -694 -692 -694 -695 -694 -695 -695 -415 -695 -419 -695 -425 -695 -436 -695 -437 -695 -439 -695 -440 -695 -441 -695 -442 -695 -662 -695 -666 -695 -679 -695 -691 -695 -692 -695 -694 -695 -698 -695 -699 -695 -696 -696 -413 -696 -425 -696 -431 -696 -432 -696 -441 -696 -442 -696 -507 -696 -512 -696 -513 -696 -660 -696 -677 -696 -679 -696 -682 -696 -683 -696 -697 -696 -698 -696 -699 -696 -697 -697 -431 -697 -432 -697 -434 -697 -441 -697 -442 -697 -443 -697 -512 -697 -513 -697 -516 -697 -682 -697 -683 -697 -687 -697 -696 -697 -698 -697 -699 -697 -701 -697 -702 -697 -698 -698 -419 -698 -425 -698 -437 -698 -440 -698 -441 -698 -442 -698 -507 -698 -512 -698 -513 -698 -666 -698 -677 -698 -679 -698 -692 -698 -695 -698 -696 -698 -697 -698 -699 -698 -699 -699 -437 -699 -438 -699 -440 -699 -441 -699 -442 -699 -443 -699 -512 -699 -513 -699 -516 -699 -692 -699 -693 -699 -695 -699 -696 -699 -697 -699 -698 -699 -701 -699 -702 -699 -700 -700 -266 -700 -428 -700 -434 -700 -438 -700 -443 -700 -450 -700 -509 -700 -511 -700 -514 -700 -515 -700 -516 -700 -686 -700 -687 -700 -689 -700 -693 -700 -701 -700 -702 -700 -701 -701 -432 -701 -434 -701 -442 -701 -443 -701 -450 -701 -509 -701 -513 -701 -514 -701 -515 -701 -516 -701 -683 -701 -686 -701 -687 -701 -697 -701 -699 -701 -700 -701 -702 -701 -702 -702 -437 -702 -438 -702 -442 -702 -443 -702 -450 -702 -511 -702 -513 -702 -514 -702 -515 -702 -516 -702 -689 -702 -692 -702 -693 -702 -697 -702 -699 -702 -700 -702 -701 -702 - -DEAL:: Total number of cells = 521 -DEAL:: Total number of active cells = 456 -DEAL:: Number of DoFs = 703 -DEAL:: Number of constraints = 72 -DEAL:: Unconstrained matrix bandwidth= 456 -DEAL:: Constrained matrix bandwidth = 456 - diff --git a/tests/deal.II/fe_tables.cc b/tests/deal.II/fe_tables.cc deleted file mode 100644 index 812ee23b14..0000000000 --- a/tests/deal.II/fe_tables.cc +++ /dev/null @@ -1,171 +0,0 @@ -//---------------------------- fe_tables.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- fe_tables.cc --------------------------- - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include - -ofstream logfile("fe_tables.output"); - -#define TEST_ELEMENT(e) { deallog.push(#e); e el;\ - print_fe_statistics(el); deallog.pop(); deallog << endl; } -#define TEST_MULTIPLE(e,n,d) { deallog.push(#e "x" #n); e eb; FESystem el(eb,n); \ - print_fe_statistics(el); deallog.pop(); deallog << endl; } -#define TEST_MIXED2(e1,n1,e2,n2,d) { deallog.push(#e1 "x" #n1 "-" #e2 "x" #n2);\ - e1 eb1; e2 eb2; FESystem el(eb1,n1,eb2,n2);\ - print_fe_statistics(el); deallog.pop(); deallog << endl; } -#define TEST_MATRIX(e1,e2) { deallog.push( #e1 " onto " #e2); e1 el1; e2 el2;\ - print_fe_matrices(el1,el2); deallog.pop(); deallog << endl; } - -template -inline void -print_fe_statistics(const FiniteElement& fe) -{ - Triangulation tr; - GridGenerator::hyper_cube(tr,-1,1); - DoFHandler dof(tr); - dof.distribute_dofs(fe); - StraightBoundary boundary; - DoFHandler::active_cell_iterator cell = dof.begin_active(); - DoFHandler::active_face_iterator face = dof.begin_active_face(); - - vector > unit_points(fe.dofs_per_cell); - vector > support_points(fe.dofs_per_cell); - vector > face_support_points(fe.dofs_per_face); - - fe.get_unit_support_points(unit_points); - fe.get_support_points(cell, support_points); - fe.get_face_support_points(face, face_support_points); - - deallog << "dofs_per_cell" << " " << fe.dofs_per_cell; - deallog << ": vertex" << " " << fe.dofs_per_vertex; - deallog << " line" << " " << fe.dofs_per_line; - deallog << " quad" << " " < p = fe.system_to_component_index(i); - deallog << "Index " << i << " (" - << p.first << "," << p.second << ") -> " - << fe.component_to_system_index(p.first, p.second) - << " support " << support_points[i] << " unit: " << unit_points[i] - << endl; - } - for (unsigned i=0;i p = fe.face_system_to_component_index(i); - deallog << "FaceIndex " << i << " (" - << p.first << "," << p.second << ") -> " - << fe.face_component_to_system_index(p.first, p.second) - << " support " << face_support_points[i] - << endl; - } - deallog.pop(); -} - -template -inline void -print_fe_matrices(const FiniteElement& high, - const FiniteElement& low) -{ - FullMatrix interpolation(low.dofs_per_cell, high.dofs_per_cell); - FETools::get_interpolation_matrix(high, low, interpolation); - deallog << "Interpolation" << endl; - interpolation.print(logfile); -} - - -int main() -{ - deallog.attach(logfile); - deallog.depth_console(0); - - logfile.precision(4); - logfile.setf(ios::fixed); - - deallog.push("GeometryInfo"); - - deallog.push("1D"); - deallog << " vertices: " << GeometryInfo<1>::vertices_per_cell - << " lines: " << GeometryInfo<1>::lines_per_cell - << " quads: " << GeometryInfo<1>::quads_per_cell - << " hexes: " << GeometryInfo<1>::hexes_per_cell - << endl; - deallog.pop(); - - deallog.push("2D"); - deallog << " vertices: " << GeometryInfo<2>::vertices_per_cell - << " lines: " << GeometryInfo<2>::lines_per_cell - << " quads: " << GeometryInfo<2>::quads_per_cell - << " hexes: " << GeometryInfo<2>::hexes_per_cell - << endl; - deallog.pop(); - - deallog.push("3D"); - deallog << " vertices: " << GeometryInfo<3>::vertices_per_cell - << " lines: " << GeometryInfo<3>::lines_per_cell - << " quads: " << GeometryInfo<3>::quads_per_cell - << " hexes: " << GeometryInfo<3>::hexes_per_cell - << endl; - deallog.pop(); - - deallog.push("4D"); - deallog << " vertices: " << GeometryInfo<4>::vertices_per_cell - << " lines: " << GeometryInfo<4>::lines_per_cell - << " quads: " << GeometryInfo<4>::quads_per_cell - << " hexes: " << GeometryInfo<4>::hexes_per_cell - << endl; - deallog.pop(); - - deallog.pop(); - - TEST_ELEMENT(FEDG_Q0<2>); - TEST_ELEMENT(FEDG_Q1<2>); - - TEST_ELEMENT(FEQ1<2>); - TEST_ELEMENT(FEQ2<2>); - TEST_ELEMENT(FEQ3<2>); - TEST_ELEMENT(FEQ4<2>); - - TEST_MULTIPLE(FEQ1<2>,3,2); - TEST_MULTIPLE(FEQ2<2>,3,2); - TEST_MULTIPLE(FEQ3<2>,3,2); - - TEST_MIXED2(FEQ1<2>,1,FEDG_Q0<2>,1,2); - TEST_MIXED2(FEQ2<2>,3,FEQ1<2>,1,2); - TEST_MIXED2(FEQ3<2>,3,FEQ2<2>,2,2); - - deallog.push("Matrices"); - TEST_MATRIX(FEQ2<2>, FEQ1<2>); - TEST_MATRIX(FEQ3<2>, FEQ2<2>); - TEST_MATRIX(FEQ4<2>, FEQ3<2>); - deallog.pop(); -} diff --git a/tests/deal.II/fe_tables.checked b/tests/deal.II/fe_tables.checked deleted file mode 100644 index b377505c46..0000000000 --- a/tests/deal.II/fe_tables.checked +++ /dev/null @@ -1,408 +0,0 @@ - -DEAL:GeometryInfo:1D:: vertices: 2 lines: 1 quads: 0 hexes: 0 -DEAL:GeometryInfo:2D:: vertices: 4 lines: 4 quads: 1 hexes: 0 -DEAL:GeometryInfo:3D:: vertices: 8 lines: 12 quads: 6 hexes: 1 -DEAL:GeometryInfo:4D:: vertices: 16 lines: 32 quads: 24 hexes: 8 -DEAL:FEDG_Q0<2>::dofs_per_cell 1: vertex 0 line 0 quad 1 -DEAL:FEDG_Q0<2>::n_transform_fct 4 -DEAL:FEDG_Q0<2>::n_components 1 -DEAL:FEDG_Q0<2>:components::Index 0 (0,0) -> 0 support 0.0000 0.0000 unit: 0.5000 0.5000 - -DEAL:FEDG_Q1<2>::dofs_per_cell 4: vertex 0 line 0 quad 4 -DEAL:FEDG_Q1<2>::n_transform_fct 4 -DEAL:FEDG_Q1<2>::n_components 1 -DEAL:FEDG_Q1<2>:components::Index 0 (0,0) -> 0 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEDG_Q1<2>:components::Index 1 (0,1) -> 1 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEDG_Q1<2>:components::Index 2 (0,2) -> 2 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEDG_Q1<2>:components::Index 3 (0,3) -> 3 support -1.0000 1.0000 unit: 0.0000 1.0000 - -DEAL:FEQ1<2>::dofs_per_cell 4: vertex 1 line 0 quad 0 -DEAL:FEQ1<2>::n_transform_fct 4 -DEAL:FEQ1<2>::n_components 1 -DEAL:FEQ1<2>:components::Index 0 (0,0) -> 0 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ1<2>:components::Index 1 (0,1) -> 1 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ1<2>:components::Index 2 (0,2) -> 2 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ1<2>:components::Index 3 (0,3) -> 3 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ1<2>:components::FaceIndex 0 (0,0) -> 0 support -1.0000 -1.0000 -DEAL:FEQ1<2>:components::FaceIndex 1 (0,1) -> 1 support 1.0000 -1.0000 - -DEAL:FEQ2<2>::dofs_per_cell 9: vertex 1 line 1 quad 1 -DEAL:FEQ2<2>::n_transform_fct 4 -DEAL:FEQ2<2>::n_components 1 -DEAL:FEQ2<2>:components::Index 0 (0,0) -> 0 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ2<2>:components::Index 1 (0,1) -> 1 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ2<2>:components::Index 2 (0,2) -> 2 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ2<2>:components::Index 3 (0,3) -> 3 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ2<2>:components::Index 4 (0,4) -> 4 support 0.0000 -1.0000 unit: 0.5000 0.0000 -DEAL:FEQ2<2>:components::Index 5 (0,5) -> 5 support 1.0000 0.0000 unit: 1.0000 0.5000 -DEAL:FEQ2<2>:components::Index 6 (0,6) -> 6 support 0.0000 1.0000 unit: 0.5000 1.0000 -DEAL:FEQ2<2>:components::Index 7 (0,7) -> 7 support -1.0000 0.0000 unit: 0.0000 0.5000 -DEAL:FEQ2<2>:components::Index 8 (0,8) -> 8 support 0.0000 0.0000 unit: 0.5000 0.5000 -DEAL:FEQ2<2>:components::FaceIndex 0 (0,0) -> 0 support -1.0000 -1.0000 -DEAL:FEQ2<2>:components::FaceIndex 1 (0,1) -> 1 support 1.0000 -1.0000 -DEAL:FEQ2<2>:components::FaceIndex 2 (0,2) -> 2 support 0.0000 -1.0000 - -DEAL:FEQ3<2>::dofs_per_cell 16: vertex 1 line 2 quad 4 -DEAL:FEQ3<2>::n_transform_fct 4 -DEAL:FEQ3<2>::n_components 1 -DEAL:FEQ3<2>:components::Index 0 (0,0) -> 0 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ3<2>:components::Index 1 (0,1) -> 1 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ3<2>:components::Index 2 (0,2) -> 2 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ3<2>:components::Index 3 (0,3) -> 3 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ3<2>:components::Index 4 (0,4) -> 4 support -0.3333 -1.0000 unit: 0.3333 0.0000 -DEAL:FEQ3<2>:components::Index 5 (0,5) -> 5 support 0.3333 -1.0000 unit: 0.6667 0.0000 -DEAL:FEQ3<2>:components::Index 6 (0,6) -> 6 support 1.0000 -0.3333 unit: 1.0000 0.3333 -DEAL:FEQ3<2>:components::Index 7 (0,7) -> 7 support 1.0000 0.3333 unit: 1.0000 0.6667 -DEAL:FEQ3<2>:components::Index 8 (0,8) -> 8 support -0.3333 1.0000 unit: 0.3333 1.0000 -DEAL:FEQ3<2>:components::Index 9 (0,9) -> 9 support 0.3333 1.0000 unit: 0.6667 1.0000 -DEAL:FEQ3<2>:components::Index 10 (0,10) -> 10 support -1.0000 -0.3333 unit: 0.0000 0.3333 -DEAL:FEQ3<2>:components::Index 11 (0,11) -> 11 support -1.0000 0.3333 unit: 0.0000 0.6667 -DEAL:FEQ3<2>:components::Index 12 (0,12) -> 12 support -0.3333 -0.3333 unit: 0.3333 0.3333 -DEAL:FEQ3<2>:components::Index 13 (0,13) -> 13 support 0.3333 -0.3333 unit: 0.6667 0.3333 -DEAL:FEQ3<2>:components::Index 14 (0,14) -> 14 support 0.3333 0.3333 unit: 0.6667 0.6667 -DEAL:FEQ3<2>:components::Index 15 (0,15) -> 15 support -0.3333 0.3333 unit: 0.3333 0.6667 -DEAL:FEQ3<2>:components::FaceIndex 0 (0,0) -> 0 support -1.0000 -1.0000 -DEAL:FEQ3<2>:components::FaceIndex 1 (0,1) -> 1 support 1.0000 -1.0000 -DEAL:FEQ3<2>:components::FaceIndex 2 (0,2) -> 2 support -0.3333 -1.0000 -DEAL:FEQ3<2>:components::FaceIndex 3 (0,3) -> 3 support 0.3333 -1.0000 - -DEAL:FEQ4<2>::dofs_per_cell 25: vertex 1 line 3 quad 9 -DEAL:FEQ4<2>::n_transform_fct 4 -DEAL:FEQ4<2>::n_components 1 -DEAL:FEQ4<2>:components::Index 0 (0,0) -> 0 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ4<2>:components::Index 1 (0,1) -> 1 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ4<2>:components::Index 2 (0,2) -> 2 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ4<2>:components::Index 3 (0,3) -> 3 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ4<2>:components::Index 4 (0,4) -> 4 support -0.5000 -1.0000 unit: 0.2500 0.0000 -DEAL:FEQ4<2>:components::Index 5 (0,5) -> 5 support 0.0000 -1.0000 unit: 0.5000 0.0000 -DEAL:FEQ4<2>:components::Index 6 (0,6) -> 6 support 0.5000 -1.0000 unit: 0.7500 0.0000 -DEAL:FEQ4<2>:components::Index 7 (0,7) -> 7 support 1.0000 -0.5000 unit: 1.0000 0.2500 -DEAL:FEQ4<2>:components::Index 8 (0,8) -> 8 support 1.0000 0.0000 unit: 1.0000 0.5000 -DEAL:FEQ4<2>:components::Index 9 (0,9) -> 9 support 1.0000 0.5000 unit: 1.0000 0.7500 -DEAL:FEQ4<2>:components::Index 10 (0,10) -> 10 support -0.5000 1.0000 unit: 0.2500 1.0000 -DEAL:FEQ4<2>:components::Index 11 (0,11) -> 11 support 0.0000 1.0000 unit: 0.5000 1.0000 -DEAL:FEQ4<2>:components::Index 12 (0,12) -> 12 support 0.5000 1.0000 unit: 0.7500 1.0000 -DEAL:FEQ4<2>:components::Index 13 (0,13) -> 13 support -1.0000 -0.5000 unit: 0.0000 0.2500 -DEAL:FEQ4<2>:components::Index 14 (0,14) -> 14 support -1.0000 0.0000 unit: 0.0000 0.5000 -DEAL:FEQ4<2>:components::Index 15 (0,15) -> 15 support -1.0000 0.5000 unit: 0.0000 0.7500 -DEAL:FEQ4<2>:components::Index 16 (0,16) -> 16 support -0.5000 -0.5000 unit: 0.2500 0.2500 -DEAL:FEQ4<2>:components::Index 17 (0,17) -> 17 support 0.5000 -0.5000 unit: 0.7500 0.2500 -DEAL:FEQ4<2>:components::Index 18 (0,18) -> 18 support 0.5000 0.5000 unit: 0.7500 0.7500 -DEAL:FEQ4<2>:components::Index 19 (0,19) -> 19 support -0.5000 0.5000 unit: 0.2500 0.7500 -DEAL:FEQ4<2>:components::Index 20 (0,20) -> 20 support 0.0000 -0.5000 unit: 0.5000 0.2500 -DEAL:FEQ4<2>:components::Index 21 (0,21) -> 21 support 0.5000 0.0000 unit: 0.7500 0.5000 -DEAL:FEQ4<2>:components::Index 22 (0,22) -> 22 support 0.0000 0.5000 unit: 0.5000 0.7500 -DEAL:FEQ4<2>:components::Index 23 (0,23) -> 23 support -0.5000 0.0000 unit: 0.2500 0.5000 -DEAL:FEQ4<2>:components::Index 24 (0,24) -> 24 support 0.0000 0.0000 unit: 0.5000 0.5000 -DEAL:FEQ4<2>:components::FaceIndex 0 (0,0) -> 0 support -1.0000 -1.0000 -DEAL:FEQ4<2>:components::FaceIndex 1 (0,1) -> 1 support 1.0000 -1.0000 -DEAL:FEQ4<2>:components::FaceIndex 2 (0,2) -> 2 support -0.5000 -1.0000 -DEAL:FEQ4<2>:components::FaceIndex 3 (0,3) -> 3 support 0.0000 -1.0000 -DEAL:FEQ4<2>:components::FaceIndex 4 (0,4) -> 4 support 0.5000 -1.0000 - -DEAL:FEQ1<2>x3::dofs_per_cell 12: vertex 3 line 0 quad 0 -DEAL:FEQ1<2>x3::n_transform_fct 4 -DEAL:FEQ1<2>x3::n_components 3 -DEAL:FEQ1<2>x3:components::Index 0 (0,0) -> 0 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ1<2>x3:components::Index 1 (1,0) -> 1 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ1<2>x3:components::Index 2 (2,0) -> 2 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ1<2>x3:components::Index 3 (0,1) -> 3 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ1<2>x3:components::Index 4 (1,1) -> 4 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ1<2>x3:components::Index 5 (2,1) -> 5 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ1<2>x3:components::Index 6 (0,2) -> 6 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ1<2>x3:components::Index 7 (1,2) -> 7 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ1<2>x3:components::Index 8 (2,2) -> 8 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ1<2>x3:components::Index 9 (0,3) -> 9 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ1<2>x3:components::Index 10 (1,3) -> 10 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ1<2>x3:components::Index 11 (2,3) -> 11 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ1<2>x3:components::FaceIndex 0 (0,0) -> 0 support -1.0000 -1.0000 -DEAL:FEQ1<2>x3:components::FaceIndex 1 (1,0) -> 1 support -1.0000 -1.0000 -DEAL:FEQ1<2>x3:components::FaceIndex 2 (2,0) -> 2 support -1.0000 -1.0000 -DEAL:FEQ1<2>x3:components::FaceIndex 3 (0,1) -> 3 support 1.0000 -1.0000 -DEAL:FEQ1<2>x3:components::FaceIndex 4 (1,1) -> 4 support 1.0000 -1.0000 -DEAL:FEQ1<2>x3:components::FaceIndex 5 (2,1) -> 5 support 1.0000 -1.0000 - -DEAL:FEQ2<2>x3::dofs_per_cell 27: vertex 3 line 3 quad 3 -DEAL:FEQ2<2>x3::n_transform_fct 4 -DEAL:FEQ2<2>x3::n_components 3 -DEAL:FEQ2<2>x3:components::Index 0 (0,0) -> 0 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ2<2>x3:components::Index 1 (1,0) -> 1 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ2<2>x3:components::Index 2 (2,0) -> 2 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ2<2>x3:components::Index 3 (0,1) -> 3 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ2<2>x3:components::Index 4 (1,1) -> 4 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ2<2>x3:components::Index 5 (2,1) -> 5 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ2<2>x3:components::Index 6 (0,2) -> 6 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ2<2>x3:components::Index 7 (1,2) -> 7 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ2<2>x3:components::Index 8 (2,2) -> 8 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ2<2>x3:components::Index 9 (0,3) -> 9 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ2<2>x3:components::Index 10 (1,3) -> 10 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ2<2>x3:components::Index 11 (2,3) -> 11 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ2<2>x3:components::Index 12 (0,4) -> 12 support 0.0000 -1.0000 unit: 0.5000 0.0000 -DEAL:FEQ2<2>x3:components::Index 13 (1,4) -> 13 support 0.0000 -1.0000 unit: 0.5000 0.0000 -DEAL:FEQ2<2>x3:components::Index 14 (2,4) -> 14 support 0.0000 -1.0000 unit: 0.5000 0.0000 -DEAL:FEQ2<2>x3:components::Index 15 (0,5) -> 15 support 1.0000 0.0000 unit: 1.0000 0.5000 -DEAL:FEQ2<2>x3:components::Index 16 (1,5) -> 16 support 1.0000 0.0000 unit: 1.0000 0.5000 -DEAL:FEQ2<2>x3:components::Index 17 (2,5) -> 17 support 1.0000 0.0000 unit: 1.0000 0.5000 -DEAL:FEQ2<2>x3:components::Index 18 (0,6) -> 18 support 0.0000 1.0000 unit: 0.5000 1.0000 -DEAL:FEQ2<2>x3:components::Index 19 (1,6) -> 19 support 0.0000 1.0000 unit: 0.5000 1.0000 -DEAL:FEQ2<2>x3:components::Index 20 (2,6) -> 20 support 0.0000 1.0000 unit: 0.5000 1.0000 -DEAL:FEQ2<2>x3:components::Index 21 (0,7) -> 21 support -1.0000 0.0000 unit: 0.0000 0.5000 -DEAL:FEQ2<2>x3:components::Index 22 (1,7) -> 22 support -1.0000 0.0000 unit: 0.0000 0.5000 -DEAL:FEQ2<2>x3:components::Index 23 (2,7) -> 23 support -1.0000 0.0000 unit: 0.0000 0.5000 -DEAL:FEQ2<2>x3:components::Index 24 (0,8) -> 24 support 0.0000 0.0000 unit: 0.5000 0.5000 -DEAL:FEQ2<2>x3:components::Index 25 (1,8) -> 25 support 0.0000 0.0000 unit: 0.5000 0.5000 -DEAL:FEQ2<2>x3:components::Index 26 (2,8) -> 26 support 0.0000 0.0000 unit: 0.5000 0.5000 -DEAL:FEQ2<2>x3:components::FaceIndex 0 (0,0) -> 0 support -1.0000 -1.0000 -DEAL:FEQ2<2>x3:components::FaceIndex 1 (1,0) -> 1 support -1.0000 -1.0000 -DEAL:FEQ2<2>x3:components::FaceIndex 2 (2,0) -> 2 support -1.0000 -1.0000 -DEAL:FEQ2<2>x3:components::FaceIndex 3 (0,1) -> 3 support 1.0000 -1.0000 -DEAL:FEQ2<2>x3:components::FaceIndex 4 (1,1) -> 4 support 1.0000 -1.0000 -DEAL:FEQ2<2>x3:components::FaceIndex 5 (2,1) -> 5 support 1.0000 -1.0000 -DEAL:FEQ2<2>x3:components::FaceIndex 6 (0,2) -> 6 support 0.0000 -1.0000 -DEAL:FEQ2<2>x3:components::FaceIndex 7 (1,2) -> 7 support 0.0000 -1.0000 -DEAL:FEQ2<2>x3:components::FaceIndex 8 (2,2) -> 8 support 0.0000 -1.0000 - -DEAL:FEQ3<2>x3::dofs_per_cell 48: vertex 3 line 6 quad 12 -DEAL:FEQ3<2>x3::n_transform_fct 4 -DEAL:FEQ3<2>x3::n_components 3 -DEAL:FEQ3<2>x3:components::Index 0 (0,0) -> 0 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ3<2>x3:components::Index 1 (1,0) -> 1 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ3<2>x3:components::Index 2 (2,0) -> 2 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ3<2>x3:components::Index 3 (0,1) -> 3 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ3<2>x3:components::Index 4 (1,1) -> 4 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ3<2>x3:components::Index 5 (2,1) -> 5 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ3<2>x3:components::Index 6 (0,2) -> 6 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ3<2>x3:components::Index 7 (1,2) -> 7 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ3<2>x3:components::Index 8 (2,2) -> 8 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ3<2>x3:components::Index 9 (0,3) -> 9 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ3<2>x3:components::Index 10 (1,3) -> 10 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ3<2>x3:components::Index 11 (2,3) -> 11 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ3<2>x3:components::Index 12 (0,4) -> 12 support -0.3333 -1.0000 unit: 0.3333 0.0000 -DEAL:FEQ3<2>x3:components::Index 13 (0,5) -> 13 support 0.3333 -1.0000 unit: 0.6667 0.0000 -DEAL:FEQ3<2>x3:components::Index 14 (1,4) -> 14 support -0.3333 -1.0000 unit: 0.3333 0.0000 -DEAL:FEQ3<2>x3:components::Index 15 (1,5) -> 15 support 0.3333 -1.0000 unit: 0.6667 0.0000 -DEAL:FEQ3<2>x3:components::Index 16 (2,4) -> 16 support -0.3333 -1.0000 unit: 0.3333 0.0000 -DEAL:FEQ3<2>x3:components::Index 17 (2,5) -> 17 support 0.3333 -1.0000 unit: 0.6667 0.0000 -DEAL:FEQ3<2>x3:components::Index 18 (0,6) -> 18 support 1.0000 -0.3333 unit: 1.0000 0.3333 -DEAL:FEQ3<2>x3:components::Index 19 (0,7) -> 19 support 1.0000 0.3333 unit: 1.0000 0.6667 -DEAL:FEQ3<2>x3:components::Index 20 (1,6) -> 20 support 1.0000 -0.3333 unit: 1.0000 0.3333 -DEAL:FEQ3<2>x3:components::Index 21 (1,7) -> 21 support 1.0000 0.3333 unit: 1.0000 0.6667 -DEAL:FEQ3<2>x3:components::Index 22 (2,6) -> 22 support 1.0000 -0.3333 unit: 1.0000 0.3333 -DEAL:FEQ3<2>x3:components::Index 23 (2,7) -> 23 support 1.0000 0.3333 unit: 1.0000 0.6667 -DEAL:FEQ3<2>x3:components::Index 24 (0,8) -> 24 support -0.3333 1.0000 unit: 0.3333 1.0000 -DEAL:FEQ3<2>x3:components::Index 25 (0,9) -> 25 support 0.3333 1.0000 unit: 0.6667 1.0000 -DEAL:FEQ3<2>x3:components::Index 26 (1,8) -> 26 support -0.3333 1.0000 unit: 0.3333 1.0000 -DEAL:FEQ3<2>x3:components::Index 27 (1,9) -> 27 support 0.3333 1.0000 unit: 0.6667 1.0000 -DEAL:FEQ3<2>x3:components::Index 28 (2,8) -> 28 support -0.3333 1.0000 unit: 0.3333 1.0000 -DEAL:FEQ3<2>x3:components::Index 29 (2,9) -> 29 support 0.3333 1.0000 unit: 0.6667 1.0000 -DEAL:FEQ3<2>x3:components::Index 30 (0,10) -> 30 support -1.0000 -0.3333 unit: 0.0000 0.3333 -DEAL:FEQ3<2>x3:components::Index 31 (0,11) -> 31 support -1.0000 0.3333 unit: 0.0000 0.6667 -DEAL:FEQ3<2>x3:components::Index 32 (1,10) -> 32 support -1.0000 -0.3333 unit: 0.0000 0.3333 -DEAL:FEQ3<2>x3:components::Index 33 (1,11) -> 33 support -1.0000 0.3333 unit: 0.0000 0.6667 -DEAL:FEQ3<2>x3:components::Index 34 (2,10) -> 34 support -1.0000 -0.3333 unit: 0.0000 0.3333 -DEAL:FEQ3<2>x3:components::Index 35 (2,11) -> 35 support -1.0000 0.3333 unit: 0.0000 0.6667 -DEAL:FEQ3<2>x3:components::Index 36 (0,12) -> 36 support -0.3333 -0.3333 unit: 0.3333 0.3333 -DEAL:FEQ3<2>x3:components::Index 37 (0,13) -> 37 support 0.3333 -0.3333 unit: 0.6667 0.3333 -DEAL:FEQ3<2>x3:components::Index 38 (0,14) -> 38 support 0.3333 0.3333 unit: 0.6667 0.6667 -DEAL:FEQ3<2>x3:components::Index 39 (0,15) -> 39 support -0.3333 0.3333 unit: 0.3333 0.6667 -DEAL:FEQ3<2>x3:components::Index 40 (1,12) -> 40 support -0.3333 -0.3333 unit: 0.3333 0.3333 -DEAL:FEQ3<2>x3:components::Index 41 (1,13) -> 41 support 0.3333 -0.3333 unit: 0.6667 0.3333 -DEAL:FEQ3<2>x3:components::Index 42 (1,14) -> 42 support 0.3333 0.3333 unit: 0.6667 0.6667 -DEAL:FEQ3<2>x3:components::Index 43 (1,15) -> 43 support -0.3333 0.3333 unit: 0.3333 0.6667 -DEAL:FEQ3<2>x3:components::Index 44 (2,12) -> 44 support -0.3333 -0.3333 unit: 0.3333 0.3333 -DEAL:FEQ3<2>x3:components::Index 45 (2,13) -> 45 support 0.3333 -0.3333 unit: 0.6667 0.3333 -DEAL:FEQ3<2>x3:components::Index 46 (2,14) -> 46 support 0.3333 0.3333 unit: 0.6667 0.6667 -DEAL:FEQ3<2>x3:components::Index 47 (2,15) -> 47 support -0.3333 0.3333 unit: 0.3333 0.6667 -DEAL:FEQ3<2>x3:components::FaceIndex 0 (0,0) -> 0 support -1.0000 -1.0000 -DEAL:FEQ3<2>x3:components::FaceIndex 1 (1,0) -> 1 support -1.0000 -1.0000 -DEAL:FEQ3<2>x3:components::FaceIndex 2 (2,0) -> 2 support -1.0000 -1.0000 -DEAL:FEQ3<2>x3:components::FaceIndex 3 (0,1) -> 3 support 1.0000 -1.0000 -DEAL:FEQ3<2>x3:components::FaceIndex 4 (1,1) -> 4 support 1.0000 -1.0000 -DEAL:FEQ3<2>x3:components::FaceIndex 5 (2,1) -> 5 support 1.0000 -1.0000 -DEAL:FEQ3<2>x3:components::FaceIndex 6 (0,2) -> 6 support -0.3333 -1.0000 -DEAL:FEQ3<2>x3:components::FaceIndex 7 (0,3) -> 7 support 0.3333 -1.0000 -DEAL:FEQ3<2>x3:components::FaceIndex 8 (1,2) -> 8 support -0.3333 -1.0000 -DEAL:FEQ3<2>x3:components::FaceIndex 9 (1,3) -> 9 support 0.3333 -1.0000 -DEAL:FEQ3<2>x3:components::FaceIndex 10 (2,2) -> 10 support -0.3333 -1.0000 -DEAL:FEQ3<2>x3:components::FaceIndex 11 (2,3) -> 11 support 0.3333 -1.0000 - -DEAL:FEQ1<2>x1-FEDG_Q0<2>x1::dofs_per_cell 5: vertex 1 line 0 quad 1 -DEAL:FEQ1<2>x1-FEDG_Q0<2>x1::n_transform_fct 4 -DEAL:FEQ1<2>x1-FEDG_Q0<2>x1::n_components 2 -DEAL:FEQ1<2>x1-FEDG_Q0<2>x1:components::Index 0 (0,0) -> 0 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ1<2>x1-FEDG_Q0<2>x1:components::Index 1 (0,1) -> 1 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ1<2>x1-FEDG_Q0<2>x1:components::Index 2 (0,2) -> 2 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ1<2>x1-FEDG_Q0<2>x1:components::Index 3 (0,3) -> 3 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ1<2>x1-FEDG_Q0<2>x1:components::Index 4 (1,0) -> 4 support 0.0000 0.0000 unit: 0.5000 0.5000 -DEAL:FEQ1<2>x1-FEDG_Q0<2>x1:components::FaceIndex 0 (0,0) -> 0 support -1.0000 -1.0000 -DEAL:FEQ1<2>x1-FEDG_Q0<2>x1:components::FaceIndex 1 (0,1) -> 1 support 1.0000 -1.0000 - -DEAL:FEQ2<2>x3-FEQ1<2>x1::dofs_per_cell 31: vertex 4 line 3 quad 3 -DEAL:FEQ2<2>x3-FEQ1<2>x1::n_transform_fct 4 -DEAL:FEQ2<2>x3-FEQ1<2>x1::n_components 4 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 0 (0,0) -> 0 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 1 (1,0) -> 1 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 2 (2,0) -> 2 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 3 (3,0) -> 3 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 4 (0,1) -> 4 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 5 (1,1) -> 5 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 6 (2,1) -> 6 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 7 (3,1) -> 7 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 8 (0,2) -> 8 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 9 (1,2) -> 9 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 10 (2,2) -> 10 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 11 (3,2) -> 11 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 12 (0,3) -> 12 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 13 (1,3) -> 13 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 14 (2,3) -> 14 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 15 (3,3) -> 15 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 16 (0,4) -> 16 support 0.0000 -1.0000 unit: 0.5000 0.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 17 (1,4) -> 17 support 0.0000 -1.0000 unit: 0.5000 0.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 18 (2,4) -> 18 support 0.0000 -1.0000 unit: 0.5000 0.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 19 (0,5) -> 19 support 1.0000 0.0000 unit: 1.0000 0.5000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 20 (1,5) -> 20 support 1.0000 0.0000 unit: 1.0000 0.5000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 21 (2,5) -> 21 support 1.0000 0.0000 unit: 1.0000 0.5000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 22 (0,6) -> 22 support 0.0000 1.0000 unit: 0.5000 1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 23 (1,6) -> 23 support 0.0000 1.0000 unit: 0.5000 1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 24 (2,6) -> 24 support 0.0000 1.0000 unit: 0.5000 1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 25 (0,7) -> 25 support -1.0000 0.0000 unit: 0.0000 0.5000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 26 (1,7) -> 26 support -1.0000 0.0000 unit: 0.0000 0.5000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 27 (2,7) -> 27 support -1.0000 0.0000 unit: 0.0000 0.5000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 28 (0,8) -> 28 support 0.0000 0.0000 unit: 0.5000 0.5000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 29 (1,8) -> 29 support 0.0000 0.0000 unit: 0.5000 0.5000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::Index 30 (2,8) -> 30 support 0.0000 0.0000 unit: 0.5000 0.5000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::FaceIndex 0 (0,0) -> 0 support -1.0000 -1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::FaceIndex 1 (1,0) -> 1 support -1.0000 -1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::FaceIndex 2 (2,0) -> 2 support -1.0000 -1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::FaceIndex 3 (3,0) -> 3 support -1.0000 -1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::FaceIndex 4 (0,1) -> 4 support 1.0000 -1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::FaceIndex 5 (1,1) -> 5 support 1.0000 -1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::FaceIndex 6 (2,1) -> 6 support 1.0000 -1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::FaceIndex 7 (3,1) -> 7 support 1.0000 -1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::FaceIndex 8 (0,2) -> 8 support 0.0000 -1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::FaceIndex 9 (1,2) -> 9 support 0.0000 -1.0000 -DEAL:FEQ2<2>x3-FEQ1<2>x1:components::FaceIndex 10 (2,2) -> 10 support 0.0000 -1.0000 - -DEAL:FEQ3<2>x3-FEQ2<2>x2::dofs_per_cell 66: vertex 5 line 8 quad 14 -DEAL:FEQ3<2>x3-FEQ2<2>x2::n_transform_fct 4 -DEAL:FEQ3<2>x3-FEQ2<2>x2::n_components 5 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 0 (0,0) -> 0 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 1 (1,0) -> 1 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 2 (2,0) -> 2 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 3 (3,0) -> 3 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 4 (4,0) -> 4 support -1.0000 -1.0000 unit: 0.0000 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 5 (0,1) -> 5 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 6 (1,1) -> 6 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 7 (2,1) -> 7 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 8 (3,1) -> 8 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 9 (4,1) -> 9 support 1.0000 -1.0000 unit: 1.0000 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 10 (0,2) -> 10 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 11 (1,2) -> 11 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 12 (2,2) -> 12 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 13 (3,2) -> 13 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 14 (4,2) -> 14 support 1.0000 1.0000 unit: 1.0000 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 15 (0,3) -> 15 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 16 (1,3) -> 16 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 17 (2,3) -> 17 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 18 (3,3) -> 18 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 19 (4,3) -> 19 support -1.0000 1.0000 unit: 0.0000 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 20 (0,4) -> 20 support -0.3333 -1.0000 unit: 0.3333 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 21 (0,5) -> 21 support 0.3333 -1.0000 unit: 0.6667 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 22 (1,4) -> 22 support -0.3333 -1.0000 unit: 0.3333 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 23 (1,5) -> 23 support 0.3333 -1.0000 unit: 0.6667 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 24 (2,4) -> 24 support -0.3333 -1.0000 unit: 0.3333 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 25 (2,5) -> 25 support 0.3333 -1.0000 unit: 0.6667 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 26 (3,4) -> 26 support 0.0000 -1.0000 unit: 0.5000 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 27 (4,4) -> 27 support 0.0000 -1.0000 unit: 0.5000 0.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 28 (0,6) -> 28 support 1.0000 -0.3333 unit: 1.0000 0.3333 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 29 (0,7) -> 29 support 1.0000 0.3333 unit: 1.0000 0.6667 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 30 (1,6) -> 30 support 1.0000 -0.3333 unit: 1.0000 0.3333 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 31 (1,7) -> 31 support 1.0000 0.3333 unit: 1.0000 0.6667 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 32 (2,6) -> 32 support 1.0000 -0.3333 unit: 1.0000 0.3333 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 33 (2,7) -> 33 support 1.0000 0.3333 unit: 1.0000 0.6667 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 34 (3,5) -> 34 support 1.0000 0.0000 unit: 1.0000 0.5000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 35 (4,5) -> 35 support 1.0000 0.0000 unit: 1.0000 0.5000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 36 (0,8) -> 36 support -0.3333 1.0000 unit: 0.3333 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 37 (0,9) -> 37 support 0.3333 1.0000 unit: 0.6667 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 38 (1,8) -> 38 support -0.3333 1.0000 unit: 0.3333 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 39 (1,9) -> 39 support 0.3333 1.0000 unit: 0.6667 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 40 (2,8) -> 40 support -0.3333 1.0000 unit: 0.3333 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 41 (2,9) -> 41 support 0.3333 1.0000 unit: 0.6667 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 42 (3,6) -> 42 support 0.0000 1.0000 unit: 0.5000 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 43 (4,6) -> 43 support 0.0000 1.0000 unit: 0.5000 1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 44 (0,10) -> 44 support -1.0000 -0.3333 unit: 0.0000 0.3333 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 45 (0,11) -> 45 support -1.0000 0.3333 unit: 0.0000 0.6667 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 46 (1,10) -> 46 support -1.0000 -0.3333 unit: 0.0000 0.3333 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 47 (1,11) -> 47 support -1.0000 0.3333 unit: 0.0000 0.6667 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 48 (2,10) -> 48 support -1.0000 -0.3333 unit: 0.0000 0.3333 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 49 (2,11) -> 49 support -1.0000 0.3333 unit: 0.0000 0.6667 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 50 (3,7) -> 50 support -1.0000 0.0000 unit: 0.0000 0.5000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 51 (4,7) -> 51 support -1.0000 0.0000 unit: 0.0000 0.5000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 52 (0,12) -> 52 support -0.3333 -0.3333 unit: 0.3333 0.3333 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 53 (0,13) -> 53 support 0.3333 -0.3333 unit: 0.6667 0.3333 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 54 (0,14) -> 54 support 0.3333 0.3333 unit: 0.6667 0.6667 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 55 (0,15) -> 55 support -0.3333 0.3333 unit: 0.3333 0.6667 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 56 (1,12) -> 56 support -0.3333 -0.3333 unit: 0.3333 0.3333 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 57 (1,13) -> 57 support 0.3333 -0.3333 unit: 0.6667 0.3333 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 58 (1,14) -> 58 support 0.3333 0.3333 unit: 0.6667 0.6667 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 59 (1,15) -> 59 support -0.3333 0.3333 unit: 0.3333 0.6667 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 60 (2,12) -> 60 support -0.3333 -0.3333 unit: 0.3333 0.3333 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 61 (2,13) -> 61 support 0.3333 -0.3333 unit: 0.6667 0.3333 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 62 (2,14) -> 62 support 0.3333 0.3333 unit: 0.6667 0.6667 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 63 (2,15) -> 63 support -0.3333 0.3333 unit: 0.3333 0.6667 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 64 (3,8) -> 64 support 0.0000 0.0000 unit: 0.5000 0.5000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::Index 65 (4,8) -> 65 support 0.0000 0.0000 unit: 0.5000 0.5000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 0 (0,0) -> 0 support -1.0000 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 1 (1,0) -> 1 support -1.0000 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 2 (2,0) -> 2 support -1.0000 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 3 (3,0) -> 3 support -1.0000 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 4 (4,0) -> 4 support -1.0000 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 5 (0,1) -> 5 support 1.0000 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 6 (1,1) -> 6 support 1.0000 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 7 (2,1) -> 7 support 1.0000 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 8 (3,1) -> 8 support 1.0000 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 9 (4,1) -> 9 support 1.0000 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 10 (0,2) -> 10 support -0.3333 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 11 (0,3) -> 11 support 0.3333 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 12 (1,2) -> 12 support -0.3333 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 13 (1,3) -> 13 support 0.3333 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 14 (2,2) -> 14 support -0.3333 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 15 (2,3) -> 15 support 0.3333 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 16 (3,2) -> 16 support 0.0000 -1.0000 -DEAL:FEQ3<2>x3-FEQ2<2>x2:components::FaceIndex 17 (4,2) -> 17 support 0.0000 -1.0000 - -DEAL:Matrices:FEQ2<2> onto FEQ1<2>::Interpolation -1.00 -0.000.00 -0.000.00 -0.00-0.000.00 0.00 --0.001.00 -0.000.00 0.00 0.00 -0.00-0.000.00 -0.00 -0.001.00 -0.00-0.000.00 0.00 -0.000.00 --0.000.00 -0.001.00 -0.00-0.000.00 0.00 0.00 - -DEAL:Matrices:FEQ3<2> onto FEQ2<2>::Interpolation -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 --0.06-0.060.00 0.00 0.56 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 -0.06-0.060.00 0.00 0.00 0.56 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 -0.06-0.060.00 0.00 0.00 0.00 0.56 0.56 0.00 0.00 0.00 0.00 0.00 0.00 --0.060.00 0.00 -0.060.00 0.00 0.00 0.00 0.00 0.00 0.56 0.56 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 -0.04-0.04-0.04-0.04-0.04-0.04-0.04-0.040.32 0.32 0.32 0.32 - -DEAL:Matrices:FEQ4<2> onto FEQ3<2>::Interpolation -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 --0.001.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 1.00 0.00 -0.000.00 0.00 -0.000.00 -0.00-0.000.00 -0.000.00 0.00 -0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 --0.000.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 --0.040.02 0.00 0.00 0.66 0.49 -0.130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 -0.040.00 0.00 -0.130.49 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 -0.040.02 0.00 -0.000.00 0.00 0.66 0.49 -0.13-0.000.00 -0.00-0.000.00 0.00 0.00 0.00 0.00 -0.000.00 0.00 0.00 0.00 0.00 -0.00 0.02 -0.040.00 -0.000.00 0.00 -0.130.49 0.66 -0.000.00 -0.000.00 0.00 -0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 --0.000.00 0.02 -0.040.00 -0.000.00 -0.000.00 -0.000.66 0.49 -0.130.00 -0.00-0.000.00 -0.00-0.00-0.000.00 -0.000.00 -0.000.00 --0.000.00 -0.040.02 0.00 -0.00-0.00-0.000.00 0.00 -0.130.49 0.66 0.00 -0.00-0.000.00 -0.000.00 -0.000.00 -0.000.00 -0.000.00 --0.040.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.49 -0.130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 -0.040.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.130.49 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 -0.000.00 -0.00-0.03-0.020.01 0.01 0.01 -0.000.01 0.01 -0.00-0.03-0.020.01 0.43 -0.090.02 -0.090.33 -0.07-0.070.33 0.24 --0.000.00 -0.000.00 0.01 -0.02-0.03-0.03-0.020.01 -0.000.01 0.01 0.01 0.01 -0.00-0.090.43 -0.090.02 0.33 0.33 -0.07-0.070.24 -0.00 -0.000.00 -0.00-0.000.01 0.01 0.01 -0.02-0.030.01 -0.02-0.03-0.000.01 0.01 0.02 -0.090.43 -0.09-0.070.33 0.33 -0.070.24 --0.000.00 -0.000.00 0.01 0.01 -0.00-0.000.01 0.01 -0.03-0.020.01 0.01 -0.02-0.03-0.090.02 -0.090.43 -0.07-0.070.33 0.33 0.24 - diff --git a/tests/deal.II/gradients.cc b/tests/deal.II/gradients.cc deleted file mode 100644 index 7ce4da8f59..0000000000 --- a/tests/deal.II/gradients.cc +++ /dev/null @@ -1,109 +0,0 @@ -//---------------------------- gradients.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- gradients.cc --------------------------- - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include - - -int main () -{ - ofstream logfile("gradients.output"); - // limit output a bit - logfile.precision (3); - deallog.attach(logfile); - deallog.depth_console(0); - - Triangulation<2> tria; - GridGenerator::hyper_cube (tria,0,1); - tria.begin_active()->vertex(2)(0) = 2; - - FEQ1<2> fe; - DoFHandler<2> dof(tria); - dof.distribute_dofs(fe); - - QTrapez<2> q; - FEValues<2> fevalues(fe,q,update_gradients); - fevalues.reinit (dof.begin_active()); - - -Vector val(4); - - deallog << "Testing transformation of gradients of shape function:" << endl; - - // test for each of the four - // shape functions - bool testcase_succeeded = true; - for (unsigned int vertex=0; vertex<4; ++vertex) - { - val.clear (); - val(vertex) = 1; - - vector > grads(4); - fevalues.get_function_grads (val, grads); - - -bool ok; - switch (vertex) - { - case 0: - ok = ((grads[0] == Point<2>(-1,-1)) && - (grads[1] == Point<2>(0,-1)) && - (grads[2] == Point<2>(-1,1)) && - (grads[3] == Point<2>(0,0))); - break; - case 1: - ok = ((grads[0] == Point<2>(1,0)) && - (grads[1] == Point<2>(0,0)) && - (grads[2] == Point<2>(1,-2)) && - (grads[3] == Point<2>(0,-1))); - break; - case 2: - ok = ((grads[0] == Point<2>(0,0)) && - (grads[1] == Point<2>(0.5,0)) && - (grads[2] == Point<2>(0,1)) && - (grads[3] == Point<2>(0.5,0.5))); - break; - case 3: - ok = ((grads[0] == Point<2>(0,1)) && - (grads[1] == Point<2>(-0.5,1)) && - (grads[2] == Point<2>(0,0)) && - (grads[3] == Point<2>(-0.5,0.5))); - break; - }; - - deallog << " Shape function " << vertex - << ": " - << (ok ? "OK" : "WRONG!") - << endl; - - if (!ok) - testcase_succeeded = false; - }; - - if (testcase_succeeded) - return 0; - else - return 1; -}; diff --git a/tests/deal.II/gradients.checked b/tests/deal.II/gradients.checked deleted file mode 100644 index c932afd70a..0000000000 --- a/tests/deal.II/gradients.checked +++ /dev/null @@ -1,6 +0,0 @@ - -DEAL::Testing transformation of gradients of shape function: -DEAL:: Shape function 0: OK -DEAL:: Shape function 1: OK -DEAL:: Shape function 2: OK -DEAL:: Shape function 3: OK diff --git a/tests/deal.II/grid_test.cc b/tests/deal.II/grid_test.cc deleted file mode 100644 index 5fb8b9a95f..0000000000 --- a/tests/deal.II/grid_test.cc +++ /dev/null @@ -1,280 +0,0 @@ -//---------------------------- grid_test.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- grid_test.cc --------------------------- - - -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include - -ofstream logfile("grid_test.output"); - -// 1: continuous refinement of the unit square always in the middle -// 2: refinement of the circle at the boundary -// 2: refinement of a wiggled area at the boundary - - -template -class Ball : - public StraightBoundary -{ - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const { - Point middle = StraightBoundary::get_new_point_on_line(line); - - for (int i=0; i - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const { - Point middle = StraightBoundary::get_new_point_on_quad(quad); - - for (int i=0; i -class CurvedLine : - public StraightBoundary -{ - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const; - - virtual Point - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const; -}; - - -template -Point -CurvedLine::get_new_point_on_line (const typename Triangulation::line_iterator &line) const -{ - Point middle = StraightBoundary::get_new_point_on_line (line); - - // if the line is at the top of bottom - // face: do a special treatment on - // this line. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the line is like that - if (dim>=3) - if (((middle(2) == 0) || (middle(2) == 1)) - // find out, if the line is in the - // interior of the top or bottom face - // of the domain, or at the edge. - // lines at the edge need to undergo - // the usual treatment, while for - // interior lines taking the midpoint - // is sufficient - // - // note: the trick with the boundary - // id was invented after the above was - // written, so we are not very strict - // here with using these flags - && (line->boundary_indicator() == 1)) - return middle; - - -double x=middle(0), - y=middle(1); - - if (y -Point -CurvedLine::get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const -{ - Point middle = StraightBoundary::get_new_point_on_quad (quad); - - // if the face is at the top of bottom - // face: do not move the midpoint in - // x/y direction. Note that if the - // z-value of the midpoint is either - // 0 or 1, then the z-values of all - // vertices of the quad is like that - if ((middle(2) == 0) || (middle(2) == 1)) - return middle; - - double x=middle(0), - y=middle(1); - - if (y -void test (const int test_case) -{ - char testname[100]; - sprintf(testname, "Test%d.dim%d", test_case , dim); - - deallog.push(testname); - deallog << "Start" << endl; - - Triangulation tria; - GridGenerator::hyper_cube(tria); - - tria.begin_active()->set_material_id(3); - - if ((dim==1) && ((test_case==2) || (test_case==3))) - { - deallog << "Impossible for this dimension." << endl; - return; - }; - - -switch (test_case) - { - case 1: - { - - // refine first cell - tria.begin_active()->set_refine_flag(); - tria.execute_coarsening_and_refinement (); - - // refine first active cell - // on coarsest level - tria.begin_active()->set_refine_flag (); - tria.execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell; - for (int i=0; i<(dim==2 ? 3 : 2); ++i) - { - // refine the presently - // second last cell 17 - // times - cell = tria.last_active(tria.n_levels()-1); - --cell; - cell->set_refine_flag (); - tria.execute_coarsening_and_refinement (); - }; - - break; - } - - case 2: - case 3: - { - if (dim==3) - { - tria.begin_active()->face(2)->set_boundary_indicator(1); - tria.begin_active()->face(4)->set_boundary_indicator(1); - }; - - -// set the boundary function - Ball ball; - CurvedLine curved_line; - if (test_case==2) - tria.set_boundary (1, ball); - else - tria.set_boundary (1, curved_line); - - // refine once - tria.begin_active()->set_refine_flag(); - tria.execute_coarsening_and_refinement (); - - Triangulation::active_cell_iterator cell, endc; - const unsigned int steps[4] = { 0, 2, 2, 2 }; - for (unsigned int i=0; iat_boundary()) - cell->set_refine_flag(); - - tria.execute_coarsening_and_refinement(); - }; - - tria.set_boundary (1); - break; - } - }; - - -GridOut().write_ucd (tria, logfile); - - deallog << " Total number of cells = " << tria.n_cells() << endl - << " Total number of active cells = " << tria.n_active_cells() << endl; - - deallog.pop(); -}; - - -int main () -{ - logfile.precision(3); - deallog.attach(logfile); - deallog.depth_console(0); - - for (unsigned int i=1; i<=3; ++i) - test<2> (i); - for (unsigned int i=1; i<=3; ++i) - test<3> (i); - - return 0; -}; diff --git a/tests/deal.II/grid_test.checked b/tests/deal.II/grid_test.checked deleted file mode 100644 index 3b34292091..0000000000 --- a/tests/deal.II/grid_test.checked +++ /dev/null @@ -1,3083 +0,0 @@ - -DEAL:Test1.dim2::Start -# This file was generated by the deal.II library. -# Date = 2000/11/6 - -# -# For a description of the UCD format see the AVS Developer's guide. -# -59 40 0 0 0 -1 0.00 0.00 0 -2 1.00 0.00 0 -3 1.00 1.00 0 -4 0.00 1.00 0 -5 0.500 0.00 0 -6 1.00 0.500 0 -7 0.500 1.00 0 -8 0.00 0.500 0 -9 0.500 0.500 0 -10 0.250 0.00 0 -11 0.500 0.250 0 -12 0.250 0.500 0 -13 0.00 0.250 0 -14 0.250 0.250 0 -15 0.750 0.00 0 -16 1.00 0.250 0 -17 0.750 0.500 0 -18 0.750 0.250 0 -19 0.500 0.750 0 -20 0.250 1.00 0 -21 0.00 0.750 0 -22 0.250 0.750 0 -23 0.375 0.250 0 -24 0.500 0.375 0 -25 0.375 0.500 0 -26 0.250 0.375 0 -27 0.375 0.375 0 -28 1.00 0.750 0 -29 0.750 1.00 0 -30 0.750 0.750 0 -31 0.625 0.250 0 -32 0.750 0.375 0 -33 0.625 0.500 0 -34 0.625 0.375 0 -35 0.500 0.625 0 -36 0.375 0.750 0 -37 0.250 0.625 0 -38 0.375 0.625 0 -39 0.438 0.375 0 -40 0.500 0.438 0 -41 0.438 0.500 0 -42 0.375 0.438 0 -43 0.438 0.438 0 -44 0.750 0.625 0 -45 0.625 0.750 0 -46 0.625 0.625 0 -47 0.562 0.375 0 -48 0.625 0.438 0 -49 0.562 0.500 0 -50 0.562 0.438 0 -51 0.500 0.562 0 -52 0.438 0.625 0 -53 0.375 0.562 0 -54 0.438 0.562 0 -55 0.469 0.438 0 -56 0.500 0.469 0 -57 0.469 0.500 0 -58 0.438 0.469 0 -59 0.469 0.469 0 -1 3 quad 1 10 14 13 -2 3 quad 10 5 11 14 -3 3 quad 13 14 12 8 -4 3 quad 5 15 18 11 -5 3 quad 15 2 16 18 -6 3 quad 18 16 6 17 -7 3 quad 8 12 22 21 -8 3 quad 22 19 7 20 -9 3 quad 21 22 20 4 -10 3 quad 17 6 28 30 -11 3 quad 30 28 3 29 -12 3 quad 19 30 29 7 -13 3 quad 14 23 27 26 -14 3 quad 23 11 24 27 -15 3 quad 26 27 25 12 -16 3 quad 11 31 34 24 -17 3 quad 31 18 32 34 -18 3 quad 34 32 17 33 -19 3 quad 12 25 38 37 -20 3 quad 38 35 19 36 -21 3 quad 37 38 36 22 -22 3 quad 9 33 46 35 -23 3 quad 33 17 44 46 -24 3 quad 46 44 30 45 -25 3 quad 35 46 45 19 -26 3 quad 27 39 43 42 -27 3 quad 39 24 40 43 -28 3 quad 42 43 41 25 -29 3 quad 24 47 50 40 -30 3 quad 47 34 48 50 -31 3 quad 50 48 33 49 -32 3 quad 40 50 49 9 -33 3 quad 25 41 54 53 -34 3 quad 41 9 51 54 -35 3 quad 54 51 35 52 -36 3 quad 53 54 52 38 -37 3 quad 43 55 59 58 -38 3 quad 55 40 56 59 -39 3 quad 59 56 9 57 -40 3 quad 58 59 57 41 -DEAL:Test1.dim2:: Total number of cells = 53 -DEAL:Test1.dim2:: Total number of active cells = 40 -DEAL:Test2.dim2::Start -# This file was generated by the deal.II library. -# Date = 2000/11/6 - -# -# For a description of the UCD format see the AVS Developer's guide. -# -73 52 0 0 0 -1 0.00 0.00 0 -2 1.00 0.00 0 -3 1.00 1.00 0 -4 0.00 1.00 0 -5 0.500 0.00 0 -6 1.00 0.500 0 -7 0.500 1.00 0 -8 0.00 0.500 0 -9 0.500 0.500 0 -10 0.250 0.00 0 -11 0.500 0.250 0 -12 0.250 0.500 0 -13 0.00 0.250 0 -14 0.250 0.250 0 -15 0.750 0.00 0 -16 1.00 0.250 0 -17 0.750 0.500 0 -18 0.750 0.250 0 -19 1.00 0.750 0 -20 0.750 1.00 0 -21 0.500 0.750 0 -22 0.750 0.750 0 -23 0.250 1.00 0 -24 0.00 0.750 0 -25 0.250 0.750 0 -26 0.125 0.00 0 -27 0.250 0.125 0 -28 0.125 0.250 0 -29 0.00 0.125 0 -30 0.125 0.125 0 -31 0.375 0.00 0 -32 0.500 0.125 0 -33 0.375 0.250 0 -34 0.375 0.125 0 -35 0.250 0.375 0 -36 0.125 0.500 0 -37 0.00 0.375 0 -38 0.125 0.375 0 -39 0.625 0.00 0 -40 0.750 0.125 0 -41 0.625 0.250 0 -42 0.625 0.125 0 -43 0.875 0.00 0 -44 1.00 0.125 0 -45 0.875 0.250 0 -46 0.875 0.125 0 -47 1.00 0.375 0 -48 0.875 0.500 0 -49 0.750 0.375 0 -50 0.875 0.375 0 -51 1.00 0.625 0 -52 0.875 0.750 0 -53 0.750 0.625 0 -54 0.875 0.625 0 -55 1.00 0.875 0 -56 0.875 1.00 0 -57 0.750 0.875 0 -58 0.875 0.875 0 -59 0.625 0.750 0 -60 0.625 1.00 0 -61 0.500 0.875 0 -62 0.625 0.875 0 -63 0.250 0.625 0 -64 0.125 0.750 0 -65 0.00 0.625 0 -66 0.125 0.625 0 -67 0.375 0.750 0 -68 0.375 1.00 0 -69 0.250 0.875 0 -70 0.375 0.875 0 -71 0.125 1.00 0 -72 0.00 0.875 0 -73 0.125 0.875 0 -1 3 quad 14 11 9 12 -2 3 quad 11 18 17 9 -3 3 quad 9 17 22 21 -4 3 quad 12 9 21 25 -5 3 quad 1 26 30 29 -6 3 quad 26 10 27 30 -7 3 quad 30 27 14 28 -8 3 quad 29 30 28 13 -9 3 quad 10 31 34 27 -10 3 quad 31 5 32 34 -11 3 quad 34 32 11 33 -12 3 quad 27 34 33 14 -13 3 quad 13 28 38 37 -14 3 quad 28 14 35 38 -15 3 quad 38 35 12 36 -16 3 quad 37 38 36 8 -17 3 quad 5 39 42 32 -18 3 quad 39 15 40 42 -19 3 quad 42 40 18 41 -20 3 quad 32 42 41 11 -21 3 quad 15 43 46 40 -22 3 quad 43 2 44 46 -23 3 quad 46 44 16 45 -24 3 quad 40 46 45 18 -25 3 quad 18 45 50 49 -26 3 quad 45 16 47 50 -27 3 quad 50 47 6 48 -28 3 quad 49 50 48 17 -29 3 quad 17 48 54 53 -30 3 quad 48 6 51 54 -31 3 quad 54 51 19 52 -32 3 quad 53 54 52 22 -33 3 quad 22 52 58 57 -34 3 quad 52 19 55 58 -35 3 quad 58 55 3 56 -36 3 quad 57 58 56 20 -37 3 quad 21 59 62 61 -38 3 quad 59 22 57 62 -39 3 quad 62 57 20 60 -40 3 quad 61 62 60 7 -41 3 quad 8 36 66 65 -42 3 quad 36 12 63 66 -43 3 quad 66 63 25 64 -44 3 quad 65 66 64 24 -45 3 quad 25 67 70 69 -46 3 quad 67 21 61 70 -47 3 quad 70 61 7 68 -48 3 quad 69 70 68 23 -49 3 quad 24 64 73 72 -50 3 quad 64 25 69 73 -51 3 quad 73 69 23 71 -52 3 quad 72 73 71 4 -DEAL:Test2.dim2:: Total number of cells = 69 -DEAL:Test2.dim2:: Total number of active cells = 52 -DEAL:Test3.dim2::Start -# This file was generated by the deal.II library. -# Date = 2000/11/6 - -# -# For a description of the UCD format see the AVS Developer's guide. -# -73 52 0 0 0 -1 0.00 0.00 0 -2 1.00 0.00 0 -3 1.00 1.00 0 -4 0.00 1.00 0 -5 0.500 0.00 0 -6 1.00 0.500 0 -7 0.500 1.00 0 -8 0.00 0.500 0 -9 0.500 0.500 0 -10 0.250 0.00 0 -11 0.500 0.250 0 -12 0.250 0.500 0 -13 0.00 0.250 0 -14 0.250 0.250 0 -15 0.750 0.00 0 -16 1.00 0.250 0 -17 0.750 0.500 0 -18 0.750 0.250 0 -19 1.00 0.750 0 -20 0.750 1.00 0 -21 0.500 0.750 0 -22 0.750 0.750 0 -23 0.250 1.00 0 -24 0.00 0.750 0 -25 0.250 0.750 0 -26 0.125 0.00 0 -27 0.250 0.125 0 -28 0.125 0.250 0 -29 0.00 0.125 0 -30 0.125 0.125 0 -31 0.375 0.00 0 -32 0.500 0.125 0 -33 0.375 0.250 0 -34 0.375 0.125 0 -35 0.250 0.375 0 -36 0.125 0.500 0 -37 0.00 0.375 0 -38 0.125 0.375 0 -39 0.625 0.00 0 -40 0.750 0.125 0 -41 0.625 0.250 0 -42 0.625 0.125 0 -43 0.875 0.00 0 -44 1.00 0.125 0 -45 0.875 0.250 0 -46 0.875 0.125 0 -47 1.00 0.375 0 -48 0.875 0.500 0 -49 0.750 0.375 0 -50 0.875 0.375 0 -51 1.00 0.625 0 -52 0.875 0.750 0 -53 0.750 0.625 0 -54 0.875 0.625 0 -55 1.00 0.875 0 -56 0.875 1.00 0 -57 0.750 0.875 0 -58 0.875 0.875 0 -59 0.625 0.750 0 -60 0.625 1.00 0 -61 0.500 0.875 0 -62 0.625 0.875 0 -63 0.250 0.625 0 -64 0.125 0.750 0 -65 0.00 0.625 0 -66 0.125 0.625 0 -67 0.375 0.750 0 -68 0.375 1.00 0 -69 0.250 0.875 0 -70 0.375 0.875 0 -71 0.125 1.00 0 -72 0.00 0.875 0 -73 0.125 0.875 0 -1 3 quad 14 11 9 12 -2 3 quad 11 18 17 9 -3 3 quad 9 17 22 21 -4 3 quad 12 9 21 25 -5 3 quad 1 26 30 29 -6 3 quad 26 10 27 30 -7 3 quad 30 27 14 28 -8 3 quad 29 30 28 13 -9 3 quad 10 31 34 27 -10 3 quad 31 5 32 34 -11 3 quad 34 32 11 33 -12 3 quad 27 34 33 14 -13 3 quad 13 28 38 37 -14 3 quad 28 14 35 38 -15 3 quad 38 35 12 36 -16 3 quad 37 38 36 8 -17 3 quad 5 39 42 32 -18 3 quad 39 15 40 42 -19 3 quad 42 40 18 41 -20 3 quad 32 42 41 11 -21 3 quad 15 43 46 40 -22 3 quad 43 2 44 46 -23 3 quad 46 44 16 45 -24 3 quad 40 46 45 18 -25 3 quad 18 45 50 49 -26 3 quad 45 16 47 50 -27 3 quad 50 47 6 48 -28 3 quad 49 50 48 17 -29 3 quad 17 48 54 53 -30 3 quad 48 6 51 54 -31 3 quad 54 51 19 52 -32 3 quad 53 54 52 22 -33 3 quad 22 52 58 57 -34 3 quad 52 19 55 58 -35 3 quad 58 55 3 56 -36 3 quad 57 58 56 20 -37 3 quad 21 59 62 61 -38 3 quad 59 22 57 62 -39 3 quad 62 57 20 60 -40 3 quad 61 62 60 7 -41 3 quad 8 36 66 65 -42 3 quad 36 12 63 66 -43 3 quad 66 63 25 64 -44 3 quad 65 66 64 24 -45 3 quad 25 67 70 69 -46 3 quad 67 21 61 70 -47 3 quad 70 61 7 68 -48 3 quad 69 70 68 23 -49 3 quad 24 64 73 72 -50 3 quad 64 25 69 73 -51 3 quad 73 69 23 71 -52 3 quad 72 73 71 4 -DEAL:Test3.dim2:: Total number of cells = 69 -DEAL:Test3.dim2:: Total number of active cells = 52 -DEAL:Test1.dim3::Start -# This file was generated by the deal.II library. -# Date = 2000/11/6 - -# -# For a description of the UCD format see the AVS Developer's guide. -# -235 120 0 0 0 -1 0.00 0.00 0.00 -2 1.00 0.00 0.00 -3 1.00 0.00 1.00 -4 0.00 0.00 1.00 -5 0.00 1.00 0.00 -6 1.00 1.00 0.00 -7 1.00 1.00 1.00 -8 0.00 1.00 1.00 -9 0.500 0.00 0.00 -10 0.00 0.00 0.500 -11 0.00 0.500 0.00 -12 1.00 0.00 0.500 -13 1.00 0.500 0.00 -14 1.00 0.500 1.00 -15 0.500 0.00 1.00 -16 0.00 0.500 1.00 -17 0.500 1.00 0.00 -18 0.00 1.00 0.500 -19 1.00 1.00 0.500 -20 0.500 1.00 1.00 -21 0.500 0.00 0.500 -22 0.500 0.500 0.00 -23 0.00 0.500 0.500 -24 1.00 0.500 0.500 -25 0.500 0.500 1.00 -26 0.500 1.00 0.500 -27 0.500 0.500 0.500 -28 0.250 0.00 0.00 -29 0.00 0.00 0.250 -30 0.00 0.250 0.00 -31 0.500 0.00 0.250 -32 0.250 0.00 0.500 -33 0.500 0.250 0.00 -34 0.250 0.500 0.00 -35 0.00 0.500 0.250 -36 0.00 0.250 0.500 -37 0.500 0.250 0.500 -38 0.250 0.500 0.500 -39 0.500 0.500 0.250 -40 0.250 0.00 0.250 -41 0.250 0.250 0.00 -42 0.00 0.250 0.250 -43 0.250 0.500 0.250 -44 0.250 0.250 0.500 -45 0.500 0.250 0.250 -46 0.250 0.250 0.250 -47 0.750 0.00 0.00 -48 0.00 0.00 0.750 -49 0.00 0.750 0.00 -50 1.00 0.00 0.250 -51 1.00 0.00 0.750 -52 1.00 0.250 0.00 -53 1.00 0.750 0.00 -54 1.00 0.250 1.00 -55 0.250 0.00 1.00 -56 0.750 0.00 1.00 -57 0.00 0.250 1.00 -58 0.00 0.750 1.00 -59 0.250 1.00 0.00 -60 0.750 1.00 0.00 -61 0.00 1.00 0.250 -62 0.00 1.00 0.750 -63 1.00 1.00 0.250 -64 0.250 1.00 1.00 -65 0.750 0.00 0.500 -66 0.500 0.00 0.750 -67 0.750 0.500 0.00 -68 0.500 0.750 0.00 -69 0.00 0.750 0.500 -70 0.00 0.500 0.750 -71 1.00 0.500 0.250 -72 1.00 0.750 0.500 -73 1.00 0.500 0.750 -74 1.00 0.250 0.500 -75 0.500 0.250 1.00 -76 0.750 0.500 1.00 -77 0.500 0.750 1.00 -78 0.250 0.500 1.00 -79 0.500 1.00 0.250 -80 0.750 1.00 0.500 -81 0.500 1.00 0.750 -82 0.250 1.00 0.500 -83 0.750 0.500 0.500 -84 0.500 0.750 0.500 -85 0.500 0.500 0.750 -86 0.500 0.375 0.500 -87 0.375 0.500 0.500 -88 0.500 0.500 0.375 -89 0.375 0.500 0.250 -90 0.250 0.500 0.375 -91 0.375 0.250 0.500 -92 0.250 0.375 0.500 -93 0.500 0.375 0.250 -94 0.500 0.250 0.375 -95 0.375 0.250 0.250 -96 0.250 0.375 0.250 -97 0.250 0.250 0.375 -98 0.750 0.00 0.250 -99 0.750 0.00 0.750 -100 0.250 0.00 0.750 -101 0.750 0.250 0.00 -102 0.750 0.750 0.00 -103 0.250 0.750 0.00 -104 0.00 0.750 0.250 -105 0.00 0.750 0.750 -106 0.00 0.250 0.750 -107 1.00 0.250 0.250 -108 1.00 0.750 0.250 -109 1.00 0.250 0.750 -110 0.250 0.250 1.00 -111 0.750 0.250 1.00 -112 0.250 0.750 1.00 -113 0.250 1.00 0.250 -114 0.750 1.00 0.250 -115 0.250 1.00 0.750 -116 0.750 0.500 0.250 -117 0.750 0.500 0.750 -118 0.250 0.500 0.750 -119 0.750 0.250 0.500 -120 0.750 0.750 0.500 -121 0.250 0.750 0.500 -122 0.500 0.750 0.250 -123 0.500 0.750 0.750 -124 0.500 0.250 0.750 -125 0.375 0.500 0.375 -126 0.375 0.375 0.500 -127 0.500 0.375 0.375 -128 0.375 0.250 0.375 -129 0.375 0.375 0.250 -130 0.250 0.375 0.375 -131 0.750 0.250 0.250 -132 0.750 0.250 0.750 -133 0.250 0.250 0.750 -134 0.250 0.750 0.250 -135 0.750 0.750 0.250 -136 0.250 0.750 0.750 -137 0.375 0.375 0.375 -138 1.00 0.750 1.00 -139 1.00 1.00 0.750 -140 0.750 1.00 1.00 -141 0.625 0.500 0.500 -142 0.500 0.625 0.500 -143 0.500 0.500 0.625 -144 0.750 0.500 0.375 -145 0.625 0.500 0.250 -146 0.750 0.500 0.625 -147 0.625 0.500 0.750 -148 0.250 0.500 0.625 -149 0.375 0.500 0.750 -150 0.750 0.375 0.500 -151 0.625 0.250 0.500 -152 0.750 0.625 0.500 -153 0.625 0.750 0.500 -154 0.250 0.625 0.500 -155 0.375 0.750 0.500 -156 0.500 0.750 0.375 -157 0.500 0.625 0.250 -158 0.500 0.750 0.625 -159 0.500 0.625 0.750 -160 0.500 0.250 0.625 -161 0.500 0.375 0.750 -162 0.750 0.375 0.250 -163 0.625 0.250 0.250 -164 0.750 0.250 0.375 -165 0.750 0.375 0.750 -166 0.625 0.250 0.750 -167 0.750 0.250 0.625 -168 0.375 0.250 0.750 -169 0.250 0.375 0.750 -170 0.250 0.250 0.625 -171 0.250 0.625 0.250 -172 0.375 0.750 0.250 -173 0.250 0.750 0.375 -174 0.750 0.625 0.250 -175 0.625 0.750 0.250 -176 0.750 0.750 0.375 -177 0.250 0.625 0.750 -178 0.375 0.750 0.750 -179 0.250 0.750 0.625 -180 0.500 0.438 0.500 -181 0.438 0.500 0.500 -182 0.500 0.500 0.438 -183 0.438 0.500 0.375 -184 0.375 0.500 0.438 -185 0.438 0.375 0.500 -186 0.375 0.438 0.500 -187 0.500 0.438 0.375 -188 0.500 0.375 0.438 -189 0.438 0.375 0.375 -190 0.375 0.438 0.375 -191 0.375 0.375 0.438 -192 1.00 0.750 0.750 -193 0.750 0.750 1.00 -194 0.750 1.00 0.750 -195 0.625 0.500 0.375 -196 0.625 0.500 0.625 -197 0.375 0.500 0.625 -198 0.625 0.375 0.500 -199 0.625 0.625 0.500 -200 0.375 0.625 0.500 -201 0.500 0.625 0.375 -202 0.500 0.625 0.625 -203 0.500 0.375 0.625 -204 0.625 0.250 0.375 -205 0.625 0.375 0.250 -206 0.750 0.375 0.375 -207 0.625 0.250 0.625 -208 0.625 0.375 0.750 -209 0.750 0.375 0.625 -210 0.375 0.250 0.625 -211 0.375 0.375 0.750 -212 0.250 0.375 0.625 -213 0.375 0.750 0.375 -214 0.375 0.625 0.250 -215 0.250 0.625 0.375 -216 0.625 0.750 0.375 -217 0.625 0.625 0.250 -218 0.750 0.625 0.375 -219 0.375 0.750 0.625 -220 0.375 0.625 0.750 -221 0.250 0.625 0.625 -222 0.438 0.500 0.438 -223 0.438 0.438 0.500 -224 0.500 0.438 0.438 -225 0.438 0.375 0.438 -226 0.438 0.438 0.375 -227 0.375 0.438 0.438 -228 0.750 0.750 0.750 -229 0.625 0.375 0.375 -230 0.625 0.375 0.625 -231 0.375 0.375 0.625 -232 0.375 0.625 0.375 -233 0.625 0.625 0.375 -234 0.375 0.625 0.625 -235 0.438 0.438 0.438 -1 3 hex 1 28 40 29 30 41 46 42 -2 3 hex 28 9 31 40 41 33 45 46 -3 3 hex 40 31 21 32 46 45 37 44 -4 3 hex 29 40 32 10 42 46 44 36 -5 3 hex 30 41 46 42 11 34 43 35 -6 3 hex 41 33 45 46 34 22 39 43 -7 3 hex 42 46 44 36 35 43 38 23 -8 3 hex 9 47 98 31 33 101 131 45 -9 3 hex 47 2 50 98 101 52 107 131 -10 3 hex 98 50 12 65 131 107 74 119 -11 3 hex 31 98 65 21 45 131 119 37 -12 3 hex 33 101 131 45 22 67 116 39 -13 3 hex 101 52 107 131 67 13 71 116 -14 3 hex 131 107 74 119 116 71 24 83 -15 3 hex 21 65 99 66 37 119 132 124 -16 3 hex 65 12 51 99 119 74 109 132 -17 3 hex 99 51 3 56 132 109 54 111 -18 3 hex 66 99 56 15 124 132 111 75 -19 3 hex 119 74 109 132 83 24 73 117 -20 3 hex 132 109 54 111 117 73 14 76 -21 3 hex 124 132 111 75 85 117 76 25 -22 3 hex 10 32 100 48 36 44 133 106 -23 3 hex 32 21 66 100 44 37 124 133 -24 3 hex 100 66 15 55 133 124 75 110 -25 3 hex 48 100 55 4 106 133 110 57 -26 3 hex 36 44 133 106 23 38 118 70 -27 3 hex 133 124 75 110 118 85 25 78 -28 3 hex 106 133 110 57 70 118 78 16 -29 3 hex 11 34 43 35 49 103 134 104 -30 3 hex 34 22 39 43 103 68 122 134 -31 3 hex 35 43 38 23 104 134 121 69 -32 3 hex 49 103 134 104 5 59 113 61 -33 3 hex 103 68 122 134 59 17 79 113 -34 3 hex 134 122 84 121 113 79 26 82 -35 3 hex 104 134 121 69 61 113 82 18 -36 3 hex 22 67 116 39 68 102 135 122 -37 3 hex 67 13 71 116 102 53 108 135 -38 3 hex 116 71 24 83 135 108 72 120 -39 3 hex 68 102 135 122 17 60 114 79 -40 3 hex 102 53 108 135 60 6 63 114 -41 3 hex 135 108 72 120 114 63 19 80 -42 3 hex 122 135 120 84 79 114 80 26 -43 3 hex 23 38 118 70 69 121 136 105 -44 3 hex 118 85 25 78 136 123 77 112 -45 3 hex 70 118 78 16 105 136 112 58 -46 3 hex 69 121 136 105 18 82 115 62 -47 3 hex 121 84 123 136 82 26 81 115 -48 3 hex 136 123 77 112 115 81 20 64 -49 3 hex 105 136 112 58 62 115 64 8 -50 3 hex 27 83 117 85 84 120 228 123 -51 3 hex 83 24 73 117 120 72 192 228 -52 3 hex 117 73 14 76 228 192 138 193 -53 3 hex 85 117 76 25 123 228 193 77 -54 3 hex 84 120 228 123 26 80 194 81 -55 3 hex 120 72 192 228 80 19 139 194 -56 3 hex 228 192 138 193 194 139 7 140 -57 3 hex 123 228 193 77 81 194 140 20 -58 3 hex 46 95 128 97 96 129 137 130 -59 3 hex 95 45 94 128 129 93 127 137 -60 3 hex 128 94 37 91 137 127 86 126 -61 3 hex 97 128 91 44 130 137 126 92 -62 3 hex 96 129 137 130 43 89 125 90 -63 3 hex 129 93 127 137 89 39 88 125 -64 3 hex 130 137 126 92 90 125 87 38 -65 3 hex 45 163 204 94 93 205 229 127 -66 3 hex 163 131 164 204 205 162 206 229 -67 3 hex 204 164 119 151 229 206 150 198 -68 3 hex 94 204 151 37 127 229 198 86 -69 3 hex 93 205 229 127 39 145 195 88 -70 3 hex 205 162 206 229 145 116 144 195 -71 3 hex 229 206 150 198 195 144 83 141 -72 3 hex 127 229 198 86 88 195 141 27 -73 3 hex 37 151 207 160 86 198 230 203 -74 3 hex 151 119 167 207 198 150 209 230 -75 3 hex 207 167 132 166 230 209 165 208 -76 3 hex 160 207 166 124 203 230 208 161 -77 3 hex 86 198 230 203 27 141 196 143 -78 3 hex 198 150 209 230 141 83 146 196 -79 3 hex 230 209 165 208 196 146 117 147 -80 3 hex 203 230 208 161 143 196 147 85 -81 3 hex 44 91 210 170 92 126 231 212 -82 3 hex 91 37 160 210 126 86 203 231 -83 3 hex 210 160 124 168 231 203 161 211 -84 3 hex 170 210 168 133 212 231 211 169 -85 3 hex 92 126 231 212 38 87 197 148 -86 3 hex 126 86 203 231 87 27 143 197 -87 3 hex 231 203 161 211 197 143 85 149 -88 3 hex 212 231 211 169 148 197 149 118 -89 3 hex 43 89 125 90 171 214 232 215 -90 3 hex 89 39 88 125 214 157 201 232 -91 3 hex 125 88 27 87 232 201 142 200 -92 3 hex 90 125 87 38 215 232 200 154 -93 3 hex 171 214 232 215 134 172 213 173 -94 3 hex 214 157 201 232 172 122 156 213 -95 3 hex 232 201 142 200 213 156 84 155 -96 3 hex 215 232 200 154 173 213 155 121 -97 3 hex 39 145 195 88 157 217 233 201 -98 3 hex 145 116 144 195 217 174 218 233 -99 3 hex 195 144 83 141 233 218 152 199 -100 3 hex 88 195 141 27 201 233 199 142 -101 3 hex 157 217 233 201 122 175 216 156 -102 3 hex 217 174 218 233 175 135 176 216 -103 3 hex 233 218 152 199 216 176 120 153 -104 3 hex 201 233 199 142 156 216 153 84 -105 3 hex 38 87 197 148 154 200 234 221 -106 3 hex 87 27 143 197 200 142 202 234 -107 3 hex 197 143 85 149 234 202 159 220 -108 3 hex 148 197 149 118 221 234 220 177 -109 3 hex 154 200 234 221 121 155 219 179 -110 3 hex 200 142 202 234 155 84 158 219 -111 3 hex 234 202 159 220 219 158 123 178 -112 3 hex 221 234 220 177 179 219 178 136 -113 3 hex 137 189 225 191 190 226 235 227 -114 3 hex 189 127 188 225 226 187 224 235 -115 3 hex 225 188 86 185 235 224 180 223 -116 3 hex 191 225 185 126 227 235 223 186 -117 3 hex 190 226 235 227 125 183 222 184 -118 3 hex 226 187 224 235 183 88 182 222 -119 3 hex 235 224 180 223 222 182 27 181 -120 3 hex 227 235 223 186 184 222 181 87 -DEAL:Test1.dim3:: Total number of cells = 137 -DEAL:Test1.dim3:: Total number of active cells = 120 -DEAL:Test2.dim3::Start -# This file was generated by the deal.II library. -# Date = 2000/11/6 - -# -# For a description of the UCD format see the AVS Developer's guide. -# -703 456 0 0 0 -1 0.00 0.00 0.00 -2 1.00 0.00 0.00 -3 1.00 0.00 1.00 -4 0.00 0.00 1.00 -5 0.00 1.00 0.00 -6 1.00 1.00 0.00 -7 1.00 1.00 1.00 -8 0.00 1.00 1.00 -9 0.500 0.00 0.00 -10 0.00 0.00 0.500 -11 0.00 0.500 0.00 -12 1.00 0.00 0.500 -13 1.00 0.500 0.00 -14 1.00 0.500 1.00 -15 0.500 0.00 1.00 -16 0.00 0.500 1.00 -17 0.500 1.00 0.00 -18 0.00 1.00 0.500 -19 1.00 1.00 0.500 -20 0.500 1.00 1.00 -21 0.500 0.00 0.500 -22 0.500 0.500 -0.366 -23 0.00 0.500 0.500 -24 1.00 0.500 0.500 -25 0.500 0.500 1.37 -26 0.500 1.00 0.500 -27 0.500 0.500 0.500 -28 0.250 0.00 0.00 -29 0.750 0.00 0.00 -30 0.00 0.00 0.250 -31 0.00 0.00 0.750 -32 0.00 0.250 0.00 -33 0.00 0.750 0.00 -34 1.00 0.00 0.250 -35 1.00 0.00 0.750 -36 1.00 0.250 0.00 -37 1.00 0.750 0.00 -38 1.00 0.250 1.00 -39 1.00 0.750 1.00 -40 0.250 0.00 1.00 -41 0.750 0.00 1.00 -42 0.00 0.250 1.00 -43 0.00 0.750 1.00 -44 0.250 1.00 0.00 -45 0.750 1.00 0.00 -46 0.00 1.00 0.250 -47 0.00 1.00 0.750 -48 1.00 1.00 0.250 -49 1.00 1.00 0.750 -50 0.250 1.00 1.00 -51 0.750 1.00 1.00 -52 0.500 0.00 0.250 -53 0.750 0.00 0.500 -54 0.500 0.00 0.750 -55 0.250 0.00 0.500 -56 0.500 0.202 -0.313 -57 0.798 0.500 -0.313 -58 0.500 0.798 -0.313 -59 0.202 0.500 -0.313 -60 0.00 0.500 0.250 -61 0.00 0.750 0.500 -62 0.00 0.500 0.750 -63 0.00 0.250 0.500 -64 1.00 0.500 0.250 -65 1.00 0.750 0.500 -66 1.00 0.500 0.750 -67 1.00 0.250 0.500 -68 0.500 0.202 1.31 -69 0.798 0.500 1.31 -70 0.500 0.798 1.31 -71 0.202 0.500 1.31 -72 0.500 1.00 0.250 -73 0.750 1.00 0.500 -74 0.500 1.00 0.750 -75 0.250 1.00 0.500 -76 0.500 0.250 0.500 -77 0.750 0.500 0.500 -78 0.500 0.750 0.500 -79 0.250 0.500 0.500 -80 0.500 0.500 0.0670 -81 0.500 0.500 0.933 -82 0.250 0.00 0.250 -83 0.750 0.00 0.250 -84 0.750 0.00 0.750 -85 0.250 0.00 0.750 -86 0.193 0.193 -0.249 -87 0.807 0.193 -0.249 -88 0.807 0.807 -0.249 -89 0.193 0.807 -0.249 -90 0.00 0.250 0.250 -91 0.00 0.750 0.250 -92 0.00 0.750 0.750 -93 0.00 0.250 0.750 -94 1.00 0.250 0.250 -95 1.00 0.750 0.250 -96 1.00 0.750 0.750 -97 1.00 0.250 0.750 -98 0.193 0.193 1.25 -99 0.807 0.193 1.25 -100 0.807 0.807 1.25 -101 0.193 0.807 1.25 -102 0.250 1.00 0.250 -103 0.750 1.00 0.250 -104 0.750 1.00 0.750 -105 0.250 1.00 0.750 -106 0.250 0.500 0.158 -107 0.750 0.500 0.158 -108 0.750 0.500 0.842 -109 0.250 0.500 0.842 -110 0.250 0.250 0.500 -111 0.750 0.250 0.500 -112 0.750 0.750 0.500 -113 0.250 0.750 0.500 -114 0.500 0.250 0.158 -115 0.500 0.750 0.158 -116 0.500 0.750 0.842 -117 0.500 0.250 0.842 -118 0.246 0.246 0.188 -119 0.754 0.246 0.188 -120 0.754 0.246 0.812 -121 0.246 0.246 0.812 -122 0.246 0.754 0.188 -123 0.754 0.754 0.188 -124 0.754 0.754 0.812 -125 0.246 0.754 0.812 -126 0.125 0.00 0.00 -127 0.375 0.00 0.00 -128 0.625 0.00 0.00 -129 0.875 0.00 0.00 -130 0.00 0.00 0.125 -131 0.00 0.00 0.375 -132 0.00 0.00 0.625 -133 0.00 0.00 0.875 -134 0.00 0.125 0.00 -135 0.00 0.375 0.00 -136 0.00 0.625 0.00 -137 0.00 0.875 0.00 -138 1.00 0.00 0.125 -139 1.00 0.00 0.375 -140 1.00 0.00 0.625 -141 1.00 0.00 0.875 -142 1.00 0.125 0.00 -143 1.00 0.375 0.00 -144 1.00 0.625 0.00 -145 1.00 0.875 0.00 -146 1.00 0.125 1.00 -147 1.00 0.375 1.00 -148 1.00 0.625 1.00 -149 1.00 0.875 1.00 -150 0.125 0.00 1.00 -151 0.375 0.00 1.00 -152 0.625 0.00 1.00 -153 0.875 0.00 1.00 -154 0.00 0.125 1.00 -155 0.00 0.375 1.00 -156 0.00 0.625 1.00 -157 0.00 0.875 1.00 -158 0.125 1.00 0.00 -159 0.375 1.00 0.00 -160 0.625 1.00 0.00 -161 0.875 1.00 0.00 -162 0.00 1.00 0.125 -163 0.00 1.00 0.375 -164 0.00 1.00 0.625 -165 0.00 1.00 0.875 -166 1.00 1.00 0.125 -167 1.00 1.00 0.375 -168 1.00 1.00 0.625 -169 1.00 1.00 0.875 -170 0.125 1.00 1.00 -171 0.375 1.00 1.00 -172 0.625 1.00 1.00 -173 0.875 1.00 1.00 -174 0.500 0.00 0.125 -175 0.500 0.00 0.375 -176 0.625 0.00 0.500 -177 0.875 0.00 0.500 -178 0.500 0.00 0.625 -179 0.500 0.00 0.875 -180 0.125 0.00 0.500 -181 0.375 0.00 0.500 -182 0.500 0.0504 -0.240 -183 0.500 0.349 -0.353 -184 0.651 0.500 -0.353 -185 0.950 0.500 -0.240 -186 0.500 0.651 -0.353 -187 0.500 0.950 -0.240 -188 0.0504 0.500 -0.240 -189 0.349 0.500 -0.353 -190 0.00 0.500 0.125 -191 0.00 0.500 0.375 -192 0.00 0.625 0.500 -193 0.00 0.875 0.500 -194 0.00 0.500 0.625 -195 0.00 0.500 0.875 -196 0.00 0.125 0.500 -197 0.00 0.375 0.500 -198 1.00 0.500 0.125 -199 1.00 0.500 0.375 -200 1.00 0.625 0.500 -201 1.00 0.875 0.500 -202 1.00 0.500 0.625 -203 1.00 0.500 0.875 -204 1.00 0.125 0.500 -205 1.00 0.375 0.500 -206 0.500 0.0504 1.24 -207 0.500 0.349 1.35 -208 0.651 0.500 1.35 -209 0.950 0.500 1.24 -210 0.500 0.651 1.35 -211 0.500 0.950 1.24 -212 0.0504 0.500 1.24 -213 0.349 0.500 1.35 -214 0.500 1.00 0.125 -215 0.500 1.00 0.375 -216 0.625 1.00 0.500 -217 0.875 1.00 0.500 -218 0.500 1.00 0.625 -219 0.500 1.00 0.875 -220 0.125 1.00 0.500 -221 0.375 1.00 0.500 -222 0.500 0.125 0.500 -223 0.875 0.500 0.500 -224 0.500 0.875 0.500 -225 0.125 0.500 0.500 -226 0.500 0.500 -0.150 -227 0.500 0.500 1.15 -228 0.250 0.00 0.125 -229 0.375 0.00 0.250 -230 0.250 0.00 0.375 -231 0.125 0.00 0.250 -232 0.750 0.00 0.125 -233 0.875 0.00 0.250 -234 0.750 0.00 0.375 -235 0.625 0.00 0.250 -236 0.750 0.00 0.625 -237 0.875 0.00 0.750 -238 0.750 0.00 0.875 -239 0.625 0.00 0.750 -240 0.250 0.00 0.625 -241 0.375 0.00 0.750 -242 0.250 0.00 0.875 -243 0.125 0.00 0.750 -244 0.196 0.0598 -0.181 -245 0.344 0.192 -0.294 -246 0.192 0.344 -0.294 -247 0.0598 0.196 -0.181 -248 0.804 0.0598 -0.181 -249 0.940 0.196 -0.181 -250 0.808 0.344 -0.294 -251 0.656 0.192 -0.294 -252 0.808 0.656 -0.294 -253 0.940 0.804 -0.181 -254 0.804 0.940 -0.181 -255 0.656 0.808 -0.294 -256 0.192 0.656 -0.294 -257 0.344 0.808 -0.294 -258 0.196 0.940 -0.181 -259 0.0598 0.804 -0.181 -260 0.00 0.250 0.125 -261 0.00 0.375 0.250 -262 0.00 0.250 0.375 -263 0.00 0.125 0.250 -264 0.00 0.750 0.125 -265 0.00 0.875 0.250 -266 0.00 0.750 0.375 -267 0.00 0.625 0.250 -268 0.00 0.750 0.625 -269 0.00 0.875 0.750 -270 0.00 0.750 0.875 -271 0.00 0.625 0.750 -272 0.00 0.250 0.625 -273 0.00 0.375 0.750 -274 0.00 0.250 0.875 -275 0.00 0.125 0.750 -276 1.00 0.250 0.125 -277 1.00 0.375 0.250 -278 1.00 0.250 0.375 -279 1.00 0.125 0.250 -280 1.00 0.750 0.125 -281 1.00 0.875 0.250 -282 1.00 0.750 0.375 -283 1.00 0.625 0.250 -284 1.00 0.750 0.625 -285 1.00 0.875 0.750 -286 1.00 0.750 0.875 -287 1.00 0.625 0.750 -288 1.00 0.250 0.625 -289 1.00 0.375 0.750 -290 1.00 0.250 0.875 -291 1.00 0.125 0.750 -292 0.196 0.0598 1.18 -293 0.344 0.192 1.29 -294 0.192 0.344 1.29 -295 0.0598 0.196 1.18 -296 0.804 0.0598 1.18 -297 0.940 0.196 1.18 -298 0.808 0.344 1.29 -299 0.656 0.192 1.29 -300 0.808 0.656 1.29 -301 0.940 0.804 1.18 -302 0.804 0.940 1.18 -303 0.656 0.808 1.29 -304 0.192 0.656 1.29 -305 0.344 0.808 1.29 -306 0.196 0.940 1.18 -307 0.0598 0.804 1.18 -308 0.250 1.00 0.125 -309 0.375 1.00 0.250 -310 0.250 1.00 0.375 -311 0.125 1.00 0.250 -312 0.750 1.00 0.125 -313 0.875 1.00 0.250 -314 0.750 1.00 0.375 -315 0.625 1.00 0.250 -316 0.750 1.00 0.625 -317 0.875 1.00 0.750 -318 0.750 1.00 0.875 -319 0.625 1.00 0.750 -320 0.250 1.00 0.625 -321 0.375 1.00 0.750 -322 0.250 1.00 0.875 -323 0.125 1.00 0.750 -324 0.226 0.500 -0.0774 -325 0.375 0.500 0.113 -326 0.250 0.500 0.329 -327 0.125 0.500 0.204 -328 0.774 0.500 -0.0774 -329 0.875 0.500 0.204 -330 0.750 0.500 0.329 -331 0.625 0.500 0.113 -332 0.750 0.500 0.671 -333 0.875 0.500 0.796 -334 0.774 0.500 1.08 -335 0.625 0.500 0.887 -336 0.250 0.500 0.671 -337 0.375 0.500 0.887 -338 0.226 0.500 1.08 -339 0.125 0.500 0.796 -340 0.250 0.125 0.500 -341 0.375 0.250 0.500 -342 0.250 0.375 0.500 -343 0.125 0.250 0.500 -344 0.750 0.125 0.500 -345 0.875 0.250 0.500 -346 0.750 0.375 0.500 -347 0.625 0.250 0.500 -348 0.750 0.625 0.500 -349 0.875 0.750 0.500 -350 0.750 0.875 0.500 -351 0.625 0.750 0.500 -352 0.250 0.625 0.500 -353 0.375 0.750 0.500 -354 0.250 0.875 0.500 -355 0.125 0.750 0.500 -356 0.500 0.226 -0.0774 -357 0.500 0.375 0.113 -358 0.500 0.250 0.329 -359 0.500 0.125 0.204 -360 0.500 0.774 -0.0774 -361 0.500 0.875 0.204 -362 0.500 0.750 0.329 -363 0.500 0.625 0.113 -364 0.500 0.750 0.671 -365 0.500 0.875 0.796 -366 0.500 0.774 1.08 -367 0.500 0.625 0.887 -368 0.500 0.250 0.671 -369 0.500 0.375 0.887 -370 0.500 0.226 1.08 -371 0.500 0.125 0.796 -372 0.248 0.123 0.219 -373 0.373 0.248 0.173 -374 0.248 0.373 0.173 -375 0.123 0.248 0.219 -376 0.219 0.219 -0.0305 -377 0.248 0.248 0.344 -378 0.752 0.123 0.219 -379 0.877 0.248 0.219 -380 0.752 0.373 0.173 -381 0.627 0.248 0.173 -382 0.781 0.219 -0.0305 -383 0.752 0.248 0.344 -384 0.752 0.123 0.781 -385 0.877 0.248 0.781 -386 0.752 0.373 0.827 -387 0.627 0.248 0.827 -388 0.752 0.248 0.656 -389 0.781 0.219 1.03 -390 0.248 0.123 0.781 -391 0.373 0.248 0.827 -392 0.248 0.373 0.827 -393 0.123 0.248 0.781 -394 0.248 0.248 0.656 -395 0.219 0.219 1.03 -396 0.248 0.627 0.173 -397 0.373 0.752 0.173 -398 0.248 0.877 0.219 -399 0.123 0.752 0.219 -400 0.219 0.781 -0.0305 -401 0.248 0.752 0.344 -402 0.752 0.627 0.173 -403 0.877 0.752 0.219 -404 0.752 0.877 0.219 -405 0.627 0.752 0.173 -406 0.781 0.781 -0.0305 -407 0.752 0.752 0.344 -408 0.752 0.627 0.827 -409 0.877 0.752 0.781 -410 0.752 0.877 0.781 -411 0.627 0.752 0.827 -412 0.752 0.752 0.656 -413 0.781 0.781 1.03 -414 0.248 0.627 0.827 -415 0.373 0.752 0.827 -416 0.248 0.877 0.781 -417 0.123 0.752 0.781 -418 0.248 0.752 0.656 -419 0.219 0.781 1.03 -420 0.125 0.00 0.125 -421 0.375 0.00 0.125 -422 0.375 0.00 0.375 -423 0.125 0.00 0.375 -424 0.625 0.00 0.125 -425 0.875 0.00 0.125 -426 0.875 0.00 0.375 -427 0.625 0.00 0.375 -428 0.625 0.00 0.625 -429 0.875 0.00 0.625 -430 0.875 0.00 0.875 -431 0.625 0.00 0.875 -432 0.125 0.00 0.625 -433 0.375 0.00 0.625 -434 0.375 0.00 0.875 -435 0.125 0.00 0.875 -436 0.0727 0.0727 -0.120 -437 0.344 0.0482 -0.222 -438 0.344 0.344 -0.337 -439 0.0482 0.344 -0.222 -440 0.656 0.0482 -0.222 -441 0.927 0.0727 -0.120 -442 0.952 0.344 -0.222 -443 0.656 0.344 -0.337 -444 0.656 0.656 -0.337 -445 0.952 0.656 -0.222 -446 0.927 0.927 -0.120 -447 0.656 0.952 -0.222 -448 0.0482 0.656 -0.222 -449 0.344 0.656 -0.337 -450 0.344 0.952 -0.222 -451 0.0727 0.927 -0.120 -452 0.00 0.125 0.125 -453 0.00 0.375 0.125 -454 0.00 0.375 0.375 -455 0.00 0.125 0.375 -456 0.00 0.625 0.125 -457 0.00 0.875 0.125 -458 0.00 0.875 0.375 -459 0.00 0.625 0.375 -460 0.00 0.625 0.625 -461 0.00 0.875 0.625 -462 0.00 0.875 0.875 -463 0.00 0.625 0.875 -464 0.00 0.125 0.625 -465 0.00 0.375 0.625 -466 0.00 0.375 0.875 -467 0.00 0.125 0.875 -468 1.00 0.125 0.125 -469 1.00 0.375 0.125 -470 1.00 0.375 0.375 -471 1.00 0.125 0.375 -472 1.00 0.625 0.125 -473 1.00 0.875 0.125 -474 1.00 0.875 0.375 -475 1.00 0.625 0.375 -476 1.00 0.625 0.625 -477 1.00 0.875 0.625 -478 1.00 0.875 0.875 -479 1.00 0.625 0.875 -480 1.00 0.125 0.625 -481 1.00 0.375 0.625 -482 1.00 0.375 0.875 -483 1.00 0.125 0.875 -484 0.0727 0.0727 1.12 -485 0.344 0.0482 1.22 -486 0.344 0.344 1.34 -487 0.0482 0.344 1.22 -488 0.656 0.0482 1.22 -489 0.927 0.0727 1.12 -490 0.952 0.344 1.22 -491 0.656 0.344 1.34 -492 0.656 0.656 1.34 -493 0.952 0.656 1.22 -494 0.927 0.927 1.12 -495 0.656 0.952 1.22 -496 0.0482 0.656 1.22 -497 0.344 0.656 1.34 -498 0.344 0.952 1.22 -499 0.0727 0.927 1.12 -500 0.125 1.00 0.125 -501 0.375 1.00 0.125 -502 0.375 1.00 0.375 -503 0.125 1.00 0.375 -504 0.625 1.00 0.125 -505 0.875 1.00 0.125 -506 0.875 1.00 0.375 -507 0.625 1.00 0.375 -508 0.625 1.00 0.625 -509 0.875 1.00 0.625 -510 0.875 1.00 0.875 -511 0.625 1.00 0.875 -512 0.125 1.00 0.625 -513 0.375 1.00 0.625 -514 0.375 1.00 0.875 -515 0.125 1.00 0.875 -516 0.113 0.500 0.0238 -517 0.363 0.500 -0.113 -518 0.125 0.500 0.352 -519 0.637 0.500 -0.113 -520 0.887 0.500 0.0238 -521 0.875 0.500 0.352 -522 0.875 0.500 0.648 -523 0.887 0.500 0.976 -524 0.637 0.500 1.11 -525 0.125 0.500 0.648 -526 0.363 0.500 1.11 -527 0.113 0.500 0.976 -528 0.125 0.125 0.500 -529 0.375 0.125 0.500 -530 0.125 0.375 0.500 -531 0.625 0.125 0.500 -532 0.875 0.125 0.500 -533 0.875 0.375 0.500 -534 0.875 0.625 0.500 -535 0.875 0.875 0.500 -536 0.625 0.875 0.500 -537 0.125 0.625 0.500 -538 0.375 0.875 0.500 -539 0.125 0.875 0.500 -540 0.500 0.113 0.0238 -541 0.500 0.363 -0.113 -542 0.500 0.125 0.352 -543 0.500 0.637 -0.113 -544 0.500 0.887 0.0238 -545 0.500 0.875 0.352 -546 0.500 0.875 0.648 -547 0.500 0.887 0.976 -548 0.500 0.637 1.11 -549 0.500 0.125 0.648 -550 0.500 0.363 1.11 -551 0.500 0.113 0.976 -552 0.110 0.235 0.0473 -553 0.360 0.223 -0.0539 -554 0.374 0.249 0.337 -555 0.124 0.249 0.360 -556 0.124 0.124 0.235 -557 0.374 0.124 0.212 -558 0.374 0.374 0.143 -559 0.124 0.374 0.212 -560 0.235 0.110 0.0473 -561 0.223 0.360 -0.0539 -562 0.249 0.374 0.337 -563 0.249 0.124 0.360 -564 0.640 0.223 -0.0539 -565 0.890 0.235 0.0473 -566 0.876 0.249 0.360 -567 0.626 0.249 0.337 -568 0.626 0.124 0.212 -569 0.876 0.124 0.235 -570 0.876 0.374 0.212 -571 0.626 0.374 0.143 -572 0.765 0.110 0.0473 -573 0.777 0.360 -0.0539 -574 0.751 0.374 0.337 -575 0.751 0.124 0.360 -576 0.626 0.249 0.663 -577 0.876 0.249 0.640 -578 0.890 0.235 0.953 -579 0.640 0.223 1.05 -580 0.626 0.124 0.788 -581 0.876 0.124 0.765 -582 0.876 0.374 0.788 -583 0.626 0.374 0.857 -584 0.751 0.124 0.640 -585 0.751 0.374 0.663 -586 0.777 0.360 1.05 -587 0.765 0.110 0.953 -588 0.124 0.249 0.640 -589 0.374 0.249 0.663 -590 0.360 0.223 1.05 -591 0.110 0.235 0.953 -592 0.124 0.124 0.765 -593 0.374 0.124 0.788 -594 0.374 0.374 0.857 -595 0.124 0.374 0.788 -596 0.249 0.124 0.640 -597 0.249 0.374 0.663 -598 0.223 0.360 1.05 -599 0.235 0.110 0.953 -600 0.110 0.765 0.0473 -601 0.360 0.777 -0.0539 -602 0.374 0.751 0.337 -603 0.124 0.751 0.360 -604 0.124 0.626 0.212 -605 0.374 0.626 0.143 -606 0.374 0.876 0.212 -607 0.124 0.876 0.235 -608 0.223 0.640 -0.0539 -609 0.235 0.890 0.0473 -610 0.249 0.876 0.360 -611 0.249 0.626 0.337 -612 0.640 0.777 -0.0539 -613 0.890 0.765 0.0473 -614 0.876 0.751 0.360 -615 0.626 0.751 0.337 -616 0.626 0.626 0.143 -617 0.876 0.626 0.212 -618 0.876 0.876 0.235 -619 0.626 0.876 0.212 -620 0.777 0.640 -0.0539 -621 0.765 0.890 0.0473 -622 0.751 0.876 0.360 -623 0.751 0.626 0.337 -624 0.626 0.751 0.663 -625 0.876 0.751 0.640 -626 0.890 0.765 0.953 -627 0.640 0.777 1.05 -628 0.626 0.626 0.857 -629 0.876 0.626 0.788 -630 0.876 0.876 0.765 -631 0.626 0.876 0.788 -632 0.751 0.626 0.663 -633 0.751 0.876 0.640 -634 0.765 0.890 0.953 -635 0.777 0.640 1.05 -636 0.124 0.751 0.640 -637 0.374 0.751 0.663 -638 0.360 0.777 1.05 -639 0.110 0.765 0.953 -640 0.124 0.626 0.788 -641 0.374 0.626 0.857 -642 0.374 0.876 0.788 -643 0.124 0.876 0.765 -644 0.249 0.626 0.663 -645 0.249 0.876 0.640 -646 0.235 0.890 0.953 -647 0.223 0.640 1.05 -648 0.114 0.114 0.0795 -649 0.366 0.106 0.0265 -650 0.374 0.124 0.356 -651 0.124 0.124 0.367 -652 0.106 0.366 0.0265 -653 0.361 0.361 -0.0867 -654 0.124 0.374 0.356 -655 0.634 0.106 0.0265 -656 0.886 0.114 0.0795 -657 0.876 0.124 0.367 -658 0.626 0.124 0.356 -659 0.639 0.361 -0.0867 -660 0.894 0.366 0.0265 -661 0.876 0.374 0.356 -662 0.626 0.124 0.644 -663 0.876 0.124 0.633 -664 0.886 0.114 0.920 -665 0.634 0.106 0.973 -666 0.876 0.374 0.644 -667 0.894 0.366 0.973 -668 0.639 0.361 1.09 -669 0.124 0.124 0.633 -670 0.374 0.124 0.644 -671 0.366 0.106 0.973 -672 0.114 0.114 0.920 -673 0.124 0.374 0.644 -674 0.361 0.361 1.09 -675 0.106 0.366 0.973 -676 0.106 0.634 0.0265 -677 0.361 0.639 -0.0867 -678 0.124 0.626 0.356 -679 0.114 0.886 0.0795 -680 0.366 0.894 0.0265 -681 0.374 0.876 0.356 -682 0.124 0.876 0.367 -683 0.639 0.639 -0.0867 -684 0.894 0.634 0.0265 -685 0.876 0.626 0.356 -686 0.634 0.894 0.0265 -687 0.886 0.886 0.0795 -688 0.876 0.876 0.367 -689 0.626 0.876 0.356 -690 0.876 0.626 0.644 -691 0.894 0.634 0.973 -692 0.639 0.639 1.09 -693 0.626 0.876 0.644 -694 0.876 0.876 0.633 -695 0.886 0.886 0.920 -696 0.634 0.894 0.973 -697 0.124 0.626 0.644 -698 0.361 0.639 1.09 -699 0.106 0.634 0.973 -700 0.124 0.876 0.633 -701 0.374 0.876 0.644 -702 0.366 0.894 0.973 -703 0.114 0.886 0.920 -1 3 hex 118 114 76 110 106 80 27 79 -2 3 hex 114 119 111 76 80 107 77 27 -3 3 hex 76 111 120 117 27 77 108 81 -4 3 hex 110 76 117 121 79 27 81 109 -5 3 hex 106 80 27 79 122 115 78 113 -6 3 hex 80 107 77 27 115 123 112 78 -7 3 hex 27 77 108 81 78 112 124 116 -8 3 hex 79 27 81 109 113 78 116 125 -9 3 hex 1 126 420 130 134 436 648 452 -10 3 hex 126 28 228 420 436 244 560 648 -11 3 hex 420 228 82 231 648 560 372 556 -12 3 hex 130 420 231 30 452 648 556 263 -13 3 hex 134 436 648 452 32 247 552 260 -14 3 hex 436 244 560 648 247 86 376 552 -15 3 hex 648 560 372 556 552 376 118 375 -16 3 hex 452 648 556 263 260 552 375 90 -17 3 hex 28 127 421 228 244 437 649 560 -18 3 hex 127 9 174 421 437 182 540 649 -19 3 hex 421 174 52 229 649 540 359 557 -20 3 hex 228 421 229 82 560 649 557 372 -21 3 hex 244 437 649 560 86 245 553 376 -22 3 hex 437 182 540 649 245 56 356 553 -23 3 hex 649 540 359 557 553 356 114 373 -24 3 hex 560 649 557 372 376 553 373 118 -25 3 hex 82 229 422 230 372 557 650 563 -26 3 hex 229 52 175 422 557 359 542 650 -27 3 hex 422 175 21 181 650 542 222 529 -28 3 hex 230 422 181 55 563 650 529 340 -29 3 hex 372 557 650 563 118 373 554 377 -30 3 hex 557 359 542 650 373 114 358 554 -31 3 hex 650 542 222 529 554 358 76 341 -32 3 hex 563 650 529 340 377 554 341 110 -33 3 hex 30 231 423 131 263 556 651 455 -34 3 hex 231 82 230 423 556 372 563 651 -35 3 hex 423 230 55 180 651 563 340 528 -36 3 hex 131 423 180 10 455 651 528 196 -37 3 hex 263 556 651 455 90 375 555 262 -38 3 hex 556 372 563 651 375 118 377 555 -39 3 hex 651 563 340 528 555 377 110 343 -40 3 hex 455 651 528 196 262 555 343 63 -41 3 hex 32 247 552 260 135 439 652 453 -42 3 hex 247 86 376 552 439 246 561 652 -43 3 hex 552 376 118 375 652 561 374 559 -44 3 hex 260 552 375 90 453 652 559 261 -45 3 hex 135 439 652 453 11 188 516 190 -46 3 hex 439 246 561 652 188 59 324 516 -47 3 hex 652 561 374 559 516 324 106 327 -48 3 hex 453 652 559 261 190 516 327 60 -49 3 hex 86 245 553 376 246 438 653 561 -50 3 hex 245 56 356 553 438 183 541 653 -51 3 hex 553 356 114 373 653 541 357 558 -52 3 hex 376 553 373 118 561 653 558 374 -53 3 hex 246 438 653 561 59 189 517 324 -54 3 hex 438 183 541 653 189 22 226 517 -55 3 hex 653 541 357 558 517 226 80 325 -56 3 hex 561 653 558 374 324 517 325 106 -57 3 hex 90 375 555 262 261 559 654 454 -58 3 hex 375 118 377 555 559 374 562 654 -59 3 hex 555 377 110 343 654 562 342 530 -60 3 hex 262 555 343 63 454 654 530 197 -61 3 hex 261 559 654 454 60 327 518 191 -62 3 hex 559 374 562 654 327 106 326 518 -63 3 hex 654 562 342 530 518 326 79 225 -64 3 hex 454 654 530 197 191 518 225 23 -65 3 hex 9 128 424 174 182 440 655 540 -66 3 hex 128 29 232 424 440 248 572 655 -67 3 hex 424 232 83 235 655 572 378 568 -68 3 hex 174 424 235 52 540 655 568 359 -69 3 hex 182 440 655 540 56 251 564 356 -70 3 hex 440 248 572 655 251 87 382 564 -71 3 hex 655 572 378 568 564 382 119 381 -72 3 hex 540 655 568 359 356 564 381 114 -73 3 hex 29 129 425 232 248 441 656 572 -74 3 hex 129 2 138 425 441 142 468 656 -75 3 hex 425 138 34 233 656 468 279 569 -76 3 hex 232 425 233 83 572 656 569 378 -77 3 hex 248 441 656 572 87 249 565 382 -78 3 hex 441 142 468 656 249 36 276 565 -79 3 hex 656 468 279 569 565 276 94 379 -80 3 hex 572 656 569 378 382 565 379 119 -81 3 hex 83 233 426 234 378 569 657 575 -82 3 hex 233 34 139 426 569 279 471 657 -83 3 hex 426 139 12 177 657 471 204 532 -84 3 hex 234 426 177 53 575 657 532 344 -85 3 hex 378 569 657 575 119 379 566 383 -86 3 hex 569 279 471 657 379 94 278 566 -87 3 hex 657 471 204 532 566 278 67 345 -88 3 hex 575 657 532 344 383 566 345 111 -89 3 hex 52 235 427 175 359 568 658 542 -90 3 hex 235 83 234 427 568 378 575 658 -91 3 hex 427 234 53 176 658 575 344 531 -92 3 hex 175 427 176 21 542 658 531 222 -93 3 hex 359 568 658 542 114 381 567 358 -94 3 hex 568 378 575 658 381 119 383 567 -95 3 hex 658 575 344 531 567 383 111 347 -96 3 hex 542 658 531 222 358 567 347 76 -97 3 hex 56 251 564 356 183 443 659 541 -98 3 hex 251 87 382 564 443 250 573 659 -99 3 hex 564 382 119 381 659 573 380 571 -100 3 hex 356 564 381 114 541 659 571 357 -101 3 hex 183 443 659 541 22 184 519 226 -102 3 hex 443 250 573 659 184 57 328 519 -103 3 hex 659 573 380 571 519 328 107 331 -104 3 hex 541 659 571 357 226 519 331 80 -105 3 hex 87 249 565 382 250 442 660 573 -106 3 hex 249 36 276 565 442 143 469 660 -107 3 hex 565 276 94 379 660 469 277 570 -108 3 hex 382 565 379 119 573 660 570 380 -109 3 hex 250 442 660 573 57 185 520 328 -110 3 hex 442 143 469 660 185 13 198 520 -111 3 hex 660 469 277 570 520 198 64 329 -112 3 hex 573 660 570 380 328 520 329 107 -113 3 hex 119 379 566 383 380 570 661 574 -114 3 hex 379 94 278 566 570 277 470 661 -115 3 hex 566 278 67 345 661 470 205 533 -116 3 hex 383 566 345 111 574 661 533 346 -117 3 hex 380 570 661 574 107 329 521 330 -118 3 hex 570 277 470 661 329 64 199 521 -119 3 hex 661 470 205 533 521 199 24 223 -120 3 hex 574 661 533 346 330 521 223 77 -121 3 hex 21 176 428 178 222 531 662 549 -122 3 hex 176 53 236 428 531 344 584 662 -123 3 hex 428 236 84 239 662 584 384 580 -124 3 hex 178 428 239 54 549 662 580 371 -125 3 hex 222 531 662 549 76 347 576 368 -126 3 hex 531 344 584 662 347 111 388 576 -127 3 hex 662 584 384 580 576 388 120 387 -128 3 hex 549 662 580 371 368 576 387 117 -129 3 hex 53 177 429 236 344 532 663 584 -130 3 hex 177 12 140 429 532 204 480 663 -131 3 hex 429 140 35 237 663 480 291 581 -132 3 hex 236 429 237 84 584 663 581 384 -133 3 hex 344 532 663 584 111 345 577 388 -134 3 hex 532 204 480 663 345 67 288 577 -135 3 hex 663 480 291 581 577 288 97 385 -136 3 hex 584 663 581 384 388 577 385 120 -137 3 hex 84 237 430 238 384 581 664 587 -138 3 hex 237 35 141 430 581 291 483 664 -139 3 hex 430 141 3 153 664 483 146 489 -140 3 hex 238 430 153 41 587 664 489 296 -141 3 hex 384 581 664 587 120 385 578 389 -142 3 hex 581 291 483 664 385 97 290 578 -143 3 hex 664 483 146 489 578 290 38 297 -144 3 hex 587 664 489 296 389 578 297 99 -145 3 hex 54 239 431 179 371 580 665 551 -146 3 hex 239 84 238 431 580 384 587 665 -147 3 hex 431 238 41 152 665 587 296 488 -148 3 hex 179 431 152 15 551 665 488 206 -149 3 hex 371 580 665 551 117 387 579 370 -150 3 hex 580 384 587 665 387 120 389 579 -151 3 hex 665 587 296 488 579 389 99 299 -152 3 hex 551 665 488 206 370 579 299 68 -153 3 hex 111 345 577 388 346 533 666 585 -154 3 hex 345 67 288 577 533 205 481 666 -155 3 hex 577 288 97 385 666 481 289 582 -156 3 hex 388 577 385 120 585 666 582 386 -157 3 hex 346 533 666 585 77 223 522 332 -158 3 hex 533 205 481 666 223 24 202 522 -159 3 hex 666 481 289 582 522 202 66 333 -160 3 hex 585 666 582 386 332 522 333 108 -161 3 hex 120 385 578 389 386 582 667 586 -162 3 hex 385 97 290 578 582 289 482 667 -163 3 hex 578 290 38 297 667 482 147 490 -164 3 hex 389 578 297 99 586 667 490 298 -165 3 hex 386 582 667 586 108 333 523 334 -166 3 hex 582 289 482 667 333 66 203 523 -167 3 hex 667 482 147 490 523 203 14 209 -168 3 hex 586 667 490 298 334 523 209 69 -169 3 hex 117 387 579 370 369 583 668 550 -170 3 hex 387 120 389 579 583 386 586 668 -171 3 hex 579 389 99 299 668 586 298 491 -172 3 hex 370 579 299 68 550 668 491 207 -173 3 hex 369 583 668 550 81 335 524 227 -174 3 hex 583 386 586 668 335 108 334 524 -175 3 hex 668 586 298 491 524 334 69 208 -176 3 hex 550 668 491 207 227 524 208 25 -177 3 hex 10 180 432 132 196 528 669 464 -178 3 hex 180 55 240 432 528 340 596 669 -179 3 hex 432 240 85 243 669 596 390 592 -180 3 hex 132 432 243 31 464 669 592 275 -181 3 hex 196 528 669 464 63 343 588 272 -182 3 hex 528 340 596 669 343 110 394 588 -183 3 hex 669 596 390 592 588 394 121 393 -184 3 hex 464 669 592 275 272 588 393 93 -185 3 hex 55 181 433 240 340 529 670 596 -186 3 hex 181 21 178 433 529 222 549 670 -187 3 hex 433 178 54 241 670 549 371 593 -188 3 hex 240 433 241 85 596 670 593 390 -189 3 hex 340 529 670 596 110 341 589 394 -190 3 hex 529 222 549 670 341 76 368 589 -191 3 hex 670 549 371 593 589 368 117 391 -192 3 hex 596 670 593 390 394 589 391 121 -193 3 hex 85 241 434 242 390 593 671 599 -194 3 hex 241 54 179 434 593 371 551 671 -195 3 hex 434 179 15 151 671 551 206 485 -196 3 hex 242 434 151 40 599 671 485 292 -197 3 hex 390 593 671 599 121 391 590 395 -198 3 hex 593 371 551 671 391 117 370 590 -199 3 hex 671 551 206 485 590 370 68 293 -200 3 hex 599 671 485 292 395 590 293 98 -201 3 hex 31 243 435 133 275 592 672 467 -202 3 hex 243 85 242 435 592 390 599 672 -203 3 hex 435 242 40 150 672 599 292 484 -204 3 hex 133 435 150 4 467 672 484 154 -205 3 hex 275 592 672 467 93 393 591 274 -206 3 hex 592 390 599 672 393 121 395 591 -207 3 hex 672 599 292 484 591 395 98 295 -208 3 hex 467 672 484 154 274 591 295 42 -209 3 hex 63 343 588 272 197 530 673 465 -210 3 hex 343 110 394 588 530 342 597 673 -211 3 hex 588 394 121 393 673 597 392 595 -212 3 hex 272 588 393 93 465 673 595 273 -213 3 hex 197 530 673 465 23 225 525 194 -214 3 hex 530 342 597 673 225 79 336 525 -215 3 hex 673 597 392 595 525 336 109 339 -216 3 hex 465 673 595 273 194 525 339 62 -217 3 hex 121 391 590 395 392 594 674 598 -218 3 hex 391 117 370 590 594 369 550 674 -219 3 hex 590 370 68 293 674 550 207 486 -220 3 hex 395 590 293 98 598 674 486 294 -221 3 hex 392 594 674 598 109 337 526 338 -222 3 hex 594 369 550 674 337 81 227 526 -223 3 hex 674 550 207 486 526 227 25 213 -224 3 hex 598 674 486 294 338 526 213 71 -225 3 hex 93 393 591 274 273 595 675 466 -226 3 hex 393 121 395 591 595 392 598 675 -227 3 hex 591 395 98 295 675 598 294 487 -228 3 hex 274 591 295 42 466 675 487 155 -229 3 hex 273 595 675 466 62 339 527 195 -230 3 hex 595 392 598 675 339 109 338 527 -231 3 hex 675 598 294 487 527 338 71 212 -232 3 hex 466 675 487 155 195 527 212 16 -233 3 hex 11 188 516 190 136 448 676 456 -234 3 hex 188 59 324 516 448 256 608 676 -235 3 hex 516 324 106 327 676 608 396 604 -236 3 hex 190 516 327 60 456 676 604 267 -237 3 hex 136 448 676 456 33 259 600 264 -238 3 hex 448 256 608 676 259 89 400 600 -239 3 hex 676 608 396 604 600 400 122 399 -240 3 hex 456 676 604 267 264 600 399 91 -241 3 hex 59 189 517 324 256 449 677 608 -242 3 hex 189 22 226 517 449 186 543 677 -243 3 hex 517 226 80 325 677 543 363 605 -244 3 hex 324 517 325 106 608 677 605 396 -245 3 hex 256 449 677 608 89 257 601 400 -246 3 hex 449 186 543 677 257 58 360 601 -247 3 hex 677 543 363 605 601 360 115 397 -248 3 hex 608 677 605 396 400 601 397 122 -249 3 hex 60 327 518 191 267 604 678 459 -250 3 hex 327 106 326 518 604 396 611 678 -251 3 hex 518 326 79 225 678 611 352 537 -252 3 hex 191 518 225 23 459 678 537 192 -253 3 hex 267 604 678 459 91 399 603 266 -254 3 hex 604 396 611 678 399 122 401 603 -255 3 hex 678 611 352 537 603 401 113 355 -256 3 hex 459 678 537 192 266 603 355 61 -257 3 hex 33 259 600 264 137 451 679 457 -258 3 hex 259 89 400 600 451 258 609 679 -259 3 hex 600 400 122 399 679 609 398 607 -260 3 hex 264 600 399 91 457 679 607 265 -261 3 hex 137 451 679 457 5 158 500 162 -262 3 hex 451 258 609 679 158 44 308 500 -263 3 hex 679 609 398 607 500 308 102 311 -264 3 hex 457 679 607 265 162 500 311 46 -265 3 hex 89 257 601 400 258 450 680 609 -266 3 hex 257 58 360 601 450 187 544 680 -267 3 hex 601 360 115 397 680 544 361 606 -268 3 hex 400 601 397 122 609 680 606 398 -269 3 hex 258 450 680 609 44 159 501 308 -270 3 hex 450 187 544 680 159 17 214 501 -271 3 hex 680 544 361 606 501 214 72 309 -272 3 hex 609 680 606 398 308 501 309 102 -273 3 hex 122 397 602 401 398 606 681 610 -274 3 hex 397 115 362 602 606 361 545 681 -275 3 hex 602 362 78 353 681 545 224 538 -276 3 hex 401 602 353 113 610 681 538 354 -277 3 hex 398 606 681 610 102 309 502 310 -278 3 hex 606 361 545 681 309 72 215 502 -279 3 hex 681 545 224 538 502 215 26 221 -280 3 hex 610 681 538 354 310 502 221 75 -281 3 hex 91 399 603 266 265 607 682 458 -282 3 hex 399 122 401 603 607 398 610 682 -283 3 hex 603 401 113 355 682 610 354 539 -284 3 hex 266 603 355 61 458 682 539 193 -285 3 hex 265 607 682 458 46 311 503 163 -286 3 hex 607 398 610 682 311 102 310 503 -287 3 hex 682 610 354 539 503 310 75 220 -288 3 hex 458 682 539 193 163 503 220 18 -289 3 hex 22 184 519 226 186 444 683 543 -290 3 hex 184 57 328 519 444 252 620 683 -291 3 hex 519 328 107 331 683 620 402 616 -292 3 hex 226 519 331 80 543 683 616 363 -293 3 hex 186 444 683 543 58 255 612 360 -294 3 hex 444 252 620 683 255 88 406 612 -295 3 hex 683 620 402 616 612 406 123 405 -296 3 hex 543 683 616 363 360 612 405 115 -297 3 hex 57 185 520 328 252 445 684 620 -298 3 hex 185 13 198 520 445 144 472 684 -299 3 hex 520 198 64 329 684 472 283 617 -300 3 hex 328 520 329 107 620 684 617 402 -301 3 hex 252 445 684 620 88 253 613 406 -302 3 hex 445 144 472 684 253 37 280 613 -303 3 hex 684 472 283 617 613 280 95 403 -304 3 hex 620 684 617 402 406 613 403 123 -305 3 hex 107 329 521 330 402 617 685 623 -306 3 hex 329 64 199 521 617 283 475 685 -307 3 hex 521 199 24 223 685 475 200 534 -308 3 hex 330 521 223 77 623 685 534 348 -309 3 hex 402 617 685 623 123 403 614 407 -310 3 hex 617 283 475 685 403 95 282 614 -311 3 hex 685 475 200 534 614 282 65 349 -312 3 hex 623 685 534 348 407 614 349 112 -313 3 hex 58 255 612 360 187 447 686 544 -314 3 hex 255 88 406 612 447 254 621 686 -315 3 hex 612 406 123 405 686 621 404 619 -316 3 hex 360 612 405 115 544 686 619 361 -317 3 hex 187 447 686 544 17 160 504 214 -318 3 hex 447 254 621 686 160 45 312 504 -319 3 hex 686 621 404 619 504 312 103 315 -320 3 hex 544 686 619 361 214 504 315 72 -321 3 hex 88 253 613 406 254 446 687 621 -322 3 hex 253 37 280 613 446 145 473 687 -323 3 hex 613 280 95 403 687 473 281 618 -324 3 hex 406 613 403 123 621 687 618 404 -325 3 hex 254 446 687 621 45 161 505 312 -326 3 hex 446 145 473 687 161 6 166 505 -327 3 hex 687 473 281 618 505 166 48 313 -328 3 hex 621 687 618 404 312 505 313 103 -329 3 hex 123 403 614 407 404 618 688 622 -330 3 hex 403 95 282 614 618 281 474 688 -331 3 hex 614 282 65 349 688 474 201 535 -332 3 hex 407 614 349 112 622 688 535 350 -333 3 hex 404 618 688 622 103 313 506 314 -334 3 hex 618 281 474 688 313 48 167 506 -335 3 hex 688 474 201 535 506 167 19 217 -336 3 hex 622 688 535 350 314 506 217 73 -337 3 hex 115 405 615 362 361 619 689 545 -338 3 hex 405 123 407 615 619 404 622 689 -339 3 hex 615 407 112 351 689 622 350 536 -340 3 hex 362 615 351 78 545 689 536 224 -341 3 hex 361 619 689 545 72 315 507 215 -342 3 hex 619 404 622 689 315 103 314 507 -343 3 hex 689 622 350 536 507 314 73 216 -344 3 hex 545 689 536 224 215 507 216 26 -345 3 hex 77 223 522 332 348 534 690 632 -346 3 hex 223 24 202 522 534 200 476 690 -347 3 hex 522 202 66 333 690 476 287 629 -348 3 hex 332 522 333 108 632 690 629 408 -349 3 hex 348 534 690 632 112 349 625 412 -350 3 hex 534 200 476 690 349 65 284 625 -351 3 hex 690 476 287 629 625 284 96 409 -352 3 hex 632 690 629 408 412 625 409 124 -353 3 hex 108 333 523 334 408 629 691 635 -354 3 hex 333 66 203 523 629 287 479 691 -355 3 hex 523 203 14 209 691 479 148 493 -356 3 hex 334 523 209 69 635 691 493 300 -357 3 hex 408 629 691 635 124 409 626 413 -358 3 hex 629 287 479 691 409 96 286 626 -359 3 hex 691 479 148 493 626 286 39 301 -360 3 hex 635 691 493 300 413 626 301 100 -361 3 hex 81 335 524 227 367 628 692 548 -362 3 hex 335 108 334 524 628 408 635 692 -363 3 hex 524 334 69 208 692 635 300 492 -364 3 hex 227 524 208 25 548 692 492 210 -365 3 hex 367 628 692 548 116 411 627 366 -366 3 hex 628 408 635 692 411 124 413 627 -367 3 hex 692 635 300 492 627 413 100 303 -368 3 hex 548 692 492 210 366 627 303 70 -369 3 hex 78 351 624 364 224 536 693 546 -370 3 hex 351 112 412 624 536 350 633 693 -371 3 hex 624 412 124 411 693 633 410 631 -372 3 hex 364 624 411 116 546 693 631 365 -373 3 hex 224 536 693 546 26 216 508 218 -374 3 hex 536 350 633 693 216 73 316 508 -375 3 hex 693 633 410 631 508 316 104 319 -376 3 hex 546 693 631 365 218 508 319 74 -377 3 hex 112 349 625 412 350 535 694 633 -378 3 hex 349 65 284 625 535 201 477 694 -379 3 hex 625 284 96 409 694 477 285 630 -380 3 hex 412 625 409 124 633 694 630 410 -381 3 hex 350 535 694 633 73 217 509 316 -382 3 hex 535 201 477 694 217 19 168 509 -383 3 hex 694 477 285 630 509 168 49 317 -384 3 hex 633 694 630 410 316 509 317 104 -385 3 hex 124 409 626 413 410 630 695 634 -386 3 hex 409 96 286 626 630 285 478 695 -387 3 hex 626 286 39 301 695 478 149 494 -388 3 hex 413 626 301 100 634 695 494 302 -389 3 hex 410 630 695 634 104 317 510 318 -390 3 hex 630 285 478 695 317 49 169 510 -391 3 hex 695 478 149 494 510 169 7 173 -392 3 hex 634 695 494 302 318 510 173 51 -393 3 hex 116 411 627 366 365 631 696 547 -394 3 hex 411 124 413 627 631 410 634 696 -395 3 hex 627 413 100 303 696 634 302 495 -396 3 hex 366 627 303 70 547 696 495 211 -397 3 hex 365 631 696 547 74 319 511 219 -398 3 hex 631 410 634 696 319 104 318 511 -399 3 hex 696 634 302 495 511 318 51 172 -400 3 hex 547 696 495 211 219 511 172 20 -401 3 hex 23 225 525 194 192 537 697 460 -402 3 hex 225 79 336 525 537 352 644 697 -403 3 hex 525 336 109 339 697 644 414 640 -404 3 hex 194 525 339 62 460 697 640 271 -405 3 hex 192 537 697 460 61 355 636 268 -406 3 hex 537 352 644 697 355 113 418 636 -407 3 hex 697 644 414 640 636 418 125 417 -408 3 hex 460 697 640 271 268 636 417 92 -409 3 hex 109 337 526 338 414 641 698 647 -410 3 hex 337 81 227 526 641 367 548 698 -411 3 hex 526 227 25 213 698 548 210 497 -412 3 hex 338 526 213 71 647 698 497 304 -413 3 hex 414 641 698 647 125 415 638 419 -414 3 hex 641 367 548 698 415 116 366 638 -415 3 hex 698 548 210 497 638 366 70 305 -416 3 hex 647 698 497 304 419 638 305 101 -417 3 hex 62 339 527 195 271 640 699 463 -418 3 hex 339 109 338 527 640 414 647 699 -419 3 hex 527 338 71 212 699 647 304 496 -420 3 hex 195 527 212 16 463 699 496 156 -421 3 hex 271 640 699 463 92 417 639 270 -422 3 hex 640 414 647 699 417 125 419 639 -423 3 hex 699 647 304 496 639 419 101 307 -424 3 hex 463 699 496 156 270 639 307 43 -425 3 hex 61 355 636 268 193 539 700 461 -426 3 hex 355 113 418 636 539 354 645 700 -427 3 hex 636 418 125 417 700 645 416 643 -428 3 hex 268 636 417 92 461 700 643 269 -429 3 hex 193 539 700 461 18 220 512 164 -430 3 hex 539 354 645 700 220 75 320 512 -431 3 hex 700 645 416 643 512 320 105 323 -432 3 hex 461 700 643 269 164 512 323 47 -433 3 hex 113 353 637 418 354 538 701 645 -434 3 hex 353 78 364 637 538 224 546 701 -435 3 hex 637 364 116 415 701 546 365 642 -436 3 hex 418 637 415 125 645 701 642 416 -437 3 hex 354 538 701 645 75 221 513 320 -438 3 hex 538 224 546 701 221 26 218 513 -439 3 hex 701 546 365 642 513 218 74 321 -440 3 hex 645 701 642 416 320 513 321 105 -441 3 hex 125 415 638 419 416 642 702 646 -442 3 hex 415 116 366 638 642 365 547 702 -443 3 hex 638 366 70 305 702 547 211 498 -444 3 hex 419 638 305 101 646 702 498 306 -445 3 hex 416 642 702 646 105 321 514 322 -446 3 hex 642 365 547 702 321 74 219 514 -447 3 hex 702 547 211 498 514 219 20 171 -448 3 hex 646 702 498 306 322 514 171 50 -449 3 hex 92 417 639 270 269 643 703 462 -450 3 hex 417 125 419 639 643 416 646 703 -451 3 hex 639 419 101 307 703 646 306 499 -452 3 hex 270 639 307 43 462 703 499 157 -453 3 hex 269 643 703 462 47 323 515 165 -454 3 hex 643 416 646 703 323 105 322 515 -455 3 hex 703 646 306 499 515 322 50 170 -456 3 hex 462 703 499 157 165 515 170 8 -DEAL:Test2.dim3:: Total number of cells = 521 -DEAL:Test2.dim3:: Total number of active cells = 456 -DEAL:Test3.dim3::Start -# This file was generated by the deal.II library. -# Date = 2000/11/6 - -# -# For a description of the UCD format see the AVS Developer's guide. -# -703 456 0 0 0 -1 0.00 0.00 0.00 -2 1.00 0.00 0.00 -3 1.00 0.00 1.00 -4 0.00 0.00 1.00 -5 0.00 1.00 0.00 -6 1.00 1.00 0.00 -7 1.00 1.00 1.00 -8 0.00 1.00 1.00 -9 0.500 0.00 0.00 -10 0.00 0.00 0.500 -11 0.00 0.500 0.00 -12 1.00 0.00 0.500 -13 1.00 0.500 0.00 -14 1.00 0.500 1.00 -15 0.500 0.00 1.00 -16 0.00 0.500 1.00 -17 0.500 1.00 0.00 -18 0.00 1.00 0.500 -19 1.00 1.00 0.500 -20 0.500 1.00 1.00 -21 0.500 0.00 0.500 -22 0.500 0.500 0.00 -23 0.00 0.500 0.500 -24 1.00 0.500 0.500 -25 0.500 0.500 1.00 -26 0.500 1.00 0.500 -27 0.500 0.500 0.500 -28 0.250 0.00 0.00 -29 0.750 0.00 0.00 -30 0.00 0.00 0.250 -31 0.00 0.00 0.750 -32 0.00 0.250 0.00 -33 0.00 0.750 0.00 -34 1.00 0.00 0.250 -35 1.00 0.00 0.750 -36 1.00 0.250 0.00 -37 1.00 0.750 0.00 -38 1.00 0.250 1.00 -39 1.00 0.750 1.00 -40 0.250 0.00 1.00 -41 0.750 0.00 1.00 -42 0.00 0.250 1.00 -43 0.00 0.750 1.00 -44 0.250 1.00 0.00 -45 0.750 1.00 0.00 -46 0.00 1.00 0.250 -47 0.00 1.00 0.750 -48 1.00 1.00 0.250 -49 1.00 1.00 0.750 -50 0.250 1.00 1.00 -51 0.750 1.00 1.00 -52 0.500 0.00 0.250 -53 0.750 0.00 0.500 -54 0.500 0.00 0.750 -55 0.250 0.00 0.500 -56 0.500 0.250 0.00 -57 0.750 0.500 0.00 -58 0.500 0.750 0.00 -59 0.250 0.500 0.00 -60 0.00 0.500 0.250 -61 0.00 0.750 0.500 -62 0.00 0.500 0.750 -63 0.00 0.250 0.500 -64 1.00 0.500 0.250 -65 1.00 0.750 0.500 -66 1.00 0.500 0.750 -67 1.00 0.250 0.500 -68 0.500 0.250 1.00 -69 0.750 0.500 1.00 -70 0.500 0.750 1.00 -71 0.250 0.500 1.00 -72 0.500 1.00 0.250 -73 0.750 1.00 0.500 -74 0.500 1.00 0.750 -75 0.250 1.00 0.500 -76 0.500 0.250 0.500 -77 0.750 0.500 0.500 -78 0.500 0.750 0.500 -79 0.250 0.500 0.500 -80 0.500 0.500 0.250 -81 0.500 0.500 0.750 -82 0.250 0.00 0.250 -83 0.750 0.00 0.250 -84 0.750 0.00 0.750 -85 0.250 0.00 0.750 -86 0.250 0.250 0.00 -87 0.750 0.250 0.00 -88 0.750 0.750 0.00 -89 0.250 0.750 0.00 -90 0.00 0.250 0.250 -91 0.00 0.750 0.250 -92 0.00 0.750 0.750 -93 0.00 0.250 0.750 -94 1.00 0.250 0.250 -95 1.00 0.750 0.250 -96 1.00 0.750 0.750 -97 1.00 0.250 0.750 -98 0.250 0.250 1.00 -99 0.750 0.250 1.00 -100 0.750 0.750 1.00 -101 0.250 0.750 1.00 -102 0.250 1.00 0.250 -103 0.750 1.00 0.250 -104 0.750 1.00 0.750 -105 0.250 1.00 0.750 -106 0.250 0.500 0.250 -107 0.750 0.500 0.250 -108 0.750 0.500 0.750 -109 0.250 0.500 0.750 -110 0.250 0.250 0.500 -111 0.750 0.250 0.500 -112 0.750 0.750 0.500 -113 0.250 0.750 0.500 -114 0.500 0.250 0.250 -115 0.500 0.750 0.250 -116 0.500 0.750 0.750 -117 0.500 0.250 0.750 -118 0.250 0.250 0.250 -119 0.750 0.250 0.250 -120 0.750 0.250 0.750 -121 0.250 0.250 0.750 -122 0.250 0.750 0.250 -123 0.750 0.750 0.250 -124 0.750 0.750 0.750 -125 0.250 0.750 0.750 -126 0.125 0.00 0.00 -127 0.375 0.00 0.00 -128 0.625 0.00 0.00 -129 0.875 0.00 0.00 -130 0.00 0.00 0.125 -131 0.00 0.00 0.375 -132 0.00 0.00 0.625 -133 0.00 0.00 0.875 -134 0.00 0.125 0.00 -135 0.00 0.375 0.00 -136 0.00 0.625 0.00 -137 0.00 0.875 0.00 -138 1.00 0.00 0.125 -139 1.00 0.00 0.375 -140 1.00 0.00 0.625 -141 1.00 0.00 0.875 -142 1.00 0.125 0.00 -143 1.00 0.375 0.00 -144 1.00 0.625 0.00 -145 1.00 0.875 0.00 -146 1.00 0.125 1.00 -147 1.00 0.375 1.00 -148 1.00 0.625 1.00 -149 1.00 0.875 1.00 -150 0.125 0.00 1.00 -151 0.375 0.00 1.00 -152 0.625 0.00 1.00 -153 0.875 0.00 1.00 -154 0.00 0.125 1.00 -155 0.00 0.375 1.00 -156 0.00 0.625 1.00 -157 0.00 0.875 1.00 -158 0.125 1.00 0.00 -159 0.375 1.00 0.00 -160 0.625 1.00 0.00 -161 0.875 1.00 0.00 -162 0.00 1.00 0.125 -163 0.00 1.00 0.375 -164 0.00 1.00 0.625 -165 0.00 1.00 0.875 -166 1.00 1.00 0.125 -167 1.00 1.00 0.375 -168 1.00 1.00 0.625 -169 1.00 1.00 0.875 -170 0.125 1.00 1.00 -171 0.375 1.00 1.00 -172 0.625 1.00 1.00 -173 0.875 1.00 1.00 -174 0.500 0.00 0.125 -175 0.500 0.00 0.375 -176 0.625 0.00 0.500 -177 0.875 0.00 0.500 -178 0.500 0.00 0.625 -179 0.500 0.00 0.875 -180 0.125 0.00 0.500 -181 0.375 0.00 0.500 -182 0.500 0.125 0.00 -183 0.500 0.375 0.00 -184 0.625 0.500 0.00 -185 0.875 0.500 0.00 -186 0.500 0.625 0.00 -187 0.500 0.875 0.00 -188 0.125 0.500 0.00 -189 0.375 0.500 0.00 -190 0.00 0.500 0.125 -191 0.00 0.500 0.375 -192 0.00 0.625 0.500 -193 0.00 0.875 0.500 -194 0.00 0.500 0.625 -195 0.00 0.500 0.875 -196 0.00 0.125 0.500 -197 0.00 0.375 0.500 -198 1.00 0.500 0.125 -199 1.00 0.500 0.375 -200 1.00 0.625 0.500 -201 1.00 0.875 0.500 -202 1.00 0.500 0.625 -203 1.00 0.500 0.875 -204 1.00 0.125 0.500 -205 1.00 0.375 0.500 -206 0.500 0.125 1.00 -207 0.500 0.375 1.00 -208 0.625 0.500 1.00 -209 0.875 0.500 1.00 -210 0.500 0.625 1.00 -211 0.500 0.875 1.00 -212 0.125 0.500 1.00 -213 0.375 0.500 1.00 -214 0.500 1.00 0.125 -215 0.500 1.00 0.375 -216 0.625 1.00 0.500 -217 0.875 1.00 0.500 -218 0.500 1.00 0.625 -219 0.500 1.00 0.875 -220 0.125 1.00 0.500 -221 0.375 1.00 0.500 -222 0.500 0.125 0.500 -223 0.875 0.500 0.500 -224 0.500 0.875 0.500 -225 0.125 0.500 0.500 -226 0.500 0.500 0.125 -227 0.500 0.500 0.875 -228 0.250 0.00 0.125 -229 0.375 0.00 0.250 -230 0.250 0.00 0.375 -231 0.125 0.00 0.250 -232 0.750 0.00 0.125 -233 0.875 0.00 0.250 -234 0.750 0.00 0.375 -235 0.625 0.00 0.250 -236 0.750 0.00 0.625 -237 0.875 0.00 0.750 -238 0.750 0.00 0.875 -239 0.625 0.00 0.750 -240 0.250 0.00 0.625 -241 0.375 0.00 0.750 -242 0.250 0.00 0.875 -243 0.125 0.00 0.750 -244 0.250 0.125 0.00 -245 0.375 0.250 0.00 -246 0.250 0.375 0.00 -247 0.125 0.250 0.00 -248 0.750 0.125 0.00 -249 0.875 0.250 0.00 -250 0.750 0.375 0.00 -251 0.625 0.250 0.00 -252 0.750 0.625 0.00 -253 0.875 0.750 0.00 -254 0.750 0.875 0.00 -255 0.625 0.750 0.00 -256 0.250 0.625 0.00 -257 0.375 0.750 0.00 -258 0.250 0.875 0.00 -259 0.125 0.750 0.00 -260 0.00 0.250 0.125 -261 0.00 0.375 0.250 -262 0.00 0.250 0.375 -263 0.00 0.125 0.250 -264 0.00 0.750 0.125 -265 0.00 0.875 0.250 -266 0.00 0.750 0.375 -267 0.00 0.625 0.250 -268 0.00 0.750 0.625 -269 0.00 0.875 0.750 -270 0.00 0.750 0.875 -271 0.00 0.625 0.750 -272 0.00 0.250 0.625 -273 0.00 0.375 0.750 -274 0.00 0.250 0.875 -275 0.00 0.125 0.750 -276 1.00 0.250 0.125 -277 1.00 0.375 0.250 -278 1.00 0.250 0.375 -279 1.00 0.125 0.250 -280 1.00 0.750 0.125 -281 1.00 0.875 0.250 -282 1.00 0.750 0.375 -283 1.00 0.625 0.250 -284 1.00 0.750 0.625 -285 1.00 0.875 0.750 -286 1.00 0.750 0.875 -287 1.00 0.625 0.750 -288 1.00 0.250 0.625 -289 1.00 0.375 0.750 -290 1.00 0.250 0.875 -291 1.00 0.125 0.750 -292 0.250 0.125 1.00 -293 0.375 0.250 1.00 -294 0.250 0.375 1.00 -295 0.125 0.250 1.00 -296 0.750 0.125 1.00 -297 0.875 0.250 1.00 -298 0.750 0.375 1.00 -299 0.625 0.250 1.00 -300 0.750 0.625 1.00 -301 0.875 0.750 1.00 -302 0.750 0.875 1.00 -303 0.625 0.750 1.00 -304 0.250 0.625 1.00 -305 0.375 0.750 1.00 -306 0.250 0.875 1.00 -307 0.125 0.750 1.00 -308 0.250 1.00 0.125 -309 0.375 1.00 0.250 -310 0.250 1.00 0.375 -311 0.125 1.00 0.250 -312 0.750 1.00 0.125 -313 0.875 1.00 0.250 -314 0.750 1.00 0.375 -315 0.625 1.00 0.250 -316 0.750 1.00 0.625 -317 0.875 1.00 0.750 -318 0.750 1.00 0.875 -319 0.625 1.00 0.750 -320 0.250 1.00 0.625 -321 0.375 1.00 0.750 -322 0.250 1.00 0.875 -323 0.125 1.00 0.750 -324 0.250 0.500 0.125 -325 0.375 0.500 0.250 -326 0.250 0.500 0.375 -327 0.125 0.500 0.250 -328 0.750 0.500 0.125 -329 0.875 0.500 0.250 -330 0.750 0.500 0.375 -331 0.625 0.500 0.250 -332 0.750 0.500 0.625 -333 0.875 0.500 0.750 -334 0.750 0.500 0.875 -335 0.625 0.500 0.750 -336 0.250 0.500 0.625 -337 0.375 0.500 0.750 -338 0.250 0.500 0.875 -339 0.125 0.500 0.750 -340 0.250 0.125 0.500 -341 0.375 0.250 0.500 -342 0.250 0.375 0.500 -343 0.125 0.250 0.500 -344 0.750 0.125 0.500 -345 0.875 0.250 0.500 -346 0.750 0.375 0.500 -347 0.625 0.250 0.500 -348 0.750 0.625 0.500 -349 0.875 0.750 0.500 -350 0.750 0.875 0.500 -351 0.625 0.750 0.500 -352 0.250 0.625 0.500 -353 0.375 0.750 0.500 -354 0.250 0.875 0.500 -355 0.125 0.750 0.500 -356 0.500 0.250 0.125 -357 0.500 0.375 0.250 -358 0.500 0.250 0.375 -359 0.500 0.125 0.250 -360 0.500 0.750 0.125 -361 0.500 0.875 0.250 -362 0.500 0.750 0.375 -363 0.500 0.625 0.250 -364 0.500 0.750 0.625 -365 0.500 0.875 0.750 -366 0.500 0.750 0.875 -367 0.500 0.625 0.750 -368 0.500 0.250 0.625 -369 0.500 0.375 0.750 -370 0.500 0.250 0.875 -371 0.500 0.125 0.750 -372 0.250 0.125 0.250 -373 0.375 0.250 0.250 -374 0.250 0.375 0.250 -375 0.125 0.250 0.250 -376 0.250 0.250 0.125 -377 0.250 0.250 0.375 -378 0.750 0.125 0.250 -379 0.875 0.250 0.250 -380 0.750 0.375 0.250 -381 0.625 0.250 0.250 -382 0.750 0.250 0.125 -383 0.750 0.250 0.375 -384 0.750 0.125 0.750 -385 0.875 0.250 0.750 -386 0.750 0.375 0.750 -387 0.625 0.250 0.750 -388 0.750 0.250 0.625 -389 0.750 0.250 0.875 -390 0.250 0.125 0.750 -391 0.375 0.250 0.750 -392 0.250 0.375 0.750 -393 0.125 0.250 0.750 -394 0.250 0.250 0.625 -395 0.250 0.250 0.875 -396 0.250 0.625 0.250 -397 0.375 0.750 0.250 -398 0.250 0.875 0.250 -399 0.125 0.750 0.250 -400 0.250 0.750 0.125 -401 0.250 0.750 0.375 -402 0.750 0.625 0.250 -403 0.875 0.750 0.250 -404 0.750 0.875 0.250 -405 0.625 0.750 0.250 -406 0.750 0.750 0.125 -407 0.750 0.750 0.375 -408 0.750 0.625 0.750 -409 0.875 0.750 0.750 -410 0.750 0.875 0.750 -411 0.625 0.750 0.750 -412 0.750 0.750 0.625 -413 0.750 0.750 0.875 -414 0.250 0.625 0.750 -415 0.375 0.750 0.750 -416 0.250 0.875 0.750 -417 0.125 0.750 0.750 -418 0.250 0.750 0.625 -419 0.250 0.750 0.875 -420 0.125 0.00 0.125 -421 0.375 0.00 0.125 -422 0.375 0.00 0.375 -423 0.125 0.00 0.375 -424 0.625 0.00 0.125 -425 0.875 0.00 0.125 -426 0.875 0.00 0.375 -427 0.625 0.00 0.375 -428 0.625 0.00 0.625 -429 0.875 0.00 0.625 -430 0.875 0.00 0.875 -431 0.625 0.00 0.875 -432 0.125 0.00 0.625 -433 0.375 0.00 0.625 -434 0.375 0.00 0.875 -435 0.125 0.00 0.875 -436 0.125 0.125 0.00 -437 0.375 0.125 0.00 -438 0.375 0.375 0.00 -439 0.125 0.375 0.00 -440 0.625 0.125 0.00 -441 0.875 0.125 0.00 -442 0.875 0.375 0.00 -443 0.625 0.375 0.00 -444 0.625 0.625 0.00 -445 0.875 0.625 0.00 -446 0.875 0.875 0.00 -447 0.625 0.875 0.00 -448 0.125 0.625 0.00 -449 0.375 0.625 0.00 -450 0.375 0.875 0.00 -451 0.125 0.875 0.00 -452 0.00 0.125 0.125 -453 0.00 0.375 0.125 -454 0.00 0.375 0.375 -455 0.00 0.125 0.375 -456 0.00 0.625 0.125 -457 0.00 0.875 0.125 -458 0.00 0.875 0.375 -459 0.00 0.625 0.375 -460 0.00 0.625 0.625 -461 0.00 0.875 0.625 -462 0.00 0.875 0.875 -463 0.00 0.625 0.875 -464 0.00 0.125 0.625 -465 0.00 0.375 0.625 -466 0.00 0.375 0.875 -467 0.00 0.125 0.875 -468 1.00 0.125 0.125 -469 1.00 0.375 0.125 -470 1.00 0.375 0.375 -471 1.00 0.125 0.375 -472 1.00 0.625 0.125 -473 1.00 0.875 0.125 -474 1.00 0.875 0.375 -475 1.00 0.625 0.375 -476 1.00 0.625 0.625 -477 1.00 0.875 0.625 -478 1.00 0.875 0.875 -479 1.00 0.625 0.875 -480 1.00 0.125 0.625 -481 1.00 0.375 0.625 -482 1.00 0.375 0.875 -483 1.00 0.125 0.875 -484 0.125 0.125 1.00 -485 0.375 0.125 1.00 -486 0.375 0.375 1.00 -487 0.125 0.375 1.00 -488 0.625 0.125 1.00 -489 0.875 0.125 1.00 -490 0.875 0.375 1.00 -491 0.625 0.375 1.00 -492 0.625 0.625 1.00 -493 0.875 0.625 1.00 -494 0.875 0.875 1.00 -495 0.625 0.875 1.00 -496 0.125 0.625 1.00 -497 0.375 0.625 1.00 -498 0.375 0.875 1.00 -499 0.125 0.875 1.00 -500 0.125 1.00 0.125 -501 0.375 1.00 0.125 -502 0.375 1.00 0.375 -503 0.125 1.00 0.375 -504 0.625 1.00 0.125 -505 0.875 1.00 0.125 -506 0.875 1.00 0.375 -507 0.625 1.00 0.375 -508 0.625 1.00 0.625 -509 0.875 1.00 0.625 -510 0.875 1.00 0.875 -511 0.625 1.00 0.875 -512 0.125 1.00 0.625 -513 0.375 1.00 0.625 -514 0.375 1.00 0.875 -515 0.125 1.00 0.875 -516 0.125 0.500 0.125 -517 0.375 0.500 0.125 -518 0.125 0.500 0.375 -519 0.625 0.500 0.125 -520 0.875 0.500 0.125 -521 0.875 0.500 0.375 -522 0.875 0.500 0.625 -523 0.875 0.500 0.875 -524 0.625 0.500 0.875 -525 0.125 0.500 0.625 -526 0.375 0.500 0.875 -527 0.125 0.500 0.875 -528 0.125 0.125 0.500 -529 0.375 0.125 0.500 -530 0.125 0.375 0.500 -531 0.625 0.125 0.500 -532 0.875 0.125 0.500 -533 0.875 0.375 0.500 -534 0.875 0.625 0.500 -535 0.875 0.875 0.500 -536 0.625 0.875 0.500 -537 0.125 0.625 0.500 -538 0.375 0.875 0.500 -539 0.125 0.875 0.500 -540 0.500 0.125 0.125 -541 0.500 0.375 0.125 -542 0.500 0.125 0.375 -543 0.500 0.625 0.125 -544 0.500 0.875 0.125 -545 0.500 0.875 0.375 -546 0.500 0.875 0.625 -547 0.500 0.875 0.875 -548 0.500 0.625 0.875 -549 0.500 0.125 0.625 -550 0.500 0.375 0.875 -551 0.500 0.125 0.875 -552 0.125 0.250 0.125 -553 0.375 0.250 0.125 -554 0.375 0.250 0.375 -555 0.125 0.250 0.375 -556 0.125 0.125 0.250 -557 0.375 0.125 0.250 -558 0.375 0.375 0.250 -559 0.125 0.375 0.250 -560 0.250 0.125 0.125 -561 0.250 0.375 0.125 -562 0.250 0.375 0.375 -563 0.250 0.125 0.375 -564 0.625 0.250 0.125 -565 0.875 0.250 0.125 -566 0.875 0.250 0.375 -567 0.625 0.250 0.375 -568 0.625 0.125 0.250 -569 0.875 0.125 0.250 -570 0.875 0.375 0.250 -571 0.625 0.375 0.250 -572 0.750 0.125 0.125 -573 0.750 0.375 0.125 -574 0.750 0.375 0.375 -575 0.750 0.125 0.375 -576 0.625 0.250 0.625 -577 0.875 0.250 0.625 -578 0.875 0.250 0.875 -579 0.625 0.250 0.875 -580 0.625 0.125 0.750 -581 0.875 0.125 0.750 -582 0.875 0.375 0.750 -583 0.625 0.375 0.750 -584 0.750 0.125 0.625 -585 0.750 0.375 0.625 -586 0.750 0.375 0.875 -587 0.750 0.125 0.875 -588 0.125 0.250 0.625 -589 0.375 0.250 0.625 -590 0.375 0.250 0.875 -591 0.125 0.250 0.875 -592 0.125 0.125 0.750 -593 0.375 0.125 0.750 -594 0.375 0.375 0.750 -595 0.125 0.375 0.750 -596 0.250 0.125 0.625 -597 0.250 0.375 0.625 -598 0.250 0.375 0.875 -599 0.250 0.125 0.875 -600 0.125 0.750 0.125 -601 0.375 0.750 0.125 -602 0.375 0.750 0.375 -603 0.125 0.750 0.375 -604 0.125 0.625 0.250 -605 0.375 0.625 0.250 -606 0.375 0.875 0.250 -607 0.125 0.875 0.250 -608 0.250 0.625 0.125 -609 0.250 0.875 0.125 -610 0.250 0.875 0.375 -611 0.250 0.625 0.375 -612 0.625 0.750 0.125 -613 0.875 0.750 0.125 -614 0.875 0.750 0.375 -615 0.625 0.750 0.375 -616 0.625 0.625 0.250 -617 0.875 0.625 0.250 -618 0.875 0.875 0.250 -619 0.625 0.875 0.250 -620 0.750 0.625 0.125 -621 0.750 0.875 0.125 -622 0.750 0.875 0.375 -623 0.750 0.625 0.375 -624 0.625 0.750 0.625 -625 0.875 0.750 0.625 -626 0.875 0.750 0.875 -627 0.625 0.750 0.875 -628 0.625 0.625 0.750 -629 0.875 0.625 0.750 -630 0.875 0.875 0.750 -631 0.625 0.875 0.750 -632 0.750 0.625 0.625 -633 0.750 0.875 0.625 -634 0.750 0.875 0.875 -635 0.750 0.625 0.875 -636 0.125 0.750 0.625 -637 0.375 0.750 0.625 -638 0.375 0.750 0.875 -639 0.125 0.750 0.875 -640 0.125 0.625 0.750 -641 0.375 0.625 0.750 -642 0.375 0.875 0.750 -643 0.125 0.875 0.750 -644 0.250 0.625 0.625 -645 0.250 0.875 0.625 -646 0.250 0.875 0.875 -647 0.250 0.625 0.875 -648 0.125 0.125 0.125 -649 0.375 0.125 0.125 -650 0.375 0.125 0.375 -651 0.125 0.125 0.375 -652 0.125 0.375 0.125 -653 0.375 0.375 0.125 -654 0.125 0.375 0.375 -655 0.625 0.125 0.125 -656 0.875 0.125 0.125 -657 0.875 0.125 0.375 -658 0.625 0.125 0.375 -659 0.625 0.375 0.125 -660 0.875 0.375 0.125 -661 0.875 0.375 0.375 -662 0.625 0.125 0.625 -663 0.875 0.125 0.625 -664 0.875 0.125 0.875 -665 0.625 0.125 0.875 -666 0.875 0.375 0.625 -667 0.875 0.375 0.875 -668 0.625 0.375 0.875 -669 0.125 0.125 0.625 -670 0.375 0.125 0.625 -671 0.375 0.125 0.875 -672 0.125 0.125 0.875 -673 0.125 0.375 0.625 -674 0.375 0.375 0.875 -675 0.125 0.375 0.875 -676 0.125 0.625 0.125 -677 0.375 0.625 0.125 -678 0.125 0.625 0.375 -679 0.125 0.875 0.125 -680 0.375 0.875 0.125 -681 0.375 0.875 0.375 -682 0.125 0.875 0.375 -683 0.625 0.625 0.125 -684 0.875 0.625 0.125 -685 0.875 0.625 0.375 -686 0.625 0.875 0.125 -687 0.875 0.875 0.125 -688 0.875 0.875 0.375 -689 0.625 0.875 0.375 -690 0.875 0.625 0.625 -691 0.875 0.625 0.875 -692 0.625 0.625 0.875 -693 0.625 0.875 0.625 -694 0.875 0.875 0.625 -695 0.875 0.875 0.875 -696 0.625 0.875 0.875 -697 0.125 0.625 0.625 -698 0.375 0.625 0.875 -699 0.125 0.625 0.875 -700 0.125 0.875 0.625 -701 0.375 0.875 0.625 -702 0.375 0.875 0.875 -703 0.125 0.875 0.875 -1 3 hex 118 114 76 110 106 80 27 79 -2 3 hex 114 119 111 76 80 107 77 27 -3 3 hex 76 111 120 117 27 77 108 81 -4 3 hex 110 76 117 121 79 27 81 109 -5 3 hex 106 80 27 79 122 115 78 113 -6 3 hex 80 107 77 27 115 123 112 78 -7 3 hex 27 77 108 81 78 112 124 116 -8 3 hex 79 27 81 109 113 78 116 125 -9 3 hex 1 126 420 130 134 436 648 452 -10 3 hex 126 28 228 420 436 244 560 648 -11 3 hex 420 228 82 231 648 560 372 556 -12 3 hex 130 420 231 30 452 648 556 263 -13 3 hex 134 436 648 452 32 247 552 260 -14 3 hex 436 244 560 648 247 86 376 552 -15 3 hex 648 560 372 556 552 376 118 375 -16 3 hex 452 648 556 263 260 552 375 90 -17 3 hex 28 127 421 228 244 437 649 560 -18 3 hex 127 9 174 421 437 182 540 649 -19 3 hex 421 174 52 229 649 540 359 557 -20 3 hex 228 421 229 82 560 649 557 372 -21 3 hex 244 437 649 560 86 245 553 376 -22 3 hex 437 182 540 649 245 56 356 553 -23 3 hex 649 540 359 557 553 356 114 373 -24 3 hex 560 649 557 372 376 553 373 118 -25 3 hex 82 229 422 230 372 557 650 563 -26 3 hex 229 52 175 422 557 359 542 650 -27 3 hex 422 175 21 181 650 542 222 529 -28 3 hex 230 422 181 55 563 650 529 340 -29 3 hex 372 557 650 563 118 373 554 377 -30 3 hex 557 359 542 650 373 114 358 554 -31 3 hex 650 542 222 529 554 358 76 341 -32 3 hex 563 650 529 340 377 554 341 110 -33 3 hex 30 231 423 131 263 556 651 455 -34 3 hex 231 82 230 423 556 372 563 651 -35 3 hex 423 230 55 180 651 563 340 528 -36 3 hex 131 423 180 10 455 651 528 196 -37 3 hex 263 556 651 455 90 375 555 262 -38 3 hex 556 372 563 651 375 118 377 555 -39 3 hex 651 563 340 528 555 377 110 343 -40 3 hex 455 651 528 196 262 555 343 63 -41 3 hex 32 247 552 260 135 439 652 453 -42 3 hex 247 86 376 552 439 246 561 652 -43 3 hex 552 376 118 375 652 561 374 559 -44 3 hex 260 552 375 90 453 652 559 261 -45 3 hex 135 439 652 453 11 188 516 190 -46 3 hex 439 246 561 652 188 59 324 516 -47 3 hex 652 561 374 559 516 324 106 327 -48 3 hex 453 652 559 261 190 516 327 60 -49 3 hex 86 245 553 376 246 438 653 561 -50 3 hex 245 56 356 553 438 183 541 653 -51 3 hex 553 356 114 373 653 541 357 558 -52 3 hex 376 553 373 118 561 653 558 374 -53 3 hex 246 438 653 561 59 189 517 324 -54 3 hex 438 183 541 653 189 22 226 517 -55 3 hex 653 541 357 558 517 226 80 325 -56 3 hex 561 653 558 374 324 517 325 106 -57 3 hex 90 375 555 262 261 559 654 454 -58 3 hex 375 118 377 555 559 374 562 654 -59 3 hex 555 377 110 343 654 562 342 530 -60 3 hex 262 555 343 63 454 654 530 197 -61 3 hex 261 559 654 454 60 327 518 191 -62 3 hex 559 374 562 654 327 106 326 518 -63 3 hex 654 562 342 530 518 326 79 225 -64 3 hex 454 654 530 197 191 518 225 23 -65 3 hex 9 128 424 174 182 440 655 540 -66 3 hex 128 29 232 424 440 248 572 655 -67 3 hex 424 232 83 235 655 572 378 568 -68 3 hex 174 424 235 52 540 655 568 359 -69 3 hex 182 440 655 540 56 251 564 356 -70 3 hex 440 248 572 655 251 87 382 564 -71 3 hex 655 572 378 568 564 382 119 381 -72 3 hex 540 655 568 359 356 564 381 114 -73 3 hex 29 129 425 232 248 441 656 572 -74 3 hex 129 2 138 425 441 142 468 656 -75 3 hex 425 138 34 233 656 468 279 569 -76 3 hex 232 425 233 83 572 656 569 378 -77 3 hex 248 441 656 572 87 249 565 382 -78 3 hex 441 142 468 656 249 36 276 565 -79 3 hex 656 468 279 569 565 276 94 379 -80 3 hex 572 656 569 378 382 565 379 119 -81 3 hex 83 233 426 234 378 569 657 575 -82 3 hex 233 34 139 426 569 279 471 657 -83 3 hex 426 139 12 177 657 471 204 532 -84 3 hex 234 426 177 53 575 657 532 344 -85 3 hex 378 569 657 575 119 379 566 383 -86 3 hex 569 279 471 657 379 94 278 566 -87 3 hex 657 471 204 532 566 278 67 345 -88 3 hex 575 657 532 344 383 566 345 111 -89 3 hex 52 235 427 175 359 568 658 542 -90 3 hex 235 83 234 427 568 378 575 658 -91 3 hex 427 234 53 176 658 575 344 531 -92 3 hex 175 427 176 21 542 658 531 222 -93 3 hex 359 568 658 542 114 381 567 358 -94 3 hex 568 378 575 658 381 119 383 567 -95 3 hex 658 575 344 531 567 383 111 347 -96 3 hex 542 658 531 222 358 567 347 76 -97 3 hex 56 251 564 356 183 443 659 541 -98 3 hex 251 87 382 564 443 250 573 659 -99 3 hex 564 382 119 381 659 573 380 571 -100 3 hex 356 564 381 114 541 659 571 357 -101 3 hex 183 443 659 541 22 184 519 226 -102 3 hex 443 250 573 659 184 57 328 519 -103 3 hex 659 573 380 571 519 328 107 331 -104 3 hex 541 659 571 357 226 519 331 80 -105 3 hex 87 249 565 382 250 442 660 573 -106 3 hex 249 36 276 565 442 143 469 660 -107 3 hex 565 276 94 379 660 469 277 570 -108 3 hex 382 565 379 119 573 660 570 380 -109 3 hex 250 442 660 573 57 185 520 328 -110 3 hex 442 143 469 660 185 13 198 520 -111 3 hex 660 469 277 570 520 198 64 329 -112 3 hex 573 660 570 380 328 520 329 107 -113 3 hex 119 379 566 383 380 570 661 574 -114 3 hex 379 94 278 566 570 277 470 661 -115 3 hex 566 278 67 345 661 470 205 533 -116 3 hex 383 566 345 111 574 661 533 346 -117 3 hex 380 570 661 574 107 329 521 330 -118 3 hex 570 277 470 661 329 64 199 521 -119 3 hex 661 470 205 533 521 199 24 223 -120 3 hex 574 661 533 346 330 521 223 77 -121 3 hex 21 176 428 178 222 531 662 549 -122 3 hex 176 53 236 428 531 344 584 662 -123 3 hex 428 236 84 239 662 584 384 580 -124 3 hex 178 428 239 54 549 662 580 371 -125 3 hex 222 531 662 549 76 347 576 368 -126 3 hex 531 344 584 662 347 111 388 576 -127 3 hex 662 584 384 580 576 388 120 387 -128 3 hex 549 662 580 371 368 576 387 117 -129 3 hex 53 177 429 236 344 532 663 584 -130 3 hex 177 12 140 429 532 204 480 663 -131 3 hex 429 140 35 237 663 480 291 581 -132 3 hex 236 429 237 84 584 663 581 384 -133 3 hex 344 532 663 584 111 345 577 388 -134 3 hex 532 204 480 663 345 67 288 577 -135 3 hex 663 480 291 581 577 288 97 385 -136 3 hex 584 663 581 384 388 577 385 120 -137 3 hex 84 237 430 238 384 581 664 587 -138 3 hex 237 35 141 430 581 291 483 664 -139 3 hex 430 141 3 153 664 483 146 489 -140 3 hex 238 430 153 41 587 664 489 296 -141 3 hex 384 581 664 587 120 385 578 389 -142 3 hex 581 291 483 664 385 97 290 578 -143 3 hex 664 483 146 489 578 290 38 297 -144 3 hex 587 664 489 296 389 578 297 99 -145 3 hex 54 239 431 179 371 580 665 551 -146 3 hex 239 84 238 431 580 384 587 665 -147 3 hex 431 238 41 152 665 587 296 488 -148 3 hex 179 431 152 15 551 665 488 206 -149 3 hex 371 580 665 551 117 387 579 370 -150 3 hex 580 384 587 665 387 120 389 579 -151 3 hex 665 587 296 488 579 389 99 299 -152 3 hex 551 665 488 206 370 579 299 68 -153 3 hex 111 345 577 388 346 533 666 585 -154 3 hex 345 67 288 577 533 205 481 666 -155 3 hex 577 288 97 385 666 481 289 582 -156 3 hex 388 577 385 120 585 666 582 386 -157 3 hex 346 533 666 585 77 223 522 332 -158 3 hex 533 205 481 666 223 24 202 522 -159 3 hex 666 481 289 582 522 202 66 333 -160 3 hex 585 666 582 386 332 522 333 108 -161 3 hex 120 385 578 389 386 582 667 586 -162 3 hex 385 97 290 578 582 289 482 667 -163 3 hex 578 290 38 297 667 482 147 490 -164 3 hex 389 578 297 99 586 667 490 298 -165 3 hex 386 582 667 586 108 333 523 334 -166 3 hex 582 289 482 667 333 66 203 523 -167 3 hex 667 482 147 490 523 203 14 209 -168 3 hex 586 667 490 298 334 523 209 69 -169 3 hex 117 387 579 370 369 583 668 550 -170 3 hex 387 120 389 579 583 386 586 668 -171 3 hex 579 389 99 299 668 586 298 491 -172 3 hex 370 579 299 68 550 668 491 207 -173 3 hex 369 583 668 550 81 335 524 227 -174 3 hex 583 386 586 668 335 108 334 524 -175 3 hex 668 586 298 491 524 334 69 208 -176 3 hex 550 668 491 207 227 524 208 25 -177 3 hex 10 180 432 132 196 528 669 464 -178 3 hex 180 55 240 432 528 340 596 669 -179 3 hex 432 240 85 243 669 596 390 592 -180 3 hex 132 432 243 31 464 669 592 275 -181 3 hex 196 528 669 464 63 343 588 272 -182 3 hex 528 340 596 669 343 110 394 588 -183 3 hex 669 596 390 592 588 394 121 393 -184 3 hex 464 669 592 275 272 588 393 93 -185 3 hex 55 181 433 240 340 529 670 596 -186 3 hex 181 21 178 433 529 222 549 670 -187 3 hex 433 178 54 241 670 549 371 593 -188 3 hex 240 433 241 85 596 670 593 390 -189 3 hex 340 529 670 596 110 341 589 394 -190 3 hex 529 222 549 670 341 76 368 589 -191 3 hex 670 549 371 593 589 368 117 391 -192 3 hex 596 670 593 390 394 589 391 121 -193 3 hex 85 241 434 242 390 593 671 599 -194 3 hex 241 54 179 434 593 371 551 671 -195 3 hex 434 179 15 151 671 551 206 485 -196 3 hex 242 434 151 40 599 671 485 292 -197 3 hex 390 593 671 599 121 391 590 395 -198 3 hex 593 371 551 671 391 117 370 590 -199 3 hex 671 551 206 485 590 370 68 293 -200 3 hex 599 671 485 292 395 590 293 98 -201 3 hex 31 243 435 133 275 592 672 467 -202 3 hex 243 85 242 435 592 390 599 672 -203 3 hex 435 242 40 150 672 599 292 484 -204 3 hex 133 435 150 4 467 672 484 154 -205 3 hex 275 592 672 467 93 393 591 274 -206 3 hex 592 390 599 672 393 121 395 591 -207 3 hex 672 599 292 484 591 395 98 295 -208 3 hex 467 672 484 154 274 591 295 42 -209 3 hex 63 343 588 272 197 530 673 465 -210 3 hex 343 110 394 588 530 342 597 673 -211 3 hex 588 394 121 393 673 597 392 595 -212 3 hex 272 588 393 93 465 673 595 273 -213 3 hex 197 530 673 465 23 225 525 194 -214 3 hex 530 342 597 673 225 79 336 525 -215 3 hex 673 597 392 595 525 336 109 339 -216 3 hex 465 673 595 273 194 525 339 62 -217 3 hex 121 391 590 395 392 594 674 598 -218 3 hex 391 117 370 590 594 369 550 674 -219 3 hex 590 370 68 293 674 550 207 486 -220 3 hex 395 590 293 98 598 674 486 294 -221 3 hex 392 594 674 598 109 337 526 338 -222 3 hex 594 369 550 674 337 81 227 526 -223 3 hex 674 550 207 486 526 227 25 213 -224 3 hex 598 674 486 294 338 526 213 71 -225 3 hex 93 393 591 274 273 595 675 466 -226 3 hex 393 121 395 591 595 392 598 675 -227 3 hex 591 395 98 295 675 598 294 487 -228 3 hex 274 591 295 42 466 675 487 155 -229 3 hex 273 595 675 466 62 339 527 195 -230 3 hex 595 392 598 675 339 109 338 527 -231 3 hex 675 598 294 487 527 338 71 212 -232 3 hex 466 675 487 155 195 527 212 16 -233 3 hex 11 188 516 190 136 448 676 456 -234 3 hex 188 59 324 516 448 256 608 676 -235 3 hex 516 324 106 327 676 608 396 604 -236 3 hex 190 516 327 60 456 676 604 267 -237 3 hex 136 448 676 456 33 259 600 264 -238 3 hex 448 256 608 676 259 89 400 600 -239 3 hex 676 608 396 604 600 400 122 399 -240 3 hex 456 676 604 267 264 600 399 91 -241 3 hex 59 189 517 324 256 449 677 608 -242 3 hex 189 22 226 517 449 186 543 677 -243 3 hex 517 226 80 325 677 543 363 605 -244 3 hex 324 517 325 106 608 677 605 396 -245 3 hex 256 449 677 608 89 257 601 400 -246 3 hex 449 186 543 677 257 58 360 601 -247 3 hex 677 543 363 605 601 360 115 397 -248 3 hex 608 677 605 396 400 601 397 122 -249 3 hex 60 327 518 191 267 604 678 459 -250 3 hex 327 106 326 518 604 396 611 678 -251 3 hex 518 326 79 225 678 611 352 537 -252 3 hex 191 518 225 23 459 678 537 192 -253 3 hex 267 604 678 459 91 399 603 266 -254 3 hex 604 396 611 678 399 122 401 603 -255 3 hex 678 611 352 537 603 401 113 355 -256 3 hex 459 678 537 192 266 603 355 61 -257 3 hex 33 259 600 264 137 451 679 457 -258 3 hex 259 89 400 600 451 258 609 679 -259 3 hex 600 400 122 399 679 609 398 607 -260 3 hex 264 600 399 91 457 679 607 265 -261 3 hex 137 451 679 457 5 158 500 162 -262 3 hex 451 258 609 679 158 44 308 500 -263 3 hex 679 609 398 607 500 308 102 311 -264 3 hex 457 679 607 265 162 500 311 46 -265 3 hex 89 257 601 400 258 450 680 609 -266 3 hex 257 58 360 601 450 187 544 680 -267 3 hex 601 360 115 397 680 544 361 606 -268 3 hex 400 601 397 122 609 680 606 398 -269 3 hex 258 450 680 609 44 159 501 308 -270 3 hex 450 187 544 680 159 17 214 501 -271 3 hex 680 544 361 606 501 214 72 309 -272 3 hex 609 680 606 398 308 501 309 102 -273 3 hex 122 397 602 401 398 606 681 610 -274 3 hex 397 115 362 602 606 361 545 681 -275 3 hex 602 362 78 353 681 545 224 538 -276 3 hex 401 602 353 113 610 681 538 354 -277 3 hex 398 606 681 610 102 309 502 310 -278 3 hex 606 361 545 681 309 72 215 502 -279 3 hex 681 545 224 538 502 215 26 221 -280 3 hex 610 681 538 354 310 502 221 75 -281 3 hex 91 399 603 266 265 607 682 458 -282 3 hex 399 122 401 603 607 398 610 682 -283 3 hex 603 401 113 355 682 610 354 539 -284 3 hex 266 603 355 61 458 682 539 193 -285 3 hex 265 607 682 458 46 311 503 163 -286 3 hex 607 398 610 682 311 102 310 503 -287 3 hex 682 610 354 539 503 310 75 220 -288 3 hex 458 682 539 193 163 503 220 18 -289 3 hex 22 184 519 226 186 444 683 543 -290 3 hex 184 57 328 519 444 252 620 683 -291 3 hex 519 328 107 331 683 620 402 616 -292 3 hex 226 519 331 80 543 683 616 363 -293 3 hex 186 444 683 543 58 255 612 360 -294 3 hex 444 252 620 683 255 88 406 612 -295 3 hex 683 620 402 616 612 406 123 405 -296 3 hex 543 683 616 363 360 612 405 115 -297 3 hex 57 185 520 328 252 445 684 620 -298 3 hex 185 13 198 520 445 144 472 684 -299 3 hex 520 198 64 329 684 472 283 617 -300 3 hex 328 520 329 107 620 684 617 402 -301 3 hex 252 445 684 620 88 253 613 406 -302 3 hex 445 144 472 684 253 37 280 613 -303 3 hex 684 472 283 617 613 280 95 403 -304 3 hex 620 684 617 402 406 613 403 123 -305 3 hex 107 329 521 330 402 617 685 623 -306 3 hex 329 64 199 521 617 283 475 685 -307 3 hex 521 199 24 223 685 475 200 534 -308 3 hex 330 521 223 77 623 685 534 348 -309 3 hex 402 617 685 623 123 403 614 407 -310 3 hex 617 283 475 685 403 95 282 614 -311 3 hex 685 475 200 534 614 282 65 349 -312 3 hex 623 685 534 348 407 614 349 112 -313 3 hex 58 255 612 360 187 447 686 544 -314 3 hex 255 88 406 612 447 254 621 686 -315 3 hex 612 406 123 405 686 621 404 619 -316 3 hex 360 612 405 115 544 686 619 361 -317 3 hex 187 447 686 544 17 160 504 214 -318 3 hex 447 254 621 686 160 45 312 504 -319 3 hex 686 621 404 619 504 312 103 315 -320 3 hex 544 686 619 361 214 504 315 72 -321 3 hex 88 253 613 406 254 446 687 621 -322 3 hex 253 37 280 613 446 145 473 687 -323 3 hex 613 280 95 403 687 473 281 618 -324 3 hex 406 613 403 123 621 687 618 404 -325 3 hex 254 446 687 621 45 161 505 312 -326 3 hex 446 145 473 687 161 6 166 505 -327 3 hex 687 473 281 618 505 166 48 313 -328 3 hex 621 687 618 404 312 505 313 103 -329 3 hex 123 403 614 407 404 618 688 622 -330 3 hex 403 95 282 614 618 281 474 688 -331 3 hex 614 282 65 349 688 474 201 535 -332 3 hex 407 614 349 112 622 688 535 350 -333 3 hex 404 618 688 622 103 313 506 314 -334 3 hex 618 281 474 688 313 48 167 506 -335 3 hex 688 474 201 535 506 167 19 217 -336 3 hex 622 688 535 350 314 506 217 73 -337 3 hex 115 405 615 362 361 619 689 545 -338 3 hex 405 123 407 615 619 404 622 689 -339 3 hex 615 407 112 351 689 622 350 536 -340 3 hex 362 615 351 78 545 689 536 224 -341 3 hex 361 619 689 545 72 315 507 215 -342 3 hex 619 404 622 689 315 103 314 507 -343 3 hex 689 622 350 536 507 314 73 216 -344 3 hex 545 689 536 224 215 507 216 26 -345 3 hex 77 223 522 332 348 534 690 632 -346 3 hex 223 24 202 522 534 200 476 690 -347 3 hex 522 202 66 333 690 476 287 629 -348 3 hex 332 522 333 108 632 690 629 408 -349 3 hex 348 534 690 632 112 349 625 412 -350 3 hex 534 200 476 690 349 65 284 625 -351 3 hex 690 476 287 629 625 284 96 409 -352 3 hex 632 690 629 408 412 625 409 124 -353 3 hex 108 333 523 334 408 629 691 635 -354 3 hex 333 66 203 523 629 287 479 691 -355 3 hex 523 203 14 209 691 479 148 493 -356 3 hex 334 523 209 69 635 691 493 300 -357 3 hex 408 629 691 635 124 409 626 413 -358 3 hex 629 287 479 691 409 96 286 626 -359 3 hex 691 479 148 493 626 286 39 301 -360 3 hex 635 691 493 300 413 626 301 100 -361 3 hex 81 335 524 227 367 628 692 548 -362 3 hex 335 108 334 524 628 408 635 692 -363 3 hex 524 334 69 208 692 635 300 492 -364 3 hex 227 524 208 25 548 692 492 210 -365 3 hex 367 628 692 548 116 411 627 366 -366 3 hex 628 408 635 692 411 124 413 627 -367 3 hex 692 635 300 492 627 413 100 303 -368 3 hex 548 692 492 210 366 627 303 70 -369 3 hex 78 351 624 364 224 536 693 546 -370 3 hex 351 112 412 624 536 350 633 693 -371 3 hex 624 412 124 411 693 633 410 631 -372 3 hex 364 624 411 116 546 693 631 365 -373 3 hex 224 536 693 546 26 216 508 218 -374 3 hex 536 350 633 693 216 73 316 508 -375 3 hex 693 633 410 631 508 316 104 319 -376 3 hex 546 693 631 365 218 508 319 74 -377 3 hex 112 349 625 412 350 535 694 633 -378 3 hex 349 65 284 625 535 201 477 694 -379 3 hex 625 284 96 409 694 477 285 630 -380 3 hex 412 625 409 124 633 694 630 410 -381 3 hex 350 535 694 633 73 217 509 316 -382 3 hex 535 201 477 694 217 19 168 509 -383 3 hex 694 477 285 630 509 168 49 317 -384 3 hex 633 694 630 410 316 509 317 104 -385 3 hex 124 409 626 413 410 630 695 634 -386 3 hex 409 96 286 626 630 285 478 695 -387 3 hex 626 286 39 301 695 478 149 494 -388 3 hex 413 626 301 100 634 695 494 302 -389 3 hex 410 630 695 634 104 317 510 318 -390 3 hex 630 285 478 695 317 49 169 510 -391 3 hex 695 478 149 494 510 169 7 173 -392 3 hex 634 695 494 302 318 510 173 51 -393 3 hex 116 411 627 366 365 631 696 547 -394 3 hex 411 124 413 627 631 410 634 696 -395 3 hex 627 413 100 303 696 634 302 495 -396 3 hex 366 627 303 70 547 696 495 211 -397 3 hex 365 631 696 547 74 319 511 219 -398 3 hex 631 410 634 696 319 104 318 511 -399 3 hex 696 634 302 495 511 318 51 172 -400 3 hex 547 696 495 211 219 511 172 20 -401 3 hex 23 225 525 194 192 537 697 460 -402 3 hex 225 79 336 525 537 352 644 697 -403 3 hex 525 336 109 339 697 644 414 640 -404 3 hex 194 525 339 62 460 697 640 271 -405 3 hex 192 537 697 460 61 355 636 268 -406 3 hex 537 352 644 697 355 113 418 636 -407 3 hex 697 644 414 640 636 418 125 417 -408 3 hex 460 697 640 271 268 636 417 92 -409 3 hex 109 337 526 338 414 641 698 647 -410 3 hex 337 81 227 526 641 367 548 698 -411 3 hex 526 227 25 213 698 548 210 497 -412 3 hex 338 526 213 71 647 698 497 304 -413 3 hex 414 641 698 647 125 415 638 419 -414 3 hex 641 367 548 698 415 116 366 638 -415 3 hex 698 548 210 497 638 366 70 305 -416 3 hex 647 698 497 304 419 638 305 101 -417 3 hex 62 339 527 195 271 640 699 463 -418 3 hex 339 109 338 527 640 414 647 699 -419 3 hex 527 338 71 212 699 647 304 496 -420 3 hex 195 527 212 16 463 699 496 156 -421 3 hex 271 640 699 463 92 417 639 270 -422 3 hex 640 414 647 699 417 125 419 639 -423 3 hex 699 647 304 496 639 419 101 307 -424 3 hex 463 699 496 156 270 639 307 43 -425 3 hex 61 355 636 268 193 539 700 461 -426 3 hex 355 113 418 636 539 354 645 700 -427 3 hex 636 418 125 417 700 645 416 643 -428 3 hex 268 636 417 92 461 700 643 269 -429 3 hex 193 539 700 461 18 220 512 164 -430 3 hex 539 354 645 700 220 75 320 512 -431 3 hex 700 645 416 643 512 320 105 323 -432 3 hex 461 700 643 269 164 512 323 47 -433 3 hex 113 353 637 418 354 538 701 645 -434 3 hex 353 78 364 637 538 224 546 701 -435 3 hex 637 364 116 415 701 546 365 642 -436 3 hex 418 637 415 125 645 701 642 416 -437 3 hex 354 538 701 645 75 221 513 320 -438 3 hex 538 224 546 701 221 26 218 513 -439 3 hex 701 546 365 642 513 218 74 321 -440 3 hex 645 701 642 416 320 513 321 105 -441 3 hex 125 415 638 419 416 642 702 646 -442 3 hex 415 116 366 638 642 365 547 702 -443 3 hex 638 366 70 305 702 547 211 498 -444 3 hex 419 638 305 101 646 702 498 306 -445 3 hex 416 642 702 646 105 321 514 322 -446 3 hex 642 365 547 702 321 74 219 514 -447 3 hex 702 547 211 498 514 219 20 171 -448 3 hex 646 702 498 306 322 514 171 50 -449 3 hex 92 417 639 270 269 643 703 462 -450 3 hex 417 125 419 639 643 416 646 703 -451 3 hex 639 419 101 307 703 646 306 499 -452 3 hex 270 639 307 43 462 703 499 157 -453 3 hex 269 643 703 462 47 323 515 165 -454 3 hex 643 416 646 703 323 105 322 515 -455 3 hex 703 646 306 499 515 322 50 170 -456 3 hex 462 703 499 157 165 515 170 8 -DEAL:Test3.dim3:: Total number of cells = 521 -DEAL:Test3.dim3:: Total number of active cells = 456 diff --git a/tests/deal.II/helmholtz.h b/tests/deal.II/helmholtz.h deleted file mode 100644 index 5088d78f94..0000000000 --- a/tests/deal.II/helmholtz.h +++ /dev/null @@ -1,26 +0,0 @@ -// $Id$ - -#include - -/** - * Generator for system matrix and right hand side. - */ -class Helmholtz -{ - public: - template - void build_all(MATRIX& A, - VECTOR& f, - const DoFHandler& dof, - const Quadrature& quadrature, - const Function& rhs); - - template - void build_mgmatrix(MGLevelObject& A, - const MGDoFHandler& dof, - const Quadrature& quadrature); -}; - -#include "helmholtz1.th" -#include "helmholtz1mg.th" - diff --git a/tests/deal.II/helmholtz1.th b/tests/deal.II/helmholtz1.th deleted file mode 100644 index 157e1810b0..0000000000 --- a/tests/deal.II/helmholtz1.th +++ /dev/null @@ -1,70 +0,0 @@ -// $Id$ - -template -void -Helmholtz::build_all(MATRIX& A, - VECTOR& f, - const DoFHandler& dof, - const Quadrature& quadrature, - const Function& rhs) -{ - const unsigned int fe_dofs = dof.get_fe().n_dofs_per_cell(); - FEValues fe(dof.get_fe(), quadrature, - UpdateFlags(update_values | update_gradients | - update_JxW_values | update_q_points)); - - Vector elvec(fe_dofs); - FullMatrix elmat(fe_dofs); - vector indices(fe_dofs); - -//////////////////////////////////////////////////// -// Loop for computing the element matrices -//////////////////////////////////////////////////// - - for (DoFHandler::active_cell_iterator c = dof.begin_active() - ; c != dof.end() ; ++c) - { - elmat.clear(); - elvec.clear(); - fe.reinit(c); - - // Quadrature loop - - for (unsigned k=0;k loc = fe.quadrature_point(k); - - // Test function loop - for (unsigned i=0;i dv = fe.shape_grad(i,k); - double v = fe.shape_value(i,k); - - elvec(i) += fe.JxW(k) * - rhs.value(loc) * v; - - //Trial function loop - for (unsigned j=0;j du = fe.shape_grad(j,k); - double u = fe.shape_value(j,k); - - elmat(i,j) += fe.JxW(k) * - (0.1*u*v + du*dv) - ; - } - } - } - - c->get_dof_indices(indices); - for (unsigned i=0;i -void -Helmholtz::build_mgmatrix(MGLevelObject& A, - const MGDoFHandler& dof, - const Quadrature& quadrature) -{ - const unsigned int fe_dofs = dof.get_fe().n_dofs_per_cell(); - FEValues fe(dof.get_fe(), quadrature, - UpdateFlags(update_values | update_gradients | - update_JxW_values | update_q_points)); - - Vector elvec(fe_dofs); - FullMatrix elmat(fe_dofs); - vector indices(fe_dofs); - -//////////////////////////////////////////////////// -// Loop for computing the element matrices -//////////////////////////////////////////////////// - - DoFHandler::cell_iterator dc = dof.DoFHandler::begin(); - for (MGDoFHandler::cell_iterator c = dof.begin() - ; c != dof.end() ; ++c, ++dc) - { - elmat.clear(); - elvec.clear(); - fe.reinit(dc); - - // Quadrature loop - - for (unsigned k=0;k loc = fe.quadrature_point(k); - - // Test function loop - for (unsigned i=0;i dv = fe.shape_grad(i,k); - double v = fe.shape_value(i,k); - - //Trial function loop - for (unsigned j=0;j du = fe.shape_grad(j,k); - double u = fe.shape_value(j,k); - - elmat(i,j) += fe.JxW(k) * - (0.1*u*v + du*dv) - ; - } - } - } - - const unsigned int level = c->level(); - - c->get_mg_dof_indices(indices); - for (unsigned i=0;i -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include - - -template -void check () -{ - deallog << "Checking in " << dim << " space dimensions" - << endl - << "---------------------------------------" << endl; - - // create two grids - Triangulation tria_1, tria_2; - GridGenerator::hyper_cube (tria_1, -1, 1); - tria_1.refine_global (5-dim); - tria_2.copy_triangulation (tria_1); - - FEQ1 fe_1; - FEQ2 fe_2; - - // make several loops to refine the - // two grids - for (unsigned int i=0; i<3; ++i) - { - deallog << "Refinement step " << i << endl; - - DoFHandler dof_1 (tria_1); - DoFHandler dof_2 (tria_2); - - dof_1.distribute_dofs (fe_1); - dof_2.distribute_dofs (fe_2); - - // create some mapping - InterGridMap intergrid_map_1; - InterGridMap intergrid_map_2; - intergrid_map_1.make_mapping (dof_1, dof_2); - intergrid_map_2.make_mapping (dof_2, dof_1); - - // write out the mapping - typename DoFHandler::cell_iterator cell=dof_1.begin(), - endc=dof_1.end(); - for (; cell!=endc; ++cell) - { - deallog << cell - << "->" - << intergrid_map_1[cell] - << "->" - << intergrid_map_2[intergrid_map_1[cell]] - << endl; -// note that not necessarily intergrid_map_2[intergrid_map_1[cell]] == -// cell, since the meshes have different refinement steps. - }; - - - - // now refine grids a little, - // but differently. this - // produces quite random grids - cell = dof_1.begin(); - for (unsigned int index=0; cell!=endc; ++cell) - if (cell->active()) - { - ++index; - if (index % 3 == 0) - cell->set_refine_flag (); - }; - - cell = dof_2.begin(); - endc = dof_2.end(); - for (unsigned int index=0; cell!=endc; ++cell) - if (cell->active()) - { - ++index; - if (index % 3 == 1) - cell->set_refine_flag (); - }; - - tria_1.execute_coarsening_and_refinement (); - tria_2.execute_coarsening_and_refinement (); - }; -}; - - - -int main () -{ - ofstream logfile("intergrid_map.output"); - logfile.precision(4); - - deallog.attach(logfile); - deallog.depth_console(0); - - check<1> (); - check<2> (); - check<3> (); -}; - diff --git a/tests/deal.II/intergrid_map.checked b/tests/deal.II/intergrid_map.checked deleted file mode 100644 index 26ea4242c8..0000000000 --- a/tests/deal.II/intergrid_map.checked +++ /dev/null @@ -1,2157 +0,0 @@ - -DEAL::Checking in 1 space dimensions -DEAL::--------------------------------------- -DEAL::Refinement step 0 -DEAL::0.0->0.0->0.0 -DEAL::1.0->1.0->1.0 -DEAL::1.1->1.1->1.1 -DEAL::2.0->2.0->2.0 -DEAL::2.1->2.1->2.1 -DEAL::2.2->2.2->2.2 -DEAL::2.3->2.3->2.3 -DEAL::3.0->3.0->3.0 -DEAL::3.1->3.1->3.1 -DEAL::3.2->3.2->3.2 -DEAL::3.3->3.3->3.3 -DEAL::3.4->3.4->3.4 -DEAL::3.5->3.5->3.5 -DEAL::3.6->3.6->3.6 -DEAL::3.7->3.7->3.7 -DEAL::4.0->4.0->4.0 -DEAL::4.1->4.1->4.1 -DEAL::4.2->4.2->4.2 -DEAL::4.3->4.3->4.3 -DEAL::4.4->4.4->4.4 -DEAL::4.5->4.5->4.5 -DEAL::4.6->4.6->4.6 -DEAL::4.7->4.7->4.7 -DEAL::4.8->4.8->4.8 -DEAL::4.9->4.9->4.9 -DEAL::4.10->4.10->4.10 -DEAL::4.11->4.11->4.11 -DEAL::4.12->4.12->4.12 -DEAL::4.13->4.13->4.13 -DEAL::4.14->4.14->4.14 -DEAL::4.15->4.15->4.15 -DEAL::Refinement step 1 -DEAL::0.0->0.0->0.0 -DEAL::1.0->1.0->1.0 -DEAL::1.1->1.1->1.1 -DEAL::2.0->2.0->2.0 -DEAL::2.1->2.1->2.1 -DEAL::2.2->2.2->2.2 -DEAL::2.3->2.3->2.3 -DEAL::3.0->3.0->3.0 -DEAL::3.1->3.1->3.1 -DEAL::3.2->3.2->3.2 -DEAL::3.3->3.3->3.3 -DEAL::3.4->3.4->3.4 -DEAL::3.5->3.5->3.5 -DEAL::3.6->3.6->3.6 -DEAL::3.7->3.7->3.7 -DEAL::4.0->4.0->4.0 -DEAL::4.1->4.1->4.1 -DEAL::4.2->4.2->4.2 -DEAL::4.3->4.3->4.3 -DEAL::4.4->4.4->4.4 -DEAL::4.5->4.5->4.5 -DEAL::4.6->4.6->4.6 -DEAL::4.7->4.7->4.7 -DEAL::4.8->4.8->4.8 -DEAL::4.9->4.9->4.9 -DEAL::4.10->4.10->4.10 -DEAL::4.11->4.11->4.11 -DEAL::4.12->4.12->4.12 -DEAL::4.13->4.13->4.13 -DEAL::4.14->4.14->4.14 -DEAL::4.15->4.15->4.15 -DEAL::5.0->4.2->4.2 -DEAL::5.1->4.2->4.2 -DEAL::5.2->4.5->4.5 -DEAL::5.3->4.5->4.5 -DEAL::5.4->4.8->4.8 -DEAL::5.5->4.8->4.8 -DEAL::5.6->4.11->4.11 -DEAL::5.7->4.11->4.11 -DEAL::5.8->4.14->4.14 -DEAL::5.9->4.14->4.14 -DEAL::Refinement step 2 -DEAL::0.0->0.0->0.0 -DEAL::1.0->1.0->1.0 -DEAL::1.1->1.1->1.1 -DEAL::2.0->2.0->2.0 -DEAL::2.1->2.1->2.1 -DEAL::2.2->2.2->2.2 -DEAL::2.3->2.3->2.3 -DEAL::3.0->3.0->3.0 -DEAL::3.1->3.1->3.1 -DEAL::3.2->3.2->3.2 -DEAL::3.3->3.3->3.3 -DEAL::3.4->3.4->3.4 -DEAL::3.5->3.5->3.5 -DEAL::3.6->3.6->3.6 -DEAL::3.7->3.7->3.7 -DEAL::4.0->4.0->4.0 -DEAL::4.1->4.1->4.1 -DEAL::4.2->4.2->4.2 -DEAL::4.3->4.3->4.3 -DEAL::4.4->4.4->4.4 -DEAL::4.5->4.5->4.5 -DEAL::4.6->4.6->4.6 -DEAL::4.7->4.7->4.7 -DEAL::4.8->4.8->4.8 -DEAL::4.9->4.9->4.9 -DEAL::4.10->4.10->4.10 -DEAL::4.11->4.11->4.11 -DEAL::4.12->4.12->4.12 -DEAL::4.13->4.13->4.13 -DEAL::4.14->4.14->4.14 -DEAL::4.15->4.15->4.15 -DEAL::5.0->4.2->4.2 -DEAL::5.1->4.2->4.2 -DEAL::5.2->5.14->5.2 -DEAL::5.3->5.15->5.3 -DEAL::5.4->4.8->4.8 -DEAL::5.5->4.8->4.8 -DEAL::5.6->4.11->4.11 -DEAL::5.7->4.11->4.11 -DEAL::5.8->5.18->5.8 -DEAL::5.9->5.19->5.9 -DEAL::5.10->5.2->5.10 -DEAL::5.11->5.3->5.11 -DEAL::5.12->4.7->4.7 -DEAL::5.13->4.7->4.7 -DEAL::5.14->5.8->5.14 -DEAL::5.15->5.9->5.15 -DEAL::6.0->4.2->4.2 -DEAL::6.1->4.2->4.2 -DEAL::6.2->5.15->5.3 -DEAL::6.3->5.15->5.3 -DEAL::6.4->4.11->4.11 -DEAL::6.5->4.11->4.11 -DEAL::6.6->5.19->5.9 -DEAL::6.7->5.19->5.9 -DEAL::Checking in 2 space dimensions -DEAL::--------------------------------------- -DEAL::Refinement step 0 -DEAL::0.0->0.0->0.0 -DEAL::1.0->1.0->1.0 -DEAL::1.1->1.1->1.1 -DEAL::1.2->1.2->1.2 -DEAL::1.3->1.3->1.3 -DEAL::2.0->2.0->2.0 -DEAL::2.1->2.1->2.1 -DEAL::2.2->2.2->2.2 -DEAL::2.3->2.3->2.3 -DEAL::2.4->2.4->2.4 -DEAL::2.5->2.5->2.5 -DEAL::2.6->2.6->2.6 -DEAL::2.7->2.7->2.7 -DEAL::2.8->2.8->2.8 -DEAL::2.9->2.9->2.9 -DEAL::2.10->2.10->2.10 -DEAL::2.11->2.11->2.11 -DEAL::2.12->2.12->2.12 -DEAL::2.13->2.13->2.13 -DEAL::2.14->2.14->2.14 -DEAL::2.15->2.15->2.15 -DEAL::3.0->3.0->3.0 -DEAL::3.1->3.1->3.1 -DEAL::3.2->3.2->3.2 -DEAL::3.3->3.3->3.3 -DEAL::3.4->3.4->3.4 -DEAL::3.5->3.5->3.5 -DEAL::3.6->3.6->3.6 -DEAL::3.7->3.7->3.7 -DEAL::3.8->3.8->3.8 -DEAL::3.9->3.9->3.9 -DEAL::3.10->3.10->3.10 -DEAL::3.11->3.11->3.11 -DEAL::3.12->3.12->3.12 -DEAL::3.13->3.13->3.13 -DEAL::3.14->3.14->3.14 -DEAL::3.15->3.15->3.15 -DEAL::3.16->3.16->3.16 -DEAL::3.17->3.17->3.17 -DEAL::3.18->3.18->3.18 -DEAL::3.19->3.19->3.19 -DEAL::3.20->3.20->3.20 -DEAL::3.21->3.21->3.21 -DEAL::3.22->3.22->3.22 -DEAL::3.23->3.23->3.23 -DEAL::3.24->3.24->3.24 -DEAL::3.25->3.25->3.25 -DEAL::3.26->3.26->3.26 -DEAL::3.27->3.27->3.27 -DEAL::3.28->3.28->3.28 -DEAL::3.29->3.29->3.29 -DEAL::3.30->3.30->3.30 -DEAL::3.31->3.31->3.31 -DEAL::3.32->3.32->3.32 -DEAL::3.33->3.33->3.33 -DEAL::3.34->3.34->3.34 -DEAL::3.35->3.35->3.35 -DEAL::3.36->3.36->3.36 -DEAL::3.37->3.37->3.37 -DEAL::3.38->3.38->3.38 -DEAL::3.39->3.39->3.39 -DEAL::3.40->3.40->3.40 -DEAL::3.41->3.41->3.41 -DEAL::3.42->3.42->3.42 -DEAL::3.43->3.43->3.43 -DEAL::3.44->3.44->3.44 -DEAL::3.45->3.45->3.45 -DEAL::3.46->3.46->3.46 -DEAL::3.47->3.47->3.47 -DEAL::3.48->3.48->3.48 -DEAL::3.49->3.49->3.49 -DEAL::3.50->3.50->3.50 -DEAL::3.51->3.51->3.51 -DEAL::3.52->3.52->3.52 -DEAL::3.53->3.53->3.53 -DEAL::3.54->3.54->3.54 -DEAL::3.55->3.55->3.55 -DEAL::3.56->3.56->3.56 -DEAL::3.57->3.57->3.57 -DEAL::3.58->3.58->3.58 -DEAL::3.59->3.59->3.59 -DEAL::3.60->3.60->3.60 -DEAL::3.61->3.61->3.61 -DEAL::3.62->3.62->3.62 -DEAL::3.63->3.63->3.63 -DEAL::Refinement step 1 -DEAL::0.0->0.0->0.0 -DEAL::1.0->1.0->1.0 -DEAL::1.1->1.1->1.1 -DEAL::1.2->1.2->1.2 -DEAL::1.3->1.3->1.3 -DEAL::2.0->2.0->2.0 -DEAL::2.1->2.1->2.1 -DEAL::2.2->2.2->2.2 -DEAL::2.3->2.3->2.3 -DEAL::2.4->2.4->2.4 -DEAL::2.5->2.5->2.5 -DEAL::2.6->2.6->2.6 -DEAL::2.7->2.7->2.7 -DEAL::2.8->2.8->2.8 -DEAL::2.9->2.9->2.9 -DEAL::2.10->2.10->2.10 -DEAL::2.11->2.11->2.11 -DEAL::2.12->2.12->2.12 -DEAL::2.13->2.13->2.13 -DEAL::2.14->2.14->2.14 -DEAL::2.15->2.15->2.15 -DEAL::3.0->3.0->3.0 -DEAL::3.1->3.1->3.1 -DEAL::3.2->3.2->3.2 -DEAL::3.3->3.3->3.3 -DEAL::3.4->3.4->3.4 -DEAL::3.5->3.5->3.5 -DEAL::3.6->3.6->3.6 -DEAL::3.7->3.7->3.7 -DEAL::3.8->3.8->3.8 -DEAL::3.9->3.9->3.9 -DEAL::3.10->3.10->3.10 -DEAL::3.11->3.11->3.11 -DEAL::3.12->3.12->3.12 -DEAL::3.13->3.13->3.13 -DEAL::3.14->3.14->3.14 -DEAL::3.15->3.15->3.15 -DEAL::3.16->3.16->3.16 -DEAL::3.17->3.17->3.17 -DEAL::3.18->3.18->3.18 -DEAL::3.19->3.19->3.19 -DEAL::3.20->3.20->3.20 -DEAL::3.21->3.21->3.21 -DEAL::3.22->3.22->3.22 -DEAL::3.23->3.23->3.23 -DEAL::3.24->3.24->3.24 -DEAL::3.25->3.25->3.25 -DEAL::3.26->3.26->3.26 -DEAL::3.27->3.27->3.27 -DEAL::3.28->3.28->3.28 -DEAL::3.29->3.29->3.29 -DEAL::3.30->3.30->3.30 -DEAL::3.31->3.31->3.31 -DEAL::3.32->3.32->3.32 -DEAL::3.33->3.33->3.33 -DEAL::3.34->3.34->3.34 -DEAL::3.35->3.35->3.35 -DEAL::3.36->3.36->3.36 -DEAL::3.37->3.37->3.37 -DEAL::3.38->3.38->3.38 -DEAL::3.39->3.39->3.39 -DEAL::3.40->3.40->3.40 -DEAL::3.41->3.41->3.41 -DEAL::3.42->3.42->3.42 -DEAL::3.43->3.43->3.43 -DEAL::3.44->3.44->3.44 -DEAL::3.45->3.45->3.45 -DEAL::3.46->3.46->3.46 -DEAL::3.47->3.47->3.47 -DEAL::3.48->3.48->3.48 -DEAL::3.49->3.49->3.49 -DEAL::3.50->3.50->3.50 -DEAL::3.51->3.51->3.51 -DEAL::3.52->3.52->3.52 -DEAL::3.53->3.53->3.53 -DEAL::3.54->3.54->3.54 -DEAL::3.55->3.55->3.55 -DEAL::3.56->3.56->3.56 -DEAL::3.57->3.57->3.57 -DEAL::3.58->3.58->3.58 -DEAL::3.59->3.59->3.59 -DEAL::3.60->3.60->3.60 -DEAL::3.61->3.61->3.61 -DEAL::3.62->3.62->3.62 -DEAL::3.63->3.63->3.63 -DEAL::4.0->3.2->3.2 -DEAL::4.1->3.2->3.2 -DEAL::4.2->3.2->3.2 -DEAL::4.3->3.2->3.2 -DEAL::4.4->3.5->3.5 -DEAL::4.5->3.5->3.5 -DEAL::4.6->3.5->3.5 -DEAL::4.7->3.5->3.5 -DEAL::4.8->3.8->3.8 -DEAL::4.9->3.8->3.8 -DEAL::4.10->3.8->3.8 -DEAL::4.11->3.8->3.8 -DEAL::4.12->3.11->3.11 -DEAL::4.13->3.11->3.11 -DEAL::4.14->3.11->3.11 -DEAL::4.15->3.11->3.11 -DEAL::4.16->3.14->3.14 -DEAL::4.17->3.14->3.14 -DEAL::4.18->3.14->3.14 -DEAL::4.19->3.14->3.14 -DEAL::4.20->3.17->3.17 -DEAL::4.21->3.17->3.17 -DEAL::4.22->3.17->3.17 -DEAL::4.23->3.17->3.17 -DEAL::4.24->3.20->3.20 -DEAL::4.25->3.20->3.20 -DEAL::4.26->3.20->3.20 -DEAL::4.27->3.20->3.20 -DEAL::4.28->3.23->3.23 -DEAL::4.29->3.23->3.23 -DEAL::4.30->3.23->3.23 -DEAL::4.31->3.23->3.23 -DEAL::4.32->3.26->3.26 -DEAL::4.33->3.26->3.26 -DEAL::4.34->3.26->3.26 -DEAL::4.35->3.26->3.26 -DEAL::4.36->3.29->3.29 -DEAL::4.37->3.29->3.29 -DEAL::4.38->3.29->3.29 -DEAL::4.39->3.29->3.29 -DEAL::4.40->3.32->3.32 -DEAL::4.41->3.32->3.32 -DEAL::4.42->3.32->3.32 -DEAL::4.43->3.32->3.32 -DEAL::4.44->3.35->3.35 -DEAL::4.45->3.35->3.35 -DEAL::4.46->3.35->3.35 -DEAL::4.47->3.35->3.35 -DEAL::4.48->3.38->3.38 -DEAL::4.49->3.38->3.38 -DEAL::4.50->3.38->3.38 -DEAL::4.51->3.38->3.38 -DEAL::4.52->3.41->3.41 -DEAL::4.53->3.41->3.41 -DEAL::4.54->3.41->3.41 -DEAL::4.55->3.41->3.41 -DEAL::4.56->3.44->3.44 -DEAL::4.57->3.44->3.44 -DEAL::4.58->3.44->3.44 -DEAL::4.59->3.44->3.44 -DEAL::4.60->3.47->3.47 -DEAL::4.61->3.47->3.47 -DEAL::4.62->3.47->3.47 -DEAL::4.63->3.47->3.47 -DEAL::4.64->3.50->3.50 -DEAL::4.65->3.50->3.50 -DEAL::4.66->3.50->3.50 -DEAL::4.67->3.50->3.50 -DEAL::4.68->3.53->3.53 -DEAL::4.69->3.53->3.53 -DEAL::4.70->3.53->3.53 -DEAL::4.71->3.53->3.53 -DEAL::4.72->3.56->3.56 -DEAL::4.73->3.56->3.56 -DEAL::4.74->3.56->3.56 -DEAL::4.75->3.56->3.56 -DEAL::4.76->3.59->3.59 -DEAL::4.77->3.59->3.59 -DEAL::4.78->3.59->3.59 -DEAL::4.79->3.59->3.59 -DEAL::4.80->3.62->3.62 -DEAL::4.81->3.62->3.62 -DEAL::4.82->3.62->3.62 -DEAL::4.83->3.62->3.62 -DEAL::Refinement step 2 -DEAL::0.0->0.0->0.0 -DEAL::1.0->1.0->1.0 -DEAL::1.1->1.1->1.1 -DEAL::1.2->1.2->1.2 -DEAL::1.3->1.3->1.3 -DEAL::2.0->2.0->2.0 -DEAL::2.1->2.1->2.1 -DEAL::2.2->2.2->2.2 -DEAL::2.3->2.3->2.3 -DEAL::2.4->2.4->2.4 -DEAL::2.5->2.5->2.5 -DEAL::2.6->2.6->2.6 -DEAL::2.7->2.7->2.7 -DEAL::2.8->2.8->2.8 -DEAL::2.9->2.9->2.9 -DEAL::2.10->2.10->2.10 -DEAL::2.11->2.11->2.11 -DEAL::2.12->2.12->2.12 -DEAL::2.13->2.13->2.13 -DEAL::2.14->2.14->2.14 -DEAL::2.15->2.15->2.15 -DEAL::3.0->3.0->3.0 -DEAL::3.1->3.1->3.1 -DEAL::3.2->3.2->3.2 -DEAL::3.3->3.3->3.3 -DEAL::3.4->3.4->3.4 -DEAL::3.5->3.5->3.5 -DEAL::3.6->3.6->3.6 -DEAL::3.7->3.7->3.7 -DEAL::3.8->3.8->3.8 -DEAL::3.9->3.9->3.9 -DEAL::3.10->3.10->3.10 -DEAL::3.11->3.11->3.11 -DEAL::3.12->3.12->3.12 -DEAL::3.13->3.13->3.13 -DEAL::3.14->3.14->3.14 -DEAL::3.15->3.15->3.15 -DEAL::3.16->3.16->3.16 -DEAL::3.17->3.17->3.17 -DEAL::3.18->3.18->3.18 -DEAL::3.19->3.19->3.19 -DEAL::3.20->3.20->3.20 -DEAL::3.21->3.21->3.21 -DEAL::3.22->3.22->3.22 -DEAL::3.23->3.23->3.23 -DEAL::3.24->3.24->3.24 -DEAL::3.25->3.25->3.25 -DEAL::3.26->3.26->3.26 -DEAL::3.27->3.27->3.27 -DEAL::3.28->3.28->3.28 -DEAL::3.29->3.29->3.29 -DEAL::3.30->3.30->3.30 -DEAL::3.31->3.31->3.31 -DEAL::3.32->3.32->3.32 -DEAL::3.33->3.33->3.33 -DEAL::3.34->3.34->3.34 -DEAL::3.35->3.35->3.35 -DEAL::3.36->3.36->3.36 -DEAL::3.37->3.37->3.37 -DEAL::3.38->3.38->3.38 -DEAL::3.39->3.39->3.39 -DEAL::3.40->3.40->3.40 -DEAL::3.41->3.41->3.41 -DEAL::3.42->3.42->3.42 -DEAL::3.43->3.43->3.43 -DEAL::3.44->3.44->3.44 -DEAL::3.45->3.45->3.45 -DEAL::3.46->3.46->3.46 -DEAL::3.47->3.47->3.47 -DEAL::3.48->3.48->3.48 -DEAL::3.49->3.49->3.49 -DEAL::3.50->3.50->3.50 -DEAL::3.51->3.51->3.51 -DEAL::3.52->3.52->3.52 -DEAL::3.53->3.53->3.53 -DEAL::3.54->3.54->3.54 -DEAL::3.55->3.55->3.55 -DEAL::3.56->3.56->3.56 -DEAL::3.57->3.57->3.57 -DEAL::3.58->3.58->3.58 -DEAL::3.59->3.59->3.59 -DEAL::3.60->3.60->3.60 -DEAL::3.61->3.61->3.61 -DEAL::3.62->3.62->3.62 -DEAL::3.63->3.63->3.63 -DEAL::4.0->4.92->4.0 -DEAL::4.1->4.93->4.1 -DEAL::4.2->4.94->4.2 -DEAL::4.3->4.95->4.3 -DEAL::4.4->4.96->4.4 -DEAL::4.5->4.97->4.5 -DEAL::4.6->4.98->4.6 -DEAL::4.7->4.99->4.7 -DEAL::4.8->4.100->4.8 -DEAL::4.9->4.101->4.9 -DEAL::4.10->4.102->4.10 -DEAL::4.11->4.103->4.11 -DEAL::4.12->3.11->3.11 -DEAL::4.13->3.11->3.11 -DEAL::4.14->3.11->3.11 -DEAL::4.15->3.11->3.11 -DEAL::4.16->4.112->4.16 -DEAL::4.17->4.113->4.17 -DEAL::4.18->4.114->4.18 -DEAL::4.19->4.115->4.19 -DEAL::4.20->4.116->4.20 -DEAL::4.21->4.117->4.21 -DEAL::4.22->4.118->4.22 -DEAL::4.23->4.119->4.23 -DEAL::4.24->3.20->3.20 -DEAL::4.25->3.20->3.20 -DEAL::4.26->3.20->3.20 -DEAL::4.27->3.20->3.20 -DEAL::4.28->4.128->4.28 -DEAL::4.29->4.129->4.29 -DEAL::4.30->4.130->4.30 -DEAL::4.31->4.131->4.31 -DEAL::4.32->3.26->3.26 -DEAL::4.33->3.26->3.26 -DEAL::4.34->3.26->3.26 -DEAL::4.35->3.26->3.26 -DEAL::4.36->4.140->4.36 -DEAL::4.37->4.141->4.37 -DEAL::4.38->4.142->4.38 -DEAL::4.39->4.143->4.39 -DEAL::4.40->4.144->4.40 -DEAL::4.41->4.145->4.41 -DEAL::4.42->4.146->4.42 -DEAL::4.43->4.147->4.43 -DEAL::4.44->3.35->3.35 -DEAL::4.45->3.35->3.35 -DEAL::4.46->3.35->3.35 -DEAL::4.47->3.35->3.35 -DEAL::4.48->4.156->4.48 -DEAL::4.49->4.157->4.49 -DEAL::4.50->4.158->4.50 -DEAL::4.51->4.159->4.51 -DEAL::4.52->4.164->4.52 -DEAL::4.53->4.165->4.53 -DEAL::4.54->4.166->4.54 -DEAL::4.55->4.167->4.55 -DEAL::4.56->4.168->4.56 -DEAL::4.57->4.169->4.57 -DEAL::4.58->4.170->4.58 -DEAL::4.59->4.171->4.59 -DEAL::4.60->3.47->3.47 -DEAL::4.61->3.47->3.47 -DEAL::4.62->3.47->3.47 -DEAL::4.63->3.47->3.47 -DEAL::4.64->4.180->4.64 -DEAL::4.65->4.181->4.65 -DEAL::4.66->4.182->4.66 -DEAL::4.67->4.183->4.67 -DEAL::4.68->4.184->4.68 -DEAL::4.69->4.185->4.69 -DEAL::4.70->4.186->4.70 -DEAL::4.71->4.187->4.71 -DEAL::4.72->3.56->3.56 -DEAL::4.73->3.56->3.56 -DEAL::4.74->3.56->3.56 -DEAL::4.75->3.56->3.56 -DEAL::4.76->4.196->4.76 -DEAL::4.77->4.197->4.77 -DEAL::4.78->4.198->4.78 -DEAL::4.79->4.199->4.79 -DEAL::4.80->3.62->3.62 -DEAL::4.81->3.62->3.62 -DEAL::4.82->3.62->3.62 -DEAL::4.83->3.62->3.62 -DEAL::4.84->4.88->4.84 -DEAL::4.85->4.89->4.85 -DEAL::4.86->4.90->4.86 -DEAL::4.87->4.91->4.87 -DEAL::4.88->4.4->4.88 -DEAL::4.89->4.5->4.89 -DEAL::4.90->4.6->4.90 -DEAL::4.91->4.7->4.91 -DEAL::4.92->3.4->3.4 -DEAL::4.93->3.4->3.4 -DEAL::4.94->3.4->3.4 -DEAL::4.95->3.4->3.4 -DEAL::4.96->4.8->4.96 -DEAL::4.97->4.9->4.97 -DEAL::4.98->4.10->4.98 -DEAL::4.99->4.11->4.99 -DEAL::4.100->3.7->3.7 -DEAL::4.101->3.7->3.7 -DEAL::4.102->3.7->3.7 -DEAL::4.103->3.7->3.7 -DEAL::4.104->4.12->4.104 -DEAL::4.105->4.13->4.105 -DEAL::4.106->4.14->4.106 -DEAL::4.107->4.15->4.107 -DEAL::4.108->4.104->4.108 -DEAL::4.109->4.105->4.109 -DEAL::4.110->4.106->4.110 -DEAL::4.111->4.107->4.111 -DEAL::4.112->4.16->4.112 -DEAL::4.113->4.17->4.113 -DEAL::4.114->4.18->4.114 -DEAL::4.115->4.19->4.115 -DEAL::4.116->4.108->4.116 -DEAL::4.117->4.109->4.117 -DEAL::4.118->4.110->4.118 -DEAL::4.119->4.111->4.119 -DEAL::4.120->4.20->4.120 -DEAL::4.121->4.21->4.121 -DEAL::4.122->4.22->4.122 -DEAL::4.123->4.23->4.123 -DEAL::4.124->3.16->3.16 -DEAL::4.125->3.16->3.16 -DEAL::4.126->3.16->3.16 -DEAL::4.127->3.16->3.16 -DEAL::4.128->4.24->4.128 -DEAL::4.129->4.25->4.129 -DEAL::4.130->4.26->4.130 -DEAL::4.131->4.27->4.131 -DEAL::4.132->4.28->4.132 -DEAL::4.133->4.29->4.133 -DEAL::4.134->4.30->4.134 -DEAL::4.135->4.31->4.135 -DEAL::4.136->4.32->4.136 -DEAL::4.137->4.33->4.137 -DEAL::4.138->4.34->4.138 -DEAL::4.139->4.35->4.139 -DEAL::4.140->4.132->4.140 -DEAL::4.141->4.133->4.141 -DEAL::4.142->4.134->4.142 -DEAL::4.143->4.135->4.143 -DEAL::4.144->4.40->4.144 -DEAL::4.145->4.41->4.145 -DEAL::4.146->4.42->4.146 -DEAL::4.147->4.43->4.147 -DEAL::4.148->3.31->3.31 -DEAL::4.149->3.31->3.31 -DEAL::4.150->3.31->3.31 -DEAL::4.151->3.31->3.31 -DEAL::4.152->4.148->4.152 -DEAL::4.153->4.149->4.153 -DEAL::4.154->4.150->4.154 -DEAL::4.155->4.151->4.155 -DEAL::4.156->4.152->4.156 -DEAL::4.157->4.153->4.157 -DEAL::4.158->4.154->4.158 -DEAL::4.159->4.155->4.159 -DEAL::4.160->4.52->4.160 -DEAL::4.161->4.53->4.161 -DEAL::4.162->4.54->4.162 -DEAL::4.163->4.55->4.163 -DEAL::4.164->4.160->4.164 -DEAL::4.165->4.161->4.165 -DEAL::4.166->4.162->4.166 -DEAL::4.167->4.163->4.167 -DEAL::4.168->4.56->4.168 -DEAL::4.169->4.57->4.169 -DEAL::4.170->4.58->4.170 -DEAL::4.171->4.59->4.171 -DEAL::4.172->3.43->3.43 -DEAL::4.173->3.43->3.43 -DEAL::4.174->3.43->3.43 -DEAL::4.175->3.43->3.43 -DEAL::4.176->4.60->4.176 -DEAL::4.177->4.61->4.177 -DEAL::4.178->4.62->4.178 -DEAL::4.179->4.63->4.179 -DEAL::4.180->4.172->4.180 -DEAL::4.181->4.173->4.181 -DEAL::4.182->4.174->4.182 -DEAL::4.183->4.175->4.183 -DEAL::4.184->4.64->4.184 -DEAL::4.185->4.65->4.185 -DEAL::4.186->4.66->4.186 -DEAL::4.187->4.67->4.187 -DEAL::4.188->4.176->4.188 -DEAL::4.189->4.177->4.189 -DEAL::4.190->4.178->4.190 -DEAL::4.191->4.179->4.191 -DEAL::4.192->4.68->4.192 -DEAL::4.193->4.69->4.193 -DEAL::4.194->4.70->4.194 -DEAL::4.195->4.71->4.195 -DEAL::4.196->3.52->3.52 -DEAL::4.197->3.52->3.52 -DEAL::4.198->3.52->3.52 -DEAL::4.199->3.52->3.52 -DEAL::4.200->4.72->4.200 -DEAL::4.201->4.73->4.201 -DEAL::4.202->4.74->4.202 -DEAL::4.203->4.75->4.203 -DEAL::4.204->4.188->4.204 -DEAL::4.205->4.189->4.205 -DEAL::4.206->4.190->4.206 -DEAL::4.207->4.191->4.207 -DEAL::4.208->4.76->4.208 -DEAL::4.209->4.77->4.209 -DEAL::4.210->4.78->4.210 -DEAL::4.211->4.79->4.211 -DEAL::4.212->4.200->4.212 -DEAL::4.213->4.201->4.213 -DEAL::4.214->4.202->4.214 -DEAL::4.215->4.203->4.215 -DEAL::5.0->4.93->4.1 -DEAL::5.1->4.93->4.1 -DEAL::5.2->4.93->4.1 -DEAL::5.3->4.93->4.1 -DEAL::5.4->4.96->4.4 -DEAL::5.5->4.96->4.4 -DEAL::5.6->4.96->4.4 -DEAL::5.7->4.96->4.4 -DEAL::5.8->4.99->4.7 -DEAL::5.9->4.99->4.7 -DEAL::5.10->4.99->4.7 -DEAL::5.11->4.99->4.7 -DEAL::5.12->4.102->4.10 -DEAL::5.13->4.102->4.10 -DEAL::5.14->4.102->4.10 -DEAL::5.15->4.102->4.10 -DEAL::5.16->3.11->3.11 -DEAL::5.17->3.11->3.11 -DEAL::5.18->3.11->3.11 -DEAL::5.19->3.11->3.11 -DEAL::5.20->4.112->4.16 -DEAL::5.21->4.112->4.16 -DEAL::5.22->4.112->4.16 -DEAL::5.23->4.112->4.16 -DEAL::5.24->4.115->4.19 -DEAL::5.25->4.115->4.19 -DEAL::5.26->4.115->4.19 -DEAL::5.27->4.115->4.19 -DEAL::5.28->4.118->4.22 -DEAL::5.29->4.118->4.22 -DEAL::5.30->4.118->4.22 -DEAL::5.31->4.118->4.22 -DEAL::5.32->3.20->3.20 -DEAL::5.33->3.20->3.20 -DEAL::5.34->3.20->3.20 -DEAL::5.35->3.20->3.20 -DEAL::5.36->4.128->4.28 -DEAL::5.37->4.128->4.28 -DEAL::5.38->4.128->4.28 -DEAL::5.39->4.128->4.28 -DEAL::5.40->4.131->4.31 -DEAL::5.41->4.131->4.31 -DEAL::5.42->4.131->4.31 -DEAL::5.43->4.131->4.31 -DEAL::5.44->3.26->3.26 -DEAL::5.45->3.26->3.26 -DEAL::5.46->3.26->3.26 -DEAL::5.47->3.26->3.26 -DEAL::5.48->4.141->4.37 -DEAL::5.49->4.141->4.37 -DEAL::5.50->4.141->4.37 -DEAL::5.51->4.141->4.37 -DEAL::5.52->4.144->4.40 -DEAL::5.53->4.144->4.40 -DEAL::5.54->4.144->4.40 -DEAL::5.55->4.144->4.40 -DEAL::5.56->4.147->4.43 -DEAL::5.57->4.147->4.43 -DEAL::5.58->4.147->4.43 -DEAL::5.59->4.147->4.43 -DEAL::5.60->3.35->3.35 -DEAL::5.61->3.35->3.35 -DEAL::5.62->3.35->3.35 -DEAL::5.63->3.35->3.35 -DEAL::5.64->4.157->4.49 -DEAL::5.65->4.157->4.49 -DEAL::5.66->4.157->4.49 -DEAL::5.67->4.157->4.49 -DEAL::5.68->4.164->4.52 -DEAL::5.69->4.164->4.52 -DEAL::5.70->4.164->4.52 -DEAL::5.71->4.164->4.52 -DEAL::5.72->4.167->4.55 -DEAL::5.73->4.167->4.55 -DEAL::5.74->4.167->4.55 -DEAL::5.75->4.167->4.55 -DEAL::5.76->4.170->4.58 -DEAL::5.77->4.170->4.58 -DEAL::5.78->4.170->4.58 -DEAL::5.79->4.170->4.58 -DEAL::5.80->3.47->3.47 -DEAL::5.81->3.47->3.47 -DEAL::5.82->3.47->3.47 -DEAL::5.83->3.47->3.47 -DEAL::5.84->4.180->4.64 -DEAL::5.85->4.180->4.64 -DEAL::5.86->4.180->4.64 -DEAL::5.87->4.180->4.64 -DEAL::5.88->4.183->4.67 -DEAL::5.89->4.183->4.67 -DEAL::5.90->4.183->4.67 -DEAL::5.91->4.183->4.67 -DEAL::5.92->4.186->4.70 -DEAL::5.93->4.186->4.70 -DEAL::5.94->4.186->4.70 -DEAL::5.95->4.186->4.70 -DEAL::5.96->3.56->3.56 -DEAL::5.97->3.56->3.56 -DEAL::5.98->3.56->3.56 -DEAL::5.99->3.56->3.56 -DEAL::5.100->4.196->4.76 -DEAL::5.101->4.196->4.76 -DEAL::5.102->4.196->4.76 -DEAL::5.103->4.196->4.76 -DEAL::5.104->4.199->4.79 -DEAL::5.105->4.199->4.79 -DEAL::5.106->4.199->4.79 -DEAL::5.107->4.199->4.79 -DEAL::5.108->3.62->3.62 -DEAL::5.109->3.62->3.62 -DEAL::5.110->3.62->3.62 -DEAL::5.111->3.62->3.62 -DEAL::Checking in 3 space dimensions -DEAL::--------------------------------------- -DEAL::Refinement step 0 -DEAL::0.0->0.0->0.0 -DEAL::1.0->1.0->1.0 -DEAL::1.1->1.1->1.1 -DEAL::1.2->1.2->1.2 -DEAL::1.3->1.3->1.3 -DEAL::1.4->1.4->1.4 -DEAL::1.5->1.5->1.5 -DEAL::1.6->1.6->1.6 -DEAL::1.7->1.7->1.7 -DEAL::2.0->2.0->2.0 -DEAL::2.1->2.1->2.1 -DEAL::2.2->2.2->2.2 -DEAL::2.3->2.3->2.3 -DEAL::2.4->2.4->2.4 -DEAL::2.5->2.5->2.5 -DEAL::2.6->2.6->2.6 -DEAL::2.7->2.7->2.7 -DEAL::2.8->2.8->2.8 -DEAL::2.9->2.9->2.9 -DEAL::2.10->2.10->2.10 -DEAL::2.11->2.11->2.11 -DEAL::2.12->2.12->2.12 -DEAL::2.13->2.13->2.13 -DEAL::2.14->2.14->2.14 -DEAL::2.15->2.15->2.15 -DEAL::2.16->2.16->2.16 -DEAL::2.17->2.17->2.17 -DEAL::2.18->2.18->2.18 -DEAL::2.19->2.19->2.19 -DEAL::2.20->2.20->2.20 -DEAL::2.21->2.21->2.21 -DEAL::2.22->2.22->2.22 -DEAL::2.23->2.23->2.23 -DEAL::2.24->2.24->2.24 -DEAL::2.25->2.25->2.25 -DEAL::2.26->2.26->2.26 -DEAL::2.27->2.27->2.27 -DEAL::2.28->2.28->2.28 -DEAL::2.29->2.29->2.29 -DEAL::2.30->2.30->2.30 -DEAL::2.31->2.31->2.31 -DEAL::2.32->2.32->2.32 -DEAL::2.33->2.33->2.33 -DEAL::2.34->2.34->2.34 -DEAL::2.35->2.35->2.35 -DEAL::2.36->2.36->2.36 -DEAL::2.37->2.37->2.37 -DEAL::2.38->2.38->2.38 -DEAL::2.39->2.39->2.39 -DEAL::2.40->2.40->2.40 -DEAL::2.41->2.41->2.41 -DEAL::2.42->2.42->2.42 -DEAL::2.43->2.43->2.43 -DEAL::2.44->2.44->2.44 -DEAL::2.45->2.45->2.45 -DEAL::2.46->2.46->2.46 -DEAL::2.47->2.47->2.47 -DEAL::2.48->2.48->2.48 -DEAL::2.49->2.49->2.49 -DEAL::2.50->2.50->2.50 -DEAL::2.51->2.51->2.51 -DEAL::2.52->2.52->2.52 -DEAL::2.53->2.53->2.53 -DEAL::2.54->2.54->2.54 -DEAL::2.55->2.55->2.55 -DEAL::2.56->2.56->2.56 -DEAL::2.57->2.57->2.57 -DEAL::2.58->2.58->2.58 -DEAL::2.59->2.59->2.59 -DEAL::2.60->2.60->2.60 -DEAL::2.61->2.61->2.61 -DEAL::2.62->2.62->2.62 -DEAL::2.63->2.63->2.63 -DEAL::Refinement step 1 -DEAL::0.0->0.0->0.0 -DEAL::1.0->1.0->1.0 -DEAL::1.1->1.1->1.1 -DEAL::1.2->1.2->1.2 -DEAL::1.3->1.3->1.3 -DEAL::1.4->1.4->1.4 -DEAL::1.5->1.5->1.5 -DEAL::1.6->1.6->1.6 -DEAL::1.7->1.7->1.7 -DEAL::2.0->2.0->2.0 -DEAL::2.1->2.1->2.1 -DEAL::2.2->2.2->2.2 -DEAL::2.3->2.3->2.3 -DEAL::2.4->2.4->2.4 -DEAL::2.5->2.5->2.5 -DEAL::2.6->2.6->2.6 -DEAL::2.7->2.7->2.7 -DEAL::2.8->2.8->2.8 -DEAL::2.9->2.9->2.9 -DEAL::2.10->2.10->2.10 -DEAL::2.11->2.11->2.11 -DEAL::2.12->2.12->2.12 -DEAL::2.13->2.13->2.13 -DEAL::2.14->2.14->2.14 -DEAL::2.15->2.15->2.15 -DEAL::2.16->2.16->2.16 -DEAL::2.17->2.17->2.17 -DEAL::2.18->2.18->2.18 -DEAL::2.19->2.19->2.19 -DEAL::2.20->2.20->2.20 -DEAL::2.21->2.21->2.21 -DEAL::2.22->2.22->2.22 -DEAL::2.23->2.23->2.23 -DEAL::2.24->2.24->2.24 -DEAL::2.25->2.25->2.25 -DEAL::2.26->2.26->2.26 -DEAL::2.27->2.27->2.27 -DEAL::2.28->2.28->2.28 -DEAL::2.29->2.29->2.29 -DEAL::2.30->2.30->2.30 -DEAL::2.31->2.31->2.31 -DEAL::2.32->2.32->2.32 -DEAL::2.33->2.33->2.33 -DEAL::2.34->2.34->2.34 -DEAL::2.35->2.35->2.35 -DEAL::2.36->2.36->2.36 -DEAL::2.37->2.37->2.37 -DEAL::2.38->2.38->2.38 -DEAL::2.39->2.39->2.39 -DEAL::2.40->2.40->2.40 -DEAL::2.41->2.41->2.41 -DEAL::2.42->2.42->2.42 -DEAL::2.43->2.43->2.43 -DEAL::2.44->2.44->2.44 -DEAL::2.45->2.45->2.45 -DEAL::2.46->2.46->2.46 -DEAL::2.47->2.47->2.47 -DEAL::2.48->2.48->2.48 -DEAL::2.49->2.49->2.49 -DEAL::2.50->2.50->2.50 -DEAL::2.51->2.51->2.51 -DEAL::2.52->2.52->2.52 -DEAL::2.53->2.53->2.53 -DEAL::2.54->2.54->2.54 -DEAL::2.55->2.55->2.55 -DEAL::2.56->2.56->2.56 -DEAL::2.57->2.57->2.57 -DEAL::2.58->2.58->2.58 -DEAL::2.59->2.59->2.59 -DEAL::2.60->2.60->2.60 -DEAL::2.61->2.61->2.61 -DEAL::2.62->2.62->2.62 -DEAL::2.63->2.63->2.63 -DEAL::3.0->2.2->2.2 -DEAL::3.1->2.2->2.2 -DEAL::3.2->2.2->2.2 -DEAL::3.3->2.2->2.2 -DEAL::3.4->2.2->2.2 -DEAL::3.5->2.2->2.2 -DEAL::3.6->2.2->2.2 -DEAL::3.7->2.2->2.2 -DEAL::3.8->2.5->2.5 -DEAL::3.9->2.5->2.5 -DEAL::3.10->2.5->2.5 -DEAL::3.11->2.5->2.5 -DEAL::3.12->2.5->2.5 -DEAL::3.13->2.5->2.5 -DEAL::3.14->2.5->2.5 -DEAL::3.15->2.5->2.5 -DEAL::3.16->2.8->2.8 -DEAL::3.17->2.8->2.8 -DEAL::3.18->2.8->2.8 -DEAL::3.19->2.8->2.8 -DEAL::3.20->2.8->2.8 -DEAL::3.21->2.8->2.8 -DEAL::3.22->2.8->2.8 -DEAL::3.23->2.8->2.8 -DEAL::3.24->2.11->2.11 -DEAL::3.25->2.11->2.11 -DEAL::3.26->2.11->2.11 -DEAL::3.27->2.11->2.11 -DEAL::3.28->2.11->2.11 -DEAL::3.29->2.11->2.11 -DEAL::3.30->2.11->2.11 -DEAL::3.31->2.11->2.11 -DEAL::3.32->2.14->2.14 -DEAL::3.33->2.14->2.14 -DEAL::3.34->2.14->2.14 -DEAL::3.35->2.14->2.14 -DEAL::3.36->2.14->2.14 -DEAL::3.37->2.14->2.14 -DEAL::3.38->2.14->2.14 -DEAL::3.39->2.14->2.14 -DEAL::3.40->2.17->2.17 -DEAL::3.41->2.17->2.17 -DEAL::3.42->2.17->2.17 -DEAL::3.43->2.17->2.17 -DEAL::3.44->2.17->2.17 -DEAL::3.45->2.17->2.17 -DEAL::3.46->2.17->2.17 -DEAL::3.47->2.17->2.17 -DEAL::3.48->2.20->2.20 -DEAL::3.49->2.20->2.20 -DEAL::3.50->2.20->2.20 -DEAL::3.51->2.20->2.20 -DEAL::3.52->2.20->2.20 -DEAL::3.53->2.20->2.20 -DEAL::3.54->2.20->2.20 -DEAL::3.55->2.20->2.20 -DEAL::3.56->2.23->2.23 -DEAL::3.57->2.23->2.23 -DEAL::3.58->2.23->2.23 -DEAL::3.59->2.23->2.23 -DEAL::3.60->2.23->2.23 -DEAL::3.61->2.23->2.23 -DEAL::3.62->2.23->2.23 -DEAL::3.63->2.23->2.23 -DEAL::3.64->2.26->2.26 -DEAL::3.65->2.26->2.26 -DEAL::3.66->2.26->2.26 -DEAL::3.67->2.26->2.26 -DEAL::3.68->2.26->2.26 -DEAL::3.69->2.26->2.26 -DEAL::3.70->2.26->2.26 -DEAL::3.71->2.26->2.26 -DEAL::3.72->2.29->2.29 -DEAL::3.73->2.29->2.29 -DEAL::3.74->2.29->2.29 -DEAL::3.75->2.29->2.29 -DEAL::3.76->2.29->2.29 -DEAL::3.77->2.29->2.29 -DEAL::3.78->2.29->2.29 -DEAL::3.79->2.29->2.29 -DEAL::3.80->2.32->2.32 -DEAL::3.81->2.32->2.32 -DEAL::3.82->2.32->2.32 -DEAL::3.83->2.32->2.32 -DEAL::3.84->2.32->2.32 -DEAL::3.85->2.32->2.32 -DEAL::3.86->2.32->2.32 -DEAL::3.87->2.32->2.32 -DEAL::3.88->2.35->2.35 -DEAL::3.89->2.35->2.35 -DEAL::3.90->2.35->2.35 -DEAL::3.91->2.35->2.35 -DEAL::3.92->2.35->2.35 -DEAL::3.93->2.35->2.35 -DEAL::3.94->2.35->2.35 -DEAL::3.95->2.35->2.35 -DEAL::3.96->2.38->2.38 -DEAL::3.97->2.38->2.38 -DEAL::3.98->2.38->2.38 -DEAL::3.99->2.38->2.38 -DEAL::3.100->2.38->2.38 -DEAL::3.101->2.38->2.38 -DEAL::3.102->2.38->2.38 -DEAL::3.103->2.38->2.38 -DEAL::3.104->2.41->2.41 -DEAL::3.105->2.41->2.41 -DEAL::3.106->2.41->2.41 -DEAL::3.107->2.41->2.41 -DEAL::3.108->2.41->2.41 -DEAL::3.109->2.41->2.41 -DEAL::3.110->2.41->2.41 -DEAL::3.111->2.41->2.41 -DEAL::3.112->2.44->2.44 -DEAL::3.113->2.44->2.44 -DEAL::3.114->2.44->2.44 -DEAL::3.115->2.44->2.44 -DEAL::3.116->2.44->2.44 -DEAL::3.117->2.44->2.44 -DEAL::3.118->2.44->2.44 -DEAL::3.119->2.44->2.44 -DEAL::3.120->2.47->2.47 -DEAL::3.121->2.47->2.47 -DEAL::3.122->2.47->2.47 -DEAL::3.123->2.47->2.47 -DEAL::3.124->2.47->2.47 -DEAL::3.125->2.47->2.47 -DEAL::3.126->2.47->2.47 -DEAL::3.127->2.47->2.47 -DEAL::3.128->2.50->2.50 -DEAL::3.129->2.50->2.50 -DEAL::3.130->2.50->2.50 -DEAL::3.131->2.50->2.50 -DEAL::3.132->2.50->2.50 -DEAL::3.133->2.50->2.50 -DEAL::3.134->2.50->2.50 -DEAL::3.135->2.50->2.50 -DEAL::3.136->2.53->2.53 -DEAL::3.137->2.53->2.53 -DEAL::3.138->2.53->2.53 -DEAL::3.139->2.53->2.53 -DEAL::3.140->2.53->2.53 -DEAL::3.141->2.53->2.53 -DEAL::3.142->2.53->2.53 -DEAL::3.143->2.53->2.53 -DEAL::3.144->2.56->2.56 -DEAL::3.145->2.56->2.56 -DEAL::3.146->2.56->2.56 -DEAL::3.147->2.56->2.56 -DEAL::3.148->2.56->2.56 -DEAL::3.149->2.56->2.56 -DEAL::3.150->2.56->2.56 -DEAL::3.151->2.56->2.56 -DEAL::3.152->2.59->2.59 -DEAL::3.153->2.59->2.59 -DEAL::3.154->2.59->2.59 -DEAL::3.155->2.59->2.59 -DEAL::3.156->2.59->2.59 -DEAL::3.157->2.59->2.59 -DEAL::3.158->2.59->2.59 -DEAL::3.159->2.59->2.59 -DEAL::3.160->2.62->2.62 -DEAL::3.161->2.62->2.62 -DEAL::3.162->2.62->2.62 -DEAL::3.163->2.62->2.62 -DEAL::3.164->2.62->2.62 -DEAL::3.165->2.62->2.62 -DEAL::3.166->2.62->2.62 -DEAL::3.167->2.62->2.62 -DEAL::Refinement step 2 -DEAL::0.0->0.0->0.0 -DEAL::1.0->1.0->1.0 -DEAL::1.1->1.1->1.1 -DEAL::1.2->1.2->1.2 -DEAL::1.3->1.3->1.3 -DEAL::1.4->1.4->1.4 -DEAL::1.5->1.5->1.5 -DEAL::1.6->1.6->1.6 -DEAL::1.7->1.7->1.7 -DEAL::2.0->2.0->2.0 -DEAL::2.1->2.1->2.1 -DEAL::2.2->2.2->2.2 -DEAL::2.3->2.3->2.3 -DEAL::2.4->2.4->2.4 -DEAL::2.5->2.5->2.5 -DEAL::2.6->2.6->2.6 -DEAL::2.7->2.7->2.7 -DEAL::2.8->2.8->2.8 -DEAL::2.9->2.9->2.9 -DEAL::2.10->2.10->2.10 -DEAL::2.11->2.11->2.11 -DEAL::2.12->2.12->2.12 -DEAL::2.13->2.13->2.13 -DEAL::2.14->2.14->2.14 -DEAL::2.15->2.15->2.15 -DEAL::2.16->2.16->2.16 -DEAL::2.17->2.17->2.17 -DEAL::2.18->2.18->2.18 -DEAL::2.19->2.19->2.19 -DEAL::2.20->2.20->2.20 -DEAL::2.21->2.21->2.21 -DEAL::2.22->2.22->2.22 -DEAL::2.23->2.23->2.23 -DEAL::2.24->2.24->2.24 -DEAL::2.25->2.25->2.25 -DEAL::2.26->2.26->2.26 -DEAL::2.27->2.27->2.27 -DEAL::2.28->2.28->2.28 -DEAL::2.29->2.29->2.29 -DEAL::2.30->2.30->2.30 -DEAL::2.31->2.31->2.31 -DEAL::2.32->2.32->2.32 -DEAL::2.33->2.33->2.33 -DEAL::2.34->2.34->2.34 -DEAL::2.35->2.35->2.35 -DEAL::2.36->2.36->2.36 -DEAL::2.37->2.37->2.37 -DEAL::2.38->2.38->2.38 -DEAL::2.39->2.39->2.39 -DEAL::2.40->2.40->2.40 -DEAL::2.41->2.41->2.41 -DEAL::2.42->2.42->2.42 -DEAL::2.43->2.43->2.43 -DEAL::2.44->2.44->2.44 -DEAL::2.45->2.45->2.45 -DEAL::2.46->2.46->2.46 -DEAL::2.47->2.47->2.47 -DEAL::2.48->2.48->2.48 -DEAL::2.49->2.49->2.49 -DEAL::2.50->2.50->2.50 -DEAL::2.51->2.51->2.51 -DEAL::2.52->2.52->2.52 -DEAL::2.53->2.53->2.53 -DEAL::2.54->2.54->2.54 -DEAL::2.55->2.55->2.55 -DEAL::2.56->2.56->2.56 -DEAL::2.57->2.57->2.57 -DEAL::2.58->2.58->2.58 -DEAL::2.59->2.59->2.59 -DEAL::2.60->2.60->2.60 -DEAL::2.61->2.61->2.61 -DEAL::2.62->2.62->2.62 -DEAL::2.63->2.63->2.63 -DEAL::3.0->3.184->3.0 -DEAL::3.1->3.185->3.1 -DEAL::3.2->3.186->3.2 -DEAL::3.3->3.187->3.3 -DEAL::3.4->3.188->3.4 -DEAL::3.5->3.189->3.5 -DEAL::3.6->3.190->3.6 -DEAL::3.7->3.191->3.7 -DEAL::3.8->3.200->3.8 -DEAL::3.9->3.201->3.9 -DEAL::3.10->3.202->3.10 -DEAL::3.11->3.203->3.11 -DEAL::3.12->3.204->3.12 -DEAL::3.13->3.205->3.13 -DEAL::3.14->3.206->3.14 -DEAL::3.15->3.207->3.15 -DEAL::3.16->3.216->3.16 -DEAL::3.17->3.217->3.17 -DEAL::3.18->3.218->3.18 -DEAL::3.19->3.219->3.19 -DEAL::3.20->3.220->3.20 -DEAL::3.21->3.221->3.21 -DEAL::3.22->3.222->3.22 -DEAL::3.23->3.223->3.23 -DEAL::3.24->3.232->3.24 -DEAL::3.25->3.233->3.25 -DEAL::3.26->3.234->3.26 -DEAL::3.27->3.235->3.27 -DEAL::3.28->3.236->3.28 -DEAL::3.29->3.237->3.29 -DEAL::3.30->3.238->3.30 -DEAL::3.31->3.239->3.31 -DEAL::3.32->3.248->3.32 -DEAL::3.33->3.249->3.33 -DEAL::3.34->3.250->3.34 -DEAL::3.35->3.251->3.35 -DEAL::3.36->3.252->3.36 -DEAL::3.37->3.253->3.37 -DEAL::3.38->3.254->3.38 -DEAL::3.39->3.255->3.39 -DEAL::3.40->3.264->3.40 -DEAL::3.41->3.265->3.41 -DEAL::3.42->3.266->3.42 -DEAL::3.43->3.267->3.43 -DEAL::3.44->3.268->3.44 -DEAL::3.45->3.269->3.45 -DEAL::3.46->3.270->3.46 -DEAL::3.47->3.271->3.47 -DEAL::3.48->3.280->3.48 -DEAL::3.49->3.281->3.49 -DEAL::3.50->3.282->3.50 -DEAL::3.51->3.283->3.51 -DEAL::3.52->3.284->3.52 -DEAL::3.53->3.285->3.53 -DEAL::3.54->3.286->3.54 -DEAL::3.55->3.287->3.55 -DEAL::3.56->3.296->3.56 -DEAL::3.57->3.297->3.57 -DEAL::3.58->3.298->3.58 -DEAL::3.59->3.299->3.59 -DEAL::3.60->3.300->3.60 -DEAL::3.61->3.301->3.61 -DEAL::3.62->3.302->3.62 -DEAL::3.63->3.303->3.63 -DEAL::3.64->3.312->3.64 -DEAL::3.65->3.313->3.65 -DEAL::3.66->3.314->3.66 -DEAL::3.67->3.315->3.67 -DEAL::3.68->3.316->3.68 -DEAL::3.69->3.317->3.69 -DEAL::3.70->3.318->3.70 -DEAL::3.71->3.319->3.71 -DEAL::3.72->3.328->3.72 -DEAL::3.73->3.329->3.73 -DEAL::3.74->3.330->3.74 -DEAL::3.75->3.331->3.75 -DEAL::3.76->3.332->3.76 -DEAL::3.77->3.333->3.77 -DEAL::3.78->3.334->3.78 -DEAL::3.79->3.335->3.79 -DEAL::3.80->3.344->3.80 -DEAL::3.81->3.345->3.81 -DEAL::3.82->3.346->3.82 -DEAL::3.83->3.347->3.83 -DEAL::3.84->3.348->3.84 -DEAL::3.85->3.349->3.85 -DEAL::3.86->3.350->3.86 -DEAL::3.87->3.351->3.87 -DEAL::3.88->3.360->3.88 -DEAL::3.89->3.361->3.89 -DEAL::3.90->3.362->3.90 -DEAL::3.91->3.363->3.91 -DEAL::3.92->3.364->3.92 -DEAL::3.93->3.365->3.93 -DEAL::3.94->3.366->3.94 -DEAL::3.95->3.367->3.95 -DEAL::3.96->3.376->3.96 -DEAL::3.97->3.377->3.97 -DEAL::3.98->3.378->3.98 -DEAL::3.99->3.379->3.99 -DEAL::3.100->3.380->3.100 -DEAL::3.101->3.381->3.101 -DEAL::3.102->3.382->3.102 -DEAL::3.103->3.383->3.103 -DEAL::3.104->3.392->3.104 -DEAL::3.105->3.393->3.105 -DEAL::3.106->3.394->3.106 -DEAL::3.107->3.395->3.107 -DEAL::3.108->3.396->3.108 -DEAL::3.109->3.397->3.109 -DEAL::3.110->3.398->3.110 -DEAL::3.111->3.399->3.111 -DEAL::3.112->3.408->3.112 -DEAL::3.113->3.409->3.113 -DEAL::3.114->3.410->3.114 -DEAL::3.115->3.411->3.115 -DEAL::3.116->3.412->3.116 -DEAL::3.117->3.413->3.117 -DEAL::3.118->3.414->3.118 -DEAL::3.119->3.415->3.119 -DEAL::3.120->3.424->3.120 -DEAL::3.121->3.425->3.121 -DEAL::3.122->3.426->3.122 -DEAL::3.123->3.427->3.123 -DEAL::3.124->3.428->3.124 -DEAL::3.125->3.429->3.125 -DEAL::3.126->3.430->3.126 -DEAL::3.127->3.431->3.127 -DEAL::3.128->3.440->3.128 -DEAL::3.129->3.441->3.129 -DEAL::3.130->3.442->3.130 -DEAL::3.131->3.443->3.131 -DEAL::3.132->3.444->3.132 -DEAL::3.133->3.445->3.133 -DEAL::3.134->3.446->3.134 -DEAL::3.135->3.447->3.135 -DEAL::3.136->3.456->3.136 -DEAL::3.137->3.457->3.137 -DEAL::3.138->3.458->3.138 -DEAL::3.139->3.459->3.139 -DEAL::3.140->3.460->3.140 -DEAL::3.141->3.461->3.141 -DEAL::3.142->3.462->3.142 -DEAL::3.143->3.463->3.143 -DEAL::3.144->3.472->3.144 -DEAL::3.145->3.473->3.145 -DEAL::3.146->3.474->3.146 -DEAL::3.147->3.475->3.147 -DEAL::3.148->3.476->3.148 -DEAL::3.149->3.477->3.149 -DEAL::3.150->3.478->3.150 -DEAL::3.151->3.479->3.151 -DEAL::3.152->3.488->3.152 -DEAL::3.153->3.489->3.153 -DEAL::3.154->3.490->3.154 -DEAL::3.155->3.491->3.155 -DEAL::3.156->3.492->3.156 -DEAL::3.157->3.493->3.157 -DEAL::3.158->3.494->3.158 -DEAL::3.159->3.495->3.159 -DEAL::3.160->3.504->3.160 -DEAL::3.161->3.505->3.161 -DEAL::3.162->3.506->3.162 -DEAL::3.163->3.507->3.163 -DEAL::3.164->3.508->3.164 -DEAL::3.165->3.509->3.165 -DEAL::3.166->3.510->3.166 -DEAL::3.167->3.511->3.167 -DEAL::3.168->3.0->3.168 -DEAL::3.169->3.1->3.169 -DEAL::3.170->3.2->3.170 -DEAL::3.171->3.3->3.171 -DEAL::3.172->3.4->3.172 -DEAL::3.173->3.5->3.173 -DEAL::3.174->3.6->3.174 -DEAL::3.175->3.7->3.175 -DEAL::3.176->3.176->3.176 -DEAL::3.177->3.177->3.177 -DEAL::3.178->3.178->3.178 -DEAL::3.179->3.179->3.179 -DEAL::3.180->3.180->3.180 -DEAL::3.181->3.181->3.181 -DEAL::3.182->3.182->3.182 -DEAL::3.183->3.183->3.183 -DEAL::3.184->3.8->3.184 -DEAL::3.185->3.9->3.185 -DEAL::3.186->3.10->3.186 -DEAL::3.187->3.11->3.187 -DEAL::3.188->3.12->3.188 -DEAL::3.189->3.13->3.189 -DEAL::3.190->3.14->3.190 -DEAL::3.191->3.15->3.191 -DEAL::3.192->3.192->3.192 -DEAL::3.193->3.193->3.193 -DEAL::3.194->3.194->3.194 -DEAL::3.195->3.195->3.195 -DEAL::3.196->3.196->3.196 -DEAL::3.197->3.197->3.197 -DEAL::3.198->3.198->3.198 -DEAL::3.199->3.199->3.199 -DEAL::3.200->3.16->3.200 -DEAL::3.201->3.17->3.201 -DEAL::3.202->3.18->3.202 -DEAL::3.203->3.19->3.203 -DEAL::3.204->3.20->3.204 -DEAL::3.205->3.21->3.205 -DEAL::3.206->3.22->3.206 -DEAL::3.207->3.23->3.207 -DEAL::3.208->3.208->3.208 -DEAL::3.209->3.209->3.209 -DEAL::3.210->3.210->3.210 -DEAL::3.211->3.211->3.211 -DEAL::3.212->3.212->3.212 -DEAL::3.213->3.213->3.213 -DEAL::3.214->3.214->3.214 -DEAL::3.215->3.215->3.215 -DEAL::3.216->3.24->3.216 -DEAL::3.217->3.25->3.217 -DEAL::3.218->3.26->3.218 -DEAL::3.219->3.27->3.219 -DEAL::3.220->3.28->3.220 -DEAL::3.221->3.29->3.221 -DEAL::3.222->3.30->3.222 -DEAL::3.223->3.31->3.223 -DEAL::3.224->3.224->3.224 -DEAL::3.225->3.225->3.225 -DEAL::3.226->3.226->3.226 -DEAL::3.227->3.227->3.227 -DEAL::3.228->3.228->3.228 -DEAL::3.229->3.229->3.229 -DEAL::3.230->3.230->3.230 -DEAL::3.231->3.231->3.231 -DEAL::3.232->3.32->3.232 -DEAL::3.233->3.33->3.233 -DEAL::3.234->3.34->3.234 -DEAL::3.235->3.35->3.235 -DEAL::3.236->3.36->3.236 -DEAL::3.237->3.37->3.237 -DEAL::3.238->3.38->3.238 -DEAL::3.239->3.39->3.239 -DEAL::3.240->3.240->3.240 -DEAL::3.241->3.241->3.241 -DEAL::3.242->3.242->3.242 -DEAL::3.243->3.243->3.243 -DEAL::3.244->3.244->3.244 -DEAL::3.245->3.245->3.245 -DEAL::3.246->3.246->3.246 -DEAL::3.247->3.247->3.247 -DEAL::3.248->3.40->3.248 -DEAL::3.249->3.41->3.249 -DEAL::3.250->3.42->3.250 -DEAL::3.251->3.43->3.251 -DEAL::3.252->3.44->3.252 -DEAL::3.253->3.45->3.253 -DEAL::3.254->3.46->3.254 -DEAL::3.255->3.47->3.255 -DEAL::3.256->3.256->3.256 -DEAL::3.257->3.257->3.257 -DEAL::3.258->3.258->3.258 -DEAL::3.259->3.259->3.259 -DEAL::3.260->3.260->3.260 -DEAL::3.261->3.261->3.261 -DEAL::3.262->3.262->3.262 -DEAL::3.263->3.263->3.263 -DEAL::3.264->3.48->3.264 -DEAL::3.265->3.49->3.265 -DEAL::3.266->3.50->3.266 -DEAL::3.267->3.51->3.267 -DEAL::3.268->3.52->3.268 -DEAL::3.269->3.53->3.269 -DEAL::3.270->3.54->3.270 -DEAL::3.271->3.55->3.271 -DEAL::3.272->3.272->3.272 -DEAL::3.273->3.273->3.273 -DEAL::3.274->3.274->3.274 -DEAL::3.275->3.275->3.275 -DEAL::3.276->3.276->3.276 -DEAL::3.277->3.277->3.277 -DEAL::3.278->3.278->3.278 -DEAL::3.279->3.279->3.279 -DEAL::3.280->3.56->3.280 -DEAL::3.281->3.57->3.281 -DEAL::3.282->3.58->3.282 -DEAL::3.283->3.59->3.283 -DEAL::3.284->3.60->3.284 -DEAL::3.285->3.61->3.285 -DEAL::3.286->3.62->3.286 -DEAL::3.287->3.63->3.287 -DEAL::3.288->3.288->3.288 -DEAL::3.289->3.289->3.289 -DEAL::3.290->3.290->3.290 -DEAL::3.291->3.291->3.291 -DEAL::3.292->3.292->3.292 -DEAL::3.293->3.293->3.293 -DEAL::3.294->3.294->3.294 -DEAL::3.295->3.295->3.295 -DEAL::3.296->3.64->3.296 -DEAL::3.297->3.65->3.297 -DEAL::3.298->3.66->3.298 -DEAL::3.299->3.67->3.299 -DEAL::3.300->3.68->3.300 -DEAL::3.301->3.69->3.301 -DEAL::3.302->3.70->3.302 -DEAL::3.303->3.71->3.303 -DEAL::3.304->3.304->3.304 -DEAL::3.305->3.305->3.305 -DEAL::3.306->3.306->3.306 -DEAL::3.307->3.307->3.307 -DEAL::3.308->3.308->3.308 -DEAL::3.309->3.309->3.309 -DEAL::3.310->3.310->3.310 -DEAL::3.311->3.311->3.311 -DEAL::3.312->3.72->3.312 -DEAL::3.313->3.73->3.313 -DEAL::3.314->3.74->3.314 -DEAL::3.315->3.75->3.315 -DEAL::3.316->3.76->3.316 -DEAL::3.317->3.77->3.317 -DEAL::3.318->3.78->3.318 -DEAL::3.319->3.79->3.319 -DEAL::3.320->3.320->3.320 -DEAL::3.321->3.321->3.321 -DEAL::3.322->3.322->3.322 -DEAL::3.323->3.323->3.323 -DEAL::3.324->3.324->3.324 -DEAL::3.325->3.325->3.325 -DEAL::3.326->3.326->3.326 -DEAL::3.327->3.327->3.327 -DEAL::3.328->3.80->3.328 -DEAL::3.329->3.81->3.329 -DEAL::3.330->3.82->3.330 -DEAL::3.331->3.83->3.331 -DEAL::3.332->3.84->3.332 -DEAL::3.333->3.85->3.333 -DEAL::3.334->3.86->3.334 -DEAL::3.335->3.87->3.335 -DEAL::3.336->3.336->3.336 -DEAL::3.337->3.337->3.337 -DEAL::3.338->3.338->3.338 -DEAL::3.339->3.339->3.339 -DEAL::3.340->3.340->3.340 -DEAL::3.341->3.341->3.341 -DEAL::3.342->3.342->3.342 -DEAL::3.343->3.343->3.343 -DEAL::3.344->3.88->3.344 -DEAL::3.345->3.89->3.345 -DEAL::3.346->3.90->3.346 -DEAL::3.347->3.91->3.347 -DEAL::3.348->3.92->3.348 -DEAL::3.349->3.93->3.349 -DEAL::3.350->3.94->3.350 -DEAL::3.351->3.95->3.351 -DEAL::3.352->3.352->3.352 -DEAL::3.353->3.353->3.353 -DEAL::3.354->3.354->3.354 -DEAL::3.355->3.355->3.355 -DEAL::3.356->3.356->3.356 -DEAL::3.357->3.357->3.357 -DEAL::3.358->3.358->3.358 -DEAL::3.359->3.359->3.359 -DEAL::3.360->3.96->3.360 -DEAL::3.361->3.97->3.361 -DEAL::3.362->3.98->3.362 -DEAL::3.363->3.99->3.363 -DEAL::3.364->3.100->3.364 -DEAL::3.365->3.101->3.365 -DEAL::3.366->3.102->3.366 -DEAL::3.367->3.103->3.367 -DEAL::3.368->3.368->3.368 -DEAL::3.369->3.369->3.369 -DEAL::3.370->3.370->3.370 -DEAL::3.371->3.371->3.371 -DEAL::3.372->3.372->3.372 -DEAL::3.373->3.373->3.373 -DEAL::3.374->3.374->3.374 -DEAL::3.375->3.375->3.375 -DEAL::3.376->3.104->3.376 -DEAL::3.377->3.105->3.377 -DEAL::3.378->3.106->3.378 -DEAL::3.379->3.107->3.379 -DEAL::3.380->3.108->3.380 -DEAL::3.381->3.109->3.381 -DEAL::3.382->3.110->3.382 -DEAL::3.383->3.111->3.383 -DEAL::3.384->3.384->3.384 -DEAL::3.385->3.385->3.385 -DEAL::3.386->3.386->3.386 -DEAL::3.387->3.387->3.387 -DEAL::3.388->3.388->3.388 -DEAL::3.389->3.389->3.389 -DEAL::3.390->3.390->3.390 -DEAL::3.391->3.391->3.391 -DEAL::3.392->3.112->3.392 -DEAL::3.393->3.113->3.393 -DEAL::3.394->3.114->3.394 -DEAL::3.395->3.115->3.395 -DEAL::3.396->3.116->3.396 -DEAL::3.397->3.117->3.397 -DEAL::3.398->3.118->3.398 -DEAL::3.399->3.119->3.399 -DEAL::3.400->3.400->3.400 -DEAL::3.401->3.401->3.401 -DEAL::3.402->3.402->3.402 -DEAL::3.403->3.403->3.403 -DEAL::3.404->3.404->3.404 -DEAL::3.405->3.405->3.405 -DEAL::3.406->3.406->3.406 -DEAL::3.407->3.407->3.407 -DEAL::3.408->3.120->3.408 -DEAL::3.409->3.121->3.409 -DEAL::3.410->3.122->3.410 -DEAL::3.411->3.123->3.411 -DEAL::3.412->3.124->3.412 -DEAL::3.413->3.125->3.413 -DEAL::3.414->3.126->3.414 -DEAL::3.415->3.127->3.415 -DEAL::3.416->3.416->3.416 -DEAL::3.417->3.417->3.417 -DEAL::3.418->3.418->3.418 -DEAL::3.419->3.419->3.419 -DEAL::3.420->3.420->3.420 -DEAL::3.421->3.421->3.421 -DEAL::3.422->3.422->3.422 -DEAL::3.423->3.423->3.423 -DEAL::3.424->3.128->3.424 -DEAL::3.425->3.129->3.425 -DEAL::3.426->3.130->3.426 -DEAL::3.427->3.131->3.427 -DEAL::3.428->3.132->3.428 -DEAL::3.429->3.133->3.429 -DEAL::3.430->3.134->3.430 -DEAL::3.431->3.135->3.431 -DEAL::3.432->3.432->3.432 -DEAL::3.433->3.433->3.433 -DEAL::3.434->3.434->3.434 -DEAL::3.435->3.435->3.435 -DEAL::3.436->3.436->3.436 -DEAL::3.437->3.437->3.437 -DEAL::3.438->3.438->3.438 -DEAL::3.439->3.439->3.439 -DEAL::3.440->3.136->3.440 -DEAL::3.441->3.137->3.441 -DEAL::3.442->3.138->3.442 -DEAL::3.443->3.139->3.443 -DEAL::3.444->3.140->3.444 -DEAL::3.445->3.141->3.445 -DEAL::3.446->3.142->3.446 -DEAL::3.447->3.143->3.447 -DEAL::3.448->3.448->3.448 -DEAL::3.449->3.449->3.449 -DEAL::3.450->3.450->3.450 -DEAL::3.451->3.451->3.451 -DEAL::3.452->3.452->3.452 -DEAL::3.453->3.453->3.453 -DEAL::3.454->3.454->3.454 -DEAL::3.455->3.455->3.455 -DEAL::3.456->3.144->3.456 -DEAL::3.457->3.145->3.457 -DEAL::3.458->3.146->3.458 -DEAL::3.459->3.147->3.459 -DEAL::3.460->3.148->3.460 -DEAL::3.461->3.149->3.461 -DEAL::3.462->3.150->3.462 -DEAL::3.463->3.151->3.463 -DEAL::3.464->3.464->3.464 -DEAL::3.465->3.465->3.465 -DEAL::3.466->3.466->3.466 -DEAL::3.467->3.467->3.467 -DEAL::3.468->3.468->3.468 -DEAL::3.469->3.469->3.469 -DEAL::3.470->3.470->3.470 -DEAL::3.471->3.471->3.471 -DEAL::3.472->3.152->3.472 -DEAL::3.473->3.153->3.473 -DEAL::3.474->3.154->3.474 -DEAL::3.475->3.155->3.475 -DEAL::3.476->3.156->3.476 -DEAL::3.477->3.157->3.477 -DEAL::3.478->3.158->3.478 -DEAL::3.479->3.159->3.479 -DEAL::3.480->3.480->3.480 -DEAL::3.481->3.481->3.481 -DEAL::3.482->3.482->3.482 -DEAL::3.483->3.483->3.483 -DEAL::3.484->3.484->3.484 -DEAL::3.485->3.485->3.485 -DEAL::3.486->3.486->3.486 -DEAL::3.487->3.487->3.487 -DEAL::3.488->3.160->3.488 -DEAL::3.489->3.161->3.489 -DEAL::3.490->3.162->3.490 -DEAL::3.491->3.163->3.491 -DEAL::3.492->3.164->3.492 -DEAL::3.493->3.165->3.493 -DEAL::3.494->3.166->3.494 -DEAL::3.495->3.167->3.495 -DEAL::3.496->3.496->3.496 -DEAL::3.497->3.497->3.497 -DEAL::3.498->3.498->3.498 -DEAL::3.499->3.499->3.499 -DEAL::3.500->3.500->3.500 -DEAL::3.501->3.501->3.501 -DEAL::3.502->3.502->3.502 -DEAL::3.503->3.503->3.503 -DEAL::3.504->3.168->3.504 -DEAL::3.505->3.169->3.505 -DEAL::3.506->3.170->3.506 -DEAL::3.507->3.171->3.507 -DEAL::3.508->3.172->3.508 -DEAL::3.509->3.173->3.509 -DEAL::3.510->3.174->3.510 -DEAL::3.511->3.175->3.511 -DEAL::4.0->3.185->3.1 -DEAL::4.1->3.185->3.1 -DEAL::4.2->3.185->3.1 -DEAL::4.3->3.185->3.1 -DEAL::4.4->3.185->3.1 -DEAL::4.5->3.185->3.1 -DEAL::4.6->3.185->3.1 -DEAL::4.7->3.185->3.1 -DEAL::4.8->3.188->3.4 -DEAL::4.9->3.188->3.4 -DEAL::4.10->3.188->3.4 -DEAL::4.11->3.188->3.4 -DEAL::4.12->3.188->3.4 -DEAL::4.13->3.188->3.4 -DEAL::4.14->3.188->3.4 -DEAL::4.15->3.188->3.4 -DEAL::4.16->3.191->3.7 -DEAL::4.17->3.191->3.7 -DEAL::4.18->3.191->3.7 -DEAL::4.19->3.191->3.7 -DEAL::4.20->3.191->3.7 -DEAL::4.21->3.191->3.7 -DEAL::4.22->3.191->3.7 -DEAL::4.23->3.191->3.7 -DEAL::4.24->3.202->3.10 -DEAL::4.25->3.202->3.10 -DEAL::4.26->3.202->3.10 -DEAL::4.27->3.202->3.10 -DEAL::4.28->3.202->3.10 -DEAL::4.29->3.202->3.10 -DEAL::4.30->3.202->3.10 -DEAL::4.31->3.202->3.10 -DEAL::4.32->3.205->3.13 -DEAL::4.33->3.205->3.13 -DEAL::4.34->3.205->3.13 -DEAL::4.35->3.205->3.13 -DEAL::4.36->3.205->3.13 -DEAL::4.37->3.205->3.13 -DEAL::4.38->3.205->3.13 -DEAL::4.39->3.205->3.13 -DEAL::4.40->3.216->3.16 -DEAL::4.41->3.216->3.16 -DEAL::4.42->3.216->3.16 -DEAL::4.43->3.216->3.16 -DEAL::4.44->3.216->3.16 -DEAL::4.45->3.216->3.16 -DEAL::4.46->3.216->3.16 -DEAL::4.47->3.216->3.16 -DEAL::4.48->3.219->3.19 -DEAL::4.49->3.219->3.19 -DEAL::4.50->3.219->3.19 -DEAL::4.51->3.219->3.19 -DEAL::4.52->3.219->3.19 -DEAL::4.53->3.219->3.19 -DEAL::4.54->3.219->3.19 -DEAL::4.55->3.219->3.19 -DEAL::4.56->3.222->3.22 -DEAL::4.57->3.222->3.22 -DEAL::4.58->3.222->3.22 -DEAL::4.59->3.222->3.22 -DEAL::4.60->3.222->3.22 -DEAL::4.61->3.222->3.22 -DEAL::4.62->3.222->3.22 -DEAL::4.63->3.222->3.22 -DEAL::4.64->3.233->3.25 -DEAL::4.65->3.233->3.25 -DEAL::4.66->3.233->3.25 -DEAL::4.67->3.233->3.25 -DEAL::4.68->3.233->3.25 -DEAL::4.69->3.233->3.25 -DEAL::4.70->3.233->3.25 -DEAL::4.71->3.233->3.25 -DEAL::4.72->3.236->3.28 -DEAL::4.73->3.236->3.28 -DEAL::4.74->3.236->3.28 -DEAL::4.75->3.236->3.28 -DEAL::4.76->3.236->3.28 -DEAL::4.77->3.236->3.28 -DEAL::4.78->3.236->3.28 -DEAL::4.79->3.236->3.28 -DEAL::4.80->3.239->3.31 -DEAL::4.81->3.239->3.31 -DEAL::4.82->3.239->3.31 -DEAL::4.83->3.239->3.31 -DEAL::4.84->3.239->3.31 -DEAL::4.85->3.239->3.31 -DEAL::4.86->3.239->3.31 -DEAL::4.87->3.239->3.31 -DEAL::4.88->3.250->3.34 -DEAL::4.89->3.250->3.34 -DEAL::4.90->3.250->3.34 -DEAL::4.91->3.250->3.34 -DEAL::4.92->3.250->3.34 -DEAL::4.93->3.250->3.34 -DEAL::4.94->3.250->3.34 -DEAL::4.95->3.250->3.34 -DEAL::4.96->3.253->3.37 -DEAL::4.97->3.253->3.37 -DEAL::4.98->3.253->3.37 -DEAL::4.99->3.253->3.37 -DEAL::4.100->3.253->3.37 -DEAL::4.101->3.253->3.37 -DEAL::4.102->3.253->3.37 -DEAL::4.103->3.253->3.37 -DEAL::4.104->3.264->3.40 -DEAL::4.105->3.264->3.40 -DEAL::4.106->3.264->3.40 -DEAL::4.107->3.264->3.40 -DEAL::4.108->3.264->3.40 -DEAL::4.109->3.264->3.40 -DEAL::4.110->3.264->3.40 -DEAL::4.111->3.264->3.40 -DEAL::4.112->3.267->3.43 -DEAL::4.113->3.267->3.43 -DEAL::4.114->3.267->3.43 -DEAL::4.115->3.267->3.43 -DEAL::4.116->3.267->3.43 -DEAL::4.117->3.267->3.43 -DEAL::4.118->3.267->3.43 -DEAL::4.119->3.267->3.43 -DEAL::4.120->3.270->3.46 -DEAL::4.121->3.270->3.46 -DEAL::4.122->3.270->3.46 -DEAL::4.123->3.270->3.46 -DEAL::4.124->3.270->3.46 -DEAL::4.125->3.270->3.46 -DEAL::4.126->3.270->3.46 -DEAL::4.127->3.270->3.46 -DEAL::4.128->3.281->3.49 -DEAL::4.129->3.281->3.49 -DEAL::4.130->3.281->3.49 -DEAL::4.131->3.281->3.49 -DEAL::4.132->3.281->3.49 -DEAL::4.133->3.281->3.49 -DEAL::4.134->3.281->3.49 -DEAL::4.135->3.281->3.49 -DEAL::4.136->3.284->3.52 -DEAL::4.137->3.284->3.52 -DEAL::4.138->3.284->3.52 -DEAL::4.139->3.284->3.52 -DEAL::4.140->3.284->3.52 -DEAL::4.141->3.284->3.52 -DEAL::4.142->3.284->3.52 -DEAL::4.143->3.284->3.52 -DEAL::4.144->3.287->3.55 -DEAL::4.145->3.287->3.55 -DEAL::4.146->3.287->3.55 -DEAL::4.147->3.287->3.55 -DEAL::4.148->3.287->3.55 -DEAL::4.149->3.287->3.55 -DEAL::4.150->3.287->3.55 -DEAL::4.151->3.287->3.55 -DEAL::4.152->3.298->3.58 -DEAL::4.153->3.298->3.58 -DEAL::4.154->3.298->3.58 -DEAL::4.155->3.298->3.58 -DEAL::4.156->3.298->3.58 -DEAL::4.157->3.298->3.58 -DEAL::4.158->3.298->3.58 -DEAL::4.159->3.298->3.58 -DEAL::4.160->3.301->3.61 -DEAL::4.161->3.301->3.61 -DEAL::4.162->3.301->3.61 -DEAL::4.163->3.301->3.61 -DEAL::4.164->3.301->3.61 -DEAL::4.165->3.301->3.61 -DEAL::4.166->3.301->3.61 -DEAL::4.167->3.301->3.61 -DEAL::4.168->3.312->3.64 -DEAL::4.169->3.312->3.64 -DEAL::4.170->3.312->3.64 -DEAL::4.171->3.312->3.64 -DEAL::4.172->3.312->3.64 -DEAL::4.173->3.312->3.64 -DEAL::4.174->3.312->3.64 -DEAL::4.175->3.312->3.64 -DEAL::4.176->3.315->3.67 -DEAL::4.177->3.315->3.67 -DEAL::4.178->3.315->3.67 -DEAL::4.179->3.315->3.67 -DEAL::4.180->3.315->3.67 -DEAL::4.181->3.315->3.67 -DEAL::4.182->3.315->3.67 -DEAL::4.183->3.315->3.67 -DEAL::4.184->3.318->3.70 -DEAL::4.185->3.318->3.70 -DEAL::4.186->3.318->3.70 -DEAL::4.187->3.318->3.70 -DEAL::4.188->3.318->3.70 -DEAL::4.189->3.318->3.70 -DEAL::4.190->3.318->3.70 -DEAL::4.191->3.318->3.70 -DEAL::4.192->3.329->3.73 -DEAL::4.193->3.329->3.73 -DEAL::4.194->3.329->3.73 -DEAL::4.195->3.329->3.73 -DEAL::4.196->3.329->3.73 -DEAL::4.197->3.329->3.73 -DEAL::4.198->3.329->3.73 -DEAL::4.199->3.329->3.73 -DEAL::4.200->3.332->3.76 -DEAL::4.201->3.332->3.76 -DEAL::4.202->3.332->3.76 -DEAL::4.203->3.332->3.76 -DEAL::4.204->3.332->3.76 -DEAL::4.205->3.332->3.76 -DEAL::4.206->3.332->3.76 -DEAL::4.207->3.332->3.76 -DEAL::4.208->3.335->3.79 -DEAL::4.209->3.335->3.79 -DEAL::4.210->3.335->3.79 -DEAL::4.211->3.335->3.79 -DEAL::4.212->3.335->3.79 -DEAL::4.213->3.335->3.79 -DEAL::4.214->3.335->3.79 -DEAL::4.215->3.335->3.79 -DEAL::4.216->3.346->3.82 -DEAL::4.217->3.346->3.82 -DEAL::4.218->3.346->3.82 -DEAL::4.219->3.346->3.82 -DEAL::4.220->3.346->3.82 -DEAL::4.221->3.346->3.82 -DEAL::4.222->3.346->3.82 -DEAL::4.223->3.346->3.82 -DEAL::4.224->3.349->3.85 -DEAL::4.225->3.349->3.85 -DEAL::4.226->3.349->3.85 -DEAL::4.227->3.349->3.85 -DEAL::4.228->3.349->3.85 -DEAL::4.229->3.349->3.85 -DEAL::4.230->3.349->3.85 -DEAL::4.231->3.349->3.85 -DEAL::4.232->3.360->3.88 -DEAL::4.233->3.360->3.88 -DEAL::4.234->3.360->3.88 -DEAL::4.235->3.360->3.88 -DEAL::4.236->3.360->3.88 -DEAL::4.237->3.360->3.88 -DEAL::4.238->3.360->3.88 -DEAL::4.239->3.360->3.88 -DEAL::4.240->3.363->3.91 -DEAL::4.241->3.363->3.91 -DEAL::4.242->3.363->3.91 -DEAL::4.243->3.363->3.91 -DEAL::4.244->3.363->3.91 -DEAL::4.245->3.363->3.91 -DEAL::4.246->3.363->3.91 -DEAL::4.247->3.363->3.91 -DEAL::4.248->3.366->3.94 -DEAL::4.249->3.366->3.94 -DEAL::4.250->3.366->3.94 -DEAL::4.251->3.366->3.94 -DEAL::4.252->3.366->3.94 -DEAL::4.253->3.366->3.94 -DEAL::4.254->3.366->3.94 -DEAL::4.255->3.366->3.94 -DEAL::4.256->3.377->3.97 -DEAL::4.257->3.377->3.97 -DEAL::4.258->3.377->3.97 -DEAL::4.259->3.377->3.97 -DEAL::4.260->3.377->3.97 -DEAL::4.261->3.377->3.97 -DEAL::4.262->3.377->3.97 -DEAL::4.263->3.377->3.97 -DEAL::4.264->3.380->3.100 -DEAL::4.265->3.380->3.100 -DEAL::4.266->3.380->3.100 -DEAL::4.267->3.380->3.100 -DEAL::4.268->3.380->3.100 -DEAL::4.269->3.380->3.100 -DEAL::4.270->3.380->3.100 -DEAL::4.271->3.380->3.100 -DEAL::4.272->3.383->3.103 -DEAL::4.273->3.383->3.103 -DEAL::4.274->3.383->3.103 -DEAL::4.275->3.383->3.103 -DEAL::4.276->3.383->3.103 -DEAL::4.277->3.383->3.103 -DEAL::4.278->3.383->3.103 -DEAL::4.279->3.383->3.103 -DEAL::4.280->3.394->3.106 -DEAL::4.281->3.394->3.106 -DEAL::4.282->3.394->3.106 -DEAL::4.283->3.394->3.106 -DEAL::4.284->3.394->3.106 -DEAL::4.285->3.394->3.106 -DEAL::4.286->3.394->3.106 -DEAL::4.287->3.394->3.106 -DEAL::4.288->3.397->3.109 -DEAL::4.289->3.397->3.109 -DEAL::4.290->3.397->3.109 -DEAL::4.291->3.397->3.109 -DEAL::4.292->3.397->3.109 -DEAL::4.293->3.397->3.109 -DEAL::4.294->3.397->3.109 -DEAL::4.295->3.397->3.109 -DEAL::4.296->3.408->3.112 -DEAL::4.297->3.408->3.112 -DEAL::4.298->3.408->3.112 -DEAL::4.299->3.408->3.112 -DEAL::4.300->3.408->3.112 -DEAL::4.301->3.408->3.112 -DEAL::4.302->3.408->3.112 -DEAL::4.303->3.408->3.112 -DEAL::4.304->3.411->3.115 -DEAL::4.305->3.411->3.115 -DEAL::4.306->3.411->3.115 -DEAL::4.307->3.411->3.115 -DEAL::4.308->3.411->3.115 -DEAL::4.309->3.411->3.115 -DEAL::4.310->3.411->3.115 -DEAL::4.311->3.411->3.115 -DEAL::4.312->3.414->3.118 -DEAL::4.313->3.414->3.118 -DEAL::4.314->3.414->3.118 -DEAL::4.315->3.414->3.118 -DEAL::4.316->3.414->3.118 -DEAL::4.317->3.414->3.118 -DEAL::4.318->3.414->3.118 -DEAL::4.319->3.414->3.118 -DEAL::4.320->3.425->3.121 -DEAL::4.321->3.425->3.121 -DEAL::4.322->3.425->3.121 -DEAL::4.323->3.425->3.121 -DEAL::4.324->3.425->3.121 -DEAL::4.325->3.425->3.121 -DEAL::4.326->3.425->3.121 -DEAL::4.327->3.425->3.121 -DEAL::4.328->3.428->3.124 -DEAL::4.329->3.428->3.124 -DEAL::4.330->3.428->3.124 -DEAL::4.331->3.428->3.124 -DEAL::4.332->3.428->3.124 -DEAL::4.333->3.428->3.124 -DEAL::4.334->3.428->3.124 -DEAL::4.335->3.428->3.124 -DEAL::4.336->3.431->3.127 -DEAL::4.337->3.431->3.127 -DEAL::4.338->3.431->3.127 -DEAL::4.339->3.431->3.127 -DEAL::4.340->3.431->3.127 -DEAL::4.341->3.431->3.127 -DEAL::4.342->3.431->3.127 -DEAL::4.343->3.431->3.127 -DEAL::4.344->3.442->3.130 -DEAL::4.345->3.442->3.130 -DEAL::4.346->3.442->3.130 -DEAL::4.347->3.442->3.130 -DEAL::4.348->3.442->3.130 -DEAL::4.349->3.442->3.130 -DEAL::4.350->3.442->3.130 -DEAL::4.351->3.442->3.130 -DEAL::4.352->3.445->3.133 -DEAL::4.353->3.445->3.133 -DEAL::4.354->3.445->3.133 -DEAL::4.355->3.445->3.133 -DEAL::4.356->3.445->3.133 -DEAL::4.357->3.445->3.133 -DEAL::4.358->3.445->3.133 -DEAL::4.359->3.445->3.133 -DEAL::4.360->3.456->3.136 -DEAL::4.361->3.456->3.136 -DEAL::4.362->3.456->3.136 -DEAL::4.363->3.456->3.136 -DEAL::4.364->3.456->3.136 -DEAL::4.365->3.456->3.136 -DEAL::4.366->3.456->3.136 -DEAL::4.367->3.456->3.136 -DEAL::4.368->3.459->3.139 -DEAL::4.369->3.459->3.139 -DEAL::4.370->3.459->3.139 -DEAL::4.371->3.459->3.139 -DEAL::4.372->3.459->3.139 -DEAL::4.373->3.459->3.139 -DEAL::4.374->3.459->3.139 -DEAL::4.375->3.459->3.139 -DEAL::4.376->3.462->3.142 -DEAL::4.377->3.462->3.142 -DEAL::4.378->3.462->3.142 -DEAL::4.379->3.462->3.142 -DEAL::4.380->3.462->3.142 -DEAL::4.381->3.462->3.142 -DEAL::4.382->3.462->3.142 -DEAL::4.383->3.462->3.142 -DEAL::4.384->3.473->3.145 -DEAL::4.385->3.473->3.145 -DEAL::4.386->3.473->3.145 -DEAL::4.387->3.473->3.145 -DEAL::4.388->3.473->3.145 -DEAL::4.389->3.473->3.145 -DEAL::4.390->3.473->3.145 -DEAL::4.391->3.473->3.145 -DEAL::4.392->3.476->3.148 -DEAL::4.393->3.476->3.148 -DEAL::4.394->3.476->3.148 -DEAL::4.395->3.476->3.148 -DEAL::4.396->3.476->3.148 -DEAL::4.397->3.476->3.148 -DEAL::4.398->3.476->3.148 -DEAL::4.399->3.476->3.148 -DEAL::4.400->3.479->3.151 -DEAL::4.401->3.479->3.151 -DEAL::4.402->3.479->3.151 -DEAL::4.403->3.479->3.151 -DEAL::4.404->3.479->3.151 -DEAL::4.405->3.479->3.151 -DEAL::4.406->3.479->3.151 -DEAL::4.407->3.479->3.151 -DEAL::4.408->3.490->3.154 -DEAL::4.409->3.490->3.154 -DEAL::4.410->3.490->3.154 -DEAL::4.411->3.490->3.154 -DEAL::4.412->3.490->3.154 -DEAL::4.413->3.490->3.154 -DEAL::4.414->3.490->3.154 -DEAL::4.415->3.490->3.154 -DEAL::4.416->3.493->3.157 -DEAL::4.417->3.493->3.157 -DEAL::4.418->3.493->3.157 -DEAL::4.419->3.493->3.157 -DEAL::4.420->3.493->3.157 -DEAL::4.421->3.493->3.157 -DEAL::4.422->3.493->3.157 -DEAL::4.423->3.493->3.157 -DEAL::4.424->3.504->3.160 -DEAL::4.425->3.504->3.160 -DEAL::4.426->3.504->3.160 -DEAL::4.427->3.504->3.160 -DEAL::4.428->3.504->3.160 -DEAL::4.429->3.504->3.160 -DEAL::4.430->3.504->3.160 -DEAL::4.431->3.504->3.160 -DEAL::4.432->3.507->3.163 -DEAL::4.433->3.507->3.163 -DEAL::4.434->3.507->3.163 -DEAL::4.435->3.507->3.163 -DEAL::4.436->3.507->3.163 -DEAL::4.437->3.507->3.163 -DEAL::4.438->3.507->3.163 -DEAL::4.439->3.507->3.163 -DEAL::4.440->3.510->3.166 -DEAL::4.441->3.510->3.166 -DEAL::4.442->3.510->3.166 -DEAL::4.443->3.510->3.166 -DEAL::4.444->3.510->3.166 -DEAL::4.445->3.510->3.166 -DEAL::4.446->3.510->3.166 -DEAL::4.447->3.510->3.166 diff --git a/tests/deal.II/mg.cc b/tests/deal.II/mg.cc deleted file mode 100644 index 52241020bf..0000000000 --- a/tests/deal.II/mg.cc +++ /dev/null @@ -1,187 +0,0 @@ -//---------------------------- mg.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- mg.cc --------------------------- - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include -#include - -#include "helmholtz.h" - -#include - - -template -class RHSFunction : public Function -{ - public: - virtual double value (const Point&, - const unsigned int) const; -}; - - -class MGSmootherLAC : public MGSmootherBase -{ - private: - SmartPointer > >matrices; - public: - MGSmootherLAC(MGLevelObject >&); - - virtual void smooth (const unsigned int level, - Vector &u, - const Vector &rhs) const; - -}; - -int main() -{ - ofstream logfile("mg.output"); - deallog.attach(logfile); - deallog.depth_console(0); - - Helmholtz equation; - RHSFunction<2> rhs; - QGauss5<2> quadrature; - - FEQ1<2> fe1; - FEQ2<2> fe2; - FEQ3<2> fe3; - FEQ4<2> fe4; - for (unsigned int degree=1;degree<=3;degree++) - { - Triangulation<2> tr; - MGDoFHandler<2> mgdof(tr); - DoFHandler<2>& dof(mgdof); - - GridGenerator::hyper_cube(tr,-1.,1.); - - FiniteElement<2>* fe; - switch(degree) - { - case 1: fe = &fe1; deallog.push("Q1"); break; - case 2: fe = &fe2; deallog.push("Q2"); break; - case 3: fe = &fe3; deallog.push("Q3"); break; - case 4: fe = &fe4; deallog.push("Q4"); break; - } - - for (unsigned int step=0;step < 3; ++step) - { - tr.refine_global(1); - dof.distribute_dofs(*fe); - - ConstraintMatrix hanging_nodes; - DoFTools::make_hanging_node_constraints(dof, hanging_nodes); - hanging_nodes.close(); - - const unsigned int size = dof.n_dofs(); - deallog << "DoFs " << size << endl; - deallog << "Levels: " << tr.n_levels() << endl; - - SparsityPattern structure(size, dof.max_couplings_between_dofs()); - DoFTools::make_sparsity_pattern(dof, structure); - structure.compress(); - - SparseMatrix A(structure); - Vector f(size); - - equation.build_all(A,f,dof, quadrature, rhs); - - Vector u; - u.reinit(f); - PrimitiveVectorMemory<> mem; - SolverControl control(100, 1.e-12); - SolverCG<> solver(control, mem); - - u = 0.; - MGLevelObject mgstruct(0, tr.n_levels()-1); - MGLevelObject > mgA(0,tr.n_levels()-1); - for (unsigned int i=0;i cgmem; - SolverCG<> cgsolver(cgcontrol, cgmem); - PreconditionIdentity cgprec; - MGCoarseGridLACIteration, SparseMatrix, PreconditionIdentity> - coarse(cgsolver, mgA[0], cgprec); - - MGSmootherLAC smoother(mgA); - MGTransferPrebuilt transfer; - transfer.build_matrices(mgdof); - - -Multigrid<2> multigrid(mgdof, hanging_nodes, mgstruct, mgA, transfer); - PreconditionMG > - mgprecondition(multigrid, smoother, smoother, coarse); - - solver.solve(A, u, f, mgprecondition); - } - deallog.pop(); - } -} - -template -double -RHSFunction::value (const Point&, - const unsigned int) const -{ - return 1.; -} - -MGSmootherLAC::MGSmootherLAC(MGLevelObject >& matrix) - : - matrices(&matrix) -{} - -void -MGSmootherLAC::smooth (const unsigned int level, - Vector &u, - const Vector &rhs) const -{ - SolverControl control(2,1.e-300,false,false); - PrimitiveVectorMemory<> mem; - SolverRichardson<> rich(control, mem); - PreconditionSSOR<> prec; - prec.initialize((*matrices)[level], 1.); - - rich.solve((*matrices)[level], u, rhs, prec); -} diff --git a/tests/deal.II/mg.checked b/tests/deal.II/mg.checked deleted file mode 100644 index 272ed178a2..0000000000 --- a/tests/deal.II/mg.checked +++ /dev/null @@ -1,37 +0,0 @@ - -DEAL:Q1::DoFs 9 -DEAL:Q1::Levels: 2 -DEAL:Q1:cg::Starting -DEAL:Q1:cg::Convergence step 4 -DEAL:Q1::DoFs 25 -DEAL:Q1::Levels: 3 -DEAL:Q1:cg::Starting -DEAL:Q1:cg::Convergence step 5 -DEAL:Q1::DoFs 81 -DEAL:Q1::Levels: 4 -DEAL:Q1:cg::Starting -DEAL:Q1:cg::Convergence step 6 -DEAL:Q2::DoFs 25 -DEAL:Q2::Levels: 2 -DEAL:Q2:cg::Starting -DEAL:Q2:cg::Convergence step 5 -DEAL:Q2::DoFs 81 -DEAL:Q2::Levels: 3 -DEAL:Q2:cg::Starting -DEAL:Q2:cg::Convergence step 7 -DEAL:Q2::DoFs 289 -DEAL:Q2::Levels: 4 -DEAL:Q2:cg::Starting -DEAL:Q2:cg::Convergence step 7 -DEAL:Q3::DoFs 49 -DEAL:Q3::Levels: 2 -DEAL:Q3:cg::Starting -DEAL:Q3:cg::Convergence step 8 -DEAL:Q3::DoFs 169 -DEAL:Q3::Levels: 3 -DEAL:Q3:cg::Starting -DEAL:Q3:cg::Convergence step 7 -DEAL:Q3::DoFs 625 -DEAL:Q3::Levels: 4 -DEAL:Q3:cg::Starting -DEAL:Q3:cg::Convergence step 7 diff --git a/tests/deal.II/mglocal.cc b/tests/deal.II/mglocal.cc deleted file mode 100644 index 90fff768ca..0000000000 --- a/tests/deal.II/mglocal.cc +++ /dev/null @@ -1,219 +0,0 @@ -//---------------------------- mglocal.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- mglocal.cc --------------------------- - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include - -MGSmoother* smoother_object; - -// Does anybody know why cmath does not do this? - -#ifndef M_PI_2 -#define M_PI_2 1.57079632679489661923 -#endif - - -int step_counter = 0; - -#include "helmholtz.h" - -template -class RHSFunction - : - public Function -{ - public: - virtual double value (const Point&, - const unsigned int ) const; -}; - -extern void write_gnuplot (const MGDoFHandler<2>& dofs, - const Vector& v, - unsigned int level, - ostream &out); - -int main() -{ - ofstream logfile("mglocal.output"); - logfile.setf(ios::fixed); - logfile.precision (3); - deallog.attach(logfile); -// deallog.log_execution_time(true); - deallog.depth_console(0); - - Helmholtz equation; - RHSFunction<2> rhs; - QGauss5<2> quadrature; - - FEQ1<2> fe1; - FEQ2<2> fe2; - FEQ3<2> fe3; - FEQ4<2> fe4; - for (unsigned int degree=1;degree<=3;degree++) - { - Triangulation<2> tr; - MGDoFHandler<2> mgdof(tr); - DoFHandler<2>& dof(mgdof); - - GridGenerator::hyper_cube(tr,-M_PI_2,M_PI_2); - - FiniteElement<2>* fe; - switch(degree) - { - case 1: fe = &fe1; deallog.push("Q1"); break; - case 2: fe = &fe2; deallog.push("Q2"); break; - case 3: fe = &fe3; deallog.push("Q3"); break; - case 4: fe = &fe4; deallog.push("Q4"); break; - } - - tr.refine_global(1); - Triangulation<2>::active_cell_iterator cell = tr.begin_active(); - cell->set_refine_flag(); - tr.execute_coarsening_and_refinement(); - - tr.refine_global(1); - dof.distribute_dofs(*fe); - const unsigned int size = dof.n_dofs(); - deallog << "DoFs " << size << endl; - deallog << "Levels: " << tr.n_levels() << endl; - for (unsigned int step=1;step < 3; ++step) - { - deallog << "smoothing-steps" << step << endl; - SparsityPattern structure(size, dof.max_couplings_between_dofs()); - DoFTools::make_sparsity_pattern(dof, structure); - - ConstraintMatrix hanging_nodes; - DoFTools::make_hanging_node_constraints (dof, hanging_nodes); - hanging_nodes.close(); - hanging_nodes.condense(structure); - - structure.compress(); - - SparseMatrix A(structure); - Vector f(size); - - equation.build_all(A,f,dof, quadrature, rhs); - - hanging_nodes.condense(A); - hanging_nodes.condense(f); - - if (false) - { - ofstream out_file("MGf"); - DataOut<2> out; - out.attach_dof_handler(dof); - out.add_data_vector(f, "v"); - out.build_patches(5); - out.write_gnuplot(out_file); - } - - Vector u; - u.reinit(f); - PrimitiveVectorMemory<> mem; - - SolverControl control(20, 1.e-12, false); - SolverCG<> solver(control, mem); - - MGLevelObject mgstruct(0, tr.n_levels()-1); - MGLevelObject > mgA(0,tr.n_levels()-1); - for (unsigned int i=0;i cgmem; - SolverCG<> cgsolver(cgcontrol, cgmem); - PreconditionIdentity cgprec; - MGCoarseGridLACIteration, SparseMatrix, PreconditionIdentity> - coarse(cgsolver, mgA[tr.n_levels()-2], cgprec); - - MGSmootherRelaxation - smoother(mgdof, mgA, &SparseMatrix::template precondition_SSOR, - step, 1.); - smoother_object = &smoother; - - MGTransferPrebuilt transfer; - transfer.build_matrices(mgdof); - - -Multigrid<2> multigrid(mgdof, hanging_nodes, mgstruct, mgA, transfer, tr.n_levels()-2); - PreconditionMG > - mgprecondition(multigrid, smoother, smoother, coarse); - - u = 0.; - - solver.solve(A, u, f, mgprecondition); - hanging_nodes.distribute(u); - - if (false) - { - DataOut<2> out; - char* name = new char[100]; - - sprintf(name, "MG-Q%d-%d", degree, step); - - ofstream ofile(name); - out.attach_dof_handler(dof); - out.add_data_vector(u,"u"); - out.add_data_vector(f,"f"); - out.build_patches(5); - out.write_gnuplot(ofile); - delete[] name; - } - } - deallog.pop(); - } -} - -template -double -RHSFunction::value (const Point&p, - const unsigned int) const -{ - return 1.; - - return p(0)*p(0)+p(1)*p(1); - - return (2.1)*(sin(p(0))* sin(p(1))); -} diff --git a/tests/deal.II/mglocal.checked b/tests/deal.II/mglocal.checked deleted file mode 100644 index ac4ca7eb84..0000000000 --- a/tests/deal.II/mglocal.checked +++ /dev/null @@ -1,25 +0,0 @@ - -DEAL:Q1::DoFs 41 -DEAL:Q1::Levels: 4 -DEAL:Q1::smoothing-steps1 -DEAL:Q1:cg::Starting -DEAL:Q1:cg::Convergence step 8 -DEAL:Q1::smoothing-steps2 -DEAL:Q1:cg::Starting -DEAL:Q1:cg::Convergence step 7 -DEAL:Q2::DoFs 141 -DEAL:Q2::Levels: 4 -DEAL:Q2::smoothing-steps1 -DEAL:Q2:cg::Starting -DEAL:Q2:cg::Failure step 20 -DEAL:Q2::smoothing-steps2 -DEAL:Q2:cg::Starting -DEAL:Q2:cg::Failure step 20 -DEAL:Q3::DoFs 297 -DEAL:Q3::Levels: 4 -DEAL:Q3::smoothing-steps1 -DEAL:Q3:cg::Starting -DEAL:Q3:cg::Failure step 20 -DEAL:Q3::smoothing-steps2 -DEAL:Q3:cg::Starting -DEAL:Q3:cg::Failure step 20 diff --git a/tests/deal.II/second_derivatives.cc b/tests/deal.II/second_derivatives.cc deleted file mode 100644 index 1a8a3ee56a..0000000000 --- a/tests/deal.II/second_derivatives.cc +++ /dev/null @@ -1,82 +0,0 @@ -//---------------------------- second_derivatives.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- second_derivatives.cc --------------------------- - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include - - -int main () -{ - ofstream logfile("second_derivatives.output"); - logfile.precision(3); - deallog.attach(logfile); - deallog.depth_console(0); - - Triangulation<2> tria; - GridGenerator::hyper_cube (tria,0,1); - - FEQ1<2> fe; - DoFHandler<2> dof(tria); - dof.distribute_dofs(fe); - - StraightBoundary<2> b; - QTrapez<2> q; - FEValues<2> fevalues(fe,q,update_second_derivatives); - - -Vector val(4); - - deallog << "Testing transformation of 2nd derivatives of shape function:" << endl; - - // test for each of the four - // shape functions. first loop: - // unit cell, second loop: - // one vertex moved - for (unsigned int loop=0; loop<2; ++loop) - { - deallog << "Test loop: " << loop << endl; - - // move one vertex of the only cell - if (loop==1) - tria.begin_active()->vertex(2)(0) = 2; - fevalues.reinit (dof.begin_active()); - - for (unsigned int vertex=0; vertex<4; ++vertex) - { - val.clear (); - val(vertex) = 1; - - vector > derivs(4); - fevalues.get_function_2nd_derivatives (val, derivs); - - deallog << "Vertex " << vertex << ": " << endl; - for (unsigned int point=0; point<4; ++point) - for (unsigned int component=0; component<2; ++component) - deallog << derivs[point][component] << endl; - - deallog << endl; - }; - }; -}; diff --git a/tests/deal.II/second_derivatives.checked b/tests/deal.II/second_derivatives.checked deleted file mode 100644 index 1fb4368c75..0000000000 --- a/tests/deal.II/second_derivatives.checked +++ /dev/null @@ -1,84 +0,0 @@ - -DEAL::Testing transformation of 2nd derivatives of shape function: -DEAL::Test loop: 0 -DEAL::Vertex 0: -DEAL::0.00 1.00 -DEAL::1.00 0.00 -DEAL::0.00 1.00 -DEAL::1.00 0.00 -DEAL::0.00 1.00 -DEAL::1.00 0.00 -DEAL::0.00 1.00 -DEAL::1.00 0.00 - -DEAL::Vertex 1: -DEAL::0.00 -1.00 -DEAL::-1.00 0.00 -DEAL::0.00 -1.00 -DEAL::-1.00 0.00 -DEAL::0.00 -1.00 -DEAL::-1.00 0.00 -DEAL::0.00 -1.00 -DEAL::-1.00 0.00 - -DEAL::Vertex 2: -DEAL::0.00 1.00 -DEAL::1.00 0.00 -DEAL::0.00 1.00 -DEAL::1.00 0.00 -DEAL::0.00 1.00 -DEAL::1.00 0.00 -DEAL::0.00 1.00 -DEAL::1.00 0.00 - -DEAL::Vertex 3: -DEAL::0.00 -1.00 -DEAL::-1.00 0.00 -DEAL::0.00 -1.00 -DEAL::-1.00 0.00 -DEAL::0.00 -1.00 -DEAL::-1.00 0.00 -DEAL::0.00 -1.00 -DEAL::-1.00 0.00 - -DEAL::Test loop: 1 -DEAL::Vertex 0: -DEAL::0.00 2.00 -DEAL::2.00 0.00 -DEAL::0.00 0.500 -DEAL::0.500 0.00 -DEAL::0.00 2.00 -DEAL::2.00 -4.00 -DEAL::0.00 0.500 -DEAL::0.500 -1.00 - -DEAL::Vertex 1: -DEAL::0.00 -2.00 -DEAL::-2.00 0.00 -DEAL::0.00 -0.500 -DEAL::-0.500 0.00 -DEAL::0.00 -2.00 -DEAL::-2.00 4.00 -DEAL::0.00 -0.500 -DEAL::-0.500 1.00 - -DEAL::Vertex 2: -DEAL::0.00 1.00 -DEAL::1.00 0.00 -DEAL::0.00 0.250 -DEAL::0.250 0.00 -DEAL::0.00 1.00 -DEAL::1.00 -2.00 -DEAL::0.00 0.250 -DEAL::0.250 -0.500 - -DEAL::Vertex 3: -DEAL::0.00 -1.00 -DEAL::-1.00 0.00 -DEAL::0.00 -0.250 -DEAL::-0.250 0.00 -DEAL::0.00 -1.00 -DEAL::-1.00 2.00 -DEAL::0.00 -0.250 -DEAL::-0.250 0.500 - diff --git a/tests/deal.II/tmp/.cvsignore b/tests/deal.II/tmp/.cvsignore deleted file mode 100644 index 72e8ffc0db..0000000000 --- a/tests/deal.II/tmp/.cvsignore +++ /dev/null @@ -1 +0,0 @@ -* diff --git a/tests/deal.II/wave-test-3.cc b/tests/deal.II/wave-test-3.cc deleted file mode 100644 index 03d5d42089..0000000000 --- a/tests/deal.II/wave-test-3.cc +++ /dev/null @@ -1,7867 +0,0 @@ -//---------------------------- wave-test-3.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by Wolfgang Bangerth -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- wave-test-3.cc --------------------------- - - -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include - -#include -#include -#include -#include -#include - -ofstream logfile("wave-test-3.output"); - -class UserMatrix; -class SweepInfo; -template class SweepData; -template class WaveParameters; -template class TimeStep_Primal; -template class TimeStep_Dual; -template class DualFunctional; -template class EvaluationBase; -template class TimeStep_ErrorEstimation; -template class TimeStep_Postprocess; - - -template -class TimeStepBase_Wave : public TimeStepBase_Tria{ - public: - TimeStepBase_Wave (); - TimeStepBase_Wave (const double time, - TimeStepBase_Tria::Flags flags, - const WaveParameters ¶meters); - const TimeStep_Primal & get_timestep_primal () const; - const TimeStep_Dual & get_timestep_dual () const; - const TimeStep_Postprocess & get_timestep_postprocess () const; - string tmp_filename_base (const string &branch_signature) const; - void attach_sweep_info (SweepInfo &sweep_info); - void attach_sweep_data (SweepData &sweep_data); - - protected: - const WaveParameters ¶meters; - SweepInfo *sweep_info; - SweepData *sweep_data; -}; - - -template -class TimeStep_Wave : public virtual TimeStepBase_Wave -{ - public: - TimeStep_Wave (const string fe_name); - ~TimeStep_Wave(); - virtual void wake_up (const unsigned int wakeup_level); - virtual void sleep (const unsigned int sleep_level); - virtual void end_sweep (); - unsigned int solve (const UserMatrix &matrix, - Vector &solution, - const Vector &rhs) const; - virtual string branch_signature () const = 0; - DeclException0 (ExcIO); - DeclException0 (ExcCoarsestGridsDiffer); - - -protected: - struct StatisticData - { - StatisticData (); - StatisticData (const unsigned int n_active_cells, - const unsigned int n_dofs, - const unsigned int n_solver_steps_helmholtz, - const unsigned int n_solver_steps_projection, - const pair energy); - static void write_descriptions (ostream &out); - void write (ostream &out) const; - unsigned int n_active_cells; - unsigned int n_dofs; - unsigned int n_solver_steps_helmholtz; - unsigned int n_solver_steps_projection; - pair energy; - }; - - DoFHandler *dof_handler; - const FiniteElement &fe; - const Quadrature &quadrature; - const Quadrature &quadrature_face; - ConstraintMatrix constraints; - SparsityPattern system_sparsity; - SparseMatrix mass_matrix, laplace_matrix; - Vector u, v; - StatisticData statistic_data; - void create_matrices (); - void transfer_old_solutions (Vector &old_u, - Vector &old_v) const; - void transfer_old_solutions (const typename DoFHandler::cell_iterator &old_cell, - const typename DoFHandler::cell_iterator &new_cell, - const Vector &old_grid_u, - const Vector &old_grid_v, - Vector &old_u, - Vector &old_v) const; - pair compute_energy (); - template friend class DualFunctional; - template friend class EvaluationBase; - template friend class TimeStep_ErrorEstimation; - template friend class TimeStep_Postprocess; -}; - - -template -class TimeStep_Primal : public TimeStep_Wave -{ - public: - TimeStep_Primal (const string &primal_fe); - void do_initial_step (); - void do_timestep (); - virtual void solve_primal_problem (); - virtual string branch_signature () const; - virtual void wake_up (const unsigned int wakeup_level); - virtual void end_sweep () - { - TimeStep_Wave::end_sweep(); - }; - virtual void sleep (const unsigned int sleep_level) - { - TimeStep_Wave::sleep (sleep_level); - }; - - - private: - void assemble_vectors (Vector &right_hand_side1, - Vector &right_hand_side2); - void build_rhs (Vector &right_hand_side1, - Vector &right_hand_side2); - void build_rhs (const typename DoFHandler::cell_iterator &old_cell, - const typename DoFHandler::cell_iterator &new_cell, - FEValues &fe_values, - Vector &right_hand_side1, - Vector &right_hand_side2); - unsigned int - collect_from_children (const typename DoFHandler::cell_iterator &old_cell, - FEValues &fe_values, - Vector &rhs1, - Vector &rhs2) const; - unsigned int - distribute_to_children (const typename DoFHandler::cell_iterator &cell, - FEValues &fe_values, - const Vector &old_dof_values_u, - const Vector &old_dof_values_v, - Vector &right_hand_side1, - Vector &right_hand_side2); -}; - - -template -class TimeStep_Dual : public TimeStep_Wave -{ - public: - TimeStep_Dual (const string &dual_fe); - void do_initial_step (); - void do_timestep (); - virtual void solve_dual_problem (); - virtual string branch_signature () const; - virtual void wake_up (const unsigned int wakeup_level); - - virtual void end_sweep () - { - TimeStep_Wave::end_sweep(); - }; - virtual void sleep (const unsigned int sleep_level) - { - TimeStep_Wave::sleep (sleep_level); - }; - - - private: - void assemble_vectors (Vector &right_hand_side1, - Vector &right_hand_side2); - void build_rhs (Vector &right_hand_side1, - Vector &right_hand_side2); - void build_rhs (const typename DoFHandler::cell_iterator &old_cell, - const typename DoFHandler::cell_iterator &new_cell, - FEValues &fe_values, - Vector &right_hand_side1, - Vector &right_hand_side2); - unsigned int - collect_from_children (const typename DoFHandler::cell_iterator &old_cell, - FEValues &fe_values, - Vector &rhs1, - Vector &rhs2) const; - unsigned int - distribute_to_children (const typename DoFHandler::cell_iterator &cell, - FEValues &fe_values, - const Vector &old_dof_values_u, - const Vector &old_dof_values_v, - Vector &right_hand_side1, - Vector &right_hand_side2); -}; - - - - -template -class TimeStep_ErrorEstimation : public virtual TimeStepBase_Wave -{ - public: - TimeStep_ErrorEstimation (); - virtual void estimate_error (); - virtual void wake_up (const unsigned int wakeup_level); - virtual void sleep (const unsigned int sleep_level); - virtual void get_tria_refinement_criteria (Vector &indicators) const; - void get_error_indicators (Vector &indicators) const; - virtual string branch_signature () const = 0; - - protected: - struct StatisticData - { - StatisticData (); - StatisticData (const double estimated_error); - static void write_descriptions (ostream &out); - void write (ostream &out) const; - double estimated_error; - }; - - struct ErrorOnCell { - double part[8]; - ErrorOnCell (); - ErrorOnCell operator += (const ErrorOnCell &eoc); - double sum () const; - }; - - -struct CellwiseError - { - CellwiseError (const unsigned int n_errors); - vector errors; - typename vector::iterator next_free_slot; - }; - - Vector estimated_error_per_cell; - FullMatrix embedding_matrix; - FullMatrix interpolation_matrix; - FullMatrix difference_matrix; - StatisticData statistic_data; - void estimate_error_energy (const unsigned int which_variables); - void estimate_error_dual (); - void estimate_error_dual (const typename DoFHandler::cell_iterator &primal_cell, - const typename DoFHandler::cell_iterator &dual_cell, - const typename DoFHandler::cell_iterator &primal_cell_old, - const typename DoFHandler::cell_iterator &dual_cell_old, - CellwiseError &cellwise_error, - FEValues &fe_values) const; - void compute_error_on_new_children (const typename DoFHandler::cell_iterator &primal_cell, - const typename DoFHandler::cell_iterator &dual_cell, - const Vector &local_u_old, - const Vector &local_v_old, - const Vector &local_u_bar_old, - const Vector &local_v_bar_old, - CellwiseError &cellwise_error, - FEValues &fe_values) const; - ErrorOnCell collect_error_from_children (const typename DoFHandler::cell_iterator &primal_cell_old, - const typename DoFHandler::cell_iterator &dual_cell_old, - const Vector &local_u, - const Vector &local_v, - const Vector &local_u_bar, - const Vector &local_v_bar, - const Vector &local_Ih_u_bar, - const Vector &local_Ih_v_bar, - const Vector &local_Ih_u_bar_old, - const Vector &local_Ih_v_bar_old, - FEValues &fe_values) const; - ErrorOnCell error_formula (const typename DoFHandler::active_cell_iterator &cell, - const Vector &local_u, - const Vector &local_v, - const Vector &local_u_bar, - const Vector &local_v_bar, - const Vector &local_u_old, - const Vector &local_v_old, - const Vector &local_u_bar_old, - const Vector &local_v_bar_old, - FEValues &fe_values) const; - ErrorOnCell error_formula (const typename DoFHandler::active_cell_iterator &cell, - const Vector &local_u, - const Vector &local_v, - const Vector &local_u_bar, - const Vector &local_v_bar, - const Vector &local_u_old, - const Vector &local_v_old, - const Vector &local_u_bar_old, - const Vector &local_v_bar_old, - const Vector &local_difference_u_bar, - const Vector &local_difference_v_bar, - const Vector &local_difference_u_bar_old, - const Vector &local_difference_v_bar_old, - FEValues &fe_values) const; - void make_interpolation_matrices (); -}; - - - - -template -class TimeStep_Postprocess : public TimeStep_ErrorEstimation -{ - public: - virtual void postprocess_timestep (); - virtual void wake_up (const unsigned int wakeup_level); - virtual void sleep (const unsigned int sleep_level); - virtual void end_sweep (); - string branch_signature () const; - - protected: - struct StatisticData - { - static void write_descriptions (ostream &out, - const WaveParameters ¶meters); - void write (ostream &out) const; - vector evaluation_results; - }; - - StatisticData statistic_data; - - private: - void interpolate_dual_solution (Vector &interpolated_u_bar, - Vector &interpolated_v_bar) const; -}; - - -template class WaveParameters; - - -template -class TimeStep : public TimeStep_Primal, public TimeStep_Dual, public TimeStep_Postprocess -{ - public: - TimeStep (const double time, - const WaveParameters ¶meters); - - virtual void wake_up (const unsigned int wakeup_level); - virtual void sleep (const unsigned int sleep_level); - virtual void end_sweep (); - static void write_statistics_descriptions (ostream &out, - const WaveParameters ¶meters); - void write_statistics (ostream &out) const; -}; - -template class TimeStep_Primal; -template class TimeStep_Dual; - - -template -class DualFunctional { - public: - DualFunctional (const bool use_primal_problem = false, - const bool use_primal_problem_at_endtime = false); - virtual void compute_endtime_vectors (Vector &final_u_bar, - Vector &final_v_bar); - virtual void compute_functionals (Vector &j1, - Vector &j2); - bool use_primal_solutions () const; - bool use_primal_solutions_at_endtime () const; - virtual void reset (const TimeStep_Primal &primal_problem); - virtual void reset (const TimeStep_Dual &dual_problem); - DeclException0 (ExcPrimalProblemNotRequested); - - protected: - const bool use_primal_problem; - const bool use_primal_problem_at_endtime; - - const Triangulation *tria; - const Boundary *boundary; - const DoFHandler *dof; - const FiniteElement *fe; - const Quadrature *quadrature; - const Quadrature *quadrature_face; - const Function *density, *stiffness; - - const DoFHandler *primal_dof; - const FiniteElement *primal_fe; - const Quadrature *primal_quadrature; - const Quadrature *primal_quadrature_face; - - const Vector *u; - const Vector *v; - - double time; - double time_step; - unsigned int step_no; -}; - - -template -class EndEnergy : public DualFunctional { - public: - EndEnergy (const bool use_primal_problem_at_any_time = false); - - protected: - enum PartOfDomain { low_atmosphere, high_atmosphere }; - void compute_vectors (const PartOfDomain pod, - Vector &final_u_bar, - Vector &final_v_bar) const; -}; - - -template -class IntegratedValueAtOrigin : public EndEnergy { - public: - virtual void compute_functionals (Vector &j1, - Vector &j2); - DeclException0 (ExcVertexNotFound); -}; - - -template -class SeismicSignal : public DualFunctional { - public: - virtual void compute_functionals (Vector &j1, - Vector &j2); -}; - - -template -class EarthSurface : public DualFunctional { - public: - virtual void compute_functionals (Vector &j1, - Vector &j2); -}; - - -template -class SplitSignal : public DualFunctional { - public: - virtual void compute_functionals (Vector &j1, - Vector &j2); -}; - - -template -class SplitLine : public DualFunctional { - public: - void compute_endtime_vectors (Vector &final_u_bar, - Vector &final_v_bar); -}; - - -template -class OneBranch1d : public DualFunctional { - public: - virtual void compute_functionals (Vector &j1, - Vector &j2); -}; - - -template -class SecondCrossing : public DualFunctional { - public: - virtual void compute_functionals (Vector &j1, - Vector &j2); -}; - - -template -class HuyghensWave : public DualFunctional { - public: - virtual void compute_functionals (Vector &j1, - Vector &j2); -}; - - - - -template -class EvaluationBase { - public: - /** - * Constructor. Set all pointers in this - * class to invalid values. - */ - EvaluationBase (); - - /** - * Destructor. Does nothing but needs - * to be declared to make it virtual. - */ - virtual ~EvaluationBase () {}; - - /** - * Reset pointers to triangulation, dof - * handler, quadrature formulae etc. - * to the right values for the time level - * to be evaluated next. This function - * needs to be called each time an - * evaluation is to take place. - */ - virtual void reset_timelevel (const TimeStep_Primal &target); - - /** - * Template for the evaluation functions. - * Return one value for the output file. - */ - virtual double evaluate () = 0; - - /** - * Reset the evaluator for the - * next sweep. This may be useful - * if you want to sum up the contributions - * of each time step and print them - * at the end; you then have to - * reset the sum at the start of - * the next sweep, which is done through - * this function. - * - * Default is: do nothing. - */ - virtual void reset (); - - /** - * Print the result at the end of - * each sweep. This function may - * print lines of data with four - * spaces at the beginning of each - * line. - * - * Default is: do nothing. - */ - virtual void print_final_result (ostream &out); - - /** - * Return the final result as a number - * for the result file. - * - * Default is: do nothing. - */ - virtual double get_final_result (); - - /** - * Return a brief string of description - * which will go into the first line - * of the "results" file. - */ - virtual string description () const = 0; - - /** - * Exception. - */ - DeclException0 (ExcIO); - - protected: - /** - * Pointers to the solution vectors - * of the primal problem. - */ - const Vector *u, *v; - - /** - * Underlying triangulation. - */ - const Triangulation *tria; - - /** - * Boundary object. - */ - const Boundary *boundary; - - /** - * Degrees of freedom of the primal - * problem. - */ - const DoFHandler *dof; - - /** - * Primal finite element. - */ - const FiniteElement *fe; - - /** - * Quadrature rule appropriate for - * the primal finite element. - */ - const Quadrature *quadrature; - - /** - * Same for quadrature on faces. - */ - const Quadrature *quadrature_face; - - /** - * Density and stiffness coefficients - * for the modell presently under - * investigation. - */ - const Function *density, *stiffness; - - /** - * Continuous time of the time step - * we are evaluating at present. - */ - double time; - - /** - * Length of the last time step, i.e. in - * the backward direction in time. If - * this is the first timestep, the this - * value is set to zero. - */ - double time_step; - - /** - * Number of that time step. - */ - unsigned int step_no; - - /** - * Base of the filenames under which - * we shall store our results. - */ - string base_file_name; -}; - - -/** - * This class is a common base class to the following two. It provides - * for some infrastructure for evaluations computing the energy in part - * of the domain and computing the in/outflow of energy. - * - * Central is the #compute_energy# function, which takes an argument - * describing which part of the domain to take and returns the energy - * therein. - */ -template -class EvaluateEnergyContent : public EvaluationBase { - public: - /** - * Constructor. - */ - EvaluateEnergyContent (); - - /** - * Reset the accumulated energy to zero. - */ - virtual void reset (); - - protected: - /** - * Enum denoting for which of the two - * subdomains the computation is to be - * performed. - */ - enum PartOfDomain { low_atmosphere, high_atmosphere }; - - /** - * Compute the energy for the given - * subdomain. - */ - double compute_energy (const PartOfDomain pod) const; - - protected: - /** - * Energy in the domain in the previous - * time step. This information is needed - * to compute the accumulated in/outflux - * of energy from the domain. - */ - double old_energy; - - /** - * Accumulated in/outflux into/from the - * domain integrated over time. - */ - double integrated_outflux; -}; - - -/** - * Evaluate the value of $u$ at the origin, i.e. $u(0,0)$. - * - * As final result, the time integrated value at the origin is computed. - * The origin shall be a vertex in the finest grid. - */ -template -class EvaluateIntegratedValueAtOrigin : public EvaluationBase { - public: - EvaluateIntegratedValueAtOrigin (): - integrated_value (0) {}; - - virtual double evaluate (); - virtual void print_final_result (ostream &out); - virtual double get_final_result (); - virtual string description () const; - - /** - * Reset the average value to zero. - */ - virtual void reset (); - - /** - * Exception. - */ - DeclException0 (ExcVertexNotFound); - - private: - double integrated_value; -}; - - -/** - * Integrate the value of $u_h$ at the top boundary over $x$ and $t$ using a - * highly oscillatory weight. - */ -template -class EvaluateSeismicSignal : public EvaluationBase { - public: - EvaluateSeismicSignal () : - result (0) {}; - - static inline double weight (const Point &p, const double time) { - const double pi = 3.14159265359; - return sin(3*pi*p(0))*sin(5*pi*time/2); - }; - - -virtual double evaluate (); - virtual void print_final_result (ostream &out); - virtual double get_final_result (); - virtual string description () const; - - /** - * Reset the value to zero. - */ - virtual void reset (); - - private: - double result; -}; - - -/** - * Integrate the value of $u_h$ at the top line $x=1.5, y=0..1/16$ at $t=1.6..1.8$. - */ -template -class EvaluateSplitSignal : public EvaluationBase { - public: - EvaluateSplitSignal () : - result (0) {}; - - -virtual double evaluate (); - virtual void print_final_result (ostream &out); - virtual double get_final_result (); - virtual string description () const; - - /** - * Reset the value to zero. - */ - virtual void reset (); - - private: - double result; -}; - - -template -class EvaluateOneBranch1d : public EvaluationBase { - public: - EvaluateOneBranch1d () : - result (0) {}; - - -virtual double evaluate (); - virtual void print_final_result (ostream &out); - virtual double get_final_result (); - virtual string description () const; - - /** - * Reset the value to zero. - */ - virtual void reset (); - - private: - double result; -}; - - -template -class EvaluateSecondCrossing1d : public EvaluationBase { - public: - EvaluateSecondCrossing1d () : - result (0) {}; - - -virtual double evaluate (); - virtual void print_final_result (ostream &out); - virtual double get_final_result (); - virtual string description () const; - - /** - * Reset the value to zero. - */ - virtual void reset (); - - private: - double result; -}; - - -template -class EvaluateHuyghensWave : public EvaluationBase { - public: - EvaluateHuyghensWave () : - integrated_value (0), - weighted_value (0) {}; - - -virtual double evaluate (); - virtual void print_final_result (ostream &out); - virtual double get_final_result (); - virtual string description () const; - - /** - * Reset the value to zero. - */ - virtual void reset (); - - private: - double integrated_value, weighted_value; -}; - - -template class DataOutStack; - - -/** - * This class has some data members which are shared between the different - * time steps within one sweep. Unlike the #SweepInfo# class, the members - * do not collect information for later output, but provide services to - * the time steps. - */ -template -class SweepData -{ - public: - SweepData (const bool use_data_out_stack); - ~SweepData (); - - DataOutStack *data_out_stack; -}; - - - - -/** - * This class provides some data members which collect information on the - * different time steps of one sweep. - */ -class SweepInfo -{ - public: - struct Data - { - /** - * Constructor. Set all fields to - * their initial values. - */ - Data (); - - double accumulated_error; - - unsigned int cells; - unsigned int primal_dofs; - unsigned int dual_dofs; - }; - - -struct Timers - { - Timer grid_generation; - Timer primal_problem; - Timer dual_problem; - Timer error_estimation; - Timer postprocessing; - }; - - -Data & get_data (); - - Timers & get_timers (); - - -template - void write_summary (const list*> & eval_list, - ostream &out) const; - - private: - Data data; - Timers timers; -}; - - - - -/** - * Enum denoting the different possibilities to precondition a solver. - */ -enum Preconditioning { - no_preconditioning, - jacobi, - sor, - ssor -}; - - -/** - * Wrapper for the #SparseMatrix# class which handles the preconditioning. - */ -class UserMatrix : public SparseMatrix { - public: - /** - * Constructor. The parameter specifies - * which way to precondition. - */ - UserMatrix (Preconditioning p) : - SparseMatrix (), - preconditioning (p) {}; - - /** - * Constructor. The second parameter - * specifies which way to precondition. - * The first parameter is simply passed - * down to the base class. - */ - UserMatrix (const SparsityPattern &sparsity, - Preconditioning p) : - SparseMatrix(sparsity), - preconditioning (p) {}; - - /** - * Precondition a vector #src# and write - * the result into #dst#. This function - * does not much more than delegating to - * the respective #precondition_*# - * function of the base class, according - * to the preconditioning method specified - * to the constructor of this class. - */ - void precondition (Vector &dst, const Vector &src) const; - - private: - /** - * Variable denoting the preconditioning - * method. - */ - Preconditioning preconditioning; -}; - - - -string int_to_string (const unsigned int i, const unsigned int digits); - - -template -inline number sqr (const number a) { - return a*a; -}; - - -/** - * This is a helper class which has a collection of static elements and returns - * the right finite element as a pointer when the name of the element is given. - * It is also able to return the correct quadrature formula for domain and - * boundary integrals for the specified finite element. - */ -template -struct FEHelper { - static const FEQ1 fe_linear; - static const FEQ2 fe_quadratic_sub; -#if 2 < 3 - static const FEQ3 fe_cubic_sub; - static const FEQ4 fe_quartic_sub; -#endif - - static const QGauss2 q_gauss_2; - static const QGauss3 q_gauss_3; - static const QGauss4 q_gauss_4; - static const QGauss5 q_gauss_5; - static const QGauss6 q_gauss_6; - static const QGauss7 q_gauss_7; - - static const QGauss2 q_gauss_2_face; - static const QGauss3 q_gauss_3_face; - static const QGauss4 q_gauss_4_face; - static const QGauss5 q_gauss_5_face; - static const QGauss6 q_gauss_6_face; - static const QGauss7 q_gauss_7_face; - - /** - * Return a reference to the finite - * element specified by the name - * #name#. - */ - static const FiniteElement & get_fe (const string &name); - - /** - * Return the correct domain quadrature - * formula for the finite element denoted - * by the name #name#. - */ - static const Quadrature & get_quadrature (const string &name); - - /** - * Return the correct boundary quadrature - * formula for the finite element denoted - * by the name #name#. - */ - static const Quadrature & get_quadrature_face (const string &name); -}; - - -template class DualFunctional; -template class EvaluationBase; - - -/** - * This is a class holding all the input parameters to the program. It is more - * or less a loose collection of data and the only purpose of this class is - * to assemble all the parameters and the functions evaluating them from the - * input file at one place without the need to scatter this functionality - * all over the program. - * - * - * \section{Description of the input parameters} - * - * Note that this list may not be up-tp-date at present. - * - * \subsection{Subsection #Grid#} - * \begin{itemize} - * @item #Coarse mesh#: Names a grid to be taken as a coarse grid. The following - * names are allowed: - * \begin{itemize} - * @item #uniform channel#: The domain is $[0,3]\times[0,1]$, triangulated - * by three cells. Left and right boundary are of Dirichlet type, top - * and bottom boundary are of homogeneous Neumann type. - * @item #split channel bottom#: As above, but the lower half is refined once - * more than the top half. - * @item #split channel {left | right}#: Same as #uniform channel#, but with - * cells on the left or right, according to the last word, more refined - * than on the other side. - * @item #square#: $[-1,1]\times[-1,1]$. - * @item #seismic square#: same as #square#, but with Neumann boundary - * at top. - * @item #temperature-square#: Square with size $400,000,000$ (we use the - * cgs system, so this amounts to 4000 km). - * @item #temperature-testcase#: As above, but with a sequence of - * continuously growing cells set atop to avoid the implementation of - * absorbing boundary conditions. The left boundary is of Neumann - * type (mirror boundary). - * @item #random#: Unit square, but randomly refined to test for correctness - * of the time stepping scheme. - * @item #earth#: Circle with radius 6371 (measured in km). - * @begin{itemize} - * @item #Initial refinement#: States how often the grid named by the above - * parameter shall be globally refined to form the coarse mesh. - * @item #Maximum refinement#: maximum refinement level a cell may attain. - * Cells with such a refinement level are flagged as others are, but they - * are not refined any more; it is therefore not necessary to lower the - * fraction of cells to be refined in order to avoid the refinement of a - * similar number of cells with a lower level number. - * - * The default to this value is zero, meaning no limit. - * @item #Refinement fraction#: Upon refinement, those cells are refined which - * together make up for a given fraction of the total error. This parameter - * gives that fraction. Default is #0.95#. - * @item #Coarsening fraction#: Similar as above, gives the fraction of the - * total error for which the cells shall be coarsened. Default is #0.03#. - * @item #Top cell number deviation#: Denotes a fraction by which the number of - * cells on a time level may be higher than the number of cells on the - * previous time level. This and the next two parameters help to avoid - * to much differing grids on the time levels and try to smooth the numbers - * of cells as a function of time. The default value is #0.1#. - * @item #Bottom cell number deviation#: Denotes the fraction by which the - * number of cells on a time level may be lower than on the previous time - * level. Default is #0.03#. - * @item #Cell number correction steps#: Usually, the goal denoted by the two - * parameters above cannot be reached directly because the number of cells - * is modified by grid regularization etc. The goal can therefore only be - * reached by an iterative process. This parameter tells how many iterations - * of this process shall be done. Default is #2#. - * @begin{itemize} - * - * \subsection{Subsection #Equation data#} - * \begin{itemize} - * @item #Coefficient#: Names for the different coefficients for the Laplace - * like part of the wave operator. Allowed values are: - * \begin{itemize} - * @item #unit#: Constant one. - * @item #kink#: One for $y<\frac 13$, 4 otherwise. - * @item #gradient#: $1+8*y^2$. - * @item #tube#: $0.2$ for $|x|<0.2$, one otherwise. - * @item #temperature VAL81#: Coefficient computed from the temperature - * field given by Varnazza, Avrett, Loeser 1981. - * @item #temperature kolmogorov#: Broadened temperature spectrum. - * @item #temperature undisturbed#: Quiet atmosphere. - * @item #temperature monochromatic 20s#: Temperature as computed with - * shock waves with $T=20s$. - * @item #temperature monochromatic 40s#: Temperature as computed with - * shock waves with $T=40s$. - * @begin{itemize} - * @item #Initial u#: Names for the initial value for the amplitude. Allowed - * names are: - * \begin{itemize} - * @item #zero#: $u_0=0$. - * @item #eigenmode#: $u_0=sin(2\pi x)sin(2\pi y)$. - * @item #bump#: $u_0=(1-\frac{\vec x^2}{a^2})e^{-\frac{\vec x^2}{a^2}}$ - * for $|\vec x| -class WaveParameters -{ - public: - /** - * Constructor. - */ - WaveParameters (); - - /** - * Destructor. - */ - ~WaveParameters (); - - /** - * Declare all the parameters to the - * given parameter handler. - */ - void declare_parameters (ParameterHandler &prm); - - /** - * Extract the parameters values provided - * by the input file and/or the default - * values from the parameter handler. - */ - void parse_parameters (ParameterHandler &prm); - - /** - * Delete the contents of this class and - * set up a clean state. - */ - void delete_parameters (); - - /** - * Enum holding a list of possible coarse - * mesh choices. - */ - enum InitialMesh { - uniform_channel, - split_channel_bottom, - split_channel_right, - split_channel_left, - square, - ring, - seismic_square, - earth, - line, - split_line - }; - - /** - * Enum holding a list of possible - * boundary condition choices. - */ - enum BoundaryConditions { - wave_from_left, - fast_wave_from_left, - wave_from_left_center, - wave_from_left_bottom, - zero - }; - - /** - * Enum denoting possible strategies - * for output of meshes and solutions. - * This enum tells us, at which sweeps - * data is to be written. - */ - enum WriteStrategy { - never, - all_sweeps, - last_sweep_only - }; - - /** - * Boundary values. Continuous function - * of space and time. - */ - Function *boundary_values_u; - - /** - * Same for the velocity variable v. - */ - Function *boundary_values_v; - - /** - * Initial values for u. - */ - Function *initial_u; - - /** - * Same for the velocity variable v. - */ - Function *initial_v; - - /** - * Object describing the boundary. By - * default the domain is polygonal made - * from the vertices of the coarsest - * triangulation. However, some of the - * example geometries set in - * #make_coarse_grid# may set this variable - * to another address. The object pointed - * will be deleted at the end of the - * lifetime of this object; when setting - * this variable to another object, you - * may want to delete the object pointed - * to previously. - */ - const Boundary*boundary; - - /** - * Function denoting the coefficient - * within the generalized laplacian - * operator. - */ - Function *density; - - /** - * Same for the stiffness parameter. - */ - Function *stiffness; - - /** - * Store whether the density is a function - * that is constant in space (not - * necessarily in time as well, but at - * each fixed time). - */ - bool density_constant; - - /** - * Same thing for the stiffness parameter. - */ - bool stiffness_constant; - - /** - * Pointer to an object denoting the - * error functional. - */ - DualFunctional*dual_functional; - - /** - * Level of initial refinement, i.e. the - * minimum level cells on all grids at - * all times need to have. - */ - unsigned int initial_refinement; - - /** - * Maximum refinement level a cell may - * have. This one defaults to zero, - * meaning no limit. - */ - unsigned int maximum_refinement; - - /** - * Define structure of initial mesh: - * created by regular refinement of - * the coarsest mesh (uniform) or - * refine one half once more than - * the other (split) or some other - */ - Triangulation *coarse_grid; - - /** - * Pair of numbers denoting the fraction - * of the total error for which the cells - * are to be refined (first) and - * coarsened (second). - */ - pair refinement_fraction; - - /** - * Fraction by which the number of cells - * on a time level may differ from the - * number on the previous time level - * (first: top deviation, second: bottom - * deviation). - */ - pair cell_number_corridor; - - /** - * Number of iterations to be performed - * to adjust the number of cells on a - * time level to those on the previous - * one. - */ - unsigned int cell_number_correction_steps; - - /** - * Shall we renumber the degrees of - * freedom according to the Cuthill-McKee - * algorithm or not. - */ - bool renumber_dofs; - - /** - * Compare error indicators globally or - * refine each time step separately from - * the others. - */ - bool compare_indicators_globally; - - /** - * Parameters for the time discretization - * of the two equations using the - * theta scheme. - */ - double theta; - - /** - * Time step size. - */ - double time_step; - - /** - * Time up to which we want to compute. - */ - double end_time; - - /** - * Mode of preconditioning. - */ - Preconditioning preconditioning; - - /** - * Use extrapolated values of the old - * solutions as starting values for - * the solver on the new timestep. - */ - bool extrapolate_old_solutions; - - /** - * Directory to which we want the output - * written. - */ - string output_directory; - - /** - * Directory to which we want the temporary - * file to be written. - */ - string tmp_directory; - - /** - * Format in which the results on the - * meshes is to be written to files. - */ - string output_format; - - /** - * Denotes in which sweeps the solution is - * to be written. - */ - WriteStrategy write_solution_strategy; - - /** - * Denote the interval between the steps - * which are to be written. - */ - unsigned int write_steps_interval; - - /** - * Specify whether error information is - * to be written as cell data or node - * data. - */ - bool write_error_as_cell_data; - - /** - * Flag determining whether we shall - * write out the data of the different - * time steps stacked together for a - * whole sweep, and into one file for - * the whole sweep. - */ - bool write_stacked_data; - - /** - * Same as #write_steps_interval#, but - * for stacked output. - */ - unsigned int write_stacked_interval; - - /** - * Write statistics for the error - * distribution in each sweep. - */ - bool produce_error_statistics; - - /** - * Number of histogram intervals for - * the error statistics. - */ - unsigned int error_statistic_intervals; - - /** - * How to break the intervals: linear - * or logarithmic. - */ - string error_statistics_scaling; - - /** - * Names of the finite element classes to - * be used for the primal and dual problems. - */ - string primal_fe, dual_fe; - - /** - * Strategy for mesh refinement. - */ - enum { energy_estimator, dual_estimator } refinement_strategy; - - /** - * Try to adjust the mesh to the error - * functional as well as to the dual - * solution. For the dual solution, an - * energy estimator is used. - */ - bool adapt_mesh_to_dual_solution; - - /** - * When adapting the mesh for the dual - * problem as well, we have to weigh - * the error indicator for the dual - * problem with that for the primal - * one. This is the factor. - */ - double primal_to_dual_weight; - - /** - * Number of sweeps at the beginning - * where the energy estimator is to - * be used rather than the dual - * estimator. - */ - unsigned int initial_energy_estimator_sweeps; - - /** - * How many adaptive cycles of solving - * the whole problem shall be made. - */ - unsigned int number_of_sweeps; - - /** - * List of operations which shall be - * done on each time step after finishing - * a sweep. - */ - list*> eval_list; - - /** - * Symbolic name of the boundary conditions - * (additionally to the boundary functions - * themselves), which may be used by some - * of the evaluations and other functionals - * in the program. - */ - BoundaryConditions boundary_conditions; - - /** - * Exception. - */ - DeclException1 (ExcParameterNotInList, - string, - << "The given parameter <" << arg1 << "> is not " - << "recognized to be a valid one."); - - private: - - /** - * Undefined copy constructor. - */ - WaveParameters (const WaveParameters &); - - /** - * Undefined copy operator. - */ - WaveParameters & operator = (const WaveParameters &); - - -/** - * List of names for the initial values. - * Make this a member of the templated - * class since the supported initial - * values could be different from - * dimension to dimension. - */ - static const string initial_value_names; - - /** - * Names of coefficient functions. The - * same applies as for - * #initial_value_names#. - */ - static const string coefficient_names; - - /** - * Names of boundary value functions. The - * same applies as for - * #initial_value_names#. - */ - static const string boundary_function_names; - - /** - * Names of error functionals. The - * same applies as for - * #initial_value_names#. - */ - static const string dual_functional_names; - - -/** - * Set the initial function pointers - * depending on the given names. - */ - void set_initial_functions (const string &u_name, - const string &v_name); - - /** - * Set the coefficient functions. - */ - void set_coefficient_functions (const string &name); - - /** - * Set the boundary values. - */ - void set_boundary_functions (const string &name); - - /** - * Make a list of evaluations to be - * performed after each sweep. - */ - void make_eval_list (const string &names); - - /** - * Set the dual functional after - * which the dual solution will be - * computed. - */ - void set_dual_functional (const string &name); - - /** - * Create the coarse grid for - * this run. - */ - void make_coarse_grid (const string &name); -}; - - - -template class WaveParameters; -template class DataOutStack; -class SweepInfo; - - -/** - * Top-level class of the timestepping mechanism. This class manages - * the execution and solution of primal and dual problem, of computing - * error estimates and doing the refinement of grids. - * - * @author Wolfgang Bangerth, 1999 - */ -template -class TimestepManager : public TimeDependent { - public: - /** - * Constructor. - */ - TimestepManager (const WaveParameters ¶meters); - - /** - * Run a complete sweep, consisting - * of the solution of the primal problem, - * the solution of the dual problem if - * requested, computation of error - * quantities and refinement. - */ - void run_sweep (const unsigned int sweep_no); - - /** - * Exception - */ - DeclException0 (ExcIO); - - private: - /** - * Reference to the global parameters - * object. - */ - const WaveParameters ¶meters; - - /** - * Refine the grids, or, better, find - * out which cells need to be refined. - * Refinement is done by a following - * sweep. - */ - void refine_grids (); - - /** - * Write some statistics to a file. - */ - void write_statistics (const SweepInfo &sweep_info) const; - - /** - * Write the data stacked together - * from all the time steps into - * one single file. - */ - void write_stacked_data (DataOutStack &data_out_stack) const; -}; - - -/** - * Top-level class providing the set up of a simulation. The - * class provides an interface suitable to the #MultipleParameterLoop# - * class to do several simulations in a row, stores global simulation - * parameters, and so on. - * - * @author Wolfgang Bangerth, 1998, 1999 - */ -template -class WaveProblem : public MultipleParameterLoop::UserClass { - public: - - /** - * Constructor. - */ - WaveProblem (); - - /** - * Destructor. - */ - virtual ~WaveProblem (); - - /** - * Put this object into a clean state. - * This function is called at the - * beginning of each loop by the - * #MultipleParameterHandler#. - */ - virtual void create_new (const unsigned int run_no); - - /** - * Make the list of parameters known - * to the parameter handler. This - * function only delegates its work - * to the #parameters# sub-object. - */ - virtual void declare_parameters (ParameterHandler &prm); - - /** - * Parse the list of parameters given - * by the parameter handler. This - * function only delegates its work - * to the #parameters# sub-object. - */ - virtual void parse_parameters (ParameterHandler &prm); - - /** - * Run a complete simulation. - */ - virtual void run (ParameterHandler &prm); - - private: - /** - * Object holding the parameters of - * the present simulation. - */ - WaveParameters parameters; -}; - - -/* $Id$ */ - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include - - -/*------------------------ DualFunctional --------------------------------*/ - -template -DualFunctional::DualFunctional (const bool use_primal_problem, - const bool use_primal_problem_at_endtime) : - use_primal_problem (use_primal_problem), - use_primal_problem_at_endtime (use_primal_problem_at_endtime), - tria (0), - boundary (0), - dof (0), - fe(0), - quadrature(0), - quadrature_face(0), - density(0), - stiffness(0), - primal_dof(0), - primal_fe(0), - primal_quadrature(0), - primal_quadrature_face(0), - u(0), - v(0), - time(0), - time_step(0), - step_no(0) -{}; - - -template -void DualFunctional::compute_functionals (Vector &j1, - Vector &j2) { - j1.reinit (dof->n_dofs()); - j2.reinit (dof->n_dofs()); -}; - - -template -void DualFunctional::compute_endtime_vectors (Vector &final_u_bar, - Vector &final_v_bar) { - final_u_bar.reinit (dof->n_dofs()); - final_v_bar.reinit (dof->n_dofs()); -}; - - -template -bool DualFunctional::use_primal_solutions () const { - return use_primal_problem; -}; - - -template -bool DualFunctional::use_primal_solutions_at_endtime () const { - return use_primal_problem_at_endtime; -}; - - -template -void DualFunctional::reset (const TimeStep_Primal &primal_problem) { - Assert (use_primal_problem || - (use_primal_problem_at_endtime && - (primal_problem.parameters.end_time==primal_problem.time)), - ExcPrimalProblemNotRequested()); - - primal_dof = primal_problem.dof_handler; - primal_fe = &primal_problem.fe; - primal_quadrature = &primal_problem.quadrature; - primal_quadrature_face = &primal_problem.quadrature_face; - - u = &primal_problem.u; - v = &primal_problem.v; -}; - - -template -void DualFunctional::reset (const TimeStep_Dual &dual_problem) { - tria = dual_problem.tria; - boundary = dual_problem.parameters.boundary; - dof = dual_problem.dof_handler; - fe = &dual_problem.fe; - quadrature = &dual_problem.quadrature; - quadrature_face = &dual_problem.quadrature_face; - density = dual_problem.parameters.density; - stiffness = dual_problem.parameters.stiffness; - time = dual_problem.time; - time_step = (dual_problem.next_timestep == 0 ? - 0 : - dual_problem.get_forward_timestep()); - step_no = dual_problem.timestep_no; -}; - - -/* ----------------------- EndEnergy ------------------------------*/ - - -template -EndEnergy::EndEnergy (const bool use_primal_problem) : - DualFunctional (use_primal_problem, true) {}; - - -template -void EndEnergy::compute_vectors (const PartOfDomain pod, - Vector &final_u_bar, - Vector &final_v_bar) const { - const double y_offset = 300000000; - const double n_q_points = quadrature->n_quadrature_points; - const unsigned int dofs_per_cell = fe->dofs_per_cell; - - final_u_bar.reinit (dof->n_dofs()); - final_v_bar.reinit (dof->n_dofs()); - - DoFHandler::active_cell_iterator cell, primal_cell, endc; - cell = dof->begin_active (); - endc = dof->end (); - primal_cell = primal_dof->begin_active(); - - FEValues fe_values (*fe, *quadrature, - UpdateFlags(update_values | - update_gradients | - update_JxW_values | - update_q_points)); - FEValues fe_values_primal (*primal_fe, *quadrature, - UpdateFlags(update_values | update_gradients)); - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - - vector > local_u_grad (n_q_points); - vector local_v (n_q_points); - - vector density_values(quadrature->n_quadrature_points); - vector stiffness_values(quadrature->n_quadrature_points); - - vector cell_dof_indices (dofs_per_cell); - - for (; cell!=endc; ++cell, ++primal_cell) - { - switch (pod) - { - case low_atmosphere: - if (cell->center()(1) >= y_offset) - continue; - break; - case high_atmosphere: - if (cell->center()(1) < y_offset) - continue; - break; - }; - - -fe_values.reinit (cell); - fe_values_primal.reinit (primal_cell); - fe_values_primal.get_function_values (*v, local_v); - fe_values_primal.get_function_grads (*u, local_u_grad); - - density->value_list (fe_values.get_quadrature_points(), - density_values); - stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - - const vector > > &shape_grads = fe_values.get_shape_grads (); - const FullMatrix &shape_values = fe_values.get_shape_values (); - const vector &JxW_values (fe_values.get_JxW_values()); - - vector local_functional1 (dofs_per_cell, 0); - vector local_functional2 (dofs_per_cell, 0); - for (unsigned int shape_func=0; shape_funcget_dof_indices (cell_dof_indices); - for (unsigned int shape_func=0; shape_func -void IntegratedValueAtOrigin::compute_functionals (Vector &j1, - Vector &j2) { - j1.reinit (dof->n_dofs()); - j2.reinit (dof->n_dofs()); - - DoFHandler::active_cell_iterator cell = dof->begin_active(), - endc = dof->end(); - - Point origin; - - bool origin_found = false; - for (; (cell!=endc) && !origin_found; ++cell) - { - for (unsigned int vertex=0; vertex::vertices_per_cell; ++vertex) - if (cell->vertex(vertex) == origin) - { - j1(cell->vertex_dof_index(vertex,0)) = 1; - origin_found = true; - }; - }; - - Assert (origin_found, ExcVertexNotFound()); -}; - - -/*------------------------ SeismicSignal --------------------------------*/ - - -template <> -void SeismicSignal<1>::compute_functionals (Vector &, - Vector &) -{ - Assert (false, ExcNotImplemented()); -}; - - -template -void SeismicSignal::compute_functionals (Vector &j1, - Vector &j2) { - const double y_offset = 1.0; - const unsigned int n_q_points = quadrature_face->n_quadrature_points; - const unsigned int dofs_per_cell = fe->dofs_per_cell; - - j1.reinit (dof->n_dofs()); - j2.reinit (dof->n_dofs()); - - DoFHandler::active_cell_iterator cell, endc; - DoFHandler::face_iterator face; - cell = dof->begin_active(); - endc = dof->end(); - - vector cell_dof_indices (dofs_per_cell); - - FEFaceValues fe_face_values (*fe, *quadrature_face, - UpdateFlags(update_values | - update_JxW_values | - update_q_points)); - - for (; cell!=endc; ++cell) - for (unsigned int face_no=0; face_no::faces_per_cell; - ++face_no) - if (face=cell->face(face_no), - (face->vertex(0)(1) == y_offset) && - (face->vertex(1)(1) == y_offset)) - { - fe_face_values.reinit (cell, face_no); - const FullMatrix &shape_values = fe_face_values. - get_shape_values (); - const vector &JxW_values (fe_face_values. - get_JxW_values()); - const vector > &q_points (fe_face_values.get_quadrature_points()); - - vector local_integral (dofs_per_cell, 0); - for (unsigned int shape_func=0; shape_func - ::weight(q_points[point], time)) * - JxW_values[point]; - - cell->get_dof_indices (cell_dof_indices); - for (unsigned int shape_func=0; shape_func -void EarthSurface<1>::compute_functionals (Vector &, - Vector &) -{ - Assert (false, ExcNotImplemented()); -}; - - -template -void EarthSurface::compute_functionals (Vector &j1, - Vector &j2) { - const unsigned int face_dofs = fe->dofs_per_face; - - j1.reinit (dof->n_dofs()); - j2.reinit (dof->n_dofs()); - - DoFHandler::active_cell_iterator cell, endc; - DoFHandler::face_iterator face; - cell = dof->begin_active(); - endc = dof->end(); - - vector face_dof_indices (face_dofs); - - for (; cell!=endc; ++cell) - for (unsigned int face_no=0; face_no::faces_per_cell; - ++face_no) - if (face=cell->face(face_no), - face->at_boundary()) - { - const double x = face->center()(0), - y = face->center()(1); - - if (! (((x>0) && (fabs(y) < 500)) || - ((x>0) && (y<0) && (fabs(x+y)<500)))) - continue; - - const double h = face->measure (); - - face->get_dof_indices (face_dof_indices); - for (unsigned int shape_func=0; shape_func -void SplitSignal<1>::compute_functionals (Vector &, - Vector &) -{ - Assert (false, ExcInternalError()); -}; - - -template -void SplitSignal::compute_functionals (Vector &j1, - Vector &j2) { - const unsigned int dofs_per_cell = fe->dofs_per_cell; - const unsigned int n_q_points = quadrature_face->n_quadrature_points; - - j1.reinit (dof->n_dofs()); - j2.reinit (dof->n_dofs()); - - if ((time<=1.6) || (time>1.8)) - return; - - DoFHandler::active_cell_iterator cell, endc; - DoFHandler::face_iterator face; - cell = dof->begin_active(); - endc = dof->end(); - - vector dof_indices (fe->dofs_per_cell); - FEFaceValues fe_face_values (*fe, *quadrature_face, UpdateFlags(update_values | update_JxW_values)); - - for (; cell!=endc; ++cell) - for (unsigned int face_no=0; face_no::faces_per_cell; - ++face_no) - if (cell->face(face_no)->center()(0) == 1.5) - { - face=cell->face(face_no); - bool wrong_face = face->center()(1) > 0.0625; - if (!wrong_face) - for (unsigned int v=0; v::vertices_per_face; ++v) - if (face->vertex(v)(0) != 1.5) - { - wrong_face=true; - break; - }; - if (wrong_face) - continue; - - fe_face_values.reinit (cell, face_no); - const FullMatrix &shape_values = fe_face_values.get_shape_values (); - const vector &JxW_values = fe_face_values.get_JxW_values(); - cell->get_dof_indices (dof_indices); - - for (unsigned int i=0; i -void SplitLine::compute_endtime_vectors (Vector &, - Vector &) { - Assert (false, ExcNotImplemented ()); -}; - - -#if 2 == 1 - -template <> -void SplitLine<1>::compute_endtime_vectors (Vector &final_u_bar, - Vector &final_v_bar) { - const unsigned int dim = 1; - - const double n_q_points = quadrature->n_quadrature_points; - const unsigned int dofs_per_cell = fe->dofs_per_cell; - - final_u_bar.reinit (dof->n_dofs()); - final_v_bar.reinit (dof->n_dofs()); - - DoFHandler::active_cell_iterator cell = dof->begin_active (), - endc = dof->end (); - - FEValues fe_values (*fe, *quadrature, UpdateFlags(update_values | update_JxW_values)); - vector cell_dof_indices (dofs_per_cell); - - for (; cell!=endc; ++cell) - { - if ((cell->vertex(0)(0) < -0.5) || - (cell->vertex(1)(0) > 0.5)) - continue; - - fe_values.reinit (cell); - - const FullMatrix &shape_values = fe_values.get_shape_values (); - const vector &JxW_values (fe_values.get_JxW_values()); - - vector local_functional (dofs_per_cell, 0); - for (unsigned int shape_func=0; shape_funcget_dof_indices (cell_dof_indices); - for (unsigned int shape_func=0; shape_func -void OneBranch1d::compute_functionals (Vector &j1, - Vector &j2) { - const unsigned int dofs_per_cell = fe->dofs_per_cell; - const unsigned int n_q_points = quadrature->n_quadrature_points; - - j1.reinit (dof->n_dofs()); - j2.reinit (dof->n_dofs()); - - if ((time<=2.5-time_step) || (time>2.5)) - return; - - DoFHandler::active_cell_iterator cell, endc; - cell = dof->begin_active(); - endc = dof->end(); - - vector dof_indices (fe->dofs_per_cell); - FEValues fe_values (*fe, *quadrature, UpdateFlags(update_values | update_JxW_values)); - - for (; cell!=endc; ++cell) - if ((cell->center()(0) > -0.6) && - (cell->center()(0) < -0.4)) - { - fe_values.reinit (cell); - const FullMatrix &shape_values = fe_values.get_shape_values (); - const vector &JxW_values = fe_values.get_JxW_values(); - cell->get_dof_indices (dof_indices); - - for (unsigned int i=0; i -void SecondCrossing::compute_functionals (Vector &j1, - Vector &j2) { - const unsigned int dofs_per_cell = fe->dofs_per_cell; - const unsigned int n_q_points = quadrature->n_quadrature_points; - - j1.reinit (dof->n_dofs()); - j2.reinit (dof->n_dofs()); - - if ((time<=2.4-time_step) || (time>2.4)) - return; - - DoFHandler::active_cell_iterator cell, endc; - cell = dof->begin_active(); - endc = dof->end(); - - vector dof_indices (fe->dofs_per_cell); - FEValues fe_values (*fe, *quadrature, UpdateFlags(update_values | update_JxW_values)); - - for (; cell!=endc; ++cell) - if ((cell->center()(0) > -0.03) && - (cell->center()(0) < 0.03)) - { - fe_values.reinit (cell); - const FullMatrix &shape_values = fe_values.get_shape_values (); - const vector &JxW_values = fe_values.get_JxW_values(); - cell->get_dof_indices (dof_indices); - - for (unsigned int i=0; i -void HuyghensWave::compute_functionals (Vector &j1, - Vector &j2) { - j1.reinit (dof->n_dofs()); - j2.reinit (dof->n_dofs()); - - if ((time < 0.5) || (time > 0.69)) - return; - - Point p; - p(0) = 0.75; - const Point evaluation_point (p); - - const DoFHandler::cell_iterator endc = dof->end(3); - bool point_found = false; - for (DoFHandler::cell_iterator cell=dof->begin(3); - (cell!=endc) && !point_found; ++cell) - for (unsigned int vertex=0; vertex::vertices_per_cell; ++vertex) - if (cell->vertex(vertex) == evaluation_point) - { - DoFHandler::cell_iterator terminal_cell = cell; - while (terminal_cell->has_children()) - terminal_cell = terminal_cell->child(vertex); - - j1(cell->vertex_dof_index(vertex,0)) = time*time_step; - point_found = true; - - break; - }; - - AssertThrow (point_found, ExcInternalError()); -}; - - - -template class DualFunctional<2>; -template class EndEnergy<2>; -template class IntegratedValueAtOrigin<2>; -template class SeismicSignal<2>; -template class EarthSurface<2>; -template class SplitSignal<2>; -template class SplitLine<2>; -template class OneBranch1d<2>; -template class SecondCrossing<2>; -template class HuyghensWave<2>; -/* $Id$ */ - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include - - -/*--------------------------- EvaluationBase --------------------------*/ - -template -EvaluationBase::EvaluationBase () : - u (0), - v (0), - tria (0), - boundary (0), - dof (0), - fe (0), - quadrature (0), - quadrature_face (0), - density (0), - stiffness (0), - time (0), - time_step (0), - step_no (0) -{}; - - -template -void EvaluationBase::reset_timelevel (const TimeStep_Primal &target) { - u = &target.u; - v = &target.v; - tria = target.tria; - boundary = target.parameters.boundary; - dof = target.dof_handler; - fe = &target.fe; - quadrature = &target.quadrature; - quadrature_face = &target.quadrature_face; - density = target.parameters.density; - stiffness = target.parameters.stiffness; - time = target.time; - time_step = (target.timestep_no == 0 ? - 0 : - target.get_backward_timestep()); - step_no = target.timestep_no; - - base_file_name = target.parameters.output_directory + - "sweep"+int_to_string(target.sweep_no, 2) + "/evaluation/" + - int_to_string(step_no,4); -}; - - -template -void EvaluationBase::reset () {}; - - -template -void EvaluationBase::print_final_result (ostream &) {}; - - -template -double EvaluationBase::get_final_result () { - return 0; -}; - - -/*--------------------------- EvaluateEnergyContent ----------------------*/ - -template -EvaluateEnergyContent::EvaluateEnergyContent () : - old_energy (0), - integrated_outflux (0) {}; - - -template -void EvaluateEnergyContent::reset () { - old_energy = 0; - integrated_outflux = 0; -}; - - -template -double EvaluateEnergyContent::compute_energy (const PartOfDomain pod) const { - const double y_offset = 300000000; - - DoFHandler::active_cell_iterator cell, endc; - cell = dof->begin_active (); - endc = dof->end (); - - FEValues fe_values (*fe, *quadrature, - UpdateFlags(update_values | - update_gradients | - update_JxW_values | - update_q_points)); - FullMatrix cell_matrix (fe->dofs_per_cell, fe->dofs_per_cell); - Vector local_u (fe->dofs_per_cell); - Vector local_v (fe->dofs_per_cell); - - vector density_values(quadrature->n_quadrature_points); - vector stiffness_values(quadrature->n_quadrature_points); - - double total_energy = 0; - - for (; cell!=endc; ++cell) - { - switch (pod) - { - case low_atmosphere: - if (cell->center()(1) >= y_offset) - continue; - break; - case high_atmosphere: - if (cell->center()(1) < y_offset) - continue; - break; - }; - - -fe_values.reinit (cell); - const FullMatrix &values = fe_values.get_shape_values(); - const vector > >&gradients = fe_values.get_shape_grads (); - const vector &weights = fe_values.get_JxW_values (); - - cell->get_dof_values (*u, local_u); - cell->get_dof_values (*v, local_v); - - cell_matrix.clear (); - density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; pointdofs_per_cell; ++i) - for (unsigned int j=0; jdofs_per_cell; ++j) - cell_matrix(i,j) += (values(i,point) * - values(j,point)) * - weights[point] * - density_values[point]; - - total_energy += 1./2. * cell_matrix.matrix_norm_square (local_v); - - cell_matrix.clear (); - stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - for (unsigned int point=0; pointdofs_per_cell; ++i) - for (unsigned int j=0; jdofs_per_cell; ++j) - cell_matrix(i,j) += (gradients[i][point] * - gradients[j][point]) * - weights[point] * - stiffness_values[point]; - total_energy += 1./2. * cell_matrix.matrix_norm_square (local_u); - }; - - return total_energy; -}; - - -/* ---------------------------- EvaluateIntegratedValueAtOrigin ------------------- */ - - -template -void EvaluateIntegratedValueAtOrigin::print_final_result (ostream &out) { - out << " Integrated value of u at origin: " - << integrated_value << endl; -}; - - -template -double EvaluateIntegratedValueAtOrigin::get_final_result () { - return integrated_value; -}; - - -template -string EvaluateIntegratedValueAtOrigin::description () const { - return "integrated value at origin"; -}; - - -template -void EvaluateIntegratedValueAtOrigin::reset () { - integrated_value = 0; -}; - - -template -double EvaluateIntegratedValueAtOrigin::evaluate () { - DoFHandler::active_cell_iterator cell = dof->begin_active(), - endc = dof->end(); - - double value_at_origin = 0; - Point origin; - - bool origin_found = false; - for (; (cell!=endc) && !origin_found; ++cell) - { - for (unsigned int vertex=0; vertex::vertices_per_cell; ++vertex) - if (cell->vertex(vertex) == origin) - { - value_at_origin = (*u)(cell->vertex_dof_index(vertex,0)); - origin_found = true; - }; - }; - - Assert (origin_found, ExcVertexNotFound()); - - if (time > 0) - integrated_value += value_at_origin * time_step; - - return value_at_origin; -}; - - -/*------------------------- EvaluateSeismicSignal --------------------------*/ - - -template -void EvaluateSeismicSignal::print_final_result (ostream &out) { - out << " Integrated seismic signal: " << result << endl; -}; - - -template -double EvaluateSeismicSignal::get_final_result () { - return result; -}; - - -template -string EvaluateSeismicSignal::description () const { - return "Integrated seismic signal at top"; -}; - - -template -void EvaluateSeismicSignal::reset () { - result = 0; -}; - - -template <> -double EvaluateSeismicSignal<1>::evaluate () -{ - Assert (false, ExcNotImplemented()); - return 0; -}; - - -template -double EvaluateSeismicSignal::evaluate () { - const unsigned int n_q_points = quadrature_face->n_quadrature_points; - - ofstream out((base_file_name + ".seismic").c_str()); - AssertThrow (out, typename EvaluationBase::ExcIO()); - - DoFHandler::active_cell_iterator cell = dof->begin_active(), - endc = dof->end(); - double u_integrated=0; - FEFaceValues face_values (*fe, *quadrature_face, - UpdateFlags(update_values | - update_JxW_values | - update_q_points)); - vector face_u (fe->dofs_per_face); - - for (; cell!=endc; ++cell) - for (unsigned int face=0; face::faces_per_cell; ++face) - if (cell->face(face)->center()(1) == 1.0) - { - face_values.reinit (cell, face); - face_values.get_function_values (*u, face_u); - const vector &JxW_values (face_values.get_JxW_values()); - const vector > &q_points (face_values.get_quadrature_points()); - - double local_integral = 0; - for (unsigned int point=0; pointface(face)->vertex(0)(0) - << " " - << (*u)(cell->face(face)->vertex_dof_index(0,0)) - << endl - << time - << ' ' - << cell->face(face)->vertex(1)(0) - << " " - << (*u)(cell->face(face)->vertex_dof_index(1,0)) - << endl - << endl; - }; - AssertThrow (out, typename EvaluationBase::ExcIO()); - out.close (); - - if (time!=0) - result += u_integrated*time_step; - - return u_integrated; -}; - - -/*------------------------- EvaluateSplitSignal --------------------------*/ - - -template -void EvaluateSplitSignal::print_final_result (ostream &out) { - out << " Integrated split signal: " << result << endl; -}; - - -template -double EvaluateSplitSignal::get_final_result () { - return result; -}; - - -template -string EvaluateSplitSignal::description () const { - return "Integrated split signal (exact: (2+pi)/(16-pi)=0.010229)"; -}; - - -template -void EvaluateSplitSignal::reset () { - result = 0; -}; - - -template <> -double EvaluateSplitSignal<1>::evaluate () -{ - Assert (false, ExcNotImplemented()); - return 0; -}; - - -template -double EvaluateSplitSignal::evaluate () { - if ((time<=1.6) || (time>1.8)) - return 0; - - const unsigned int n_q_points = quadrature_face->n_quadrature_points; - DoFHandler::active_cell_iterator cell = dof->begin_active(), - endc = dof->end(); - double u_integrated=0; - FEFaceValues face_values (*fe, *quadrature_face, UpdateFlags(update_values | update_JxW_values)); - vector face_u (fe->dofs_per_face); - - for (; cell!=endc; ++cell) - for (unsigned int face_no=0; face_no::faces_per_cell; ++face_no) - if (cell->face(face_no)->center()(0) == 1.5) - { - DoFHandler::face_iterator face=cell->face(face_no); - bool wrong_face = face->center()(1) > 0.0625; - if (!wrong_face) - for (unsigned int v=0; v::vertices_per_face; ++v) - if (face->vertex(v)(0) != 1.5) - { - wrong_face=true; - break; - }; - if (wrong_face) - continue; - - face_values.reinit (cell, face_no); - face_values.get_function_values (*u, face_u); - const vector &JxW_values (face_values.get_JxW_values()); - - double local_integral = 0; - for (unsigned int point=0; point -void EvaluateOneBranch1d::print_final_result (ostream &out) { - out << " One branch integrated: " << result << endl; -}; - - -template -double EvaluateOneBranch1d::get_final_result () { - return result; -}; - - -template -string EvaluateOneBranch1d::description () const { - return "One branch integrated (exact: 0.055735)"; -}; - - -template -void EvaluateOneBranch1d::reset () { - result = 0; -}; - - -template -double EvaluateOneBranch1d::evaluate () -{ - Assert (false, ExcNotImplemented()); - return 0; -}; - - -#if 2 == 1 - -template <> -double EvaluateOneBranch1d<1>::evaluate () { - if ((time<=2.5-time_step) || (time>2.5)) - return 0; - - const unsigned int n_q_points = quadrature->n_quadrature_points; - DoFHandler<1>::active_cell_iterator cell = dof->begin_active(), - endc = dof->end(); - double u_integrated=0; - FEValues<1> fe_values (*fe, *quadrature, UpdateFlags(update_values | update_JxW_values)); - vector cell_u (fe->dofs_per_cell); - - for (; cell!=endc; ++cell) - if ((cell->center()(0) > -0.6) && - (cell->center()(0) < -0.4)) - { - fe_values.reinit (cell); - fe_values.get_function_values (*u, cell_u); - const vector &JxW_values (fe_values.get_JxW_values()); - - double local_integral = 0; - for (unsigned int point=0; point -void EvaluateSecondCrossing1d::print_final_result (ostream &out) { - out << " Second crossing: " << result << endl; -}; - - -template -double EvaluateSecondCrossing1d::get_final_result () { - return result; -}; - - -template -string EvaluateSecondCrossing1d::description () const { - return "Second crossing (exact: 0.011147)"; -}; - - -template -void EvaluateSecondCrossing1d::reset () { - result = 0; -}; - - -template -double EvaluateSecondCrossing1d::evaluate () -{ - Assert (false, ExcNotImplemented()); - return 0; -}; - - -#if 2 == 1 - -template <> -double EvaluateSecondCrossing1d<1>::evaluate () { - if ((time<=2.4-time_step) || (time>2.4)) - return 0; - - const unsigned int n_q_points = quadrature->n_quadrature_points; - DoFHandler<1>::active_cell_iterator cell = dof->begin_active(), - endc = dof->end(); - double u_integrated=0; - FEValues<1> fe_values (*fe, *quadrature, - UpdateFlags(update_values | update_JxW_values | update_q_points)); - vector cell_u (fe->dofs_per_cell); - - for (; cell!=endc; ++cell) - if ((cell->center()(0) > -0.03) && - (cell->center()(0) < 0.03)) - { - fe_values.reinit (cell); - fe_values.get_function_values (*u, cell_u); - const vector &JxW_values (fe_values.get_JxW_values()); - const vector > &quadrature_points (fe_values.get_quadrature_points()); - - double local_integral = 0; - for (unsigned int point=0; point -void EvaluateHuyghensWave::print_final_result (ostream &out) { - out << " Hughens wave -- weighted time: " << weighted_value / integrated_value << endl; - out << " average : " << integrated_value << endl; -}; - - -template -double EvaluateHuyghensWave::get_final_result () { - return weighted_value / integrated_value; -}; - - -template -string EvaluateHuyghensWave::description () const { - return "Huyghens wave"; -}; - - -template -void EvaluateHuyghensWave::reset () { - integrated_value = weighted_value = 0; -}; - - -template -double EvaluateHuyghensWave::evaluate () -{ - double value_at_origin = 0; - Point p; - p(0) = 0.75; - const Point evaluation_point (p); - - const DoFHandler::cell_iterator endc = dof->end(3); - bool point_found = false; - for (DoFHandler::cell_iterator cell=dof->begin(3); - (cell!=endc) && !point_found; ++cell) - for (unsigned int vertex=0; vertex::vertices_per_cell; ++vertex) - if (cell->vertex(vertex) == evaluation_point) - { - DoFHandler::cell_iterator terminal_cell = cell; - while (terminal_cell->has_children()) - terminal_cell = terminal_cell->child(vertex); - - value_at_origin = (*u)(cell->vertex_dof_index(vertex,0)); - point_found = true; - - break; - }; - - AssertThrow (point_found, ExcInternalError()); - - if ((time > 0.5) && (time < 0.69)) - { - integrated_value += value_at_origin * time_step; - weighted_value += value_at_origin * time_step * time; - }; - - return value_at_origin; -}; - - -template class EvaluationBase<2>; -template class EvaluateEnergyContent<2>; -template class EvaluateIntegratedValueAtOrigin<2>; -template class EvaluateSeismicSignal<2>; -template class EvaluateSplitSignal<2>; -template class EvaluateOneBranch1d<2>; -template class EvaluateSecondCrossing1d<2>; -template class EvaluateHuyghensWave<2>; - -/* $Id$ */ - -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include - -#include - - -template -TimestepManager::TimestepManager (const WaveParameters ¶meters) : - TimeDependent(TimeDependent::TimeSteppingData(0,1), - TimeDependent::TimeSteppingData(0,1), - TimeDependent::TimeSteppingData(0,1)), - parameters (parameters) -{}; - - -template -void TimestepManager::run_sweep (const unsigned int sweep_no) -{ - SweepInfo sweep_info; - SweepData sweep_data (parameters.write_stacked_data); - if (parameters.write_stacked_data) - { - sweep_data.data_out_stack->declare_data_vector ("u", DataOutStack::dof_vector); - sweep_data.data_out_stack->declare_data_vector ("v", DataOutStack::dof_vector); - if ((parameters.refinement_strategy == WaveParameters::dual_estimator) - && - (sweep_no >= parameters.initial_energy_estimator_sweeps)) - { - sweep_data.data_out_stack->declare_data_vector ("dual_u", DataOutStack::dof_vector); - sweep_data.data_out_stack->declare_data_vector ("dual_v", DataOutStack::dof_vector); - }; - if ((sweep_no::dual_estimator)) - sweep_data.data_out_stack->declare_data_vector ("est_error", DataOutStack::cell_vector); - }; - - -deallog << "Sweep " << setw(2) << sweep_no << ':' << endl - << "---------" << endl; - - for (typename list*>::const_iterator i = parameters.eval_list.begin(); - i != parameters.eval_list.end(); ++i) - (*i)->reset (); - - start_sweep (sweep_no); - - for (vector::iterator timestep=timesteps.begin(); - timestep!=timesteps.end(); ++timestep) - { - dynamic_cast*>(*timestep)->attach_sweep_info (sweep_info); - dynamic_cast*>(*timestep)->attach_sweep_data (sweep_data); - }; - - solve_primal_problem (); - deallog << endl; - - if ((parameters.refinement_strategy == WaveParameters::dual_estimator) - && - (sweep_no >= parameters.initial_energy_estimator_sweeps)) - { - solve_dual_problem (); - deallog << endl; - }; - - postprocess (); - - if (parameters.write_stacked_data) - write_stacked_data (*sweep_data.data_out_stack); - - deallog << endl; - - if (sweep_no != parameters.number_of_sweeps-1) - refine_grids (); - - write_statistics (sweep_info); - - end_sweep (); - - deallog << endl << endl; -}; - - -template -void TimestepManager::refine_grids () -{ - deallog << " Collecting refinement data: " << endl; - - -const unsigned int n_timesteps = timesteps.size(); - - vector > indicators (n_timesteps); - - for (unsigned int i=0; i*>(timesteps[i]) - ->get_timestep_postprocess().get_tria_refinement_criteria (indicators[i]); - - - unsigned int total_number_of_cells = 0; - for (unsigned int i=0; i time_values (timesteps.size()); - for (unsigned int i=0; iget_time(); - - Histogram error_statistics; - error_statistics.evaluate (indicators, - time_values, - parameters.error_statistic_intervals, - Histogram::parse_interval_spacing(parameters.error_statistics_scaling)); - error_statistics.write_gnuplot (logfile); - - deallog << endl; - }; - - -if (parameters.compare_indicators_globally) - { - - Vector all_indicators (total_number_of_cells); - unsigned int next_index=0; - for (unsigned int i=0; i partial_sums(all_indicators.size()); - sort (all_indicators.begin(), all_indicators.end(), greater()); - partial_sum (all_indicators.begin(), all_indicators.end(), - partial_sums.begin()); - - const Vector::const_iterator - p = upper_bound (partial_sums.begin(), partial_sums.end(), - total_error*(1-parameters.refinement_fraction.second)), - q = lower_bound (partial_sums.begin(), partial_sums.end(), - parameters.refinement_fraction.first*total_error); - - double bottom_threshold = all_indicators(p != partial_sums.end() ? - p-partial_sums.begin() : - all_indicators.size()-1), - top_threshold = all_indicators(q-partial_sums.begin()); - - if (bottom_threshold==top_threshold) - bottom_threshold = 0.999*top_threshold; - - deallog << " " << all_indicators.size() - << " cells in total." - << endl; - deallog << " Thresholds are [" << bottom_threshold << "," << top_threshold << "]" - << " out of [" - << *min_element(all_indicators.begin(),all_indicators.end()) - << ',' - << *max_element(all_indicators.begin(),all_indicators.end()) - << "]. " - << endl; - deallog << " Expecting " - << (all_indicators.size() + - (q-partial_sums.begin())*(GeometryInfo::children_per_cell-1) - - (partial_sums.end() - p)/(GeometryInfo::children_per_cell-1)) - << " cells in next sweep." - << endl; - deallog << " Now refining..."; - do_loop (mem_fun (&TimeStepBase_Tria::init_for_refinement), - bind2nd (mem_fun1 (&TimeStepBase_Wave::refine_grid), - TimeStepBase_Tria::RefinementData (top_threshold, - bottom_threshold)), - TimeDependent::TimeSteppingData (0,1), - TimeDependent::forward); - deallog << endl; - } - - else - { - deallog << " Refining each time step separately." << endl; - - for (unsigned int timestep=0; timestep*>(timesteps[timestep])->init_for_refinement(); - - unsigned int total_expected_cells = 0; - - for (unsigned int timestep=0; timestep *this_timestep - = static_cast*>(timesteps[timestep]); - - this_timestep->wake_up (0); - - Assert (indicators.size() > 0, ExcInternalError()); - Vector criteria (indicators[0]); - indicators.erase (indicators.begin()); - - const double total_error = criteria.l1_norm(); - - Vector partial_sums(criteria.size()); - - sort (criteria.begin(), criteria.end(), greater()); - partial_sum (criteria.begin(), criteria.end(), - partial_sums.begin()); - - const Vector::const_iterator - p = upper_bound (partial_sums.begin(), partial_sums.end(), - total_error*(1-parameters.refinement_fraction.second)), - q = lower_bound (partial_sums.begin(), partial_sums.end(), - parameters.refinement_fraction.first*total_error); - - double bottom_threshold = criteria(p != partial_sums.end() ? - p-partial_sums.begin() : - criteria.size()-1), - top_threshold = criteria(q != partial_sums.end() ? - q-partial_sums.begin() : - criteria.size()-1); - - if (bottom_threshold==top_threshold) - bottom_threshold = 0.999*top_threshold; - - total_expected_cells += (criteria.size() + - (q-partial_sums.begin())*(GeometryInfo::children_per_cell-1) - - (partial_sums.end() - p)/(GeometryInfo::children_per_cell-1)); - - this_timestep->refine_grid (TimeStepBase_Tria::RefinementData (top_threshold, - bottom_threshold)); - - this_timestep->sleep (0); - if (timestep!=0) - static_cast*>(timesteps[timestep-1])->sleep(1); - }; - - if (timesteps.size() != 0) - static_cast*>(timesteps.back())->sleep(1); - - -deallog << " Got " << total_number_of_cells << " presently, expecting " - << total_expected_cells << " for next sweep." << endl; - }; -}; - - -template -void TimestepManager::write_statistics (const SweepInfo &sweep_info) const -{ - if (true) - { - deallog << " Writing statistics for whole sweep."; - - deallog << "# Description of fields" << endl - << "# =====================" << endl - << "# General:" << endl - << "# time" << endl; - - TimeStep::write_statistics_descriptions (logfile, parameters); - deallog << endl << endl; - - for (unsigned int timestep=0; timestepget_time() - << " "; - dynamic_cast*> - (static_cast*> - (timesteps[timestep]))->write_statistics (logfile); - deallog << endl; - }; - - AssertThrow (logfile, ExcIO()); - - deallog << endl; - }; - - - if (true) - { - deallog << " Writing summary."; - - sweep_info.write_summary (parameters.eval_list, - logfile); - AssertThrow (logfile, ExcIO()); - - deallog << endl; - }; -}; - - -template -void TimestepManager::write_stacked_data (DataOutStack &data_out_stack) const -{ - typename DataOutInterface::OutputFormat output_format - = DataOutInterface::parse_output_format (parameters.output_format); - - deallog << " Writing stacked time steps"; - DataOutBase::EpsFlags eps_flags; - eps_flags.height_vector = eps_flags.color_vector = 2; - eps_flags.draw_mesh = false; - eps_flags.draw_cells = true; - eps_flags.azimut_angle = 0; - eps_flags.turn_angle = 0; - data_out_stack.set_flags (eps_flags); - data_out_stack.write (logfile, output_format); - deallog << '.' << endl; -}; - - -template class TimestepManager<2>; - -/* $Id$ */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include - - -template -const string WaveParameters::initial_value_names ("zero" - "|eigenmode" - "|bump" - "|small bump" - "|center-kink" - "|shifted bump" - "|plateau" - "|earthquake"); -template -const string WaveParameters::coefficient_names ("unit" - "|kink" - "|gradient" - "|preliminary earth model" - "|distorted"); -template -const string WaveParameters::boundary_function_names ("wave from left" - "|fast wave from left" - "|wave from left center" - "|wave from left bottom" - "|zero"); -template -const string WaveParameters::dual_functional_names ("none" - "|integrated value at origin" - "|seismic signature" - "|split signal" - "|earth surface" - "|split line" - "|one branch 1d" - "|second crossing" - "|Huyghens wave"); - - -DeclException1 (ExcUnknownName, - string, - << "Unknown description string " << arg1); - - -template -class InitialValues { - public: - class EigenMode : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926539; - return sin(2*pi*p(0))*sin(2*pi*p(1)); - }; - }; - - class Bump : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double width = 0.1; - const double r2 = p.square(); - return exp(-r2/width/width) * (r2 { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double width = 0.02; - const double r2 = p.square(); - return exp(-r2/width/width) * (r2 { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double width = 0.1; - Point shift; - shift(0) = 0.5; - const double r2 = (p-shift).square(); - return exp(-r2/width/width) * (r2 { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double width = 0.1; - const double r = sqrt(p.square()); - return (r { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double width = 0.1; - const double r = sqrt(p.square()); - return (r { - public: - virtual double value (const Point &p, - const unsigned int) const { - Point earthquake_center = p; - earthquake_center(1) -= 5500; - const double r2 = earthquake_center.square(); - - return (r2<300*300 ? 1-r2/300/300 : 0); - }; - }; -}; - - -template -class Coefficients { - public: - class Kink : public Function { - public: - inline virtual double value (const Point &p, - const unsigned int) const { - return 1+8*(p(dim-1)>1./5. ? 1. : 0.); - }; - - virtual void value_list (const vector > &points, - vector &values, - const unsigned int) const { - Assert (values.size() == points.size(), - ExcDimensionMismatch(values.size(), points.size())); - for (unsigned int i=0; iKink::value(points[i], 0); - }; - - virtual Tensor<1,dim> gradient (const Point &p, - const unsigned int) const { - Tensor<1,dim> tmp; - if (fabs(p(1)-1./5.) < 1./400.) - tmp[1] = 100; - return tmp; - }; - - virtual void gradient_list (const vector > &points, - vector > &gradients, - const unsigned int) const { - for (unsigned int i=0; i { - public: - inline virtual double value (const Point &p, - const unsigned int) const { - return 1+8*p(1)*p(1); - }; - - virtual void value_list (const vector > &points, - vector &values, - const unsigned int) const { - Assert (values.size() == points.size(), - ExcDimensionMismatch(values.size(), points.size())); - for (unsigned int i=0; iGradient::value(points[i], 0); - }; - - virtual Tensor<1,dim> gradient (const Point &p, - const unsigned int) const { - Tensor<1,dim> tmp; - tmp[1] = 16*p(1); - return tmp; - }; - - virtual void gradient_list (const vector > &points, - vector > &gradients, - const unsigned int) const { - for (unsigned int i=0; i { - public: - inline virtual double value (const Point &p, - const unsigned int) const { - const double r=sqrt(p.square()); - return 10+2.5*(2-r/6371)*(2-r/6371)+20*(r<2000 ? 1 : 0); - }; - - virtual void value_list (const vector > &points, - vector &values, - const unsigned int) const { - Assert (values.size() == points.size(), - ExcDimensionMismatch(values.size(), points.size())); - for (unsigned int i=0; iPreliminaryEarthModel::value(points[i], 0); - }; - - virtual Tensor<1,dim> gradient (const Point &p, - const unsigned int) const { - Tensor<1,dim> tmp(p); - const double r=sqrt(p.square()); - tmp *= 1./r * 2*(10-5*r/6371); - return tmp; - }; - - virtual void gradient_list (const vector > &points, - vector > &gradients, - const unsigned int) const { - for (unsigned int i=0; i { - public: - inline virtual double value (const Point &p, - const unsigned int) const { - const double x=p(0), - y=p(1); - const double pi = 3.1415926539; - - return (1+0.5*((sin(3*pi*x)>0 ? 1 : 0)+ - (sin(3*pi*(2*x+y)/sqrt(3)))>0 ? 1 : 0)); - }; - - virtual void value_list (const vector > &points, - vector &values, - const unsigned int) const { - Assert (values.size() == points.size(), - ExcDimensionMismatch(values.size(), points.size())); - for (unsigned int i=0; iDistorted::value(points[i], 0); - }; - - virtual Tensor<1,dim> gradient (const Point &, - const unsigned int) const { - return Tensor<1,dim>(); - }; - - virtual void gradient_list (const vector > &points, - vector > &gradients, - const unsigned int) const { - for (unsigned int i=0; i -class BoundaryValues { - public: - - class WaveFromLeft_u : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - if (p(0)==0) - return sin(pi*get_time()/0.4)*sin(pi*get_time()/0.4); - else - return 0; - }; - }; - - class WaveFromLeft_v : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - if (p(0)==0) - return 2*pi/0.4*sin(pi*get_time()/0.4)*cos(pi*get_time()/0.4); - else - return 0; - }; - }; - - -class FastWaveFromLeft_u : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - if ((get_time()<0.2) && (p(0)==0)) - return sin(pi*get_time()/0.2)*sin(pi*get_time()/0.2); - else - return 0; - }; - }; - - class FastWaveFromLeft_v : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - if ((get_time()<0.2) && (p(0)==0)) - return 2*pi/0.2*sin(pi*get_time()/0.2)*cos(pi*get_time()/0.2); - else - return 0; - }; - }; - - -class WaveFromLeftCenter_u : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - if ((0.4 <= p(1)) && (p(1) <= 0.6) && (p(0) <= 0.5)) - return (p(1)-0.4)*(0.6-p(1)) * sin(pi*get_time()/0.2); - else - return 0; - }; - }; - - class WaveFromLeftCenter_v : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - if ((0.4 <= p(1)) && (p(1) <= 0.6) && (p(0) <= 0.5)) - return pi/0.2*(p(1)-0.4)*(0.6-p(1)) * cos(pi*get_time()/0.2); - else - return 0; - }; - }; - - -class WaveFromLeftBottom_u : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - const double r = sqrt(p.square()); - const double a = 5000000; - - const double period = 60; - - if ((get_time()>=period) || (r>=a)) - return 0; - - const double s = cos(r/a*pi/2)*sin(pi*get_time()/period); - return s*s; - }; - }; - - class WaveFromLeftBottom_v : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - const double r = sqrt(p.square()); - const double a = 5000000; - const double period = 60; - - if ((get_time()>=period) || (r>=a)) - return 0; - else - return (2*pi/period*cos(r/a*pi/2)*cos(r/a*pi/2)* - sin(pi*get_time()/period)*cos(pi*get_time()/period)); - }; - }; - -}; - - -template -class Boundaries -{ - public: - class Ring : public StraightBoundary - { - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const { - Point middle = StraightBoundary::get_new_point_on_line (line); - middle *= sqrt(line->vertex(0).square()) / sqrt(middle.square()); - return middle; - }; - - -virtual Point - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const { - Point middle = StraightBoundary::get_new_point_on_quad (quad); - middle *= sqrt(quad->vertex(0).square()) / sqrt(middle.square()); - return middle; - }; - }; -}; - - -template -WaveParameters::WaveParameters () : - boundary_values_u (0), - boundary_values_v (0), - initial_u (0), - initial_v (0), - boundary (0), - density (0), - stiffness (0), - dual_functional (0), - coarse_grid (0) -{}; - - -template -WaveParameters::~WaveParameters () -{ - delete_parameters (); -}; - - -template -void WaveParameters::delete_parameters () -{ - if (boundary_values_u) - delete boundary_values_u; - boundary_values_u = 0; - - if (boundary_values_v) - delete boundary_values_v; - boundary_values_v = 0; - - if (initial_u) - delete initial_u; - initial_u = 0; - - if (initial_v) - delete initial_v; - initial_v = 0; - - if (boundary) - delete boundary; - boundary = 0; - - if (density) - delete density; - density = 0; - - if (stiffness) - delete stiffness; - stiffness = 0; - - if (dual_functional) - delete dual_functional; - dual_functional = 0; - - if (coarse_grid) - delete coarse_grid; - coarse_grid = 0; - - for (typename list*>::iterator i=eval_list.begin(); - i!=eval_list.end(); ++i) - delete *i; - eval_list.erase (eval_list.begin(), eval_list.end()); -}; - - -template -void WaveParameters::set_initial_functions (const string &u_name, - const string &v_name) { - Assert (initial_u==0, ExcInternalError()); - Assert (initial_v==0, ExcInternalError()); - - const string names[2] = {u_name, v_name}; - Function *functions[2]; - - for (unsigned int i=0; i<2; ++i) - { - if (names[i]=="eigenmode") - functions[i] = new InitialValues::EigenMode(); - else - if (names[i]=="zero") - functions[i] = new ZeroFunction(); - else - if (names[i]=="center-kink") - functions[i] = new InitialValues::CenterKink(); - else - if (names[i]=="bump") - functions[i] = new InitialValues::Bump(); - else - if (names[i]=="small bump") - functions[i] = new InitialValues::SmallBump(); - else - if (names[i]=="shifted bump") - functions[i] = new InitialValues::ShiftedBump(); - else - if (names[i]=="plateau") - functions[i] = new InitialValues::Plateau (); - else - if (names[i]=="earthquake") - functions[i] = new InitialValues::Earthquake (); - else - AssertThrow (false, ExcUnknownName(names[i])); - }; - - initial_u = functions[0]; - initial_v = functions[1]; -}; - - -template -void WaveParameters::set_coefficient_functions (const string &name) { - Assert (density==0, ExcInternalError()); - Assert (stiffness==0, ExcInternalError()); - - density = new ConstantFunction(1); - density_constant = true; - - if (name=="kink") - { - stiffness = new Coefficients::Kink(); - stiffness_constant = false; - } - else - if (name=="gradient") - { - stiffness = new Coefficients::Gradient(); - stiffness_constant = false; - } - else - if (name=="unit") - { - stiffness = new ConstantFunction(1); - stiffness_constant = true; - } - else - if (name=="preliminary earth model") - { - stiffness = new Coefficients::PreliminaryEarthModel(); - stiffness_constant = false; - } - else - if (name=="distorted") - { - stiffness = new Coefficients::Distorted(); - stiffness_constant = false; - } - else - AssertThrow (false, ExcUnknownName (name)); -}; - - -template -void WaveParameters::set_boundary_functions (const string &name) { - Assert (boundary_values_u==0, ExcInternalError()); - Assert (boundary_values_v==0, ExcInternalError()); - - if (name=="wave from left") - { - boundary_values_u = new BoundaryValues::WaveFromLeft_u (); - boundary_values_v = new BoundaryValues::WaveFromLeft_v (); - } - else - if (name=="fast wave from left") - { - boundary_values_u = new BoundaryValues::FastWaveFromLeft_u (); - boundary_values_v = new BoundaryValues::FastWaveFromLeft_v (); - } - else - if (name=="wave from left center") - { - boundary_values_u = new BoundaryValues::WaveFromLeftCenter_u (); - boundary_values_v = new BoundaryValues::WaveFromLeftCenter_v (); - } - else - if (name=="wave from left bottom") - { - boundary_values_u = new BoundaryValues::WaveFromLeftBottom_u (); - boundary_values_v = new BoundaryValues::WaveFromLeftBottom_v (); - } - else - if (name=="zero") - { - boundary_values_u = new ZeroFunction(); - boundary_values_v = new ZeroFunction(); - } - else - AssertThrow (false, ExcUnknownName (name)); -}; - - -template -void WaveParameters::make_eval_list (const string &names) { - Assert (eval_list.size()==0, ExcInternalError()); - string split_list = names; - - while (split_list.length()) - { - string name; - name = split_list; - - if (name.find(",") != string::npos) - { - name.erase (name.find(","), string::npos); - split_list.erase (0, split_list.find(",")+1); - } - else - split_list = ""; - - while (name[0] == ' ') - name.erase (0,1); - while (name[name.length()-1] == ' ') - name.erase (name.length()-1, 1); - - if (name == "integrated value at origin") - eval_list.push_back (new EvaluateIntegratedValueAtOrigin()); - else - if (name == "seismic signature") - eval_list.push_back (new EvaluateSeismicSignal()); - else - if (name == "split signal") - eval_list.push_back (new EvaluateSplitSignal()); - else - if (name == "one branch 1d") - eval_list.push_back (new EvaluateOneBranch1d()); - else - if (name == "second crossing") - eval_list.push_back (new EvaluateSecondCrossing1d()); - else - if (name == "Huyghens wave") - eval_list.push_back (new EvaluateHuyghensWave()); - else - AssertThrow (false, ExcUnknownName (name)); - }; -}; - - -template -void WaveParameters::set_dual_functional (const string &name) { - Assert (dual_functional==0, ExcInternalError()); - if (name == "none") - dual_functional = new DualFunctional(); - else - if (name == "integrated value at origin") - dual_functional = new IntegratedValueAtOrigin (); - else - if (name == "seismic signature") - dual_functional = new SeismicSignal (); - else - if (name == "split signal") - dual_functional = new SplitSignal (); - else - if (name == "earth surface") - dual_functional = new EarthSurface (); - else - if (name == "split line") - dual_functional = new SplitLine (); - else - if (name == "one branch 1d") - dual_functional = new OneBranch1d (); - else - if (name == "second crossing") - dual_functional = new SecondCrossing (); - else - if (name == "Huyghens wave") - dual_functional = new HuyghensWave (); - else - AssertThrow (false, ExcUnknownName (name)); -}; - - -#if 2 == 1 - -template <> -void WaveParameters<1>::make_coarse_grid (const string &name) { - const unsigned int dim = 1; - - coarse_grid = new Triangulation(MeshSmoothing(smoothing_on_refinement | - eliminate_refined_inner_islands)); - - if (name == "line") - GridGenerator::hyper_cube (*coarse_grid, -1, 1); - else - if (name == "split line") - { - const Point<1> vertices[4] = { Point<1>(-1.), - Point<1>(-1./3.), - Point<1>(1./3.), - Point<1>(1.) }; - vector > cells (3, CellData<1>()); - cells[0].vertices[0] = 0; - cells[0].vertices[1] = 1; - cells[0].material_id = 0; - - cells[1].vertices[0] = 1; - cells[1].vertices[1] = 2; - cells[1].material_id = 0; - - cells[2].vertices[0] = 2; - cells[2].vertices[1] = 3; - cells[2].material_id = 0; - - coarse_grid->create_triangulation (vector >(&vertices[0], - &vertices[4]), - cells, - SubCellData()); - - Triangulation::active_cell_iterator cell = coarse_grid->begin_active(); - (++cell)->set_refine_flag (); - (++cell)->set_refine_flag (); - coarse_grid->execute_coarsening_and_refinement (); - - for (int k=0; k<2; ++k) - { - for (cell=coarse_grid->begin_active(); cell!=coarse_grid->end(); ++cell) - if (cell->level() == k+1) - cell->set_refine_flag (); - coarse_grid->execute_coarsening_and_refinement (); - }; - } - else - AssertThrow (false, ExcParameterNotInList(name)); - - coarse_grid->refine_global (initial_refinement); -}; - -#endif - - -#if 2 == 2 - -template <> -void WaveParameters<2>::make_coarse_grid (const string &name) { - const unsigned int dim=2; - - map initial_mesh_list; - initial_mesh_list["split channel bottom"] = split_channel_bottom; - initial_mesh_list["split channel left"] = split_channel_left; - initial_mesh_list["split channel right"] = split_channel_right; - initial_mesh_list["uniform channel"] = uniform_channel; - initial_mesh_list["square"] = square; - initial_mesh_list["ring"] = ring; - initial_mesh_list["earth"] = earth; - initial_mesh_list["seismic square"] = seismic_square; - AssertThrow (initial_mesh_list.find(name) != initial_mesh_list.end(), - ExcParameterNotInList(name)); - - const InitialMesh initial_mesh = initial_mesh_list[name]; - - coarse_grid = new Triangulation - (Triangulation::MeshSmoothing(Triangulation::smoothing_on_refinement | - Triangulation::eliminate_refined_inner_islands)); - - switch (initial_mesh) - { - case uniform_channel: - case split_channel_bottom: - case split_channel_left: - case split_channel_right: - { - const Point vertices[8] = { Point (0,0), - Point (1,0), - Point (1,1), - Point (0,1), - Point (2,0), - Point (2,1), - Point (3,0), - Point (3,1) }; - const int cell_vertices[3][4] = {{0, 1, 2, 3}, - {1, 4, 5, 2}, - {4, 6, 7, 5}}; - - vector > cells (3, CellData()); - - for (unsigned int i=0; i<3; ++i) - { - for (unsigned int j=0; j<4; ++j) - cells[i].vertices[j] = cell_vertices[i][j]; - cells[i].material_id = 0; - }; - - SubCellData boundary_info; - if ((boundary_conditions == wave_from_left) || - (boundary_conditions == fast_wave_from_left)) - { - for (unsigned int i=0; i<6; ++i) - { - boundary_info.boundary_lines.push_back (CellData<1>()); - boundary_info.boundary_lines.back().material_id = 1; - }; - - boundary_info.boundary_lines[0].vertices[0] = 0; - boundary_info.boundary_lines[0].vertices[1] = 1; - boundary_info.boundary_lines[1].vertices[0] = 1; - boundary_info.boundary_lines[1].vertices[1] = 4; - boundary_info.boundary_lines[2].vertices[0] = 4; - boundary_info.boundary_lines[2].vertices[1] = 6; - boundary_info.boundary_lines[3].vertices[0] = 3; - boundary_info.boundary_lines[3].vertices[1] = 2; - boundary_info.boundary_lines[4].vertices[0] = 2; - boundary_info.boundary_lines[4].vertices[1] = 5; - boundary_info.boundary_lines[5].vertices[0] = 5; - boundary_info.boundary_lines[5].vertices[1] = 7; - }; - - if (boundary_conditions == wave_from_left_bottom) - { - boundary_info.boundary_lines.push_back (CellData<1>()); - boundary_info.boundary_lines.back().material_id = 1; - boundary_info.boundary_lines[0].vertices[0] = 0; - boundary_info.boundary_lines[0].vertices[1] = 3; - }; - - coarse_grid->create_triangulation (vector >(&vertices[0], - &vertices[8]), - cells, boundary_info); - - if (initial_refinement >= 1) - { - coarse_grid->refine_global (1); - - switch (initial_mesh) - { - case split_channel_bottom: - { - Triangulation::active_cell_iterator cell; - cell = coarse_grid->begin_active(); - (cell++)->set_refine_flag (); - (cell++)->set_refine_flag (); - ++cell; ++cell; - (cell++)->set_refine_flag (); - (cell++)->set_refine_flag (); - ++cell; ++cell; - (cell++)->set_refine_flag (); - (cell++)->set_refine_flag (); - coarse_grid->execute_coarsening_and_refinement (); - - coarse_grid->refine_global (initial_refinement-1); - - break; - }; - - case split_channel_left: - case split_channel_right: - { - coarse_grid->refine_global (1); - for (unsigned int i=0; i<2; ++i) - { - Triangulation::active_cell_iterator - cell = coarse_grid->begin_active(); - - for (; cell!=coarse_grid->end(); ++cell) - if (((cell->center()(0) >= 1) && - (initial_mesh == split_channel_right)) || - ((cell->center()(0) <= 1) && - (initial_mesh == split_channel_left))) - cell->set_refine_flag (); - coarse_grid->execute_coarsening_and_refinement (); - }; - - if (initial_refinement > 4) - coarse_grid->refine_global (initial_refinement-4); - - break; - }; - - -case uniform_channel: - { - coarse_grid->refine_global (initial_refinement-1); - break; - }; - - -default: - Assert (false, ExcInternalError()); - }; - }; - break; - }; - - -case square: - case seismic_square: - { - GridGenerator::hyper_cube (*coarse_grid, -1, 1); - if (initial_mesh==seismic_square) - coarse_grid->begin_active()->face(2)->set_boundary_indicator(1); - - coarse_grid->refine_global (initial_refinement); - - break; - }; - - case earth: - { - GridGenerator::hyper_ball (*coarse_grid, Point(), 6371); - - if (boundary) - delete boundary; - - Triangulation::active_face_iterator face; - for (face=coarse_grid->begin_active_face(); - face != coarse_grid->end_face(); - ++face) - if (face->at_boundary()) - face->set_boundary_indicator (1); - - const Point origin; - boundary = new HyperBallBoundary(origin, 6371); - coarse_grid->set_boundary (1, *boundary); - - coarse_grid->refine_global (initial_refinement); - - break; - }; - - case ring: - { - const double radius = 1.; - const double a = radius/2; - const Point<2> vertices[8] = { Point<2>(-1,-1)*(radius/sqrt(2)), - Point<2>(+1,-1)*(radius/sqrt(2)), - Point<2>(-1,-1)*(radius/sqrt(2)*a), - Point<2>(+1,-1)*(radius/sqrt(2)*a), - Point<2>(-1,+1)*(radius/sqrt(2)*a), - Point<2>(+1,+1)*(radius/sqrt(2)*a), - Point<2>(-1,+1)*(radius/sqrt(2)), - Point<2>(+1,+1)*(radius/sqrt(2)) }; - - const int cell_vertices[4][4] = {{0, 1, 3, 2}, - {0, 2, 4, 6}, - {1, 7, 5, 3}, - {6, 4, 5, 7}}; - - vector > cells (4, CellData<2>()); - - for (unsigned int i=0; i<4; ++i) - { - for (unsigned int j=0; j<4; ++j) - cells[i].vertices[j] = cell_vertices[i][j]; - cells[i].material_id = 0; - }; - - coarse_grid->create_triangulation (vector >(&vertices[0], - &vertices[8]), - cells, - SubCellData()); - if (boundary) - delete boundary; - boundary = new Boundaries::Ring(); - coarse_grid->set_boundary (0, *boundary); - - coarse_grid->refine_global (initial_refinement); - - break; - }; - - default: - Assert (false, ExcInternalError()); - }; -}; - -#endif - - -#if 2 == 3 - -template <> -void WaveParameters<3>::make_coarse_grid (const string &name) { - const unsigned int dim=3; - - map initial_mesh_list; - initial_mesh_list["square"] = square; - initial_mesh_list["earth"] = earth; - initial_mesh_list["seismic square"] = seismic_square; - AssertThrow (initial_mesh_list.find(name) != initial_mesh_list.end(), - ExcParameterNotInList(name)); - - const InitialMesh initial_mesh = initial_mesh_list[name]; - - coarse_grid = new Triangulation(MeshSmoothing(smoothing_on_refinement | - eliminate_refined_inner_islands)); - - switch (initial_mesh) - { - case square: - case seismic_square: - { - GridGenerator::hyper_cube (*coarse_grid, -1, 1); - if (initial_mesh==seismic_square) - coarse_grid->begin_active()->face(2)->set_boundary_indicator(1); - - coarse_grid->refine_global (initial_refinement); - - break; - }; - - case earth: - { - GridGenerator::hyper_ball (*coarse_grid, Point(), 6371); - - if (boundary) - delete boundary; - - Triangulation::active_face_iterator face; - for (face=coarse_grid->begin_active_face(); - face != coarse_grid->end_face(); - ++face) - if (face->at_boundary()) - face->set_boundary_indicator (1); - - const Point origin; - boundary = new HyperBallBoundary(origin, 6371); - coarse_grid->set_boundary (1, *boundary); - - coarse_grid->refine_global (initial_refinement); - - break; - }; - - default: - AssertThrow (false, ExcInternalError()); - break; - }; -}; - -#endif - - -template -void WaveParameters::declare_parameters (ParameterHandler &prm) -{ - prm.enter_subsection ("Grid"); - if (true) { - prm.declare_entry ("Initial refinement", "0", Patterns::Integer()); - prm.declare_entry ("Coarse mesh", "uniform channel", - Patterns::Selection ("uniform channel|split channel bottom|" - "split channel left|split channel right|" - "square|line|split line|ring|" - "seismic square|temperature-square|" - "temperature-testcase|random|earth")); - prm.enter_subsection ("Refinement"); - if (true) { - prm.declare_entry ("Refinement fraction", "0.95", - Patterns::Double()); - prm.declare_entry ("Coarsening fraction", "0.02", - Patterns::Double()); - prm.declare_entry ("Compare indicators globally", "true", Patterns::Bool()); - prm.declare_entry ("Maximum refinement", "0", Patterns::Integer()); - prm.declare_entry ("Adapt mesh to dual solution", "true", - Patterns::Bool()); - prm.declare_entry ("Primal to dual weight", "1.0", - Patterns::Double()); - prm.declare_entry ("Initial energy estimator sweeps", "0", - Patterns::Integer()); - }; - prm.leave_subsection (); - - prm.enter_subsection ("Mesh smoothing"); - if (true) { - prm.declare_entry ("Top cell number deviation", "0.1", Patterns::Double()); - prm.declare_entry ("Bottom cell number deviation", "0.03", Patterns::Double()); - prm.declare_entry ("Cell number correction steps", "2", Patterns::Integer()); - }; - prm.leave_subsection (); - }; - prm.declare_entry ("Renumber dofs", "false", Patterns::Bool()); - prm.leave_subsection (); - - prm.enter_subsection ("Equation data"); - if (true) { - prm.declare_entry ("Coefficient", "unit", Patterns::Selection(coefficient_names)); - prm.declare_entry ("Initial u", "zero", Patterns::Selection (initial_value_names)); - prm.declare_entry ("Initial v", "zero", Patterns::Selection (initial_value_names)); - prm.declare_entry ("Boundary", "wave from left", - Patterns::Selection (boundary_function_names)); - }; - prm.leave_subsection (); - - prm.enter_subsection ("Discretization"); - prm.declare_entry ("Primal FE", "linear", - Patterns::Selection ("linear|quadratic|cubic|quartic")); - prm.declare_entry ("Dual FE", "linear", - Patterns::Selection ("linear|quadratic|cubic|quartic")); - - prm.enter_subsection ("Time stepping"); - prm.declare_entry ("Primal method", "fractional step", - Patterns::Selection ("theta|fractional step")); - prm.declare_entry ("Dual method", "fractional step", - Patterns::Selection ("theta|fractional step")); - prm.declare_entry ("Theta", "0.5", Patterns::Double()); - prm.declare_entry ("Time step", "0.1", Patterns::Double()); - prm.declare_entry ("End time", "1", Patterns::Double()); - prm.leave_subsection (); - prm.leave_subsection (); - - prm.enter_subsection ("Solver"); - prm.declare_entry ("Preconditioning", "none", - Patterns::Selection ("none|jacobi|sor|ssor")); - prm.declare_entry ("Extrapolate old solutions", "true", - Patterns::Bool()); - prm.leave_subsection (); - - prm.enter_subsection ("Output"); - prm.declare_entry ("Format", "gnuplot", - Patterns::Selection(DataOutInterface::get_output_format_names())); - prm.declare_entry ("Directory", "data"); - prm.declare_entry ("Directory for temporaries", "data/tmp"); - prm.declare_entry ("Write solutions", "all sweeps", - Patterns::Selection ("never|all sweeps|last sweep only")); - prm.declare_entry ("Write stacked time steps", "false", Patterns::Bool()); - prm.declare_entry ("Write stacked interval", "1", Patterns::Integer()); - prm.declare_entry ("Write steps interval", "1", Patterns::Integer()); - prm.declare_entry ("Write error as cell data", "true", Patterns::Bool()); - prm.enter_subsection ("Error statistics"); - prm.declare_entry ("Produce error statistics", "false", Patterns::Bool()); - prm.declare_entry ("Number of intervals", "10", Patterns::Integer()); - prm.declare_entry ("Interval spacing", "linear", - Patterns::Selection(Histogram::get_interval_spacing_names())); - prm.leave_subsection (); - prm.leave_subsection (); - - -prm.enter_subsection ("Goal"); - prm.declare_entry ("Goal", "none", - Patterns::Selection (dual_functional_names)); - prm.declare_entry ("Evaluate", ""); - prm.leave_subsection (); - - -prm.declare_entry ("Refinement criterion", "energy estimator", - Patterns::Selection ("energy estimator|dual estimator")); - prm.declare_entry ("Sweeps", "3", Patterns::Integer()); -}; - - -template -void WaveParameters::parse_parameters (ParameterHandler &prm) { - map boundary_conditions_list; - boundary_conditions_list["wave from left"] = wave_from_left; - boundary_conditions_list["fast wave from left"] = fast_wave_from_left; - boundary_conditions_list["wave from left center"] = wave_from_left_center; - boundary_conditions_list["wave from left bottom"] = wave_from_left_bottom; - boundary_conditions_list["zero"] = zero; - - map preconditioning_list; - preconditioning_list["jacobi"] = jacobi; - preconditioning_list["sor"] = sor; - preconditioning_list["ssor"] = ssor; - preconditioning_list["none"] = no_preconditioning; - - map write_strategy_list; - write_strategy_list["never"] = never; - write_strategy_list["all sweeps"] = all_sweeps; - write_strategy_list["last sweep only"] = last_sweep_only; - - -prm.enter_subsection ("Grid"); - initial_refinement = prm.get_integer ("Initial refinement"); - - prm.enter_subsection ("Refinement"); - { - refinement_fraction.first = prm.get_double ("Refinement fraction"); - refinement_fraction.second = prm.get_double ("Coarsening fraction"); - compare_indicators_globally = prm.get_bool ("Compare indicators globally"); - maximum_refinement = prm.get_integer ("Maximum refinement"); - adapt_mesh_to_dual_solution = prm.get_bool ("Adapt mesh to dual solution"); - primal_to_dual_weight = prm.get_double ("Primal to dual weight"); - initial_energy_estimator_sweeps = prm.get_integer("Initial energy estimator sweeps"); - }; - prm.leave_subsection (); - - prm.enter_subsection ("Mesh smoothing"); - { - cell_number_corridor.first = prm.get_double ("Top cell number deviation"); - cell_number_corridor.second = prm.get_double ("Bottom cell number deviation"); - cell_number_correction_steps= prm.get_integer ("Cell number correction steps"); - }; - prm.leave_subsection (); - - renumber_dofs = prm.get_bool ("Renumber dofs"); - prm.leave_subsection (); - - prm.enter_subsection ("Equation data"); - set_coefficient_functions (prm.get("Coefficient")); - set_initial_functions (prm.get("Initial u"), prm.get("Initial v")); - boundary_conditions = boundary_conditions_list[prm.get("Boundary")]; - set_boundary_functions (prm.get("Boundary")); - Assert (boundary_conditions_list.find(prm.get("Boundary")) != - boundary_conditions_list.end(), - ExcParameterNotInList(prm.get("Boundary"))); - prm.leave_subsection (); - - prm.enter_subsection ("Discretization"); - primal_fe = prm.get("Primal FE"); - dual_fe = prm.get("Dual FE"); - prm.enter_subsection ("Time stepping"); - theta = prm.get_double ("Theta"); - time_step= prm.get_double ("Time step"); - end_time = prm.get_double ("End time"); - prm.leave_subsection (); - prm.leave_subsection (); - - prm.enter_subsection ("Solver"); - preconditioning = preconditioning_list[prm.get("Preconditioning")]; - Assert (preconditioning_list.find(prm.get("Preconditioning")) != - preconditioning_list.end(), - ExcParameterNotInList(prm.get("Preconditioning"))); - extrapolate_old_solutions = prm.get_bool ("Extrapolate old solutions"); - prm.leave_subsection (); - - prm.enter_subsection ("Output"); - output_format = prm.get("Format"); - output_directory = prm.get("Directory"); - if (output_directory[output_directory.size()-1] != '/') - output_directory += '/'; - tmp_directory = prm.get ("Directory for temporaries"); - if (tmp_directory[tmp_directory.size()-1] != '/') - tmp_directory += '/'; - write_solution_strategy = write_strategy_list[prm.get("Write solutions")]; - Assert (write_strategy_list.find(prm.get("Write solutions")) != - write_strategy_list.end(), - ExcParameterNotInList(prm.get("Write solutions"))); - write_stacked_data = prm.get_bool ("Write stacked time steps"); - write_stacked_interval = prm.get_integer ("Write stacked interval"); - write_steps_interval = prm.get_integer ("Write steps interval"); - write_error_as_cell_data = prm.get_bool ("Write error as cell data"); - prm.enter_subsection ("Error statistics"); - produce_error_statistics = prm.get_bool ("Produce error statistics"); - error_statistic_intervals= prm.get_integer ("Number of intervals"); - error_statistics_scaling = prm.get ("Interval spacing"); - prm.leave_subsection (); - prm.leave_subsection (); - - -prm.enter_subsection ("Goal"); - set_dual_functional (prm.get("Goal")); - make_eval_list (prm.get("Evaluate")); - prm.leave_subsection (); - - -if (prm.get("Refinement criterion")=="energy estimator") - refinement_strategy = energy_estimator; - else - refinement_strategy = dual_estimator; - - number_of_sweeps = prm.get_integer ("Sweeps"); - - prm.enter_subsection ("Grid"); - make_coarse_grid (prm.get("Coarse mesh")); - prm.leave_subsection (); -}; - - -template class WaveParameters<2>; -/* $Id$ */ - -#include -#include //?? -#include - - -template -SweepData::SweepData (const bool use_data_out_stack) -{ - if (use_data_out_stack) - data_out_stack = new DataOutStack(); - else - data_out_stack = 0; -}; - - -template -SweepData::~SweepData () -{ - if (data_out_stack != 0) - delete data_out_stack; - data_out_stack = 0; -}; - - -template class SweepData<2>; -/* $Id$ */ - - -#include -#include - - -SweepInfo::Data & -SweepInfo::get_data () -{ - return data; -}; - - -SweepInfo::Timers & -SweepInfo::get_timers () -{ - return timers; -}; - - -template -void -SweepInfo::write_summary (const list*> &eval_list, - ostream &out) const -{ - out << "Summary of this sweep:" << endl - << "======================" << endl - << endl; - - out << " Accumulated number of cells: " << data.cells << endl - << " Acc. number of primal dofs : " << data.primal_dofs << endl - << " Acc. number of dual dofs : " << data.dual_dofs << endl - << " Accumulated error : " << data.accumulated_error << endl; - - if (eval_list.size() != 0) - { - out << endl; - out << " Evaluations:" << endl - << " ------------" << endl; - - for (typename list*>::const_iterator i = eval_list.begin(); - i != eval_list.end(); ++i) - - (*i)->print_final_result (out); - }; - - time_t time1= time (0); - tm *time = localtime(&time1); - out << " Time tag: " - << time->tm_year+1900 << "/" - << time->tm_mon+1 << "/" - << time->tm_mday << ' ' - << int_to_string (time->tm_hour, 2) << ":" - << int_to_string (time->tm_min, 2) << ":" - << int_to_string (time->tm_sec, 2) << endl; -}; - - -SweepInfo::Data::Data () : - accumulated_error (0), - cells (0), - primal_dofs (0), - dual_dofs (0) -{}; - - -template -void SweepInfo::write_summary (const list*> &eval_list, - ostream &out) const; - -/* $Id$ */ - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - -#include -#include - - -static const pair relaxations[3] -= { make_pair(100,5), make_pair(300,3), make_pair(500,2) }; - - -static const TimeStepBase_Tria<2>::RefinementFlags::CorrectionRelaxations -wave_correction_relaxations (1, - vector > (&relaxations[0], - &relaxations[3])); - - -template -TimeStepBase_Wave::TimeStepBase_Wave (): - TimeStepBase_Tria (), - parameters (*static_cast*>(0)) -{}; - - -template -TimeStepBase_Wave::TimeStepBase_Wave (const double time, - TimeStepBase_Tria::Flags flags, - const WaveParameters ¶meters) - : - TimeStepBase_Tria (time, - *parameters.coarse_grid, - flags, - typename TimeStepBase_Wave::RefinementFlags - (parameters.maximum_refinement, - 1, - 0, - parameters.cell_number_corridor.first, - parameters.cell_number_corridor.first, - wave_correction_relaxations, - parameters.cell_number_correction_steps, - (parameters.refinement_strategy == - WaveParameters::dual_estimator), - true)), - parameters (parameters) -{}; - - -template -const TimeStep_Primal & -TimeStepBase_Wave::get_timestep_primal () const -{ - return dynamic_cast &> (*this); -}; - - -template -const TimeStep_Dual & -TimeStepBase_Wave::get_timestep_dual () const -{ - return dynamic_cast &> (*this); -}; - - -template -const TimeStep_Postprocess & -TimeStepBase_Wave::get_timestep_postprocess () const -{ - return dynamic_cast &> (*this); -}; - - -template -string TimeStepBase_Wave::tmp_filename_base (const string &branch_signature) const -{ - return (parameters.tmp_directory + - branch_signature + 's' + - int_to_string (sweep_no, 2) + 't' + - int_to_string (timestep_no, 4)); -}; - - -template -void TimeStepBase_Wave::attach_sweep_info (SweepInfo &si) -{ - sweep_info = &si; -}; - - -template -void TimeStepBase_Wave::attach_sweep_data (SweepData &sd) -{ - sweep_data = &sd; -}; - - -/* --------------------------------------------------------------*/ - - -template -TimeStep_Wave::TimeStep_Wave (const string fe_name) : - dof_handler (0), - fe (FEHelper::get_fe(fe_name)), - quadrature (FEHelper::get_quadrature(fe_name)), - quadrature_face (FEHelper::get_quadrature_face(fe_name)), - statistic_data() -{}; - - -template -TimeStep_Wave::~TimeStep_Wave () -{ - Assert (dof_handler == 0, ExcInternalError()); - Assert (constraints.n_constraints() == 0, ExcInternalError()); - Assert (system_sparsity.empty(), ExcInternalError()); - Assert (mass_matrix.empty(), ExcInternalError()); - Assert (laplace_matrix.empty(), ExcInternalError()); - Assert (u.size() ==0, ExcInternalError()); - Assert (v.size() ==0, ExcInternalError()); -}; - - -template -void TimeStep_Wave::wake_up (const unsigned int wakeup_level) -{ - if (wakeup_level==0) - { - Assert (dof_handler==0, ExcInternalError()); - - sweep_info->get_timers().grid_generation.start(); - - dof_handler = new DoFHandler(*tria); - dof_handler->distribute_dofs (fe); - - if (parameters.renumber_dofs) - DoFRenumbering::Cuthill_McKee (*dof_handler); - - -constraints.clear (); - DoFTools::make_hanging_node_constraints (*dof_handler, constraints); - constraints.close (); - - sweep_info->get_timers().grid_generation.stop(); - - Assert (u.size()==0, ExcInternalError ()); - Assert (v.size()==0, ExcInternalError ()); - - switch (next_action) - { - case primal_problem: - case dual_problem: - { - Assert (((next_action == primal_problem) && - (static_cast*>(&get_timestep_primal()) - == this)) - || - ((next_action == dual_problem) && - (static_cast*>(&get_timestep_dual()) - == this)), - ExcInternalError()); - - u.reinit (dof_handler->n_dofs(), - parameters.extrapolate_old_solutions && (timestep_no!=0)); - v.reinit (dof_handler->n_dofs(), - parameters.extrapolate_old_solutions && (timestep_no!=0)); - break; - }; - - case postprocess: - { - sweep_info->get_timers().postprocessing.start(); - ifstream tmp_in(tmp_filename_base(branch_signature()).c_str()); - u.block_read (tmp_in); - v.block_read (tmp_in); - tmp_in.close (); - - sweep_info->get_timers().postprocessing.stop(); - - break; - }; - - default: - Assert (false, ExcInternalError()); - }; - }; -}; - - -template -void TimeStep_Wave::sleep (const unsigned int sleep_level) -{ - switch (sleep_level) - { - case 1: - { - Assert (dof_handler!=0, ExcInternalError()); - - delete dof_handler; - dof_handler = 0; - - Assert (u.size() != 0, ExcInternalError()); - Assert (v.size() != 0, ExcInternalError()); - - ofstream tmp_out(tmp_filename_base(branch_signature()).c_str()); - u.block_write (tmp_out); - v.block_write (tmp_out); - tmp_out.close (); - - u.reinit (0); - v.reinit (0); - - Assert (constraints.n_constraints() == 0, ExcInternalError()); - Assert (system_sparsity.empty(), ExcInternalError()); - Assert (mass_matrix.empty(), ExcInternalError()); - Assert (laplace_matrix.empty(), ExcInternalError()); - - break; - }; - - case 0: - { - constraints.clear (); - system_sparsity.reinit (0,0,0); - mass_matrix.reinit (system_sparsity); - laplace_matrix.reinit (system_sparsity); - - break; - }; - - default: - Assert (false, ExcInternalError()); - }; -}; - - -template -void TimeStep_Wave::end_sweep () -{ - string tmp_filename = tmp_filename_base(branch_signature()); - remove (tmp_filename.c_str()); -}; - - -template -unsigned int TimeStep_Wave::solve (const UserMatrix &matrix, - Vector &solution, - const Vector &rhs) const { - SolverControl control(2000, 1.e-12); - PrimitiveVectorMemory<> memory; - SolverCG<> pcg(control,memory); - - pcg.template solve (matrix, solution, rhs, - PreconditionUseMatrix - (matrix, - &UserMatrix::precondition)); - constraints.distribute (solution); - - return control.last_step(); -}; - - -template -void TimeStep_Wave::create_matrices () -{ - system_sparsity.reinit (dof_handler->n_dofs(), dof_handler->n_dofs(), - dof_handler->max_couplings_between_dofs()); - DoFTools::make_sparsity_pattern (*dof_handler, system_sparsity); - constraints.condense (system_sparsity); - system_sparsity.compress (); - - laplace_matrix.reinit (system_sparsity); - mass_matrix.reinit (system_sparsity); - - const unsigned int dofs_per_cell = fe.dofs_per_cell, - n_q_points = quadrature.n_quadrature_points; - - const bool density_constant = parameters.density_constant, - stiffness_constant = parameters.stiffness_constant; - - vector density_values (n_q_points, 1.); - vector stiffness_values (n_q_points, 1.); - - if (density_constant) - fill_n (density_values.begin(), n_q_points, - parameters.density->value(Point())); - if (stiffness_constant) - fill_n (stiffness_values.begin(), n_q_points, - parameters.stiffness->value(Point())); - - -FEValues fe_values (fe, quadrature, - UpdateFlags(update_values | - update_gradients | - update_JxW_values | - (!density_constant || !stiffness_constant ? - update_q_points : - 0))); - - vector dof_indices_on_cell (dofs_per_cell); - FullMatrix cell_mass_matrix (dofs_per_cell, dofs_per_cell); - FullMatrix cell_laplace_matrix (dofs_per_cell, dofs_per_cell); - - -for (typename DoFHandler::active_cell_iterator cell=dof_handler->begin_active(); - cell != dof_handler->end(); ++cell) - { - fe_values.reinit (cell); - cell_mass_matrix.clear (); - cell_laplace_matrix.clear (); - cell->get_dof_indices (dof_indices_on_cell); - - const FullMatrix &shape_values = fe_values.get_shape_values (); - const vector > > &shape_grads = fe_values.get_shape_grads (); - const vector &JxW_values = fe_values.get_JxW_values (); - - if (!density_constant || !stiffness_constant) - { - const vector > &quadrature_points = fe_values.get_quadrature_points (); - if (!density_constant) - parameters.density->value_list (quadrature_points, - density_values); - if (!stiffness_constant) - parameters.stiffness->value_list (quadrature_points, - stiffness_values); - }; - - for (unsigned int q_point=0; q_point -void TimeStep_Wave::transfer_old_solutions (Vector &old_u, - Vector &old_v) const -{ - const DoFHandler *present_dof_handler = dof_handler, - * old_dof_handler = 0; - const Vector *old_grid_u = 0, - *old_grid_v = 0; - - switch (next_action) - { - case primal_problem: - Assert (previous_timestep != 0, ExcInternalError()); - - old_dof_handler = (static_cast*> - (previous_timestep)->get_timestep_primal()).dof_handler; - old_grid_u = &(static_cast*> - (previous_timestep)->get_timestep_primal()).u; - old_grid_v = &(static_cast*> - (previous_timestep)->get_timestep_primal()).v; - - break; - - case dual_problem: - Assert (next_timestep != 0, ExcInternalError()); - - old_dof_handler = (static_cast*> - (next_timestep)->get_timestep_dual()).dof_handler; - old_grid_u = &(static_cast*> - (next_timestep)->get_timestep_dual()).u; - old_grid_v = &(static_cast*> - (next_timestep)->get_timestep_dual()).v; - - break; - }; - - Assert (old_dof_handler != 0, ExcInternalError()); - - DoFHandler::cell_iterator old_cell = old_dof_handler->begin(), - new_cell = present_dof_handler->begin(); - for (; old_cell != (old_dof_handler->get_tria().n_levels() == 1 ? - static_cast::cell_iterator>(old_dof_handler->end()) : - old_dof_handler->begin(1)); - ++old_cell, new_cell) - transfer_old_solutions (old_cell, new_cell, - *old_grid_u, *old_grid_v, - old_u, old_v); -}; - - -template -void -TimeStep_Wave::transfer_old_solutions (const typename DoFHandler::cell_iterator &old_cell, - const typename DoFHandler::cell_iterator &new_cell, - const Vector &old_grid_u, - const Vector &old_grid_v, - Vector &old_u, - Vector &old_v) const -{ - if (!old_cell->has_children() && !new_cell->has_children()) - { - for (unsigned int c=0; c::children_per_cell; ++c) - transfer_old_solutions (old_cell->child(c), - new_cell->child(c), - old_grid_u, old_grid_v, - old_u, old_v); - } - else - { - Vector cell_data (fe.dofs_per_cell); - - old_cell->get_interpolated_dof_values (old_grid_u, cell_data); - new_cell->set_dof_values_by_interpolation (cell_data, old_u); - - old_cell->get_interpolated_dof_values (old_grid_v, cell_data); - new_cell->set_dof_values_by_interpolation (cell_data, old_v); - }; -}; - - -template -pair -TimeStep_Wave::compute_energy () { - pair energy; - - switch (next_action) - { - case primal_problem: - energy.first = 0.5*laplace_matrix.matrix_norm_square (u); - energy.second = 0.5*mass_matrix.matrix_norm_square(v); - break; - - case dual_problem: - energy.first = 0.5*laplace_matrix.matrix_norm_square (v); - energy.second = 0.5*mass_matrix.matrix_norm_square(u); - break; - - default: - Assert (false, ExcInternalError()); - }; - - return energy; -}; - - -template -TimeStep_Wave::StatisticData:: -StatisticData () : - n_active_cells (0), - n_dofs (0), - n_solver_steps_helmholtz (0), - n_solver_steps_projection (0), - energy (make_pair(0.0, 0.0)) -{}; - - -template -TimeStep_Wave::StatisticData:: -StatisticData (const unsigned int n_active_cells, - const unsigned int n_dofs, - const unsigned int n_solver_steps_helmholtz, - const unsigned int n_solver_steps_projection, - const pair energy) : - n_active_cells (n_active_cells), - n_dofs (n_dofs), - n_solver_steps_helmholtz (n_solver_steps_helmholtz), - n_solver_steps_projection (n_solver_steps_projection), - energy (energy) -{}; - - -template -void -TimeStep_Wave::StatisticData::write_descriptions (ostream &out) -{ - out << "# number of active cells" << endl - << "# number of degrees of freedom" << endl - << "# iterations for the helmholtz equation" << endl - << "# iterations for the projection equation" << endl - << "# elastic energy" << endl - << "# kinetic energy" << endl - << "# total energy" << endl; -}; - - -template -void TimeStep_Wave::StatisticData::write (ostream &out) const -{ - out << n_active_cells << ' ' - << n_dofs << ' ' - << n_solver_steps_helmholtz << ' ' - << n_solver_steps_projection << ' ' - << energy.first << ' ' - << energy.second << ' ' - << energy.first+energy.second; -}; - - -template class TimeStepBase_Wave<2>; -template class TimeStep_Wave<2>; -/* $Id$ */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - -#include - - -template -TimeStep_Dual::TimeStep_Dual (const string &dual_fe) - : - TimeStep_Wave (dual_fe) -{}; - - -template -void TimeStep_Dual::do_initial_step () { - deallog << " Dual problem: time=" - << time - << ", step=" << timestep_no - << ", sweep=" << sweep_no - << ". " - << tria->n_active_cells() << " cells, " - << dof_handler->n_dofs() << " dofs"; - - sweep_info->get_data().dual_dofs += dof_handler->n_dofs() * 2; - - Vector tmp_u_bar, tmp_v_bar; - - parameters.dual_functional->reset (*this); - parameters.dual_functional-> - compute_endtime_vectors (tmp_u_bar, tmp_v_bar); - u.reinit (tmp_u_bar.size()); - v.reinit (tmp_v_bar.size()); - if ((tmp_u_bar.linfty_norm() > 0) || (tmp_v_bar.linfty_norm() > 0)) - { - UserMatrix system_matrix (system_sparsity, - parameters.preconditioning); - system_matrix.copy_from (mass_matrix); - constraints.condense (static_cast&>(system_matrix)); - const unsigned int - solver_steps1 = solve (system_matrix, u, tmp_u_bar), - solver_steps2 = solve (system_matrix, v, tmp_v_bar); - - statistic_data = typename TimeStep_Wave::StatisticData (tria->n_active_cells(), - dof_handler->n_dofs(), - solver_steps1, solver_steps2, - compute_energy ()); - } - else - statistic_data = typename TimeStep_Wave::StatisticData (tria->n_active_cells(), - dof_handler->n_dofs(), - 0, 0, - make_pair (0.0, 0.0)); - deallog << "." << endl; -}; - - -template -void TimeStep_Dual::do_timestep () -{ - deallog << " Dual problem: time=" - << time - << ", step=" << timestep_no - << ", sweep=" << sweep_no - << ". " - << tria->n_active_cells() << " cells, " - << dof_handler->n_dofs() << " dofs"; - - sweep_info->get_data().dual_dofs += dof_handler->n_dofs() * 2; - - const double time_step = get_forward_timestep (); - - Vector right_hand_side1 (dof_handler->n_dofs()); - Vector right_hand_side2 (dof_handler->n_dofs()); - - Vector old_u, old_v; - if (parameters.extrapolate_old_solutions) - { - old_u.reinit (dof_handler->n_dofs()); - old_v.reinit (dof_handler->n_dofs()); - - transfer_old_solutions (old_u, old_v); - }; - - assemble_vectors (right_hand_side1, right_hand_side2); - - UserMatrix system_matrix (system_sparsity, parameters.preconditioning); - system_matrix.copy_from (mass_matrix); - system_matrix.add_scaled (time_step * time_step * - parameters.theta * - parameters.theta, - laplace_matrix); - constraints.condense (static_cast&>(system_matrix)); - - if (parameters.extrapolate_old_solutions) - { - v = old_v; - v.add (time_step, old_u); - }; - - - map boundary_value_list; - if (dim != 1) - { - static const ZeroFunction boundary_values; - - VectorTools::interpolate_boundary_values (*dof_handler, 0, boundary_values, - boundary_value_list); - MatrixTools::apply_boundary_values (boundary_value_list, - system_matrix, v, - right_hand_side1); - }; - - const unsigned int solver_steps1 = solve (system_matrix, v, right_hand_side1); - - system_matrix.copy_from (mass_matrix); - constraints.condense (static_cast&>(system_matrix)); - if (true) - { - Vector tmp (right_hand_side2.size()); - laplace_matrix.vmult (tmp, v); - right_hand_side2.add (-parameters.theta*time_step, tmp); - }; - constraints.condense (right_hand_side2); - if (dim != 1) - MatrixTools::apply_boundary_values (boundary_value_list, - system_matrix, u, - right_hand_side2); - - if (parameters.extrapolate_old_solutions) - { - u = v; - u -= old_v; - u.scale (2./time_step); - u -= old_u; - }; - - const unsigned int solver_steps2 = solve (system_matrix, u, right_hand_side2); - - statistic_data = typename TimeStep_Wave::StatisticData (tria->n_active_cells(), - dof_handler->n_dofs(), - solver_steps1, - solver_steps2, - compute_energy ()); - - deallog << "." << endl; -}; - - -template -void TimeStep_Dual::solve_dual_problem () -{ - sweep_info->get_timers().dual_problem.start(); - if (next_timestep == 0) - do_initial_step (); - else - do_timestep (); - sweep_info->get_timers().dual_problem.stop(); -}; - - -template -string TimeStep_Dual::branch_signature () const -{ - return "d"; -}; - - -template -void TimeStep_Dual::wake_up (const unsigned int wakeup_level) -{ - TimeStep_Wave::wake_up (wakeup_level); - - sweep_info->get_timers().dual_problem.start(); - if ((wakeup_level==0) && (next_action==dual_problem)) - { - Assert (system_sparsity.empty(), ExcInternalError()); - - create_matrices (); - }; - sweep_info->get_timers().dual_problem.stop(); -}; - - -template -void TimeStep_Dual::assemble_vectors (Vector &right_hand_side1, - Vector &right_hand_side2) { - Assert (next_timestep != 0, ExcInternalError()); - - build_rhs (right_hand_side1, right_hand_side2); - - Vector dual1, dual2; - parameters.dual_functional->reset (*this); - parameters.dual_functional->compute_functionals (dual1, dual2); - - const double timestep = get_forward_timestep(); - right_hand_side1.add (timestep, dual2); - right_hand_side1.add (parameters.theta * timestep * timestep, dual1); - - right_hand_side2.add (timestep, dual1); - - constraints.condense (right_hand_side1); -}; - - -template -void TimeStep_Dual::build_rhs (Vector &right_hand_side1, - Vector &right_hand_side2) { - const TimeStep_Dual &previous_time_level - = static_cast*>(next_timestep)->get_timestep_dual(); - - Assert (previous_time_level.tria->n_cells(0) == tria->n_cells(0), - typename TimeStep_Wave::ExcCoarsestGridsDiffer()); - - typedef DoFHandler::cell_iterator cell_iterator; - - FEValues fe_values (fe, quadrature, - UpdateFlags(update_values | - update_gradients | - update_JxW_values | - update_q_points)); - - -cell_iterator old_cell = previous_time_level.dof_handler->begin(), - new_cell = dof_handler->begin(), - end_cell = (tria->n_levels() == 1 ? - static_cast(dof_handler->end()) : - dof_handler->begin(1)); - for (; new_cell!=end_cell; ++new_cell, ++old_cell) - build_rhs (old_cell, new_cell, - fe_values, - right_hand_side1, right_hand_side2); -}; - - -template -void -TimeStep_Dual::build_rhs (const DoFHandler::cell_iterator &old_cell, - const DoFHandler::cell_iterator &new_cell, - FEValues &fe_values, - Vector &right_hand_side1, - Vector &right_hand_side2) { - typedef DoFHandler::cell_iterator cell_iterator; - - if (old_cell->has_children() && new_cell->has_children()) - { - for (unsigned int child=0; child::children_per_cell; ++child) - build_rhs (old_cell->child(child), - new_cell->child(child), - fe_values, - right_hand_side1, - right_hand_side2); - return; - }; - - - const TimeStep_Dual &previous_time_level - = static_cast*>(next_timestep)->get_timestep_dual(); - - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const double time_step = get_forward_timestep(); - - if (!old_cell->has_children() && !new_cell->has_children()) - { - fe_values.reinit (old_cell); - const FullMatrix &values = fe_values.get_shape_values (); - const vector > >&gradients = fe_values.get_shape_grads (); - const vector &weights = fe_values.get_JxW_values (); - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - - vector density_values(fe_values.n_quadrature_points); - parameters.density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; point tmp (dofs_per_cell); - Vector rhs1 (dofs_per_cell); - - Vector rhs2 (dofs_per_cell); - - Vector old_dof_values_v (dofs_per_cell); - Vector local_M_u (dofs_per_cell); - Vector local_M_v (dofs_per_cell); - Vector local_A_v (dofs_per_cell); - old_cell->get_dof_values (previous_time_level.v, old_dof_values_v); - cell_matrix.vmult (local_M_v, old_dof_values_v); - - old_cell->get_dof_values (previous_time_level.u, tmp); - cell_matrix.vmult (local_M_u, tmp); - - cell_matrix.clear (); - vector stiffness_values(fe_values.n_quadrature_points); - parameters.stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - for (unsigned int point=0; point new_dof_indices (dofs_per_cell, DoFHandler::invalid_dof_index); - new_cell->get_dof_indices (new_dof_indices); - for (unsigned int i=0; ihas_children() && !new_cell->has_children()) - { - Vector rhs1 (dofs_per_cell); - Vector rhs2 (dofs_per_cell); - - collect_from_children (old_cell, fe_values, rhs1, rhs2); - - vector new_dof_indices (dofs_per_cell); - new_cell->get_dof_indices (new_dof_indices); - for (unsigned int i=0; ihas_children() && new_cell->has_children()) - { - Vector old_dof_values_u (dofs_per_cell); - Vector old_dof_values_v (dofs_per_cell); - old_cell->get_dof_values (previous_time_level.u, old_dof_values_u); - old_cell->get_dof_values (previous_time_level.v, old_dof_values_v); - - distribute_to_children (new_cell, fe_values, - old_dof_values_u, old_dof_values_v, - right_hand_side1, right_hand_side2); - - return; - }; - - Assert (false, ExcInternalError()); -}; - - -template -unsigned int -TimeStep_Dual::collect_from_children (const DoFHandler::cell_iterator &old_cell, - FEValues &fe_values, - Vector &rhs1, - Vector &rhs2) const { - unsigned int level_difference = 1; - - const TimeStep_Dual &previous_time_level - = static_cast*>(next_timestep)->get_timestep_dual(); - - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const double time_step = get_forward_timestep(); - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - - Vector local_old_dof_values_u (dofs_per_cell); - Vector local_old_dof_values_v (dofs_per_cell); - - Vector local_M_u (dofs_per_cell); - Vector local_M_v (dofs_per_cell); - Vector local_A_v (dofs_per_cell); - - Vector child_rhs1 (dofs_per_cell); - Vector child_rhs2 (dofs_per_cell); - - for (unsigned int c=0; c::children_per_cell; ++c) - { - const DoFHandler::cell_iterator old_child = old_cell->child(c); - - child_rhs1.clear (); - child_rhs2.clear (); - - if (old_child->has_children()) - { - const unsigned int l = collect_from_children (old_child, fe_values, - child_rhs1, child_rhs2); - level_difference = max (l+1, level_difference); - } - else - { - fe_values.reinit (old_child); - const FullMatrix &values = fe_values.get_shape_values(); - const vector > >&gradients = fe_values.get_shape_grads (); - const vector &weights = fe_values.get_JxW_values (); - - old_child->get_dof_values (previous_time_level.u, local_old_dof_values_u); - old_child->get_dof_values (previous_time_level.v, local_old_dof_values_v); - - cell_matrix.clear (); - vector density_values(fe_values.n_quadrature_points); - parameters.density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; point stiffness_values(fe_values.n_quadrature_points); - parameters.stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - for (unsigned int point=0; point -unsigned int -TimeStep_Dual::distribute_to_children (const DoFHandler::cell_iterator &new_cell, - FEValues &fe_values, - const Vector &old_dof_values_u, - const Vector &old_dof_values_v, - Vector &right_hand_side1, - Vector &right_hand_side2) { - unsigned int level_difference = 1; - - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const double time_step = get_forward_timestep(); - - FullMatrix cell_matrix(dofs_per_cell, dofs_per_cell); - Vector local_old_dof_values_u (dofs_per_cell); - Vector local_old_dof_values_v (dofs_per_cell); - - Vector local_M_u (dofs_per_cell); - Vector local_M_v (dofs_per_cell); - Vector local_A_v (dofs_per_cell); - - Vector rhs1 (dofs_per_cell); - - Vector rhs2 (dofs_per_cell); - - vector new_dof_indices (dofs_per_cell, DoFHandler::invalid_dof_index); - - - for (unsigned int c=0; c::children_per_cell; ++c) - { - const DoFHandler::cell_iterator new_child = new_cell->child(c); - - fe.prolongate(c).vmult (local_old_dof_values_u, - old_dof_values_u); - fe.prolongate(c).vmult (local_old_dof_values_v, - old_dof_values_v); - - if (new_child->has_children()) - { - const unsigned int l = distribute_to_children (new_child, fe_values, - local_old_dof_values_u, - local_old_dof_values_v, - right_hand_side1, - right_hand_side2); - level_difference = max (l+1, level_difference); - } - else - { - fe_values.reinit (new_child); - const FullMatrix &values = fe_values.get_shape_values(); - const vector > >&gradients = fe_values.get_shape_grads (); - const vector &weights = fe_values.get_JxW_values (); - - cell_matrix.clear (); - vector density_values(fe_values.n_quadrature_points); - parameters.density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; point stiffness_values(fe_values.n_quadrature_points); - parameters.stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - for (unsigned int point=0; pointget_dof_indices (new_dof_indices); - for (unsigned int i=0; i; -/* $Id$ */ - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - -#include -#include -#include -#include - - -template -TimeStep_ErrorEstimation::TimeStep_ErrorEstimation () -{}; - - -template -void TimeStep_ErrorEstimation::estimate_error () -{ - sweep_info->get_timers().error_estimation.start(); - - deallog << "[ee]"; - - if ((parameters.refinement_strategy == WaveParameters::energy_estimator) - || - (sweep_no < parameters.initial_energy_estimator_sweeps)) - estimate_error_energy (0); - - else - { - if (timestep_no != 0) - estimate_error_dual (); - }; - - const double accumulated_error = accumulate (estimated_error_per_cell.begin(), - estimated_error_per_cell.end(), - 0.0); - statistic_data = StatisticData (accumulated_error); - sweep_info->get_data().accumulated_error += accumulated_error; - - sweep_info->get_timers().error_estimation.stop(); -}; - - -template -void TimeStep_ErrorEstimation::wake_up (const unsigned int wakeup_level) -{ - Assert (next_action==postprocess, ExcInternalError()); - - if (wakeup_level==0) - { - Assert (estimated_error_per_cell.size()==0, - ExcInternalError()); - - estimated_error_per_cell.reinit (tria->n_active_cells()); - }; -}; - - -template -void TimeStep_ErrorEstimation::sleep (const unsigned int sleep_level) -{ - Assert (next_action==postprocess, ExcInternalError()); - - if (sleep_level==0) - { - Assert (estimated_error_per_cell.size()!=0, - ExcInternalError()); - - ofstream tmp_out(tmp_filename_base(branch_signature()).c_str()); - estimated_error_per_cell.block_write (tmp_out); - tmp_out.close (); - - estimated_error_per_cell.reinit (0); - }; -}; - - -template -void -TimeStep_ErrorEstimation::get_tria_refinement_criteria (Vector &indicators) const -{ - get_error_indicators (indicators); - for (Vector::iterator i=indicators.begin(); i!=indicators.end(); ++i) - *i = fabs(*i); -}; - - -template -void -TimeStep_ErrorEstimation::get_error_indicators (Vector &indicators) const -{ - ifstream in (tmp_filename_base(branch_signature()).c_str()); - indicators.block_read (in); -}; - - -template -void TimeStep_ErrorEstimation::estimate_error_energy (const unsigned int which_variables) { - Assert (which_variables<=1, ExcInternalError()); - - KellyErrorEstimator::FunctionMap neumann_boundary; - static ZeroFunction homogeneous_neumann_bc; - neumann_boundary[1] = &homogeneous_neumann_bc; - - const TimeStep_Wave &target = (which_variables==0 ? - static_cast&>(get_timestep_primal()) : - static_cast&>(get_timestep_dual ())); - - KellyErrorEstimator::estimate (*target.dof_handler, - target.quadrature_face, - neumann_boundary, - (which_variables==0 ? - target.u : - target.v), - estimated_error_per_cell, - vector(), - parameters.stiffness); - - if (((previous_timestep == 0) && (which_variables==0)) || - ((next_timestep == 0) && (which_variables==1) )) - { - Vector v_estimator(estimated_error_per_cell.size()); - KellyErrorEstimator::estimate (*target.dof_handler, - target.quadrature_face, - neumann_boundary, - (which_variables==0 ? - target.v : - target.u), - v_estimator, - vector(), - parameters.density); - estimated_error_per_cell += v_estimator; - }; -}; - - -template -void TimeStep_ErrorEstimation::estimate_error_dual () { - CellwiseError cellwise_error (tria->n_active_cells()); - - const TimeStep_Primal &primal_problem = get_timestep_primal(), - &primal_problem_old = static_cast*> - (previous_timestep)->get_timestep_primal(); - const TimeStep_Dual &dual_problem = get_timestep_dual(), - &dual_problem_old = static_cast*> - (previous_timestep)->get_timestep_dual(); - - - if (true) - { - DoFHandler::active_cell_iterator - cell = primal_problem.dof_handler->begin_active(); - const DoFHandler::active_cell_iterator - endc = primal_problem.dof_handler->end(); - for (; cell!=endc; ++cell) - cell->clear_user_pointer(); - }; - - make_interpolation_matrices (); - - if (true) - { - FEValues fe_values (dual_problem.fe, - dual_problem.quadrature, - UpdateFlags(update_values | - update_gradients | - update_second_derivatives | - update_JxW_values | - update_q_points)); - - DoFHandler::cell_iterator - primal_cell = primal_problem.dof_handler->begin(), - dual_cell = dual_problem.dof_handler->begin(), - primal_cell_old = primal_problem_old.dof_handler->begin(), - dual_cell_old = dual_problem_old.dof_handler->begin(); - const DoFHandler::cell_iterator - endc = primal_problem.dof_handler->end(0); - - for (; primal_cell!=endc; (++primal_cell, ++dual_cell, - ++primal_cell_old, ++dual_cell_old)) - estimate_error_dual (primal_cell, dual_cell, - primal_cell_old, dual_cell_old, - cellwise_error, - fe_values); - - Assert (cellwise_error.next_free_slot == cellwise_error.errors.end(), - ::ExcInternalError()); - }; - - ErrorOnCell total_estimated_error; - - - Vector::iterator i = estimated_error_per_cell.begin(); - DoFHandler::active_cell_iterator - cell = primal_problem.dof_handler->begin_active(); - const DoFHandler::active_cell_iterator - endc = primal_problem.dof_handler->end(); - for (; cell!=endc; ++cell, ++i) - { - const typename vector::iterator - error_on_this_cell = static_cast::iterator>(cell->user_pointer()); - Assert (error_on_this_cell != 0, ::ExcInternalError()); - - cell->clear_user_pointer (); - - *i = error_on_this_cell->sum(); - total_estimated_error += *error_on_this_cell; - }; -}; - - -template -void -TimeStep_ErrorEstimation::estimate_error_dual (const DoFHandler::cell_iterator &primal_cell, - const DoFHandler::cell_iterator &dual_cell, - const DoFHandler::cell_iterator &primal_cell_old, - const DoFHandler::cell_iterator &dual_cell_old, - CellwiseError &cellwise_error, - FEValues &fe_values) const { - - if (primal_cell->has_children() && primal_cell_old->has_children()) - { - for (unsigned int child=0; child::children_per_cell; ++child) - estimate_error_dual (primal_cell->child(child), - dual_cell->child(child), - primal_cell_old->child(child), - dual_cell_old->child(child), - cellwise_error, - fe_values); - return; - }; - - -const TimeStep_Primal &primal_problem = get_timestep_primal(), - &primal_problem_old = static_cast*> - (previous_timestep)->get_timestep_primal(); - const TimeStep_Dual &dual_problem = get_timestep_dual(), - &dual_problem_old = static_cast*> - (previous_timestep)->get_timestep_dual(); - - const FiniteElement &primal_fe = get_timestep_primal().fe, - &dual_fe = get_timestep_dual().fe; - - const unsigned int dofs_per_cell_primal = primal_fe.dofs_per_cell, - dofs_per_cell_dual = dual_fe.dofs_per_cell; - - - if (!primal_cell->has_children() && !primal_cell_old->has_children()) - { - Vector local_u(dofs_per_cell_dual), local_v(dofs_per_cell_dual); - Vector local_u_bar(dofs_per_cell_dual), local_v_bar(dofs_per_cell_dual); - - Vector local_u_old(dofs_per_cell_dual), local_v_old(dofs_per_cell_dual); - Vector local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual); - - Vector primal_tmp(dofs_per_cell_primal); - - primal_cell->get_dof_values (primal_problem.u, primal_tmp); - embedding_matrix.vmult (local_u, primal_tmp); - - primal_cell->get_dof_values (primal_problem.v, primal_tmp); - embedding_matrix.vmult (local_v, primal_tmp); - - dual_cell->get_dof_values (dual_problem.u, local_u_bar); - dual_cell->get_dof_values (dual_problem.v, local_v_bar); - - - primal_cell_old->get_dof_values (primal_problem_old.u, primal_tmp); - embedding_matrix.vmult (local_u_old, primal_tmp); - - primal_cell_old->get_dof_values (primal_problem_old.v, primal_tmp); - embedding_matrix.vmult (local_v_old, primal_tmp); - - dual_cell_old->get_dof_values (dual_problem_old.u, local_u_bar_old); - dual_cell_old->get_dof_values (dual_problem_old.v, local_v_bar_old); - - primal_cell->set_user_pointer (cellwise_error.next_free_slot); - *cellwise_error.next_free_slot = error_formula (dual_cell, - local_u, local_v, - local_u_bar, local_v_bar, - local_u_old, local_v_old, - local_u_bar_old, local_v_bar_old, - fe_values); - ++cellwise_error.next_free_slot; - - return; - }; - - - if (!primal_cell_old->has_children() && primal_cell->has_children()) - { - Vector local_u_old(dofs_per_cell_dual), local_v_old(dofs_per_cell_dual); - Vector local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual); - - Vector primal_tmp(dofs_per_cell_primal); - - primal_cell_old->get_dof_values (primal_problem_old.u, primal_tmp); - embedding_matrix.vmult (local_u_old, primal_tmp); - - primal_cell_old->get_dof_values (primal_problem_old.v, primal_tmp); - embedding_matrix.vmult (local_v_old, primal_tmp); - - dual_cell_old->get_dof_values (dual_problem_old.u, local_u_bar_old); - dual_cell_old->get_dof_values (dual_problem_old.v, local_v_bar_old); - - -compute_error_on_new_children (primal_cell, dual_cell, - local_u_old, - local_v_old, - local_u_bar_old, - local_v_bar_old, - cellwise_error, - fe_values); - - return; - }; - - - if (primal_cell_old->has_children() && !primal_cell->has_children()) - { - Vector local_u(dofs_per_cell_dual), local_v(dofs_per_cell_dual); - Vector local_u_bar(dofs_per_cell_dual), local_v_bar(dofs_per_cell_dual); - Vector local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual); - Vector local_Ih_u_bar(dofs_per_cell_dual), local_Ih_v_bar(dofs_per_cell_dual); - Vector local_Ih_u_bar_old(dofs_per_cell_dual), local_Ih_v_bar_old(dofs_per_cell_dual); - - Vector primal_tmp(embedding_matrix.n()); - - primal_cell->get_dof_values (primal_problem.u, primal_tmp); - embedding_matrix.vmult (local_u, primal_tmp); - - primal_cell->get_dof_values (primal_problem.v, primal_tmp); - embedding_matrix.vmult (local_v, primal_tmp); - - dual_cell->get_dof_values (dual_problem.u, local_u_bar); - dual_cell->get_dof_values (dual_problem.v, local_v_bar); - - dual_cell_old->get_interpolated_dof_values (dual_problem_old.u, - local_u_bar_old); - dual_cell_old->get_interpolated_dof_values (dual_problem_old.v, - local_v_bar_old); - - interpolation_matrix.vmult (local_Ih_u_bar, local_u_bar); - interpolation_matrix.vmult (local_Ih_v_bar, local_v_bar); - interpolation_matrix.vmult (local_Ih_u_bar_old, local_u_bar_old); - interpolation_matrix.vmult (local_Ih_v_bar_old, local_v_bar_old); - - primal_cell->set_user_pointer (cellwise_error.next_free_slot); - *cellwise_error.next_free_slot - = collect_error_from_children (primal_cell_old, - dual_cell_old, - local_u, local_v, - local_u_bar, local_v_bar, - local_Ih_u_bar, local_Ih_v_bar, - local_Ih_u_bar_old, local_Ih_v_bar_old, - fe_values); - ++cellwise_error.next_free_slot; - - return; - }; - - -Assert (false, ExcInternalError()); -}; - - -template -void TimeStep_ErrorEstimation:: -compute_error_on_new_children (const DoFHandler::cell_iterator &primal_cell, - const DoFHandler::cell_iterator &dual_cell, - const Vector &local_u_old, - const Vector &local_v_old, - const Vector &local_u_bar_old, - const Vector &local_v_bar_old, - CellwiseError &cellwise_error, - FEValues &fe_values) const { - const TimeStep_Primal &primal_problem = get_timestep_primal(); - const TimeStep_Dual &dual_problem = get_timestep_dual(); - - const FiniteElement &dual_fe = get_timestep_dual().fe; - const unsigned int dofs_per_cell_dual = dual_fe.dofs_per_cell; - - -for (unsigned int child=0; child::children_per_cell; ++child) - { - Vector child_u_old(dofs_per_cell_dual), child_v_old(dofs_per_cell_dual); - Vector child_u_bar_old(dofs_per_cell_dual), child_v_bar_old(dofs_per_cell_dual); - - dual_fe.prolongate(child).vmult (child_u_old, local_u_old); - dual_fe.prolongate(child).vmult (child_v_old, local_v_old); - dual_fe.prolongate(child).vmult (child_u_bar_old, local_u_bar_old); - dual_fe.prolongate(child).vmult (child_v_bar_old, local_v_bar_old); - - const DoFHandler::cell_iterator - new_primal_child = primal_cell->child(child), - new_dual_child = dual_cell->child(child); - - if (new_primal_child->has_children()) - compute_error_on_new_children (new_primal_child, new_dual_child, - child_u_old, - child_v_old, - child_u_bar_old, - child_v_bar_old, - cellwise_error, - fe_values); - else - { - Vector local_u(dofs_per_cell_dual), local_v(dofs_per_cell_dual); - Vector local_u_bar(dofs_per_cell_dual), local_v_bar(dofs_per_cell_dual); - - Vector primal_tmp(embedding_matrix.n()); - - new_primal_child->get_dof_values (primal_problem.u, primal_tmp); - embedding_matrix.vmult (local_u, primal_tmp); - - new_primal_child->get_dof_values (primal_problem.v, primal_tmp); - embedding_matrix.vmult (local_v, primal_tmp); - - new_dual_child->get_dof_values (dual_problem.u, local_u_bar); - new_dual_child->get_dof_values (dual_problem.v, local_v_bar); - - new_primal_child->set_user_pointer (cellwise_error.next_free_slot); - *cellwise_error.next_free_slot - = error_formula (new_dual_child, - local_u, local_v, - local_u_bar, local_v_bar, - child_u_old, child_v_old, - child_u_bar_old, child_v_bar_old, - fe_values); - ++cellwise_error.next_free_slot; - }; - }; -}; - - -template -typename TimeStep_ErrorEstimation::ErrorOnCell -TimeStep_ErrorEstimation::collect_error_from_children (const DoFHandler::cell_iterator &primal_cell_old, - const DoFHandler::cell_iterator &dual_cell_old, - const Vector &local_u, - const Vector &local_v, - const Vector &local_u_bar, - const Vector &local_v_bar, - const Vector &local_Ih_u_bar, - const Vector &local_Ih_v_bar, - const Vector &local_Ih_u_bar_old, - const Vector &local_Ih_v_bar_old, - FEValues &fe_values) const { - const TimeStep_Primal &primal_problem_old = static_cast*> - (previous_timestep)->get_timestep_primal(); - const TimeStep_Dual &dual_problem_old = static_cast*> - (previous_timestep)->get_timestep_dual(); - const FiniteElement &dual_fe = dual_problem_old.fe; - - ErrorOnCell error_sum; - - const unsigned int dofs_per_cell_dual = local_u_bar.size(); - - for (unsigned int child=0; child::children_per_cell; ++child) - { - Vector child_u(dofs_per_cell_dual), child_v(dofs_per_cell_dual); - Vector child_u_bar(dofs_per_cell_dual), child_v_bar(dofs_per_cell_dual); - Vector child_Ih_u_bar(dofs_per_cell_dual), child_Ih_v_bar(dofs_per_cell_dual); - Vector child_Ih_u_bar_old(dofs_per_cell_dual), child_Ih_v_bar_old(dofs_per_cell_dual); - - dual_fe.prolongate(child).vmult (child_u, local_u); - dual_fe.prolongate(child).vmult (child_v, local_v); - dual_fe.prolongate(child).vmult (child_u_bar, local_u_bar); - dual_fe.prolongate(child).vmult (child_v_bar, local_v_bar); - dual_fe.prolongate(child).vmult (child_Ih_u_bar, local_Ih_u_bar); - dual_fe.prolongate(child).vmult (child_Ih_v_bar, local_Ih_v_bar); - dual_fe.prolongate(child).vmult (child_Ih_u_bar_old, local_Ih_u_bar_old); - dual_fe.prolongate(child).vmult (child_Ih_v_bar_old, local_Ih_v_bar_old); - - const DoFHandler::cell_iterator - old_primal_child = primal_cell_old->child(child), - old_dual_child = dual_cell_old->child(child); - - if (old_primal_child->has_children()) - error_sum += collect_error_from_children (old_primal_child, - old_dual_child, - child_u, child_v, - child_u_bar, child_v_bar, - child_Ih_u_bar, child_Ih_v_bar, - child_Ih_u_bar_old, child_Ih_v_bar_old, - fe_values); - else - { - Vector local_u_old(dofs_per_cell_dual), local_v_old(dofs_per_cell_dual); - Vector local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual); - - Vector primal_tmp(embedding_matrix.n()); - - old_primal_child->get_dof_values (primal_problem_old.u, primal_tmp); - embedding_matrix.vmult (local_u_old, primal_tmp); - - old_primal_child->get_dof_values (primal_problem_old.v, primal_tmp); - embedding_matrix.vmult (local_v_old, primal_tmp); - - Vector child_difference_u_bar (dofs_per_cell_dual); - Vector child_difference_v_bar (dofs_per_cell_dual); - Vector local_difference_u_bar_old (dofs_per_cell_dual); - Vector local_difference_v_bar_old (dofs_per_cell_dual); - - child_difference_u_bar = child_u_bar; - child_difference_u_bar -= child_Ih_u_bar; - child_difference_v_bar = child_v_bar; - child_difference_v_bar -= child_Ih_v_bar; - - local_difference_u_bar_old = local_u_bar_old; - local_difference_u_bar_old -= local_Ih_u_bar_old; - local_difference_v_bar_old = local_v_bar_old; - local_difference_v_bar_old -= local_Ih_v_bar_old; - - -error_sum += error_formula (old_dual_child, - child_u, child_v, - child_u_bar, child_v_bar, - local_u_old, local_v_old, - local_u_bar_old, local_v_bar_old, - fe_values); - }; - }; - - return error_sum; -}; - - -template -typename TimeStep_ErrorEstimation::ErrorOnCell -TimeStep_ErrorEstimation::error_formula (const DoFHandler::active_cell_iterator &cell, - const Vector &local_u, - const Vector &local_v, - const Vector &local_u_bar, - const Vector &local_v_bar, - const Vector &local_u_old, - const Vector &local_v_old, - const Vector &local_u_bar_old, - const Vector &local_v_bar_old, - FEValues &fe_values) const { - Vector local_difference_u_bar(local_u_bar.size()); - Vector local_difference_v_bar(local_u_bar.size()); - Vector local_difference_u_bar_old(local_u_bar.size()); - Vector local_difference_v_bar_old(local_u_bar.size()); - - difference_matrix.vmult (local_difference_u_bar, local_u_bar); - difference_matrix.vmult (local_difference_v_bar, local_v_bar); - difference_matrix.vmult (local_difference_u_bar_old, local_u_bar_old); - difference_matrix.vmult (local_difference_v_bar_old, local_v_bar_old); - - return error_formula (cell, - local_u, local_v, - local_u_bar, local_v_bar, - local_u_old, local_v_old, - local_u_bar_old, local_v_bar_old, - local_difference_u_bar, - local_difference_v_bar, - local_difference_u_bar_old, - local_difference_v_bar_old, - fe_values); -}; - - -template -typename TimeStep_ErrorEstimation::ErrorOnCell -TimeStep_ErrorEstimation::error_formula (const DoFHandler::active_cell_iterator &cell, - const Vector &local_u, - const Vector &local_v, - const Vector &local_u_bar, - const Vector &local_v_bar, - const Vector &local_u_old, - const Vector &local_v_old, - const Vector &local_u_bar_old, - const Vector &local_v_bar_old, - const Vector &local_difference_u_bar, - const Vector &local_difference_v_bar, - const Vector &local_difference_u_bar_old, - const Vector &local_difference_v_bar_old, - FEValues &fe_values) const { - - ErrorOnCell error_on_cell; - - const unsigned int dofs_per_cell = get_timestep_dual().fe.dofs_per_cell; - - Vector tmp1(dofs_per_cell); - Vector tmp2(dofs_per_cell); - - -vector stiffness(fe_values.n_quadrature_points); - parameters.stiffness->value_list (fe_values.get_quadrature_points(), - stiffness); - vector > grad_stiffness(fe_values.n_quadrature_points); - parameters.stiffness->gradient_list (fe_values.get_quadrature_points(), - grad_stiffness); - - FullMatrix mass_matrix (tmp1.size(), tmp1.size()); - FullMatrix laplace_matrix (tmp1.size(), tmp1.size()); - - fe_values.reinit (cell); - const FullMatrix &values = fe_values.get_shape_values(); - const vector > >&gradients = fe_values.get_shape_grads (); - const vector > >&second_derivatives - = fe_values.get_shape_2nd_derivatives (); - const vector &weights = fe_values.get_JxW_values (); - - vector density_values(fe_values.n_quadrature_points); - parameters.density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; point -void TimeStep_ErrorEstimation::make_interpolation_matrices () { - const FiniteElement &primal_fe = get_timestep_primal().fe, - &dual_fe = get_timestep_dual().fe; - - embedding_matrix.reinit (dual_fe.dofs_per_cell, - primal_fe.dofs_per_cell); - - vector > unit_support_points (dual_fe.dofs_per_cell); - dual_fe.get_unit_support_points (unit_support_points); - - for (unsigned int i=0; i inverse_interpolation (primal_fe.dofs_per_cell, - dual_fe.dofs_per_cell); - unit_support_points.resize (primal_fe.dofs_per_cell); - primal_fe.get_unit_support_points (unit_support_points); - - for (unsigned int i=0; i -TimeStep_ErrorEstimation::StatisticData::StatisticData () : - estimated_error (0) -{}; - - -template -TimeStep_ErrorEstimation::StatisticData::StatisticData (const double estimated_error) : - estimated_error (estimated_error) -{}; - - -template -void TimeStep_ErrorEstimation::StatisticData::write_descriptions (ostream &out) -{ - out << "# total estimated error in this timestep" << endl; -}; - - -template -void TimeStep_ErrorEstimation::StatisticData::write (ostream &out) const -{ - out << estimated_error; -}; - - -template -TimeStep_ErrorEstimation::ErrorOnCell::ErrorOnCell () { - for (unsigned int i=0; i -typename TimeStep_ErrorEstimation::ErrorOnCell -TimeStep_ErrorEstimation::ErrorOnCell::operator += (const ErrorOnCell &eoc) { - for (unsigned int i=0; i -double TimeStep_ErrorEstimation::ErrorOnCell::sum () const { - double x=0; - for (unsigned int i=0; i -TimeStep_ErrorEstimation::CellwiseError::CellwiseError (const unsigned int n_errors) : - errors (n_errors), - next_free_slot (errors.begin()) -{}; - - -template class TimeStep_ErrorEstimation<2>; -/* $Id$ */ - - -#include -#include -#include -#include - - -template -TimeStep::TimeStep (const double time, - const WaveParameters ¶meters): - TimeStepBase_Wave (time, - TimeStepBase_Tria::Flags(true, 0, 1), - parameters), - TimeStep_Primal(parameters.primal_fe), - TimeStep_Dual (parameters.dual_fe) -{}; - - -template -void TimeStep::wake_up (const unsigned int wakeup_level) -{ - sweep_info->get_timers().grid_generation.start(); - TimeStepBase_Wave::wake_up (wakeup_level); - sweep_info->get_timers().grid_generation.stop(); - - switch (next_action) - { - case primal_problem: - TimeStep_Primal::wake_up (wakeup_level); - break; - - case dual_problem: - TimeStep_Dual::wake_up (wakeup_level); - break; - - case postprocess: - TimeStep_Primal::wake_up (wakeup_level); - - if ((parameters.refinement_strategy == WaveParameters::dual_estimator) - && - (sweep_no >= parameters.initial_energy_estimator_sweeps)) - TimeStep_Dual::wake_up (wakeup_level); - - TimeStep_Postprocess::wake_up (wakeup_level); - - break; - - case grid_refinement: - break; - - default: - Assert (false, ExcInternalError()); - }; -}; - - -template -void TimeStep::sleep (const unsigned int sleep_level) -{ - switch (next_action) - { - case primal_problem: - TimeStep_Primal::sleep (sleep_level); - break; - - case dual_problem: - TimeStep_Dual::sleep (sleep_level); - break; - - case postprocess: - TimeStep_Primal::sleep (sleep_level); - - if ((parameters.refinement_strategy == WaveParameters::dual_estimator) - && - (sweep_no >= parameters.initial_energy_estimator_sweeps)) - TimeStep_Dual::sleep (sleep_level); - - TimeStep_Postprocess::sleep (sleep_level); - break; - - case grid_refinement: - if (sleep_level == 1) - save_refine_flags (); - break; - - default: - Assert (false, ExcInternalError()); - }; - - sweep_info->get_timers().grid_generation.start(); - TimeStepBase_Wave::sleep (sleep_level); - sweep_info->get_timers().grid_generation.stop(); -}; - - -template -void TimeStep::end_sweep () -{ - TimeStep_Primal::end_sweep (); - TimeStep_Dual::end_sweep (); - TimeStep_Postprocess::end_sweep (); -}; - - -template -void TimeStep::write_statistics_descriptions (ostream &out, - const WaveParameters ¶meters) -{ - out << "# Primal problem:" << endl; - typename TimeStep_Primal::StatisticData xp; - xp.write_descriptions (out); - - out << "# Dual problem:" << endl; - typename TimeStep_Dual::StatisticData xd; - xd.write_descriptions (out); - - out << "# Error estimation:" << endl; - TimeStep_ErrorEstimation::StatisticData::write_descriptions (out); - - if (parameters.eval_list.size() != 0) - { - out << "# Postprocessing:" << endl; - TimeStep_Postprocess::StatisticData::write_descriptions (out, parameters); - }; -}; - - -template -void TimeStep::write_statistics (ostream &out) const -{ - TimeStep_Primal::statistic_data.write (out); - out << " "; - TimeStep_Dual::statistic_data.write (out); - out << " "; - TimeStep_ErrorEstimation::statistic_data.write (out); - out << " "; - TimeStep_Postprocess::statistic_data.write (out); -}; - - -template class TimeStep<2>; -/* $Id$ */ - - -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include - - -template -void TimeStep_Postprocess::postprocess_timestep () -{ - deallog << " Postprocessing: time=" - << time - << ", step=" << timestep_no - << ", sweep=" << sweep_no - << ". "; - - if ((sweep_no < parameters.number_of_sweeps-1) || - (parameters.refinement_strategy == WaveParameters::dual_estimator)) - estimate_error (); - - sweep_info->get_timers().postprocessing.start(); - - statistic_data.evaluation_results.clear(); - for (typename list*>::const_iterator i = parameters.eval_list.begin(); - i != parameters.eval_list.end(); ++i) - { - (*i)->reset_timelevel (get_timestep_primal()); - statistic_data.evaluation_results.push_back ((*i)->evaluate()); - }; - - if (((parameters.write_solution_strategy == WaveParameters::all_sweeps) || - ((parameters.write_solution_strategy == WaveParameters::last_sweep_only) && - (sweep_no == parameters.number_of_sweeps-1))) - && - (((timestep_no % parameters.write_steps_interval) == 0) || - (next_timestep == 0))) - { - deallog << "[o]"; - - DataOut out; - typename DataOut::OutputFormat output_format - = DataOut::parse_output_format (parameters.output_format); - - string data_filename = (parameters.output_directory + - "sweep" + int_to_string(sweep_no,2) + - "/" + int_to_string(timestep_no,4) + - out.default_suffix (output_format)); - out.attach_dof_handler (*get_timestep_primal().dof_handler); - out.add_data_vector (get_timestep_primal().u, "u"); - out.add_data_vector (get_timestep_primal().v, "v"); - - Vector u_bar, v_bar; - - if ((parameters.refinement_strategy == WaveParameters::dual_estimator) - && - (sweep_no >= parameters.initial_energy_estimator_sweeps)) - { - u_bar.reinit (get_timestep_primal().u.size()); - v_bar.reinit (get_timestep_primal().u.size()); - - if (parameters.primal_fe == parameters.dual_fe) - { - u_bar = get_timestep_dual().u; - v_bar = get_timestep_dual().v; - } - else - interpolate_dual_solution (u_bar, v_bar); - - out.add_data_vector (u_bar, "dual_u"); - out.add_data_vector (v_bar, "dual_v"); - }; - - Vector estimated_error; - if ((sweep_no::dual_estimator)) - { - if (parameters.write_error_as_cell_data) - { - estimated_error.reinit (estimated_error_per_cell.size()); - copy_n (estimated_error_per_cell.begin(), - estimated_error_per_cell.size(), - estimated_error.begin()); - } - else - { - estimated_error.reinit (get_timestep_primal().dof_handler->n_dofs()); - DoFTools::distribute_cell_to_dof_vector (*get_timestep_primal().dof_handler, - estimated_error_per_cell, - estimated_error); - }; - - out.add_data_vector (estimated_error, "est_error"); - }; - - out.build_patches (); - - out.write (logfile, output_format); - - deallog << "."; - }; - - if (parameters.write_stacked_data && - (timestep_no % parameters.write_stacked_interval == 0)) - { - deallog << "[st]"; - - sweep_data->data_out_stack->new_parameter_value (time, - (timestep_no == 0 ? - 0 : - get_backward_timestep() * - parameters.write_stacked_interval)); - sweep_data->data_out_stack->attach_dof_handler (*get_timestep_primal().dof_handler); - sweep_data->data_out_stack->add_data_vector (get_timestep_primal().u, "u"); - sweep_data->data_out_stack->add_data_vector (get_timestep_primal().v, "v"); - - if ((parameters.refinement_strategy == WaveParameters::dual_estimator) - && - (sweep_no >= parameters.initial_energy_estimator_sweeps)) - { - if (parameters.primal_fe == parameters.dual_fe) - { - sweep_data->data_out_stack->add_data_vector (get_timestep_dual().u, "dual_u"); - sweep_data->data_out_stack->add_data_vector (get_timestep_dual().v, "dual_v"); - } - else - { - Vector u_bar(get_timestep_primal().dof_handler->n_dofs()); - Vector v_bar(get_timestep_primal().dof_handler->n_dofs()); - - interpolate_dual_solution (u_bar, v_bar); - - sweep_data->data_out_stack->add_data_vector (u_bar, "dual_u"); - sweep_data->data_out_stack->add_data_vector (v_bar, "dual_v"); - }; - }; - - if ((sweep_no < parameters.number_of_sweeps-1) || - (parameters.refinement_strategy == WaveParameters::dual_estimator)) - sweep_data->data_out_stack->add_data_vector (estimated_error_per_cell, "est_error"); - - sweep_data->data_out_stack->build_patches (); - sweep_data->data_out_stack->finish_parameter_value (); - }; - - -deallog << endl; - sweep_info->get_timers().postprocessing.stop(); -}; - - -template -void TimeStep_Postprocess::wake_up (const unsigned int wakeup_level) -{ - TimeStep_ErrorEstimation::wake_up (wakeup_level); -}; - - -template -void TimeStep_Postprocess::sleep (const unsigned int sleep_level) -{ - TimeStep_ErrorEstimation::sleep (sleep_level); -}; - - -template -string TimeStep_Postprocess::branch_signature () const -{ - return "o"; -}; - - -template -void TimeStep_Postprocess::end_sweep () -{ - string tmp_filename = tmp_filename_base(branch_signature()); - remove (tmp_filename.c_str()); -}; - - -template -void TimeStep_Postprocess::interpolate_dual_solution (Vector &interpolated_u_bar, - Vector &interpolated_v_bar) const { - const unsigned int n_primal_dofs = get_timestep_primal().dof_handler->n_dofs(); - - interpolated_u_bar.reinit (n_primal_dofs); - interpolated_v_bar.reinit (n_primal_dofs); - - const TimeStep_Wave &target = get_timestep_dual (); - - typename DoFHandler::active_cell_iterator primal_cell, dual_cell, endc; - primal_cell = get_timestep_primal().dof_handler->begin_active(); - endc = get_timestep_primal().dof_handler->end(); - dual_cell = target.dof_handler->begin_active(); - - for (; primal_cell != endc; ++primal_cell, ++dual_cell) - for (unsigned int vertex=0; vertex::vertices_per_cell; ++vertex) - { - const unsigned int primal_vertex_index = primal_cell->vertex_dof_index(vertex,0), - dual_vertex_index = dual_cell->vertex_dof_index(vertex,0); - interpolated_u_bar(primal_vertex_index) = target.u(dual_vertex_index); - interpolated_v_bar(primal_vertex_index) = target.v(dual_vertex_index); - }; -}; - - -template -void TimeStep_Postprocess::StatisticData:: -write_descriptions (ostream &out, - const WaveParameters ¶meters) -{ - for (typename list*>::const_iterator i = parameters.eval_list.begin(); - i != parameters.eval_list.end(); ++i) - out << "# " << (*i)->description() << endl; -}; - - -template -void TimeStep_Postprocess::StatisticData::write (ostream &out) const -{ - for (unsigned int i=0; i; -/* $Id$ */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - -#include - - -template -TimeStep_Primal::TimeStep_Primal (const string &primal_fe) - : - TimeStep_Wave (primal_fe) -{}; - - -template -void TimeStep_Primal::do_initial_step () -{ - deallog << " Primal problem: time=" - << time - << ", step=" << timestep_no - << ", sweep=" << sweep_no - << ". " - << tria->n_active_cells() << " cells, " - << dof_handler->n_dofs() << " dofs"; - - - sweep_info->get_data().cells += tria->n_active_cells(); - sweep_info->get_data().primal_dofs += dof_handler->n_dofs() * 2; - -#if 2 == 1 - VectorTools::interpolate (*dof_handler, *parameters.initial_u, u); - VectorTools::interpolate (*dof_handler, *parameters.initial_v, v); -#else - VectorTools::project (*dof_handler, constraints, - quadrature, *parameters.initial_u, u, - false, quadrature_face, (dim==2 ? true : false)); - VectorTools::project (*dof_handler, constraints, - quadrature, *parameters.initial_v, v, - false, quadrature_face, (dim==2 ? true : false)); -#endif - statistic_data = typename TimeStep_Wave::StatisticData (tria->n_active_cells(), - dof_handler->n_dofs(), - 0, - 0, - make_pair (0.0, 0.0)); - - deallog << "." << endl; -}; - - -template -void TimeStep_Primal::do_timestep () -{ - deallog << " Primal problem: time=" - << time - << ", step=" << timestep_no - << ", sweep=" << sweep_no - << ". " - << tria->n_active_cells() << " cells, " - << dof_handler->n_dofs() << " dofs"; - - sweep_info->get_data().cells += tria->n_active_cells(); - sweep_info->get_data().primal_dofs += dof_handler->n_dofs() * 2; - - -const double time_step = get_backward_timestep (); - - Vector right_hand_side1 (dof_handler->n_dofs()); - Vector right_hand_side2 (dof_handler->n_dofs()); - - Vector old_u, old_v; - if (parameters.extrapolate_old_solutions) - { - old_u.reinit (dof_handler->n_dofs()); - old_v.reinit (dof_handler->n_dofs()); - - transfer_old_solutions (old_u, old_v); - }; - - -assemble_vectors (right_hand_side1, right_hand_side2); - - UserMatrix system_matrix (system_sparsity, parameters.preconditioning); - system_matrix.copy_from (mass_matrix); - system_matrix.add_scaled (time_step * time_step * - parameters.theta * - parameters.theta, - laplace_matrix); - constraints.condense (static_cast&>(system_matrix)); - - if (parameters.extrapolate_old_solutions) - { - u = old_u; - u.add (time_step, old_v); - }; - - if (dim!=1) - { - parameters.boundary_values_u->set_time (time); - parameters.boundary_values_v->set_time (time); - - map boundary_value_list; - VectorTools::interpolate_boundary_values (*dof_handler, 0, - *(parameters.boundary_values_u), - boundary_value_list); - MatrixTools::apply_boundary_values (boundary_value_list, - system_matrix, u, - right_hand_side1); - }; - - const unsigned int solver_steps1 = solve (system_matrix, u, right_hand_side1); - - system_matrix.copy_from (mass_matrix); - constraints.condense (static_cast&>(system_matrix)); - if (true) - { - Vector tmp (right_hand_side2.size()); - laplace_matrix.vmult (tmp, u); - right_hand_side2.add (-parameters.theta*time_step, tmp); - }; - constraints.condense (right_hand_side2); - - - if (dim != 1) - { - map boundary_value_list; - VectorTools::interpolate_boundary_values (*dof_handler, 0, - *(parameters.boundary_values_v), - boundary_value_list); - MatrixTools::apply_boundary_values (boundary_value_list, - system_matrix, v, - right_hand_side2); - }; - - -if (parameters.extrapolate_old_solutions) - { - v = u; - v -= old_u; - v.scale (2./time_step); - v -= old_v; - }; - - const unsigned int solver_steps2 = solve (system_matrix, v, right_hand_side2); - - statistic_data = typename TimeStep_Wave::StatisticData (tria->n_active_cells(), - dof_handler->n_dofs(), - solver_steps1, - solver_steps2, - compute_energy ()); - - deallog << "." << endl; -}; - - -template -void TimeStep_Primal::solve_primal_problem () -{ - sweep_info->get_timers().primal_problem.start(); - if (timestep_no == 0) - do_initial_step (); - else - do_timestep (); - sweep_info->get_timers().primal_problem.stop(); -}; - - -template -string TimeStep_Primal::branch_signature () const -{ - return "p"; -}; - - -template -void TimeStep_Primal::wake_up (const unsigned int wakeup_level) -{ - TimeStep_Wave::wake_up (wakeup_level); - - sweep_info->get_timers().primal_problem.start(); - if ((wakeup_level==0) && (next_action==primal_problem)) - { - Assert (system_sparsity.empty(), ExcInternalError()); - - create_matrices (); - }; - sweep_info->get_timers().primal_problem.stop(); -}; - - -template -void TimeStep_Primal::assemble_vectors (Vector &right_hand_side1, - Vector &right_hand_side2) { - Assert (timestep_no>=1, ExcInternalError()); - - build_rhs (right_hand_side1, right_hand_side2); - constraints.condense (right_hand_side1); -}; - - -template -void TimeStep_Primal::build_rhs (Vector &right_hand_side1, - Vector &right_hand_side2) { - const TimeStep_Primal &previous_time_level - = static_cast*>(previous_timestep)->get_timestep_primal(); - - Assert (previous_time_level.tria->n_cells(0) == tria->n_cells(0), - typename TimeStep_Wave::ExcCoarsestGridsDiffer()); - - typedef DoFHandler::cell_iterator cell_iterator; - - FEValues fe_values (fe, quadrature, - UpdateFlags(update_values | - update_gradients | - update_JxW_values | - update_q_points)); - - -cell_iterator old_cell = previous_time_level.dof_handler->begin(), - new_cell = dof_handler->begin(), - end_cell = (tria->n_levels() == 1 ? - static_cast(dof_handler->end()) : - dof_handler->begin(1)); - for (; new_cell!=end_cell; ++new_cell, ++old_cell) - build_rhs (old_cell, new_cell, - fe_values, - right_hand_side1, right_hand_side2); -}; - - -template -void -TimeStep_Primal::build_rhs (const DoFHandler::cell_iterator &old_cell, - const DoFHandler::cell_iterator &new_cell, - FEValues &fe_values, - Vector &right_hand_side1, - Vector &right_hand_side2) { - typedef DoFHandler::cell_iterator cell_iterator; - - if (old_cell->has_children() && new_cell->has_children()) - { - for (unsigned int child=0; child::children_per_cell; ++child) - build_rhs (old_cell->child(child), - new_cell->child(child), - fe_values, - right_hand_side1, - right_hand_side2); - return; - }; - - - const TimeStep_Primal &previous_time_level - = static_cast*>(previous_timestep)->get_timestep_primal(); - - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const double time_step = get_backward_timestep(); - - if (!old_cell->has_children() && !new_cell->has_children()) - { - fe_values.reinit (old_cell); - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - const FullMatrix &values = fe_values.get_shape_values (); - const vector > >&gradients = fe_values.get_shape_grads (); - const vector &weights = fe_values.get_JxW_values (); - - vector density_values(fe_values.n_quadrature_points); - parameters.density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; point tmp (dofs_per_cell); - Vector rhs1 (dofs_per_cell); - - Vector rhs2 (dofs_per_cell); - - Vector old_dof_values_u (dofs_per_cell); - Vector local_M_u (dofs_per_cell); - Vector local_M_v (dofs_per_cell); - Vector local_A_u (dofs_per_cell); - old_cell->get_dof_values (previous_time_level.u, old_dof_values_u); - cell_matrix.vmult (local_M_u, old_dof_values_u); - - old_cell->get_dof_values (previous_time_level.v, tmp); - cell_matrix.vmult (local_M_v, tmp); - - cell_matrix.clear (); - vector stiffness_values(fe_values.n_quadrature_points); - parameters.stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - for (unsigned int point=0; point new_dof_indices (dofs_per_cell, DoFHandler::invalid_dof_index); - new_cell->get_dof_indices (new_dof_indices); - for (unsigned int i=0; ihas_children() && !new_cell->has_children()) - { - Vector rhs1 (dofs_per_cell); - - Vector rhs2 (dofs_per_cell); - - collect_from_children (old_cell, fe_values, rhs1, rhs2); - - vector new_dof_indices (dofs_per_cell); - new_cell->get_dof_indices (new_dof_indices); - for (unsigned int i=0; ihas_children() && new_cell->has_children()) - { - Vector old_dof_values_u (dofs_per_cell); - Vector old_dof_values_v (dofs_per_cell); - old_cell->get_dof_values (previous_time_level.u, old_dof_values_u); - old_cell->get_dof_values (previous_time_level.v, old_dof_values_v); - - distribute_to_children (new_cell, fe_values, - old_dof_values_u, old_dof_values_v, - right_hand_side1, right_hand_side2); - - return; - }; - - Assert (false, ExcInternalError()); -}; - - -template -unsigned int -TimeStep_Primal::collect_from_children (const DoFHandler::cell_iterator &old_cell, - FEValues &fe_values, - Vector &rhs1, - Vector &rhs2) const { - unsigned int level_difference = 1; - - const TimeStep_Primal &previous_time_level - = static_cast*>(previous_timestep)->get_timestep_primal(); - - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const double time_step = get_backward_timestep(); - - -FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - - Vector local_old_dof_values_u (dofs_per_cell); - Vector local_old_dof_values_v (dofs_per_cell); - - Vector local_M_u (dofs_per_cell); - Vector local_M_v (dofs_per_cell); - Vector local_A_u (dofs_per_cell); - Vector child_rhs1 (dofs_per_cell); - - Vector child_rhs2 (dofs_per_cell); - - for (unsigned int c=0; c::children_per_cell; ++c) - { - const DoFHandler::cell_iterator old_child = old_cell->child(c); - - child_rhs1.clear (); - child_rhs2.clear (); - - if (old_child->has_children()) - { - const unsigned int l = collect_from_children (old_child, fe_values, - child_rhs1, child_rhs2); - level_difference = max (l+1, level_difference); - } - else - { - fe_values.reinit (old_child); - const FullMatrix &values = fe_values.get_shape_values (); - const vector > >&gradients = fe_values.get_shape_grads (); - const vector &weights = fe_values.get_JxW_values (); - - old_child->get_dof_values (previous_time_level.u, local_old_dof_values_u); - old_child->get_dof_values (previous_time_level.v, local_old_dof_values_v); - - cell_matrix.clear (); - vector density_values(fe_values.n_quadrature_points); - parameters.density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; point stiffness_values(fe_values.n_quadrature_points); - parameters.stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - for (unsigned int point=0; point -unsigned int -TimeStep_Primal::distribute_to_children (const DoFHandler::cell_iterator &new_cell, - FEValues &fe_values, - const Vector &old_dof_values_u, - const Vector &old_dof_values_v, - Vector &right_hand_side1, - Vector &right_hand_side2) { - unsigned int level_difference = 1; - - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const double time_step = get_backward_timestep(); - - FullMatrix cell_matrix(dofs_per_cell, dofs_per_cell); - Vector local_old_dof_values_u (dofs_per_cell); - Vector local_old_dof_values_v (dofs_per_cell); - - Vector local_M_u (dofs_per_cell); - Vector local_M_v (dofs_per_cell); - Vector local_A_u (dofs_per_cell); - - Vector rhs1 (dofs_per_cell); - - Vector rhs2 (dofs_per_cell); - - vector new_dof_indices (dofs_per_cell, DoFHandler::invalid_dof_index); - - - for (unsigned int c=0; c::children_per_cell; ++c) - { - const DoFHandler::cell_iterator new_child = new_cell->child(c); - - fe.prolongate(c).vmult (local_old_dof_values_u, - old_dof_values_u); - fe.prolongate(c).vmult (local_old_dof_values_v, - old_dof_values_v); - - if (new_child->has_children()) - { - const unsigned int l = distribute_to_children (new_child, fe_values, - local_old_dof_values_u, - local_old_dof_values_v, - right_hand_side1, - right_hand_side2); - level_difference = max (l+1, level_difference); - } - else - { - fe_values.reinit (new_child); - const FullMatrix &values = fe_values.get_shape_values (); - const vector > >&gradients = fe_values.get_shape_grads (); - const vector &weights = fe_values.get_JxW_values (); - - cell_matrix.clear (); - vector density_values(fe_values.n_quadrature_points); - parameters.density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; point stiffness_values(fe_values.n_quadrature_points); - parameters.stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - for (unsigned int point=0; pointget_dof_indices (new_dof_indices); - for (unsigned int i=0; i; -/* $Id$ */ - -#include - - -void UserMatrix::precondition (Vector &dst, - const Vector &src) const { - switch (preconditioning) - { - case jacobi: - precondition_Jacobi (dst, src); - return; - case sor: - precondition_SOR (dst, src); - return; - case ssor: - precondition_SSOR (dst, src); - return; - default: - dst = src; - return; - }; -}; - - -/* $Id$ */ - - -#include -#include - - - -const FEQ1<2> FEHelper<2>::fe_linear; -const FEQ2<2> FEHelper<2>::fe_quadratic_sub; -#if 2 < 3 -const FEQ3<2> FEHelper<2>::fe_cubic_sub; -const FEQ4<2> FEHelper<2>::fe_quartic_sub; -#endif - -const QGauss2<2> FEHelper<2>::q_gauss_2; -const QGauss3<2> FEHelper<2>::q_gauss_3; -const QGauss4<2> FEHelper<2>::q_gauss_4; -const QGauss5<2> FEHelper<2>::q_gauss_5; -const QGauss6<2> FEHelper<2>::q_gauss_6; -const QGauss7<2> FEHelper<2>::q_gauss_7; - -#if 2 > 1 -const QGauss2<2-1> FEHelper<2>::q_gauss_2_face; -const QGauss3<2-1> FEHelper<2>::q_gauss_3_face; -const QGauss4<2-1> FEHelper<2>::q_gauss_4_face; -const QGauss5<2-1> FEHelper<2>::q_gauss_5_face; -const QGauss6<2-1> FEHelper<2>::q_gauss_6_face; -const QGauss7<2-1> FEHelper<2>::q_gauss_7_face; -#endif - - -template -const FiniteElement & FEHelper::get_fe (const string &name) { - if (name=="linear") - return fe_linear; - else - if (name=="quadratic") - return fe_quadratic_sub; -#if 2 < 3 - else - if (name=="cubic") - return fe_cubic_sub; - else - if (name=="quartic") - return fe_quartic_sub; -#endif - - Assert (false, ExcInternalError()); - - return fe_linear; -}; - - -template -const Quadrature &FEHelper::get_quadrature (const string &name) { - if (name=="linear") - return q_gauss_2; - else - if (name=="quadratic") - return q_gauss_3; -#if 2 < 3 - else - if (name=="cubic") - return q_gauss_4; - else - if (name=="quartic") - return q_gauss_5; -#endif - - Assert (false, ExcInternalError()); - - return q_gauss_2; -}; - - -template <> -const Quadrature<0> &FEHelper<1>::get_quadrature_face (const string &) { - static const Quadrature<0> dummy_quadrature(1); - return dummy_quadrature; -}; - - -template -const Quadrature &FEHelper::get_quadrature_face (const string &name) { - if (name=="linear") - return q_gauss_2_face; - else - if (name=="quadratic") - return q_gauss_3_face; -#if 2 < 3 - else - if (name=="cubic") - return q_gauss_4_face; - else - if (name=="quartic") - return q_gauss_5_face; -#endif - - Assert (false, ExcInternalError()); - - return q_gauss_2_face; -}; - - -string int_to_string (const unsigned int i, const unsigned int digits) { - string s; - switch (digits) - { - case 4: - s += '0' + i/1000; - case 3: - s += '0' + (i%1000)/100; - case 2: - s += '0' + (i%100)/10; - case 1: - s += '0' + i%10; - break; - default: - s += "invalid digits information"; - }; - return s; -}; - - -template class FEHelper<2>; - - -/* $Id$ */ - - -#include -#include -#include -#include -#include - - -template -WaveProblem::WaveProblem () -{}; - - -template -WaveProblem::~WaveProblem () -{}; - - -template -void WaveProblem::declare_parameters (ParameterHandler &prm) -{ - parameters.declare_parameters (prm); -}; - - -template -void WaveProblem::parse_parameters (ParameterHandler &prm) -{ - parameters.parse_parameters (prm); -}; - - -template -void WaveProblem::create_new (const unsigned int) -{ - parameters.delete_parameters (); -}; - - -template -void WaveProblem::run (ParameterHandler &prm) -{ - parse_parameters (prm); - - - TimestepManager timestep_manager (parameters); - if (true) { - timestep_manager.add_timestep (new TimeStep(0, parameters)); - double time = 0; - unsigned int step_no = 0; - double local_time_step; - - while (time= parameters.end_time) - local_time_step = parameters.end_time-time; - else - if (time+2*parameters.time_step >= parameters.end_time) - local_time_step = (parameters.end_time-time)/2; - else - local_time_step = parameters.time_step; - - time += local_time_step; - - timestep_manager.add_timestep (new TimeStep(time, parameters)); - }; - }; - - - for (unsigned int sweep=0; sweep waves; - MultipleParameterLoop input_data; - - waves.declare_parameters(input_data); - - try - { - input_data.read_input ("wave-test-3.prm"); - } - catch (exception &e) - { - cerr << endl << endl - << "----------------------------------------------------" - << endl; - cerr << "Exception on input: " << e.what() << endl - << "Aborting!" << endl - << "----------------------------------------------------" - << endl; - return 1; - }; - - try - { - input_data.loop (waves); - } - catch (exception &e) - { - cerr << endl << endl - << "----------------------------------------------------" - << endl; - cerr << "Exception on processing: " << e.what() << endl - << "Aborting!" << endl - << "----------------------------------------------------" - << endl; - return 2; - } - catch (...) - { - cerr << endl << endl - << "----------------------------------------------------" - << endl; - cerr << "Unknown exception!" << endl - << "Aborting!" << endl - << "----------------------------------------------------" - << endl; - return 3; - }; - - -return 0; -}; - - diff --git a/tests/deal.II/wave-test-3.checked b/tests/deal.II/wave-test-3.checked deleted file mode 100644 index 61f0d19b68..0000000000 --- a/tests/deal.II/wave-test-3.checked +++ /dev/null @@ -1,3313 +0,0 @@ - -DEAL::Sweep 0 : -DEAL::--------- -DEAL:: Primal problem: time=0.00, step=0, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 0 -DEAL:cg::Starting -DEAL:cg::Convergence step 15 -DEAL:cg::Starting -DEAL:cg::Convergence step 0 -DEAL:cg::Starting -DEAL:cg::Convergence step 0 -DEAL::. -DEAL:: Primal problem: time=0.02, step=1, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.05, step=2, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.08, step=3, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.11, step=4, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.14, step=5, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.16, step=6, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.19, step=7, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.22, step=8, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.25, step=9, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.28, step=10, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.30, step=11, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.33, step=12, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.36, step=13, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.39, step=14, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.42, step=15, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.44, step=16, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.47, step=17, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.50, step=18, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.53, step=19, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.56, step=20, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.58, step=21, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.61, step=22, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.64, step=23, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.67, step=24, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.70, step=25, sweep=0. 256 cells, 289 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. - -DEAL:: Dual problem: time=0.70, step=25, sweep=0. 256 cells, 1089 dofs. -DEAL:: Dual problem: time=0.67, step=24, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 5 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.64, step=23, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 6 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.61, step=22, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 6 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.58, step=21, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 6 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.56, step=20, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 6 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.53, step=19, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 6 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.50, step=18, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 6 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.47, step=17, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 6 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.44, step=16, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 6 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.42, step=15, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.39, step=14, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.36, step=13, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.33, step=12, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.30, step=11, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.28, step=10, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.25, step=9, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.22, step=8, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.19, step=7, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.16, step=6, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.14, step=5, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.11, step=4, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.08, step=3, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.05, step=2, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.02, step=1, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.00, step=0, sweep=0. 256 cells, 1089 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. - -DEAL:: Postprocessing: time=0.00, step=0, sweep=0. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library -%% -%%BoundingBox: 0 0 300 189 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50 setlinewidth -0.00 0.00 0.40 s 102.94 144.05 m 114.83 140.62 l 121.69 146.56 l 109.80 150.00 lf -0 sg 102.94 144.05 m 114.83 140.62 l 121.69 146.56 l 109.80 150.00 lx -0.00 0.00 0.40 s 114.83 140.62 m 126.71 137.19 l 133.58 143.13 l 121.69 146.56 lf -0 sg 114.83 140.62 m 126.71 137.19 l 133.58 143.13 l 121.69 146.56 lx -0.00 0.00 0.40 s 96.08 138.11 m 107.96 134.68 l 114.83 140.62 l 102.94 144.05 lf -0 sg 96.08 138.11 m 107.96 134.68 l 114.83 140.62 l 102.94 144.05 lx -0.00 0.00 0.40 s 126.71 137.19 m 138.60 133.76 l 145.46 139.70 l 133.58 143.13 lf -0 sg 126.71 137.19 m 138.60 133.76 l 145.46 139.70 l 133.58 143.13 lx -0.00 0.00 0.40 s 107.96 134.68 m 119.85 131.25 l 126.71 137.19 l 114.83 140.62 lf -0 sg 107.96 134.68 m 119.85 131.25 l 126.71 137.19 l 114.83 140.62 lx -0.00 0.00 0.40 s 138.60 133.76 m 150.49 130.33 l 157.35 136.27 l 145.46 139.70 lf -0 sg 138.60 133.76 m 150.49 130.33 l 157.35 136.27 l 145.46 139.70 lx -0.00 0.00 0.40 s 89.21 132.16 m 101.10 128.73 l 107.96 134.68 l 96.08 138.11 lf -0 sg 89.21 132.16 m 101.10 128.73 l 107.96 134.68 l 96.08 138.11 lx -0.00 0.00 0.40 s 119.85 131.25 m 131.74 127.81 l 138.60 133.76 l 126.71 137.19 lf -0 sg 119.85 131.25 m 131.74 127.81 l 138.60 133.76 l 126.71 137.19 lx -0.00 0.00 0.40 s 150.49 130.33 m 162.37 126.89 l 169.24 132.84 l 157.35 136.27 lf -0 sg 150.49 130.33 m 162.37 126.89 l 169.24 132.84 l 157.35 136.27 lx -0.00 0.00 0.40 s 101.10 128.73 m 112.99 125.30 l 119.85 131.25 l 107.96 134.68 lf -0 sg 101.10 128.73 m 112.99 125.30 l 119.85 131.25 l 107.96 134.68 lx -0.00 0.00 0.40 s 131.74 127.81 m 143.62 124.38 l 150.49 130.33 l 138.60 133.76 lf -0 sg 131.74 127.81 m 143.62 124.38 l 150.49 130.33 l 138.60 133.76 lx -0.00 0.00 0.40 s 162.37 126.89 m 174.26 123.46 l 181.12 129.41 l 169.24 132.84 lf -0 sg 162.37 126.89 m 174.26 123.46 l 181.12 129.41 l 169.24 132.84 lx -0.00 0.00 0.40 s 82.35 126.22 m 94.24 122.79 l 101.10 128.73 l 89.21 132.16 lf -0 sg 82.35 126.22 m 94.24 122.79 l 101.10 128.73 l 89.21 132.16 lx -0.00 0.00 0.40 s 112.99 125.30 m 124.87 121.87 l 131.74 127.81 l 119.85 131.25 lf -0 sg 112.99 125.30 m 124.87 121.87 l 131.74 127.81 l 119.85 131.25 lx -0.00 0.00 0.40 s 143.62 124.38 m 155.51 120.95 l 162.37 126.89 l 150.49 130.33 lf -0 sg 143.62 124.38 m 155.51 120.95 l 162.37 126.89 l 150.49 130.33 lx -0.00 0.00 0.40 s 174.26 123.46 m 186.15 120.03 l 193.01 125.97 l 181.12 129.41 lf -0 sg 174.26 123.46 m 186.15 120.03 l 193.01 125.97 l 181.12 129.41 lx -0.00 0.00 0.40 s 94.24 122.79 m 106.12 119.36 l 112.99 125.30 l 101.10 128.73 lf -0 sg 94.24 122.79 m 106.12 119.36 l 112.99 125.30 l 101.10 128.73 lx -0.00 0.00 0.40 s 124.87 121.87 m 136.76 118.44 l 143.62 124.38 l 131.74 127.81 lf -0 sg 124.87 121.87 m 136.76 118.44 l 143.62 124.38 l 131.74 127.81 lx -0.00 0.00 0.40 s 155.51 120.95 m 167.40 117.52 l 174.26 123.46 l 162.37 126.89 lf -0 sg 155.51 120.95 m 167.40 117.52 l 174.26 123.46 l 162.37 126.89 lx -0.00 0.00 0.40 s 75.49 120.28 m 87.37 116.85 l 94.24 122.79 l 82.35 126.22 lf -0 sg 75.49 120.28 m 87.37 116.85 l 94.24 122.79 l 82.35 126.22 lx -0.00 0.00 0.40 s 186.15 120.03 m 198.04 116.59 l 204.90 122.54 l 193.01 125.97 lf -0 sg 186.15 120.03 m 198.04 116.59 l 204.90 122.54 l 193.01 125.97 lx -0.00 0.00 0.40 s 106.12 119.36 m 118.01 115.93 l 124.87 121.87 l 112.99 125.30 lf -0 sg 106.12 119.36 m 118.01 115.93 l 124.87 121.87 l 112.99 125.30 lx -0.00 0.00 0.40 s 136.76 118.44 m 148.65 115.01 l 155.51 120.95 l 143.62 124.38 lf -0 sg 136.76 118.44 m 148.65 115.01 l 155.51 120.95 l 143.62 124.38 lx -0.00 0.00 0.40 s 167.40 117.52 m 179.29 114.08 l 186.15 120.03 l 174.26 123.46 lf -0 sg 167.40 117.52 m 179.29 114.08 l 186.15 120.03 l 174.26 123.46 lx -0.00 0.00 0.40 s 87.37 116.85 m 99.26 113.41 l 106.12 119.36 l 94.24 122.79 lf -0 sg 87.37 116.85 m 99.26 113.41 l 106.12 119.36 l 94.24 122.79 lx -0.00 0.00 0.40 s 198.04 116.59 m 209.92 113.17 l 216.79 119.11 l 204.90 122.54 lf -0 sg 198.04 116.59 m 209.92 113.17 l 216.79 119.11 l 204.90 122.54 lx -0.00 0.00 0.40 s 118.01 115.93 m 129.90 112.50 l 136.76 118.44 l 124.87 121.87 lf -0 sg 118.01 115.93 m 129.90 112.50 l 136.76 118.44 l 124.87 121.87 lx -0.00 0.00 0.40 s 148.65 115.01 m 160.54 111.57 l 167.40 117.52 l 155.51 120.95 lf -0 sg 148.65 115.01 m 160.54 111.57 l 167.40 117.52 l 155.51 120.95 lx -0.00 0.00 0.40 s 68.62 114.33 m 80.51 110.90 l 87.37 116.85 l 75.49 120.28 lf -0 sg 68.62 114.33 m 80.51 110.90 l 87.37 116.85 l 75.49 120.28 lx -0.00 0.00 0.40 s 179.29 114.08 m 191.17 110.68 l 198.04 116.59 l 186.15 120.03 lf -0 sg 179.29 114.08 m 191.17 110.68 l 198.04 116.59 l 186.15 120.03 lx -0.00 0.00 0.40 s 99.26 113.41 m 111.15 109.98 l 118.01 115.93 l 106.12 119.36 lf -0 sg 99.26 113.41 m 111.15 109.98 l 118.01 115.93 l 106.12 119.36 lx -0.00 0.00 0.40 s 209.92 113.17 m 221.81 109.74 l 228.67 115.68 l 216.79 119.11 lf -0 sg 209.92 113.17 m 221.81 109.74 l 228.67 115.68 l 216.79 119.11 lx -0.00 0.00 0.40 s 129.90 112.50 m 141.79 109.06 l 148.65 115.01 l 136.76 118.44 lf -0 sg 129.90 112.50 m 141.79 109.06 l 148.65 115.01 l 136.76 118.44 lx -0.00 0.00 0.40 s 160.54 111.57 m 172.42 108.15 l 179.29 114.08 l 167.40 117.52 lf -0 sg 160.54 111.57 m 172.42 108.15 l 179.29 114.08 l 167.40 117.52 lx -0.00 0.00 0.40 s 80.51 110.90 m 92.40 107.47 l 99.26 113.41 l 87.37 116.85 lf -0 sg 80.51 110.90 m 92.40 107.47 l 99.26 113.41 l 87.37 116.85 lx -0.00 0.00 0.40 s 191.17 110.68 m 203.06 107.22 l 209.92 113.17 l 198.04 116.59 lf -0 sg 191.17 110.68 m 203.06 107.22 l 209.92 113.17 l 198.04 116.59 lx -0.00 0.00 0.40 s 111.15 109.98 m 123.04 106.55 l 129.90 112.50 l 118.01 115.93 lf -0 sg 111.15 109.98 m 123.04 106.55 l 129.90 112.50 l 118.01 115.93 lx -0.00 0.00 0.40 s 221.81 109.74 m 233.70 106.31 l 240.56 112.25 l 228.67 115.68 lf -0 sg 221.81 109.74 m 233.70 106.31 l 240.56 112.25 l 228.67 115.68 lx -0.00 0.00 0.40 s 141.79 109.06 m 153.67 105.64 l 160.54 111.57 l 148.65 115.01 lf -0 sg 141.79 109.06 m 153.67 105.64 l 160.54 111.57 l 148.65 115.01 lx -0.00 0.00 0.40 s 61.76 108.39 m 73.65 104.96 l 80.51 110.90 l 68.62 114.33 lf -0 sg 61.76 108.39 m 73.65 104.96 l 80.51 110.90 l 68.62 114.33 lx -0.00 0.00 0.40 s 172.42 108.15 m 184.31 104.63 l 191.17 110.68 l 179.29 114.08 lf -0 sg 172.42 108.15 m 184.31 104.63 l 191.17 110.68 l 179.29 114.08 lx -0.00 0.00 0.40 s 92.40 107.47 m 104.29 104.04 l 111.15 109.98 l 99.26 113.41 lf -0 sg 92.40 107.47 m 104.29 104.04 l 111.15 109.98 l 99.26 113.41 lx -0.00 0.00 0.40 s 203.06 107.22 m 214.95 103.79 l 221.81 109.74 l 209.92 113.17 lf -0 sg 203.06 107.22 m 214.95 103.79 l 221.81 109.74 l 209.92 113.17 lx -0.00 0.00 0.40 s 123.04 106.55 m 134.92 103.13 l 141.79 109.06 l 129.90 112.50 lf -0 sg 123.04 106.55 m 134.92 103.13 l 141.79 109.06 l 129.90 112.50 lx -0.00 0.00 0.40 s 233.70 106.31 m 245.58 102.87 l 252.45 108.82 l 240.56 112.25 lf -0 sg 233.70 106.31 m 245.58 102.87 l 252.45 108.82 l 240.56 112.25 lx -0.00 0.00 0.40 s 153.67 105.64 m 165.56 102.16 l 172.42 108.15 l 160.54 111.57 lf -0 sg 153.67 105.64 m 165.56 102.16 l 172.42 108.15 l 160.54 111.57 lx -0.00 0.00 0.40 s 73.65 104.96 m 85.54 101.52 l 92.40 107.47 l 80.51 110.90 lf -0 sg 73.65 104.96 m 85.54 101.52 l 92.40 107.47 l 80.51 110.90 lx -0.00 0.00 0.40 s 184.31 104.63 m 196.20 101.29 l 203.06 107.22 l 191.17 110.68 lf -0 sg 184.31 104.63 m 196.20 101.29 l 203.06 107.22 l 191.17 110.68 lx -0.00 0.00 0.40 s 104.29 104.04 m 116.17 100.62 l 123.04 106.55 l 111.15 109.98 lf -0 sg 104.29 104.04 m 116.17 100.62 l 123.04 106.55 l 111.15 109.98 lx -0.00 0.00 0.40 s 214.95 103.79 m 226.83 100.36 l 233.70 106.31 l 221.81 109.74 lf -0 sg 214.95 103.79 m 226.83 100.36 l 233.70 106.31 l 221.81 109.74 lx -0.00 0.00 0.40 s 134.92 103.13 m 146.81 99.65 l 153.67 105.64 l 141.79 109.06 lf -0 sg 134.92 103.13 m 146.81 99.65 l 153.67 105.64 l 141.79 109.06 lx -0.00 0.00 0.40 s 245.58 102.87 m 257.47 99.44 l 264.33 105.39 l 252.45 108.82 lf -0 sg 245.58 102.87 m 257.47 99.44 l 264.33 105.39 l 252.45 108.82 lx -0.00 0.00 0.40 s 54.90 102.45 m 66.79 99.01 l 73.65 104.96 l 61.76 108.39 lf -0 sg 54.90 102.45 m 66.79 99.01 l 73.65 104.96 l 61.76 108.39 lx -0.00 0.00 0.41 s 165.56 102.16 m 177.45 99.06 l 184.31 104.63 l 172.42 108.15 lf -0 sg 165.56 102.16 m 177.45 99.06 l 184.31 104.63 l 172.42 108.15 lx -0.00 0.00 0.40 s 85.54 101.52 m 97.42 98.11 l 104.29 104.04 l 92.40 107.47 lf -0 sg 85.54 101.52 m 97.42 98.11 l 104.29 104.04 l 92.40 107.47 lx -0.00 0.00 0.40 s 196.20 101.29 m 208.08 97.85 l 214.95 103.79 l 203.06 107.22 lf -0 sg 196.20 101.29 m 208.08 97.85 l 214.95 103.79 l 203.06 107.22 lx -0.00 0.00 0.40 s 116.17 100.62 m 128.06 97.14 l 134.92 103.13 l 123.04 106.55 lf -0 sg 116.17 100.62 m 128.06 97.14 l 134.92 103.13 l 123.04 106.55 lx -0.00 0.00 0.40 s 226.83 100.36 m 238.72 96.93 l 245.58 102.87 l 233.70 106.31 lf -0 sg 226.83 100.36 m 238.72 96.93 l 245.58 102.87 l 233.70 106.31 lx -0.00 0.00 0.41 s 146.81 99.65 m 158.70 96.40 l 165.56 102.16 l 153.67 105.64 lf -0 sg 146.81 99.65 m 158.70 96.40 l 165.56 102.16 l 153.67 105.64 lx -0.00 0.00 0.40 s 257.47 99.44 m 269.36 96.01 l 276.22 101.95 l 264.33 105.39 lf -0 sg 257.47 99.44 m 269.36 96.01 l 276.22 101.95 l 264.33 105.39 lx -0.00 0.00 0.40 s 66.79 99.01 m 78.67 95.60 l 85.54 101.52 l 73.65 104.96 lf -0 sg 66.79 99.01 m 78.67 95.60 l 85.54 101.52 l 73.65 104.96 lx -0.00 0.00 0.41 s 177.45 99.06 m 189.33 95.30 l 196.20 101.29 l 184.31 104.63 lf -0 sg 177.45 99.06 m 189.33 95.30 l 196.20 101.29 l 184.31 104.63 lx -0.00 0.00 0.40 s 97.42 98.11 m 109.31 94.62 l 116.17 100.62 l 104.29 104.04 lf -0 sg 97.42 98.11 m 109.31 94.62 l 116.17 100.62 l 104.29 104.04 lx -0.00 0.00 0.40 s 208.08 97.85 m 219.97 94.42 l 226.83 100.36 l 214.95 103.79 lf -0 sg 208.08 97.85 m 219.97 94.42 l 226.83 100.36 l 214.95 103.79 lx -0.00 0.00 0.41 s 128.06 97.14 m 139.95 93.89 l 146.81 99.65 l 134.92 103.13 lf -0 sg 128.06 97.14 m 139.95 93.89 l 146.81 99.65 l 134.92 103.13 lx -0.00 0.00 0.40 s 238.72 96.93 m 250.61 93.50 l 257.47 99.44 l 245.58 102.87 lf -0 sg 238.72 96.93 m 250.61 93.50 l 257.47 99.44 l 245.58 102.87 lx -0.00 0.00 0.40 s 48.04 96.50 m 59.92 93.07 l 66.79 99.01 l 54.90 102.45 lf -0 sg 48.04 96.50 m 59.92 93.07 l 66.79 99.01 l 54.90 102.45 lx -0.00 0.00 0.37 s 158.70 96.40 m 170.58 91.72 l 177.45 99.06 l 165.56 102.16 lf -0 sg 158.70 96.40 m 170.58 91.72 l 177.45 99.06 l 165.56 102.16 lx -0.00 0.00 0.40 s 269.36 96.01 m 281.25 92.58 l 288.11 98.52 l 276.22 101.95 lf -0 sg 269.36 96.01 m 281.25 92.58 l 288.11 98.52 l 276.22 101.95 lx -0.00 0.00 0.40 s 78.67 95.60 m 90.56 92.07 l 97.42 98.11 l 85.54 101.52 lf -0 sg 78.67 95.60 m 90.56 92.07 l 97.42 98.11 l 85.54 101.52 lx -0.00 0.00 0.40 s 189.33 95.30 m 201.22 91.92 l 208.08 97.85 l 196.20 101.29 lf -0 sg 189.33 95.30 m 201.22 91.92 l 208.08 97.85 l 196.20 101.29 lx -0.00 0.00 0.41 s 109.31 94.62 m 121.20 91.38 l 128.06 97.14 l 116.17 100.62 lf -0 sg 109.31 94.62 m 121.20 91.38 l 128.06 97.14 l 116.17 100.62 lx -0.00 0.00 0.40 s 219.97 94.42 m 231.86 90.99 l 238.72 96.93 l 226.83 100.36 lf -0 sg 219.97 94.42 m 231.86 90.99 l 238.72 96.93 l 226.83 100.36 lx -0.00 0.00 0.39 s 139.95 93.89 m 151.83 89.76 l 158.70 96.40 l 146.81 99.65 lf -0 sg 139.95 93.89 m 151.83 89.76 l 158.70 96.40 l 146.81 99.65 lx -0.00 0.00 0.40 s 250.61 93.50 m 262.50 90.07 l 269.36 96.01 l 257.47 99.44 lf -0 sg 250.61 93.50 m 262.50 90.07 l 269.36 96.01 l 257.47 99.44 lx -0.00 0.00 0.40 s 59.92 93.07 m 71.81 89.64 l 78.67 95.60 l 66.79 99.01 lf -0 sg 59.92 93.07 m 71.81 89.64 l 78.67 95.60 l 66.79 99.01 lx -0.00 0.00 0.37 s 170.58 91.72 m 182.47 89.54 l 189.33 95.30 l 177.45 99.06 lf -0 sg 170.58 91.72 m 182.47 89.54 l 189.33 95.30 l 177.45 99.06 lx -0.00 0.00 0.40 s 281.25 92.58 m 293.13 89.15 l 300.00 95.09 l 288.11 98.52 lf -0 sg 281.25 92.58 m 293.13 89.15 l 300.00 95.09 l 288.11 98.52 lx -0.00 0.00 0.41 s 90.56 92.07 m 102.45 89.02 l 109.31 94.62 l 97.42 98.11 lf -0 sg 90.56 92.07 m 102.45 89.02 l 109.31 94.62 l 97.42 98.11 lx -0.00 0.00 0.40 s 201.22 91.92 m 213.11 88.47 l 219.97 94.42 l 208.08 97.85 lf -0 sg 201.22 91.92 m 213.11 88.47 l 219.97 94.42 l 208.08 97.85 lx -0.00 0.00 0.39 s 121.20 91.38 m 133.08 87.25 l 139.95 93.89 l 128.06 97.14 lf -0 sg 121.20 91.38 m 133.08 87.25 l 139.95 93.89 l 128.06 97.14 lx -0.00 0.00 0.40 s 231.86 90.99 m 243.75 87.56 l 250.61 93.50 l 238.72 96.93 lf -0 sg 231.86 90.99 m 243.75 87.56 l 250.61 93.50 l 238.72 96.93 lx -0.00 0.00 0.40 s 41.17 90.56 m 53.06 87.13 l 59.92 93.07 l 48.04 96.50 lf -0 sg 41.17 90.56 m 53.06 87.13 l 59.92 93.07 l 48.04 96.50 lx -0.00 0.00 0.51 s 151.83 89.76 m 163.72 90.99 l 170.58 91.72 l 158.70 96.40 lf -0 sg 151.83 89.76 m 163.72 90.99 l 170.58 91.72 l 158.70 96.40 lx -0.00 0.00 0.40 s 262.50 90.07 m 274.38 86.64 l 281.25 92.58 l 269.36 96.01 lf -0 sg 262.50 90.07 m 274.38 86.64 l 281.25 92.58 l 269.36 96.01 lx -0.00 0.00 0.40 s 71.81 89.64 m 83.70 86.22 l 90.56 92.07 l 78.67 95.60 lf -0 sg 71.81 89.64 m 83.70 86.22 l 90.56 92.07 l 78.67 95.60 lx -0.00 0.00 0.41 s 182.47 89.54 m 194.36 85.92 l 201.22 91.92 l 189.33 95.30 lf -0 sg 182.47 89.54 m 194.36 85.92 l 201.22 91.92 l 189.33 95.30 lx -0.00 0.00 0.37 s 102.45 89.02 m 114.33 84.19 l 121.20 91.38 l 109.31 94.62 lf -0 sg 102.45 89.02 m 114.33 84.19 l 121.20 91.38 l 109.31 94.62 lx -0.00 0.00 0.40 s 213.11 88.47 m 225.00 85.04 l 231.86 90.99 l 219.97 94.42 lf -0 sg 213.11 88.47 m 225.00 85.04 l 231.86 90.99 l 219.97 94.42 lx -0.00 0.00 0.45 s 133.08 87.25 m 144.97 86.42 l 151.83 89.76 l 139.95 93.89 lf -0 sg 133.08 87.25 m 144.97 86.42 l 151.83 89.76 l 139.95 93.89 lx -0.00 0.00 0.40 s 243.75 87.56 m 255.63 84.12 l 262.50 90.07 l 250.61 93.50 lf -0 sg 243.75 87.56 m 255.63 84.12 l 262.50 90.07 l 250.61 93.50 lx -0.00 0.00 0.40 s 53.06 87.13 m 64.95 83.70 l 71.81 89.64 l 59.92 93.07 lf -0 sg 53.06 87.13 m 64.95 83.70 l 71.81 89.64 l 59.92 93.07 lx -0.00 0.00 0.51 s 163.72 90.99 m 175.61 82.90 l 182.47 89.54 l 170.58 91.72 lf -0 sg 163.72 90.99 m 175.61 82.90 l 182.47 89.54 l 170.58 91.72 lx -0.00 0.00 0.40 s 274.38 86.64 m 286.27 83.20 l 293.13 89.15 l 281.25 92.58 lf -0 sg 274.38 86.64 m 286.27 83.20 l 293.13 89.15 l 281.25 92.58 lx -0.00 0.00 0.41 s 83.70 86.22 m 95.58 82.74 l 102.45 89.02 l 90.56 92.07 lf -0 sg 83.70 86.22 m 95.58 82.74 l 102.45 89.02 l 90.56 92.07 lx -0.00 0.00 0.40 s 194.36 85.92 m 206.25 82.54 l 213.11 88.47 l 201.22 91.92 lf -0 sg 194.36 85.92 m 206.25 82.54 l 213.11 88.47 l 201.22 91.92 lx -0.00 0.00 0.00 s 144.97 86.42 m 156.86 65.61 l 163.72 90.99 l 151.83 89.76 lf -0 sg 144.97 86.42 m 156.86 65.61 l 163.72 90.99 l 151.83 89.76 lx -0.00 0.00 0.51 s 114.33 84.19 m 126.22 85.97 l 133.08 87.25 l 121.20 91.38 lf -0 sg 114.33 84.19 m 126.22 85.97 l 133.08 87.25 l 121.20 91.38 lx -0.00 0.00 0.40 s 225.00 85.04 m 236.88 81.61 l 243.75 87.56 l 231.86 90.99 lf -0 sg 225.00 85.04 m 236.88 81.61 l 243.75 87.56 l 231.86 90.99 lx -0.00 0.00 0.40 s 34.31 84.62 m 46.20 81.18 l 53.06 87.13 l 41.17 90.56 lf -0 sg 34.31 84.62 m 46.20 81.18 l 53.06 87.13 l 41.17 90.56 lx -0.00 0.00 0.40 s 255.63 84.12 m 267.52 80.69 l 274.38 86.64 l 262.50 90.07 lf -0 sg 255.63 84.12 m 267.52 80.69 l 274.38 86.64 l 262.50 90.07 lx -0.00 0.00 0.40 s 64.95 83.70 m 76.83 80.26 l 83.70 86.22 l 71.81 89.64 lf -0 sg 64.95 83.70 m 76.83 80.26 l 83.70 86.22 l 71.81 89.64 lx -0.00 0.00 0.39 s 175.61 82.90 m 187.50 80.17 l 194.36 85.92 l 182.47 89.54 lf -0 sg 175.61 82.90 m 187.50 80.17 l 194.36 85.92 l 182.47 89.54 lx -0.00 0.00 0.37 s 95.58 82.74 m 107.47 79.49 l 114.33 84.19 l 102.45 89.02 lf -0 sg 95.58 82.74 m 107.47 79.49 l 114.33 84.19 l 102.45 89.02 lx -0.00 0.00 0.00 s 126.22 85.97 m 138.11 63.10 l 144.97 86.42 l 133.08 87.25 lf -0 sg 126.22 85.97 m 138.11 63.10 l 144.97 86.42 l 133.08 87.25 lx -0.00 0.00 0.40 s 206.25 82.54 m 218.13 79.10 l 225.00 85.04 l 213.11 88.47 lf -0 sg 206.25 82.54 m 218.13 79.10 l 225.00 85.04 l 213.11 88.47 lx -0.00 0.00 0.00 s 156.86 65.61 m 168.75 79.56 l 175.61 82.90 l 163.72 90.99 lf -0 sg 156.86 65.61 m 168.75 79.56 l 175.61 82.90 l 163.72 90.99 lx -0.00 0.00 0.40 s 236.88 81.61 m 248.77 78.18 l 255.63 84.12 l 243.75 87.56 lf -0 sg 236.88 81.61 m 248.77 78.18 l 255.63 84.12 l 243.75 87.56 lx -0.00 0.00 0.40 s 46.20 81.18 m 58.08 77.75 l 64.95 83.70 l 53.06 87.13 lf -0 sg 46.20 81.18 m 58.08 77.75 l 64.95 83.70 l 53.06 87.13 lx -0.00 0.00 0.40 s 267.52 80.69 m 279.41 77.26 l 286.27 83.20 l 274.38 86.64 lf -0 sg 267.52 80.69 m 279.41 77.26 l 286.27 83.20 l 274.38 86.64 lx -0.00 0.00 0.40 s 76.83 80.26 m 88.72 76.84 l 95.58 82.74 l 83.70 86.22 lf -0 sg 76.83 80.26 m 88.72 76.84 l 95.58 82.74 l 83.70 86.22 lx -0.00 0.00 0.41 s 187.50 80.17 m 199.38 76.55 l 206.25 82.54 l 194.36 85.92 lf -0 sg 187.50 80.17 m 199.38 76.55 l 206.25 82.54 l 194.36 85.92 lx -0.00 0.00 0.51 s 107.47 79.49 m 119.36 75.36 l 126.22 85.97 l 114.33 84.19 lf -0 sg 107.47 79.49 m 119.36 75.36 l 126.22 85.97 l 114.33 84.19 lx -0.00 0.00 0.40 s 218.13 79.10 m 230.02 75.67 l 236.88 81.61 l 225.00 85.04 lf -0 sg 218.13 79.10 m 230.02 75.67 l 236.88 81.61 l 225.00 85.04 lx -0.00 0.00 0.40 s 27.45 78.67 m 39.33 75.24 l 46.20 81.18 l 34.31 84.62 lf -0 sg 27.45 78.67 m 39.33 75.24 l 46.20 81.18 l 34.31 84.62 lx -0.00 0.00 0.40 s 248.77 78.18 m 260.66 74.75 l 267.52 80.69 l 255.63 84.12 lf -0 sg 248.77 78.18 m 260.66 74.75 l 267.52 80.69 l 255.63 84.12 lx -0.00 0.00 0.40 s 58.08 77.75 m 69.97 74.32 l 76.83 80.26 l 64.95 83.70 lf -0 sg 58.08 77.75 m 69.97 74.32 l 76.83 80.26 l 64.95 83.70 lx -0.00 0.00 0.45 s 168.75 79.56 m 180.63 73.53 l 187.50 80.17 l 175.61 82.90 lf -0 sg 168.75 79.56 m 180.63 73.53 l 187.50 80.17 l 175.61 82.90 lx -0.00 0.00 0.41 s 88.72 76.84 m 100.61 73.36 l 107.47 79.49 l 95.58 82.74 lf -0 sg 88.72 76.84 m 100.61 73.36 l 107.47 79.49 l 95.58 82.74 lx -0.00 0.00 0.00 s 119.36 75.36 m 131.25 74.54 l 138.11 63.10 l 126.22 85.97 lf -0 sg 119.36 75.36 m 131.25 74.54 l 138.11 63.10 l 126.22 85.97 lx -0.00 0.00 0.40 s 199.38 76.55 m 211.27 73.17 l 218.13 79.10 l 206.25 82.54 lf -0 sg 199.38 76.55 m 211.27 73.17 l 218.13 79.10 l 206.25 82.54 lx -0.00 0.00 0.40 s 230.02 75.67 m 241.91 72.24 l 248.77 78.18 l 236.88 81.61 lf -0 sg 230.02 75.67 m 241.91 72.24 l 248.77 78.18 l 236.88 81.61 lx -0.00 0.00 0.40 s 39.33 75.24 m 51.22 71.81 l 58.08 77.75 l 46.20 81.18 lf -0 sg 39.33 75.24 m 51.22 71.81 l 58.08 77.75 l 46.20 81.18 lx -0.00 0.00 0.40 s 260.66 74.75 m 272.54 71.32 l 279.41 77.26 l 267.52 80.69 lf -0 sg 260.66 74.75 m 272.54 71.32 l 279.41 77.26 l 267.52 80.69 lx -0.00 0.00 0.40 s 69.97 74.32 m 81.86 70.89 l 88.72 76.84 l 76.83 80.26 lf -0 sg 69.97 74.32 m 81.86 70.89 l 88.72 76.84 l 76.83 80.26 lx -0.00 0.00 0.39 s 180.63 73.53 m 192.52 70.79 l 199.38 76.55 l 187.50 80.17 lf -0 sg 180.63 73.53 m 192.52 70.79 l 199.38 76.55 l 187.50 80.17 lx -0.00 0.00 0.39 s 100.61 73.36 m 112.50 70.12 l 119.36 75.36 l 107.47 79.49 lf -0 sg 100.61 73.36 m 112.50 70.12 l 119.36 75.36 l 107.47 79.49 lx -0.00 0.00 0.40 s 211.27 73.17 m 223.16 69.72 l 230.02 75.67 l 218.13 79.10 lf -0 sg 211.27 73.17 m 223.16 69.72 l 230.02 75.67 l 218.13 79.10 lx -0.00 0.00 0.40 s 20.58 72.73 m 32.47 69.30 l 39.33 75.24 l 27.45 78.67 lf -0 sg 20.58 72.73 m 32.47 69.30 l 39.33 75.24 l 27.45 78.67 lx -0.00 0.00 0.00 s 161.88 56.23 m 173.77 72.24 l 180.63 73.53 l 168.75 79.56 lf -0 sg 161.88 56.23 m 173.77 72.24 l 180.63 73.53 l 168.75 79.56 lx -0.00 0.00 0.40 s 241.91 72.24 m 253.79 68.81 l 260.66 74.75 l 248.77 78.18 lf -0 sg 241.91 72.24 m 253.79 68.81 l 260.66 74.75 l 248.77 78.18 lx -0.00 0.00 0.40 s 51.22 71.81 m 63.11 68.38 l 69.97 74.32 l 58.08 77.75 lf -0 sg 51.22 71.81 m 63.11 68.38 l 69.97 74.32 l 58.08 77.75 lx -1.00 1.00 1.00 s 138.11 63.10 m 150.00 189.41 l 156.86 65.61 l 144.97 86.42 lf -0 sg 138.11 63.10 m 150.00 189.41 l 156.86 65.61 l 144.97 86.42 lx -0.00 0.00 0.40 s 81.86 70.89 m 93.75 67.47 l 100.61 73.36 l 88.72 76.84 lf -0 sg 81.86 70.89 m 93.75 67.47 l 100.61 73.36 l 88.72 76.84 lx -0.00 0.00 0.41 s 192.52 70.79 m 204.41 67.17 l 211.27 73.17 l 199.38 76.55 lf -0 sg 192.52 70.79 m 204.41 67.17 l 211.27 73.17 l 199.38 76.55 lx -0.00 0.00 0.45 s 112.50 70.12 m 124.38 65.99 l 131.25 74.54 l 119.36 75.36 lf -0 sg 112.50 70.12 m 124.38 65.99 l 131.25 74.54 l 119.36 75.36 lx -0.00 0.00 0.40 s 223.16 69.72 m 235.04 66.29 l 241.91 72.24 l 230.02 75.67 lf -0 sg 223.16 69.72 m 235.04 66.29 l 241.91 72.24 l 230.02 75.67 lx -0.00 0.00 0.40 s 32.47 69.30 m 44.36 65.87 l 51.22 71.81 l 39.33 75.24 lf -0 sg 32.47 69.30 m 44.36 65.87 l 51.22 71.81 l 39.33 75.24 lx -0.00 0.00 0.40 s 253.79 68.81 m 265.68 65.37 l 272.54 71.32 l 260.66 74.75 lf -0 sg 253.79 68.81 m 265.68 65.37 l 272.54 71.32 l 260.66 74.75 lx -0.00 0.00 0.40 s 63.11 68.38 m 75.00 64.95 l 81.86 70.89 l 69.97 74.32 lf -0 sg 63.11 68.38 m 75.00 64.95 l 81.86 70.89 l 69.97 74.32 lx -0.00 0.00 0.51 s 173.77 72.24 m 185.66 63.60 l 192.52 70.79 l 180.63 73.53 lf -0 sg 173.77 72.24 m 185.66 63.60 l 192.52 70.79 l 180.63 73.53 lx -1.00 1.00 1.00 s 150.00 189.41 m 161.88 56.23 l 168.75 79.56 l 156.86 65.61 lf -0 sg 150.00 189.41 m 161.88 56.23 l 168.75 79.56 l 156.86 65.61 lx -0.00 0.00 0.41 s 93.75 67.47 m 105.63 63.99 l 112.50 70.12 l 100.61 73.36 lf -0 sg 93.75 67.47 m 105.63 63.99 l 112.50 70.12 l 100.61 73.36 lx -0.00 0.00 0.00 s 124.38 65.99 m 136.27 67.22 l 143.13 53.72 l 131.25 74.54 lf -0 sg 124.38 65.99 m 136.27 67.22 l 143.13 53.72 l 131.25 74.54 lx -0.00 0.00 0.40 s 204.41 67.17 m 216.29 63.79 l 223.16 69.72 l 211.27 73.17 lf -0 sg 204.41 67.17 m 216.29 63.79 l 223.16 69.72 l 211.27 73.17 lx -0.00 0.00 0.40 s 13.72 66.79 m 25.61 63.35 l 32.47 69.30 l 20.58 72.73 lf -0 sg 13.72 66.79 m 25.61 63.35 l 32.47 69.30 l 20.58 72.73 lx -0.00 0.00 0.00 s 155.02 67.67 m 166.91 61.64 l 173.77 72.24 l 161.88 56.23 lf -0 sg 155.02 67.67 m 166.91 61.64 l 173.77 72.24 l 161.88 56.23 lx -0.00 0.00 0.40 s 235.04 66.29 m 246.93 62.86 l 253.79 68.81 l 241.91 72.24 lf -0 sg 235.04 66.29 m 246.93 62.86 l 253.79 68.81 l 241.91 72.24 lx -0.00 0.00 0.40 s 44.36 65.87 m 56.25 62.43 l 63.11 68.38 l 51.22 71.81 lf -0 sg 44.36 65.87 m 56.25 62.43 l 63.11 68.38 l 51.22 71.81 lx -1.00 1.00 1.00 s 131.25 74.54 m 143.13 53.72 l 150.00 189.41 l 138.11 63.10 lf -0 sg 131.25 74.54 m 143.13 53.72 l 150.00 189.41 l 138.11 63.10 lx -0.00 0.00 0.40 s 75.00 64.95 m 86.88 61.51 l 93.75 67.47 l 81.86 70.89 lf -0 sg 75.00 64.95 m 86.88 61.51 l 93.75 67.47 l 81.86 70.89 lx -0.00 0.00 0.37 s 185.66 63.60 m 197.54 61.56 l 204.41 67.17 l 192.52 70.79 lf -0 sg 185.66 63.60 m 197.54 61.56 l 204.41 67.17 l 192.52 70.79 lx -0.00 0.00 0.39 s 105.63 63.99 m 117.52 60.74 l 124.38 65.99 l 112.50 70.12 lf -0 sg 105.63 63.99 m 117.52 60.74 l 124.38 65.99 l 112.50 70.12 lx -0.00 0.00 0.00 s 136.27 67.22 m 148.16 59.13 l 155.02 67.67 l 143.13 53.72 lf -0 sg 136.27 67.22 m 148.16 59.13 l 155.02 67.67 l 143.13 53.72 lx -0.00 0.00 0.40 s 216.29 63.79 m 228.18 60.35 l 235.04 66.29 l 223.16 69.72 lf -0 sg 216.29 63.79 m 228.18 60.35 l 235.04 66.29 l 223.16 69.72 lx -0.00 0.00 0.40 s 25.61 63.35 m 37.50 59.92 l 44.36 65.87 l 32.47 69.30 lf -0 sg 25.61 63.35 m 37.50 59.92 l 44.36 65.87 l 32.47 69.30 lx -0.00 0.00 0.40 s 246.93 62.86 m 258.82 59.43 l 265.68 65.37 l 253.79 68.81 lf -0 sg 246.93 62.86 m 258.82 59.43 l 265.68 65.37 l 253.79 68.81 lx -0.00 0.00 0.40 s 56.25 62.43 m 68.13 59.00 l 75.00 64.95 l 63.11 68.38 lf -0 sg 56.25 62.43 m 68.13 59.00 l 75.00 64.95 l 63.11 68.38 lx -0.00 0.00 0.51 s 166.91 61.64 m 178.79 58.90 l 185.66 63.60 l 173.77 72.24 lf -0 sg 166.91 61.64 m 178.79 58.90 l 185.66 63.60 l 173.77 72.24 lx -1.00 1.00 1.00 s 143.13 53.72 m 155.02 67.67 l 161.88 56.23 l 150.00 189.41 lf -0 sg 143.13 53.72 m 155.02 67.67 l 161.88 56.23 l 150.00 189.41 lx -0.00 0.00 0.40 s 86.88 61.51 m 98.77 58.09 l 105.63 63.99 l 93.75 67.47 lf -0 sg 86.88 61.51 m 98.77 58.09 l 105.63 63.99 l 93.75 67.47 lx -0.00 0.00 0.41 s 197.54 61.56 m 209.43 57.76 l 216.29 63.79 l 204.41 67.17 lf -0 sg 197.54 61.56 m 209.43 57.76 l 216.29 63.79 l 204.41 67.17 lx -0.00 0.00 0.40 s 6.86 60.84 m 18.75 57.41 l 25.61 63.35 l 13.72 66.79 lf -0 sg 6.86 60.84 m 18.75 57.41 l 25.61 63.35 l 13.72 66.79 lx -0.00 0.00 0.51 s 117.52 60.74 m 129.41 56.06 l 136.27 67.22 l 124.38 65.99 lf -0 sg 117.52 60.74 m 129.41 56.06 l 136.27 67.22 l 124.38 65.99 lx -0.00 0.00 0.40 s 228.18 60.35 m 240.07 56.92 l 246.93 62.86 l 235.04 66.29 lf -0 sg 228.18 60.35 m 240.07 56.92 l 246.93 62.86 l 235.04 66.29 lx -0.00 0.00 0.40 s 37.50 59.92 m 49.38 56.49 l 56.25 62.43 l 44.36 65.87 lf -0 sg 37.50 59.92 m 49.38 56.49 l 56.25 62.43 l 44.36 65.87 lx -0.00 0.00 0.45 s 148.16 59.13 m 160.04 56.39 l 166.91 61.64 l 155.02 67.67 lf -0 sg 148.16 59.13 m 160.04 56.39 l 166.91 61.64 l 155.02 67.67 lx -0.00 0.00 0.40 s 68.13 59.00 m 80.02 55.57 l 86.88 61.51 l 75.00 64.95 lf -0 sg 68.13 59.00 m 80.02 55.57 l 86.88 61.51 l 75.00 64.95 lx -0.00 0.00 0.37 s 178.79 58.90 m 190.68 55.29 l 197.54 61.56 l 185.66 63.60 lf -0 sg 178.79 58.90 m 190.68 55.29 l 197.54 61.56 l 185.66 63.60 lx -0.00 0.00 0.41 s 98.77 58.09 m 110.66 54.61 l 117.52 60.74 l 105.63 63.99 lf -0 sg 98.77 58.09 m 110.66 54.61 l 117.52 60.74 l 105.63 63.99 lx -0.00 0.00 0.40 s 209.43 57.76 m 221.32 54.43 l 228.18 60.35 l 216.29 63.79 lf -0 sg 209.43 57.76 m 221.32 54.43 l 228.18 60.35 l 216.29 63.79 lx -0.00 0.00 0.40 s 18.75 57.41 m 30.63 53.98 l 37.50 59.92 l 25.61 63.35 lf -0 sg 18.75 57.41 m 30.63 53.98 l 37.50 59.92 l 25.61 63.35 lx -0.00 0.00 0.51 s 129.41 56.06 m 141.29 53.88 l 148.16 59.13 l 136.27 67.22 lf -0 sg 129.41 56.06 m 141.29 53.88 l 148.16 59.13 l 136.27 67.22 lx -0.00 0.00 0.40 s 240.07 56.92 m 251.95 53.49 l 258.82 59.43 l 246.93 62.86 lf -0 sg 240.07 56.92 m 251.95 53.49 l 258.82 59.43 l 246.93 62.86 lx -0.00 0.00 0.40 s 49.38 56.49 m 61.27 53.06 l 68.13 59.00 l 56.25 62.43 lf -0 sg 49.38 56.49 m 61.27 53.06 l 68.13 59.00 l 56.25 62.43 lx -0.00 0.00 0.39 s 160.04 56.39 m 171.93 52.77 l 178.79 58.90 l 166.91 61.64 lf -0 sg 160.04 56.39 m 171.93 52.77 l 178.79 58.90 l 166.91 61.64 lx -0.00 0.00 0.40 s 80.02 55.57 m 91.91 52.14 l 98.77 58.09 l 86.88 61.51 lf -0 sg 80.02 55.57 m 91.91 52.14 l 98.77 58.09 l 86.88 61.51 lx -0.00 0.00 0.41 s 190.68 55.29 m 202.57 51.90 l 209.43 57.76 l 197.54 61.56 lf -0 sg 190.68 55.29 m 202.57 51.90 l 209.43 57.76 l 197.54 61.56 lx -0.00 0.00 0.40 s 0.00 54.90 m 11.88 51.47 l 18.75 57.41 l 6.86 60.84 lf -0 sg 0.00 54.90 m 11.88 51.47 l 18.75 57.41 l 6.86 60.84 lx -0.00 0.00 0.37 s 110.66 54.61 m 122.54 51.52 l 129.41 56.06 l 117.52 60.74 lf -0 sg 110.66 54.61 m 122.54 51.52 l 129.41 56.06 l 117.52 60.74 lx -0.00 0.00 0.40 s 221.32 54.43 m 233.20 50.97 l 240.07 56.92 l 228.18 60.35 lf -0 sg 221.32 54.43 m 233.20 50.97 l 240.07 56.92 l 228.18 60.35 lx -0.00 0.00 0.40 s 30.63 53.98 m 42.52 50.55 l 49.38 56.49 l 37.50 59.92 lf -0 sg 30.63 53.98 m 42.52 50.55 l 49.38 56.49 l 37.50 59.92 lx -0.00 0.00 0.39 s 141.29 53.88 m 153.18 50.26 l 160.04 56.39 l 148.16 59.13 lf -0 sg 141.29 53.88 m 153.18 50.26 l 160.04 56.39 l 148.16 59.13 lx -0.00 0.00 0.40 s 61.27 53.06 m 73.16 49.63 l 80.02 55.57 l 68.13 59.00 lf -0 sg 61.27 53.06 m 73.16 49.63 l 80.02 55.57 l 68.13 59.00 lx -0.00 0.00 0.41 s 171.93 52.77 m 183.82 49.39 l 190.68 55.29 l 178.79 58.90 lf -0 sg 171.93 52.77 m 183.82 49.39 l 190.68 55.29 l 178.79 58.90 lx -0.00 0.00 0.40 s 91.91 52.14 m 103.79 48.72 l 110.66 54.61 l 98.77 58.09 lf -0 sg 91.91 52.14 m 103.79 48.72 l 110.66 54.61 l 98.77 58.09 lx -0.00 0.00 0.40 s 202.57 51.90 m 214.45 48.46 l 221.32 54.43 l 209.43 57.76 lf -0 sg 202.57 51.90 m 214.45 48.46 l 221.32 54.43 l 209.43 57.76 lx -0.00 0.00 0.40 s 11.88 51.47 m 23.77 48.04 l 30.63 53.98 l 18.75 57.41 lf -0 sg 11.88 51.47 m 23.77 48.04 l 30.63 53.98 l 18.75 57.41 lx -0.00 0.00 0.37 s 122.54 51.52 m 134.43 47.75 l 141.29 53.88 l 129.41 56.06 lf -0 sg 122.54 51.52 m 134.43 47.75 l 141.29 53.88 l 129.41 56.06 lx -0.00 0.00 0.40 s 233.20 50.97 m 245.09 47.54 l 251.95 53.49 l 240.07 56.92 lf -0 sg 233.20 50.97 m 245.09 47.54 l 251.95 53.49 l 240.07 56.92 lx -0.00 0.00 0.40 s 42.52 50.55 m 54.41 47.12 l 61.27 53.06 l 49.38 56.49 lf -0 sg 42.52 50.55 m 54.41 47.12 l 61.27 53.06 l 49.38 56.49 lx -0.00 0.00 0.41 s 153.18 50.26 m 165.07 46.88 l 171.93 52.77 l 160.04 56.39 lf -0 sg 153.18 50.26 m 165.07 46.88 l 171.93 52.77 l 160.04 56.39 lx -0.00 0.00 0.40 s 73.16 49.63 m 85.04 46.20 l 91.91 52.14 l 80.02 55.57 lf -0 sg 73.16 49.63 m 85.04 46.20 l 91.91 52.14 l 80.02 55.57 lx -0.00 0.00 0.40 s 183.82 49.39 m 195.70 45.95 l 202.57 51.90 l 190.68 55.29 lf -0 sg 183.82 49.39 m 195.70 45.95 l 202.57 51.90 l 190.68 55.29 lx -0.00 0.00 0.41 s 103.79 48.72 m 115.68 45.20 l 122.54 51.52 l 110.66 54.61 lf -0 sg 103.79 48.72 m 115.68 45.20 l 122.54 51.52 l 110.66 54.61 lx -0.00 0.00 0.40 s 214.45 48.46 m 226.34 45.03 l 233.20 50.97 l 221.32 54.43 lf -0 sg 214.45 48.46 m 226.34 45.03 l 233.20 50.97 l 221.32 54.43 lx -0.00 0.00 0.40 s 23.77 48.04 m 35.66 44.60 l 42.52 50.55 l 30.63 53.98 lf -0 sg 23.77 48.04 m 35.66 44.60 l 42.52 50.55 l 30.63 53.98 lx -0.00 0.00 0.41 s 134.43 47.75 m 146.32 44.37 l 153.18 50.26 l 141.29 53.88 lf -0 sg 134.43 47.75 m 146.32 44.37 l 153.18 50.26 l 141.29 53.88 lx -0.00 0.00 0.40 s 54.41 47.12 m 66.29 43.68 l 73.16 49.63 l 61.27 53.06 lf -0 sg 54.41 47.12 m 66.29 43.68 l 73.16 49.63 l 61.27 53.06 lx -0.00 0.00 0.40 s 165.07 46.88 m 176.95 43.44 l 183.82 49.39 l 171.93 52.77 lf -0 sg 165.07 46.88 m 176.95 43.44 l 183.82 49.39 l 171.93 52.77 lx -0.00 0.00 0.40 s 85.04 46.20 m 96.93 42.76 l 103.79 48.72 l 91.91 52.14 lf -0 sg 85.04 46.20 m 96.93 42.76 l 103.79 48.72 l 91.91 52.14 lx -0.00 0.00 0.40 s 195.70 45.95 m 207.59 42.52 l 214.45 48.46 l 202.57 51.90 lf -0 sg 195.70 45.95 m 207.59 42.52 l 214.45 48.46 l 202.57 51.90 lx -0.00 0.00 0.41 s 115.68 45.20 m 127.57 41.86 l 134.43 47.75 l 122.54 51.52 lf -0 sg 115.68 45.20 m 127.57 41.86 l 134.43 47.75 l 122.54 51.52 lx -0.00 0.00 0.40 s 226.34 45.03 m 238.23 41.60 l 245.09 47.54 l 233.20 50.97 lf -0 sg 226.34 45.03 m 238.23 41.60 l 245.09 47.54 l 233.20 50.97 lx -0.00 0.00 0.40 s 35.66 44.60 m 47.54 41.17 l 54.41 47.12 l 42.52 50.55 lf -0 sg 35.66 44.60 m 47.54 41.17 l 54.41 47.12 l 42.52 50.55 lx -0.00 0.00 0.40 s 146.32 44.37 m 158.20 40.92 l 165.07 46.88 l 153.18 50.26 lf -0 sg 146.32 44.37 m 158.20 40.92 l 165.07 46.88 l 153.18 50.26 lx -0.00 0.00 0.40 s 66.29 43.68 m 78.18 40.25 l 85.04 46.20 l 73.16 49.63 lf -0 sg 66.29 43.68 m 78.18 40.25 l 85.04 46.20 l 73.16 49.63 lx -0.00 0.00 0.40 s 176.95 43.44 m 188.84 40.01 l 195.70 45.95 l 183.82 49.39 lf -0 sg 176.95 43.44 m 188.84 40.01 l 195.70 45.95 l 183.82 49.39 lx -0.00 0.00 0.40 s 96.93 42.76 m 108.82 39.35 l 115.68 45.20 l 103.79 48.72 lf -0 sg 96.93 42.76 m 108.82 39.35 l 115.68 45.20 l 103.79 48.72 lx -0.00 0.00 0.40 s 207.59 42.52 m 219.48 39.09 l 226.34 45.03 l 214.45 48.46 lf -0 sg 207.59 42.52 m 219.48 39.09 l 226.34 45.03 l 214.45 48.46 lx -0.00 0.00 0.40 s 127.57 41.86 m 139.45 38.41 l 146.32 44.37 l 134.43 47.75 lf -0 sg 127.57 41.86 m 139.45 38.41 l 146.32 44.37 l 134.43 47.75 lx -0.00 0.00 0.40 s 47.54 41.17 m 59.43 37.74 l 66.29 43.68 l 54.41 47.12 lf -0 sg 47.54 41.17 m 59.43 37.74 l 66.29 43.68 l 54.41 47.12 lx -0.00 0.00 0.40 s 158.20 40.92 m 170.09 37.50 l 176.95 43.44 l 165.07 46.88 lf -0 sg 158.20 40.92 m 170.09 37.50 l 176.95 43.44 l 165.07 46.88 lx -0.00 0.00 0.40 s 78.18 40.25 m 90.07 36.82 l 96.93 42.76 l 85.04 46.20 lf -0 sg 78.18 40.25 m 90.07 36.82 l 96.93 42.76 l 85.04 46.20 lx -0.00 0.00 0.40 s 188.84 40.01 m 200.73 36.58 l 207.59 42.52 l 195.70 45.95 lf -0 sg 188.84 40.01 m 200.73 36.58 l 207.59 42.52 l 195.70 45.95 lx -0.00 0.00 0.40 s 108.82 39.35 m 120.70 35.90 l 127.57 41.86 l 115.68 45.20 lf -0 sg 108.82 39.35 m 120.70 35.90 l 127.57 41.86 l 115.68 45.20 lx -0.00 0.00 0.40 s 219.48 39.09 m 231.37 35.66 l 238.23 41.60 l 226.34 45.03 lf -0 sg 219.48 39.09 m 231.37 35.66 l 238.23 41.60 l 226.34 45.03 lx -0.00 0.00 0.40 s 139.45 38.41 m 151.34 34.98 l 158.20 40.92 l 146.32 44.37 lf -0 sg 139.45 38.41 m 151.34 34.98 l 158.20 40.92 l 146.32 44.37 lx -0.00 0.00 0.40 s 59.43 37.74 m 71.32 34.31 l 78.18 40.25 l 66.29 43.68 lf -0 sg 59.43 37.74 m 71.32 34.31 l 78.18 40.25 l 66.29 43.68 lx -0.00 0.00 0.40 s 170.09 37.50 m 181.98 34.06 l 188.84 40.01 l 176.95 43.44 lf -0 sg 170.09 37.50 m 181.98 34.06 l 188.84 40.01 l 176.95 43.44 lx -0.00 0.00 0.40 s 90.07 36.82 m 101.95 33.39 l 108.82 39.35 l 96.93 42.76 lf -0 sg 90.07 36.82 m 101.95 33.39 l 108.82 39.35 l 96.93 42.76 lx -0.00 0.00 0.40 s 200.73 36.58 m 212.62 33.14 l 219.48 39.09 l 207.59 42.52 lf -0 sg 200.73 36.58 m 212.62 33.14 l 219.48 39.09 l 207.59 42.52 lx -0.00 0.00 0.40 s 120.70 35.90 m 132.59 32.47 l 139.45 38.41 l 127.57 41.86 lf -0 sg 120.70 35.90 m 132.59 32.47 l 139.45 38.41 l 127.57 41.86 lx -0.00 0.00 0.40 s 151.34 34.98 m 163.23 31.55 l 170.09 37.50 l 158.20 40.92 lf -0 sg 151.34 34.98 m 163.23 31.55 l 170.09 37.50 l 158.20 40.92 lx -0.00 0.00 0.40 s 71.32 34.31 m 83.20 30.88 l 90.07 36.82 l 78.18 40.25 lf -0 sg 71.32 34.31 m 83.20 30.88 l 90.07 36.82 l 78.18 40.25 lx -0.00 0.00 0.40 s 181.98 34.06 m 193.87 30.63 l 200.73 36.58 l 188.84 40.01 lf -0 sg 181.98 34.06 m 193.87 30.63 l 200.73 36.58 l 188.84 40.01 lx -0.00 0.00 0.40 s 101.95 33.39 m 113.84 29.96 l 120.70 35.90 l 108.82 39.35 lf -0 sg 101.95 33.39 m 113.84 29.96 l 120.70 35.90 l 108.82 39.35 lx -0.00 0.00 0.40 s 212.62 33.14 m 224.50 29.71 l 231.37 35.66 l 219.48 39.09 lf -0 sg 212.62 33.14 m 224.50 29.71 l 231.37 35.66 l 219.48 39.09 lx -0.00 0.00 0.40 s 132.59 32.47 m 144.48 29.04 l 151.34 34.98 l 139.45 38.41 lf -0 sg 132.59 32.47 m 144.48 29.04 l 151.34 34.98 l 139.45 38.41 lx -0.00 0.00 0.40 s 163.23 31.55 m 175.12 28.12 l 181.98 34.06 l 170.09 37.50 lf -0 sg 163.23 31.55 m 175.12 28.12 l 181.98 34.06 l 170.09 37.50 lx -0.00 0.00 0.40 s 83.20 30.88 m 95.09 27.45 l 101.95 33.39 l 90.07 36.82 lf -0 sg 83.20 30.88 m 95.09 27.45 l 101.95 33.39 l 90.07 36.82 lx -0.00 0.00 0.40 s 193.87 30.63 m 205.75 27.20 l 212.62 33.14 l 200.73 36.58 lf -0 sg 193.87 30.63 m 205.75 27.20 l 212.62 33.14 l 200.73 36.58 lx -0.00 0.00 0.40 s 113.84 29.96 m 125.73 26.53 l 132.59 32.47 l 120.70 35.90 lf -0 sg 113.84 29.96 m 125.73 26.53 l 132.59 32.47 l 120.70 35.90 lx -0.00 0.00 0.40 s 144.48 29.04 m 156.37 25.61 l 163.23 31.55 l 151.34 34.98 lf -0 sg 144.48 29.04 m 156.37 25.61 l 163.23 31.55 l 151.34 34.98 lx -0.00 0.00 0.40 s 175.12 28.12 m 187.00 24.69 l 193.87 30.63 l 181.98 34.06 lf -0 sg 175.12 28.12 m 187.00 24.69 l 193.87 30.63 l 181.98 34.06 lx -0.00 0.00 0.40 s 95.09 27.45 m 106.98 24.02 l 113.84 29.96 l 101.95 33.39 lf -0 sg 95.09 27.45 m 106.98 24.02 l 113.84 29.96 l 101.95 33.39 lx -0.00 0.00 0.40 s 205.75 27.20 m 217.64 23.77 l 224.50 29.71 l 212.62 33.14 lf -0 sg 205.75 27.20 m 217.64 23.77 l 224.50 29.71 l 212.62 33.14 lx -0.00 0.00 0.40 s 125.73 26.53 m 137.62 23.10 l 144.48 29.04 l 132.59 32.47 lf -0 sg 125.73 26.53 m 137.62 23.10 l 144.48 29.04 l 132.59 32.47 lx -0.00 0.00 0.40 s 156.37 25.61 m 168.25 22.18 l 175.12 28.12 l 163.23 31.55 lf -0 sg 156.37 25.61 m 168.25 22.18 l 175.12 28.12 l 163.23 31.55 lx -0.00 0.00 0.40 s 187.00 24.69 m 198.89 21.26 l 205.75 27.20 l 193.87 30.63 lf -0 sg 187.00 24.69 m 198.89 21.26 l 205.75 27.20 l 193.87 30.63 lx -0.00 0.00 0.40 s 106.98 24.02 m 118.87 20.58 l 125.73 26.53 l 113.84 29.96 lf -0 sg 106.98 24.02 m 118.87 20.58 l 125.73 26.53 l 113.84 29.96 lx -0.00 0.00 0.40 s 137.62 23.10 m 149.50 19.66 l 156.37 25.61 l 144.48 29.04 lf -0 sg 137.62 23.10 m 149.50 19.66 l 156.37 25.61 l 144.48 29.04 lx -0.00 0.00 0.40 s 168.25 22.18 m 180.14 18.75 l 187.00 24.69 l 175.12 28.12 lf -0 sg 168.25 22.18 m 180.14 18.75 l 187.00 24.69 l 175.12 28.12 lx -0.00 0.00 0.40 s 198.89 21.26 m 210.78 17.83 l 217.64 23.77 l 205.75 27.20 lf -0 sg 198.89 21.26 m 210.78 17.83 l 217.64 23.77 l 205.75 27.20 lx -0.00 0.00 0.40 s 118.87 20.58 m 130.75 17.15 l 137.62 23.10 l 125.73 26.53 lf -0 sg 118.87 20.58 m 130.75 17.15 l 137.62 23.10 l 125.73 26.53 lx -0.00 0.00 0.40 s 149.50 19.66 m 161.39 16.23 l 168.25 22.18 l 156.37 25.61 lf -0 sg 149.50 19.66 m 161.39 16.23 l 168.25 22.18 l 156.37 25.61 lx -0.00 0.00 0.40 s 180.14 18.75 m 192.03 15.31 l 198.89 21.26 l 187.00 24.69 lf -0 sg 180.14 18.75 m 192.03 15.31 l 198.89 21.26 l 187.00 24.69 lx -0.00 0.00 0.40 s 130.75 17.15 m 142.64 13.72 l 149.50 19.66 l 137.62 23.10 lf -0 sg 130.75 17.15 m 142.64 13.72 l 149.50 19.66 l 137.62 23.10 lx -0.00 0.00 0.40 s 161.39 16.23 m 173.28 12.80 l 180.14 18.75 l 168.25 22.18 lf -0 sg 161.39 16.23 m 173.28 12.80 l 180.14 18.75 l 168.25 22.18 lx -0.00 0.00 0.40 s 192.03 15.31 m 203.91 11.88 l 210.78 17.83 l 198.89 21.26 lf -0 sg 192.03 15.31 m 203.91 11.88 l 210.78 17.83 l 198.89 21.26 lx -0.00 0.00 0.40 s 142.64 13.72 m 154.53 10.29 l 161.39 16.23 l 149.50 19.66 lf -0 sg 142.64 13.72 m 154.53 10.29 l 161.39 16.23 l 149.50 19.66 lx -0.00 0.00 0.40 s 173.28 12.80 m 185.16 9.37 l 192.03 15.31 l 180.14 18.75 lf -0 sg 173.28 12.80 m 185.16 9.37 l 192.03 15.31 l 180.14 18.75 lx -0.00 0.00 0.40 s 154.53 10.29 m 166.41 6.86 l 173.28 12.80 l 161.39 16.23 lf -0 sg 154.53 10.29 m 166.41 6.86 l 173.28 12.80 l 161.39 16.23 lx -0.00 0.00 0.40 s 185.16 9.37 m 197.05 5.94 l 203.91 11.88 l 192.03 15.31 lf -0 sg 185.16 9.37 m 197.05 5.94 l 203.91 11.88 l 192.03 15.31 lx -0.00 0.00 0.40 s 166.41 6.86 m 178.30 3.43 l 185.16 9.37 l 173.28 12.80 lf -0 sg 166.41 6.86 m 178.30 3.43 l 185.16 9.37 l 173.28 12.80 lx -0.00 0.00 0.40 s 178.30 3.43 m 190.19 0.00 l 197.05 5.94 l 185.16 9.37 lf -0 sg 178.30 3.43 m 190.19 0.00 l 197.05 5.94 l 185.16 9.37 lx -showpage -. -DEAL:: Postprocessing: time=0.02, step=1, sweep=0. [ee] -DEAL:: Postprocessing: time=0.05, step=2, sweep=0. [ee] -DEAL:: Postprocessing: time=0.08, step=3, sweep=0. [ee] -DEAL:: Postprocessing: time=0.11, step=4, sweep=0. [ee] -DEAL:: Postprocessing: time=0.14, step=5, sweep=0. [ee] -DEAL:: Postprocessing: time=0.16, step=6, sweep=0. [ee] -DEAL:: Postprocessing: time=0.19, step=7, sweep=0. [ee] -DEAL:: Postprocessing: time=0.22, step=8, sweep=0. [ee] -DEAL:: Postprocessing: time=0.25, step=9, sweep=0. [ee] -DEAL:: Postprocessing: time=0.28, step=10, sweep=0. [ee] -DEAL:: Postprocessing: time=0.30, step=11, sweep=0. [ee] -DEAL:: Postprocessing: time=0.33, step=12, sweep=0. [ee] -DEAL:: Postprocessing: time=0.36, step=13, sweep=0. [ee] -DEAL:: Postprocessing: time=0.39, step=14, sweep=0. [ee] -DEAL:: Postprocessing: time=0.42, step=15, sweep=0. [ee] -DEAL:: Postprocessing: time=0.44, step=16, sweep=0. [ee] -DEAL:: Postprocessing: time=0.47, step=17, sweep=0. [ee] -DEAL:: Postprocessing: time=0.50, step=18, sweep=0. [ee] -DEAL:: Postprocessing: time=0.53, step=19, sweep=0. [ee] -DEAL:: Postprocessing: time=0.56, step=20, sweep=0. [ee] -DEAL:: Postprocessing: time=0.58, step=21, sweep=0. [ee] -DEAL:: Postprocessing: time=0.61, step=22, sweep=0. [ee] -DEAL:: Postprocessing: time=0.64, step=23, sweep=0. [ee] -DEAL:: Postprocessing: time=0.67, step=24, sweep=0. [ee] -DEAL:: Postprocessing: time=0.70, step=25, sweep=0. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library -%% -%%BoundingBox: 0 0 300 150 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50 setlinewidth -0.00 0.95 0.04 s 102.94 144.05 m 114.83 140.54 l 121.69 146.56 l 109.80 150.00 lf -0 sg 102.94 144.05 m 114.83 140.54 l 121.69 146.56 l 109.80 150.00 lx -0.16 0.83 0.00 s 114.83 140.54 m 126.71 139.95 l 133.58 143.13 l 121.69 146.56 lf -0 sg 114.83 140.54 m 126.71 139.95 l 133.58 143.13 l 121.69 146.56 lx -0.15 0.84 0.00 s 96.08 138.11 m 107.96 137.26 l 114.83 140.54 l 102.94 144.05 lf -0 sg 96.08 138.11 m 107.96 137.26 l 114.83 140.54 l 102.94 144.05 lx -0.29 0.70 0.00 s 126.71 139.95 m 138.60 135.40 l 145.46 139.70 l 133.58 143.13 lf -0 sg 126.71 139.95 m 138.60 135.40 l 145.46 139.70 l 133.58 143.13 lx -0.54 0.45 0.00 s 107.96 137.26 m 119.85 133.65 l 126.71 139.95 l 114.83 140.54 lf -0 sg 107.96 137.26 m 119.85 133.65 l 126.71 139.95 l 114.83 140.54 lx -0.05 0.94 0.00 s 138.60 135.40 m 150.49 129.88 l 157.35 136.27 l 145.46 139.70 lf -0 sg 138.60 135.40 m 150.49 129.88 l 157.35 136.27 l 145.46 139.70 lx -0.43 0.56 0.00 s 89.21 132.16 m 101.10 132.35 l 107.96 137.26 l 96.08 138.11 lf -0 sg 89.21 132.16 m 101.10 132.35 l 107.96 137.26 l 96.08 138.11 lx -0.00 0.82 0.17 s 150.49 129.88 m 162.37 125.41 l 169.24 132.84 l 157.35 136.27 lf -0 sg 150.49 129.88 m 162.37 125.41 l 169.24 132.84 l 157.35 136.27 lx -0.70 0.29 0.00 s 119.85 133.65 m 131.74 130.92 l 138.60 135.40 l 126.71 139.95 lf -0 sg 119.85 133.65 m 131.74 130.92 l 138.60 135.40 l 126.71 139.95 lx -0.87 0.12 0.00 s 101.10 132.35 m 112.99 128.77 l 119.85 133.65 l 107.96 137.26 lf -0 sg 101.10 132.35 m 112.99 128.77 l 119.85 133.65 l 107.96 137.26 lx -0.32 0.67 0.00 s 131.74 130.92 m 143.62 124.87 l 150.49 129.88 l 138.60 135.40 lf -0 sg 131.74 130.92 m 143.62 124.87 l 150.49 129.88 l 138.60 135.40 lx -0.00 0.77 0.22 s 162.37 125.41 m 174.26 122.45 l 181.12 129.41 l 169.24 132.84 lf -0 sg 162.37 125.41 m 174.26 122.45 l 181.12 129.41 l 169.24 132.84 lx -0.35 0.64 0.00 s 82.35 126.22 m 94.24 124.43 l 101.10 132.35 l 89.21 132.16 lf -0 sg 82.35 126.22 m 94.24 124.43 l 101.10 132.35 l 89.21 132.16 lx -0.00 0.69 0.30 s 143.62 124.87 m 155.51 118.83 l 162.37 125.41 l 150.49 129.88 lf -0 sg 143.62 124.87 m 155.51 118.83 l 162.37 125.41 l 150.49 129.88 lx -0.78 0.21 0.00 s 112.99 128.77 m 124.87 123.87 l 131.74 130.92 l 119.85 133.65 lf -0 sg 112.99 128.77 m 124.87 123.87 l 131.74 130.92 l 119.85 133.65 lx -0.00 0.85 0.14 s 174.26 122.45 m 186.15 119.51 l 193.01 125.97 l 181.12 129.41 lf -0 sg 174.26 122.45 m 186.15 119.51 l 193.01 125.97 l 181.12 129.41 lx -0.81 0.18 0.00 s 94.24 124.43 m 106.12 121.94 l 112.99 128.77 l 101.10 132.35 lf -0 sg 94.24 124.43 m 106.12 121.94 l 112.99 128.77 l 101.10 132.35 lx -0.00 0.50 0.49 s 155.51 118.83 m 167.40 115.96 l 174.26 122.45 l 162.37 125.41 lf -0 sg 155.51 118.83 m 167.40 115.96 l 174.26 122.45 l 162.37 125.41 lx -0.37 0.62 0.00 s 124.87 123.87 m 136.76 118.29 l 143.62 124.87 l 131.74 130.92 lf -0 sg 124.87 123.87 m 136.76 118.29 l 143.62 124.87 l 131.74 130.92 lx -0.07 0.92 0.00 s 75.49 120.28 m 87.37 116.66 l 94.24 124.43 l 82.35 126.22 lf -0 sg 75.49 120.28 m 87.37 116.66 l 94.24 124.43 l 82.35 126.22 lx -0.00 0.88 0.11 s 186.15 119.51 m 198.04 116.07 l 204.90 122.54 l 193.01 125.97 lf -0 sg 186.15 119.51 m 198.04 116.07 l 204.90 122.54 l 193.01 125.97 lx -0.00 0.81 0.18 s 136.76 118.29 m 148.65 114.77 l 155.51 118.83 l 143.62 124.87 lf -0 sg 136.76 118.29 m 148.65 114.77 l 155.51 118.83 l 143.62 124.87 lx -0.64 0.35 0.00 s 106.12 121.94 m 118.01 116.97 l 124.87 123.87 l 112.99 128.77 lf -0 sg 106.12 121.94 m 118.01 116.97 l 124.87 123.87 l 112.99 128.77 lx -0.00 0.63 0.36 s 167.40 115.96 m 179.29 112.80 l 186.15 119.51 l 174.26 122.45 lf -0 sg 167.40 115.96 m 179.29 112.80 l 186.15 119.51 l 174.26 122.45 lx -0.00 0.88 0.11 s 198.04 116.07 m 209.92 112.65 l 216.79 119.11 l 204.90 122.54 lf -0 sg 198.04 116.07 m 209.92 112.65 l 216.79 119.11 l 204.90 122.54 lx -0.25 0.74 0.00 s 87.37 116.66 m 99.26 113.18 l 106.12 121.94 l 94.24 124.43 lf -0 sg 87.37 116.66 m 99.26 113.18 l 106.12 121.94 l 94.24 124.43 lx -0.24 0.75 0.00 s 118.01 116.97 m 129.90 113.27 l 136.76 118.29 l 124.87 123.87 lf -0 sg 118.01 116.97 m 129.90 113.27 l 136.76 118.29 l 124.87 123.87 lx -0.00 0.61 0.38 s 148.65 114.77 m 160.54 110.85 l 167.40 115.96 l 155.51 118.83 lf -0 sg 148.65 114.77 m 160.54 110.85 l 167.40 115.96 l 155.51 118.83 lx -0.00 0.75 0.24 s 179.29 112.80 m 191.17 110.13 l 198.04 116.07 l 186.15 119.51 lf -0 sg 179.29 112.80 m 191.17 110.13 l 198.04 116.07 l 186.15 119.51 lx -0.01 0.98 0.00 s 68.62 114.33 m 80.51 111.74 l 87.37 116.66 l 75.49 120.28 lf -0 sg 68.62 114.33 m 80.51 111.74 l 87.37 116.66 l 75.49 120.28 lx -0.00 0.85 0.14 s 209.92 112.65 m 221.81 108.72 l 228.67 115.68 l 216.79 119.11 lf -0 sg 209.92 112.65 m 221.81 108.72 l 228.67 115.68 l 216.79 119.11 lx -0.13 0.86 0.00 s 99.26 113.18 m 111.15 108.86 l 118.01 116.97 l 106.12 121.94 lf -0 sg 99.26 113.18 m 111.15 108.86 l 118.01 116.97 l 106.12 121.94 lx -0.00 0.94 0.05 s 129.90 113.27 m 141.79 108.39 l 148.65 114.77 l 136.76 118.29 lf -0 sg 129.90 113.27 m 141.79 108.39 l 148.65 114.77 l 136.76 118.29 lx -0.00 0.76 0.23 s 160.54 110.85 m 172.42 109.09 l 179.29 112.80 l 167.40 115.96 lf -0 sg 160.54 110.85 m 172.42 109.09 l 179.29 112.80 l 167.40 115.96 lx -0.00 0.92 0.07 s 80.51 111.74 m 92.40 106.50 l 99.26 113.18 l 87.37 116.66 lf -0 sg 80.51 111.74 m 92.40 106.50 l 99.26 113.18 l 87.37 116.66 lx -0.00 0.75 0.24 s 191.17 110.13 m 203.06 105.94 l 209.92 112.65 l 198.04 116.07 lf -0 sg 191.17 110.13 m 203.06 105.94 l 209.92 112.65 l 198.04 116.07 lx -0.00 0.99 0.00 s 111.15 108.86 m 123.04 106.21 l 129.90 113.27 l 118.01 116.97 lf -0 sg 111.15 108.86 m 123.04 106.21 l 129.90 113.27 l 118.01 116.97 lx -0.00 0.77 0.22 s 221.81 108.72 m 233.70 104.82 l 240.56 112.25 l 228.67 115.68 lf -0 sg 221.81 108.72 m 233.70 104.82 l 240.56 112.25 l 228.67 115.68 lx -0.00 0.80 0.19 s 141.79 108.39 m 153.67 105.18 l 160.54 110.85 l 148.65 114.77 lf -0 sg 141.79 108.39 m 153.67 105.18 l 160.54 110.85 l 148.65 114.77 lx -0.00 0.93 0.06 s 172.42 109.09 m 184.31 105.22 l 191.17 110.13 l 179.29 112.80 lf -0 sg 172.42 109.09 m 184.31 105.22 l 191.17 110.13 l 179.29 112.80 lx -0.00 0.45 0.54 s 92.40 106.50 m 104.29 99.59 l 111.15 108.86 l 99.26 113.18 lf -0 sg 92.40 106.50 m 104.29 99.59 l 111.15 108.86 l 99.26 113.18 lx -0.34 0.65 0.00 s 61.76 108.39 m 73.65 109.17 l 80.51 111.74 l 68.62 114.33 lf -0 sg 61.76 108.39 m 73.65 109.17 l 80.51 111.74 l 68.62 114.33 lx -0.00 0.63 0.36 s 203.06 105.94 m 214.95 102.23 l 221.81 108.72 l 209.92 112.65 lf -0 sg 203.06 105.94 m 214.95 102.23 l 221.81 108.72 l 209.92 112.65 lx -0.00 0.95 0.04 s 123.04 106.21 m 134.92 103.16 l 141.79 108.39 l 129.90 113.27 lf -0 sg 123.04 106.21 m 134.92 103.16 l 141.79 108.39 l 129.90 113.27 lx -0.00 0.82 0.17 s 233.70 104.82 m 245.58 102.43 l 252.45 108.82 l 240.56 112.25 lf -0 sg 233.70 104.82 m 245.58 102.43 l 252.45 108.82 l 240.56 112.25 lx -0.00 0.98 0.01 s 153.67 105.18 m 165.56 102.69 l 172.42 109.09 l 160.54 110.85 lf -0 sg 153.67 105.18 m 165.56 102.69 l 172.42 109.09 l 160.54 110.85 lx -0.00 0.31 0.68 s 104.29 99.59 m 116.17 97.81 l 123.04 106.21 l 111.15 108.86 lf -0 sg 104.29 99.59 m 116.17 97.81 l 123.04 106.21 l 111.15 108.86 lx -0.00 0.93 0.06 s 184.31 105.22 m 196.20 102.23 l 203.06 105.94 l 191.17 110.13 lf -0 sg 184.31 105.22 m 196.20 102.23 l 203.06 105.94 l 191.17 110.13 lx -0.00 0.50 0.49 s 214.95 102.23 m 226.83 98.25 l 233.70 104.82 l 221.81 108.72 lf -0 sg 214.95 102.23 m 226.83 98.25 l 233.70 104.82 l 221.81 108.72 lx -0.67 0.32 0.00 s 73.65 109.17 m 85.54 106.96 l 92.40 106.50 l 80.51 111.74 lf -0 sg 73.65 109.17 m 85.54 106.96 l 92.40 106.50 l 80.51 111.74 lx -0.00 0.92 0.07 s 134.92 103.16 m 146.81 100.17 l 153.67 105.18 l 141.79 108.39 lf -0 sg 134.92 103.16 m 146.81 100.17 l 153.67 105.18 l 141.79 108.39 lx -0.05 0.94 0.00 s 245.58 102.43 m 257.47 101.08 l 264.33 105.39 l 252.45 108.82 lf -0 sg 245.58 102.43 m 257.47 101.08 l 264.33 105.39 l 252.45 108.82 lx -0.00 0.07 0.92 s 85.54 106.96 m 97.42 86.16 l 104.29 99.59 l 92.40 106.50 lf -0 sg 85.54 106.96 m 97.42 86.16 l 104.29 99.59 l 92.40 106.50 lx -0.18 0.81 0.00 s 165.56 102.69 m 177.45 99.75 l 184.31 105.22 l 172.42 109.09 lf -0 sg 165.56 102.69 m 177.45 99.75 l 184.31 105.22 l 172.42 109.09 lx -0.50 0.49 0.00 s 54.90 102.45 m 66.79 101.99 l 73.65 109.17 l 61.76 108.39 lf -0 sg 54.90 102.45 m 66.79 101.99 l 73.65 109.17 l 61.76 108.39 lx -0.00 0.76 0.23 s 196.20 102.23 m 208.08 97.12 l 214.95 102.23 l 203.06 105.94 lf -0 sg 196.20 102.23 m 208.08 97.12 l 214.95 102.23 l 203.06 105.94 lx -0.00 0.67 0.32 s 116.17 97.81 m 128.06 96.37 l 134.92 103.16 l 123.04 106.21 lf -0 sg 116.17 97.81 m 128.06 96.37 l 134.92 103.16 l 123.04 106.21 lx -0.00 0.69 0.30 s 226.83 98.25 m 238.72 97.42 l 245.58 102.43 l 233.70 104.82 lf -0 sg 226.83 98.25 m 238.72 97.42 l 245.58 102.43 l 233.70 104.82 lx -0.00 0.00 0.30 s 97.42 86.16 m 109.31 91.70 l 116.17 97.81 l 104.29 99.59 lf -0 sg 97.42 86.16 m 109.31 91.70 l 116.17 97.81 l 104.29 99.59 lx -0.05 0.94 0.00 s 146.81 100.17 m 158.70 96.88 l 165.56 102.69 l 153.67 105.18 lf -0 sg 146.81 100.17 m 158.70 96.88 l 165.56 102.69 l 153.67 105.18 lx -0.00 0.87 0.12 s 66.79 101.99 m 78.67 81.80 l 85.54 106.96 l 73.65 109.17 lf -0 sg 66.79 101.99 m 78.67 81.80 l 85.54 106.96 l 73.65 109.17 lx -0.29 0.70 0.00 s 257.47 101.08 m 269.36 98.77 l 276.22 101.95 l 264.33 105.39 lf -0 sg 257.47 101.08 m 269.36 98.77 l 276.22 101.95 l 264.33 105.39 lx -0.18 0.81 0.00 s 177.45 99.75 m 189.33 95.83 l 196.20 102.23 l 184.31 105.22 lf -0 sg 177.45 99.75 m 189.33 95.83 l 196.20 102.23 l 184.31 105.22 lx -0.00 0.61 0.38 s 208.08 97.12 m 219.97 94.18 l 226.83 98.25 l 214.95 102.23 lf -0 sg 208.08 97.12 m 219.97 94.18 l 226.83 98.25 l 214.95 102.23 lx -0.00 0.92 0.07 s 128.06 96.37 m 139.95 93.50 l 146.81 100.17 l 134.92 103.16 lf -0 sg 128.06 96.37 m 139.95 93.50 l 146.81 100.17 l 134.92 103.16 lx -0.00 0.00 0.91 s 78.67 81.80 m 90.56 98.38 l 97.42 86.16 l 85.54 106.96 lf -0 sg 78.67 81.80 m 90.56 98.38 l 97.42 86.16 l 85.54 106.96 lx -0.32 0.67 0.00 s 238.72 97.42 m 250.61 96.61 l 257.47 101.08 l 245.58 102.43 lf -0 sg 238.72 97.42 m 250.61 96.61 l 257.47 101.08 l 245.58 102.43 lx -0.22 0.77 0.00 s 158.70 96.88 m 170.58 94.16 l 177.45 99.75 l 165.56 102.69 lf -0 sg 158.70 96.88 m 170.58 94.16 l 177.45 99.75 l 165.56 102.69 lx -0.16 0.83 0.00 s 269.36 98.77 m 281.25 92.50 l 288.11 98.52 l 276.22 101.95 lf -0 sg 269.36 98.77 m 281.25 92.50 l 288.11 98.52 l 276.22 101.95 lx -0.00 0.98 0.01 s 189.33 95.83 m 201.22 91.46 l 208.08 97.12 l 196.20 102.23 lf -0 sg 189.33 95.83 m 201.22 91.46 l 208.08 97.12 l 196.20 102.23 lx -1.00 0.05 0.05 s 48.04 96.50 m 59.92 104.61 l 66.79 101.99 l 54.90 102.45 lf -0 sg 48.04 96.50 m 59.92 104.61 l 66.79 101.99 l 54.90 102.45 lx -0.00 0.56 0.43 s 109.31 91.70 m 121.20 92.39 l 128.06 96.37 l 116.17 97.81 lf -0 sg 109.31 91.70 m 121.20 92.39 l 128.06 96.37 l 116.17 97.81 lx -0.00 0.81 0.18 s 219.97 94.18 m 231.86 90.84 l 238.72 97.42 l 226.83 98.25 lf -0 sg 219.97 94.18 m 231.86 90.84 l 238.72 97.42 l 226.83 98.25 lx -0.04 0.95 0.00 s 139.95 93.50 m 151.83 90.48 l 158.70 96.88 l 146.81 100.17 lf -0 sg 139.95 93.50 m 151.83 90.48 l 158.70 96.88 l 146.81 100.17 lx -0.03 0.96 0.00 s 59.92 104.61 m 71.81 89.86 l 78.67 81.80 l 66.79 101.99 lf -0 sg 59.92 104.61 m 71.81 89.86 l 78.67 81.80 l 66.79 101.99 lx -0.70 0.29 0.00 s 250.61 96.61 m 262.50 92.47 l 269.36 98.77 l 257.47 101.08 lf -0 sg 250.61 96.61 m 262.50 92.47 l 269.36 98.77 l 257.47 101.08 lx -0.00 0.54 0.45 s 90.56 98.38 m 102.45 91.78 l 109.31 91.70 l 97.42 86.16 lf -0 sg 90.56 98.38 m 102.45 91.78 l 109.31 91.70 l 97.42 86.16 lx -0.00 0.95 0.04 s 281.25 92.50 m 293.13 89.15 l 300.00 95.09 l 288.11 98.52 lf -0 sg 281.25 92.50 m 293.13 89.15 l 300.00 95.09 l 288.11 98.52 lx -0.22 0.77 0.00 s 170.58 94.16 m 182.47 90.02 l 189.33 95.83 l 177.45 99.75 lf -0 sg 170.58 94.16 m 182.47 90.02 l 189.33 95.83 l 177.45 99.75 lx -0.00 0.18 0.81 s 121.20 92.39 m 133.08 77.24 l 139.95 93.50 l 128.06 96.37 lf -0 sg 121.20 92.39 m 133.08 77.24 l 139.95 93.50 l 128.06 96.37 lx -0.00 0.80 0.19 s 201.22 91.46 m 213.11 87.80 l 219.97 94.18 l 208.08 97.12 lf -0 sg 201.22 91.46 m 213.11 87.80 l 219.97 94.18 l 208.08 97.12 lx -0.00 0.00 0.00 s 71.81 89.86 m 83.70 67.31 l 90.56 98.38 l 78.67 81.80 lf -0 sg 71.81 89.86 m 83.70 67.31 l 90.56 98.38 l 78.67 81.80 lx -0.37 0.62 0.00 s 231.86 90.84 m 243.75 89.55 l 250.61 96.61 l 238.72 97.42 lf -0 sg 231.86 90.84 m 243.75 89.55 l 250.61 96.61 l 238.72 97.42 lx -0.17 0.82 0.00 s 151.83 90.48 m 163.72 87.56 l 170.58 94.16 l 158.70 96.88 lf -0 sg 151.83 90.48 m 163.72 87.56 l 170.58 94.16 l 158.70 96.88 lx -0.79 0.20 0.00 s 41.17 90.56 m 53.06 86.68 l 59.92 104.61 l 48.04 96.50 lf -0 sg 41.17 90.56 m 53.06 86.68 l 59.92 104.61 l 48.04 96.50 lx -0.54 0.45 0.00 s 262.50 92.47 m 274.38 89.22 l 281.25 92.50 l 269.36 98.77 lf -0 sg 262.50 92.47 m 274.38 89.22 l 281.25 92.50 l 269.36 98.77 lx -0.00 0.43 0.56 s 102.45 91.78 m 114.33 76.96 l 121.20 92.39 l 109.31 91.70 lf -0 sg 102.45 91.78 m 114.33 76.96 l 121.20 92.39 l 109.31 91.70 lx -0.05 0.94 0.00 s 182.47 90.02 m 194.36 86.44 l 201.22 91.46 l 189.33 95.83 lf -0 sg 182.47 90.02 m 194.36 86.44 l 201.22 91.46 l 189.33 95.83 lx -0.00 0.22 0.77 s 133.08 77.24 m 144.97 85.14 l 151.83 90.48 l 139.95 93.50 lf -0 sg 133.08 77.24 m 144.97 85.14 l 151.83 90.48 l 139.95 93.50 lx -0.00 0.94 0.05 s 213.11 87.80 m 225.00 85.81 l 231.86 90.84 l 219.97 94.18 lf -0 sg 213.11 87.80 m 225.00 85.81 l 231.86 90.84 l 219.97 94.18 lx -0.17 0.82 0.00 s 163.72 87.56 m 175.61 83.61 l 182.47 90.02 l 170.58 94.16 lf -0 sg 163.72 87.56 m 175.61 83.61 l 182.47 90.02 l 170.58 94.16 lx -0.78 0.21 0.00 s 243.75 89.55 m 255.63 87.59 l 262.50 92.47 l 250.61 96.61 lf -0 sg 243.75 89.55 m 255.63 87.59 l 262.50 92.47 l 250.61 96.61 lx -0.15 0.84 0.00 s 274.38 89.22 m 286.27 83.20 l 293.13 89.15 l 281.25 92.50 lf -0 sg 274.38 89.22 m 286.27 83.20 l 293.13 89.15 l 281.25 92.50 lx -0.03 0.96 0.00 s 83.70 67.31 m 95.58 93.35 l 102.45 91.78 l 90.56 98.38 lf -0 sg 83.70 67.31 m 95.58 93.35 l 102.45 91.78 l 90.56 98.38 lx -0.00 0.92 0.07 s 194.36 86.44 m 206.25 82.57 l 213.11 87.80 l 201.22 91.46 lf -0 sg 194.36 86.44 m 206.25 82.57 l 213.11 87.80 l 201.22 91.46 lx -0.00 0.40 0.59 s 114.33 76.96 m 126.22 92.07 l 133.08 77.24 l 121.20 92.39 lf -0 sg 114.33 76.96 m 126.22 92.07 l 133.08 77.24 l 121.20 92.39 lx -0.00 0.26 0.73 s 144.97 85.14 m 156.86 69.92 l 163.72 87.56 l 151.83 90.48 lf -0 sg 144.97 85.14 m 156.86 69.92 l 163.72 87.56 l 151.83 90.48 lx -0.00 0.50 0.49 s 34.31 84.62 m 46.20 75.46 l 53.06 86.68 l 41.17 90.56 lf -0 sg 34.31 84.62 m 46.20 75.46 l 53.06 86.68 l 41.17 90.56 lx -1.00 1.00 1.00 s 53.06 86.68 m 64.95 99.53 l 71.81 89.86 l 59.92 104.61 lf -0 sg 53.06 86.68 m 64.95 99.53 l 71.81 89.86 l 59.92 104.61 lx -0.24 0.75 0.00 s 225.00 85.81 m 236.88 82.65 l 243.75 89.55 l 231.86 90.84 lf -0 sg 225.00 85.81 m 236.88 82.65 l 243.75 89.55 l 231.86 90.84 lx -0.00 0.14 0.85 s 64.95 99.53 m 76.83 72.17 l 83.70 67.31 l 71.81 89.86 lf -0 sg 64.95 99.53 m 76.83 72.17 l 83.70 67.31 l 71.81 89.86 lx -0.04 0.95 0.00 s 175.61 83.61 m 187.50 79.78 l 194.36 86.44 l 182.47 90.02 lf -0 sg 175.61 83.61 m 187.50 79.78 l 194.36 86.44 l 182.47 90.02 lx -0.87 0.12 0.00 s 255.63 87.59 m 267.52 84.31 l 274.38 89.22 l 262.50 92.47 lf -0 sg 255.63 87.59 m 267.52 84.31 l 274.38 89.22 l 262.50 92.47 lx -0.00 0.93 0.06 s 95.58 93.35 m 107.47 73.61 l 114.33 76.96 l 102.45 91.78 lf -0 sg 95.58 93.35 m 107.47 73.61 l 114.33 76.96 l 102.45 91.78 lx -0.00 0.95 0.04 s 206.25 82.57 m 218.13 78.76 l 225.00 85.81 l 213.11 87.80 lf -0 sg 206.25 82.57 m 218.13 78.76 l 225.00 85.81 l 213.11 87.80 lx -0.00 0.37 0.62 s 126.22 92.07 m 138.11 70.14 l 144.97 85.14 l 133.08 77.24 lf -0 sg 126.22 92.07 m 138.11 70.14 l 144.97 85.14 l 133.08 77.24 lx -0.00 0.00 0.44 s 76.83 72.17 m 88.72 72.98 l 95.58 93.35 l 83.70 67.31 lf -0 sg 76.83 72.17 m 88.72 72.98 l 95.58 93.35 l 83.70 67.31 lx -0.00 0.26 0.73 s 156.86 69.92 m 168.75 78.28 l 175.61 83.61 l 163.72 87.56 lf -0 sg 156.86 69.92 m 168.75 78.28 l 175.61 83.61 l 163.72 87.56 lx -0.64 0.35 0.00 s 236.88 82.65 m 248.77 80.77 l 255.63 87.59 l 243.75 89.55 lf -0 sg 236.88 82.65 m 248.77 80.77 l 255.63 87.59 l 243.75 89.55 lx -0.43 0.56 0.00 s 267.52 84.31 m 279.41 77.26 l 286.27 83.20 l 274.38 89.22 lf -0 sg 267.52 84.31 m 279.41 77.26 l 286.27 83.20 l 274.38 89.22 lx -0.00 0.92 0.07 s 187.50 79.78 m 199.38 75.78 l 206.25 82.57 l 194.36 86.44 lf -0 sg 187.50 79.78 m 199.38 75.78 l 206.25 82.57 l 194.36 86.44 lx -1.00 0.18 0.18 s 46.20 75.46 m 58.08 84.36 l 64.95 99.53 l 53.06 86.68 lf -0 sg 46.20 75.46 m 58.08 84.36 l 64.95 99.53 l 53.06 86.68 lx -0.00 0.52 0.47 s 27.45 78.67 m 39.33 75.07 l 46.20 75.46 l 34.31 84.62 lf -0 sg 27.45 78.67 m 39.33 75.07 l 46.20 75.46 l 34.31 84.62 lx -0.00 0.99 0.00 s 218.13 78.76 m 230.02 74.54 l 236.88 82.65 l 225.00 85.81 lf -0 sg 218.13 78.76 m 230.02 74.54 l 236.88 82.65 l 225.00 85.81 lx -0.22 0.77 0.00 s 107.47 73.61 m 119.36 83.29 l 126.22 92.07 l 114.33 76.96 lf -0 sg 107.47 73.61 m 119.36 83.29 l 126.22 92.07 l 114.33 76.96 lx -0.00 0.44 0.55 s 138.11 70.14 m 150.00 86.57 l 156.86 69.92 l 144.97 85.14 lf -0 sg 138.11 70.14 m 150.00 86.57 l 156.86 69.92 l 144.97 85.14 lx -0.00 0.22 0.77 s 168.75 78.28 m 180.63 63.51 l 187.50 79.78 l 175.61 83.61 lf -0 sg 168.75 78.28 m 180.63 63.51 l 187.50 79.78 l 175.61 83.61 lx -0.81 0.18 0.00 s 248.77 80.77 m 260.66 76.39 l 267.52 84.31 l 255.63 87.59 lf -0 sg 248.77 80.77 m 260.66 76.39 l 267.52 84.31 l 255.63 87.59 lx -0.00 0.82 0.17 s 88.72 72.98 m 100.61 70.50 l 107.47 73.61 l 95.58 93.35 lf -0 sg 88.72 72.98 m 100.61 70.50 l 107.47 73.61 l 95.58 93.35 lx -0.00 0.67 0.32 s 199.38 75.78 m 211.27 70.36 l 218.13 78.76 l 206.25 82.57 lf -0 sg 199.38 75.78 m 211.27 70.36 l 218.13 78.76 l 206.25 82.57 lx -1.00 0.53 0.53 s 58.08 84.36 m 69.97 80.86 l 76.83 72.17 l 64.95 99.53 lf -0 sg 58.08 84.36 m 69.97 80.86 l 76.83 72.17 l 64.95 99.53 lx -0.15 0.84 0.00 s 119.36 83.29 m 131.25 65.71 l 138.11 70.14 l 126.22 92.07 lf -0 sg 119.36 83.29 m 131.25 65.71 l 138.11 70.14 l 126.22 92.07 lx -0.00 0.44 0.55 s 150.00 86.57 m 161.88 63.27 l 168.75 78.28 l 156.86 69.92 lf -0 sg 150.00 86.57 m 161.88 63.27 l 168.75 78.28 l 156.86 69.92 lx -0.00 0.00 0.85 s 69.97 80.86 m 81.86 61.44 l 88.72 72.98 l 76.83 72.17 lf -0 sg 69.97 80.86 m 81.86 61.44 l 88.72 72.98 l 76.83 72.17 lx -0.13 0.86 0.00 s 230.02 74.54 m 241.91 72.00 l 248.77 80.77 l 236.88 82.65 lf -0 sg 230.02 74.54 m 241.91 72.00 l 248.77 80.77 l 236.88 82.65 lx -0.00 0.77 0.22 s 39.33 75.07 m 51.22 68.52 l 58.08 84.36 l 46.20 75.46 lf -0 sg 39.33 75.07 m 51.22 68.52 l 58.08 84.36 l 46.20 75.46 lx -0.00 0.18 0.81 s 180.63 63.51 m 192.52 71.81 l 199.38 75.78 l 187.50 79.78 lf -0 sg 180.63 63.51 m 192.52 71.81 l 199.38 75.78 l 187.50 79.78 lx -0.35 0.64 0.00 s 260.66 76.39 m 272.54 71.32 l 279.41 77.26 l 267.52 84.31 lf -0 sg 260.66 76.39 m 272.54 71.32 l 279.41 77.26 l 267.52 84.31 lx -0.00 0.31 0.68 s 211.27 70.36 m 223.16 65.28 l 230.02 74.54 l 218.13 78.76 lf -0 sg 211.27 70.36 m 223.16 65.28 l 230.02 74.54 l 218.13 78.76 lx -0.00 0.67 0.32 s 100.61 70.50 m 112.50 67.37 l 119.36 83.29 l 107.47 73.61 lf -0 sg 100.61 70.50 m 112.50 67.37 l 119.36 83.29 l 107.47 73.61 lx -0.02 0.97 0.00 s 20.58 72.73 m 32.47 70.31 l 39.33 75.07 l 27.45 78.67 lf -0 sg 20.58 72.73 m 32.47 70.31 l 39.33 75.07 l 27.45 78.67 lx -0.06 0.93 0.00 s 131.25 65.71 m 143.13 73.84 l 150.00 86.57 l 138.11 70.14 lf -0 sg 131.25 65.71 m 143.13 73.84 l 150.00 86.57 l 138.11 70.14 lx -0.00 0.37 0.62 s 161.88 63.27 m 173.77 78.35 l 180.63 63.51 l 168.75 78.28 lf -0 sg 161.88 63.27 m 173.77 78.35 l 180.63 63.51 l 168.75 78.28 lx -0.25 0.74 0.00 s 241.91 72.00 m 253.79 68.62 l 260.66 76.39 l 248.77 80.77 lf -0 sg 241.91 72.00 m 253.79 68.62 l 260.66 76.39 l 248.77 80.77 lx -0.00 0.17 0.82 s 81.86 61.44 m 93.75 73.07 l 100.61 70.50 l 88.72 72.98 lf -0 sg 81.86 61.44 m 93.75 73.07 l 100.61 70.50 l 88.72 72.98 lx -0.00 0.56 0.43 s 192.52 71.81 m 204.41 64.25 l 211.27 70.36 l 199.38 75.78 lf -0 sg 192.52 71.81 m 204.41 64.25 l 211.27 70.36 l 199.38 75.78 lx -0.00 0.45 0.54 s 223.16 65.28 m 235.04 65.32 l 241.91 72.00 l 230.02 74.54 lf -0 sg 223.16 65.28 m 235.04 65.32 l 241.91 72.00 l 230.02 74.54 lx -1.00 0.41 0.41 s 51.22 68.52 m 63.11 77.88 l 69.97 80.86 l 58.08 84.36 lf -0 sg 51.22 68.52 m 63.11 77.88 l 69.97 80.86 l 58.08 84.36 lx -0.14 0.85 0.00 s 112.50 67.37 m 124.38 70.91 l 131.25 65.71 l 119.36 83.29 lf -0 sg 112.50 67.37 m 124.38 70.91 l 131.25 65.71 l 119.36 83.29 lx -0.00 0.68 0.31 s 32.47 70.31 m 44.36 64.51 l 51.22 68.52 l 39.33 75.07 lf -0 sg 32.47 70.31 m 44.36 64.51 l 51.22 68.52 l 39.33 75.07 lx -0.00 0.00 0.30 s 204.41 64.25 m 216.29 51.85 l 223.16 65.28 l 211.27 70.36 lf -0 sg 204.41 64.25 m 216.29 51.85 l 223.16 65.28 l 211.27 70.36 lx -0.06 0.93 0.00 s 143.13 73.84 m 155.02 58.85 l 161.88 63.27 l 150.00 86.57 lf -0 sg 143.13 73.84 m 155.02 58.85 l 161.88 63.27 l 150.00 86.57 lx -0.00 0.40 0.59 s 173.77 78.35 m 185.66 56.37 l 192.52 71.81 l 180.63 63.51 lf -0 sg 173.77 78.35 m 185.66 56.37 l 192.52 71.81 l 180.63 63.51 lx -0.07 0.92 0.00 s 253.79 68.62 m 265.68 65.37 l 272.54 71.32 l 260.66 76.39 lf -0 sg 253.79 68.62 m 265.68 65.37 l 272.54 71.32 l 260.66 76.39 lx -0.00 0.47 0.52 s 93.75 73.07 m 105.63 57.42 l 112.50 67.37 l 100.61 70.50 lf -0 sg 93.75 73.07 m 105.63 57.42 l 112.50 67.37 l 100.61 70.50 lx -0.52 0.47 0.00 s 63.11 77.88 m 75.00 65.87 l 81.86 61.44 l 69.97 80.86 lf -0 sg 63.11 77.88 m 75.00 65.87 l 81.86 61.44 l 69.97 80.86 lx -0.01 0.98 0.00 s 13.72 66.79 m 25.61 63.06 l 32.47 70.31 l 20.58 72.73 lf -0 sg 13.72 66.79 m 25.61 63.06 l 32.47 70.31 l 20.58 72.73 lx -0.00 0.99 0.00 s 124.38 70.91 m 136.27 61.30 l 143.13 73.84 l 131.25 65.71 lf -0 sg 124.38 70.91 m 136.27 61.30 l 143.13 73.84 l 131.25 65.71 lx -0.00 0.92 0.07 s 235.04 65.32 m 246.93 63.70 l 253.79 68.62 l 241.91 72.00 lf -0 sg 235.04 65.32 m 246.93 63.70 l 253.79 68.62 l 241.91 72.00 lx -0.00 0.04 0.95 s 75.00 65.87 m 86.88 52.15 l 93.75 73.07 l 81.86 61.44 lf -0 sg 75.00 65.87 m 86.88 52.15 l 93.75 73.07 l 81.86 61.44 lx -0.17 0.82 0.00 s 44.36 64.51 m 56.25 60.38 l 63.11 77.88 l 51.22 68.52 lf -0 sg 44.36 64.51 m 56.25 60.38 l 63.11 77.88 l 51.22 68.52 lx -0.15 0.84 0.00 s 155.02 58.85 m 166.91 69.56 l 173.77 78.35 l 161.88 63.27 lf -0 sg 155.02 58.85 m 166.91 69.56 l 173.77 78.35 l 161.88 63.27 lx -0.00 0.43 0.56 s 185.66 56.37 m 197.54 64.33 l 204.41 64.25 l 192.52 71.81 lf -0 sg 185.66 56.37 m 197.54 64.33 l 204.41 64.25 l 192.52 71.81 lx -0.00 0.07 0.92 s 216.29 51.85 m 228.18 65.78 l 235.04 65.32 l 223.16 65.28 lf -0 sg 216.29 51.85 m 228.18 65.78 l 235.04 65.32 l 223.16 65.28 lx -0.00 0.77 0.22 s 105.63 57.42 m 117.52 62.94 l 124.38 70.91 l 112.50 67.37 lf -0 sg 105.63 57.42 m 117.52 62.94 l 124.38 70.91 l 112.50 67.37 lx -0.00 0.99 0.00 s 25.61 63.06 m 37.50 60.98 l 44.36 64.51 l 32.47 70.31 lf -0 sg 25.61 63.06 m 37.50 60.98 l 44.36 64.51 l 32.47 70.31 lx -0.00 0.99 0.00 s 136.27 61.30 m 148.16 64.05 l 155.02 58.85 l 143.13 73.84 lf -0 sg 136.27 61.30 m 148.16 64.05 l 155.02 58.85 l 143.13 73.84 lx -0.01 0.98 0.00 s 246.93 63.70 m 258.82 59.43 l 265.68 65.37 l 253.79 68.62 lf -0 sg 246.93 63.70 m 258.82 59.43 l 265.68 65.37 l 253.79 68.62 lx -0.00 0.27 0.72 s 86.88 52.15 m 98.77 59.15 l 105.63 57.42 l 93.75 73.07 lf -0 sg 86.88 52.15 m 98.77 59.15 l 105.63 57.42 l 93.75 73.07 lx -0.22 0.77 0.00 s 166.91 69.56 m 178.79 53.02 l 185.66 56.37 l 173.77 78.35 lf -0 sg 166.91 69.56 m 178.79 53.02 l 185.66 56.37 l 173.77 78.35 lx -0.00 0.54 0.45 s 197.54 64.33 m 209.43 64.06 l 216.29 51.85 l 204.41 64.25 lf -0 sg 197.54 64.33 m 209.43 64.06 l 216.29 51.85 l 204.41 64.25 lx -1.00 0.36 0.36 s 56.25 60.38 m 68.13 69.37 l 75.00 65.87 l 63.11 77.88 lf -0 sg 56.25 60.38 m 68.13 69.37 l 75.00 65.87 l 63.11 77.88 lx -0.00 0.94 0.05 s 6.86 60.84 m 18.75 57.40 l 25.61 63.06 l 13.72 66.79 lf -0 sg 6.86 60.84 m 18.75 57.40 l 25.61 63.06 l 13.72 66.79 lx -0.00 0.83 0.16 s 117.52 62.94 m 129.41 50.48 l 136.27 61.30 l 124.38 70.91 lf -0 sg 117.52 62.94 m 129.41 50.48 l 136.27 61.30 l 124.38 70.91 lx -0.00 0.66 0.33 s 37.50 60.98 m 49.38 54.87 l 56.25 60.38 l 44.36 64.51 lf -0 sg 37.50 60.98 m 49.38 54.87 l 56.25 60.38 l 44.36 64.51 lx -0.67 0.32 0.00 s 228.18 65.78 m 240.07 61.12 l 246.93 63.70 l 235.04 65.32 lf -0 sg 228.18 65.78 m 240.07 61.12 l 246.93 63.70 l 235.04 65.32 lx -0.14 0.85 0.00 s 148.16 64.05 m 160.04 53.64 l 166.91 69.56 l 155.02 58.85 lf -0 sg 148.16 64.05 m 160.04 53.64 l 166.91 69.56 l 155.02 58.85 lx -0.00 0.00 0.91 s 209.43 64.06 m 221.32 40.63 l 228.18 65.78 l 216.29 51.85 lf -0 sg 209.43 64.06 m 221.32 40.63 l 228.18 65.78 l 216.29 51.85 lx -0.00 0.93 0.06 s 178.79 53.02 m 190.68 65.89 l 197.54 64.33 l 185.66 56.37 lf -0 sg 178.79 53.02 m 190.68 65.89 l 197.54 64.33 l 185.66 56.37 lx -0.00 0.43 0.56 s 98.77 59.15 m 110.66 50.76 l 117.52 62.94 l 105.63 57.42 lf -0 sg 98.77 59.15 m 110.66 50.76 l 117.52 62.94 l 105.63 57.42 lx -0.34 0.65 0.00 s 68.13 69.37 m 80.02 58.73 l 86.88 52.15 l 75.00 65.87 lf -0 sg 68.13 69.37 m 80.02 58.73 l 86.88 52.15 l 75.00 65.87 lx -0.00 0.99 0.00 s 18.75 57.40 m 30.63 53.72 l 37.50 60.98 l 25.61 63.06 lf -0 sg 18.75 57.40 m 30.63 53.72 l 37.50 60.98 l 25.61 63.06 lx -0.00 0.83 0.16 s 129.41 50.48 m 141.29 56.08 l 148.16 64.05 l 136.27 61.30 lf -0 sg 129.41 50.48 m 141.29 56.08 l 148.16 64.05 l 136.27 61.30 lx -0.00 0.67 0.32 s 160.04 53.64 m 171.93 49.91 l 178.79 53.02 l 166.91 69.56 lf -0 sg 160.04 53.64 m 171.93 49.91 l 178.79 53.02 l 166.91 69.56 lx -0.34 0.65 0.00 s 240.07 61.12 m 251.95 53.49 l 258.82 59.43 l 246.93 63.70 lf -0 sg 240.07 61.12 m 251.95 53.49 l 258.82 59.43 l 246.93 63.70 lx -0.00 0.19 0.80 s 80.02 58.73 m 91.91 46.97 l 98.77 59.15 l 86.88 52.15 lf -0 sg 80.02 58.73 m 91.91 46.97 l 98.77 59.15 l 86.88 52.15 lx -0.25 0.74 0.00 s 49.38 54.87 m 61.27 50.27 l 68.13 69.37 l 56.25 60.38 lf -0 sg 49.38 54.87 m 61.27 50.27 l 68.13 69.37 l 56.25 60.38 lx -0.03 0.96 0.00 s 190.68 65.89 m 202.57 32.99 l 209.43 64.06 l 197.54 64.33 lf -0 sg 190.68 65.89 m 202.57 32.99 l 209.43 64.06 l 197.54 64.33 lx -0.00 0.66 0.33 s 110.66 50.76 m 122.54 55.47 l 129.41 50.48 l 117.52 62.94 lf -0 sg 110.66 50.76 m 122.54 55.47 l 129.41 50.48 l 117.52 62.94 lx -0.00 0.96 0.03 s 0.00 54.90 m 11.88 51.47 l 18.75 57.40 l 6.86 60.84 lf -0 sg 0.00 54.90 m 11.88 51.47 l 18.75 57.40 l 6.86 60.84 lx -0.00 0.87 0.12 s 221.32 40.63 m 233.20 53.95 l 240.07 61.12 l 228.18 65.78 lf -0 sg 221.32 40.63 m 233.20 53.95 l 240.07 61.12 l 228.18 65.78 lx -0.00 0.00 0.00 s 202.57 32.99 m 214.45 48.68 l 221.32 40.63 l 209.43 64.06 lf -0 sg 202.57 32.99 m 214.45 48.68 l 221.32 40.63 l 209.43 64.06 lx -0.00 0.98 0.01 s 30.63 53.72 m 42.52 51.62 l 49.38 54.87 l 37.50 60.98 lf -0 sg 30.63 53.72 m 42.52 51.62 l 49.38 54.87 l 37.50 60.98 lx -0.00 0.77 0.22 s 141.29 56.08 m 153.18 43.70 l 160.04 53.64 l 148.16 64.05 lf -0 sg 141.29 56.08 m 153.18 43.70 l 160.04 53.64 l 148.16 64.05 lx -0.00 0.00 0.93 s 91.91 46.97 m 103.79 42.93 l 110.66 50.76 l 98.77 59.15 lf -0 sg 91.91 46.97 m 103.79 42.93 l 110.66 50.76 l 98.77 59.15 lx -0.00 0.82 0.17 s 171.93 49.91 m 183.82 45.53 l 190.68 65.89 l 178.79 53.02 lf -0 sg 171.93 49.91 m 183.82 45.53 l 190.68 65.89 l 178.79 53.02 lx -0.00 0.66 0.33 s 122.54 55.47 m 134.43 43.90 l 141.29 56.08 l 129.41 50.48 lf -0 sg 122.54 55.47 m 134.43 43.90 l 141.29 56.08 l 129.41 50.48 lx -1.00 0.37 0.37 s 61.27 50.27 m 73.16 57.70 l 80.02 58.73 l 68.13 69.37 lf -0 sg 61.27 50.27 m 73.16 57.70 l 80.02 58.73 l 68.13 69.37 lx -0.00 0.94 0.05 s 11.88 51.47 m 23.77 48.04 l 30.63 53.72 l 18.75 57.40 lf -0 sg 11.88 51.47 m 23.77 48.04 l 30.63 53.72 l 18.75 57.40 lx -0.00 0.00 0.44 s 183.82 45.53 m 195.70 37.86 l 202.57 32.99 l 190.68 65.89 lf -0 sg 183.82 45.53 m 195.70 37.86 l 202.57 32.99 l 190.68 65.89 lx -0.00 0.66 0.33 s 42.52 51.62 m 54.41 46.38 l 61.27 50.27 l 49.38 54.87 lf -0 sg 42.52 51.62 m 54.41 46.38 l 61.27 50.27 l 49.38 54.87 lx -0.00 0.47 0.52 s 153.18 43.70 m 165.07 52.49 l 171.93 49.91 l 160.04 53.64 lf -0 sg 153.18 43.70 m 165.07 52.49 l 171.93 49.91 l 160.04 53.64 lx -0.50 0.49 0.00 s 233.20 53.95 m 245.09 47.54 l 251.95 53.49 l 240.07 61.12 lf -0 sg 233.20 53.95 m 245.09 47.54 l 251.95 53.49 l 240.07 61.12 lx -0.00 0.00 0.97 s 103.79 42.93 m 115.68 37.43 l 122.54 55.47 l 110.66 50.76 lf -0 sg 103.79 42.93 m 115.68 37.43 l 122.54 55.47 l 110.66 50.76 lx -1.00 0.04 0.04 s 73.16 57.70 m 85.04 54.55 l 91.91 46.97 l 80.02 58.73 lf -0 sg 73.16 57.70 m 85.04 54.55 l 91.91 46.97 l 80.02 58.73 lx -0.03 0.96 0.00 s 214.45 48.68 m 226.34 56.57 l 233.20 53.95 l 221.32 40.63 lf -0 sg 214.45 48.68 m 226.34 56.57 l 233.20 53.95 l 221.32 40.63 lx -0.00 0.43 0.56 s 134.43 43.90 m 146.32 45.42 l 153.18 43.70 l 141.29 56.08 lf -0 sg 134.43 43.90 m 146.32 45.42 l 153.18 43.70 l 141.29 56.08 lx -0.02 0.97 0.00 s 23.77 48.04 m 35.66 44.60 l 42.52 51.62 l 30.63 53.72 lf -0 sg 23.77 48.04 m 35.66 44.60 l 42.52 51.62 l 30.63 53.72 lx -0.00 0.17 0.82 s 165.07 52.49 m 176.95 33.99 l 183.82 45.53 l 171.93 49.91 lf -0 sg 165.07 52.49 m 176.95 33.99 l 183.82 45.53 l 171.93 49.91 lx -0.00 0.96 0.03 s 54.41 46.38 m 66.29 39.14 l 73.16 57.70 l 61.27 50.27 lf -0 sg 54.41 46.38 m 66.29 39.14 l 73.16 57.70 l 61.27 50.27 lx -0.00 0.14 0.85 s 195.70 37.86 m 207.59 58.35 l 214.45 48.68 l 202.57 32.99 lf -0 sg 195.70 37.86 m 207.59 58.35 l 214.45 48.68 l 202.57 32.99 lx -0.00 0.00 0.97 s 115.68 37.43 m 127.57 36.06 l 134.43 43.90 l 122.54 55.47 lf -0 sg 115.68 37.43 m 127.57 36.06 l 134.43 43.90 l 122.54 55.47 lx -0.22 0.77 0.00 s 85.04 54.55 m 96.93 48.87 l 103.79 42.93 l 91.91 46.97 lf -0 sg 85.04 54.55 m 96.93 48.87 l 103.79 42.93 l 91.91 46.97 lx -0.00 0.27 0.72 s 146.32 45.42 m 158.20 31.56 l 165.07 52.49 l 153.18 43.70 lf -0 sg 146.32 45.42 m 158.20 31.56 l 165.07 52.49 l 153.18 43.70 lx -0.00 0.00 0.85 s 176.95 33.99 m 188.84 46.55 l 195.70 37.86 l 183.82 45.53 lf -0 sg 176.95 33.99 m 188.84 46.55 l 195.70 37.86 l 183.82 45.53 lx -0.00 0.99 0.00 s 35.66 44.60 m 47.54 41.17 l 54.41 46.38 l 42.52 51.62 lf -0 sg 35.66 44.60 m 47.54 41.17 l 54.41 46.38 l 42.52 51.62 lx -1.00 0.05 0.05 s 226.34 56.57 m 238.23 41.60 l 245.09 47.54 l 233.20 53.95 lf -0 sg 226.34 56.57 m 238.23 41.60 l 245.09 47.54 l 233.20 53.95 lx -0.00 0.69 0.30 s 96.93 48.87 m 108.82 43.21 l 115.68 37.43 l 103.79 42.93 lf -0 sg 96.93 48.87 m 108.82 43.21 l 115.68 37.43 l 103.79 42.93 lx -0.00 0.00 0.93 s 127.57 36.06 m 139.45 33.24 l 146.32 45.42 l 134.43 43.90 lf -0 sg 127.57 36.06 m 139.45 33.24 l 146.32 45.42 l 134.43 43.90 lx -0.82 0.17 0.00 s 66.29 39.14 m 78.18 39.89 l 85.04 54.55 l 73.16 57.70 lf -0 sg 66.29 39.14 m 78.18 39.89 l 85.04 54.55 l 73.16 57.70 lx -0.00 0.04 0.95 s 158.20 31.56 m 170.09 38.42 l 176.95 33.99 l 165.07 52.49 lf -0 sg 158.20 31.56 m 170.09 38.42 l 176.95 33.99 l 165.07 52.49 lx -0.00 0.57 0.42 s 47.54 41.17 m 59.43 37.74 l 66.29 39.14 l 54.41 46.38 lf -0 sg 47.54 41.17 m 59.43 37.74 l 66.29 39.14 l 54.41 46.38 lx -1.00 1.00 1.00 s 207.59 58.35 m 219.48 38.64 l 226.34 56.57 l 214.45 48.68 lf -0 sg 207.59 58.35 m 219.48 38.64 l 226.34 56.57 l 214.45 48.68 lx -0.00 0.69 0.30 s 108.82 43.21 m 120.70 42.01 l 127.57 36.06 l 115.68 37.43 lf -0 sg 108.82 43.21 m 120.70 42.01 l 127.57 36.06 l 115.68 37.43 lx -0.00 0.19 0.80 s 139.45 33.24 m 151.34 38.14 l 158.20 31.56 l 146.32 45.42 lf -0 sg 139.45 33.24 m 151.34 38.14 l 158.20 31.56 l 146.32 45.42 lx -1.00 0.25 0.25 s 78.18 39.89 m 90.07 39.94 l 96.93 48.87 l 85.04 54.55 lf -0 sg 78.18 39.89 m 90.07 39.94 l 96.93 48.87 l 85.04 54.55 lx -1.00 0.53 0.53 s 188.84 46.55 m 200.73 43.19 l 207.59 58.35 l 195.70 37.86 lf -0 sg 188.84 46.55 m 200.73 43.19 l 207.59 58.35 l 195.70 37.86 lx -0.79 0.20 0.00 s 219.48 38.64 m 231.37 35.66 l 238.23 41.60 l 226.34 56.57 lf -0 sg 219.48 38.64 m 231.37 35.66 l 238.23 41.60 l 226.34 56.57 lx -0.00 0.59 0.40 s 59.43 37.74 m 71.32 34.31 l 78.18 39.89 l 66.29 39.14 lf -0 sg 59.43 37.74 m 71.32 34.31 l 78.18 39.89 l 66.29 39.14 lx -0.52 0.47 0.00 s 170.09 38.42 m 181.98 43.57 l 188.84 46.55 l 176.95 33.99 lf -0 sg 170.09 38.42 m 181.98 43.57 l 188.84 46.55 l 176.95 33.99 lx -0.22 0.77 0.00 s 120.70 42.01 m 132.59 40.82 l 139.45 33.24 l 127.57 36.06 lf -0 sg 120.70 42.01 m 132.59 40.82 l 139.45 33.24 l 127.57 36.06 lx -1.00 0.35 0.35 s 90.07 39.94 m 101.95 38.84 l 108.82 43.21 l 96.93 48.87 lf -0 sg 90.07 39.94 m 101.95 38.84 l 108.82 43.21 l 96.93 48.87 lx -1.00 0.18 0.18 s 200.73 43.19 m 212.62 27.42 l 219.48 38.64 l 207.59 58.35 lf -0 sg 200.73 43.19 m 212.62 27.42 l 219.48 38.64 l 207.59 58.35 lx -0.34 0.65 0.00 s 151.34 38.14 m 163.23 41.92 l 170.09 38.42 l 158.20 31.56 lf -0 sg 151.34 38.14 m 163.23 41.92 l 170.09 38.42 l 158.20 31.56 lx -0.17 0.82 0.00 s 71.32 34.31 m 83.20 30.88 l 90.07 39.94 l 78.18 39.89 lf -0 sg 71.32 34.31 m 83.20 30.88 l 90.07 39.94 l 78.18 39.89 lx -0.00 0.50 0.49 s 212.62 27.42 m 224.50 29.71 l 231.37 35.66 l 219.48 38.64 lf -0 sg 212.62 27.42 m 224.50 29.71 l 231.37 35.66 l 219.48 38.64 lx -1.00 0.41 0.41 s 181.98 43.57 m 193.87 27.34 l 200.73 43.19 l 188.84 46.55 lf -0 sg 181.98 43.57 m 193.87 27.34 l 200.73 43.19 l 188.84 46.55 lx -1.00 0.35 0.35 s 101.95 38.84 m 113.84 33.08 l 120.70 42.01 l 108.82 43.21 lf -0 sg 101.95 38.84 m 113.84 33.08 l 120.70 42.01 l 108.82 43.21 lx -1.00 0.04 0.04 s 132.59 40.82 m 144.48 37.11 l 151.34 38.14 l 139.45 33.24 lf -0 sg 132.59 40.82 m 144.48 37.11 l 151.34 38.14 l 139.45 33.24 lx -0.00 0.77 0.22 s 193.87 27.34 m 205.75 27.03 l 212.62 27.42 l 200.73 43.19 lf -0 sg 193.87 27.34 m 205.75 27.03 l 212.62 27.42 l 200.73 43.19 lx -0.60 0.39 0.00 s 83.20 30.88 m 95.09 27.45 l 101.95 38.84 l 90.07 39.94 lf -0 sg 83.20 30.88 m 95.09 27.45 l 101.95 38.84 l 90.07 39.94 lx -1.00 0.36 0.36 s 163.23 41.92 m 175.12 26.06 l 181.98 43.57 l 170.09 38.42 lf -0 sg 163.23 41.92 m 175.12 26.06 l 181.98 43.57 l 170.09 38.42 lx -1.00 0.25 0.25 s 113.84 33.08 m 125.73 26.16 l 132.59 40.82 l 120.70 42.01 lf -0 sg 113.84 33.08 m 125.73 26.16 l 132.59 40.82 l 120.70 42.01 lx -0.17 0.82 0.00 s 175.12 26.06 m 187.00 23.33 l 193.87 27.34 l 181.98 43.57 lf -0 sg 175.12 26.06 m 187.00 23.33 l 193.87 27.34 l 181.98 43.57 lx -0.00 0.52 0.47 s 205.75 27.03 m 217.64 23.77 l 224.50 29.71 l 212.62 27.42 lf -0 sg 205.75 27.03 m 217.64 23.77 l 224.50 29.71 l 212.62 27.42 lx -1.00 0.37 0.37 s 144.48 37.11 m 156.37 22.81 l 163.23 41.92 l 151.34 38.14 lf -0 sg 144.48 37.11 m 156.37 22.81 l 163.23 41.92 l 151.34 38.14 lx -0.60 0.39 0.00 s 95.09 27.45 m 106.98 24.02 l 113.84 33.08 l 101.95 38.84 lf -0 sg 95.09 27.45 m 106.98 24.02 l 113.84 33.08 l 101.95 38.84 lx -0.82 0.17 0.00 s 125.73 26.16 m 137.62 18.55 l 144.48 37.11 l 132.59 40.82 lf -0 sg 125.73 26.16 m 137.62 18.55 l 144.48 37.11 l 132.59 40.82 lx -0.25 0.74 0.00 s 156.37 22.81 m 168.25 20.55 l 175.12 26.06 l 163.23 41.92 lf -0 sg 156.37 22.81 m 168.25 20.55 l 175.12 26.06 l 163.23 41.92 lx -0.00 0.68 0.31 s 187.00 23.33 m 198.89 22.27 l 205.75 27.03 l 193.87 27.34 lf -0 sg 187.00 23.33 m 198.89 22.27 l 205.75 27.03 l 193.87 27.34 lx -0.17 0.82 0.00 s 106.98 24.02 m 118.87 20.58 l 125.73 26.16 l 113.84 33.08 lf -0 sg 106.98 24.02 m 118.87 20.58 l 125.73 26.16 l 113.84 33.08 lx -0.00 0.96 0.03 s 137.62 18.55 m 149.50 18.93 l 156.37 22.81 l 144.48 37.11 lf -0 sg 137.62 18.55 m 149.50 18.93 l 156.37 22.81 l 144.48 37.11 lx -0.00 0.66 0.33 s 168.25 20.55 m 180.14 19.80 l 187.00 23.33 l 175.12 26.06 lf -0 sg 168.25 20.55 m 180.14 19.80 l 187.00 23.33 l 175.12 26.06 lx -0.02 0.97 0.00 s 198.89 22.27 m 210.78 17.83 l 217.64 23.77 l 205.75 27.03 lf -0 sg 198.89 22.27 m 210.78 17.83 l 217.64 23.77 l 205.75 27.03 lx -0.00 0.59 0.40 s 118.87 20.58 m 130.75 17.15 l 137.62 18.55 l 125.73 26.16 lf -0 sg 118.87 20.58 m 130.75 17.15 l 137.62 18.55 l 125.73 26.16 lx -0.00 0.66 0.33 s 149.50 18.93 m 161.39 17.31 l 168.25 20.55 l 156.37 22.81 lf -0 sg 149.50 18.93 m 161.39 17.31 l 168.25 20.55 l 156.37 22.81 lx -0.00 0.99 0.00 s 180.14 19.80 m 192.03 15.02 l 198.89 22.27 l 187.00 23.33 lf -0 sg 180.14 19.80 m 192.03 15.02 l 198.89 22.27 l 187.00 23.33 lx -0.00 0.57 0.42 s 130.75 17.15 m 142.64 13.72 l 149.50 18.93 l 137.62 18.55 lf -0 sg 130.75 17.15 m 142.64 13.72 l 149.50 18.93 l 137.62 18.55 lx -0.00 0.98 0.01 s 161.39 17.31 m 173.28 12.54 l 180.14 19.80 l 168.25 20.55 lf -0 sg 161.39 17.31 m 173.28 12.54 l 180.14 19.80 l 168.25 20.55 lx -0.01 0.98 0.00 s 192.03 15.02 m 203.91 11.88 l 210.78 17.83 l 198.89 22.27 lf -0 sg 192.03 15.02 m 203.91 11.88 l 210.78 17.83 l 198.89 22.27 lx -0.00 0.99 0.00 s 142.64 13.72 m 154.53 10.29 l 161.39 17.31 l 149.50 18.93 lf -0 sg 142.64 13.72 m 154.53 10.29 l 161.39 17.31 l 149.50 18.93 lx -0.00 0.99 0.00 s 173.28 12.54 m 185.16 9.36 l 192.03 15.02 l 180.14 19.80 lf -0 sg 173.28 12.54 m 185.16 9.36 l 192.03 15.02 l 180.14 19.80 lx -0.02 0.97 0.00 s 154.53 10.29 m 166.41 6.86 l 173.28 12.54 l 161.39 17.31 lf -0 sg 154.53 10.29 m 166.41 6.86 l 173.28 12.54 l 161.39 17.31 lx -0.00 0.94 0.05 s 185.16 9.36 m 197.05 5.94 l 203.91 11.88 l 192.03 15.02 lf -0 sg 185.16 9.36 m 197.05 5.94 l 203.91 11.88 l 192.03 15.02 lx -0.00 0.94 0.05 s 166.41 6.86 m 178.30 3.43 l 185.16 9.36 l 173.28 12.54 lf -0 sg 166.41 6.86 m 178.30 3.43 l 185.16 9.36 l 173.28 12.54 lx -0.00 0.96 0.03 s 178.30 3.43 m 190.19 0.00 l 197.05 5.94 l 185.16 9.36 lf -0 sg 178.30 3.43 m 190.19 0.00 l 197.05 5.94 l 185.16 9.36 lx -showpage -. - -DEAL:: Collecting refinement data: -DEAL:: Refining each time step separately. -DEAL:: Got 6656 presently, expecting 6203 for next sweep. -DEAL:: Writing statistics for whole sweep.# Description of fields -DEAL::# ===================== -DEAL::# General: -DEAL::# time -# Primal problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Dual problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Error estimation: -# total estimated error in this timestep -# Postprocessing: -# Huyghens wave - - -DEAL::0.00 256 289 0 0 0.00 0.00 0.00 256 1089 7 10 0.00 0.00 0.00 0.00 0.00 -DEAL::0.02 256 289 9 13 1.22 1.12 2.34 256 1089 7 10 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.05 256 289 10 13 0.33 2.01 2.34 256 1089 7 10 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.08 256 289 10 12 1.04 1.30 2.34 256 1089 7 10 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.11 256 289 10 12 1.57 0.77 2.34 256 1089 7 10 0.00 0.00 0.00 0.00 0.00 -DEAL::0.14 256 289 9 13 1.21 1.13 2.34 256 1089 7 10 0.00 0.00 0.00 -0.00 0.00 -DEAL::0.16 256 289 10 13 1.00 1.34 2.34 256 1089 7 10 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.19 256 289 10 12 1.10 1.24 2.34 256 1089 7 10 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.22 256 289 10 13 1.28 1.06 2.34 256 1089 7 10 0.00 0.00 0.00 -0.00 -0.00 -DEAL::0.25 256 289 10 12 1.30 1.04 2.34 256 1089 7 10 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.28 256 289 10 12 1.04 1.30 2.34 256 1089 7 10 0.00 0.00 0.00 0.00 0.00 -DEAL::0.30 256 289 9 13 1.05 1.29 2.34 256 1089 7 10 0.00 0.00 0.00 0.00 0.01 -DEAL::0.33 256 289 10 13 1.35 0.99 2.34 256 1089 7 10 0.00 0.00 0.00 -0.00 0.01 -DEAL::0.36 256 289 10 12 1.22 1.12 2.34 256 1089 7 10 0.00 0.00 0.00 -0.00 0.00 -DEAL::0.39 256 289 9 13 1.01 1.33 2.34 256 1089 7 10 0.00 0.00 0.00 -0.00 -0.00 -DEAL::0.42 256 289 9 13 1.19 1.15 2.34 256 1089 7 10 0.00 0.00 0.00 -0.00 -0.03 -DEAL::0.44 256 289 9 12 1.24 1.10 2.34 256 1089 6 10 0.00 0.00 0.00 -0.00 -0.04 -DEAL::0.47 256 289 9 13 1.17 1.17 2.34 256 1089 6 10 0.00 0.00 0.00 0.00 -0.03 -DEAL::0.50 256 289 10 12 1.16 1.18 2.34 256 1089 6 10 0.00 0.00 0.00 0.00 0.00 -DEAL::0.53 256 289 10 12 1.10 1.24 2.34 256 1089 6 10 0.00 0.00 0.00 0.00 0.06 -DEAL::0.56 256 289 10 12 1.20 1.14 2.34 256 1089 6 10 0.00 0.00 0.00 0.00 0.12 -DEAL::0.58 256 289 10 12 1.29 1.05 2.34 256 1089 6 10 0.00 0.00 0.00 0.00 0.13 -DEAL::0.61 256 289 9 13 1.12 1.22 2.34 256 1089 6 10 0.00 0.00 0.00 -0.00 0.08 -DEAL::0.64 256 289 9 13 1.08 1.26 2.34 256 1089 6 10 0.00 0.00 0.00 -0.00 -0.01 -DEAL::0.67 256 289 10 12 1.22 1.12 2.34 256 1089 5 10 0.00 0.00 0.00 0.00 -0.10 -DEAL::0.70 256 289 10 13 1.20 1.14 2.34 256 1089 0 0 0.00 0.00 0.00 0.00 -0.14 - -DEAL:: Writing summary.Summary of this sweep: -====================== - - Accumulated number of cells: 6656 - Acc. number of primal dofs : 15028 - Acc. number of dual dofs : 56628 - Accumulated error : 0.00 - - Evaluations: - ------------ - Hughens wave -- weighted time: 0.53 - average : 0.00 - - - - -DEAL::Sweep 1 : -DEAL::--------- -DEAL:: Primal problem: time=0.00, step=0, sweep=1. 163 cells, 201 dofsStarting -DEAL:cg::Convergence step 0 -DEAL:cg::Starting -DEAL:cg::Convergence step 15 -DEAL:cg::Starting -DEAL:cg::Convergence step 0 -DEAL:cg::Starting -DEAL:cg::Convergence step 0 -DEAL::. -DEAL:: Primal problem: time=0.02, step=1, sweep=1. 169 cells, 208 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.05, step=2, sweep=1. 202 cells, 242 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.08, step=3, sweep=1. 205 cells, 245 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.11, step=4, sweep=1. 202 cells, 243 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.14, step=5, sweep=1. 220 cells, 262 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.16, step=6, sweep=1. 238 cells, 282 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.19, step=7, sweep=1. 250 cells, 296 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.22, step=8, sweep=1. 226 cells, 270 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.25, step=9, sweep=1. 268 cells, 317 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.28, step=10, sweep=1. 265 cells, 313 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.30, step=11, sweep=1. 241 cells, 283 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.33, step=12, sweep=1. 226 cells, 266 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 14 -DEAL::. -DEAL:: Primal problem: time=0.36, step=13, sweep=1. 202 cells, 241 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.39, step=14, sweep=1. 193 cells, 231 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.42, step=15, sweep=1. 190 cells, 228 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.44, step=16, sweep=1. 166 cells, 201 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.47, step=17, sweep=1. 154 cells, 189 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.50, step=18, sweep=1. 148 cells, 181 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.53, step=19, sweep=1. 145 cells, 178 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.56, step=20, sweep=1. 130 cells, 163 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.58, step=21, sweep=1. 124 cells, 155 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.61, step=22, sweep=1. 112 cells, 141 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.64, step=23, sweep=1. 106 cells, 137 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 11 -DEAL::. -DEAL:: Primal problem: time=0.67, step=24, sweep=1. 112 cells, 143 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.70, step=25, sweep=1. 109 cells, 138 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. - -DEAL:: Dual problem: time=0.70, step=25, sweep=1. 109 cells, 514 dofs. -DEAL:: Dual problem: time=0.67, step=24, sweep=1. 112 cells, 534 dofsStarting -DEAL:cg::Convergence step 6 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.64, step=23, sweep=1. 106 cells, 510 dofsStarting -DEAL:cg::Convergence step 6 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.61, step=22, sweep=1. 112 cells, 526 dofsStarting -DEAL:cg::Convergence step 5 -DEAL:cg::Starting -DEAL:cg::Convergence step 9 -DEAL::. -DEAL:: Dual problem: time=0.58, step=21, sweep=1. 124 cells, 579 dofsStarting -DEAL:cg::Convergence step 5 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.56, step=20, sweep=1. 130 cells, 611 dofsStarting -DEAL:cg::Convergence step 6 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.53, step=19, sweep=1. 145 cells, 669 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.50, step=18, sweep=1. 148 cells, 681 dofsStarting -DEAL:cg::Convergence step 7 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.47, step=17, sweep=1. 154 cells, 713 dofsStarting -DEAL:cg::Convergence step 8 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.44, step=16, sweep=1. 166 cells, 761 dofsStarting -DEAL:cg::Convergence step 8 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.42, step=15, sweep=1. 190 cells, 867 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.39, step=14, sweep=1. 193 cells, 879 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.36, step=13, sweep=1. 202 cells, 920 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.33, step=12, sweep=1. 226 cells, 1019 dofsStarting -DEAL:cg::Convergence step 11 -DEAL:cg::Starting -DEAL:cg::Convergence step 11 -DEAL::. -DEAL:: Dual problem: time=0.30, step=11, sweep=1. 241 cells, 1087 dofsStarting -DEAL:cg::Convergence step 11 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.28, step=10, sweep=1. 265 cells, 1207 dofsStarting -DEAL:cg::Convergence step 11 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.25, step=9, sweep=1. 268 cells, 1224 dofsStarting -DEAL:cg::Convergence step 11 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.22, step=8, sweep=1. 226 cells, 1041 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.19, step=7, sweep=1. 250 cells, 1143 dofsStarting -DEAL:cg::Convergence step 12 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.16, step=6, sweep=1. 238 cells, 1091 dofsStarting -DEAL:cg::Convergence step 12 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.14, step=5, sweep=1. 220 cells, 1011 dofsStarting -DEAL:cg::Convergence step 11 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.11, step=4, sweep=1. 202 cells, 935 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.08, step=3, sweep=1. 205 cells, 945 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.05, step=2, sweep=1. 202 cells, 933 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.02, step=1, sweep=1. 169 cells, 797 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.00, step=0, sweep=1. 163 cells, 769 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 9 -DEAL::. - -DEAL:: Postprocessing: time=0.00, step=0, sweep=1. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library -%% -%%BoundingBox: 0 0 300 198 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50 setlinewidth -0.00 0.00 0.10 s 96.08 138.11 m 119.85 131.24 l 133.58 143.13 l 109.80 150.00 lf -0 sg 96.08 138.11 m 119.85 131.24 l 133.58 143.13 l 109.80 150.00 lx -0.00 0.00 0.10 s 119.85 131.24 m 143.62 124.38 l 157.35 136.27 l 133.58 143.13 lf -0 sg 119.85 131.24 m 143.62 124.38 l 157.35 136.27 l 133.58 143.13 lx -0.00 0.00 0.10 s 82.35 126.22 m 106.12 119.36 l 119.85 131.24 l 96.08 138.11 lf -0 sg 82.35 126.22 m 106.12 119.36 l 119.85 131.24 l 96.08 138.11 lx -0.00 0.00 0.10 s 143.62 124.38 m 167.40 117.52 l 181.12 129.41 l 157.35 136.27 lf -0 sg 143.62 124.38 m 167.40 117.52 l 181.12 129.41 l 157.35 136.27 lx -0.00 0.00 0.10 s 106.12 119.36 m 129.90 112.49 l 143.62 124.38 l 119.85 131.24 lf -0 sg 106.12 119.36 m 129.90 112.49 l 143.62 124.38 l 119.85 131.24 lx -0.00 0.00 0.10 s 167.40 117.52 m 191.17 110.66 l 204.90 122.54 l 181.12 129.41 lf -0 sg 167.40 117.52 m 191.17 110.66 l 204.90 122.54 l 181.12 129.41 lx -0.00 0.00 0.10 s 68.62 114.33 m 92.40 107.47 l 106.12 119.36 l 82.35 126.22 lf -0 sg 68.62 114.33 m 92.40 107.47 l 106.12 119.36 l 82.35 126.22 lx -0.00 0.00 0.10 s 129.90 112.49 m 153.67 105.63 l 167.40 117.52 l 143.62 124.38 lf -0 sg 129.90 112.49 m 153.67 105.63 l 167.40 117.52 l 143.62 124.38 lx -0.00 0.00 0.10 s 191.17 110.66 m 214.95 103.79 l 228.67 115.68 l 204.90 122.54 lf -0 sg 191.17 110.66 m 214.95 103.79 l 228.67 115.68 l 204.90 122.54 lx -0.00 0.00 0.10 s 92.40 107.47 m 116.17 100.61 l 129.90 112.49 l 106.12 119.36 lf -0 sg 92.40 107.47 m 116.17 100.61 l 129.90 112.49 l 106.12 119.36 lx -0.00 0.00 0.10 s 153.67 105.63 m 177.45 98.76 l 191.17 110.66 l 167.40 117.52 lf -0 sg 153.67 105.63 m 177.45 98.76 l 191.17 110.66 l 167.40 117.52 lx -0.00 0.00 0.10 s 214.95 103.79 m 238.72 96.93 l 252.45 108.82 l 228.67 115.68 lf -0 sg 214.95 103.79 m 238.72 96.93 l 252.45 108.82 l 228.67 115.68 lx -0.00 0.00 0.10 s 54.90 102.45 m 78.67 95.59 l 92.40 107.47 l 68.62 114.33 lf -0 sg 54.90 102.45 m 78.67 95.59 l 92.40 107.47 l 68.62 114.33 lx -0.00 0.00 0.10 s 116.17 100.61 m 139.95 93.74 l 153.67 105.63 l 129.90 112.49 lf -0 sg 116.17 100.61 m 139.95 93.74 l 153.67 105.63 l 129.90 112.49 lx -0.00 0.00 0.10 s 177.45 98.76 m 201.22 91.91 l 214.95 103.79 l 191.17 110.66 lf -0 sg 177.45 98.76 m 201.22 91.91 l 214.95 103.79 l 191.17 110.66 lx -0.00 0.00 0.10 s 146.81 99.69 m 158.70 96.26 l 165.56 102.20 l 153.67 105.63 lf -0 sg 146.81 99.69 m 158.70 96.26 l 165.56 102.20 l 153.67 105.63 lx -0.00 0.00 0.10 s 238.72 96.93 m 262.50 90.07 l 276.22 101.95 l 252.45 108.82 lf -0 sg 238.72 96.93 m 262.50 90.07 l 276.22 101.95 l 252.45 108.82 lx -0.00 0.00 0.10 s 78.67 95.59 m 102.45 88.71 l 116.17 100.61 l 92.40 107.47 lf -0 sg 78.67 95.59 m 102.45 88.71 l 116.17 100.61 l 92.40 107.47 lx -0.00 0.00 0.10 s 158.70 96.26 m 170.58 92.89 l 177.45 98.76 l 165.56 102.20 lf -0 sg 158.70 96.26 m 170.58 92.89 l 177.45 98.76 l 165.56 102.20 lx -0.00 0.00 0.10 s 109.31 94.66 m 121.20 91.22 l 128.06 97.18 l 116.17 100.61 lf -0 sg 109.31 94.66 m 121.20 91.22 l 128.06 97.18 l 116.17 100.61 lx -0.00 0.00 0.10 s 139.95 93.74 m 151.83 90.31 l 158.70 96.26 l 146.81 99.69 lf -0 sg 139.95 93.74 m 151.83 90.31 l 158.70 96.26 l 146.81 99.69 lx -0.00 0.00 0.10 s 201.22 91.91 m 225.00 85.04 l 238.72 96.93 l 214.95 103.79 lf -0 sg 201.22 91.91 m 225.00 85.04 l 238.72 96.93 l 214.95 103.79 lx -0.00 0.00 0.10 s 170.58 92.89 m 182.47 89.39 l 189.33 95.33 l 177.45 98.76 lf -0 sg 170.58 92.89 m 182.47 89.39 l 189.33 95.33 l 177.45 98.76 lx -0.00 0.00 0.10 s 41.17 90.56 m 64.95 83.70 l 78.67 95.59 l 54.90 102.45 lf -0 sg 41.17 90.56 m 64.95 83.70 l 78.67 95.59 l 54.90 102.45 lx -0.00 0.00 0.10 s 262.50 90.07 m 286.27 83.20 l 300.00 95.09 l 276.22 101.95 lf -0 sg 262.50 90.07 m 286.27 83.20 l 300.00 95.09 l 276.22 101.95 lx -0.00 0.00 0.10 s 121.20 91.22 m 133.08 87.78 l 139.95 93.74 l 128.06 97.18 lf -0 sg 121.20 91.22 m 133.08 87.78 l 139.95 93.74 l 128.06 97.18 lx -0.00 0.00 0.10 s 151.83 90.31 m 163.72 86.64 l 170.58 92.89 l 158.70 96.26 lf -0 sg 151.83 90.31 m 163.72 86.64 l 170.58 92.89 l 158.70 96.26 lx -0.00 0.00 0.10 s 182.47 89.39 m 194.36 85.96 l 201.22 91.91 l 189.33 95.33 lf -0 sg 182.47 89.39 m 194.36 85.96 l 201.22 91.91 l 189.33 95.33 lx -0.00 0.00 0.10 s 102.45 88.71 m 114.33 85.34 l 121.20 91.22 l 109.31 94.66 lf -0 sg 102.45 88.71 m 114.33 85.34 l 121.20 91.22 l 109.31 94.66 lx -0.00 0.00 0.10 s 133.08 87.78 m 144.97 84.46 l 151.83 90.31 l 139.95 93.74 lf -0 sg 133.08 87.78 m 144.97 84.46 l 151.83 90.31 l 139.95 93.74 lx -0.00 0.00 0.10 s 117.77 88.28 m 123.71 86.61 l 127.14 89.50 l 121.20 91.22 lf -0 sg 117.77 88.28 m 123.71 86.61 l 127.14 89.50 l 121.20 91.22 lx -0.00 0.00 0.10 s 163.72 86.64 m 175.61 83.48 l 182.47 89.39 l 170.58 92.89 lf -0 sg 163.72 86.64 m 175.61 83.48 l 182.47 89.39 l 170.58 92.89 lx -0.00 0.00 0.10 s 148.40 87.39 m 154.35 85.89 l 157.78 88.48 l 151.83 90.31 lf -0 sg 148.40 87.39 m 154.35 85.89 l 157.78 88.48 l 151.83 90.31 lx -0.00 0.00 0.10 s 225.00 85.04 m 248.77 78.18 l 262.50 90.07 l 238.72 96.93 lf -0 sg 225.00 85.04 m 248.77 78.18 l 262.50 90.07 l 238.72 96.93 lx -0.00 0.00 0.10 s 123.71 86.61 m 129.65 84.71 l 133.08 87.78 l 127.14 89.50 lf -0 sg 123.71 86.61 m 129.65 84.71 l 133.08 87.78 l 127.14 89.50 lx -0.00 0.00 0.10 s 64.95 83.70 m 88.72 76.84 l 102.45 88.71 l 78.67 95.59 lf -0 sg 64.95 83.70 m 88.72 76.84 l 102.45 88.71 l 78.67 95.59 lx -0.00 0.00 0.13 s 154.35 85.89 m 160.29 85.67 l 163.72 86.64 l 157.78 88.48 lf -0 sg 154.35 85.89 m 160.29 85.67 l 163.72 86.64 l 157.78 88.48 lx -0.00 0.00 0.10 s 114.33 85.34 m 120.28 83.47 l 123.71 86.61 l 117.77 88.28 lf -0 sg 114.33 85.34 m 120.28 83.47 l 123.71 86.61 l 117.77 88.28 lx -0.00 0.00 0.10 s 129.65 84.71 m 135.60 83.38 l 139.03 86.12 l 133.08 87.78 lf -0 sg 129.65 84.71 m 135.60 83.38 l 139.03 86.12 l 133.08 87.78 lx -0.00 0.00 0.09 s 144.97 84.46 m 150.91 81.65 l 154.35 85.89 l 148.40 87.39 lf -0 sg 144.97 84.46 m 150.91 81.65 l 154.35 85.89 l 148.40 87.39 lx -0.00 0.00 0.10 s 175.61 83.48 m 187.50 80.02 l 194.36 85.96 l 182.47 89.39 lf -0 sg 175.61 83.48 m 187.50 80.02 l 194.36 85.96 l 182.47 89.39 lx -0.00 0.00 0.13 s 160.29 85.67 m 166.23 82.48 l 169.66 85.06 l 163.72 86.64 lf -0 sg 160.29 85.67 m 166.23 82.48 l 169.66 85.06 l 163.72 86.64 lx -0.00 0.00 0.09 s 120.28 83.47 m 126.22 81.60 l 129.65 84.71 l 123.71 86.61 lf -0 sg 120.28 83.47 m 126.22 81.60 l 129.65 84.71 l 123.71 86.61 lx -0.00 0.00 0.10 s 95.58 82.78 m 107.47 79.35 l 114.33 85.34 l 102.45 88.71 lf -0 sg 95.58 82.78 m 107.47 79.35 l 114.33 85.34 l 102.45 88.71 lx -0.00 0.00 0.09 s 135.60 83.38 m 141.54 80.40 l 144.97 84.46 l 139.03 86.12 lf -0 sg 135.60 83.38 m 141.54 80.40 l 144.97 84.46 l 139.03 86.12 lx -0.00 0.00 0.00 s 150.91 81.65 m 156.86 74.17 l 160.29 85.67 l 154.35 85.89 lf -0 sg 150.91 81.65 m 156.86 74.17 l 160.29 85.67 l 154.35 85.89 lx -0.00 0.00 0.10 s 166.23 82.48 m 172.18 80.42 l 175.61 83.48 l 169.66 85.06 lf -0 sg 166.23 82.48 m 172.18 80.42 l 175.61 83.48 l 169.66 85.06 lx -0.00 0.00 0.10 s 187.50 80.02 m 211.27 73.16 l 225.00 85.04 l 201.22 91.91 lf -0 sg 187.50 80.02 m 211.27 73.16 l 225.00 85.04 l 201.22 91.91 lx -0.00 0.00 0.13 s 126.22 81.60 m 132.16 81.91 l 135.60 83.38 l 129.65 84.71 lf -0 sg 126.22 81.60 m 132.16 81.91 l 135.60 83.38 l 129.65 84.71 lx -0.00 0.00 0.00 s 156.86 74.17 m 162.80 78.19 l 166.23 82.48 l 160.29 85.67 lf -0 sg 156.86 74.17 m 162.80 78.19 l 166.23 82.48 l 160.29 85.67 lx -0.00 0.00 0.15 s 141.54 80.40 m 147.48 84.32 l 150.91 81.65 l 144.97 84.46 lf -0 sg 141.54 80.40 m 147.48 84.32 l 150.91 81.65 l 144.97 84.46 lx -0.00 0.00 0.00 s 132.16 81.91 m 138.11 71.64 l 141.54 80.40 l 135.60 83.38 lf -0 sg 132.16 81.91 m 138.11 71.64 l 141.54 80.40 l 135.60 83.38 lx -0.00 0.00 0.10 s 27.45 78.67 m 51.22 71.81 l 64.95 83.70 l 41.17 90.56 lf -0 sg 27.45 78.67 m 51.22 71.81 l 64.95 83.70 l 41.17 90.56 lx -0.00 0.00 0.10 s 172.18 80.42 m 178.12 78.77 l 181.55 81.75 l 175.61 83.48 lf -0 sg 172.18 80.42 m 178.12 78.77 l 181.55 81.75 l 175.61 83.48 lx -0.00 0.00 0.10 s 248.77 78.18 m 272.54 71.32 l 286.27 83.20 l 262.50 90.07 lf -0 sg 248.77 78.18 m 272.54 71.32 l 286.27 83.20 l 262.50 90.07 lx -0.00 0.00 0.10 s 107.47 79.35 m 119.36 75.92 l 126.22 81.60 l 114.33 85.34 lf -0 sg 107.47 79.35 m 119.36 75.92 l 126.22 81.60 l 114.33 85.34 lx -0.00 0.00 0.09 s 162.80 78.19 m 168.75 77.73 l 172.18 80.42 l 166.23 82.48 lf -0 sg 162.80 78.19 m 168.75 77.73 l 172.18 80.42 l 166.23 82.48 lx -0.00 0.00 0.10 s 178.12 78.77 m 184.06 77.05 l 187.50 80.02 l 181.55 81.75 lf -0 sg 178.12 78.77 m 184.06 77.05 l 187.50 80.02 l 181.55 81.75 lx -0.00 0.00 0.13 s 122.79 78.76 m 128.73 77.43 l 132.16 81.91 l 126.22 81.60 lf -0 sg 122.79 78.76 m 128.73 77.43 l 132.16 81.91 l 126.22 81.60 lx -0.00 0.00 0.00 s 128.73 77.43 m 134.68 74.46 l 138.11 71.64 l 132.16 81.91 lf -0 sg 128.73 77.43 m 134.68 74.46 l 138.11 71.64 l 132.16 81.91 lx -0.00 0.00 0.10 s 168.75 77.73 m 174.69 75.74 l 178.12 78.77 l 172.18 80.42 lf -0 sg 168.75 77.73 m 174.69 75.74 l 178.12 78.77 l 172.18 80.42 lx -0.00 0.00 0.10 s 88.72 76.84 m 100.61 73.40 l 107.47 79.35 l 95.58 82.78 lf -0 sg 88.72 76.84 m 100.61 73.40 l 107.47 79.35 l 95.58 82.78 lx -0.00 0.00 0.82 s 147.48 84.32 m 153.43 120.61 l 156.86 74.17 l 150.91 81.65 lf -0 sg 147.48 84.32 m 153.43 120.61 l 156.86 74.17 l 150.91 81.65 lx -0.00 0.00 0.15 s 159.37 80.90 m 165.31 73.50 l 168.75 77.73 l 162.80 78.19 lf -0 sg 159.37 80.90 m 165.31 73.50 l 168.75 77.73 l 162.80 78.19 lx -0.00 0.00 0.10 s 119.36 75.92 m 125.30 74.24 l 128.73 77.43 l 122.79 78.76 lf -0 sg 119.36 75.92 m 125.30 74.24 l 128.73 77.43 l 122.79 78.76 lx -0.00 0.00 0.10 s 174.69 75.74 m 180.63 74.08 l 184.06 77.05 l 178.12 78.77 lf -0 sg 174.69 75.74 m 180.63 74.08 l 184.06 77.05 l 178.12 78.77 lx -0.00 0.00 0.82 s 138.11 71.64 m 144.05 119.36 l 147.48 84.32 l 141.54 80.40 lf -0 sg 138.11 71.64 m 144.05 119.36 l 147.48 84.32 l 141.54 80.40 lx -0.00 0.00 0.10 s 211.27 73.16 m 235.04 66.29 l 248.77 78.18 l 225.00 85.04 lf -0 sg 211.27 73.16 m 235.04 66.29 l 248.77 78.18 l 225.00 85.04 lx -0.00 0.00 0.10 s 180.63 74.08 m 192.52 70.64 l 199.38 76.59 l 187.50 80.02 lf -0 sg 180.63 74.08 m 192.52 70.64 l 199.38 76.59 l 187.50 80.02 lx -0.00 0.00 0.82 s 153.43 120.61 m 159.37 80.90 l 162.80 78.19 l 156.86 74.17 lf -0 sg 153.43 120.61 m 159.37 80.90 l 162.80 78.19 l 156.86 74.17 lx -0.00 0.00 0.09 s 165.31 73.50 m 171.26 73.09 l 174.69 75.74 l 168.75 77.73 lf -0 sg 165.31 73.50 m 171.26 73.09 l 174.69 75.74 l 168.75 77.73 lx -0.00 0.00 0.09 s 125.30 74.24 m 131.25 72.56 l 134.68 74.46 l 128.73 77.43 lf -0 sg 125.30 74.24 m 131.25 72.56 l 134.68 74.46 l 128.73 77.43 lx -0.00 0.00 0.10 s 100.61 73.40 m 112.50 69.97 l 119.36 75.92 l 107.47 79.35 lf -0 sg 100.61 73.40 m 112.50 69.97 l 119.36 75.92 l 107.47 79.35 lx -0.00 0.00 0.10 s 51.22 71.81 m 75.00 64.95 l 88.72 76.84 l 64.95 83.70 lf -0 sg 51.22 71.81 m 75.00 64.95 l 88.72 76.84 l 64.95 83.70 lx -0.00 0.00 0.10 s 171.26 73.09 m 177.20 71.03 l 180.63 74.08 l 174.69 75.74 lf -0 sg 171.26 73.09 m 177.20 71.03 l 180.63 74.08 l 174.69 75.74 lx -0.00 0.00 0.15 s 131.25 72.56 m 137.19 69.77 l 140.62 78.38 l 134.68 74.46 lf -0 sg 131.25 72.56 m 137.19 69.77 l 140.62 78.38 l 134.68 74.46 lx -0.00 0.00 0.82 s 134.68 74.46 m 140.62 78.38 l 144.05 119.36 l 138.11 71.64 lf -0 sg 134.68 74.46 m 140.62 78.38 l 144.05 119.36 l 138.11 71.64 lx -0.00 0.00 0.00 s 161.88 64.77 m 167.83 71.67 l 171.26 73.09 l 165.31 73.50 lf -0 sg 161.88 64.77 m 167.83 71.67 l 171.26 73.09 l 165.31 73.50 lx -0.00 0.00 0.10 s 192.52 70.64 m 204.41 67.21 l 211.27 73.16 l 199.38 76.59 lf -0 sg 192.52 70.64 m 204.41 67.21 l 211.27 73.16 l 199.38 76.59 lx -0.00 0.00 0.10 s 177.20 71.03 m 183.14 69.41 l 186.58 72.36 l 180.63 74.08 lf -0 sg 177.20 71.03 m 183.14 69.41 l 186.58 72.36 l 180.63 74.08 lx -0.00 0.00 0.10 s 112.50 69.97 m 124.38 66.55 l 131.25 72.56 l 119.36 75.92 lf -0 sg 112.50 69.97 m 124.38 66.55 l 131.25 72.56 l 119.36 75.92 lx -0.00 0.00 0.82 s 155.94 115.93 m 161.88 64.77 l 165.31 73.50 l 159.37 80.90 lf -0 sg 155.94 115.93 m 161.88 64.77 l 165.31 73.50 l 159.37 80.90 lx -0.00 0.00 0.13 s 167.83 71.67 m 173.77 67.64 l 177.20 71.03 l 171.26 73.09 lf -0 sg 167.83 71.67 m 173.77 67.64 l 177.20 71.03 l 171.26 73.09 lx -0.00 0.00 0.09 s 127.81 69.55 m 133.76 68.06 l 137.19 69.77 l 131.25 72.56 lf -0 sg 127.81 69.55 m 133.76 68.06 l 137.19 69.77 l 131.25 72.56 lx -0.00 0.00 0.10 s 183.14 69.41 m 189.09 67.67 l 192.52 70.64 l 186.58 72.36 lf -0 sg 183.14 69.41 m 189.09 67.67 l 192.52 70.64 l 186.58 72.36 lx -0.00 0.00 0.00 s 158.45 67.59 m 164.39 67.13 l 167.83 71.67 l 161.88 64.77 lf -0 sg 158.45 67.59 m 164.39 67.13 l 167.83 71.67 l 161.88 64.77 lx -0.00 0.00 0.10 s 13.72 66.79 m 37.50 59.92 l 51.22 71.81 l 27.45 78.67 lf -0 sg 13.72 66.79 m 37.50 59.92 l 51.22 71.81 l 27.45 78.67 lx -0.00 0.00 0.00 s 133.76 68.06 m 139.70 67.85 l 143.13 62.27 l 137.19 69.77 lf -0 sg 133.76 68.06 m 139.70 67.85 l 143.13 62.27 l 137.19 69.77 lx -0.00 0.00 0.10 s 235.04 66.29 m 258.82 59.43 l 272.54 71.32 l 248.77 78.18 lf -0 sg 235.04 66.29 m 258.82 59.43 l 272.54 71.32 l 248.77 78.18 lx -0.00 0.00 0.09 s 173.77 67.64 m 179.71 66.55 l 183.14 69.41 l 177.20 71.03 lf -0 sg 173.77 67.64 m 179.71 66.55 l 183.14 69.41 l 177.20 71.03 lx -0.00 0.00 0.10 s 204.41 67.21 m 216.29 63.78 l 223.16 69.73 l 211.27 73.16 lf -0 sg 204.41 67.21 m 216.29 63.78 l 223.16 69.73 l 211.27 73.16 lx -0.00 0.00 0.10 s 189.09 67.67 m 195.03 65.96 l 198.46 68.93 l 192.52 70.64 lf -0 sg 189.09 67.67 m 195.03 65.96 l 198.46 68.93 l 192.52 70.64 lx -0.00 0.00 0.82 s 137.19 69.77 m 143.13 62.27 l 146.56 114.67 l 140.62 78.38 lf -0 sg 137.19 69.77 m 143.13 62.27 l 146.56 114.67 l 140.62 78.38 lx -0.00 0.00 0.15 s 149.08 66.33 m 155.02 65.72 l 158.45 67.59 l 152.51 74.95 lf -0 sg 149.08 66.33 m 155.02 65.72 l 158.45 67.59 l 152.51 74.95 lx -0.00 0.00 0.82 s 152.51 74.95 m 158.45 67.59 l 161.88 64.77 l 155.94 115.93 lf -0 sg 152.51 74.95 m 158.45 67.59 l 161.88 64.77 l 155.94 115.93 lx -0.00 0.00 0.10 s 75.00 64.95 m 98.77 58.09 l 112.50 69.97 l 88.72 76.84 lf -0 sg 75.00 64.95 m 98.77 58.09 l 112.50 69.97 l 88.72 76.84 lx -0.00 0.00 0.13 s 164.39 67.13 m 170.34 65.10 l 173.77 67.64 l 167.83 71.67 lf -0 sg 164.39 67.13 m 170.34 65.10 l 173.77 67.64 l 167.83 71.67 lx -0.00 0.00 0.00 s 139.70 67.85 m 145.64 64.63 l 149.08 66.33 l 143.13 62.27 lf -0 sg 139.70 67.85 m 145.64 64.63 l 149.08 66.33 l 143.13 62.27 lx -0.00 0.00 0.10 s 124.38 66.55 m 130.33 64.70 l 133.76 68.06 l 127.81 69.55 lf -0 sg 124.38 66.55 m 130.33 64.70 l 133.76 68.06 l 127.81 69.55 lx -0.00 0.00 0.10 s 179.71 66.55 m 185.66 64.67 l 189.09 67.67 l 183.14 69.41 lf -0 sg 179.71 66.55 m 185.66 64.67 l 189.09 67.67 l 183.14 69.41 lx -0.00 0.00 0.10 s 195.03 65.96 m 200.97 64.24 l 204.41 67.21 l 198.46 68.93 lf -0 sg 195.03 65.96 m 200.97 64.24 l 204.41 67.21 l 198.46 68.93 lx -0.00 0.00 0.82 s 143.13 62.27 m 149.08 66.33 l 152.51 74.95 l 146.56 114.67 lf -0 sg 143.13 62.27 m 149.08 66.33 l 152.51 74.95 l 146.56 114.67 lx -0.00 0.00 0.09 s 155.02 65.72 m 160.96 63.94 l 164.39 67.13 l 158.45 67.59 lf -0 sg 155.02 65.72 m 160.96 63.94 l 164.39 67.13 l 158.45 67.59 lx -0.00 0.00 0.09 s 170.34 65.10 m 176.28 63.47 l 179.71 66.55 l 173.77 67.64 lf -0 sg 170.34 65.10 m 176.28 63.47 l 179.71 66.55 l 173.77 67.64 lx -0.00 0.00 0.10 s 185.66 64.67 m 191.60 62.99 l 195.03 65.96 l 189.09 67.67 lf -0 sg 185.66 64.67 m 191.60 62.99 l 195.03 65.96 l 189.09 67.67 lx -0.00 0.00 0.13 s 130.33 64.70 m 136.27 62.85 l 139.70 67.85 l 133.76 68.06 lf -0 sg 130.33 64.70 m 136.27 62.85 l 139.70 67.85 l 133.76 68.06 lx -0.00 0.00 0.10 s 105.63 64.03 m 117.52 60.60 l 124.38 66.55 l 112.50 69.97 lf -0 sg 105.63 64.03 m 117.52 60.60 l 124.38 66.55 l 112.50 69.97 lx -0.00 0.00 0.09 s 145.64 64.63 m 151.59 62.69 l 155.02 65.72 l 149.08 66.33 lf -0 sg 145.64 64.63 m 151.59 62.69 l 155.02 65.72 l 149.08 66.33 lx -0.00 0.00 0.10 s 216.29 63.78 m 228.18 60.35 l 235.04 66.29 l 223.16 69.73 lf -0 sg 216.29 63.78 m 228.18 60.35 l 235.04 66.29 l 223.16 69.73 lx -0.00 0.00 0.10 s 160.96 63.94 m 166.91 62.16 l 170.34 65.10 l 164.39 67.13 lf -0 sg 160.96 63.94 m 166.91 62.16 l 170.34 65.10 l 164.39 67.13 lx -0.00 0.00 0.10 s 176.28 63.47 m 182.22 61.72 l 185.66 64.67 l 179.71 66.55 lf -0 sg 176.28 63.47 m 182.22 61.72 l 185.66 64.67 l 179.71 66.55 lx -0.00 0.00 0.10 s 191.60 62.99 m 197.54 61.27 l 200.97 64.24 l 195.03 65.96 lf -0 sg 191.60 62.99 m 197.54 61.27 l 200.97 64.24 l 195.03 65.96 lx -0.00 0.00 0.13 s 136.27 62.85 m 142.21 61.27 l 145.64 64.63 l 139.70 67.85 lf -0 sg 136.27 62.85 m 142.21 61.27 l 145.64 64.63 l 139.70 67.85 lx -0.00 0.00 0.10 s 166.91 62.16 m 172.85 60.46 l 176.28 63.47 l 170.34 65.10 lf -0 sg 166.91 62.16 m 172.85 60.46 l 176.28 63.47 l 170.34 65.10 lx -0.00 0.00 0.10 s 197.54 61.27 m 209.43 57.84 l 216.29 63.78 l 204.41 67.21 lf -0 sg 197.54 61.27 m 209.43 57.84 l 216.29 63.78 l 204.41 67.21 lx -0.00 0.00 0.10 s 37.50 59.92 m 61.27 53.06 l 75.00 64.95 l 51.22 71.81 lf -0 sg 37.50 59.92 m 61.27 53.06 l 75.00 64.95 l 51.22 71.81 lx -0.00 0.00 0.10 s 182.22 61.72 m 188.17 60.01 l 191.60 62.99 l 185.66 64.67 lf -0 sg 182.22 61.72 m 188.17 60.01 l 191.60 62.99 l 185.66 64.67 lx -0.00 0.00 0.10 s 142.21 61.27 m 148.16 59.66 l 151.59 62.69 l 145.64 64.63 lf -0 sg 142.21 61.27 m 148.16 59.66 l 151.59 62.69 l 145.64 64.63 lx -0.00 0.00 0.10 s 117.52 60.60 m 129.41 57.22 l 136.27 62.85 l 124.38 66.55 lf -0 sg 117.52 60.60 m 129.41 57.22 l 136.27 62.85 l 124.38 66.55 lx -0.00 0.00 0.10 s 172.85 60.46 m 178.79 58.76 l 182.22 61.72 l 176.28 63.47 lf -0 sg 172.85 60.46 m 178.79 58.76 l 182.22 61.72 l 176.28 63.47 lx -0.00 0.00 0.10 s 148.16 59.66 m 160.04 56.25 l 166.91 62.16 l 155.02 65.72 lf -0 sg 148.16 59.66 m 160.04 56.25 l 166.91 62.16 l 155.02 65.72 lx -0.00 0.00 0.09 s 132.84 60.03 m 138.78 58.49 l 142.21 61.27 l 136.27 62.85 lf -0 sg 132.84 60.03 m 138.78 58.49 l 142.21 61.27 l 136.27 62.85 lx -0.00 0.00 0.10 s 188.17 60.01 m 194.11 58.30 l 197.54 61.27 l 191.60 62.99 lf -0 sg 188.17 60.01 m 194.11 58.30 l 197.54 61.27 l 191.60 62.99 lx -1.00 0.99 0.99 s 144.05 119.36 m 150.00 198.91 l 153.43 120.61 l 147.48 84.32 lf -0 sg 144.05 119.36 m 150.00 198.91 l 153.43 120.61 l 147.48 84.32 lx -0.00 0.00 0.10 s 178.79 58.76 m 184.74 57.04 l 188.17 60.01 l 182.22 61.72 lf -0 sg 178.79 58.76 m 184.74 57.04 l 188.17 60.01 l 182.22 61.72 lx -0.00 0.00 0.10 s 98.77 58.09 m 110.66 54.65 l 117.52 60.60 l 105.63 64.03 lf -0 sg 98.77 58.09 m 110.66 54.65 l 117.52 60.60 l 105.63 64.03 lx -0.00 0.00 0.10 s 209.43 57.84 m 221.32 54.41 l 228.18 60.35 l 216.29 63.78 lf -0 sg 209.43 57.84 m 221.32 54.41 l 228.18 60.35 l 216.29 63.78 lx -0.00 0.00 0.10 s 138.78 58.49 m 144.72 56.69 l 148.16 59.66 l 142.21 61.27 lf -0 sg 138.78 58.49 m 144.72 56.69 l 148.16 59.66 l 142.21 61.27 lx -1.00 1.00 1.00 s 150.00 198.91 m 155.94 115.93 l 159.37 80.90 l 153.43 120.61 lf -0 sg 150.00 198.91 m 155.94 115.93 l 159.37 80.90 l 153.43 120.61 lx -0.00 0.00 0.10 s 129.41 57.22 m 135.35 55.47 l 138.78 58.49 l 132.84 60.03 lf -0 sg 129.41 57.22 m 135.35 55.47 l 138.78 58.49 l 132.84 60.03 lx -0.00 0.00 0.10 s 184.74 57.04 m 190.68 55.32 l 194.11 58.30 l 188.17 60.01 lf -0 sg 184.74 57.04 m 190.68 55.32 l 194.11 58.30 l 188.17 60.01 lx -0.00 0.00 0.10 s 160.04 56.25 m 171.93 52.81 l 178.79 58.76 l 166.91 62.16 lf -0 sg 160.04 56.25 m 171.93 52.81 l 178.79 58.76 l 166.91 62.16 lx -0.00 0.00 0.10 s 0.00 54.90 m 23.77 48.04 l 37.50 59.92 l 13.72 66.79 lf -0 sg 0.00 54.90 m 23.77 48.04 l 37.50 59.92 l 13.72 66.79 lx -0.00 0.00 0.10 s 221.32 54.41 m 245.09 47.54 l 258.82 59.43 l 235.04 66.29 lf -0 sg 221.32 54.41 m 245.09 47.54 l 258.82 59.43 l 235.04 66.29 lx -0.00 0.00 0.10 s 190.68 55.32 m 202.57 51.89 l 209.43 57.84 l 197.54 61.27 lf -0 sg 190.68 55.32 m 202.57 51.89 l 209.43 57.84 l 197.54 61.27 lx -1.00 0.99 0.99 s 140.62 78.38 m 146.56 114.67 l 150.00 198.91 l 144.05 119.36 lf -0 sg 140.62 78.38 m 146.56 114.67 l 150.00 198.91 l 144.05 119.36 lx -0.00 0.00 0.10 s 135.35 55.47 m 141.29 53.72 l 144.72 56.69 l 138.78 58.49 lf -0 sg 135.35 55.47 m 141.29 53.72 l 144.72 56.69 l 138.78 58.49 lx -0.00 0.00 0.10 s 110.66 54.65 m 122.54 51.21 l 129.41 57.22 l 117.52 60.60 lf -0 sg 110.66 54.65 m 122.54 51.21 l 129.41 57.22 l 117.52 60.60 lx -0.00 0.00 0.10 s 61.27 53.06 m 85.04 46.20 l 98.77 58.09 l 75.00 64.95 lf -0 sg 61.27 53.06 m 85.04 46.20 l 98.77 58.09 l 75.00 64.95 lx -0.00 0.00 0.10 s 141.29 53.72 m 153.18 50.30 l 160.04 56.25 l 148.16 59.66 lf -0 sg 141.29 53.72 m 153.18 50.30 l 160.04 56.25 l 148.16 59.66 lx -1.00 0.99 0.99 s 146.56 114.67 m 152.51 74.95 l 155.94 115.93 l 150.00 198.91 lf -0 sg 146.56 114.67 m 152.51 74.95 l 155.94 115.93 l 150.00 198.91 lx -0.00 0.00 0.10 s 171.93 52.81 m 183.82 49.38 l 190.68 55.32 l 178.79 58.76 lf -0 sg 171.93 52.81 m 183.82 49.38 l 190.68 55.32 l 178.79 58.76 lx -0.00 0.00 0.10 s 202.57 51.89 m 214.45 48.46 l 221.32 54.41 l 209.43 57.84 lf -0 sg 202.57 51.89 m 214.45 48.46 l 221.32 54.41 l 209.43 57.84 lx -0.00 0.00 0.10 s 122.54 51.21 m 134.43 47.79 l 141.29 53.72 l 129.41 57.22 lf -0 sg 122.54 51.21 m 134.43 47.79 l 141.29 53.72 l 129.41 57.22 lx -0.00 0.00 0.10 s 183.82 49.38 m 195.70 45.95 l 202.57 51.89 l 190.68 55.32 lf -0 sg 183.82 49.38 m 195.70 45.95 l 202.57 51.89 l 190.68 55.32 lx -0.00 0.00 0.10 s 23.77 48.04 m 47.54 41.17 l 61.27 53.06 l 37.50 59.92 lf -0 sg 23.77 48.04 m 47.54 41.17 l 61.27 53.06 l 37.50 59.92 lx -0.00 0.00 0.10 s 134.43 47.79 m 146.32 44.36 l 153.18 50.30 l 141.29 53.72 lf -0 sg 134.43 47.79 m 146.32 44.36 l 153.18 50.30 l 141.29 53.72 lx -0.00 0.00 0.10 s 85.04 46.20 m 108.82 39.34 l 122.54 51.21 l 98.77 58.09 lf -0 sg 85.04 46.20 m 108.82 39.34 l 122.54 51.21 l 98.77 58.09 lx -0.00 0.00 0.10 s 195.70 45.95 m 207.59 42.52 l 214.45 48.46 l 202.57 51.89 lf -0 sg 195.70 45.95 m 207.59 42.52 l 214.45 48.46 l 202.57 51.89 lx -0.00 0.00 0.10 s 146.32 44.36 m 170.09 37.49 l 183.82 49.38 l 160.04 56.25 lf -0 sg 146.32 44.36 m 170.09 37.49 l 183.82 49.38 l 160.04 56.25 lx -0.00 0.00 0.10 s 207.59 42.52 m 231.37 35.66 l 245.09 47.54 l 221.32 54.41 lf -0 sg 207.59 42.52 m 231.37 35.66 l 245.09 47.54 l 221.32 54.41 lx -0.00 0.00 0.10 s 47.54 41.17 m 71.32 34.31 l 85.04 46.20 l 61.27 53.06 lf -0 sg 47.54 41.17 m 71.32 34.31 l 85.04 46.20 l 61.27 53.06 lx -0.00 0.00 0.10 s 108.82 39.34 m 132.59 32.47 l 146.32 44.36 l 122.54 51.21 lf -0 sg 108.82 39.34 m 132.59 32.47 l 146.32 44.36 l 122.54 51.21 lx -0.00 0.00 0.10 s 170.09 37.49 m 193.87 30.63 l 207.59 42.52 l 183.82 49.38 lf -0 sg 170.09 37.49 m 193.87 30.63 l 207.59 42.52 l 183.82 49.38 lx -0.00 0.00 0.10 s 71.32 34.31 m 95.09 27.45 l 108.82 39.34 l 85.04 46.20 lf -0 sg 71.32 34.31 m 95.09 27.45 l 108.82 39.34 l 85.04 46.20 lx -0.00 0.00 0.10 s 132.59 32.47 m 156.37 25.61 l 170.09 37.49 l 146.32 44.36 lf -0 sg 132.59 32.47 m 156.37 25.61 l 170.09 37.49 l 146.32 44.36 lx -0.00 0.00 0.10 s 193.87 30.63 m 217.64 23.77 l 231.37 35.66 l 207.59 42.52 lf -0 sg 193.87 30.63 m 217.64 23.77 l 231.37 35.66 l 207.59 42.52 lx -0.00 0.00 0.10 s 95.09 27.45 m 118.87 20.58 l 132.59 32.47 l 108.82 39.34 lf -0 sg 95.09 27.45 m 118.87 20.58 l 132.59 32.47 l 108.82 39.34 lx -0.00 0.00 0.10 s 156.37 25.61 m 180.14 18.74 l 193.87 30.63 l 170.09 37.49 lf -0 sg 156.37 25.61 m 180.14 18.74 l 193.87 30.63 l 170.09 37.49 lx -0.00 0.00 0.10 s 118.87 20.58 m 142.64 13.72 l 156.37 25.61 l 132.59 32.47 lf -0 sg 118.87 20.58 m 142.64 13.72 l 156.37 25.61 l 132.59 32.47 lx -0.00 0.00 0.10 s 180.14 18.74 m 203.91 11.88 l 217.64 23.77 l 193.87 30.63 lf -0 sg 180.14 18.74 m 203.91 11.88 l 217.64 23.77 l 193.87 30.63 lx -0.00 0.00 0.10 s 142.64 13.72 m 166.41 6.86 l 180.14 18.74 l 156.37 25.61 lf -0 sg 142.64 13.72 m 166.41 6.86 l 180.14 18.74 l 156.37 25.61 lx -0.00 0.00 0.10 s 166.41 6.86 m 190.19 0.00 l 203.91 11.88 l 180.14 18.74 lf -0 sg 166.41 6.86 m 190.19 0.00 l 203.91 11.88 l 180.14 18.74 lx -showpage -. -DEAL:: Postprocessing: time=0.02, step=1, sweep=1. [ee] -DEAL:: Postprocessing: time=0.05, step=2, sweep=1. [ee] -DEAL:: Postprocessing: time=0.08, step=3, sweep=1. [ee] -DEAL:: Postprocessing: time=0.11, step=4, sweep=1. [ee] -DEAL:: Postprocessing: time=0.14, step=5, sweep=1. [ee] -DEAL:: Postprocessing: time=0.16, step=6, sweep=1. [ee] -DEAL:: Postprocessing: time=0.19, step=7, sweep=1. [ee] -DEAL:: Postprocessing: time=0.22, step=8, sweep=1. [ee] -DEAL:: Postprocessing: time=0.25, step=9, sweep=1. [ee] -DEAL:: Postprocessing: time=0.28, step=10, sweep=1. [ee] -DEAL:: Postprocessing: time=0.30, step=11, sweep=1. [ee] -DEAL:: Postprocessing: time=0.33, step=12, sweep=1. [ee] -DEAL:: Postprocessing: time=0.36, step=13, sweep=1. [ee] -DEAL:: Postprocessing: time=0.39, step=14, sweep=1. [ee] -DEAL:: Postprocessing: time=0.42, step=15, sweep=1. [ee] -DEAL:: Postprocessing: time=0.44, step=16, sweep=1. [ee] -DEAL:: Postprocessing: time=0.47, step=17, sweep=1. [ee] -DEAL:: Postprocessing: time=0.50, step=18, sweep=1. [ee] -DEAL:: Postprocessing: time=0.53, step=19, sweep=1. [ee] -DEAL:: Postprocessing: time=0.56, step=20, sweep=1. [ee] -DEAL:: Postprocessing: time=0.58, step=21, sweep=1. [ee] -DEAL:: Postprocessing: time=0.61, step=22, sweep=1. [ee] -DEAL:: Postprocessing: time=0.64, step=23, sweep=1. [ee] -DEAL:: Postprocessing: time=0.67, step=24, sweep=1. [ee] -DEAL:: Postprocessing: time=0.70, step=25, sweep=1. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library -%% -%%BoundingBox: 0 0 300 150 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50 setlinewidth -0.06 0.93 0.00 s 96.08 138.11 m 119.85 133.36 l 133.58 143.13 l 109.80 150.00 lf -0 sg 96.08 138.11 m 119.85 133.36 l 133.58 143.13 l 109.80 150.00 lx -0.00 0.98 0.01 s 119.85 133.36 m 143.62 122.91 l 157.35 136.27 l 133.58 143.13 lf -0 sg 119.85 133.36 m 143.62 122.91 l 157.35 136.27 l 133.58 143.13 lx -0.15 0.84 0.00 s 82.35 126.22 m 106.12 120.92 l 119.85 133.36 l 96.08 138.11 lf -0 sg 82.35 126.22 m 106.12 120.92 l 119.85 133.36 l 96.08 138.11 lx -0.00 0.76 0.23 s 143.62 122.91 m 167.40 115.66 l 181.12 129.41 l 157.35 136.27 lf -0 sg 143.62 122.91 m 167.40 115.66 l 181.12 129.41 l 157.35 136.27 lx -0.11 0.88 0.00 s 106.12 120.92 m 129.90 113.19 l 143.62 122.91 l 119.85 133.36 lf -0 sg 106.12 120.92 m 129.90 113.19 l 143.62 122.91 l 119.85 133.36 lx -0.00 0.87 0.12 s 167.40 115.66 m 191.17 111.06 l 204.90 122.54 l 181.12 129.41 lf -0 sg 167.40 115.66 m 191.17 111.06 l 204.90 122.54 l 181.12 129.41 lx -0.00 0.91 0.08 s 68.62 114.33 m 92.40 105.15 l 106.12 120.92 l 82.35 126.22 lf -0 sg 68.62 114.33 m 92.40 105.15 l 106.12 120.92 l 82.35 126.22 lx -0.00 0.75 0.24 s 129.90 113.19 m 153.67 104.67 l 167.40 115.66 l 143.62 122.91 lf -0 sg 129.90 113.19 m 153.67 104.67 l 167.40 115.66 l 143.62 122.91 lx -0.00 0.89 0.10 s 191.17 111.06 m 214.95 102.32 l 228.67 115.68 l 204.90 122.54 lf -0 sg 191.17 111.06 m 214.95 102.32 l 228.67 115.68 l 204.90 122.54 lx -0.00 0.75 0.24 s 92.40 105.15 m 116.17 97.03 l 129.90 113.19 l 106.12 120.92 lf -0 sg 92.40 105.15 m 116.17 97.03 l 129.90 113.19 l 106.12 120.92 lx -0.00 0.90 0.09 s 153.67 104.67 m 177.45 100.31 l 191.17 111.06 l 167.40 115.66 lf -0 sg 153.67 104.67 m 177.45 100.31 l 191.17 111.06 l 167.40 115.66 lx -0.00 0.83 0.16 s 214.95 102.32 m 238.72 96.35 l 252.45 108.82 l 228.67 115.68 lf -0 sg 214.95 102.32 m 238.72 96.35 l 252.45 108.82 l 228.67 115.68 lx -0.00 0.87 0.12 s 54.90 102.45 m 78.67 96.50 l 92.40 105.15 l 68.62 114.33 lf -0 sg 54.90 102.45 m 78.67 96.50 l 92.40 105.15 l 68.62 114.33 lx -0.00 0.52 0.47 s 116.17 97.03 m 139.95 89.83 l 153.67 104.67 l 129.90 113.19 lf -0 sg 116.17 97.03 m 139.95 89.83 l 153.67 104.67 l 129.90 113.19 lx -0.00 0.96 0.03 s 177.45 100.31 m 201.22 91.65 l 214.95 102.32 l 191.17 111.06 lf -0 sg 177.45 100.31 m 201.22 91.65 l 214.95 102.32 l 191.17 111.06 lx -0.09 0.90 0.00 s 238.72 96.35 m 262.50 93.15 l 276.22 101.95 l 252.45 108.82 lf -0 sg 238.72 96.35 m 262.50 93.15 l 276.22 101.95 l 252.45 108.82 lx -0.00 0.42 0.57 s 78.67 96.50 m 102.45 84.19 l 116.17 97.03 l 92.40 105.15 lf -0 sg 78.67 96.50 m 102.45 84.19 l 116.17 97.03 l 92.40 105.15 lx -0.00 0.78 0.21 s 139.95 89.83 m 163.72 87.25 l 177.45 100.31 l 153.67 104.67 lf -0 sg 139.95 89.83 m 163.72 87.25 l 177.45 100.31 l 153.67 104.67 lx -0.00 0.90 0.09 s 201.22 91.65 m 225.00 86.53 l 238.72 96.35 l 214.95 102.32 lf -0 sg 201.22 91.65 m 225.00 86.53 l 238.72 96.35 l 214.95 102.32 lx -0.43 0.56 0.00 s 41.17 90.56 m 64.95 91.49 l 78.67 96.50 l 54.90 102.45 lf -0 sg 41.17 90.56 m 64.95 91.49 l 78.67 96.50 l 54.90 102.45 lx -0.12 0.87 0.00 s 262.50 93.15 m 286.27 83.20 l 300.00 95.09 l 276.22 101.95 lf -0 sg 262.50 93.15 m 286.27 83.20 l 300.00 95.09 l 276.22 101.95 lx -0.00 0.51 0.48 s 102.45 84.19 m 126.22 85.97 l 139.95 89.83 l 116.17 97.03 lf -0 sg 102.45 84.19 m 126.22 85.97 l 139.95 89.83 l 116.17 97.03 lx -0.00 0.83 0.16 s 163.72 87.25 m 187.50 76.33 l 201.22 91.65 l 177.45 100.31 lf -0 sg 163.72 87.25 m 187.50 76.33 l 201.22 91.65 l 177.45 100.31 lx -0.21 0.78 0.00 s 225.00 86.53 m 248.77 78.97 l 262.50 93.15 l 238.72 96.35 lf -0 sg 225.00 86.53 m 248.77 78.97 l 262.50 93.15 l 238.72 96.35 lx -0.00 0.69 0.30 s 64.95 91.49 m 88.72 67.92 l 102.45 84.19 l 78.67 96.50 lf -0 sg 64.95 91.49 m 88.72 67.92 l 102.45 84.19 l 78.67 96.50 lx -0.00 0.80 0.19 s 126.22 85.97 m 150.00 71.76 l 163.72 87.25 l 139.95 89.83 lf -0 sg 126.22 85.97 m 150.00 71.76 l 163.72 87.25 l 139.95 89.83 lx -0.00 0.71 0.28 s 187.50 76.33 m 211.27 71.38 l 225.00 86.53 l 201.22 91.65 lf -0 sg 187.50 76.33 m 211.27 71.38 l 225.00 86.53 l 201.22 91.65 lx -0.44 0.55 0.00 s 27.45 78.67 m 51.22 72.83 l 64.95 91.49 l 41.17 90.56 lf -0 sg 27.45 78.67 m 51.22 72.83 l 64.95 91.49 l 41.17 90.56 lx -0.16 0.83 0.00 s 248.77 78.97 m 272.54 71.32 l 286.27 83.20 l 262.50 93.15 lf -0 sg 248.77 78.97 m 272.54 71.32 l 286.27 83.20 l 262.50 93.15 lx -0.00 0.51 0.48 s 88.72 67.92 m 112.50 71.42 l 126.22 85.97 l 102.45 84.19 lf -0 sg 88.72 67.92 m 112.50 71.42 l 126.22 85.97 l 102.45 84.19 lx -0.00 0.52 0.47 s 150.00 71.76 m 173.77 66.93 l 187.50 76.33 l 163.72 87.25 lf -0 sg 150.00 71.76 m 173.77 66.93 l 187.50 76.33 l 163.72 87.25 lx -0.00 0.38 0.61 s 180.63 71.63 m 192.52 69.30 l 199.38 73.86 l 187.50 76.33 lf -0 sg 180.63 71.63 m 192.52 69.30 l 199.38 73.86 l 187.50 76.33 lx -0.00 0.84 0.15 s 211.27 71.38 m 235.04 63.85 l 248.77 78.97 l 225.00 86.53 lf -0 sg 211.27 71.38 m 235.04 63.85 l 248.77 78.97 l 225.00 86.53 lx -0.20 0.79 0.00 s 51.22 72.83 m 75.00 69.55 l 88.72 67.92 l 64.95 91.49 lf -0 sg 51.22 72.83 m 75.00 69.55 l 88.72 67.92 l 64.95 91.49 lx -0.00 0.36 0.63 s 192.52 69.30 m 204.41 62.46 l 211.27 71.38 l 199.38 73.86 lf -0 sg 192.52 69.30 m 204.41 62.46 l 211.27 71.38 l 199.38 73.86 lx -0.00 0.99 0.00 s 112.50 71.42 m 136.27 61.48 l 150.00 71.76 l 126.22 85.97 lf -0 sg 112.50 71.42 m 136.27 61.48 l 150.00 71.76 l 126.22 85.97 lx -0.00 0.91 0.08 s 173.77 66.93 m 185.66 68.95 l 192.52 69.30 l 180.63 71.63 lf -0 sg 173.77 66.93 m 185.66 68.95 l 192.52 69.30 l 180.63 71.63 lx -0.00 0.31 0.68 s 204.41 62.46 m 216.29 60.90 l 223.16 67.62 l 211.27 71.38 lf -0 sg 204.41 62.46 m 216.29 60.90 l 223.16 67.62 l 211.27 71.38 lx -0.00 0.94 0.05 s 13.72 66.79 m 37.50 58.79 l 51.22 72.83 l 27.45 78.67 lf -0 sg 13.72 66.79 m 37.50 58.79 l 51.22 72.83 l 27.45 78.67 lx -0.00 0.86 0.13 s 235.04 63.85 m 258.82 59.43 l 272.54 71.32 l 248.77 78.97 lf -0 sg 235.04 63.85 m 258.82 59.43 l 272.54 71.32 l 248.77 78.97 lx -0.00 0.40 0.59 s 75.00 69.55 m 98.77 50.97 l 112.50 71.42 l 88.72 67.92 lf -0 sg 75.00 69.55 m 98.77 50.97 l 112.50 71.42 l 88.72 67.92 lx -0.00 0.71 0.28 s 136.27 61.48 m 160.04 58.08 l 173.77 66.93 l 150.00 71.76 lf -0 sg 136.27 61.48 m 160.04 58.08 l 173.77 66.93 l 150.00 71.76 lx -0.04 0.95 0.00 s 185.66 68.95 m 197.54 64.72 l 204.41 62.46 l 192.52 69.30 lf -0 sg 185.66 68.95 m 197.54 64.72 l 204.41 62.46 l 192.52 69.30 lx -0.00 0.38 0.61 s 200.97 63.59 m 206.92 61.46 l 210.35 61.68 l 204.41 62.46 lf -0 sg 200.97 63.59 m 206.92 61.46 l 210.35 61.68 l 204.41 62.46 lx -0.00 0.56 0.43 s 216.29 60.90 m 228.18 60.74 l 235.04 63.85 l 223.16 67.62 lf -0 sg 216.29 60.90 m 228.18 60.74 l 235.04 63.85 l 223.16 67.62 lx -0.00 0.25 0.74 s 206.92 61.46 m 212.86 55.89 l 216.29 60.90 l 210.35 61.68 lf -0 sg 206.92 61.46 m 212.86 55.89 l 216.29 60.90 l 210.35 61.68 lx -0.13 0.86 0.00 s 166.91 62.50 m 178.79 58.73 l 185.66 68.95 l 173.77 66.93 lf -0 sg 166.91 62.50 m 178.79 58.73 l 185.66 68.95 l 173.77 66.93 lx -0.00 0.00 0.84 s 212.86 55.89 m 218.81 48.05 l 222.24 60.82 l 216.29 60.90 lf -0 sg 212.86 55.89 m 218.81 48.05 l 222.24 60.82 l 216.29 60.90 lx -0.00 0.85 0.14 s 197.54 64.72 m 203.49 56.02 l 206.92 61.46 l 200.97 63.59 lf -0 sg 197.54 64.72 m 203.49 56.02 l 206.92 61.46 l 200.97 63.59 lx -0.28 0.71 0.00 s 37.50 58.79 m 61.27 54.49 l 75.00 69.55 l 51.22 72.83 lf -0 sg 37.50 58.79 m 61.27 54.49 l 75.00 69.55 l 51.22 72.83 lx -0.00 0.81 0.18 s 228.18 60.74 m 240.07 57.69 l 246.93 61.64 l 235.04 63.85 lf -0 sg 228.18 60.74 m 240.07 57.69 l 246.93 61.64 l 235.04 63.85 lx -0.00 0.37 0.62 s 98.77 50.97 m 122.54 48.01 l 136.27 61.48 l 112.50 71.42 lf -0 sg 98.77 50.97 m 122.54 48.01 l 136.27 61.48 l 112.50 71.42 lx -0.00 0.13 0.86 s 203.49 56.02 m 209.43 52.65 l 212.86 55.89 l 206.92 61.46 lf -0 sg 203.49 56.02 m 209.43 52.65 l 212.86 55.89 l 206.92 61.46 lx -0.00 0.00 0.00 s 209.43 52.65 m 215.37 42.01 l 218.81 48.05 l 212.86 55.89 lf -0 sg 209.43 52.65 m 215.37 42.01 l 218.81 48.05 l 212.86 55.89 lx -0.00 0.51 0.48 s 218.81 48.05 m 224.75 61.31 l 228.18 60.74 l 222.24 60.82 lf -0 sg 218.81 48.05 m 224.75 61.31 l 228.18 60.74 l 222.24 60.82 lx -0.26 0.73 0.00 s 178.79 58.73 m 190.68 53.29 l 197.54 64.72 l 185.66 68.95 lf -0 sg 178.79 58.73 m 190.68 53.29 l 197.54 64.72 l 185.66 68.95 lx -0.00 0.57 0.42 s 194.11 59.00 m 200.06 49.11 l 203.49 56.02 l 197.54 64.72 lf -0 sg 194.11 59.00 m 200.06 49.11 l 203.49 56.02 l 197.54 64.72 lx -0.00 0.00 0.70 s 200.06 49.11 m 206.00 48.62 l 209.43 52.65 l 203.49 56.02 lf -0 sg 200.06 49.11 m 206.00 48.62 l 209.43 52.65 l 203.49 56.02 lx -0.00 0.92 0.07 s 240.07 57.69 m 251.95 53.49 l 258.82 59.43 l 246.93 61.64 lf -0 sg 240.07 57.69 m 251.95 53.49 l 258.82 59.43 l 246.93 61.64 lx -0.00 0.00 0.20 s 206.00 48.62 m 211.94 47.07 l 215.37 42.01 l 209.43 52.65 lf -0 sg 206.00 48.62 m 211.94 47.07 l 215.37 42.01 l 209.43 52.65 lx -0.00 0.27 0.72 s 215.37 42.01 m 221.32 63.41 l 224.75 61.31 l 218.81 48.05 lf -0 sg 215.37 42.01 m 221.32 63.41 l 224.75 61.31 l 218.81 48.05 lx -0.00 0.93 0.06 s 160.04 58.08 m 171.93 50.34 l 178.79 58.73 l 166.91 62.50 lf -0 sg 160.04 58.08 m 171.93 50.34 l 178.79 58.73 l 166.91 62.50 lx -0.00 0.88 0.11 s 0.00 54.90 m 23.77 48.04 l 37.50 58.79 l 13.72 66.79 lf -0 sg 0.00 54.90 m 23.77 48.04 l 37.50 58.79 l 13.72 66.79 lx -0.59 0.40 0.00 s 224.75 61.31 m 230.69 62.40 l 234.12 59.21 l 228.18 60.74 lf -0 sg 224.75 61.31 m 230.69 62.40 l 234.12 59.21 l 228.18 60.74 lx -0.00 0.25 0.74 s 190.68 53.29 m 196.62 49.79 l 200.06 49.11 l 194.11 59.00 lf -0 sg 190.68 53.29 m 196.62 49.79 l 200.06 49.11 l 194.11 59.00 lx -0.00 0.00 0.67 s 196.62 49.79 m 202.57 46.29 l 206.00 48.62 l 200.06 49.11 lf -0 sg 196.62 49.79 m 202.57 46.29 l 206.00 48.62 l 200.06 49.11 lx -0.29 0.70 0.00 s 230.69 62.40 m 236.64 52.03 l 240.07 57.69 l 234.12 59.21 lf -0 sg 230.69 62.40 m 236.64 52.03 l 240.07 57.69 l 234.12 59.21 lx -0.20 0.79 0.00 s 61.27 54.49 m 85.04 51.75 l 98.77 50.97 l 75.00 69.55 lf -0 sg 61.27 54.49 m 85.04 51.75 l 98.77 50.97 l 75.00 69.55 lx -0.00 0.32 0.67 s 171.93 50.34 m 183.82 42.61 l 190.68 53.29 l 178.79 58.73 lf -0 sg 171.93 50.34 m 183.82 42.61 l 190.68 53.29 l 178.79 58.73 lx -0.00 0.45 0.54 s 122.54 48.01 m 146.32 38.46 l 160.04 58.08 l 136.27 61.48 lf -0 sg 122.54 48.01 m 146.32 38.46 l 160.04 58.08 l 136.27 61.48 lx -0.00 0.14 0.85 s 202.57 46.29 m 208.51 53.61 l 211.94 47.07 l 206.00 48.62 lf -0 sg 202.57 46.29 m 208.51 53.61 l 211.94 47.07 l 206.00 48.62 lx -0.03 0.96 0.00 s 211.94 47.07 m 217.89 64.17 l 221.32 63.41 l 215.37 42.01 lf -0 sg 211.94 47.07 m 217.89 64.17 l 221.32 63.41 l 215.37 42.01 lx -1.00 0.27 0.27 s 221.32 63.41 m 227.26 56.98 l 230.69 62.40 l 224.75 61.31 lf -0 sg 221.32 63.41 m 227.26 56.98 l 230.69 62.40 l 224.75 61.31 lx -0.20 0.79 0.00 s 227.26 56.98 m 233.20 46.37 l 236.64 52.03 l 230.69 62.40 lf -0 sg 227.26 56.98 m 233.20 46.37 l 236.64 52.03 l 230.69 62.40 lx -0.00 0.74 0.25 s 233.20 46.37 m 245.09 47.54 l 251.95 53.49 l 240.07 57.69 lf -0 sg 233.20 46.37 m 245.09 47.54 l 251.95 53.49 l 240.07 57.69 lx -0.00 0.14 0.85 s 183.82 42.61 m 195.70 45.79 l 202.57 46.29 l 190.68 53.29 lf -0 sg 183.82 42.61 m 195.70 45.79 l 202.57 46.29 l 190.68 53.29 lx -0.00 0.96 0.03 s 23.77 48.04 m 47.54 41.17 l 61.27 54.49 l 37.50 58.79 lf -0 sg 23.77 48.04 m 47.54 41.17 l 61.27 54.49 l 37.50 58.79 lx -0.01 0.98 0.00 s 223.83 54.54 m 229.77 44.69 l 233.20 46.37 l 227.26 56.98 lf -0 sg 223.83 54.54 m 229.77 44.69 l 233.20 46.37 l 227.26 56.98 lx -1.00 0.66 0.66 s 217.89 64.17 m 223.83 54.54 l 227.26 56.98 l 221.32 63.41 lf -0 sg 217.89 64.17 m 223.83 54.54 l 227.26 56.98 l 221.32 63.41 lx -1.00 0.20 0.20 s 208.51 53.61 m 214.45 60.93 l 217.89 64.17 l 211.94 47.07 lf -0 sg 208.51 53.61 m 214.45 60.93 l 217.89 64.17 l 211.94 47.07 lx -0.00 0.87 0.12 s 85.04 51.75 m 108.82 42.77 l 122.54 48.01 l 98.77 50.97 lf -0 sg 85.04 51.75 m 108.82 42.77 l 122.54 48.01 l 98.77 50.97 lx -0.00 0.60 0.39 s 146.32 38.46 m 170.09 42.02 l 183.82 42.61 l 160.04 58.08 lf -0 sg 146.32 38.46 m 170.09 42.02 l 183.82 42.61 l 160.04 58.08 lx -0.00 0.58 0.41 s 226.34 43.02 m 238.23 41.60 l 245.09 47.54 l 233.20 46.37 lf -0 sg 226.34 43.02 m 238.23 41.60 l 245.09 47.54 l 233.20 46.37 lx -0.30 0.69 0.00 s 220.40 53.70 m 226.34 43.02 l 229.77 44.69 l 223.83 54.54 lf -0 sg 220.40 53.70 m 226.34 43.02 l 229.77 44.69 l 223.83 54.54 lx -0.65 0.34 0.00 s 195.70 45.79 m 207.59 48.55 l 214.45 60.93 l 202.57 46.29 lf -0 sg 195.70 45.79 m 207.59 48.55 l 214.45 60.93 l 202.57 46.29 lx -1.00 1.00 1.00 s 214.45 60.93 m 220.40 53.70 l 223.83 54.54 l 217.89 64.17 lf -0 sg 214.45 60.93 m 220.40 53.70 l 223.83 54.54 l 217.89 64.17 lx -0.00 0.57 0.42 s 176.95 42.31 m 188.84 41.22 l 195.70 45.79 l 183.82 42.61 lf -0 sg 176.95 42.31 m 188.84 41.22 l 195.70 45.79 l 183.82 42.61 lx -0.47 0.52 0.00 s 216.97 50.04 m 222.91 40.24 l 226.34 43.02 l 220.40 53.70 lf -0 sg 216.97 50.04 m 222.91 40.24 l 226.34 43.02 l 220.40 53.70 lx -1.00 0.88 0.88 s 211.02 54.74 m 216.97 50.04 l 220.40 53.70 l 214.45 60.93 lf -0 sg 211.02 54.74 m 216.97 50.04 l 220.40 53.70 l 214.45 60.93 lx -0.33 0.66 0.00 s 47.54 41.17 m 71.32 34.31 l 85.04 51.75 l 61.27 54.49 lf -0 sg 47.54 41.17 m 71.32 34.31 l 85.04 51.75 l 61.27 54.49 lx -0.00 0.90 0.09 s 108.82 42.77 m 132.59 37.34 l 146.32 38.46 l 122.54 48.01 lf -0 sg 108.82 42.77 m 132.59 37.34 l 146.32 38.46 l 122.54 48.01 lx -1.00 0.26 0.26 s 207.59 48.55 m 213.53 43.00 l 216.97 50.04 l 211.02 54.74 lf -0 sg 207.59 48.55 m 213.53 43.00 l 216.97 50.04 l 211.02 54.74 lx -0.22 0.77 0.00 s 213.53 43.00 m 219.48 37.45 l 222.91 40.24 l 216.97 50.04 lf -0 sg 213.53 43.00 m 219.48 37.45 l 222.91 40.24 l 216.97 50.04 lx -0.00 0.75 0.24 s 219.48 37.45 m 231.37 35.66 l 238.23 41.60 l 226.34 43.02 lf -0 sg 219.48 37.45 m 231.37 35.66 l 238.23 41.60 l 226.34 43.02 lx -0.51 0.48 0.00 s 188.84 41.22 m 200.73 39.68 l 207.59 48.55 l 195.70 45.79 lf -0 sg 188.84 41.22 m 200.73 39.68 l 207.59 48.55 l 195.70 45.79 lx -0.34 0.65 0.00 s 170.09 42.02 m 181.98 36.61 l 188.84 41.22 l 176.95 42.31 lf -0 sg 170.09 42.02 m 181.98 36.61 l 188.84 41.22 l 176.95 42.31 lx -0.28 0.71 0.00 s 200.73 39.68 m 212.62 31.65 l 219.48 37.45 l 207.59 48.55 lf -0 sg 200.73 39.68 m 212.62 31.65 l 219.48 37.45 l 207.59 48.55 lx -0.45 0.54 0.00 s 71.32 34.31 m 95.09 27.45 l 108.82 42.77 l 85.04 51.75 lf -0 sg 71.32 34.31 m 95.09 27.45 l 108.82 42.77 l 85.04 51.75 lx -0.36 0.63 0.00 s 181.98 36.61 m 193.87 31.19 l 200.73 39.68 l 188.84 41.22 lf -0 sg 181.98 36.61 m 193.87 31.19 l 200.73 39.68 l 188.84 41.22 lx -0.00 0.77 0.22 s 212.62 31.65 m 224.50 29.71 l 231.37 35.66 l 219.48 37.45 lf -0 sg 212.62 31.65 m 224.50 29.71 l 231.37 35.66 l 219.48 37.45 lx -0.20 0.79 0.00 s 132.59 37.34 m 156.37 26.73 l 170.09 42.02 l 146.32 38.46 lf -0 sg 132.59 37.34 m 156.37 26.73 l 170.09 42.02 l 146.32 38.46 lx -0.08 0.91 0.00 s 193.87 31.19 m 205.75 27.48 l 212.62 31.65 l 200.73 39.68 lf -0 sg 193.87 31.19 m 205.75 27.48 l 212.62 31.65 l 200.73 39.68 lx -0.41 0.58 0.00 s 95.09 27.45 m 118.87 20.58 l 132.59 37.34 l 108.82 42.77 lf -0 sg 95.09 27.45 m 118.87 20.58 l 132.59 37.34 l 108.82 42.77 lx -0.00 0.88 0.11 s 205.75 27.48 m 217.64 23.77 l 224.50 29.71 l 212.62 31.65 lf -0 sg 205.75 27.48 m 217.64 23.77 l 224.50 29.71 l 212.62 31.65 lx -0.25 0.74 0.00 s 156.37 26.73 m 180.14 17.97 l 193.87 31.19 l 170.09 42.02 lf -0 sg 156.37 26.73 m 180.14 17.97 l 193.87 31.19 l 170.09 42.02 lx -0.28 0.71 0.00 s 118.87 20.58 m 142.64 13.72 l 156.37 26.73 l 132.59 37.34 lf -0 sg 118.87 20.58 m 142.64 13.72 l 156.37 26.73 l 132.59 37.34 lx -0.00 0.94 0.05 s 180.14 17.97 m 203.91 11.88 l 217.64 23.77 l 193.87 31.19 lf -0 sg 180.14 17.97 m 203.91 11.88 l 217.64 23.77 l 193.87 31.19 lx -0.00 0.97 0.02 s 142.64 13.72 m 166.41 6.86 l 180.14 17.97 l 156.37 26.73 lf -0 sg 142.64 13.72 m 166.41 6.86 l 180.14 17.97 l 156.37 26.73 lx -0.00 0.91 0.08 s 166.41 6.86 m 190.19 0.00 l 203.91 11.88 l 180.14 17.97 lf -0 sg 166.41 6.86 m 190.19 0.00 l 203.91 11.88 l 180.14 17.97 lx -showpage -. - -DEAL:: Collecting refinement data: -DEAL:: Refining each time step separately. -DEAL:: Got 4766 presently, expecting 7151 for next sweep. -DEAL:: Writing statistics for whole sweep.# Description of fields -DEAL::# ===================== -DEAL::# General: -DEAL::# time -# Primal problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Dual problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Error estimation: -# total estimated error in this timestep -# Postprocessing: -# Huyghens wave - - -DEAL::0.00 163 201 0 0 0.00 0.00 0.00 163 769 9 9 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.02 169 208 9 12 0.92 1.33 2.25 169 797 9 10 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.05 202 242 9 12 0.59 1.66 2.25 202 933 9 10 0.00 0.00 0.00 0.00 0.00 -DEAL::0.08 205 245 9 13 1.29 0.96 2.25 205 945 10 10 0.00 0.00 0.00 0.00 0.00 -DEAL::0.11 202 243 9 12 1.11 1.13 2.25 202 935 10 10 0.00 0.00 0.00 0.00 0.00 -DEAL::0.14 220 262 9 12 1.18 1.07 2.25 220 1011 11 10 0.00 0.00 0.00 0.00 0.00 -DEAL::0.16 238 282 9 12 1.06 1.19 2.26 238 1091 12 10 0.00 0.00 0.00 -0.00 0.00 -DEAL::0.19 250 296 9 12 0.93 1.11 2.04 250 1143 12 10 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.22 226 270 9 12 0.89 0.76 1.65 226 1041 10 10 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.25 268 317 9 12 0.89 0.76 1.66 268 1224 11 10 0.00 0.00 0.00 -0.00 -0.00 -DEAL::0.28 265 313 9 12 0.80 0.74 1.54 265 1207 11 10 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.30 241 283 9 13 0.62 0.78 1.40 241 1087 11 10 0.00 0.00 0.00 -0.00 0.00 -DEAL::0.33 226 266 9 14 0.62 0.59 1.22 226 1019 11 11 0.00 0.00 0.00 0.00 0.00 -DEAL::0.36 202 241 9 13 0.54 0.49 1.04 202 920 10 10 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.39 193 231 9 13 0.46 0.49 0.96 193 879 9 10 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.42 190 228 9 13 0.46 0.50 0.96 190 867 9 10 0.00 0.00 0.00 -0.00 -0.00 -DEAL::0.44 166 201 10 12 0.51 0.38 0.90 166 761 8 10 0.00 0.00 0.00 -0.00 0.00 -DEAL::0.47 154 189 9 13 0.38 0.41 0.79 154 713 8 10 0.00 0.00 0.00 0.00 0.00 -DEAL::0.50 148 181 9 13 0.35 0.41 0.76 148 681 7 10 0.00 0.00 0.00 -0.00 0.00 -DEAL::0.53 145 178 9 13 0.38 0.37 0.75 145 669 7 10 0.00 0.00 0.00 0.00 0.00 -DEAL::0.56 130 163 9 12 0.38 0.34 0.73 130 611 6 10 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.58 124 155 9 12 0.36 0.35 0.72 124 579 5 10 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.61 112 141 9 12 0.31 0.38 0.70 112 526 5 9 0.00 0.00 0.00 0.00 0.01 -DEAL::0.64 106 137 10 11 0.34 0.31 0.66 106 510 6 10 0.00 0.00 0.00 -0.00 0.06 -DEAL::0.67 112 143 10 12 0.35 0.30 0.66 112 534 6 10 0.00 0.00 0.00 -0.00 0.12 -DEAL::0.70 109 138 10 12 0.30 0.35 0.65 109 514 0 0 0.00 0.00 0.00 -0.00 0.09 - -DEAL:: Writing summary.Summary of this sweep: -====================== - - Accumulated number of cells: 4766 - Acc. number of primal dofs : 11508 - Acc. number of dual dofs : 43932 - Accumulated error : -0.00 - - Evaluations: - ------------ - Hughens wave -- weighted time: 0.65 - average : 0.00 - - - - -DEAL::Sweep 2 : -DEAL::--------- -DEAL:: Primal problem: time=0.00, step=0, sweep=2. 169 cells, 211 dofsStarting -DEAL:cg::Convergence step 0 -DEAL:cg::Starting -DEAL:cg::Convergence step 16 -DEAL:cg::Starting -DEAL:cg::Convergence step 0 -DEAL:cg::Starting -DEAL:cg::Convergence step 0 -DEAL::. -DEAL:: Primal problem: time=0.02, step=1, sweep=2. 211 cells, 257 dofsStarting -DEAL:cg::Convergence step 8 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.05, step=2, sweep=2. 310 cells, 366 dofsStarting -DEAL:cg::Convergence step 8 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.08, step=3, sweep=2. 367 cells, 429 dofsStarting -DEAL:cg::Convergence step 8 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.11, step=4, sweep=2. 439 cells, 504 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.14, step=5, sweep=2. 487 cells, 554 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.16, step=6, sweep=2. 502 cells, 573 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.19, step=7, sweep=2. 484 cells, 552 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.22, step=8, sweep=2. 508 cells, 576 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.25, step=9, sweep=2. 550 cells, 624 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.28, step=10, sweep=2. 550 cells, 625 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.30, step=11, sweep=2. 517 cells, 585 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.33, step=12, sweep=2. 493 cells, 560 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.36, step=13, sweep=2. 487 cells, 552 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 15 -DEAL::. -DEAL:: Primal problem: time=0.39, step=14, sweep=2. 457 cells, 518 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 14 -DEAL::. -DEAL:: Primal problem: time=0.42, step=15, sweep=2. 400 cells, 460 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 14 -DEAL::. -DEAL:: Primal problem: time=0.44, step=16, sweep=2. 337 cells, 393 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.47, step=17, sweep=2. 301 cells, 352 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.50, step=18, sweep=2. 286 cells, 335 dofsStarting -DEAL:cg::Convergence step 8 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.53, step=19, sweep=2. 223 cells, 267 dofsStarting -DEAL:cg::Convergence step 8 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.56, step=20, sweep=2. 199 cells, 242 dofsStarting -DEAL:cg::Convergence step 8 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.58, step=21, sweep=2. 181 cells, 221 dofsStarting -DEAL:cg::Convergence step 8 -DEAL:cg::Starting -DEAL:cg::Convergence step 13 -DEAL::. -DEAL:: Primal problem: time=0.61, step=22, sweep=2. 154 cells, 192 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 12 -DEAL::. -DEAL:: Primal problem: time=0.64, step=23, sweep=2. 121 cells, 157 dofsStarting -DEAL:cg::Convergence step 8 -DEAL:cg::Starting -DEAL:cg::Convergence step 11 -DEAL::. -DEAL:: Primal problem: time=0.67, step=24, sweep=2. 124 cells, 160 dofsStarting -DEAL:cg::Convergence step 8 -DEAL:cg::Starting -DEAL:cg::Convergence step 11 -DEAL::. -DEAL:: Primal problem: time=0.70, step=25, sweep=2. 115 cells, 149 dofsStarting -DEAL:cg::Convergence step 8 -DEAL:cg::Starting -DEAL:cg::Convergence step 11 -DEAL::. - -DEAL:: Dual problem: time=0.70, step=25, sweep=2. 115 cells, 567 dofs. -DEAL:: Dual problem: time=0.67, step=24, sweep=2. 124 cells, 608 dofsStarting -DEAL:cg::Convergence step 8 -DEAL:cg::Starting -DEAL:cg::Convergence step 9 -DEAL::. -DEAL:: Dual problem: time=0.64, step=23, sweep=2. 121 cells, 599 dofsStarting -DEAL:cg::Convergence step 8 -DEAL:cg::Starting -DEAL:cg::Convergence step 9 -DEAL::. -DEAL:: Dual problem: time=0.61, step=22, sweep=2. 154 cells, 734 dofsStarting -DEAL:cg::Convergence step 8 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.58, step=21, sweep=2. 181 cells, 850 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.56, step=20, sweep=2. 199 cells, 934 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.53, step=19, sweep=2. 223 cells, 1034 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.50, step=18, sweep=2. 286 cells, 1303 dofsStarting -DEAL:cg::Convergence step 13 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.47, step=17, sweep=2. 301 cells, 1371 dofsStarting -DEAL:cg::Convergence step 14 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.44, step=16, sweep=2. 337 cells, 1535 dofsStarting -DEAL:cg::Convergence step 16 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.42, step=15, sweep=2. 400 cells, 1801 dofsStarting -DEAL:cg::Convergence step 17 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.39, step=14, sweep=2. 457 cells, 2032 dofsStarting -DEAL:cg::Convergence step 18 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.36, step=13, sweep=2. 487 cells, 2162 dofsStarting -DEAL:cg::Convergence step 18 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.33, step=12, sweep=2. 493 cells, 2196 dofsStarting -DEAL:cg::Convergence step 20 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.30, step=11, sweep=2. 517 cells, 2298 dofsStarting -DEAL:cg::Convergence step 20 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.28, step=10, sweep=2. 550 cells, 2455 dofsStarting -DEAL:cg::Convergence step 19 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.25, step=9, sweep=2. 550 cells, 2450 dofsStarting -DEAL:cg::Convergence step 19 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.22, step=8, sweep=2. 508 cells, 2258 dofsStarting -DEAL:cg::Convergence step 19 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.19, step=7, sweep=2. 484 cells, 2166 dofsStarting -DEAL:cg::Convergence step 19 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.16, step=6, sweep=2. 502 cells, 2250 dofsStarting -DEAL:cg::Convergence step 20 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.14, step=5, sweep=2. 487 cells, 2175 dofsStarting -DEAL:cg::Convergence step 20 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.11, step=4, sweep=2. 439 cells, 1978 dofsStarting -DEAL:cg::Convergence step 19 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.08, step=3, sweep=2. 367 cells, 1682 dofsStarting -DEAL:cg::Convergence step 15 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.05, step=2, sweep=2. 310 cells, 1433 dofsStarting -DEAL:cg::Convergence step 12 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.02, step=1, sweep=2. 211 cells, 1001 dofsStarting -DEAL:cg::Convergence step 10 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. -DEAL:: Dual problem: time=0.00, step=0, sweep=2. 169 cells, 817 dofsStarting -DEAL:cg::Convergence step 9 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::. - -DEAL:: Postprocessing: time=0.00, step=0, sweep=2. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library -%% -%%BoundingBox: 0 0 300 175 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50 setlinewidth -0.00 0.00 0.05 s 82.35 126.22 m 129.90 112.50 l 157.35 136.27 l 109.80 150.00 lf -0 sg 82.35 126.22 m 129.90 112.50 l 157.35 136.27 l 109.80 150.00 lx -0.00 0.00 0.05 s 143.62 124.38 m 167.40 117.52 l 181.12 129.41 l 157.35 136.27 lf -0 sg 143.62 124.38 m 167.40 117.52 l 181.12 129.41 l 157.35 136.27 lx -0.00 0.00 0.05 s 167.40 117.52 m 191.17 110.65 l 204.90 122.54 l 181.12 129.41 lf -0 sg 167.40 117.52 m 191.17 110.65 l 204.90 122.54 l 181.12 129.41 lx -0.00 0.00 0.05 s 68.62 114.33 m 92.40 107.47 l 106.12 119.36 l 82.35 126.22 lf -0 sg 68.62 114.33 m 92.40 107.47 l 106.12 119.36 l 82.35 126.22 lx -0.00 0.00 0.05 s 129.90 112.50 m 153.67 105.63 l 167.40 117.52 l 143.62 124.38 lf -0 sg 129.90 112.50 m 153.67 105.63 l 167.40 117.52 l 143.62 124.38 lx -0.00 0.00 0.05 s 191.17 110.65 m 214.95 103.79 l 228.67 115.68 l 204.90 122.54 lf -0 sg 191.17 110.65 m 214.95 103.79 l 228.67 115.68 l 204.90 122.54 lx -0.00 0.00 0.05 s 92.40 107.47 m 116.17 100.61 l 129.90 112.50 l 106.12 119.36 lf -0 sg 92.40 107.47 m 116.17 100.61 l 129.90 112.50 l 106.12 119.36 lx -0.00 0.00 0.05 s 153.67 105.63 m 177.45 98.79 l 191.17 110.65 l 167.40 117.52 lf -0 sg 153.67 105.63 m 177.45 98.79 l 191.17 110.65 l 167.40 117.52 lx -0.00 0.00 0.05 s 214.95 103.79 m 238.72 96.93 l 252.45 108.82 l 228.67 115.68 lf -0 sg 214.95 103.79 m 238.72 96.93 l 252.45 108.82 l 228.67 115.68 lx -0.00 0.00 0.05 s 54.90 102.45 m 78.67 95.59 l 92.40 107.47 l 68.62 114.33 lf -0 sg 54.90 102.45 m 78.67 95.59 l 92.40 107.47 l 68.62 114.33 lx -0.00 0.00 0.05 s 116.17 100.61 m 139.95 93.75 l 153.67 105.63 l 129.90 112.50 lf -0 sg 116.17 100.61 m 139.95 93.75 l 153.67 105.63 l 129.90 112.50 lx -0.00 0.00 0.05 s 177.45 98.79 m 201.22 91.90 l 214.95 103.79 l 191.17 110.65 lf -0 sg 177.45 98.79 m 201.22 91.90 l 214.95 103.79 l 191.17 110.65 lx -0.00 0.00 0.05 s 146.81 99.69 m 158.70 96.27 l 165.56 102.21 l 153.67 105.63 lf -0 sg 146.81 99.69 m 158.70 96.27 l 165.56 102.21 l 153.67 105.63 lx -0.00 0.00 0.05 s 78.67 95.59 m 102.45 88.71 l 116.17 100.61 l 92.40 107.47 lf -0 sg 78.67 95.59 m 102.45 88.71 l 116.17 100.61 l 92.40 107.47 lx -0.00 0.00 0.05 s 158.70 96.27 m 170.58 92.66 l 177.45 98.79 l 165.56 102.21 lf -0 sg 158.70 96.27 m 170.58 92.66 l 177.45 98.79 l 165.56 102.21 lx -0.00 0.00 0.05 s 109.31 94.66 m 121.20 91.25 l 128.06 97.18 l 116.17 100.61 lf -0 sg 109.31 94.66 m 121.20 91.25 l 128.06 97.18 l 116.17 100.61 lx -0.00 0.00 0.05 s 139.95 93.75 m 151.83 90.25 l 158.70 96.27 l 146.81 99.69 lf -0 sg 139.95 93.75 m 151.83 90.25 l 158.70 96.27 l 146.81 99.69 lx -0.00 0.00 0.05 s 201.22 91.90 m 225.00 85.04 l 238.72 96.93 l 214.95 103.79 lf -0 sg 201.22 91.90 m 225.00 85.04 l 238.72 96.93 l 214.95 103.79 lx -0.00 0.00 0.05 s 170.58 92.66 m 182.47 89.45 l 189.33 95.34 l 177.45 98.79 lf -0 sg 170.58 92.66 m 182.47 89.45 l 189.33 95.34 l 177.45 98.79 lx -0.00 0.00 0.05 s 41.17 90.56 m 64.95 83.70 l 78.67 95.59 l 54.90 102.45 lf -0 sg 41.17 90.56 m 64.95 83.70 l 78.67 95.59 l 54.90 102.45 lx -0.00 0.00 0.05 s 121.20 91.25 m 133.08 87.73 l 139.95 93.75 l 128.06 97.18 lf -0 sg 121.20 91.25 m 133.08 87.73 l 139.95 93.75 l 128.06 97.18 lx -0.00 0.00 0.06 s 151.83 90.25 m 163.72 87.54 l 170.58 92.66 l 158.70 96.27 lf -0 sg 151.83 90.25 m 163.72 87.54 l 170.58 92.66 l 158.70 96.27 lx -0.00 0.00 0.05 s 182.47 89.45 m 194.36 85.95 l 201.22 91.90 l 189.33 95.34 lf -0 sg 182.47 89.45 m 194.36 85.95 l 201.22 91.90 l 189.33 95.34 lx -0.00 0.00 0.05 s 225.00 85.04 m 272.54 71.32 l 300.00 95.09 l 252.45 108.82 lf -0 sg 225.00 85.04 m 272.54 71.32 l 300.00 95.09 l 252.45 108.82 lx -0.00 0.00 0.05 s 102.45 88.71 m 114.33 85.33 l 121.20 91.25 l 109.31 94.66 lf -0 sg 102.45 88.71 m 114.33 85.33 l 121.20 91.25 l 109.31 94.66 lx -0.00 0.00 0.06 s 133.08 87.73 m 144.97 84.78 l 151.83 90.25 l 139.95 93.75 lf -0 sg 133.08 87.73 m 144.97 84.78 l 151.83 90.25 l 139.95 93.75 lx -0.00 0.00 0.06 s 163.72 87.54 m 175.61 83.22 l 182.47 89.45 l 170.58 92.66 lf -0 sg 163.72 87.54 m 175.61 83.22 l 182.47 89.45 l 170.58 92.66 lx -0.00 0.00 0.05 s 194.36 85.95 m 206.25 82.53 l 213.11 88.47 l 201.22 91.90 lf -0 sg 194.36 85.95 m 206.25 82.53 l 213.11 88.47 l 201.22 91.90 lx -0.00 0.00 0.05 s 114.33 85.33 m 126.22 81.69 l 133.08 87.73 l 121.20 91.25 lf -0 sg 114.33 85.33 m 126.22 81.69 l 133.08 87.73 l 121.20 91.25 lx -0.00 0.00 0.05 s 64.95 83.70 m 88.72 76.83 l 102.45 88.71 l 78.67 95.59 lf -0 sg 64.95 83.70 m 88.72 76.83 l 102.45 88.71 l 78.67 95.59 lx -0.00 0.00 0.03 s 144.97 84.78 m 156.86 77.82 l 163.72 87.54 l 151.83 90.25 lf -0 sg 144.97 84.78 m 156.86 77.82 l 163.72 87.54 l 151.83 90.25 lx -0.00 0.00 0.05 s 129.65 84.71 m 135.60 83.32 l 139.03 86.25 l 133.08 87.73 lf -0 sg 129.65 84.71 m 135.60 83.32 l 139.03 86.25 l 133.08 87.73 lx -0.00 0.00 0.05 s 175.61 83.22 m 187.50 80.08 l 194.36 85.95 l 182.47 89.45 lf -0 sg 175.61 83.22 m 187.50 80.08 l 194.36 85.95 l 182.47 89.45 lx -0.00 0.00 0.06 s 160.29 82.68 m 166.23 82.94 l 169.66 85.38 l 163.72 87.54 lf -0 sg 160.29 82.68 m 166.23 82.94 l 169.66 85.38 l 163.72 87.54 lx -0.00 0.00 0.05 s 95.58 82.77 m 107.47 79.36 l 114.33 85.33 l 102.45 88.71 lf -0 sg 95.58 82.77 m 107.47 79.36 l 114.33 85.33 l 102.45 88.71 lx -0.00 0.00 0.05 s 206.25 82.53 m 218.13 79.10 l 225.00 85.04 l 213.11 88.47 lf -0 sg 206.25 82.53 m 218.13 79.10 l 225.00 85.04 l 213.11 88.47 lx -0.00 0.00 0.05 s 135.60 83.32 m 141.54 80.43 l 144.97 84.78 l 139.03 86.25 lf -0 sg 135.60 83.32 m 141.54 80.43 l 144.97 84.78 l 139.03 86.25 lx -0.00 0.00 0.06 s 166.23 82.94 m 172.18 80.46 l 175.61 83.22 l 169.66 85.38 lf -0 sg 166.23 82.94 m 172.18 80.46 l 175.61 83.22 l 169.66 85.38 lx -0.00 0.00 0.07 s 126.22 81.69 m 132.16 81.59 l 135.60 83.32 l 129.65 84.71 lf -0 sg 126.22 81.69 m 132.16 81.59 l 135.60 83.32 l 129.65 84.71 lx -0.00 0.00 0.00 s 156.86 77.82 m 162.80 77.91 l 166.23 82.94 l 160.29 82.68 lf -0 sg 156.86 77.82 m 162.80 77.91 l 166.23 82.94 l 160.29 82.68 lx -0.00 0.00 0.08 s 141.54 80.43 m 147.48 83.96 l 150.91 81.30 l 144.97 84.78 lf -0 sg 141.54 80.43 m 147.48 83.96 l 150.91 81.30 l 144.97 84.78 lx -0.00 0.00 0.05 s 187.50 80.08 m 199.38 76.57 l 206.25 82.53 l 194.36 85.95 lf -0 sg 187.50 80.08 m 199.38 76.57 l 206.25 82.53 l 194.36 85.95 lx -0.00 0.00 0.05 s 27.45 78.67 m 51.22 71.81 l 64.95 83.70 l 41.17 90.56 lf -0 sg 27.45 78.67 m 51.22 71.81 l 64.95 83.70 l 41.17 90.56 lx -0.00 0.00 0.00 s 132.16 81.59 m 138.11 72.91 l 141.54 80.43 l 135.60 83.32 lf -0 sg 132.16 81.59 m 138.11 72.91 l 141.54 80.43 l 135.60 83.32 lx -0.00 0.00 0.05 s 107.47 79.36 m 119.36 75.87 l 126.22 81.69 l 114.33 85.33 lf -0 sg 107.47 79.36 m 119.36 75.87 l 126.22 81.69 l 114.33 85.33 lx -0.00 0.00 0.05 s 162.80 77.91 m 168.75 77.69 l 172.18 80.46 l 166.23 82.94 lf -0 sg 162.80 77.91 m 168.75 77.69 l 172.18 80.46 l 166.23 82.94 lx -0.00 0.00 0.07 s 122.79 78.78 m 128.73 77.41 l 132.16 81.59 l 126.22 81.69 lf -0 sg 122.79 78.78 m 128.73 77.41 l 132.16 81.59 l 126.22 81.69 lx -0.00 0.00 0.05 s 168.75 77.69 m 180.63 74.03 l 187.50 80.08 l 175.61 83.22 lf -0 sg 168.75 77.69 m 180.63 74.03 l 187.50 80.08 l 175.61 83.22 lx -0.00 0.00 0.00 s 128.73 77.41 m 134.68 74.42 l 138.11 72.91 l 132.16 81.59 lf -0 sg 128.73 77.41 m 134.68 74.42 l 138.11 72.91 l 132.16 81.59 lx -0.00 0.00 0.05 s 88.72 76.83 m 100.61 73.40 l 107.47 79.36 l 95.58 82.77 lf -0 sg 88.72 76.83 m 100.61 73.40 l 107.47 79.36 l 95.58 82.77 lx -0.00 0.00 0.05 s 199.38 76.57 m 211.27 73.16 l 218.13 79.10 l 206.25 82.53 lf -0 sg 199.38 76.57 m 211.27 73.16 l 218.13 79.10 l 206.25 82.53 lx -0.00 0.00 0.49 s 147.48 83.96 m 153.43 115.40 l 156.86 77.82 l 150.91 81.30 lf -0 sg 147.48 83.96 m 153.43 115.40 l 156.86 77.82 l 150.91 81.30 lx -0.00 0.00 0.07 s 159.37 79.97 m 165.31 73.59 l 168.75 77.69 l 162.80 77.91 lf -0 sg 159.37 79.97 m 165.31 73.59 l 168.75 77.69 l 162.80 77.91 lx -0.00 0.00 0.05 s 119.36 75.87 m 125.30 74.31 l 128.73 77.41 l 122.79 78.78 lf -0 sg 119.36 75.87 m 125.30 74.31 l 128.73 77.41 l 122.79 78.78 lx -0.00 0.00 0.47 s 138.11 72.91 m 144.05 114.71 l 147.48 83.96 l 141.54 80.43 lf -0 sg 138.11 72.91 m 144.05 114.71 l 147.48 83.96 l 141.54 80.43 lx -0.00 0.00 0.05 s 211.27 73.16 m 235.04 66.29 l 248.77 78.18 l 225.00 85.04 lf -0 sg 211.27 73.16 m 235.04 66.29 l 248.77 78.18 l 225.00 85.04 lx -0.00 0.00 0.48 s 153.43 115.40 m 159.37 79.97 l 162.80 77.91 l 156.86 77.82 lf -0 sg 153.43 115.40 m 159.37 79.97 l 162.80 77.91 l 156.86 77.82 lx -0.00 0.00 0.05 s 180.63 74.03 m 192.52 70.65 l 199.38 76.57 l 187.50 80.08 lf -0 sg 180.63 74.03 m 192.52 70.65 l 199.38 76.57 l 187.50 80.08 lx -0.00 0.00 0.05 s 165.31 73.59 m 171.26 73.00 l 174.69 75.86 l 168.75 77.69 lf -0 sg 165.31 73.59 m 171.26 73.00 l 174.69 75.86 l 168.75 77.69 lx -0.00 0.00 0.05 s 125.30 74.31 m 131.25 72.75 l 134.68 74.42 l 128.73 77.41 lf -0 sg 125.30 74.31 m 131.25 72.75 l 134.68 74.42 l 128.73 77.41 lx -0.00 0.00 0.05 s 100.61 73.40 m 112.50 69.97 l 119.36 75.87 l 107.47 79.36 lf -0 sg 100.61 73.40 m 112.50 69.97 l 119.36 75.87 l 107.47 79.36 lx -0.00 0.00 0.05 s 51.22 71.81 m 75.00 64.95 l 88.72 76.83 l 64.95 83.70 lf -0 sg 51.22 71.81 m 75.00 64.95 l 88.72 76.83 l 64.95 83.70 lx -0.00 0.00 0.05 s 160.63 72.47 m 163.60 73.60 l 165.31 73.59 l 162.34 76.78 lf -0 sg 160.63 72.47 m 163.60 73.60 l 165.31 73.59 l 162.34 76.78 lx -0.00 0.00 0.05 s 171.26 73.00 m 177.20 71.06 l 180.63 74.03 l 174.69 75.86 lf -0 sg 171.26 73.00 m 177.20 71.06 l 180.63 74.03 l 174.69 75.86 lx -0.00 0.00 0.04 s 163.60 73.60 m 166.57 72.19 l 168.29 73.29 l 165.31 73.59 lf -0 sg 163.60 73.60 m 166.57 72.19 l 168.29 73.29 l 165.31 73.59 lx -0.00 0.00 0.47 s 134.68 74.42 m 140.62 78.35 l 144.05 114.71 l 138.11 72.91 lf -0 sg 134.68 74.42 m 140.62 78.35 l 144.05 114.71 l 138.11 72.91 lx -0.00 0.00 0.08 s 131.25 72.75 m 137.19 69.61 l 140.62 78.35 l 134.68 74.42 lf -0 sg 131.25 72.75 m 137.19 69.61 l 140.62 78.35 l 134.68 74.42 lx -0.00 0.00 0.06 s 158.91 74.79 m 161.88 70.88 l 163.60 73.60 l 160.63 72.47 lf -0 sg 158.91 74.79 m 161.88 70.88 l 163.60 73.60 l 160.63 72.47 lx -0.00 0.00 0.05 s 166.57 72.19 m 169.54 71.40 l 171.26 73.00 l 168.29 73.29 lf -0 sg 166.57 72.19 m 169.54 71.40 l 171.26 73.00 l 168.29 73.29 lx -0.00 0.00 0.46 s 157.65 106.12 m 160.63 72.47 l 162.34 76.78 l 159.37 79.97 lf -0 sg 157.65 106.12 m 160.63 72.47 l 162.34 76.78 l 159.37 79.97 lx -0.00 0.00 0.05 s 192.52 70.65 m 204.41 67.21 l 211.27 73.16 l 199.38 76.57 lf -0 sg 192.52 70.65 m 204.41 67.21 l 211.27 73.16 l 199.38 76.57 lx -0.00 0.00 0.05 s 161.88 70.88 m 164.85 70.86 l 166.57 72.19 l 163.60 73.60 lf -0 sg 161.88 70.88 m 164.85 70.86 l 166.57 72.19 l 163.60 73.60 lx -0.00 0.00 0.05 s 177.20 71.06 m 183.14 69.40 l 186.58 72.34 l 180.63 74.03 lf -0 sg 177.20 71.06 m 183.14 69.40 l 186.58 72.34 l 180.63 74.03 lx -0.00 0.00 0.05 s 112.50 69.97 m 124.38 66.50 l 131.25 72.75 l 119.36 75.87 lf -0 sg 112.50 69.97 m 124.38 66.50 l 131.25 72.75 l 119.36 75.87 lx -0.00 0.00 0.07 s 157.19 70.20 m 160.17 70.31 l 161.88 70.88 l 158.91 74.79 lf -0 sg 157.19 70.20 m 160.17 70.31 l 161.88 70.88 l 158.91 74.79 lx -0.00 0.00 0.05 s 164.85 70.86 m 167.83 69.81 l 169.54 71.40 l 166.57 72.19 lf -0 sg 164.85 70.86 m 167.83 69.81 l 169.54 71.40 l 166.57 72.19 lx -0.00 0.00 0.05 s 167.83 69.81 m 173.77 68.14 l 177.20 71.06 l 171.26 73.00 lf -0 sg 167.83 69.81 m 173.77 68.14 l 177.20 71.06 l 171.26 73.00 lx -0.00 0.00 0.05 s 160.17 70.31 m 163.14 69.14 l 164.85 70.86 l 161.88 70.88 lf -0 sg 160.17 70.31 m 163.14 69.14 l 164.85 70.86 l 161.88 70.88 lx -0.00 0.00 0.05 s 183.14 69.40 m 189.09 67.68 l 192.52 70.65 l 186.58 72.34 lf -0 sg 183.14 69.40 m 189.09 67.68 l 192.52 70.65 l 186.58 72.34 lx -0.00 0.00 0.03 s 155.48 68.04 m 158.45 68.84 l 160.17 70.31 l 157.19 70.20 lf -0 sg 155.48 68.04 m 158.45 68.84 l 160.17 70.31 l 157.19 70.20 lx -0.00 0.00 0.05 s 163.14 69.14 m 166.11 68.32 l 167.83 69.81 l 164.85 70.86 lf -0 sg 163.14 69.14 m 166.11 68.32 l 167.83 69.81 l 164.85 70.86 lx -0.00 0.00 0.00 s 146.10 67.35 m 149.08 68.24 l 150.79 68.10 l 147.82 65.63 lf -0 sg 146.10 67.35 m 149.08 68.24 l 150.79 68.10 l 147.82 65.63 lx -0.00 0.00 0.06 s 158.45 68.84 m 161.42 67.84 l 163.14 69.14 l 160.17 70.31 lf -0 sg 158.45 68.84 m 161.42 67.84 l 163.14 69.14 l 160.17 70.31 lx -0.00 0.00 0.10 s 150.79 68.10 m 153.76 68.03 l 155.48 68.04 l 152.51 76.14 lf -0 sg 150.79 68.10 m 153.76 68.03 l 155.48 68.04 l 152.51 76.14 lx -0.00 0.00 0.05 s 235.04 66.29 m 258.82 59.43 l 272.54 71.32 l 248.77 78.18 lf -0 sg 235.04 66.29 m 258.82 59.43 l 272.54 71.32 l 248.77 78.18 lx -0.00 0.00 0.05 s 173.77 68.14 m 179.71 66.41 l 183.14 69.40 l 177.20 71.06 lf -0 sg 173.77 68.14 m 179.71 66.41 l 183.14 69.40 l 177.20 71.06 lx -0.00 0.43 0.56 s 145.77 99.34 m 148.74 149.16 l 150.45 99.68 l 147.48 83.96 lf -0 sg 145.77 99.34 m 148.74 149.16 l 150.45 99.68 l 147.48 83.96 lx -0.00 0.00 0.16 s 143.13 66.47 m 146.10 67.35 l 147.82 65.63 l 144.85 86.96 lf -0 sg 143.13 66.47 m 146.10 67.35 l 147.82 65.63 l 144.85 86.96 lx -0.00 0.00 0.05 s 204.41 67.21 m 216.29 63.78 l 223.16 69.73 l 211.27 73.16 lf -0 sg 204.41 67.21 m 216.29 63.78 l 223.16 69.73 l 211.27 73.16 lx -0.00 0.00 0.48 s 137.19 69.61 m 143.13 66.47 l 146.56 107.45 l 140.62 78.35 lf -0 sg 137.19 69.61 m 143.13 66.47 l 146.56 107.45 l 140.62 78.35 lx -0.00 0.00 0.04 s 153.76 68.03 m 156.73 67.11 l 158.45 68.84 l 155.48 68.04 lf -0 sg 153.76 68.03 m 156.73 67.11 l 158.45 68.84 l 155.48 68.04 lx -0.00 0.00 0.05 s 161.42 67.84 m 164.39 66.84 l 166.11 68.32 l 163.14 69.14 lf -0 sg 161.42 67.84 m 164.39 66.84 l 166.11 68.32 l 163.14 69.14 lx -0.00 0.00 0.03 s 124.38 66.50 m 136.27 63.67 l 143.13 66.47 l 131.25 72.75 lf -0 sg 124.38 66.50 m 136.27 63.67 l 143.13 66.47 l 131.25 72.75 lx -0.00 0.00 0.46 s 152.51 76.14 m 155.48 68.04 l 157.19 70.20 l 154.22 102.62 lf -0 sg 152.51 76.14 m 155.48 68.04 l 157.19 70.20 l 154.22 102.62 lx -0.00 0.00 0.06 s 149.08 68.24 m 152.05 66.81 l 153.76 68.03 l 150.79 68.10 lf -0 sg 149.08 68.24 m 152.05 66.81 l 153.76 68.03 l 150.79 68.10 lx -0.00 0.00 0.90 s 155.94 113.82 m 158.91 74.79 l 160.63 72.47 l 157.65 106.12 lf -0 sg 155.94 113.82 m 158.91 74.79 l 160.63 72.47 l 157.65 106.12 lx -0.00 0.00 0.05 s 164.39 66.84 m 170.34 65.17 l 173.77 68.14 l 167.83 69.81 lf -0 sg 164.39 66.84 m 170.34 65.17 l 173.77 68.14 l 167.83 69.81 lx -0.00 0.00 0.05 s 75.00 64.95 m 98.77 58.08 l 112.50 69.97 l 88.72 76.83 lf -0 sg 75.00 64.95 m 98.77 58.08 l 112.50 69.97 l 88.72 76.83 lx -0.00 0.00 0.44 s 147.82 65.63 m 150.79 68.10 l 152.51 76.14 l 149.54 103.16 lf -0 sg 147.82 65.63 m 150.79 68.10 l 152.51 76.14 l 149.54 103.16 lx -0.00 0.00 0.05 s 179.71 66.41 m 185.66 64.70 l 189.09 67.68 l 183.14 69.40 lf -0 sg 179.71 66.41 m 185.66 64.70 l 189.09 67.68 l 183.14 69.40 lx -0.00 0.00 0.02 s 139.70 65.07 m 145.64 64.49 l 149.08 68.24 l 143.13 66.47 lf -0 sg 139.70 65.07 m 145.64 64.49 l 149.08 68.24 l 143.13 66.47 lx -0.00 0.00 0.05 s 152.05 66.81 m 155.02 65.38 l 156.73 67.11 l 153.76 68.03 lf -0 sg 152.05 66.81 m 155.02 65.38 l 156.73 67.11 l 153.76 68.03 lx -0.00 0.00 0.05 s 155.02 65.38 m 160.96 63.96 l 164.39 66.84 l 158.45 68.84 lf -0 sg 155.02 65.38 m 160.96 63.96 l 164.39 66.84 l 158.45 68.84 lx -0.00 0.00 0.90 s 154.22 102.62 m 157.19 70.20 l 158.91 74.79 l 155.94 113.82 lf -0 sg 154.22 102.62 m 157.19 70.20 l 158.91 74.79 l 155.94 113.82 lx -0.00 0.00 0.05 s 185.66 64.70 m 197.54 61.27 l 204.41 67.21 l 192.52 70.65 lf -0 sg 185.66 64.70 m 197.54 61.27 l 204.41 67.21 l 192.52 70.65 lx -0.00 0.00 0.05 s 170.34 65.17 m 176.28 63.44 l 179.71 66.41 l 173.77 68.14 lf -0 sg 170.34 65.17 m 176.28 63.44 l 179.71 66.41 l 173.77 68.14 lx -0.00 0.51 0.48 s 154.68 144.79 m 157.65 106.12 l 159.37 79.97 l 156.40 97.68 lf -0 sg 154.68 144.79 m 157.65 106.12 l 159.37 79.97 l 156.40 97.68 lx -0.00 0.00 0.05 s 105.63 64.03 m 117.52 60.60 l 124.38 66.50 l 112.50 69.97 lf -0 sg 105.63 64.03 m 117.52 60.60 l 124.38 66.50 l 112.50 69.97 lx -0.00 0.00 0.05 s 216.29 63.78 m 228.18 60.35 l 235.04 66.29 l 223.16 69.73 lf -0 sg 216.29 63.78 m 228.18 60.35 l 235.04 66.29 l 223.16 69.73 lx -0.00 0.00 0.06 s 145.64 64.49 m 151.59 62.64 l 155.02 65.38 l 149.08 68.24 lf -0 sg 145.64 64.49 m 151.59 62.64 l 155.02 65.38 l 149.08 68.24 lx -0.00 0.00 0.05 s 160.96 63.96 m 166.91 62.17 l 170.34 65.17 l 164.39 66.84 lf -0 sg 160.96 63.96 m 166.91 62.17 l 170.34 65.17 l 164.39 66.84 lx -0.00 0.43 0.56 s 140.62 78.35 m 143.59 92.90 l 145.31 146.33 l 142.34 96.53 lf -0 sg 140.62 78.35 m 143.59 92.90 l 145.31 146.33 l 142.34 96.53 lx -0.00 0.00 0.98 s 144.85 86.96 m 147.82 65.63 l 149.54 103.16 l 146.56 107.45 lf -0 sg 144.85 86.96 m 147.82 65.63 l 149.54 103.16 l 146.56 107.45 lx -0.00 0.00 0.05 s 176.28 63.44 m 182.22 61.73 l 185.66 64.70 l 179.71 66.41 lf -0 sg 176.28 63.44 m 182.22 61.73 l 185.66 64.70 l 179.71 66.41 lx -0.00 0.00 0.05 s 136.27 63.67 m 142.21 61.60 l 145.64 64.49 l 139.70 65.07 lf -0 sg 136.27 63.67 m 142.21 61.60 l 145.64 64.49 l 139.70 65.07 lx -0.00 0.00 0.05 s 151.59 62.64 m 157.53 60.96 l 160.96 63.96 l 155.02 65.38 lf -0 sg 151.59 62.64 m 157.53 60.96 l 160.96 63.96 l 155.02 65.38 lx -0.00 0.00 0.05 s 166.91 62.17 m 172.85 60.47 l 176.28 63.44 l 170.34 65.17 lf -0 sg 166.91 62.17 m 172.85 60.47 l 176.28 63.44 l 170.34 65.17 lx -0.00 0.00 0.05 s 197.54 61.27 m 209.43 57.84 l 216.29 63.78 l 204.41 67.21 lf -0 sg 197.54 61.27 m 209.43 57.84 l 216.29 63.78 l 204.41 67.21 lx -0.00 0.00 0.05 s 142.21 61.60 m 148.16 59.53 l 151.59 62.64 l 145.64 64.49 lf -0 sg 142.21 61.60 m 148.16 59.53 l 151.59 62.64 l 145.64 64.49 lx -0.00 0.00 0.06 s 117.52 60.60 m 129.41 57.02 l 136.27 63.67 l 124.38 66.50 lf -0 sg 117.52 60.60 m 129.41 57.02 l 136.27 63.67 l 124.38 66.50 lx -0.00 0.00 0.05 s 157.53 60.96 m 163.47 59.22 l 166.91 62.17 l 160.96 63.96 lf -0 sg 157.53 60.96 m 163.47 59.22 l 166.91 62.17 l 160.96 63.96 lx -0.00 0.00 0.05 s 172.85 60.47 m 178.79 58.76 l 182.22 61.73 l 176.28 63.44 lf -0 sg 172.85 60.47 m 178.79 58.76 l 182.22 61.73 l 176.28 63.44 lx -0.00 0.00 0.05 s 148.16 59.53 m 154.10 57.90 l 157.53 60.96 l 151.59 62.64 lf -0 sg 148.16 59.53 m 154.10 57.90 l 157.53 60.96 l 151.59 62.64 lx -0.00 0.63 0.36 s 149.54 103.16 m 152.51 76.14 l 154.22 102.62 l 151.25 138.95 lf -0 sg 149.54 103.16 m 152.51 76.14 l 154.22 102.62 l 151.25 138.95 lx -0.00 0.00 0.05 s 178.79 58.76 m 190.68 55.32 l 197.54 61.27 l 185.66 64.70 lf -0 sg 178.79 58.76 m 190.68 55.32 l 197.54 61.27 l 185.66 64.70 lx -0.00 0.00 0.05 s 0.00 54.90 m 47.54 41.17 l 75.00 64.95 l 27.45 78.67 lf -0 sg 0.00 54.90 m 47.54 41.17 l 75.00 64.95 l 27.45 78.67 lx -0.54 0.45 0.00 s 148.74 149.16 m 151.71 159.16 l 153.43 115.40 l 150.45 99.68 lf -0 sg 148.74 149.16 m 151.71 159.16 l 153.43 115.40 l 150.45 99.68 lx -0.00 0.00 0.05 s 98.77 58.08 m 110.66 54.66 l 117.52 60.60 l 105.63 64.03 lf -0 sg 98.77 58.08 m 110.66 54.66 l 117.52 60.60 l 105.63 64.03 lx -0.53 0.46 0.00 s 144.05 114.71 m 147.02 157.47 l 148.74 149.16 l 145.77 99.34 lf -0 sg 144.05 114.71 m 147.02 157.47 l 148.74 149.16 l 145.77 99.34 lx -0.50 0.49 0.00 s 151.71 159.16 m 154.68 144.79 l 156.40 97.68 l 153.43 115.40 lf -0 sg 151.71 159.16 m 154.68 144.79 l 156.40 97.68 l 153.43 115.40 lx -0.00 0.00 0.05 s 209.43 57.84 m 221.32 54.41 l 228.18 60.35 l 216.29 63.78 lf -0 sg 209.43 57.84 m 221.32 54.41 l 228.18 60.35 l 216.29 63.78 lx -0.00 0.00 0.05 s 154.10 57.90 m 160.04 56.28 l 163.47 59.22 l 157.53 60.96 lf -0 sg 154.10 57.90 m 160.04 56.28 l 163.47 59.22 l 157.53 60.96 lx -0.00 0.00 0.06 s 129.41 57.02 m 141.29 53.77 l 148.16 59.53 l 136.27 63.67 lf -0 sg 129.41 57.02 m 141.29 53.77 l 148.16 59.53 l 136.27 63.67 lx -0.54 0.45 0.00 s 142.34 96.53 m 145.31 146.33 l 147.02 157.47 l 144.05 114.71 lf -0 sg 142.34 96.53 m 145.31 146.33 l 147.02 157.47 l 144.05 114.71 lx -0.00 0.00 0.05 s 160.04 56.28 m 171.93 52.81 l 178.79 58.76 l 166.91 62.17 lf -0 sg 160.04 56.28 m 171.93 52.81 l 178.79 58.76 l 166.91 62.17 lx -0.00 0.00 0.05 s 221.32 54.41 m 245.09 47.54 l 258.82 59.43 l 235.04 66.29 lf -0 sg 221.32 54.41 m 245.09 47.54 l 258.82 59.43 l 235.04 66.29 lx -0.00 0.00 0.05 s 190.68 55.32 m 202.57 51.89 l 209.43 57.84 l 197.54 61.27 lf -0 sg 190.68 55.32 m 202.57 51.89 l 209.43 57.84 l 197.54 61.27 lx -0.00 0.00 0.05 s 110.66 54.66 m 122.54 51.24 l 129.41 57.02 l 117.52 60.60 lf -0 sg 110.66 54.66 m 122.54 51.24 l 129.41 57.02 l 117.52 60.60 lx -0.65 0.34 0.00 s 152.97 155.97 m 155.94 113.82 l 157.65 106.12 l 154.68 144.79 lf -0 sg 152.97 155.97 m 155.94 113.82 l 157.65 106.12 l 154.68 144.79 lx -0.51 0.48 0.00 s 143.59 92.90 m 146.56 107.45 l 148.28 156.70 l 145.31 146.33 lf -0 sg 143.59 92.90 m 146.56 107.45 l 148.28 156.70 l 145.31 146.33 lx -0.00 0.00 0.05 s 61.27 53.06 m 85.04 46.20 l 98.77 58.08 l 75.00 64.95 lf -0 sg 61.27 53.06 m 85.04 46.20 l 98.77 58.08 l 75.00 64.95 lx -0.00 0.00 0.05 s 141.29 53.77 m 153.18 50.29 l 160.04 56.28 l 148.16 59.53 lf -0 sg 141.29 53.77 m 153.18 50.29 l 160.04 56.28 l 148.16 59.53 lx -0.62 0.37 0.00 s 151.25 138.95 m 154.22 102.62 l 155.94 113.82 l 152.97 155.97 lf -0 sg 151.25 138.95 m 154.22 102.62 l 155.94 113.82 l 152.97 155.97 lx -0.59 0.40 0.00 s 146.56 107.45 m 149.54 103.16 l 151.25 138.95 l 148.28 156.70 lf -0 sg 146.56 107.45 m 149.54 103.16 l 151.25 138.95 l 148.28 156.70 lx -0.00 0.00 0.05 s 171.93 52.81 m 183.82 49.38 l 190.68 55.32 l 178.79 58.76 lf -0 sg 171.93 52.81 m 183.82 49.38 l 190.68 55.32 l 178.79 58.76 lx -0.00 0.00 0.05 s 202.57 51.89 m 214.45 48.46 l 221.32 54.41 l 209.43 57.84 lf -0 sg 202.57 51.89 m 214.45 48.46 l 221.32 54.41 l 209.43 57.84 lx -0.00 0.00 0.05 s 122.54 51.24 m 134.43 47.80 l 141.29 53.77 l 129.41 57.02 lf -0 sg 122.54 51.24 m 134.43 47.80 l 141.29 53.77 l 129.41 57.02 lx -0.00 0.00 0.05 s 153.18 50.29 m 165.07 46.87 l 171.93 52.81 l 160.04 56.28 lf -0 sg 153.18 50.29 m 165.07 46.87 l 171.93 52.81 l 160.04 56.28 lx -0.00 0.00 0.05 s 183.82 49.38 m 195.70 45.95 l 202.57 51.89 l 190.68 55.32 lf -0 sg 183.82 49.38 m 195.70 45.95 l 202.57 51.89 l 190.68 55.32 lx -0.00 0.00 0.05 s 134.43 47.80 m 146.32 44.35 l 153.18 50.29 l 141.29 53.77 lf -0 sg 134.43 47.80 m 146.32 44.35 l 153.18 50.29 l 141.29 53.77 lx -0.00 0.00 0.05 s 85.04 46.20 m 108.82 39.33 l 122.54 51.24 l 98.77 58.08 lf -0 sg 85.04 46.20 m 108.82 39.33 l 122.54 51.24 l 98.77 58.08 lx -0.00 0.00 0.05 s 165.07 46.87 m 176.95 43.44 l 183.82 49.38 l 171.93 52.81 lf -0 sg 165.07 46.87 m 176.95 43.44 l 183.82 49.38 l 171.93 52.81 lx -1.00 0.99 0.99 s 147.02 157.47 m 150.00 175.90 l 151.71 159.16 l 148.74 149.16 lf -0 sg 147.02 157.47 m 150.00 175.90 l 151.71 159.16 l 148.74 149.16 lx -1.00 0.96 0.96 s 150.00 175.90 m 152.97 155.97 l 154.68 144.79 l 151.71 159.16 lf -0 sg 150.00 175.90 m 152.97 155.97 l 154.68 144.79 l 151.71 159.16 lx -0.00 0.00 0.05 s 195.70 45.95 m 207.59 42.52 l 214.45 48.46 l 202.57 51.89 lf -0 sg 195.70 45.95 m 207.59 42.52 l 214.45 48.46 l 202.57 51.89 lx -1.00 1.00 1.00 s 145.31 146.33 m 148.28 156.70 l 150.00 175.90 l 147.02 157.47 lf -0 sg 145.31 146.33 m 148.28 156.70 l 150.00 175.90 l 147.02 157.47 lx -1.00 0.93 0.93 s 148.28 156.70 m 151.25 138.95 l 152.97 155.97 l 150.00 175.90 lf -0 sg 148.28 156.70 m 151.25 138.95 l 152.97 155.97 l 150.00 175.90 lx -0.00 0.00 0.05 s 146.32 44.35 m 158.20 40.92 l 165.07 46.87 l 153.18 50.29 lf -0 sg 146.32 44.35 m 158.20 40.92 l 165.07 46.87 l 153.18 50.29 lx -0.00 0.00 0.05 s 207.59 42.52 m 231.37 35.66 l 245.09 47.54 l 221.32 54.41 lf -0 sg 207.59 42.52 m 231.37 35.66 l 245.09 47.54 l 221.32 54.41 lx -0.00 0.00 0.05 s 47.54 41.17 m 71.32 34.31 l 85.04 46.20 l 61.27 53.06 lf -0 sg 47.54 41.17 m 71.32 34.31 l 85.04 46.20 l 61.27 53.06 lx -0.00 0.00 0.05 s 158.20 40.92 m 170.09 37.50 l 176.95 43.44 l 165.07 46.87 lf -0 sg 158.20 40.92 m 170.09 37.50 l 176.95 43.44 l 165.07 46.87 lx -0.00 0.00 0.05 s 108.82 39.33 m 132.59 32.47 l 146.32 44.35 l 122.54 51.24 lf -0 sg 108.82 39.33 m 132.59 32.47 l 146.32 44.35 l 122.54 51.24 lx -0.00 0.00 0.05 s 170.09 37.50 m 193.87 30.63 l 207.59 42.52 l 183.82 49.38 lf -0 sg 170.09 37.50 m 193.87 30.63 l 207.59 42.52 l 183.82 49.38 lx -0.00 0.00 0.05 s 71.32 34.31 m 95.09 27.45 l 108.82 39.33 l 85.04 46.20 lf -0 sg 71.32 34.31 m 95.09 27.45 l 108.82 39.33 l 85.04 46.20 lx -0.00 0.00 0.05 s 132.59 32.47 m 156.37 25.61 l 170.09 37.50 l 146.32 44.35 lf -0 sg 132.59 32.47 m 156.37 25.61 l 170.09 37.50 l 146.32 44.35 lx -0.00 0.00 0.05 s 193.87 30.63 m 217.64 23.77 l 231.37 35.66 l 207.59 42.52 lf -0 sg 193.87 30.63 m 217.64 23.77 l 231.37 35.66 l 207.59 42.52 lx -0.00 0.00 0.05 s 95.09 27.45 m 118.87 20.58 l 132.59 32.47 l 108.82 39.33 lf -0 sg 95.09 27.45 m 118.87 20.58 l 132.59 32.47 l 108.82 39.33 lx -0.00 0.00 0.05 s 118.87 20.58 m 142.64 13.72 l 156.37 25.61 l 132.59 32.47 lf -0 sg 118.87 20.58 m 142.64 13.72 l 156.37 25.61 l 132.59 32.47 lx -0.00 0.00 0.05 s 142.64 13.72 m 190.19 0.00 l 217.64 23.77 l 170.09 37.50 lf -0 sg 142.64 13.72 m 190.19 0.00 l 217.64 23.77 l 170.09 37.50 lx -showpage -. -DEAL:: Postprocessing: time=0.02, step=1, sweep=2. [ee] -DEAL:: Postprocessing: time=0.05, step=2, sweep=2. [ee] -DEAL:: Postprocessing: time=0.08, step=3, sweep=2. [ee] -DEAL:: Postprocessing: time=0.11, step=4, sweep=2. [ee] -DEAL:: Postprocessing: time=0.14, step=5, sweep=2. [ee] -DEAL:: Postprocessing: time=0.16, step=6, sweep=2. [ee] -DEAL:: Postprocessing: time=0.19, step=7, sweep=2. [ee] -DEAL:: Postprocessing: time=0.22, step=8, sweep=2. [ee] -DEAL:: Postprocessing: time=0.25, step=9, sweep=2. [ee] -DEAL:: Postprocessing: time=0.28, step=10, sweep=2. [ee] -DEAL:: Postprocessing: time=0.30, step=11, sweep=2. [ee] -DEAL:: Postprocessing: time=0.33, step=12, sweep=2. [ee] -DEAL:: Postprocessing: time=0.36, step=13, sweep=2. [ee] -DEAL:: Postprocessing: time=0.39, step=14, sweep=2. [ee] -DEAL:: Postprocessing: time=0.42, step=15, sweep=2. [ee] -DEAL:: Postprocessing: time=0.44, step=16, sweep=2. [ee] -DEAL:: Postprocessing: time=0.47, step=17, sweep=2. [ee] -DEAL:: Postprocessing: time=0.50, step=18, sweep=2. [ee] -DEAL:: Postprocessing: time=0.53, step=19, sweep=2. [ee] -DEAL:: Postprocessing: time=0.56, step=20, sweep=2. [ee] -DEAL:: Postprocessing: time=0.58, step=21, sweep=2. [ee] -DEAL:: Postprocessing: time=0.61, step=22, sweep=2. [ee] -DEAL:: Postprocessing: time=0.64, step=23, sweep=2. [ee] -DEAL:: Postprocessing: time=0.67, step=24, sweep=2. [ee] -DEAL:: Postprocessing: time=0.70, step=25, sweep=2. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library -%% -%%BoundingBox: 0 0 300 150 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50 setlinewidth -0.25 0.74 0.00 s 82.35 126.22 m 129.90 112.85 l 157.35 136.27 l 109.80 150.00 lf -0 sg 82.35 126.22 m 129.90 112.85 l 157.35 136.27 l 109.80 150.00 lx -0.18 0.81 0.00 s 129.90 112.85 m 177.45 97.39 l 204.90 122.54 l 157.35 136.27 lf -0 sg 129.90 112.85 m 177.45 97.39 l 204.90 122.54 l 157.35 136.27 lx -0.00 0.98 0.01 s 54.90 102.45 m 102.45 83.23 l 129.90 112.85 l 82.35 126.22 lf -0 sg 54.90 102.45 m 102.45 83.23 l 129.90 112.85 l 82.35 126.22 lx -0.13 0.86 0.00 s 177.45 97.39 m 225.00 84.45 l 252.45 108.82 l 204.90 122.54 lf -0 sg 177.45 97.39 m 225.00 84.45 l 252.45 108.82 l 204.90 122.54 lx -0.04 0.95 0.00 s 102.45 83.23 m 150.00 77.53 l 177.45 97.39 l 129.90 112.85 lf -0 sg 102.45 83.23 m 150.00 77.53 l 177.45 97.39 l 129.90 112.85 lx -0.20 0.79 0.00 s 225.00 84.45 m 272.54 71.32 l 300.00 95.09 l 252.45 108.82 lf -0 sg 225.00 84.45 m 272.54 71.32 l 300.00 95.09 l 252.45 108.82 lx -0.01 0.98 0.00 s 163.72 87.46 m 187.50 77.33 l 201.22 90.92 l 177.45 97.39 lf -0 sg 163.72 87.46 m 187.50 77.33 l 201.22 90.92 l 177.45 97.39 lx -0.11 0.88 0.00 s 27.45 78.67 m 75.00 67.87 l 102.45 83.23 l 54.90 102.45 lf -0 sg 27.45 78.67 m 75.00 67.87 l 102.45 83.23 l 54.90 102.45 lx -0.00 0.96 0.03 s 187.50 77.33 m 211.27 71.72 l 225.00 84.45 l 201.22 90.92 lf -0 sg 187.50 77.33 m 211.27 71.72 l 225.00 84.45 l 201.22 90.92 lx -0.14 0.85 0.00 s 150.00 77.53 m 173.77 65.83 l 187.50 77.33 l 163.72 87.46 lf -0 sg 150.00 77.53 m 173.77 65.83 l 187.50 77.33 l 163.72 87.46 lx -0.03 0.96 0.00 s 211.27 71.72 m 235.04 64.49 l 248.77 77.88 l 225.00 84.45 lf -0 sg 211.27 71.72 m 235.04 64.49 l 248.77 77.88 l 225.00 84.45 lx -0.00 0.96 0.03 s 180.63 71.58 m 192.52 72.30 l 199.38 74.53 l 187.50 77.33 lf -0 sg 180.63 71.58 m 192.52 72.30 l 199.38 74.53 l 187.50 77.33 lx -0.00 0.88 0.11 s 192.52 72.30 m 204.41 61.67 l 211.27 71.72 l 199.38 74.53 lf -0 sg 192.52 72.30 m 204.41 61.67 l 211.27 71.72 l 199.38 74.53 lx -0.10 0.89 0.00 s 75.00 67.87 m 122.54 48.62 l 150.00 77.53 l 102.45 83.23 lf -0 sg 75.00 67.87 m 122.54 48.62 l 150.00 77.53 l 102.45 83.23 lx -0.00 0.91 0.08 s 173.77 65.83 m 185.66 61.23 l 192.52 72.30 l 180.63 71.58 lf -0 sg 173.77 65.83 m 185.66 61.23 l 192.52 72.30 l 180.63 71.58 lx -0.00 0.60 0.39 s 204.41 61.67 m 216.29 59.27 l 223.16 68.11 l 211.27 71.72 lf -0 sg 204.41 61.67 m 216.29 59.27 l 223.16 68.11 l 211.27 71.72 lx -0.13 0.86 0.00 s 235.04 64.49 m 258.82 59.43 l 272.54 71.32 l 248.77 77.88 lf -0 sg 235.04 64.49 m 258.82 59.43 l 272.54 71.32 l 248.77 77.88 lx -0.20 0.79 0.00 s 185.66 61.23 m 197.54 68.00 l 204.41 61.67 l 192.52 72.30 lf -0 sg 185.66 61.23 m 197.54 68.00 l 204.41 61.67 l 192.52 72.30 lx -0.00 0.81 0.18 s 216.29 59.27 m 228.18 59.58 l 235.04 64.49 l 223.16 68.11 lf -0 sg 216.29 59.27 m 228.18 59.58 l 235.04 64.49 l 223.16 68.11 lx -0.00 0.75 0.24 s 200.97 64.84 m 206.92 62.42 l 210.35 60.47 l 204.41 61.67 lf -0 sg 200.97 64.84 m 206.92 62.42 l 210.35 60.47 l 204.41 61.67 lx -0.24 0.75 0.00 s 136.27 63.08 m 160.04 56.35 l 173.77 65.83 l 150.00 77.53 lf -0 sg 136.27 63.08 m 160.04 56.35 l 173.77 65.83 l 150.00 77.53 lx -0.00 0.29 0.70 s 206.92 62.42 m 212.86 50.79 l 216.29 59.27 l 210.35 60.47 lf -0 sg 206.92 62.42 m 212.86 50.79 l 216.29 59.27 l 210.35 60.47 lx -0.00 0.93 0.06 s 166.91 61.09 m 178.79 59.31 l 185.66 61.23 l 173.77 65.83 lf -0 sg 166.91 61.09 m 178.79 59.31 l 185.66 61.23 l 173.77 65.83 lx -0.00 0.37 0.62 s 212.86 50.79 m 218.81 58.25 l 222.24 59.42 l 216.29 59.27 lf -0 sg 212.86 50.79 m 218.81 58.25 l 222.24 59.42 l 216.29 59.27 lx -0.00 0.00 0.43 s 211.15 46.76 m 214.12 48.86 l 215.83 54.52 l 212.86 50.79 lf -0 sg 211.15 46.76 m 214.12 48.86 l 215.83 54.52 l 212.86 50.79 lx -0.00 0.00 0.90 s 203.49 57.05 m 209.43 42.73 l 212.86 50.79 l 206.92 62.42 lf -0 sg 203.49 57.05 m 209.43 42.73 l 212.86 50.79 l 206.92 62.42 lx -0.00 0.00 0.00 s 209.43 42.73 m 212.40 47.55 l 214.12 48.86 l 211.15 46.76 lf -0 sg 209.43 42.73 m 212.40 47.55 l 214.12 48.86 l 211.15 46.76 lx -0.16 0.83 0.00 s 228.18 59.58 m 240.07 58.89 l 246.93 61.96 l 235.04 64.49 lf -0 sg 228.18 59.58 m 240.07 58.89 l 246.93 61.96 l 235.04 64.49 lx -0.45 0.54 0.00 s 197.54 68.00 m 203.49 57.05 l 206.92 62.42 l 200.97 64.84 lf -0 sg 197.54 68.00 m 203.49 57.05 l 206.92 62.42 l 200.97 64.84 lx -0.00 0.00 0.13 s 207.71 43.74 m 210.69 48.77 l 212.40 47.55 l 209.43 42.73 lf -0 sg 207.71 43.74 m 210.69 48.77 l 212.40 47.55 l 209.43 42.73 lx -0.05 0.94 0.00 s 178.79 59.31 m 190.68 47.81 l 197.54 68.00 l 185.66 61.23 lf -0 sg 178.79 59.31 m 190.68 47.81 l 197.54 68.00 l 185.66 61.23 lx -0.00 0.00 0.54 s 200.06 49.06 m 206.00 44.75 l 209.43 42.73 l 203.49 57.05 lf -0 sg 200.06 49.06 m 206.00 44.75 l 209.43 42.73 l 203.49 57.05 lx -0.00 0.60 0.39 s 214.12 48.86 m 217.09 60.33 l 218.81 58.25 l 215.83 54.52 lf -0 sg 214.12 48.86 m 217.09 60.33 l 218.81 58.25 l 215.83 54.52 lx -0.24 0.75 0.00 s 218.81 58.25 m 224.75 61.91 l 228.18 59.58 l 222.24 59.42 lf -0 sg 218.81 58.25 m 224.75 61.91 l 228.18 59.58 l 222.24 59.42 lx -0.37 0.62 0.00 s 0.00 54.90 m 47.54 41.17 l 75.00 67.87 l 27.45 78.67 lf -0 sg 0.00 54.90 m 47.54 41.17 l 75.00 67.87 l 27.45 78.67 lx -0.05 0.94 0.00 s 194.11 57.91 m 200.06 49.06 l 203.49 57.05 l 197.54 68.00 lf -0 sg 194.11 57.91 m 200.06 49.06 l 203.49 57.05 l 197.54 68.00 lx -0.00 0.64 0.35 s 212.40 47.55 m 215.37 60.21 l 217.09 60.33 l 214.12 48.86 lf -0 sg 212.40 47.55 m 215.37 60.21 l 217.09 60.33 l 214.12 48.86 lx -0.28 0.71 0.00 s 240.07 58.89 m 251.95 53.49 l 258.82 59.43 l 246.93 61.96 lf -0 sg 240.07 58.89 m 251.95 53.49 l 258.82 59.43 l 246.93 61.96 lx -0.05 0.94 0.00 s 160.04 56.35 m 171.93 49.61 l 178.79 59.31 l 166.91 61.09 lf -0 sg 160.04 56.35 m 171.93 49.61 l 178.79 59.31 l 166.91 61.09 lx -0.34 0.65 0.00 s 224.75 61.91 m 230.69 53.73 l 234.12 59.23 l 228.18 59.58 lf -0 sg 224.75 61.91 m 230.69 53.73 l 234.12 59.23 l 228.18 59.58 lx -0.00 0.00 0.73 s 206.00 44.75 m 208.97 52.17 l 210.69 48.77 l 207.71 43.74 lf -0 sg 206.00 44.75 m 208.97 52.17 l 210.69 48.77 l 207.71 43.74 lx -0.00 0.27 0.72 s 190.68 47.81 m 196.62 48.95 l 200.06 49.06 l 194.11 57.91 lf -0 sg 190.68 47.81 m 196.62 48.95 l 200.06 49.06 l 194.11 57.91 lx -0.71 0.28 0.00 s 217.09 60.33 m 220.06 63.15 l 221.78 60.08 l 218.81 58.25 lf -0 sg 217.09 60.33 m 220.06 63.15 l 221.78 60.08 l 218.81 58.25 lx -0.00 0.92 0.07 s 210.69 48.77 m 213.66 60.33 l 215.37 60.21 l 212.40 47.55 lf -0 sg 210.69 48.77 m 213.66 60.33 l 215.37 60.21 l 212.40 47.55 lx -0.21 0.78 0.00 s 230.69 53.73 m 236.64 52.90 l 240.07 58.89 l 234.12 59.23 lf -0 sg 230.69 53.73 m 236.64 52.90 l 240.07 58.89 l 234.12 59.23 lx -0.00 0.08 0.91 s 196.62 48.95 m 202.57 50.08 l 206.00 44.75 l 200.06 49.06 lf -0 sg 196.62 48.95 m 202.57 50.08 l 206.00 44.75 l 200.06 49.06 lx -0.99 0.00 0.00 s 220.06 63.15 m 223.03 59.09 l 224.75 61.91 l 221.78 60.08 lf -0 sg 220.06 63.15 m 223.03 59.09 l 224.75 61.91 l 221.78 60.08 lx -0.15 0.84 0.00 s 226.00 55.13 m 228.98 53.15 l 230.69 53.73 l 227.72 57.82 lf -0 sg 226.00 55.13 m 228.98 53.15 l 230.69 53.73 l 227.72 57.82 lx -0.00 0.43 0.56 s 171.93 49.61 m 183.82 42.87 l 190.68 47.81 l 178.79 59.31 lf -0 sg 171.93 49.61 m 183.82 42.87 l 190.68 47.81 l 178.79 59.31 lx -0.66 0.33 0.00 s 223.03 59.09 m 226.00 55.13 l 227.72 57.82 l 224.75 61.91 lf -0 sg 223.03 59.09 m 226.00 55.13 l 227.72 57.82 l 224.75 61.91 lx -0.00 0.97 0.02 s 228.98 53.15 m 231.95 52.40 l 233.66 53.32 l 230.69 53.73 lf -0 sg 228.98 53.15 m 231.95 52.40 l 233.66 53.32 l 230.69 53.73 lx -1.00 0.23 0.23 s 215.37 60.21 m 218.35 62.94 l 220.06 63.15 l 217.09 60.33 lf -0 sg 215.37 60.21 m 218.35 62.94 l 220.06 63.15 l 217.09 60.33 lx -0.31 0.68 0.00 s 236.64 52.90 m 242.58 52.10 l 246.01 56.19 l 240.07 58.89 lf -0 sg 236.64 52.90 m 242.58 52.10 l 246.01 56.19 l 240.07 58.89 lx -0.40 0.59 0.00 s 208.97 52.17 m 211.94 59.58 l 213.66 60.33 l 210.69 48.77 lf -0 sg 208.97 52.17 m 211.94 59.58 l 213.66 60.33 l 210.69 48.77 lx -0.04 0.95 0.00 s 231.95 52.40 m 234.92 52.06 l 236.64 52.90 l 233.66 53.32 lf -0 sg 231.95 52.40 m 234.92 52.06 l 236.64 52.90 l 233.66 53.32 lx -0.11 0.88 0.00 s 122.54 48.62 m 146.32 44.47 l 160.04 56.35 l 136.27 63.08 lf -0 sg 122.54 48.62 m 146.32 44.47 l 160.04 56.35 l 136.27 63.08 lx -0.71 0.28 0.00 s 221.32 59.05 m 224.29 55.67 l 226.00 55.13 l 223.03 59.09 lf -0 sg 221.32 59.05 m 224.29 55.67 l 226.00 55.13 l 223.03 59.09 lx -1.00 0.28 0.28 s 218.35 62.94 m 221.32 59.05 l 223.03 59.09 l 220.06 63.15 lf -0 sg 218.35 62.94 m 221.32 59.05 l 223.03 59.09 l 220.06 63.15 lx -0.32 0.67 0.00 s 224.29 55.67 m 227.26 53.49 l 228.98 53.15 l 226.00 55.13 lf -0 sg 224.29 55.67 m 227.26 53.49 l 228.98 53.15 l 226.00 55.13 lx -0.19 0.80 0.00 s 227.26 53.49 m 230.23 52.19 l 231.95 52.40 l 228.98 53.15 lf -0 sg 227.26 53.49 m 230.23 52.19 l 231.95 52.40 l 228.98 53.15 lx -0.27 0.72 0.00 s 242.58 52.10 m 248.52 50.51 l 251.95 53.49 l 246.01 56.19 lf -0 sg 242.58 52.10 m 248.52 50.51 l 251.95 53.49 l 246.01 56.19 lx -1.00 0.53 0.53 s 213.66 60.33 m 216.63 63.59 l 218.35 62.94 l 215.37 60.21 lf -0 sg 213.66 60.33 m 216.63 63.59 l 218.35 62.94 l 215.37 60.21 lx -0.36 0.63 0.00 s 202.57 50.08 m 208.51 58.34 l 211.94 59.58 l 206.00 44.75 lf -0 sg 202.57 50.08 m 208.51 58.34 l 211.94 59.58 l 206.00 44.75 lx -0.19 0.80 0.00 s 230.23 52.19 m 233.20 51.21 l 234.92 52.06 l 231.95 52.40 lf -0 sg 230.23 52.19 m 233.20 51.21 l 234.92 52.06 l 231.95 52.40 lx -1.00 0.06 0.06 s 219.60 59.64 m 222.57 55.96 l 224.29 55.67 l 221.32 59.05 lf -0 sg 219.60 59.64 m 222.57 55.96 l 224.29 55.67 l 221.32 59.05 lx -1.00 0.61 0.61 s 216.63 63.59 m 219.60 59.64 l 221.32 59.05 l 218.35 62.94 lf -0 sg 216.63 63.59 m 219.60 59.64 l 221.32 59.05 l 218.35 62.94 lx -0.00 0.63 0.36 s 183.82 42.87 m 195.70 49.26 l 202.57 50.08 l 190.68 47.81 lf -0 sg 183.82 42.87 m 195.70 49.26 l 202.57 50.08 l 190.68 47.81 lx -0.19 0.80 0.00 s 233.20 51.21 m 239.15 49.33 l 242.58 52.10 l 236.64 52.90 lf -0 sg 233.20 51.21 m 239.15 49.33 l 242.58 52.10 l 236.64 52.90 lx -0.67 0.32 0.00 s 222.57 55.96 m 225.54 53.70 l 227.26 53.49 l 224.29 55.67 lf -0 sg 222.57 55.96 m 225.54 53.70 l 227.26 53.49 l 224.29 55.67 lx -0.48 0.51 0.00 s 225.54 53.70 m 228.52 51.89 l 230.23 52.19 l 227.26 53.49 lf -0 sg 225.54 53.70 m 228.52 51.89 l 230.23 52.19 l 227.26 53.49 lx -1.00 0.80 0.80 s 211.94 59.58 m 214.91 63.32 l 216.63 63.59 l 213.66 60.33 lf -0 sg 211.94 59.58 m 214.91 63.32 l 216.63 63.59 l 213.66 60.33 lx -0.36 0.63 0.00 s 228.52 51.89 m 231.49 50.16 l 233.20 51.21 l 230.23 52.19 lf -0 sg 228.52 51.89 m 231.49 50.16 l 233.20 51.21 l 230.23 52.19 lx -0.23 0.76 0.00 s 239.15 49.33 m 245.09 47.54 l 248.52 50.51 l 242.58 52.10 lf -0 sg 239.15 49.33 m 245.09 47.54 l 248.52 50.51 l 242.58 52.10 lx -1.00 0.34 0.34 s 217.89 59.05 m 220.86 55.58 l 222.57 55.96 l 219.60 59.64 lf -0 sg 217.89 59.05 m 220.86 55.58 l 222.57 55.96 l 219.60 59.64 lx -0.89 0.10 0.00 s 220.86 55.58 m 223.83 52.10 l 225.54 53.70 l 222.57 55.96 lf -0 sg 220.86 55.58 m 223.83 52.10 l 225.54 53.70 l 222.57 55.96 lx -1.00 0.91 0.91 s 214.91 63.32 m 217.89 59.05 l 219.60 59.64 l 216.63 63.59 lf -0 sg 214.91 63.32 m 217.89 59.05 l 219.60 59.64 l 216.63 63.59 lx -0.62 0.37 0.00 s 223.83 52.10 m 226.80 50.60 l 228.52 51.89 l 225.54 53.70 lf -0 sg 223.83 52.10 m 226.80 50.60 l 228.52 51.89 l 225.54 53.70 lx -1.00 0.93 0.93 s 210.23 58.96 m 213.20 61.54 l 214.91 63.32 l 211.94 59.58 lf -0 sg 210.23 58.96 m 213.20 61.54 l 214.91 63.32 l 211.94 59.58 lx -0.47 0.52 0.00 s 226.80 50.60 m 229.77 49.10 l 231.49 50.16 l 228.52 51.89 lf -0 sg 226.80 50.60 m 229.77 49.10 l 231.49 50.16 l 228.52 51.89 lx -0.32 0.67 0.00 s 229.77 49.10 m 235.72 46.80 l 239.15 49.33 l 233.20 51.21 lf -0 sg 229.77 49.10 m 235.72 46.80 l 239.15 49.33 l 233.20 51.21 lx -0.86 0.13 0.00 s 199.14 49.67 m 205.08 53.26 l 208.51 58.34 l 202.57 50.08 lf -0 sg 199.14 49.67 m 205.08 53.26 l 208.51 58.34 l 202.57 50.08 lx -1.00 1.00 1.00 s 213.20 61.54 m 216.17 57.51 l 217.89 59.05 l 214.91 63.32 lf -0 sg 213.20 61.54 m 216.17 57.51 l 217.89 59.05 l 214.91 63.32 lx -1.00 0.86 0.86 s 208.51 58.34 m 211.48 57.15 l 213.20 61.54 l 210.23 58.96 lf -0 sg 208.51 58.34 m 211.48 57.15 l 213.20 61.54 l 210.23 58.96 lx -1.00 0.09 0.09 s 214.45 55.96 m 220.40 47.31 l 223.83 52.10 l 217.89 59.05 lf -0 sg 214.45 55.96 m 220.40 47.31 l 223.83 52.10 l 217.89 59.05 lx -0.06 0.93 0.00 s 146.32 44.47 m 170.09 40.33 l 183.82 42.87 l 160.04 56.35 lf -0 sg 146.32 44.47 m 170.09 40.33 l 183.82 42.87 l 160.04 56.35 lx -0.45 0.54 0.00 s 220.40 47.31 m 226.34 45.58 l 229.77 49.10 l 223.83 52.10 lf -0 sg 220.40 47.31 m 226.34 45.58 l 229.77 49.10 l 223.83 52.10 lx -0.26 0.73 0.00 s 235.72 46.80 m 241.66 44.57 l 245.09 47.54 l 239.15 49.33 lf -0 sg 235.72 46.80 m 241.66 44.57 l 245.09 47.54 l 239.15 49.33 lx -1.00 0.84 0.84 s 211.48 57.15 m 214.45 55.96 l 216.17 57.51 l 213.20 61.54 lf -0 sg 211.48 57.15 m 214.45 55.96 l 216.17 57.51 l 213.20 61.54 lx -0.24 0.75 0.00 s 47.54 41.17 m 95.09 27.45 l 122.54 48.62 l 75.00 67.87 lf -0 sg 47.54 41.17 m 95.09 27.45 l 122.54 48.62 l 75.00 67.87 lx -1.00 0.54 0.54 s 205.08 53.26 m 211.02 51.12 l 214.45 55.96 l 208.51 58.34 lf -0 sg 205.08 53.26 m 211.02 51.12 l 214.45 55.96 l 208.51 58.34 lx -0.88 0.11 0.00 s 195.70 49.26 m 201.65 47.77 l 205.08 53.26 l 199.14 49.67 lf -0 sg 195.70 49.26 m 201.65 47.77 l 205.08 53.26 l 199.14 49.67 lx -0.36 0.63 0.00 s 226.34 45.58 m 232.28 43.82 l 235.72 46.80 l 229.77 49.10 lf -0 sg 226.34 45.58 m 232.28 43.82 l 235.72 46.80 l 229.77 49.10 lx -0.90 0.09 0.00 s 211.02 51.12 m 216.97 44.02 l 220.40 47.31 l 214.45 55.96 lf -0 sg 211.02 51.12 m 216.97 44.02 l 220.40 47.31 l 214.45 55.96 lx -0.28 0.71 0.00 s 176.95 41.60 m 188.84 46.14 l 195.70 49.26 l 183.82 42.87 lf -0 sg 176.95 41.60 m 188.84 46.14 l 195.70 49.26 l 183.82 42.87 lx -0.28 0.71 0.00 s 216.97 44.02 m 222.91 41.81 l 226.34 45.58 l 220.40 47.31 lf -0 sg 216.97 44.02 m 222.91 41.81 l 226.34 45.58 l 220.40 47.31 lx -0.28 0.71 0.00 s 232.28 43.82 m 238.23 41.60 l 241.66 44.57 l 235.72 46.80 lf -0 sg 232.28 43.82 m 238.23 41.60 l 241.66 44.57 l 235.72 46.80 lx -1.00 0.14 0.14 s 201.65 47.77 m 207.59 46.29 l 211.02 51.12 l 205.08 53.26 lf -0 sg 201.65 47.77 m 207.59 46.29 l 211.02 51.12 l 205.08 53.26 lx -0.27 0.72 0.00 s 222.91 41.81 m 228.85 40.34 l 232.28 43.82 l 226.34 45.58 lf -0 sg 222.91 41.81 m 228.85 40.34 l 232.28 43.82 l 226.34 45.58 lx -0.75 0.24 0.00 s 207.59 46.29 m 213.53 42.16 l 216.97 44.02 l 211.02 51.12 lf -0 sg 207.59 46.29 m 213.53 42.16 l 216.97 44.02 l 211.02 51.12 lx -0.24 0.75 0.00 s 213.53 42.16 m 219.48 38.03 l 222.91 41.81 l 216.97 44.02 lf -0 sg 213.53 42.16 m 219.48 38.03 l 222.91 41.81 l 216.97 44.02 lx -0.25 0.74 0.00 s 228.85 40.34 m 234.80 38.63 l 238.23 41.60 l 232.28 43.82 lf -0 sg 228.85 40.34 m 234.80 38.63 l 238.23 41.60 l 232.28 43.82 lx -0.93 0.06 0.00 s 188.84 46.14 m 200.73 38.10 l 207.59 46.29 l 195.70 49.26 lf -0 sg 188.84 46.14 m 200.73 38.10 l 207.59 46.29 l 195.70 49.26 lx -0.14 0.85 0.00 s 219.48 38.03 m 225.42 36.84 l 228.85 40.34 l 222.91 41.81 lf -0 sg 219.48 38.03 m 225.42 36.84 l 228.85 40.34 l 222.91 41.81 lx -0.20 0.79 0.00 s 225.42 36.84 m 231.37 35.66 l 234.80 38.63 l 228.85 40.34 lf -0 sg 225.42 36.84 m 231.37 35.66 l 234.80 38.63 l 228.85 40.34 lx -0.65 0.34 0.00 s 170.09 40.33 m 181.98 35.65 l 188.84 46.14 l 176.95 41.60 lf -0 sg 170.09 40.33 m 181.98 35.65 l 188.84 46.14 l 176.95 41.60 lx -0.35 0.64 0.00 s 200.73 38.10 m 212.62 31.36 l 219.48 38.03 l 207.59 46.29 lf -0 sg 200.73 38.10 m 212.62 31.36 l 219.48 38.03 l 207.59 46.29 lx -0.09 0.90 0.00 s 212.62 31.36 m 224.50 29.71 l 231.37 35.66 l 219.48 38.03 lf -0 sg 212.62 31.36 m 224.50 29.71 l 231.37 35.66 l 219.48 38.03 lx -0.69 0.30 0.00 s 181.98 35.65 m 193.87 30.98 l 200.73 38.10 l 188.84 46.14 lf -0 sg 181.98 35.65 m 193.87 30.98 l 200.73 38.10 l 188.84 46.14 lx -0.24 0.75 0.00 s 95.09 27.45 m 142.64 13.72 l 170.09 40.33 l 122.54 48.62 lf -0 sg 95.09 27.45 m 142.64 13.72 l 170.09 40.33 l 122.54 48.62 lx -0.24 0.75 0.00 s 193.87 30.98 m 205.75 27.37 l 212.62 31.36 l 200.73 38.10 lf -0 sg 193.87 30.98 m 205.75 27.37 l 212.62 31.36 l 200.73 38.10 lx -0.15 0.84 0.00 s 205.75 27.37 m 217.64 23.77 l 224.50 29.71 l 212.62 31.36 lf -0 sg 205.75 27.37 m 217.64 23.77 l 224.50 29.71 l 212.62 31.36 lx -0.41 0.58 0.00 s 156.37 27.02 m 180.14 17.93 l 193.87 30.98 l 170.09 40.33 lf -0 sg 156.37 27.02 m 180.14 17.93 l 193.87 30.98 l 170.09 40.33 lx -0.21 0.78 0.00 s 180.14 17.93 m 203.91 11.88 l 217.64 23.77 l 193.87 30.98 lf -0 sg 180.14 17.93 m 203.91 11.88 l 217.64 23.77 l 193.87 30.98 lx -0.26 0.73 0.00 s 142.64 13.72 m 166.41 6.86 l 180.14 17.93 l 156.37 27.02 lf -0 sg 142.64 13.72 m 166.41 6.86 l 180.14 17.93 l 156.37 27.02 lx -0.19 0.80 0.00 s 166.41 6.86 m 190.19 0.00 l 203.91 11.88 l 180.14 17.93 lf -0 sg 166.41 6.86 m 190.19 0.00 l 203.91 11.88 l 180.14 17.93 lx -showpage -. - -DEAL:: Writing statistics for whole sweep.# Description of fields -DEAL::# ===================== -DEAL::# General: -DEAL::# time -# Primal problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Dual problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Error estimation: -# total estimated error in this timestep -# Postprocessing: -# Huyghens wave - - -DEAL::0.00 169 211 0 0 0.00 0.00 0.00 169 817 9 10 0.00 0.00 0.00 0.00 0.00 -DEAL::0.02 211 257 8 12 0.94 1.24 2.18 211 1001 10 10 0.00 0.00 0.00 -0.00 -0.00 -DEAL::0.05 310 366 8 13 0.54 1.64 2.18 310 1433 12 10 0.00 0.00 0.00 -0.00 -0.00 -DEAL::0.08 367 429 8 13 1.19 0.99 2.18 367 1682 15 10 0.00 0.00 0.00 -0.00 -0.00 -DEAL::0.11 439 504 9 13 1.14 1.03 2.17 439 1978 19 10 0.00 0.00 0.00 -0.00 -0.00 -DEAL::0.14 487 554 10 13 1.11 1.04 2.15 487 2175 20 10 0.00 0.00 0.00 -0.00 0.00 -DEAL::0.16 502 573 10 13 0.99 1.07 2.07 502 2250 20 10 0.00 0.00 0.00 -0.00 -0.00 -DEAL::0.19 484 552 10 13 0.83 0.95 1.79 484 2166 19 10 0.00 0.00 0.00 0.00 -0.00 -DEAL::0.22 508 576 9 13 0.92 0.81 1.73 508 2258 19 10 0.00 0.00 0.00 -0.00 0.00 -DEAL::0.25 550 624 9 13 0.90 0.70 1.60 550 2450 19 10 0.00 0.00 0.00 -0.00 0.00 -DEAL::0.28 550 625 10 13 0.74 0.75 1.50 550 2455 19 10 0.00 0.00 0.00 -0.00 -0.00 -DEAL::0.30 517 585 10 13 0.61 0.74 1.35 517 2298 20 10 0.00 0.00 0.00 -0.00 -0.00 -DEAL::0.33 493 560 10 13 0.50 0.67 1.18 493 2196 20 10 0.00 0.00 0.00 -0.00 -0.00 -DEAL::0.36 487 552 9 15 0.54 0.48 1.02 487 2162 18 10 0.00 0.00 0.00 -0.00 0.00 -DEAL::0.39 457 518 9 14 0.51 0.45 0.96 457 2032 18 10 0.00 0.00 0.00 -0.00 0.00 -DEAL::0.42 400 460 9 14 0.40 0.43 0.83 400 1801 17 10 0.00 0.00 0.00 0.00 0.00 -DEAL::0.44 337 393 9 13 0.37 0.39 0.77 337 1535 16 10 0.00 0.00 0.00 -0.00 0.00 -DEAL::0.47 301 352 9 13 0.38 0.32 0.70 301 1371 14 10 0.00 0.00 0.00 -0.00 0.00 -DEAL::0.50 286 335 8 13 0.26 0.27 0.54 286 1303 13 10 0.00 0.00 0.00 -0.00 0.00 -DEAL::0.53 223 267 8 13 0.27 0.25 0.53 223 1034 9 10 0.00 0.00 0.00 0.00 0.00 -DEAL::0.56 199 242 8 13 0.24 0.24 0.49 199 934 9 10 0.00 0.00 0.00 0.00 0.00 -DEAL::0.58 181 221 8 13 0.22 0.24 0.47 181 850 9 10 0.00 0.00 0.00 0.00 0.01 -DEAL::0.61 154 192 9 12 0.21 0.18 0.39 154 734 8 10 0.00 0.00 0.00 0.00 0.02 -DEAL::0.64 121 157 8 11 0.18 0.18 0.37 121 599 8 9 0.00 0.00 0.00 -0.00 0.03 -DEAL::0.67 124 160 8 11 0.17 0.20 0.37 124 608 8 9 0.00 0.00 0.00 -0.00 0.03 -DEAL::0.70 115 149 8 11 0.16 0.15 0.31 115 567 0 0 0.00 0.00 0.00 -0.00 0.04 - -DEAL:: Writing summary.Summary of this sweep: -====================== - - Accumulated number of cells: 8972 - Acc. number of primal dofs : 20828 - Acc. number of dual dofs : 81378 - Accumulated error : -0.00 - - Evaluations: - ------------ - Hughens wave -- weighted time: 0.63 - average : 0.00 - - - - diff --git a/tests/deal.II/wave-test-3.prm b/tests/deal.II/wave-test-3.prm deleted file mode 100644 index 4f88843e7b..0000000000 --- a/tests/deal.II/wave-test-3.prm +++ /dev/null @@ -1,81 +0,0 @@ -subsection Grid - set Initial refinement = 4 - set Coarse mesh = square - - subsection Refinement - set Refinement fraction = 0.95 - set Coarsening fraction = 0.01 - set Compare indicators globally = false - set Maximum refinement = 0 - set Adapt mesh to dual solution = true - set Primal to dual weight = 4 - set Initial energy estimator sweeps= 0 - end - - subsection Mesh smoothing - set Cell number correction steps = 2 - set Top cell number deviation = 0.1 - set Bottom cell number deviation = 0.06 - end - - set Renumber dofs = true -end - - - -subsection Equation data - set Coefficient = kink - set Initial u = bump - set Initial v = zero - set Boundary = zero -end - - - -subsection Discretization - set Primal FE = linear - set Dual FE = quadratic - subsection Time stepping - set Primal method = theta - set Dual method = theta - set Theta = 0.5 - set Time step = 0.028 - set End time = 0.7 - end -end - - - -subsection Solver - set Preconditioning = ssor - set Extrapolate old solutions = false -end - - - -subsection Output - set Format = eps - set Directory = tmp - set Directory for temporaries = tmp - set Write solutions = all sweeps - set Write steps interval = 25 - set Write stacked time steps = false - set Write error as cell data = true - - subsection Error statistics - set Produce error statistics = false - set Number of intervals = 25 - set Interval spacing = logarithmic - end -end - - - -subsection Goal - set Goal = Huyghens wave - set Evaluate = Huyghens wave -end - - -set Refinement criterion = dual estimator -set Sweeps = 3 diff --git a/tests/fe/.cvsignore b/tests/fe/.cvsignore deleted file mode 100644 index 2f239987f1..0000000000 --- a/tests/fe/.cvsignore +++ /dev/null @@ -1,5 +0,0 @@ -Makefile Make.depend -*.dat -show_shapes -show_transform -*.go diff --git a/tests/fe/Makefile.in b/tests/fe/Makefile.in deleted file mode 100644 index ba9c3dd571..0000000000 --- a/tests/fe/Makefile.in +++ /dev/null @@ -1,146 +0,0 @@ -############################################################ -# $Id$ -# Copyright (C) 2000 by the deal.II authors -############################################################ - -############################################################ -# Include general settings for including DEAL libraries -############################################################ - -D = @DEAL2_DIR@ - -include $D/common/Make.global_options - - -############################################################ -# Set debug-mode as a default -############################################################ - -debug-mode = on - - -############################################################ -# Define library names -############################################################ - -libs.g = $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs = $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -############################################################ -# Select compiler flags according to debug-mode -############################################################ - -ifeq ($(debug-mode),on) -libraries = $(libs.g) -flags = $(CXXFLAGS.g) $(CXXFLAGS) -endif - -ifeq ($(debug-mode),off) -libraries = $(libs) -flags = $(CXXFLAGS.o) $(CXXFLAGS) -endif - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -%.go : %.cc Makefile - @echo =====debug========= $< - @$(CXX) $(flags) -c $< -o $@ -%.o : %.cc Makefile - @echo =====optimized===== $< - @$(CXX) $(flags) -c $< -o $@ - - -all: check - -############################################################ -# Typical block for building a running program -# -# 1. provide a list of source files in ...-cc-files -# -# 2. generate the list of object files according to debug-mode -# -# 3. make executable -# -# 4. Explicit dependencies of object files (will be automatic soon) -# -############################################################ - -show_shapes-cc-files = show_shapes.cc - -ifeq ($(debug-mode),on) -show_shapes-o-files = $(show_shapes-cc-files:.cc=.go) -else -show_shapes-o-files = $(show_shapes-cc-files:.cc=.o) -endif - -show_shapes: $(show_shapes-o-files) $(libraries) - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - -############################################################ - -show_transform-cc-files = show_transform.cc - -ifeq ($(debug-mode),on) -show_transform-o-files = $(show_transform-cc-files:.cc=.go) -else -show_transform-o-files = $(show_transform-cc-files:.cc=.o) -endif - -show_transform: $(show_transform-o-files) $(libraries) - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - -############################################################ -# Continue with other targets if needed -############################################################ - -check: show_transform show_shapes - @echo Running programs - @./show_transform - @./show_shapes - @echo Checking results - $(MAKE) dodiff - -%.check: %.dat - diff $@ $< - -dat = $(wildcard *.dat) -check = $(dat:.dat=.check) - -dodiff: $(check) - @echo OK - -############################################################ -# Cleanup targets -############################################################ - -clean: - rm -f *.o *.go - -veryclean: clean - rm -f show_shapes show_transform *.inp *.gpl *.eps *.gnuplot *.dat - -############################################################ -# Automatic generation of dependencies -############################################################ - -all-cc-files = $(show_shapes-cc-files) $(show_transform-cc-files) - -Make.depend: $(all-cc-files) - @echo =====Dependecies=== Make.depend - @$(CXX) $(flags) $^ -M > $@ - @perl -pi -e 's/(^[^.]+)\.o:/\1.o \1.go:/;' $@ - -include Make.depend - -.PHONY: clean veryclean check diff --git a/tests/fe/Q1.check b/tests/fe/Q1.check deleted file mode 100644 index 0813b5154c..0000000000 --- a/tests/fe/Q1.check +++ /dev/null @@ -1,462 +0,0 @@ -0.000 0.000 1.000 0.000 0.000 0.000 -0.000 0.050 0.950 0.000 0.000 0.050 -0.000 0.100 0.900 0.000 0.000 0.100 -0.000 0.150 0.850 0.000 0.000 0.150 -0.000 0.200 0.800 0.000 0.000 0.200 -0.000 0.250 0.750 0.000 0.000 0.250 -0.000 0.300 0.700 0.000 0.000 0.300 -0.000 0.350 0.650 0.000 0.000 0.350 -0.000 0.400 0.600 0.000 0.000 0.400 -0.000 0.450 0.550 0.000 0.000 0.450 -0.000 0.500 0.500 0.000 0.000 0.500 -0.000 0.550 0.450 0.000 0.000 0.550 -0.000 0.600 0.400 0.000 0.000 0.600 -0.000 0.650 0.350 0.000 0.000 0.650 -0.000 0.700 0.300 0.000 0.000 0.700 -0.000 0.750 0.250 0.000 0.000 0.750 -0.000 0.800 0.200 0.000 0.000 0.800 -0.000 0.850 0.150 0.000 0.000 0.850 -0.000 0.900 0.100 0.000 0.000 0.900 -0.000 0.950 0.050 0.000 0.000 0.950 -0.000 1.000 0.000 0.000 0.000 1.000 - -0.050 0.000 0.950 0.050 0.000 0.000 -0.050 0.050 0.902 0.048 0.003 0.048 -0.050 0.100 0.855 0.045 0.005 0.095 -0.050 0.150 0.807 0.043 0.007 0.142 -0.050 0.200 0.760 0.040 0.010 0.190 -0.050 0.250 0.713 0.038 0.013 0.237 -0.050 0.300 0.665 0.035 0.015 0.285 -0.050 0.350 0.618 0.033 0.017 0.332 -0.050 0.400 0.570 0.030 0.020 0.380 -0.050 0.450 0.522 0.028 0.023 0.427 -0.050 0.500 0.475 0.025 0.025 0.475 -0.050 0.550 0.427 0.022 0.028 0.523 -0.050 0.600 0.380 0.020 0.030 0.570 -0.050 0.650 0.332 0.017 0.033 0.618 -0.050 0.700 0.285 0.015 0.035 0.665 -0.050 0.750 0.237 0.013 0.038 0.713 -0.050 0.800 0.190 0.010 0.040 0.760 -0.050 0.850 0.143 0.008 0.043 0.807 -0.050 0.900 0.095 0.005 0.045 0.855 -0.050 0.950 0.048 0.003 0.048 0.902 -0.050 1.000 0.000 0.000 0.050 0.950 - -0.100 0.000 0.900 0.100 0.000 0.000 -0.100 0.050 0.855 0.095 0.005 0.045 -0.100 0.100 0.810 0.090 0.010 0.090 -0.100 0.150 0.765 0.085 0.015 0.135 -0.100 0.200 0.720 0.080 0.020 0.180 -0.100 0.250 0.675 0.075 0.025 0.225 -0.100 0.300 0.630 0.070 0.030 0.270 -0.100 0.350 0.585 0.065 0.035 0.315 -0.100 0.400 0.540 0.060 0.040 0.360 -0.100 0.450 0.495 0.055 0.045 0.405 -0.100 0.500 0.450 0.050 0.050 0.450 -0.100 0.550 0.405 0.045 0.055 0.495 -0.100 0.600 0.360 0.040 0.060 0.540 -0.100 0.650 0.315 0.035 0.065 0.585 -0.100 0.700 0.270 0.030 0.070 0.630 -0.100 0.750 0.225 0.025 0.075 0.675 -0.100 0.800 0.180 0.020 0.080 0.720 -0.100 0.850 0.135 0.015 0.085 0.765 -0.100 0.900 0.090 0.010 0.090 0.810 -0.100 0.950 0.045 0.005 0.095 0.855 -0.100 1.000 0.000 0.000 0.100 0.900 - -0.150 0.000 0.850 0.150 0.000 0.000 -0.150 0.050 0.807 0.142 0.007 0.043 -0.150 0.100 0.765 0.135 0.015 0.085 -0.150 0.150 0.723 0.128 0.022 0.128 -0.150 0.200 0.680 0.120 0.030 0.170 -0.150 0.250 0.637 0.112 0.037 0.212 -0.150 0.300 0.595 0.105 0.045 0.255 -0.150 0.350 0.552 0.098 0.052 0.297 -0.150 0.400 0.510 0.090 0.060 0.340 -0.150 0.450 0.467 0.082 0.068 0.383 -0.150 0.500 0.425 0.075 0.075 0.425 -0.150 0.550 0.382 0.067 0.083 0.468 -0.150 0.600 0.340 0.060 0.090 0.510 -0.150 0.650 0.297 0.052 0.098 0.552 -0.150 0.700 0.255 0.045 0.105 0.595 -0.150 0.750 0.212 0.037 0.112 0.637 -0.150 0.800 0.170 0.030 0.120 0.680 -0.150 0.850 0.128 0.023 0.128 0.723 -0.150 0.900 0.085 0.015 0.135 0.765 -0.150 0.950 0.043 0.008 0.142 0.807 -0.150 1.000 0.000 0.000 0.150 0.850 - -0.200 0.000 0.800 0.200 0.000 0.000 -0.200 0.050 0.760 0.190 0.010 0.040 -0.200 0.100 0.720 0.180 0.020 0.080 -0.200 0.150 0.680 0.170 0.030 0.120 -0.200 0.200 0.640 0.160 0.040 0.160 -0.200 0.250 0.600 0.150 0.050 0.200 -0.200 0.300 0.560 0.140 0.060 0.240 -0.200 0.350 0.520 0.130 0.070 0.280 -0.200 0.400 0.480 0.120 0.080 0.320 -0.200 0.450 0.440 0.110 0.090 0.360 -0.200 0.500 0.400 0.100 0.100 0.400 -0.200 0.550 0.360 0.090 0.110 0.440 -0.200 0.600 0.320 0.080 0.120 0.480 -0.200 0.650 0.280 0.070 0.130 0.520 -0.200 0.700 0.240 0.060 0.140 0.560 -0.200 0.750 0.200 0.050 0.150 0.600 -0.200 0.800 0.160 0.040 0.160 0.640 -0.200 0.850 0.120 0.030 0.170 0.680 -0.200 0.900 0.080 0.020 0.180 0.720 -0.200 0.950 0.040 0.010 0.190 0.760 -0.200 1.000 0.000 0.000 0.200 0.800 - -0.250 0.000 0.750 0.250 0.000 0.000 -0.250 0.050 0.713 0.237 0.013 0.038 -0.250 0.100 0.675 0.225 0.025 0.075 -0.250 0.150 0.637 0.212 0.037 0.112 -0.250 0.200 0.600 0.200 0.050 0.150 -0.250 0.250 0.562 0.188 0.062 0.188 -0.250 0.300 0.525 0.175 0.075 0.225 -0.250 0.350 0.488 0.163 0.087 0.262 -0.250 0.400 0.450 0.150 0.100 0.300 -0.250 0.450 0.412 0.138 0.113 0.338 -0.250 0.500 0.375 0.125 0.125 0.375 -0.250 0.550 0.337 0.112 0.138 0.413 -0.250 0.600 0.300 0.100 0.150 0.450 -0.250 0.650 0.262 0.087 0.163 0.488 -0.250 0.700 0.225 0.075 0.175 0.525 -0.250 0.750 0.188 0.062 0.188 0.562 -0.250 0.800 0.150 0.050 0.200 0.600 -0.250 0.850 0.113 0.038 0.212 0.637 -0.250 0.900 0.075 0.025 0.225 0.675 -0.250 0.950 0.038 0.013 0.237 0.712 -0.250 1.000 0.000 0.000 0.250 0.750 - -0.300 0.000 0.700 0.300 0.000 0.000 -0.300 0.050 0.665 0.285 0.015 0.035 -0.300 0.100 0.630 0.270 0.030 0.070 -0.300 0.150 0.595 0.255 0.045 0.105 -0.300 0.200 0.560 0.240 0.060 0.140 -0.300 0.250 0.525 0.225 0.075 0.175 -0.300 0.300 0.490 0.210 0.090 0.210 -0.300 0.350 0.455 0.195 0.105 0.245 -0.300 0.400 0.420 0.180 0.120 0.280 -0.300 0.450 0.385 0.165 0.135 0.315 -0.300 0.500 0.350 0.150 0.150 0.350 -0.300 0.550 0.315 0.135 0.165 0.385 -0.300 0.600 0.280 0.120 0.180 0.420 -0.300 0.650 0.245 0.105 0.195 0.455 -0.300 0.700 0.210 0.090 0.210 0.490 -0.300 0.750 0.175 0.075 0.225 0.525 -0.300 0.800 0.140 0.060 0.240 0.560 -0.300 0.850 0.105 0.045 0.255 0.595 -0.300 0.900 0.070 0.030 0.270 0.630 -0.300 0.950 0.035 0.015 0.285 0.665 -0.300 1.000 0.000 0.000 0.300 0.700 - -0.350 0.000 0.650 0.350 0.000 0.000 -0.350 0.050 0.618 0.332 0.017 0.033 -0.350 0.100 0.585 0.315 0.035 0.065 -0.350 0.150 0.552 0.297 0.052 0.098 -0.350 0.200 0.520 0.280 0.070 0.130 -0.350 0.250 0.488 0.262 0.087 0.163 -0.350 0.300 0.455 0.245 0.105 0.195 -0.350 0.350 0.423 0.227 0.122 0.227 -0.350 0.400 0.390 0.210 0.140 0.260 -0.350 0.450 0.357 0.192 0.158 0.293 -0.350 0.500 0.325 0.175 0.175 0.325 -0.350 0.550 0.292 0.157 0.193 0.358 -0.350 0.600 0.260 0.140 0.210 0.390 -0.350 0.650 0.227 0.122 0.227 0.423 -0.350 0.700 0.195 0.105 0.245 0.455 -0.350 0.750 0.163 0.087 0.262 0.488 -0.350 0.800 0.130 0.070 0.280 0.520 -0.350 0.850 0.098 0.053 0.297 0.552 -0.350 0.900 0.065 0.035 0.315 0.585 -0.350 0.950 0.033 0.018 0.332 0.617 -0.350 1.000 0.000 0.000 0.350 0.650 - -0.400 0.000 0.600 0.400 0.000 0.000 -0.400 0.050 0.570 0.380 0.020 0.030 -0.400 0.100 0.540 0.360 0.040 0.060 -0.400 0.150 0.510 0.340 0.060 0.090 -0.400 0.200 0.480 0.320 0.080 0.120 -0.400 0.250 0.450 0.300 0.100 0.150 -0.400 0.300 0.420 0.280 0.120 0.180 -0.400 0.350 0.390 0.260 0.140 0.210 -0.400 0.400 0.360 0.240 0.160 0.240 -0.400 0.450 0.330 0.220 0.180 0.270 -0.400 0.500 0.300 0.200 0.200 0.300 -0.400 0.550 0.270 0.180 0.220 0.330 -0.400 0.600 0.240 0.160 0.240 0.360 -0.400 0.650 0.210 0.140 0.260 0.390 -0.400 0.700 0.180 0.120 0.280 0.420 -0.400 0.750 0.150 0.100 0.300 0.450 -0.400 0.800 0.120 0.080 0.320 0.480 -0.400 0.850 0.090 0.060 0.340 0.510 -0.400 0.900 0.060 0.040 0.360 0.540 -0.400 0.950 0.030 0.020 0.380 0.570 -0.400 1.000 0.000 0.000 0.400 0.600 - -0.450 0.000 0.550 0.450 0.000 0.000 -0.450 0.050 0.522 0.427 0.023 0.028 -0.450 0.100 0.495 0.405 0.045 0.055 -0.450 0.150 0.467 0.383 0.068 0.082 -0.450 0.200 0.440 0.360 0.090 0.110 -0.450 0.250 0.412 0.338 0.113 0.138 -0.450 0.300 0.385 0.315 0.135 0.165 -0.450 0.350 0.357 0.293 0.158 0.192 -0.450 0.400 0.330 0.270 0.180 0.220 -0.450 0.450 0.302 0.247 0.203 0.247 -0.450 0.500 0.275 0.225 0.225 0.275 -0.450 0.550 0.247 0.202 0.248 0.302 -0.450 0.600 0.220 0.180 0.270 0.330 -0.450 0.650 0.192 0.158 0.293 0.357 -0.450 0.700 0.165 0.135 0.315 0.385 -0.450 0.750 0.138 0.113 0.338 0.412 -0.450 0.800 0.110 0.090 0.360 0.440 -0.450 0.850 0.083 0.068 0.383 0.467 -0.450 0.900 0.055 0.045 0.405 0.495 -0.450 0.950 0.028 0.023 0.427 0.522 -0.450 1.000 0.000 0.000 0.450 0.550 - -0.500 0.000 0.500 0.500 0.000 0.000 -0.500 0.050 0.475 0.475 0.025 0.025 -0.500 0.100 0.450 0.450 0.050 0.050 -0.500 0.150 0.425 0.425 0.075 0.075 -0.500 0.200 0.400 0.400 0.100 0.100 -0.500 0.250 0.375 0.375 0.125 0.125 -0.500 0.300 0.350 0.350 0.150 0.150 -0.500 0.350 0.325 0.325 0.175 0.175 -0.500 0.400 0.300 0.300 0.200 0.200 -0.500 0.450 0.275 0.275 0.225 0.225 -0.500 0.500 0.250 0.250 0.250 0.250 -0.500 0.550 0.225 0.225 0.275 0.275 -0.500 0.600 0.200 0.200 0.300 0.300 -0.500 0.650 0.175 0.175 0.325 0.325 -0.500 0.700 0.150 0.150 0.350 0.350 -0.500 0.750 0.125 0.125 0.375 0.375 -0.500 0.800 0.100 0.100 0.400 0.400 -0.500 0.850 0.075 0.075 0.425 0.425 -0.500 0.900 0.050 0.050 0.450 0.450 -0.500 0.950 0.025 0.025 0.475 0.475 -0.500 1.000 0.000 0.000 0.500 0.500 - -0.550 0.000 0.450 0.550 0.000 0.000 -0.550 0.050 0.427 0.523 0.028 0.022 -0.550 0.100 0.405 0.495 0.055 0.045 -0.550 0.150 0.382 0.468 0.083 0.067 -0.550 0.200 0.360 0.440 0.110 0.090 -0.550 0.250 0.337 0.413 0.138 0.112 -0.550 0.300 0.315 0.385 0.165 0.135 -0.550 0.350 0.292 0.358 0.193 0.157 -0.550 0.400 0.270 0.330 0.220 0.180 -0.550 0.450 0.247 0.302 0.248 0.202 -0.550 0.500 0.225 0.275 0.275 0.225 -0.550 0.550 0.202 0.247 0.303 0.247 -0.550 0.600 0.180 0.220 0.330 0.270 -0.550 0.650 0.157 0.193 0.358 0.292 -0.550 0.700 0.135 0.165 0.385 0.315 -0.550 0.750 0.112 0.138 0.413 0.337 -0.550 0.800 0.090 0.110 0.440 0.360 -0.550 0.850 0.068 0.083 0.468 0.382 -0.550 0.900 0.045 0.055 0.495 0.405 -0.550 0.950 0.023 0.028 0.522 0.427 -0.550 1.000 0.000 0.000 0.550 0.450 - -0.600 0.000 0.400 0.600 0.000 0.000 -0.600 0.050 0.380 0.570 0.030 0.020 -0.600 0.100 0.360 0.540 0.060 0.040 -0.600 0.150 0.340 0.510 0.090 0.060 -0.600 0.200 0.320 0.480 0.120 0.080 -0.600 0.250 0.300 0.450 0.150 0.100 -0.600 0.300 0.280 0.420 0.180 0.120 -0.600 0.350 0.260 0.390 0.210 0.140 -0.600 0.400 0.240 0.360 0.240 0.160 -0.600 0.450 0.220 0.330 0.270 0.180 -0.600 0.500 0.200 0.300 0.300 0.200 -0.600 0.550 0.180 0.270 0.330 0.220 -0.600 0.600 0.160 0.240 0.360 0.240 -0.600 0.650 0.140 0.210 0.390 0.260 -0.600 0.700 0.120 0.180 0.420 0.280 -0.600 0.750 0.100 0.150 0.450 0.300 -0.600 0.800 0.080 0.120 0.480 0.320 -0.600 0.850 0.060 0.090 0.510 0.340 -0.600 0.900 0.040 0.060 0.540 0.360 -0.600 0.950 0.020 0.030 0.570 0.380 -0.600 1.000 0.000 0.000 0.600 0.400 - -0.650 0.000 0.350 0.650 0.000 0.000 -0.650 0.050 0.332 0.618 0.033 0.017 -0.650 0.100 0.315 0.585 0.065 0.035 -0.650 0.150 0.297 0.552 0.098 0.052 -0.650 0.200 0.280 0.520 0.130 0.070 -0.650 0.250 0.262 0.488 0.163 0.087 -0.650 0.300 0.245 0.455 0.195 0.105 -0.650 0.350 0.227 0.423 0.227 0.122 -0.650 0.400 0.210 0.390 0.260 0.140 -0.650 0.450 0.192 0.357 0.293 0.158 -0.650 0.500 0.175 0.325 0.325 0.175 -0.650 0.550 0.157 0.292 0.358 0.193 -0.650 0.600 0.140 0.260 0.390 0.210 -0.650 0.650 0.122 0.227 0.423 0.227 -0.650 0.700 0.105 0.195 0.455 0.245 -0.650 0.750 0.087 0.163 0.488 0.262 -0.650 0.800 0.070 0.130 0.520 0.280 -0.650 0.850 0.053 0.098 0.552 0.297 -0.650 0.900 0.035 0.065 0.585 0.315 -0.650 0.950 0.018 0.033 0.617 0.332 -0.650 1.000 0.000 0.000 0.650 0.350 - -0.700 0.000 0.300 0.700 0.000 0.000 -0.700 0.050 0.285 0.665 0.035 0.015 -0.700 0.100 0.270 0.630 0.070 0.030 -0.700 0.150 0.255 0.595 0.105 0.045 -0.700 0.200 0.240 0.560 0.140 0.060 -0.700 0.250 0.225 0.525 0.175 0.075 -0.700 0.300 0.210 0.490 0.210 0.090 -0.700 0.350 0.195 0.455 0.245 0.105 -0.700 0.400 0.180 0.420 0.280 0.120 -0.700 0.450 0.165 0.385 0.315 0.135 -0.700 0.500 0.150 0.350 0.350 0.150 -0.700 0.550 0.135 0.315 0.385 0.165 -0.700 0.600 0.120 0.280 0.420 0.180 -0.700 0.650 0.105 0.245 0.455 0.195 -0.700 0.700 0.090 0.210 0.490 0.210 -0.700 0.750 0.075 0.175 0.525 0.225 -0.700 0.800 0.060 0.140 0.560 0.240 -0.700 0.850 0.045 0.105 0.595 0.255 -0.700 0.900 0.030 0.070 0.630 0.270 -0.700 0.950 0.015 0.035 0.665 0.285 -0.700 1.000 0.000 0.000 0.700 0.300 - -0.750 0.000 0.250 0.750 0.000 0.000 -0.750 0.050 0.237 0.713 0.038 0.013 -0.750 0.100 0.225 0.675 0.075 0.025 -0.750 0.150 0.212 0.637 0.112 0.037 -0.750 0.200 0.200 0.600 0.150 0.050 -0.750 0.250 0.188 0.562 0.188 0.062 -0.750 0.300 0.175 0.525 0.225 0.075 -0.750 0.350 0.163 0.488 0.262 0.087 -0.750 0.400 0.150 0.450 0.300 0.100 -0.750 0.450 0.138 0.412 0.338 0.113 -0.750 0.500 0.125 0.375 0.375 0.125 -0.750 0.550 0.112 0.337 0.413 0.138 -0.750 0.600 0.100 0.300 0.450 0.150 -0.750 0.650 0.087 0.262 0.488 0.163 -0.750 0.700 0.075 0.225 0.525 0.175 -0.750 0.750 0.062 0.188 0.562 0.188 -0.750 0.800 0.050 0.150 0.600 0.200 -0.750 0.850 0.038 0.113 0.637 0.212 -0.750 0.900 0.025 0.075 0.675 0.225 -0.750 0.950 0.013 0.038 0.712 0.237 -0.750 1.000 0.000 0.000 0.750 0.250 - -0.800 0.000 0.200 0.800 0.000 0.000 -0.800 0.050 0.190 0.760 0.040 0.010 -0.800 0.100 0.180 0.720 0.080 0.020 -0.800 0.150 0.170 0.680 0.120 0.030 -0.800 0.200 0.160 0.640 0.160 0.040 -0.800 0.250 0.150 0.600 0.200 0.050 -0.800 0.300 0.140 0.560 0.240 0.060 -0.800 0.350 0.130 0.520 0.280 0.070 -0.800 0.400 0.120 0.480 0.320 0.080 -0.800 0.450 0.110 0.440 0.360 0.090 -0.800 0.500 0.100 0.400 0.400 0.100 -0.800 0.550 0.090 0.360 0.440 0.110 -0.800 0.600 0.080 0.320 0.480 0.120 -0.800 0.650 0.070 0.280 0.520 0.130 -0.800 0.700 0.060 0.240 0.560 0.140 -0.800 0.750 0.050 0.200 0.600 0.150 -0.800 0.800 0.040 0.160 0.640 0.160 -0.800 0.850 0.030 0.120 0.680 0.170 -0.800 0.900 0.020 0.080 0.720 0.180 -0.800 0.950 0.010 0.040 0.760 0.190 -0.800 1.000 0.000 0.000 0.800 0.200 - -0.850 0.000 0.150 0.850 0.000 0.000 -0.850 0.050 0.143 0.807 0.043 0.008 -0.850 0.100 0.135 0.765 0.085 0.015 -0.850 0.150 0.128 0.723 0.128 0.023 -0.850 0.200 0.120 0.680 0.170 0.030 -0.850 0.250 0.113 0.637 0.212 0.038 -0.850 0.300 0.105 0.595 0.255 0.045 -0.850 0.350 0.098 0.552 0.297 0.053 -0.850 0.400 0.090 0.510 0.340 0.060 -0.850 0.450 0.083 0.467 0.383 0.068 -0.850 0.500 0.075 0.425 0.425 0.075 -0.850 0.550 0.068 0.382 0.468 0.083 -0.850 0.600 0.060 0.340 0.510 0.090 -0.850 0.650 0.053 0.297 0.552 0.098 -0.850 0.700 0.045 0.255 0.595 0.105 -0.850 0.750 0.038 0.212 0.637 0.113 -0.850 0.800 0.030 0.170 0.680 0.120 -0.850 0.850 0.023 0.128 0.722 0.128 -0.850 0.900 0.015 0.085 0.765 0.135 -0.850 0.950 0.008 0.043 0.807 0.143 -0.850 1.000 0.000 0.000 0.850 0.150 - -0.900 0.000 0.100 0.900 0.000 0.000 -0.900 0.050 0.095 0.855 0.045 0.005 -0.900 0.100 0.090 0.810 0.090 0.010 -0.900 0.150 0.085 0.765 0.135 0.015 -0.900 0.200 0.080 0.720 0.180 0.020 -0.900 0.250 0.075 0.675 0.225 0.025 -0.900 0.300 0.070 0.630 0.270 0.030 -0.900 0.350 0.065 0.585 0.315 0.035 -0.900 0.400 0.060 0.540 0.360 0.040 -0.900 0.450 0.055 0.495 0.405 0.045 -0.900 0.500 0.050 0.450 0.450 0.050 -0.900 0.550 0.045 0.405 0.495 0.055 -0.900 0.600 0.040 0.360 0.540 0.060 -0.900 0.650 0.035 0.315 0.585 0.065 -0.900 0.700 0.030 0.270 0.630 0.070 -0.900 0.750 0.025 0.225 0.675 0.075 -0.900 0.800 0.020 0.180 0.720 0.080 -0.900 0.850 0.015 0.135 0.765 0.085 -0.900 0.900 0.010 0.090 0.810 0.090 -0.900 0.950 0.005 0.045 0.855 0.095 -0.900 1.000 0.000 0.000 0.900 0.100 - -0.950 0.000 0.050 0.950 0.000 0.000 -0.950 0.050 0.048 0.902 0.048 0.003 -0.950 0.100 0.045 0.855 0.095 0.005 -0.950 0.150 0.043 0.807 0.142 0.008 -0.950 0.200 0.040 0.760 0.190 0.010 -0.950 0.250 0.038 0.712 0.237 0.013 -0.950 0.300 0.035 0.665 0.285 0.015 -0.950 0.350 0.033 0.617 0.332 0.018 -0.950 0.400 0.030 0.570 0.380 0.020 -0.950 0.450 0.028 0.522 0.427 0.023 -0.950 0.500 0.025 0.475 0.475 0.025 -0.950 0.550 0.023 0.427 0.522 0.028 -0.950 0.600 0.020 0.380 0.570 0.030 -0.950 0.650 0.018 0.332 0.617 0.033 -0.950 0.700 0.015 0.285 0.665 0.035 -0.950 0.750 0.013 0.237 0.712 0.038 -0.950 0.800 0.010 0.190 0.760 0.040 -0.950 0.850 0.008 0.143 0.807 0.043 -0.950 0.900 0.005 0.095 0.855 0.045 -0.950 0.950 0.003 0.048 0.902 0.048 -0.950 1.000 0.000 0.000 0.950 0.050 - -1.000 0.000 0.000 1.000 0.000 0.000 -1.000 0.050 0.000 0.950 0.050 0.000 -1.000 0.100 0.000 0.900 0.100 0.000 -1.000 0.150 0.000 0.850 0.150 0.000 -1.000 0.200 0.000 0.800 0.200 0.000 -1.000 0.250 0.000 0.750 0.250 0.000 -1.000 0.300 0.000 0.700 0.300 0.000 -1.000 0.350 0.000 0.650 0.350 0.000 -1.000 0.400 0.000 0.600 0.400 0.000 -1.000 0.450 0.000 0.550 0.450 0.000 -1.000 0.500 0.000 0.500 0.500 0.000 -1.000 0.550 0.000 0.450 0.550 0.000 -1.000 0.600 0.000 0.400 0.600 0.000 -1.000 0.650 0.000 0.350 0.650 0.000 -1.000 0.700 0.000 0.300 0.700 0.000 -1.000 0.750 0.000 0.250 0.750 0.000 -1.000 0.800 0.000 0.200 0.800 0.000 -1.000 0.850 0.000 0.150 0.850 0.000 -1.000 0.900 0.000 0.100 0.900 0.000 -1.000 0.950 0.000 0.050 0.950 0.000 -1.000 1.000 0.000 0.000 1.000 0.000 - diff --git a/tests/fe/Q2.check b/tests/fe/Q2.check deleted file mode 100644 index 22f3f7579e..0000000000 --- a/tests/fe/Q2.check +++ /dev/null @@ -1,462 +0,0 @@ -0.000 0.000 1.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000 0.050 0.855 -0.000 0.000 -0.045 0.000 -0.000 -0.000 0.190 0.000 -0.000 0.100 0.720 -0.000 0.000 -0.080 0.000 -0.000 -0.000 0.360 0.000 -0.000 0.150 0.595 -0.000 0.000 -0.105 0.000 -0.000 -0.000 0.510 0.000 -0.000 0.200 0.480 -0.000 0.000 -0.120 0.000 -0.000 -0.000 0.640 0.000 -0.000 0.250 0.375 -0.000 0.000 -0.125 0.000 -0.000 -0.000 0.750 0.000 -0.000 0.300 0.280 -0.000 0.000 -0.120 0.000 -0.000 -0.000 0.840 0.000 -0.000 0.350 0.195 -0.000 0.000 -0.105 0.000 -0.000 -0.000 0.910 0.000 -0.000 0.400 0.120 -0.000 0.000 -0.080 0.000 -0.000 -0.000 0.960 0.000 -0.000 0.450 0.055 -0.000 0.000 -0.045 0.000 -0.000 -0.000 0.990 0.000 -0.000 0.500 -0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 1.000 0.000 -0.000 0.550 -0.045 0.000 -0.000 0.055 -0.000 -0.000 0.000 0.990 0.000 -0.000 0.600 -0.080 0.000 -0.000 0.120 -0.000 -0.000 0.000 0.960 0.000 -0.000 0.650 -0.105 0.000 -0.000 0.195 -0.000 -0.000 0.000 0.910 0.000 -0.000 0.700 -0.120 0.000 -0.000 0.280 -0.000 -0.000 0.000 0.840 0.000 -0.000 0.750 -0.125 0.000 -0.000 0.375 -0.000 -0.000 0.000 0.750 0.000 -0.000 0.800 -0.120 0.000 -0.000 0.480 -0.000 -0.000 0.000 0.640 0.000 -0.000 0.850 -0.105 0.000 -0.000 0.595 -0.000 -0.000 0.000 0.510 0.000 -0.000 0.900 -0.080 0.000 -0.000 0.720 -0.000 -0.000 0.000 0.360 0.000 -0.000 0.950 -0.045 0.000 -0.000 0.855 -0.000 -0.000 0.000 0.190 0.000 -0.000 1.000 -0.000 0.000 -0.000 1.000 -0.000 -0.000 0.000 0.000 0.000 - -0.050 0.000 0.855 -0.045 0.000 -0.000 0.190 -0.000 -0.000 0.000 0.000 -0.050 0.050 0.731 -0.038 0.002 -0.038 0.162 -0.009 -0.009 0.162 0.036 -0.050 0.100 0.616 -0.032 0.004 -0.068 0.137 -0.016 -0.015 0.308 0.068 -0.050 0.150 0.509 -0.027 0.005 -0.090 0.113 -0.023 -0.020 0.436 0.097 -0.050 0.200 0.410 -0.022 0.005 -0.103 0.091 -0.029 -0.023 0.547 0.122 -0.050 0.250 0.321 -0.017 0.006 -0.107 0.071 -0.034 -0.024 0.641 0.143 -0.050 0.300 0.239 -0.013 0.005 -0.103 0.053 -0.038 -0.023 0.718 0.160 -0.050 0.350 0.167 -0.009 0.005 -0.090 0.037 -0.041 -0.020 0.778 0.173 -0.050 0.400 0.103 -0.005 0.004 -0.068 0.023 -0.043 -0.015 0.821 0.182 -0.050 0.450 0.047 -0.002 0.002 -0.038 0.010 -0.045 -0.009 0.846 0.188 -0.050 0.500 -0.000 0.000 0.000 -0.000 0.000 -0.045 0.000 0.855 0.190 -0.050 0.550 -0.038 0.002 -0.002 0.047 -0.009 -0.045 0.010 0.846 0.188 -0.050 0.600 -0.068 0.004 -0.005 0.103 -0.015 -0.043 0.023 0.821 0.182 -0.050 0.650 -0.090 0.005 -0.009 0.167 -0.020 -0.041 0.037 0.778 0.173 -0.050 0.700 -0.103 0.005 -0.013 0.239 -0.023 -0.038 0.053 0.718 0.160 -0.050 0.750 -0.107 0.006 -0.017 0.321 -0.024 -0.034 0.071 0.641 0.143 -0.050 0.800 -0.103 0.005 -0.022 0.410 -0.023 -0.029 0.091 0.547 0.122 -0.050 0.850 -0.090 0.005 -0.027 0.509 -0.020 -0.023 0.113 0.436 0.097 -0.050 0.900 -0.068 0.004 -0.032 0.616 -0.015 -0.016 0.137 0.308 0.068 -0.050 0.950 -0.038 0.002 -0.038 0.731 -0.009 -0.009 0.162 0.162 0.036 -0.050 1.000 -0.000 0.000 -0.045 0.855 -0.000 -0.000 0.190 0.000 0.000 - -0.100 0.000 0.720 -0.080 0.000 -0.000 0.360 -0.000 -0.000 0.000 0.000 -0.100 0.050 0.616 -0.068 0.004 -0.032 0.308 -0.015 -0.016 0.137 0.068 -0.100 0.100 0.518 -0.058 0.006 -0.058 0.259 -0.029 -0.029 0.259 0.130 -0.100 0.150 0.428 -0.048 0.008 -0.076 0.214 -0.041 -0.038 0.367 0.184 -0.100 0.200 0.346 -0.038 0.010 -0.086 0.173 -0.051 -0.043 0.461 0.230 -0.100 0.250 0.270 -0.030 0.010 -0.090 0.135 -0.060 -0.045 0.540 0.270 -0.100 0.300 0.202 -0.022 0.010 -0.086 0.101 -0.067 -0.043 0.605 0.302 -0.100 0.350 0.140 -0.016 0.008 -0.076 0.070 -0.073 -0.038 0.655 0.328 -0.100 0.400 0.086 -0.010 0.006 -0.058 0.043 -0.077 -0.029 0.691 0.346 -0.100 0.450 0.040 -0.004 0.004 -0.032 0.020 -0.079 -0.016 0.713 0.356 -0.100 0.500 -0.000 0.000 0.000 -0.000 0.000 -0.080 0.000 0.720 0.360 -0.100 0.550 -0.032 0.004 -0.004 0.040 -0.016 -0.079 0.020 0.713 0.356 -0.100 0.600 -0.058 0.006 -0.010 0.086 -0.029 -0.077 0.043 0.691 0.346 -0.100 0.650 -0.076 0.008 -0.016 0.140 -0.038 -0.073 0.070 0.655 0.328 -0.100 0.700 -0.086 0.010 -0.022 0.202 -0.043 -0.067 0.101 0.605 0.302 -0.100 0.750 -0.090 0.010 -0.030 0.270 -0.045 -0.060 0.135 0.540 0.270 -0.100 0.800 -0.086 0.010 -0.038 0.346 -0.043 -0.051 0.173 0.461 0.230 -0.100 0.850 -0.076 0.008 -0.048 0.428 -0.038 -0.041 0.214 0.367 0.184 -0.100 0.900 -0.058 0.006 -0.058 0.518 -0.029 -0.029 0.259 0.259 0.130 -0.100 0.950 -0.032 0.004 -0.068 0.616 -0.016 -0.015 0.308 0.137 0.068 -0.100 1.000 -0.000 0.000 -0.080 0.720 -0.000 -0.000 0.360 0.000 0.000 - -0.150 0.000 0.595 -0.105 0.000 -0.000 0.510 -0.000 -0.000 0.000 0.000 -0.150 0.050 0.509 -0.090 0.005 -0.027 0.436 -0.020 -0.023 0.113 0.097 -0.150 0.100 0.428 -0.076 0.008 -0.048 0.367 -0.038 -0.041 0.214 0.184 -0.150 0.150 0.354 -0.062 0.011 -0.062 0.303 -0.054 -0.054 0.303 0.260 -0.150 0.200 0.286 -0.050 0.013 -0.071 0.245 -0.067 -0.061 0.381 0.326 -0.150 0.250 0.223 -0.039 0.013 -0.074 0.191 -0.079 -0.064 0.446 0.383 -0.150 0.300 0.167 -0.029 0.013 -0.071 0.143 -0.088 -0.061 0.500 0.428 -0.150 0.350 0.116 -0.020 0.011 -0.062 0.099 -0.096 -0.054 0.541 0.464 -0.150 0.400 0.071 -0.013 0.008 -0.048 0.061 -0.101 -0.041 0.571 0.490 -0.150 0.450 0.033 -0.006 0.005 -0.027 0.028 -0.104 -0.023 0.589 0.505 -0.150 0.500 -0.000 0.000 0.000 -0.000 0.000 -0.105 0.000 0.595 0.510 -0.150 0.550 -0.027 0.005 -0.006 0.033 -0.023 -0.104 0.028 0.589 0.505 -0.150 0.600 -0.048 0.008 -0.013 0.071 -0.041 -0.101 0.061 0.571 0.490 -0.150 0.650 -0.062 0.011 -0.020 0.116 -0.054 -0.096 0.099 0.541 0.464 -0.150 0.700 -0.071 0.013 -0.029 0.167 -0.061 -0.088 0.143 0.500 0.428 -0.150 0.750 -0.074 0.013 -0.039 0.223 -0.064 -0.079 0.191 0.446 0.383 -0.150 0.800 -0.071 0.013 -0.050 0.286 -0.061 -0.067 0.245 0.381 0.326 -0.150 0.850 -0.062 0.011 -0.062 0.354 -0.054 -0.054 0.303 0.303 0.260 -0.150 0.900 -0.048 0.008 -0.076 0.428 -0.041 -0.038 0.367 0.214 0.184 -0.150 0.950 -0.027 0.005 -0.090 0.509 -0.023 -0.020 0.436 0.113 0.097 -0.150 1.000 -0.000 0.000 -0.105 0.595 -0.000 -0.000 0.510 0.000 0.000 - -0.200 0.000 0.480 -0.120 0.000 -0.000 0.640 -0.000 -0.000 0.000 0.000 -0.200 0.050 0.410 -0.103 0.005 -0.022 0.547 -0.023 -0.029 0.091 0.122 -0.200 0.100 0.346 -0.086 0.010 -0.038 0.461 -0.043 -0.051 0.173 0.230 -0.200 0.150 0.286 -0.071 0.013 -0.050 0.381 -0.061 -0.067 0.245 0.326 -0.200 0.200 0.230 -0.058 0.014 -0.058 0.307 -0.077 -0.077 0.307 0.410 -0.200 0.250 0.180 -0.045 0.015 -0.060 0.240 -0.090 -0.080 0.360 0.480 -0.200 0.300 0.134 -0.034 0.014 -0.058 0.179 -0.101 -0.077 0.403 0.538 -0.200 0.350 0.094 -0.023 0.013 -0.050 0.125 -0.109 -0.067 0.437 0.582 -0.200 0.400 0.058 -0.014 0.010 -0.038 0.077 -0.115 -0.051 0.461 0.614 -0.200 0.450 0.026 -0.007 0.005 -0.022 0.035 -0.119 -0.029 0.475 0.634 -0.200 0.500 -0.000 0.000 0.000 -0.000 0.000 -0.120 0.000 0.480 0.640 -0.200 0.550 -0.022 0.005 -0.007 0.026 -0.029 -0.119 0.035 0.475 0.634 -0.200 0.600 -0.038 0.010 -0.014 0.058 -0.051 -0.115 0.077 0.461 0.614 -0.200 0.650 -0.050 0.013 -0.023 0.094 -0.067 -0.109 0.125 0.437 0.582 -0.200 0.700 -0.058 0.014 -0.034 0.134 -0.077 -0.101 0.179 0.403 0.538 -0.200 0.750 -0.060 0.015 -0.045 0.180 -0.080 -0.090 0.240 0.360 0.480 -0.200 0.800 -0.058 0.014 -0.058 0.230 -0.077 -0.077 0.307 0.307 0.410 -0.200 0.850 -0.050 0.013 -0.071 0.286 -0.067 -0.061 0.381 0.245 0.326 -0.200 0.900 -0.038 0.010 -0.086 0.346 -0.051 -0.043 0.461 0.173 0.230 -0.200 0.950 -0.022 0.005 -0.103 0.410 -0.029 -0.023 0.547 0.091 0.122 -0.200 1.000 -0.000 0.000 -0.120 0.480 -0.000 -0.000 0.640 0.000 0.000 - -0.250 0.000 0.375 -0.125 0.000 -0.000 0.750 -0.000 -0.000 0.000 0.000 -0.250 0.050 0.321 -0.107 0.006 -0.017 0.641 -0.024 -0.034 0.071 0.143 -0.250 0.100 0.270 -0.090 0.010 -0.030 0.540 -0.045 -0.060 0.135 0.270 -0.250 0.150 0.223 -0.074 0.013 -0.039 0.446 -0.064 -0.079 0.191 0.383 -0.250 0.200 0.180 -0.060 0.015 -0.045 0.360 -0.080 -0.090 0.240 0.480 -0.250 0.250 0.141 -0.047 0.016 -0.047 0.281 -0.094 -0.094 0.281 0.562 -0.250 0.300 0.105 -0.035 0.015 -0.045 0.210 -0.105 -0.090 0.315 0.630 -0.250 0.350 0.073 -0.024 0.013 -0.039 0.146 -0.114 -0.079 0.341 0.682 -0.250 0.400 0.045 -0.015 0.010 -0.030 0.090 -0.120 -0.060 0.360 0.720 -0.250 0.450 0.021 -0.007 0.006 -0.017 0.041 -0.124 -0.034 0.371 0.743 -0.250 0.500 -0.000 0.000 0.000 -0.000 0.000 -0.125 0.000 0.375 0.750 -0.250 0.550 -0.017 0.006 -0.007 0.021 -0.034 -0.124 0.041 0.371 0.742 -0.250 0.600 -0.030 0.010 -0.015 0.045 -0.060 -0.120 0.090 0.360 0.720 -0.250 0.650 -0.039 0.013 -0.024 0.073 -0.079 -0.114 0.146 0.341 0.682 -0.250 0.700 -0.045 0.015 -0.035 0.105 -0.090 -0.105 0.210 0.315 0.630 -0.250 0.750 -0.047 0.016 -0.047 0.141 -0.094 -0.094 0.281 0.281 0.562 -0.250 0.800 -0.045 0.015 -0.060 0.180 -0.090 -0.080 0.360 0.240 0.480 -0.250 0.850 -0.039 0.013 -0.074 0.223 -0.079 -0.064 0.446 0.191 0.383 -0.250 0.900 -0.030 0.010 -0.090 0.270 -0.060 -0.045 0.540 0.135 0.270 -0.250 0.950 -0.017 0.006 -0.107 0.321 -0.034 -0.024 0.641 0.071 0.143 -0.250 1.000 -0.000 0.000 -0.125 0.375 -0.000 -0.000 0.750 0.000 0.000 - -0.300 0.000 0.280 -0.120 0.000 -0.000 0.840 -0.000 -0.000 0.000 0.000 -0.300 0.050 0.239 -0.103 0.005 -0.013 0.718 -0.023 -0.038 0.053 0.160 -0.300 0.100 0.202 -0.086 0.010 -0.022 0.605 -0.043 -0.067 0.101 0.302 -0.300 0.150 0.167 -0.071 0.013 -0.029 0.500 -0.061 -0.088 0.143 0.428 -0.300 0.200 0.134 -0.058 0.014 -0.034 0.403 -0.077 -0.101 0.179 0.538 -0.300 0.250 0.105 -0.045 0.015 -0.035 0.315 -0.090 -0.105 0.210 0.630 -0.300 0.300 0.078 -0.034 0.014 -0.034 0.235 -0.101 -0.101 0.235 0.706 -0.300 0.350 0.055 -0.023 0.013 -0.029 0.164 -0.109 -0.088 0.255 0.764 -0.300 0.400 0.034 -0.014 0.010 -0.022 0.101 -0.115 -0.067 0.269 0.806 -0.300 0.450 0.015 -0.007 0.005 -0.013 0.046 -0.119 -0.038 0.277 0.832 -0.300 0.500 -0.000 0.000 0.000 -0.000 0.000 -0.120 0.000 0.280 0.840 -0.300 0.550 -0.013 0.005 -0.007 0.015 -0.038 -0.119 0.046 0.277 0.832 -0.300 0.600 -0.022 0.010 -0.014 0.034 -0.067 -0.115 0.101 0.269 0.806 -0.300 0.650 -0.029 0.013 -0.023 0.055 -0.088 -0.109 0.164 0.255 0.764 -0.300 0.700 -0.034 0.014 -0.034 0.078 -0.101 -0.101 0.235 0.235 0.706 -0.300 0.750 -0.035 0.015 -0.045 0.105 -0.105 -0.090 0.315 0.210 0.630 -0.300 0.800 -0.034 0.014 -0.058 0.134 -0.101 -0.077 0.403 0.179 0.538 -0.300 0.850 -0.029 0.013 -0.071 0.167 -0.088 -0.061 0.500 0.143 0.428 -0.300 0.900 -0.022 0.010 -0.086 0.202 -0.067 -0.043 0.605 0.101 0.302 -0.300 0.950 -0.013 0.005 -0.103 0.239 -0.038 -0.023 0.718 0.053 0.160 -0.300 1.000 -0.000 0.000 -0.120 0.280 -0.000 -0.000 0.840 0.000 0.000 - -0.350 0.000 0.195 -0.105 0.000 -0.000 0.910 -0.000 -0.000 0.000 0.000 -0.350 0.050 0.167 -0.090 0.005 -0.009 0.778 -0.020 -0.041 0.037 0.173 -0.350 0.100 0.140 -0.076 0.008 -0.016 0.655 -0.038 -0.073 0.070 0.328 -0.350 0.150 0.116 -0.062 0.011 -0.020 0.541 -0.054 -0.096 0.099 0.464 -0.350 0.200 0.094 -0.050 0.013 -0.023 0.437 -0.067 -0.109 0.125 0.582 -0.350 0.250 0.073 -0.039 0.013 -0.024 0.341 -0.079 -0.114 0.146 0.682 -0.350 0.300 0.055 -0.029 0.013 -0.023 0.255 -0.088 -0.109 0.164 0.764 -0.350 0.350 0.038 -0.020 0.011 -0.020 0.177 -0.096 -0.096 0.177 0.828 -0.350 0.400 0.023 -0.013 0.008 -0.016 0.109 -0.101 -0.073 0.187 0.874 -0.350 0.450 0.011 -0.006 0.005 -0.009 0.050 -0.104 -0.041 0.193 0.901 -0.350 0.500 -0.000 0.000 0.000 -0.000 0.000 -0.105 0.000 0.195 0.910 -0.350 0.550 -0.009 0.005 -0.006 0.011 -0.041 -0.104 0.050 0.193 0.901 -0.350 0.600 -0.016 0.008 -0.013 0.023 -0.073 -0.101 0.109 0.187 0.874 -0.350 0.650 -0.020 0.011 -0.020 0.038 -0.096 -0.096 0.177 0.177 0.828 -0.350 0.700 -0.023 0.013 -0.029 0.055 -0.109 -0.088 0.255 0.164 0.764 -0.350 0.750 -0.024 0.013 -0.039 0.073 -0.114 -0.079 0.341 0.146 0.682 -0.350 0.800 -0.023 0.013 -0.050 0.094 -0.109 -0.067 0.437 0.125 0.582 -0.350 0.850 -0.020 0.011 -0.062 0.116 -0.096 -0.054 0.541 0.099 0.464 -0.350 0.900 -0.016 0.008 -0.076 0.140 -0.073 -0.038 0.655 0.070 0.328 -0.350 0.950 -0.009 0.005 -0.090 0.167 -0.041 -0.020 0.778 0.037 0.173 -0.350 1.000 -0.000 0.000 -0.105 0.195 -0.000 -0.000 0.910 0.000 0.000 - -0.400 0.000 0.120 -0.080 0.000 -0.000 0.960 -0.000 -0.000 0.000 0.000 -0.400 0.050 0.103 -0.068 0.004 -0.005 0.821 -0.015 -0.043 0.023 0.182 -0.400 0.100 0.086 -0.058 0.006 -0.010 0.691 -0.029 -0.077 0.043 0.346 -0.400 0.150 0.071 -0.048 0.008 -0.013 0.571 -0.041 -0.101 0.061 0.490 -0.400 0.200 0.058 -0.038 0.010 -0.014 0.461 -0.051 -0.115 0.077 0.614 -0.400 0.250 0.045 -0.030 0.010 -0.015 0.360 -0.060 -0.120 0.090 0.720 -0.400 0.300 0.034 -0.022 0.010 -0.014 0.269 -0.067 -0.115 0.101 0.806 -0.400 0.350 0.023 -0.016 0.008 -0.013 0.187 -0.073 -0.101 0.109 0.874 -0.400 0.400 0.014 -0.010 0.006 -0.010 0.115 -0.077 -0.077 0.115 0.922 -0.400 0.450 0.007 -0.004 0.004 -0.005 0.053 -0.079 -0.043 0.119 0.950 -0.400 0.500 -0.000 0.000 0.000 -0.000 0.000 -0.080 0.000 0.120 0.960 -0.400 0.550 -0.005 0.004 -0.004 0.007 -0.043 -0.079 0.053 0.119 0.950 -0.400 0.600 -0.010 0.006 -0.010 0.014 -0.077 -0.077 0.115 0.115 0.922 -0.400 0.650 -0.013 0.008 -0.016 0.023 -0.101 -0.073 0.187 0.109 0.874 -0.400 0.700 -0.014 0.010 -0.022 0.034 -0.115 -0.067 0.269 0.101 0.806 -0.400 0.750 -0.015 0.010 -0.030 0.045 -0.120 -0.060 0.360 0.090 0.720 -0.400 0.800 -0.014 0.010 -0.038 0.058 -0.115 -0.051 0.461 0.077 0.614 -0.400 0.850 -0.013 0.008 -0.048 0.071 -0.101 -0.041 0.571 0.061 0.490 -0.400 0.900 -0.010 0.006 -0.058 0.086 -0.077 -0.029 0.691 0.043 0.346 -0.400 0.950 -0.005 0.004 -0.068 0.103 -0.043 -0.015 0.821 0.023 0.182 -0.400 1.000 -0.000 0.000 -0.080 0.120 -0.000 -0.000 0.960 0.000 0.000 - -0.450 0.000 0.055 -0.045 0.000 -0.000 0.990 -0.000 -0.000 0.000 0.000 -0.450 0.050 0.047 -0.038 0.002 -0.002 0.846 -0.009 -0.045 0.010 0.188 -0.450 0.100 0.040 -0.032 0.004 -0.004 0.713 -0.016 -0.079 0.020 0.356 -0.450 0.150 0.033 -0.027 0.005 -0.006 0.589 -0.023 -0.104 0.028 0.505 -0.450 0.200 0.026 -0.022 0.005 -0.007 0.475 -0.029 -0.119 0.035 0.634 -0.450 0.250 0.021 -0.017 0.006 -0.007 0.371 -0.034 -0.124 0.041 0.743 -0.450 0.300 0.015 -0.013 0.005 -0.007 0.277 -0.038 -0.119 0.046 0.832 -0.450 0.350 0.011 -0.009 0.005 -0.006 0.193 -0.041 -0.104 0.050 0.901 -0.450 0.400 0.007 -0.005 0.004 -0.004 0.119 -0.043 -0.079 0.053 0.950 -0.450 0.450 0.003 -0.002 0.002 -0.002 0.054 -0.045 -0.045 0.054 0.980 -0.450 0.500 -0.000 0.000 0.000 -0.000 0.000 -0.045 0.000 0.055 0.990 -0.450 0.550 -0.002 0.002 -0.002 0.003 -0.045 -0.045 0.054 0.054 0.980 -0.450 0.600 -0.004 0.004 -0.005 0.007 -0.079 -0.043 0.119 0.053 0.950 -0.450 0.650 -0.006 0.005 -0.009 0.011 -0.104 -0.041 0.193 0.050 0.901 -0.450 0.700 -0.007 0.005 -0.013 0.015 -0.119 -0.038 0.277 0.046 0.832 -0.450 0.750 -0.007 0.006 -0.017 0.021 -0.124 -0.034 0.371 0.041 0.743 -0.450 0.800 -0.007 0.005 -0.022 0.026 -0.119 -0.029 0.475 0.035 0.634 -0.450 0.850 -0.006 0.005 -0.027 0.033 -0.104 -0.023 0.589 0.028 0.505 -0.450 0.900 -0.004 0.004 -0.032 0.040 -0.079 -0.016 0.713 0.020 0.356 -0.450 0.950 -0.002 0.002 -0.038 0.047 -0.045 -0.009 0.846 0.010 0.188 -0.450 1.000 -0.000 0.000 -0.045 0.055 -0.000 -0.000 0.990 0.000 0.000 - -0.500 0.000 -0.000 -0.000 0.000 0.000 1.000 0.000 -0.000 0.000 0.000 -0.500 0.050 -0.000 -0.000 0.000 0.000 0.855 0.000 -0.045 0.000 0.190 -0.500 0.100 -0.000 -0.000 0.000 0.000 0.720 0.000 -0.080 0.000 0.360 -0.500 0.150 -0.000 -0.000 0.000 0.000 0.595 0.000 -0.105 0.000 0.510 -0.500 0.200 -0.000 -0.000 0.000 0.000 0.480 0.000 -0.120 0.000 0.640 -0.500 0.250 -0.000 -0.000 0.000 0.000 0.375 0.000 -0.125 0.000 0.750 -0.500 0.300 -0.000 -0.000 0.000 0.000 0.280 0.000 -0.120 0.000 0.840 -0.500 0.350 -0.000 -0.000 0.000 0.000 0.195 0.000 -0.105 0.000 0.910 -0.500 0.400 -0.000 -0.000 0.000 0.000 0.120 0.000 -0.080 0.000 0.960 -0.500 0.450 -0.000 -0.000 0.000 0.000 0.055 0.000 -0.045 0.000 0.990 -0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 -0.500 0.550 0.000 0.000 -0.000 -0.000 -0.045 0.000 0.055 0.000 0.990 -0.500 0.600 0.000 0.000 -0.000 -0.000 -0.080 0.000 0.120 0.000 0.960 -0.500 0.650 0.000 0.000 -0.000 -0.000 -0.105 0.000 0.195 0.000 0.910 -0.500 0.700 0.000 0.000 -0.000 -0.000 -0.120 0.000 0.280 0.000 0.840 -0.500 0.750 0.000 0.000 -0.000 -0.000 -0.125 0.000 0.375 0.000 0.750 -0.500 0.800 0.000 0.000 -0.000 -0.000 -0.120 0.000 0.480 0.000 0.640 -0.500 0.850 0.000 0.000 -0.000 -0.000 -0.105 0.000 0.595 0.000 0.510 -0.500 0.900 0.000 0.000 -0.000 -0.000 -0.080 0.000 0.720 0.000 0.360 -0.500 0.950 0.000 0.000 -0.000 -0.000 -0.045 0.000 0.855 0.000 0.190 -0.500 1.000 0.000 0.000 -0.000 -0.000 -0.000 0.000 1.000 0.000 0.000 - -0.550 0.000 -0.045 0.055 -0.000 0.000 0.990 0.000 -0.000 -0.000 0.000 -0.550 0.050 -0.038 0.047 -0.002 0.002 0.846 0.010 -0.045 -0.009 0.188 -0.550 0.100 -0.032 0.040 -0.004 0.004 0.713 0.020 -0.079 -0.016 0.356 -0.550 0.150 -0.027 0.033 -0.006 0.005 0.589 0.028 -0.104 -0.023 0.505 -0.550 0.200 -0.022 0.026 -0.007 0.005 0.475 0.035 -0.119 -0.029 0.634 -0.550 0.250 -0.017 0.021 -0.007 0.006 0.371 0.041 -0.124 -0.034 0.742 -0.550 0.300 -0.013 0.015 -0.007 0.005 0.277 0.046 -0.119 -0.038 0.832 -0.550 0.350 -0.009 0.011 -0.006 0.005 0.193 0.050 -0.104 -0.041 0.901 -0.550 0.400 -0.005 0.007 -0.004 0.004 0.119 0.053 -0.079 -0.043 0.950 -0.550 0.450 -0.002 0.003 -0.002 0.002 0.054 0.054 -0.045 -0.045 0.980 -0.550 0.500 0.000 -0.000 -0.000 0.000 0.000 0.055 0.000 -0.045 0.990 -0.550 0.550 0.002 -0.002 0.003 -0.002 -0.045 0.054 0.054 -0.045 0.980 -0.550 0.600 0.004 -0.004 0.007 -0.005 -0.079 0.053 0.119 -0.043 0.950 -0.550 0.650 0.005 -0.006 0.011 -0.009 -0.104 0.050 0.193 -0.041 0.901 -0.550 0.700 0.005 -0.007 0.015 -0.013 -0.119 0.046 0.277 -0.038 0.832 -0.550 0.750 0.006 -0.007 0.021 -0.017 -0.124 0.041 0.371 -0.034 0.742 -0.550 0.800 0.005 -0.007 0.026 -0.022 -0.119 0.035 0.475 -0.029 0.634 -0.550 0.850 0.005 -0.006 0.033 -0.027 -0.104 0.028 0.589 -0.023 0.505 -0.550 0.900 0.004 -0.004 0.040 -0.032 -0.079 0.020 0.713 -0.016 0.356 -0.550 0.950 0.002 -0.002 0.047 -0.038 -0.045 0.010 0.846 -0.009 0.188 -0.550 1.000 0.000 -0.000 0.055 -0.045 -0.000 0.000 0.990 -0.000 0.000 - -0.600 0.000 -0.080 0.120 -0.000 0.000 0.960 0.000 -0.000 -0.000 0.000 -0.600 0.050 -0.068 0.103 -0.005 0.004 0.821 0.023 -0.043 -0.015 0.182 -0.600 0.100 -0.058 0.086 -0.010 0.006 0.691 0.043 -0.077 -0.029 0.346 -0.600 0.150 -0.048 0.071 -0.013 0.008 0.571 0.061 -0.101 -0.041 0.490 -0.600 0.200 -0.038 0.058 -0.014 0.010 0.461 0.077 -0.115 -0.051 0.614 -0.600 0.250 -0.030 0.045 -0.015 0.010 0.360 0.090 -0.120 -0.060 0.720 -0.600 0.300 -0.022 0.034 -0.014 0.010 0.269 0.101 -0.115 -0.067 0.806 -0.600 0.350 -0.016 0.023 -0.013 0.008 0.187 0.109 -0.101 -0.073 0.874 -0.600 0.400 -0.010 0.014 -0.010 0.006 0.115 0.115 -0.077 -0.077 0.922 -0.600 0.450 -0.004 0.007 -0.005 0.004 0.053 0.119 -0.043 -0.079 0.950 -0.600 0.500 0.000 -0.000 -0.000 0.000 0.000 0.120 0.000 -0.080 0.960 -0.600 0.550 0.004 -0.005 0.007 -0.004 -0.043 0.119 0.053 -0.079 0.950 -0.600 0.600 0.006 -0.010 0.014 -0.010 -0.077 0.115 0.115 -0.077 0.922 -0.600 0.650 0.008 -0.013 0.023 -0.016 -0.101 0.109 0.187 -0.073 0.874 -0.600 0.700 0.010 -0.014 0.034 -0.022 -0.115 0.101 0.269 -0.067 0.806 -0.600 0.750 0.010 -0.015 0.045 -0.030 -0.120 0.090 0.360 -0.060 0.720 -0.600 0.800 0.010 -0.014 0.058 -0.038 -0.115 0.077 0.461 -0.051 0.614 -0.600 0.850 0.008 -0.013 0.071 -0.048 -0.101 0.061 0.571 -0.041 0.490 -0.600 0.900 0.006 -0.010 0.086 -0.058 -0.077 0.043 0.691 -0.029 0.346 -0.600 0.950 0.004 -0.005 0.103 -0.068 -0.043 0.023 0.821 -0.015 0.182 -0.600 1.000 0.000 -0.000 0.120 -0.080 -0.000 0.000 0.960 -0.000 0.000 - -0.650 0.000 -0.105 0.195 -0.000 0.000 0.910 0.000 -0.000 -0.000 0.000 -0.650 0.050 -0.090 0.167 -0.009 0.005 0.778 0.037 -0.041 -0.020 0.173 -0.650 0.100 -0.076 0.140 -0.016 0.008 0.655 0.070 -0.073 -0.038 0.328 -0.650 0.150 -0.062 0.116 -0.020 0.011 0.541 0.099 -0.096 -0.054 0.464 -0.650 0.200 -0.050 0.094 -0.023 0.013 0.437 0.125 -0.109 -0.067 0.582 -0.650 0.250 -0.039 0.073 -0.024 0.013 0.341 0.146 -0.114 -0.079 0.682 -0.650 0.300 -0.029 0.055 -0.023 0.013 0.255 0.164 -0.109 -0.088 0.764 -0.650 0.350 -0.020 0.038 -0.020 0.011 0.177 0.177 -0.096 -0.096 0.828 -0.650 0.400 -0.013 0.023 -0.016 0.008 0.109 0.187 -0.073 -0.101 0.874 -0.650 0.450 -0.006 0.011 -0.009 0.005 0.050 0.193 -0.041 -0.104 0.901 -0.650 0.500 0.000 -0.000 -0.000 0.000 0.000 0.195 0.000 -0.105 0.910 -0.650 0.550 0.005 -0.009 0.011 -0.006 -0.041 0.193 0.050 -0.104 0.901 -0.650 0.600 0.008 -0.016 0.023 -0.013 -0.073 0.187 0.109 -0.101 0.874 -0.650 0.650 0.011 -0.020 0.038 -0.020 -0.096 0.177 0.177 -0.096 0.828 -0.650 0.700 0.013 -0.023 0.055 -0.029 -0.109 0.164 0.255 -0.088 0.764 -0.650 0.750 0.013 -0.024 0.073 -0.039 -0.114 0.146 0.341 -0.079 0.682 -0.650 0.800 0.013 -0.023 0.094 -0.050 -0.109 0.125 0.437 -0.067 0.582 -0.650 0.850 0.011 -0.020 0.116 -0.062 -0.096 0.099 0.541 -0.054 0.464 -0.650 0.900 0.008 -0.016 0.140 -0.076 -0.073 0.070 0.655 -0.038 0.328 -0.650 0.950 0.005 -0.009 0.167 -0.090 -0.041 0.037 0.778 -0.020 0.173 -0.650 1.000 0.000 -0.000 0.195 -0.105 -0.000 0.000 0.910 -0.000 0.000 - -0.700 0.000 -0.120 0.280 -0.000 0.000 0.840 0.000 -0.000 -0.000 0.000 -0.700 0.050 -0.103 0.239 -0.013 0.005 0.718 0.053 -0.038 -0.023 0.160 -0.700 0.100 -0.086 0.202 -0.022 0.010 0.605 0.101 -0.067 -0.043 0.302 -0.700 0.150 -0.071 0.167 -0.029 0.013 0.500 0.143 -0.088 -0.061 0.428 -0.700 0.200 -0.058 0.134 -0.034 0.014 0.403 0.179 -0.101 -0.077 0.538 -0.700 0.250 -0.045 0.105 -0.035 0.015 0.315 0.210 -0.105 -0.090 0.630 -0.700 0.300 -0.034 0.078 -0.034 0.014 0.235 0.235 -0.101 -0.101 0.706 -0.700 0.350 -0.023 0.055 -0.029 0.013 0.164 0.255 -0.088 -0.109 0.764 -0.700 0.400 -0.014 0.034 -0.022 0.010 0.101 0.269 -0.067 -0.115 0.806 -0.700 0.450 -0.007 0.015 -0.013 0.005 0.046 0.277 -0.038 -0.119 0.832 -0.700 0.500 0.000 -0.000 -0.000 0.000 0.000 0.280 0.000 -0.120 0.840 -0.700 0.550 0.005 -0.013 0.015 -0.007 -0.038 0.277 0.046 -0.119 0.832 -0.700 0.600 0.010 -0.022 0.034 -0.014 -0.067 0.269 0.101 -0.115 0.806 -0.700 0.650 0.013 -0.029 0.055 -0.023 -0.088 0.255 0.164 -0.109 0.764 -0.700 0.700 0.014 -0.034 0.078 -0.034 -0.101 0.235 0.235 -0.101 0.706 -0.700 0.750 0.015 -0.035 0.105 -0.045 -0.105 0.210 0.315 -0.090 0.630 -0.700 0.800 0.014 -0.034 0.134 -0.058 -0.101 0.179 0.403 -0.077 0.538 -0.700 0.850 0.013 -0.029 0.167 -0.071 -0.088 0.143 0.500 -0.061 0.428 -0.700 0.900 0.010 -0.022 0.202 -0.086 -0.067 0.101 0.605 -0.043 0.302 -0.700 0.950 0.005 -0.013 0.239 -0.103 -0.038 0.053 0.718 -0.023 0.160 -0.700 1.000 0.000 -0.000 0.280 -0.120 -0.000 0.000 0.840 -0.000 0.000 - -0.750 0.000 -0.125 0.375 -0.000 0.000 0.750 0.000 -0.000 -0.000 0.000 -0.750 0.050 -0.107 0.321 -0.017 0.006 0.641 0.071 -0.034 -0.024 0.143 -0.750 0.100 -0.090 0.270 -0.030 0.010 0.540 0.135 -0.060 -0.045 0.270 -0.750 0.150 -0.074 0.223 -0.039 0.013 0.446 0.191 -0.079 -0.064 0.383 -0.750 0.200 -0.060 0.180 -0.045 0.015 0.360 0.240 -0.090 -0.080 0.480 -0.750 0.250 -0.047 0.141 -0.047 0.016 0.281 0.281 -0.094 -0.094 0.562 -0.750 0.300 -0.035 0.105 -0.045 0.015 0.210 0.315 -0.090 -0.105 0.630 -0.750 0.350 -0.024 0.073 -0.039 0.013 0.146 0.341 -0.079 -0.114 0.682 -0.750 0.400 -0.015 0.045 -0.030 0.010 0.090 0.360 -0.060 -0.120 0.720 -0.750 0.450 -0.007 0.021 -0.017 0.006 0.041 0.371 -0.034 -0.124 0.743 -0.750 0.500 0.000 -0.000 -0.000 0.000 0.000 0.375 0.000 -0.125 0.750 -0.750 0.550 0.006 -0.017 0.021 -0.007 -0.034 0.371 0.041 -0.124 0.742 -0.750 0.600 0.010 -0.030 0.045 -0.015 -0.060 0.360 0.090 -0.120 0.720 -0.750 0.650 0.013 -0.039 0.073 -0.024 -0.079 0.341 0.146 -0.114 0.682 -0.750 0.700 0.015 -0.045 0.105 -0.035 -0.090 0.315 0.210 -0.105 0.630 -0.750 0.750 0.016 -0.047 0.141 -0.047 -0.094 0.281 0.281 -0.094 0.562 -0.750 0.800 0.015 -0.045 0.180 -0.060 -0.090 0.240 0.360 -0.080 0.480 -0.750 0.850 0.013 -0.039 0.223 -0.074 -0.079 0.191 0.446 -0.064 0.383 -0.750 0.900 0.010 -0.030 0.270 -0.090 -0.060 0.135 0.540 -0.045 0.270 -0.750 0.950 0.006 -0.017 0.321 -0.107 -0.034 0.071 0.641 -0.024 0.143 -0.750 1.000 0.000 -0.000 0.375 -0.125 -0.000 0.000 0.750 -0.000 0.000 - -0.800 0.000 -0.120 0.480 -0.000 0.000 0.640 0.000 -0.000 -0.000 0.000 -0.800 0.050 -0.103 0.410 -0.022 0.005 0.547 0.091 -0.029 -0.023 0.122 -0.800 0.100 -0.086 0.346 -0.038 0.010 0.461 0.173 -0.051 -0.043 0.230 -0.800 0.150 -0.071 0.286 -0.050 0.013 0.381 0.245 -0.067 -0.061 0.326 -0.800 0.200 -0.058 0.230 -0.058 0.014 0.307 0.307 -0.077 -0.077 0.410 -0.800 0.250 -0.045 0.180 -0.060 0.015 0.240 0.360 -0.080 -0.090 0.480 -0.800 0.300 -0.034 0.134 -0.058 0.014 0.179 0.403 -0.077 -0.101 0.538 -0.800 0.350 -0.023 0.094 -0.050 0.013 0.125 0.437 -0.067 -0.109 0.582 -0.800 0.400 -0.014 0.058 -0.038 0.010 0.077 0.461 -0.051 -0.115 0.614 -0.800 0.450 -0.007 0.026 -0.022 0.005 0.035 0.475 -0.029 -0.119 0.634 -0.800 0.500 0.000 -0.000 -0.000 0.000 0.000 0.480 0.000 -0.120 0.640 -0.800 0.550 0.005 -0.022 0.026 -0.007 -0.029 0.475 0.035 -0.119 0.634 -0.800 0.600 0.010 -0.038 0.058 -0.014 -0.051 0.461 0.077 -0.115 0.614 -0.800 0.650 0.013 -0.050 0.094 -0.023 -0.067 0.437 0.125 -0.109 0.582 -0.800 0.700 0.014 -0.058 0.134 -0.034 -0.077 0.403 0.179 -0.101 0.538 -0.800 0.750 0.015 -0.060 0.180 -0.045 -0.080 0.360 0.240 -0.090 0.480 -0.800 0.800 0.014 -0.058 0.230 -0.058 -0.077 0.307 0.307 -0.077 0.410 -0.800 0.850 0.013 -0.050 0.286 -0.071 -0.067 0.245 0.381 -0.061 0.326 -0.800 0.900 0.010 -0.038 0.346 -0.086 -0.051 0.173 0.461 -0.043 0.230 -0.800 0.950 0.005 -0.022 0.410 -0.103 -0.029 0.091 0.547 -0.023 0.122 -0.800 1.000 0.000 -0.000 0.480 -0.120 -0.000 0.000 0.640 -0.000 0.000 - -0.850 0.000 -0.105 0.595 -0.000 0.000 0.510 0.000 -0.000 -0.000 0.000 -0.850 0.050 -0.090 0.509 -0.027 0.005 0.436 0.113 -0.023 -0.020 0.097 -0.850 0.100 -0.076 0.428 -0.048 0.008 0.367 0.214 -0.041 -0.038 0.184 -0.850 0.150 -0.062 0.354 -0.062 0.011 0.303 0.303 -0.054 -0.054 0.260 -0.850 0.200 -0.050 0.286 -0.071 0.013 0.245 0.381 -0.061 -0.067 0.326 -0.850 0.250 -0.039 0.223 -0.074 0.013 0.191 0.446 -0.064 -0.079 0.383 -0.850 0.300 -0.029 0.167 -0.071 0.013 0.143 0.500 -0.061 -0.088 0.428 -0.850 0.350 -0.020 0.116 -0.062 0.011 0.099 0.541 -0.054 -0.096 0.464 -0.850 0.400 -0.013 0.071 -0.048 0.008 0.061 0.571 -0.041 -0.101 0.490 -0.850 0.450 -0.006 0.033 -0.027 0.005 0.028 0.589 -0.023 -0.104 0.505 -0.850 0.500 0.000 -0.000 -0.000 0.000 0.000 0.595 0.000 -0.105 0.510 -0.850 0.550 0.005 -0.027 0.033 -0.006 -0.023 0.589 0.028 -0.104 0.505 -0.850 0.600 0.008 -0.048 0.071 -0.013 -0.041 0.571 0.061 -0.101 0.490 -0.850 0.650 0.011 -0.062 0.116 -0.020 -0.054 0.541 0.099 -0.096 0.464 -0.850 0.700 0.013 -0.071 0.167 -0.029 -0.061 0.500 0.143 -0.088 0.428 -0.850 0.750 0.013 -0.074 0.223 -0.039 -0.064 0.446 0.191 -0.079 0.383 -0.850 0.800 0.013 -0.071 0.286 -0.050 -0.061 0.381 0.245 -0.067 0.326 -0.850 0.850 0.011 -0.062 0.354 -0.062 -0.054 0.303 0.303 -0.054 0.260 -0.850 0.900 0.008 -0.048 0.428 -0.076 -0.041 0.214 0.367 -0.038 0.184 -0.850 0.950 0.005 -0.027 0.509 -0.090 -0.023 0.113 0.436 -0.020 0.097 -0.850 1.000 0.000 -0.000 0.595 -0.105 -0.000 0.000 0.510 -0.000 0.000 - -0.900 0.000 -0.080 0.720 -0.000 0.000 0.360 0.000 -0.000 -0.000 0.000 -0.900 0.050 -0.068 0.616 -0.032 0.004 0.308 0.137 -0.016 -0.015 0.068 -0.900 0.100 -0.058 0.518 -0.058 0.006 0.259 0.259 -0.029 -0.029 0.130 -0.900 0.150 -0.048 0.428 -0.076 0.008 0.214 0.367 -0.038 -0.041 0.184 -0.900 0.200 -0.038 0.346 -0.086 0.010 0.173 0.461 -0.043 -0.051 0.230 -0.900 0.250 -0.030 0.270 -0.090 0.010 0.135 0.540 -0.045 -0.060 0.270 -0.900 0.300 -0.022 0.202 -0.086 0.010 0.101 0.605 -0.043 -0.067 0.302 -0.900 0.350 -0.016 0.140 -0.076 0.008 0.070 0.655 -0.038 -0.073 0.328 -0.900 0.400 -0.010 0.086 -0.058 0.006 0.043 0.691 -0.029 -0.077 0.346 -0.900 0.450 -0.004 0.040 -0.032 0.004 0.020 0.713 -0.016 -0.079 0.356 -0.900 0.500 0.000 -0.000 -0.000 0.000 0.000 0.720 0.000 -0.080 0.360 -0.900 0.550 0.004 -0.032 0.040 -0.004 -0.016 0.713 0.020 -0.079 0.356 -0.900 0.600 0.006 -0.058 0.086 -0.010 -0.029 0.691 0.043 -0.077 0.346 -0.900 0.650 0.008 -0.076 0.140 -0.016 -0.038 0.655 0.070 -0.073 0.328 -0.900 0.700 0.010 -0.086 0.202 -0.022 -0.043 0.605 0.101 -0.067 0.302 -0.900 0.750 0.010 -0.090 0.270 -0.030 -0.045 0.540 0.135 -0.060 0.270 -0.900 0.800 0.010 -0.086 0.346 -0.038 -0.043 0.461 0.173 -0.051 0.230 -0.900 0.850 0.008 -0.076 0.428 -0.048 -0.038 0.367 0.214 -0.041 0.184 -0.900 0.900 0.006 -0.058 0.518 -0.058 -0.029 0.259 0.259 -0.029 0.130 -0.900 0.950 0.004 -0.032 0.616 -0.068 -0.016 0.137 0.308 -0.015 0.068 -0.900 1.000 0.000 -0.000 0.720 -0.080 -0.000 0.000 0.360 -0.000 0.000 - -0.950 0.000 -0.045 0.855 -0.000 0.000 0.190 0.000 -0.000 -0.000 0.000 -0.950 0.050 -0.038 0.731 -0.038 0.002 0.162 0.162 -0.009 -0.009 0.036 -0.950 0.100 -0.032 0.616 -0.068 0.004 0.137 0.308 -0.015 -0.016 0.068 -0.950 0.150 -0.027 0.509 -0.090 0.005 0.113 0.436 -0.020 -0.023 0.097 -0.950 0.200 -0.022 0.410 -0.103 0.005 0.091 0.547 -0.023 -0.029 0.122 -0.950 0.250 -0.017 0.321 -0.107 0.006 0.071 0.641 -0.024 -0.034 0.143 -0.950 0.300 -0.013 0.239 -0.103 0.005 0.053 0.718 -0.023 -0.038 0.160 -0.950 0.350 -0.009 0.167 -0.090 0.005 0.037 0.778 -0.020 -0.041 0.173 -0.950 0.400 -0.005 0.103 -0.068 0.004 0.023 0.821 -0.015 -0.043 0.182 -0.950 0.450 -0.002 0.047 -0.038 0.002 0.010 0.846 -0.009 -0.045 0.188 -0.950 0.500 0.000 -0.000 -0.000 0.000 0.000 0.855 0.000 -0.045 0.190 -0.950 0.550 0.002 -0.038 0.047 -0.002 -0.009 0.846 0.010 -0.045 0.188 -0.950 0.600 0.004 -0.068 0.103 -0.005 -0.015 0.821 0.023 -0.043 0.182 -0.950 0.650 0.005 -0.090 0.167 -0.009 -0.020 0.778 0.037 -0.041 0.173 -0.950 0.700 0.005 -0.103 0.239 -0.013 -0.023 0.718 0.053 -0.038 0.160 -0.950 0.750 0.006 -0.107 0.321 -0.017 -0.024 0.641 0.071 -0.034 0.143 -0.950 0.800 0.005 -0.103 0.410 -0.022 -0.023 0.547 0.091 -0.029 0.122 -0.950 0.850 0.005 -0.090 0.509 -0.027 -0.020 0.436 0.113 -0.023 0.097 -0.950 0.900 0.004 -0.068 0.616 -0.032 -0.015 0.308 0.137 -0.016 0.068 -0.950 0.950 0.002 -0.038 0.731 -0.038 -0.009 0.162 0.162 -0.009 0.036 -0.950 1.000 0.000 -0.000 0.855 -0.045 -0.000 0.000 0.190 -0.000 0.000 - -1.000 0.000 -0.000 1.000 -0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 -1.000 0.050 -0.000 0.855 -0.045 0.000 0.000 0.190 -0.000 -0.000 0.000 -1.000 0.100 -0.000 0.720 -0.080 0.000 0.000 0.360 -0.000 -0.000 0.000 -1.000 0.150 -0.000 0.595 -0.105 0.000 0.000 0.510 -0.000 -0.000 0.000 -1.000 0.200 -0.000 0.480 -0.120 0.000 0.000 0.640 -0.000 -0.000 0.000 -1.000 0.250 -0.000 0.375 -0.125 0.000 0.000 0.750 -0.000 -0.000 0.000 -1.000 0.300 -0.000 0.280 -0.120 0.000 0.000 0.840 -0.000 -0.000 0.000 -1.000 0.350 -0.000 0.195 -0.105 0.000 0.000 0.910 -0.000 -0.000 0.000 -1.000 0.400 -0.000 0.120 -0.080 0.000 0.000 0.960 -0.000 -0.000 0.000 -1.000 0.450 -0.000 0.055 -0.045 0.000 0.000 0.990 -0.000 -0.000 0.000 -1.000 0.500 0.000 -0.000 -0.000 0.000 0.000 1.000 0.000 -0.000 0.000 -1.000 0.550 0.000 -0.045 0.055 -0.000 -0.000 0.990 0.000 -0.000 0.000 -1.000 0.600 0.000 -0.080 0.120 -0.000 -0.000 0.960 0.000 -0.000 0.000 -1.000 0.650 0.000 -0.105 0.195 -0.000 -0.000 0.910 0.000 -0.000 0.000 -1.000 0.700 0.000 -0.120 0.280 -0.000 -0.000 0.840 0.000 -0.000 0.000 -1.000 0.750 0.000 -0.125 0.375 -0.000 -0.000 0.750 0.000 -0.000 0.000 -1.000 0.800 0.000 -0.120 0.480 -0.000 -0.000 0.640 0.000 -0.000 0.000 -1.000 0.850 0.000 -0.105 0.595 -0.000 -0.000 0.510 0.000 -0.000 0.000 -1.000 0.900 0.000 -0.080 0.720 -0.000 -0.000 0.360 0.000 -0.000 0.000 -1.000 0.950 0.000 -0.045 0.855 -0.000 -0.000 0.190 0.000 -0.000 0.000 -1.000 1.000 0.000 -0.000 1.000 -0.000 -0.000 0.000 0.000 -0.000 0.000 - diff --git a/tests/fe/Q3.check b/tests/fe/Q3.check deleted file mode 100644 index 78a4e7eb43..0000000000 --- a/tests/fe/Q3.check +++ /dev/null @@ -1,462 +0,0 @@ -0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.050 0.747 0.000 0.000 0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.395 -0.182 0.000 0.000 0.000 0.000 -0.000 0.100 0.535 0.000 0.000 0.060 0.000 0.000 0.000 0.000 0.000 0.000 0.689 -0.284 0.000 0.000 0.000 0.000 -0.000 0.150 0.362 0.000 0.000 0.064 0.000 0.000 0.000 0.000 0.000 0.000 0.889 -0.316 0.000 0.000 0.000 0.000 -0.000 0.200 0.224 0.000 0.000 0.056 0.000 0.000 0.000 0.000 0.000 0.000 1.008 -0.288 0.000 0.000 0.000 0.000 -0.000 0.250 0.117 0.000 0.000 0.039 0.000 0.000 0.000 0.000 0.000 0.000 1.055 -0.211 0.000 0.000 0.000 0.000 -0.000 0.300 0.039 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.000 0.000 1.040 -0.095 0.000 0.000 0.000 0.000 -0.000 0.350 -0.015 0.000 0.000 -0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.973 0.051 0.000 0.000 0.000 0.000 -0.000 0.400 -0.048 0.000 0.000 -0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.864 0.216 0.000 0.000 0.000 0.000 -0.000 0.450 -0.063 0.000 0.000 -0.051 0.000 0.000 0.000 0.000 0.000 0.000 0.724 0.390 0.000 0.000 0.000 0.000 -0.000 0.500 -0.062 0.000 0.000 -0.062 0.000 0.000 0.000 0.000 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 -0.000 0.550 -0.051 0.000 0.000 -0.063 0.000 0.000 0.000 0.000 0.000 0.000 0.390 0.724 0.000 0.000 0.000 0.000 -0.000 0.600 -0.032 0.000 0.000 -0.048 0.000 0.000 0.000 0.000 0.000 0.000 0.216 0.864 0.000 0.000 0.000 0.000 -0.000 0.650 -0.008 0.000 0.000 -0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.051 0.973 0.000 0.000 0.000 0.000 -0.000 0.700 0.016 0.000 0.000 0.038 0.000 0.000 0.000 0.000 0.000 0.000 -0.094 1.039 0.000 0.000 0.000 0.000 -0.000 0.750 0.039 0.000 0.000 0.117 0.000 0.000 0.000 0.000 0.000 0.000 -0.211 1.055 0.000 0.000 0.000 0.000 -0.000 0.800 0.056 0.000 0.000 0.224 0.000 0.000 0.000 0.000 0.000 0.000 -0.288 1.008 0.000 0.000 0.000 0.000 -0.000 0.850 0.064 0.000 0.000 0.362 0.000 0.000 0.000 0.000 0.000 0.000 -0.316 0.889 0.000 0.000 0.000 0.000 -0.000 0.900 0.059 0.000 0.000 0.536 0.000 0.000 0.000 0.000 0.000 0.000 -0.283 0.688 0.000 0.000 0.000 0.000 -0.000 0.950 0.039 0.000 0.000 0.747 0.000 0.000 0.000 0.000 0.000 0.000 -0.182 0.395 0.000 0.000 0.000 0.000 -0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 - -0.050 0.000 0.747 0.039 0.000 0.000 0.395 -0.182 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.050 0.050 0.558 0.029 0.002 0.029 0.295 -0.136 0.016 -0.007 0.016 -0.007 0.295 -0.136 0.156 -0.072 0.033 -0.072 -0.050 0.100 0.400 0.021 0.002 0.044 0.212 -0.097 0.027 -0.011 0.024 -0.011 0.514 -0.212 0.272 -0.125 0.052 -0.112 -0.050 0.150 0.271 0.014 0.003 0.048 0.143 -0.066 0.035 -0.012 0.025 -0.012 0.664 -0.236 0.352 -0.162 0.057 -0.125 -0.050 0.200 0.167 0.009 0.002 0.042 0.089 -0.041 0.040 -0.011 0.022 -0.010 0.753 -0.215 0.399 -0.183 0.052 -0.114 -0.050 0.250 0.088 0.005 0.002 0.029 0.046 -0.021 0.041 -0.008 0.015 -0.007 0.788 -0.158 0.417 -0.192 0.038 -0.083 -0.050 0.300 0.029 0.002 0.001 0.012 0.015 -0.007 0.041 -0.004 0.007 -0.003 0.776 -0.071 0.411 -0.189 0.017 -0.037 -0.050 0.350 -0.012 -0.001 -0.000 -0.006 -0.006 0.003 0.038 0.002 -0.003 0.002 0.726 0.038 0.385 -0.177 -0.009 0.020 -0.050 0.400 -0.036 -0.002 -0.001 -0.024 -0.019 0.009 0.034 0.008 -0.013 0.006 0.645 0.161 0.342 -0.157 -0.039 0.085 -0.050 0.450 -0.047 -0.002 -0.002 -0.038 -0.025 0.011 0.028 0.015 -0.020 0.009 0.541 0.291 0.286 -0.132 -0.071 0.154 -0.050 0.500 -0.047 -0.002 -0.002 -0.047 -0.025 0.011 0.022 0.022 -0.025 0.011 0.420 0.420 0.222 -0.102 -0.102 0.222 -0.050 0.550 -0.038 -0.002 -0.002 -0.047 -0.020 0.009 0.015 0.028 -0.025 0.011 0.291 0.541 0.154 -0.071 -0.132 0.286 -0.050 0.600 -0.024 -0.001 -0.002 -0.036 -0.013 0.006 0.008 0.034 -0.019 0.009 0.161 0.645 0.085 -0.039 -0.157 0.342 -0.050 0.650 -0.006 -0.000 -0.001 -0.012 -0.003 0.002 0.002 0.038 -0.006 0.003 0.038 0.726 0.020 -0.009 -0.177 0.385 -0.050 0.700 0.012 0.001 0.002 0.029 0.007 -0.003 -0.004 0.041 0.015 -0.007 -0.071 0.776 -0.037 0.017 -0.189 0.411 -0.050 0.750 0.029 0.002 0.005 0.088 0.015 -0.007 -0.008 0.041 0.046 -0.021 -0.158 0.788 -0.083 0.038 -0.192 0.417 -0.050 0.800 0.042 0.002 0.009 0.167 0.022 -0.010 -0.011 0.040 0.089 -0.041 -0.215 0.753 -0.114 0.052 -0.183 0.399 -0.050 0.850 0.048 0.003 0.014 0.271 0.025 -0.012 -0.012 0.035 0.143 -0.066 -0.236 0.664 -0.125 0.057 -0.162 0.352 -0.050 0.900 0.044 0.002 0.021 0.400 0.024 -0.011 -0.011 0.027 0.212 -0.097 -0.212 0.514 -0.112 0.052 -0.125 0.272 -0.050 0.950 0.029 0.002 0.029 0.558 0.016 -0.007 -0.007 0.016 0.295 -0.136 -0.136 0.295 -0.072 0.033 -0.072 0.156 -0.050 1.000 0.000 0.000 0.039 0.747 -0.000 0.000 -0.000 0.000 0.395 -0.182 0.000 0.000 0.000 0.000 -0.000 -0.000 - -0.100 0.000 0.535 0.060 0.000 0.000 0.689 -0.284 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.100 0.050 0.400 0.044 0.002 0.021 0.514 -0.212 0.024 -0.011 0.027 -0.011 0.212 -0.097 0.272 -0.112 0.052 -0.125 -0.100 0.100 0.287 0.032 0.004 0.032 0.369 -0.152 0.041 -0.017 0.041 -0.017 0.369 -0.152 0.474 -0.195 0.080 -0.195 -0.100 0.150 0.194 0.022 0.004 0.034 0.249 -0.103 0.053 -0.019 0.044 -0.018 0.476 -0.169 0.612 -0.252 0.089 -0.217 -0.100 0.200 0.120 0.013 0.003 0.030 0.154 -0.064 0.060 -0.017 0.039 -0.016 0.540 -0.154 0.694 -0.286 0.082 -0.198 -0.100 0.250 0.063 0.007 0.002 0.021 0.081 -0.033 0.063 -0.013 0.027 -0.011 0.565 -0.113 0.726 -0.299 0.060 -0.145 -0.100 0.300 0.021 0.002 0.001 0.009 0.027 -0.011 0.062 -0.006 0.011 -0.005 0.557 -0.051 0.716 -0.295 0.027 -0.065 -0.100 0.350 -0.008 -0.001 -0.000 -0.004 -0.011 0.004 0.058 0.003 -0.006 0.002 0.521 0.027 0.670 -0.276 -0.015 0.035 -0.100 0.400 -0.026 -0.003 -0.002 -0.017 -0.033 0.014 0.051 0.013 -0.022 0.009 0.463 0.116 0.595 -0.245 -0.061 0.149 -0.100 0.450 -0.034 -0.004 -0.003 -0.027 -0.043 0.018 0.043 0.023 -0.035 0.015 0.388 0.209 0.498 -0.205 -0.111 0.268 -0.100 0.500 -0.033 -0.004 -0.004 -0.033 -0.043 0.018 0.033 0.033 -0.043 0.018 0.301 0.301 0.387 -0.159 -0.159 0.387 -0.100 0.550 -0.027 -0.003 -0.004 -0.034 -0.035 0.015 0.023 0.043 -0.043 0.018 0.209 0.388 0.268 -0.111 -0.205 0.498 -0.100 0.600 -0.017 -0.002 -0.003 -0.026 -0.022 0.009 0.013 0.051 -0.033 0.014 0.116 0.463 0.149 -0.061 -0.245 0.595 -0.100 0.650 -0.004 -0.000 -0.001 -0.008 -0.006 0.002 0.003 0.058 -0.011 0.004 0.027 0.521 0.035 -0.015 -0.276 0.670 -0.100 0.700 0.009 0.001 0.002 0.021 0.011 -0.005 -0.006 0.062 0.027 -0.011 -0.051 0.557 -0.065 0.027 -0.295 0.716 -0.100 0.750 0.021 0.002 0.007 0.063 0.027 -0.011 -0.013 0.063 0.081 -0.033 -0.113 0.565 -0.145 0.060 -0.299 0.726 -0.100 0.800 0.030 0.003 0.013 0.120 0.039 -0.016 -0.017 0.060 0.154 -0.064 -0.154 0.540 -0.198 0.082 -0.286 0.694 -0.100 0.850 0.034 0.004 0.022 0.194 0.044 -0.018 -0.019 0.053 0.249 -0.103 -0.169 0.476 -0.217 0.089 -0.252 0.612 -0.100 0.900 0.032 0.004 0.032 0.287 0.041 -0.017 -0.017 0.041 0.369 -0.152 -0.152 0.369 -0.195 0.080 -0.195 0.474 -0.100 0.950 0.021 0.002 0.044 0.400 0.027 -0.011 -0.011 0.024 0.514 -0.212 -0.097 0.212 -0.125 0.052 -0.112 0.272 -0.100 1.000 -0.000 0.000 0.060 0.535 0.000 0.000 -0.000 0.000 0.689 -0.284 -0.000 -0.000 0.000 0.000 -0.000 0.000 - -0.150 0.000 0.362 0.064 0.000 0.000 0.889 -0.316 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.150 0.050 0.271 0.048 0.003 0.014 0.664 -0.236 0.025 -0.012 0.035 -0.012 0.143 -0.066 0.352 -0.125 0.057 -0.162 -0.150 0.100 0.194 0.034 0.004 0.022 0.476 -0.169 0.044 -0.018 0.053 -0.019 0.249 -0.103 0.612 -0.217 0.089 -0.252 -0.150 0.150 0.131 0.023 0.004 0.023 0.322 -0.114 0.057 -0.020 0.057 -0.020 0.322 -0.114 0.791 -0.281 0.100 -0.281 -0.150 0.200 0.081 0.014 0.004 0.020 0.199 -0.071 0.064 -0.018 0.050 -0.018 0.365 -0.104 0.896 -0.318 0.091 -0.256 -0.150 0.250 0.042 0.007 0.002 0.014 0.104 -0.037 0.067 -0.013 0.035 -0.012 0.382 -0.076 0.938 -0.333 0.067 -0.188 -0.150 0.300 0.014 0.002 0.001 0.006 0.034 -0.012 0.066 -0.006 0.015 -0.005 0.377 -0.034 0.924 -0.328 0.030 -0.084 -0.150 0.350 -0.006 -0.001 -0.001 -0.003 -0.014 0.005 0.062 0.003 -0.007 0.003 0.352 0.019 0.865 -0.307 -0.016 0.046 -0.150 0.400 -0.017 -0.003 -0.002 -0.012 -0.043 0.015 0.055 0.014 -0.028 0.010 0.313 0.078 0.768 -0.273 -0.068 0.192 -0.150 0.450 -0.023 -0.004 -0.003 -0.019 -0.056 0.020 0.046 0.025 -0.046 0.016 0.262 0.141 0.644 -0.228 -0.123 0.347 -0.150 0.500 -0.023 -0.004 -0.004 -0.023 -0.056 0.020 0.036 0.036 -0.056 0.020 0.204 0.204 0.500 -0.178 -0.178 0.500 -0.150 0.550 -0.019 -0.003 -0.004 -0.023 -0.046 0.016 0.025 0.046 -0.056 0.020 0.141 0.262 0.347 -0.123 -0.228 0.644 -0.150 0.600 -0.012 -0.002 -0.003 -0.017 -0.028 0.010 0.014 0.055 -0.043 0.015 0.078 0.313 0.192 -0.068 -0.273 0.768 -0.150 0.650 -0.003 -0.001 -0.001 -0.006 -0.007 0.003 0.003 0.062 -0.014 0.005 0.019 0.352 0.046 -0.016 -0.307 0.865 -0.150 0.700 0.006 0.001 0.002 0.014 0.015 -0.005 -0.006 0.066 0.034 -0.012 -0.034 0.377 -0.084 0.030 -0.328 0.924 -0.150 0.750 0.014 0.002 0.007 0.042 0.035 -0.012 -0.013 0.067 0.104 -0.037 -0.076 0.382 -0.188 0.067 -0.333 0.938 -0.150 0.800 0.020 0.004 0.014 0.081 0.050 -0.018 -0.018 0.064 0.199 -0.071 -0.104 0.365 -0.256 0.091 -0.318 0.896 -0.150 0.850 0.023 0.004 0.023 0.131 0.057 -0.020 -0.020 0.057 0.322 -0.114 -0.114 0.322 -0.281 0.100 -0.281 0.791 -0.150 0.900 0.022 0.004 0.034 0.194 0.053 -0.019 -0.018 0.044 0.476 -0.169 -0.103 0.249 -0.252 0.089 -0.217 0.612 -0.150 0.950 0.014 0.003 0.048 0.271 0.035 -0.012 -0.012 0.025 0.664 -0.236 -0.066 0.143 -0.162 0.057 -0.125 0.352 -0.150 1.000 0.000 0.000 0.064 0.362 -0.000 0.000 -0.000 -0.000 0.889 -0.316 -0.000 0.000 -0.000 0.000 0.000 0.000 - -0.200 0.000 0.224 0.056 0.000 0.000 1.008 -0.288 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.200 0.050 0.167 0.042 0.002 0.009 0.753 -0.215 0.022 -0.010 0.040 -0.011 0.089 -0.041 0.399 -0.114 0.052 -0.183 -0.200 0.100 0.120 0.030 0.003 0.013 0.540 -0.154 0.039 -0.016 0.060 -0.017 0.154 -0.064 0.694 -0.198 0.082 -0.286 -0.200 0.150 0.081 0.020 0.004 0.014 0.365 -0.104 0.050 -0.018 0.064 -0.018 0.199 -0.071 0.896 -0.256 0.091 -0.318 -0.200 0.200 0.050 0.013 0.003 0.013 0.226 -0.065 0.056 -0.016 0.056 -0.016 0.226 -0.065 1.016 -0.290 0.083 -0.290 -0.200 0.250 0.026 0.007 0.002 0.009 0.118 -0.034 0.059 -0.012 0.039 -0.011 0.236 -0.047 1.063 -0.304 0.061 -0.213 -0.200 0.300 0.009 0.002 0.001 0.004 0.039 -0.011 0.058 -0.005 0.017 -0.005 0.233 -0.021 1.048 -0.299 0.027 -0.095 -0.200 0.350 -0.003 -0.001 -0.000 -0.002 -0.016 0.004 0.054 0.003 -0.008 0.002 0.218 0.011 0.980 -0.280 -0.015 0.052 -0.200 0.400 -0.011 -0.003 -0.002 -0.007 -0.048 0.014 0.048 0.012 -0.032 0.009 0.194 0.048 0.871 -0.249 -0.062 0.218 -0.200 0.450 -0.014 -0.004 -0.003 -0.011 -0.063 0.018 0.041 0.022 -0.052 0.015 0.162 0.087 0.730 -0.208 -0.112 0.393 -0.200 0.500 -0.014 -0.003 -0.003 -0.014 -0.063 0.018 0.032 0.032 -0.063 0.018 0.126 0.126 0.567 -0.162 -0.162 0.567 -0.200 0.550 -0.011 -0.003 -0.004 -0.014 -0.052 0.015 0.022 0.041 -0.063 0.018 0.087 0.162 0.393 -0.112 -0.208 0.730 -0.200 0.600 -0.007 -0.002 -0.003 -0.011 -0.032 0.009 0.012 0.048 -0.048 0.014 0.048 0.194 0.218 -0.062 -0.249 0.871 -0.200 0.650 -0.002 -0.000 -0.001 -0.003 -0.008 0.002 0.003 0.054 -0.016 0.004 0.011 0.218 0.052 -0.015 -0.280 0.980 -0.200 0.700 0.004 0.001 0.002 0.009 0.017 -0.005 -0.005 0.058 0.039 -0.011 -0.021 0.233 -0.095 0.027 -0.299 1.048 -0.200 0.750 0.009 0.002 0.007 0.026 0.039 -0.011 -0.012 0.059 0.118 -0.034 -0.047 0.236 -0.213 0.061 -0.304 1.063 -0.200 0.800 0.013 0.003 0.013 0.050 0.056 -0.016 -0.016 0.056 0.226 -0.065 -0.065 0.226 -0.290 0.083 -0.290 1.016 -0.200 0.850 0.014 0.004 0.020 0.081 0.064 -0.018 -0.018 0.050 0.365 -0.104 -0.071 0.199 -0.318 0.091 -0.256 0.896 -0.200 0.900 0.013 0.003 0.030 0.120 0.060 -0.017 -0.016 0.039 0.540 -0.154 -0.064 0.154 -0.286 0.082 -0.198 0.694 -0.200 0.950 0.009 0.002 0.042 0.167 0.040 -0.011 -0.010 0.022 0.753 -0.215 -0.041 0.089 -0.183 0.052 -0.114 0.399 -0.200 1.000 0.000 -0.000 0.056 0.224 0.000 0.000 -0.000 0.000 1.008 -0.288 0.000 0.000 0.000 0.000 0.000 0.000 - -0.250 0.000 0.117 0.039 0.000 0.000 1.055 -0.211 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.250 0.050 0.088 0.029 0.002 0.005 0.788 -0.158 0.015 -0.007 0.041 -0.008 0.046 -0.021 0.417 -0.083 0.038 -0.192 -0.250 0.100 0.063 0.021 0.002 0.007 0.565 -0.113 0.027 -0.011 0.063 -0.013 0.081 -0.033 0.726 -0.145 0.060 -0.299 -0.250 0.150 0.042 0.014 0.002 0.007 0.382 -0.076 0.035 -0.012 0.067 -0.013 0.104 -0.037 0.938 -0.188 0.067 -0.333 -0.250 0.200 0.026 0.009 0.002 0.007 0.236 -0.047 0.039 -0.011 0.059 -0.012 0.118 -0.034 1.063 -0.213 0.061 -0.304 -0.250 0.250 0.014 0.005 0.002 0.005 0.124 -0.025 0.041 -0.008 0.041 -0.008 0.124 -0.025 1.112 -0.222 0.044 -0.222 -0.250 0.300 0.005 0.002 0.001 0.002 0.041 -0.008 0.041 -0.004 0.017 -0.003 0.122 -0.011 1.096 -0.219 0.020 -0.100 -0.250 0.350 -0.002 -0.001 -0.000 -0.001 -0.016 0.003 0.038 0.002 -0.009 0.002 0.114 0.006 1.026 -0.205 -0.011 0.054 -0.250 0.400 -0.006 -0.002 -0.001 -0.004 -0.051 0.010 0.034 0.008 -0.034 0.007 0.101 0.025 0.911 -0.182 -0.046 0.228 -0.250 0.450 -0.007 -0.002 -0.002 -0.006 -0.066 0.013 0.028 0.015 -0.054 0.011 0.085 0.046 0.764 -0.153 -0.082 0.411 -0.250 0.500 -0.007 -0.002 -0.002 -0.007 -0.066 0.013 0.022 0.022 -0.066 0.013 0.066 0.066 0.593 -0.119 -0.119 0.593 -0.250 0.550 -0.006 -0.002 -0.002 -0.007 -0.054 0.011 0.015 0.028 -0.066 0.013 0.046 0.085 0.411 -0.082 -0.153 0.764 -0.250 0.600 -0.004 -0.001 -0.002 -0.006 -0.034 0.007 0.008 0.034 -0.051 0.010 0.025 0.101 0.228 -0.046 -0.182 0.911 -0.250 0.650 -0.001 -0.000 -0.001 -0.002 -0.009 0.002 0.002 0.038 -0.016 0.003 0.006 0.114 0.054 -0.011 -0.205 1.026 -0.250 0.700 0.002 0.001 0.002 0.005 0.017 -0.003 -0.004 0.041 0.041 -0.008 -0.011 0.122 -0.100 0.020 -0.219 1.096 -0.250 0.750 0.005 0.002 0.005 0.014 0.041 -0.008 -0.008 0.041 0.124 -0.025 -0.025 0.124 -0.222 0.044 -0.222 1.112 -0.250 0.800 0.007 0.002 0.009 0.026 0.059 -0.012 -0.011 0.039 0.236 -0.047 -0.034 0.118 -0.304 0.061 -0.213 1.063 -0.250 0.850 0.007 0.002 0.014 0.042 0.067 -0.013 -0.012 0.035 0.382 -0.076 -0.037 0.104 -0.333 0.067 -0.188 0.938 -0.250 0.900 0.007 0.002 0.021 0.063 0.063 -0.013 -0.011 0.027 0.565 -0.113 -0.033 0.081 -0.299 0.060 -0.145 0.726 -0.250 0.950 0.005 0.002 0.029 0.088 0.041 -0.008 -0.007 0.015 0.788 -0.158 -0.021 0.046 -0.192 0.038 -0.083 0.417 -0.250 1.000 0.000 0.000 0.039 0.117 0.000 0.000 0.000 0.000 1.055 -0.211 0.000 0.000 0.000 0.000 0.000 0.000 - -0.300 0.000 0.039 0.017 0.000 0.000 1.040 -0.095 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.300 0.050 0.029 0.012 0.001 0.002 0.776 -0.071 0.007 -0.003 0.041 -0.004 0.015 -0.007 0.411 -0.037 0.017 -0.189 -0.300 0.100 0.021 0.009 0.001 0.002 0.557 -0.051 0.011 -0.005 0.062 -0.006 0.027 -0.011 0.716 -0.065 0.027 -0.295 -0.300 0.150 0.014 0.006 0.001 0.002 0.377 -0.034 0.015 -0.005 0.066 -0.006 0.034 -0.012 0.924 -0.084 0.030 -0.328 -0.300 0.200 0.009 0.004 0.001 0.002 0.233 -0.021 0.017 -0.005 0.058 -0.005 0.039 -0.011 1.048 -0.095 0.027 -0.299 -0.300 0.250 0.005 0.002 0.001 0.002 0.122 -0.011 0.017 -0.003 0.041 -0.004 0.041 -0.008 1.096 -0.100 0.020 -0.219 -0.300 0.300 0.001 0.001 0.000 0.001 0.040 -0.004 0.017 -0.002 0.017 -0.002 0.040 -0.004 1.081 -0.098 0.009 -0.098 -0.300 0.350 -0.001 -0.000 -0.000 -0.000 -0.016 0.001 0.016 0.001 -0.009 0.001 0.037 0.002 1.011 -0.092 -0.005 0.053 -0.300 0.400 -0.002 -0.001 -0.001 -0.001 -0.050 0.005 0.014 0.004 -0.033 0.003 0.033 0.008 0.898 -0.082 -0.020 0.225 -0.300 0.450 -0.002 -0.001 -0.001 -0.002 -0.065 0.006 0.012 0.006 -0.053 0.005 0.028 0.015 0.753 -0.068 -0.037 0.405 -0.300 0.500 -0.002 -0.001 -0.001 -0.002 -0.065 0.006 0.009 0.009 -0.065 0.006 0.022 0.022 0.585 -0.053 -0.053 0.585 -0.300 0.550 -0.002 -0.001 -0.001 -0.002 -0.053 0.005 0.006 0.012 -0.065 0.006 0.015 0.028 0.405 -0.037 -0.068 0.753 -0.300 0.600 -0.001 -0.001 -0.001 -0.002 -0.033 0.003 0.004 0.014 -0.050 0.005 0.008 0.033 0.225 -0.020 -0.082 0.898 -0.300 0.650 -0.000 -0.000 -0.000 -0.001 -0.009 0.001 0.001 0.016 -0.016 0.001 0.002 0.037 0.053 -0.005 -0.092 1.011 -0.300 0.700 0.001 0.000 0.001 0.001 0.017 -0.002 -0.002 0.017 0.040 -0.004 -0.004 0.040 -0.098 0.009 -0.098 1.081 -0.300 0.750 0.002 0.001 0.002 0.005 0.041 -0.004 -0.003 0.017 0.122 -0.011 -0.008 0.041 -0.219 0.020 -0.100 1.096 -0.300 0.800 0.002 0.001 0.004 0.009 0.058 -0.005 -0.005 0.017 0.233 -0.021 -0.011 0.039 -0.299 0.027 -0.095 1.048 -0.300 0.850 0.002 0.001 0.006 0.014 0.066 -0.006 -0.005 0.015 0.377 -0.034 -0.012 0.034 -0.328 0.030 -0.084 0.924 -0.300 0.900 0.002 0.001 0.009 0.021 0.062 -0.006 -0.005 0.011 0.557 -0.051 -0.011 0.027 -0.295 0.027 -0.065 0.716 -0.300 0.950 0.002 0.001 0.012 0.029 0.041 -0.004 -0.003 0.007 0.776 -0.071 -0.007 0.015 -0.189 0.017 -0.037 0.411 -0.300 1.000 -0.000 0.000 0.017 0.039 0.000 -0.000 -0.000 -0.000 1.040 -0.095 0.000 0.000 0.000 0.000 0.000 0.000 - -0.350 0.000 -0.015 -0.008 0.000 0.000 0.973 0.051 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.350 0.050 -0.012 -0.006 -0.000 -0.001 0.726 0.038 -0.003 0.002 0.038 0.002 -0.006 0.003 0.385 0.020 -0.009 -0.177 -0.350 0.100 -0.008 -0.004 -0.000 -0.001 0.521 0.027 -0.006 0.002 0.058 0.003 -0.011 0.004 0.670 0.035 -0.015 -0.276 -0.350 0.150 -0.006 -0.003 -0.001 -0.001 0.352 0.019 -0.007 0.003 0.062 0.003 -0.014 0.005 0.865 0.046 -0.016 -0.307 -0.350 0.200 -0.003 -0.002 -0.000 -0.001 0.218 0.011 -0.008 0.002 0.054 0.003 -0.016 0.004 0.980 0.052 -0.015 -0.280 -0.350 0.250 -0.002 -0.001 -0.000 -0.001 0.114 0.006 -0.009 0.002 0.038 0.002 -0.016 0.003 1.026 0.054 -0.011 -0.205 -0.350 0.300 -0.001 -0.000 -0.000 -0.000 0.037 0.002 -0.009 0.001 0.016 0.001 -0.016 0.001 1.011 0.053 -0.005 -0.092 -0.350 0.350 0.000 0.000 0.000 0.000 -0.015 -0.001 -0.008 -0.000 -0.008 -0.000 -0.015 -0.001 0.946 0.050 0.003 0.050 -0.350 0.400 0.001 0.000 0.000 0.000 -0.047 -0.002 -0.007 -0.002 -0.031 -0.002 -0.013 -0.003 0.840 0.044 0.011 0.210 -0.350 0.450 0.001 0.001 0.000 0.001 -0.061 -0.003 -0.006 -0.003 -0.050 -0.003 -0.011 -0.006 0.704 0.037 0.020 0.379 -0.350 0.500 0.001 0.001 0.001 0.001 -0.061 -0.003 -0.005 -0.005 -0.061 -0.003 -0.009 -0.009 0.547 0.029 0.029 0.547 -0.350 0.550 0.001 0.000 0.001 0.001 -0.050 -0.003 -0.003 -0.006 -0.061 -0.003 -0.006 -0.011 0.379 0.020 0.037 0.704 -0.350 0.600 0.000 0.000 0.000 0.001 -0.031 -0.002 -0.002 -0.007 -0.047 -0.002 -0.003 -0.013 0.210 0.011 0.044 0.840 -0.350 0.650 0.000 0.000 0.000 0.000 -0.008 -0.000 -0.000 -0.008 -0.015 -0.001 -0.001 -0.015 0.050 0.003 0.050 0.946 -0.350 0.700 -0.000 -0.000 -0.000 -0.001 0.016 0.001 0.001 -0.009 0.037 0.002 0.001 -0.016 -0.092 -0.005 0.053 1.011 -0.350 0.750 -0.001 -0.000 -0.001 -0.002 0.038 0.002 0.002 -0.009 0.114 0.006 0.003 -0.016 -0.205 -0.011 0.054 1.026 -0.350 0.800 -0.001 -0.000 -0.002 -0.003 0.054 0.003 0.002 -0.008 0.218 0.011 0.004 -0.016 -0.280 -0.015 0.052 0.980 -0.350 0.850 -0.001 -0.001 -0.003 -0.006 0.062 0.003 0.003 -0.007 0.352 0.019 0.005 -0.014 -0.307 -0.016 0.046 0.865 -0.350 0.900 -0.001 -0.000 -0.004 -0.008 0.058 0.003 0.002 -0.006 0.521 0.027 0.004 -0.011 -0.276 -0.015 0.035 0.670 -0.350 0.950 -0.001 -0.000 -0.006 -0.012 0.038 0.002 0.002 -0.003 0.726 0.038 0.003 -0.006 -0.177 -0.009 0.020 0.385 -0.350 1.000 0.000 -0.000 -0.008 -0.015 -0.000 0.000 0.000 0.000 0.973 0.051 -0.000 -0.000 -0.000 0.000 -0.000 0.000 - -0.400 0.000 -0.048 -0.032 0.000 0.000 0.864 0.216 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.400 0.050 -0.036 -0.024 -0.001 -0.002 0.645 0.161 -0.013 0.006 0.034 0.008 -0.019 0.009 0.342 0.085 -0.039 -0.157 -0.400 0.100 -0.026 -0.017 -0.002 -0.003 0.463 0.116 -0.022 0.009 0.051 0.013 -0.033 0.014 0.595 0.149 -0.061 -0.245 -0.400 0.150 -0.017 -0.012 -0.002 -0.003 0.313 0.078 -0.028 0.010 0.055 0.014 -0.043 0.015 0.768 0.192 -0.068 -0.273 -0.400 0.200 -0.011 -0.007 -0.002 -0.003 0.194 0.048 -0.032 0.009 0.048 0.012 -0.048 0.014 0.871 0.218 -0.062 -0.249 -0.400 0.250 -0.006 -0.004 -0.001 -0.002 0.101 0.025 -0.034 0.007 0.034 0.008 -0.051 0.010 0.911 0.228 -0.046 -0.182 -0.400 0.300 -0.002 -0.001 -0.001 -0.001 0.033 0.008 -0.033 0.003 0.014 0.004 -0.050 0.005 0.898 0.225 -0.020 -0.082 -0.400 0.350 0.001 0.000 0.000 0.000 -0.013 -0.003 -0.031 -0.002 -0.007 -0.002 -0.047 -0.002 0.840 0.210 0.011 0.044 -0.400 0.400 0.002 0.002 0.001 0.002 -0.041 -0.010 -0.028 -0.007 -0.028 -0.007 -0.041 -0.010 0.746 0.187 0.047 0.187 -0.400 0.450 0.003 0.002 0.002 0.002 -0.054 -0.014 -0.023 -0.012 -0.044 -0.011 -0.035 -0.019 0.625 0.156 0.084 0.337 -0.400 0.500 0.003 0.002 0.002 0.003 -0.054 -0.014 -0.018 -0.018 -0.054 -0.014 -0.027 -0.027 0.486 0.122 0.122 0.486 -0.400 0.550 0.002 0.002 0.002 0.003 -0.044 -0.011 -0.012 -0.023 -0.054 -0.014 -0.019 -0.035 0.337 0.084 0.156 0.625 -0.400 0.600 0.002 0.001 0.002 0.002 -0.028 -0.007 -0.007 -0.028 -0.041 -0.010 -0.010 -0.041 0.187 0.047 0.187 0.746 -0.400 0.650 0.000 0.000 0.000 0.001 -0.007 -0.002 -0.002 -0.031 -0.013 -0.003 -0.002 -0.047 0.044 0.011 0.210 0.840 -0.400 0.700 -0.001 -0.001 -0.001 -0.002 0.014 0.004 0.003 -0.033 0.033 0.008 0.005 -0.050 -0.082 -0.020 0.225 0.898 -0.400 0.750 -0.002 -0.001 -0.004 -0.006 0.034 0.008 0.007 -0.034 0.101 0.025 0.010 -0.051 -0.182 -0.046 0.228 0.911 -0.400 0.800 -0.003 -0.002 -0.007 -0.011 0.048 0.012 0.009 -0.032 0.194 0.048 0.014 -0.048 -0.249 -0.062 0.218 0.871 -0.400 0.850 -0.003 -0.002 -0.012 -0.017 0.055 0.014 0.010 -0.028 0.313 0.078 0.015 -0.043 -0.273 -0.068 0.192 0.768 -0.400 0.900 -0.003 -0.002 -0.017 -0.026 0.051 0.013 0.009 -0.022 0.463 0.116 0.014 -0.033 -0.245 -0.061 0.149 0.595 -0.400 0.950 -0.002 -0.001 -0.024 -0.036 0.034 0.008 0.006 -0.013 0.645 0.161 0.009 -0.019 -0.157 -0.039 0.085 0.342 -0.400 1.000 0.000 -0.000 -0.032 -0.048 0.000 0.000 -0.000 0.000 0.864 0.216 0.000 0.000 -0.000 0.000 -0.000 0.000 - -0.450 0.000 -0.063 -0.051 0.000 0.000 0.724 0.390 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.450 0.050 -0.047 -0.038 -0.002 -0.002 0.541 0.291 -0.020 0.009 0.028 0.015 -0.025 0.011 0.286 0.154 -0.071 -0.132 -0.450 0.100 -0.034 -0.027 -0.003 -0.004 0.388 0.209 -0.035 0.015 0.043 0.023 -0.043 0.018 0.498 0.268 -0.111 -0.205 -0.450 0.150 -0.023 -0.019 -0.003 -0.004 0.262 0.141 -0.046 0.016 0.046 0.025 -0.056 0.020 0.644 0.347 -0.123 -0.228 -0.450 0.200 -0.014 -0.011 -0.003 -0.004 0.162 0.087 -0.052 0.015 0.041 0.022 -0.063 0.018 0.730 0.393 -0.112 -0.208 -0.450 0.250 -0.007 -0.006 -0.002 -0.002 0.085 0.046 -0.054 0.011 0.028 0.015 -0.066 0.013 0.764 0.411 -0.082 -0.153 -0.450 0.300 -0.002 -0.002 -0.001 -0.001 0.028 0.015 -0.053 0.005 0.012 0.006 -0.065 0.006 0.753 0.405 -0.037 -0.068 -0.450 0.350 0.001 0.001 0.000 0.001 -0.011 -0.006 -0.050 -0.003 -0.006 -0.003 -0.061 -0.003 0.704 0.379 0.020 0.037 -0.450 0.400 0.003 0.002 0.002 0.002 -0.035 -0.019 -0.044 -0.011 -0.023 -0.012 -0.054 -0.014 0.625 0.337 0.084 0.156 -0.450 0.450 0.004 0.003 0.003 0.003 -0.045 -0.024 -0.037 -0.020 -0.037 -0.020 -0.045 -0.024 0.524 0.282 0.152 0.282 -0.450 0.500 0.004 0.003 0.003 0.004 -0.045 -0.024 -0.029 -0.029 -0.045 -0.024 -0.035 -0.035 0.407 0.219 0.219 0.407 -0.450 0.550 0.003 0.003 0.003 0.004 -0.037 -0.020 -0.020 -0.037 -0.045 -0.024 -0.024 -0.045 0.282 0.152 0.282 0.524 -0.450 0.600 0.002 0.002 0.002 0.003 -0.023 -0.012 -0.011 -0.044 -0.035 -0.019 -0.014 -0.054 0.156 0.084 0.337 0.625 -0.450 0.650 0.001 0.000 0.001 0.001 -0.006 -0.003 -0.003 -0.050 -0.011 -0.006 -0.003 -0.061 0.037 0.020 0.379 0.704 -0.450 0.700 -0.001 -0.001 -0.002 -0.002 0.012 0.006 0.005 -0.053 0.028 0.015 0.006 -0.065 -0.068 -0.037 0.405 0.753 -0.450 0.750 -0.002 -0.002 -0.006 -0.007 0.028 0.015 0.011 -0.054 0.085 0.046 0.013 -0.066 -0.153 -0.082 0.411 0.764 -0.450 0.800 -0.004 -0.003 -0.011 -0.014 0.041 0.022 0.015 -0.052 0.162 0.087 0.018 -0.063 -0.208 -0.112 0.393 0.730 -0.450 0.850 -0.004 -0.003 -0.019 -0.023 0.046 0.025 0.016 -0.046 0.262 0.141 0.020 -0.056 -0.228 -0.123 0.347 0.644 -0.450 0.900 -0.004 -0.003 -0.027 -0.034 0.043 0.023 0.015 -0.035 0.388 0.209 0.018 -0.043 -0.205 -0.111 0.268 0.498 -0.450 0.950 -0.002 -0.002 -0.038 -0.047 0.028 0.015 0.009 -0.020 0.541 0.291 0.011 -0.025 -0.132 -0.071 0.154 0.286 -0.450 1.000 -0.000 0.000 -0.051 -0.063 -0.000 -0.000 0.000 0.000 0.724 0.390 -0.000 -0.000 0.000 -0.000 -0.000 -0.000 - -0.500 0.000 -0.062 -0.062 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.500 0.050 -0.047 -0.047 -0.002 -0.002 0.420 0.420 -0.025 0.011 0.022 0.022 -0.025 0.011 0.222 0.222 -0.102 -0.102 -0.500 0.100 -0.033 -0.033 -0.004 -0.004 0.301 0.301 -0.043 0.018 0.033 0.033 -0.043 0.018 0.387 0.387 -0.159 -0.159 -0.500 0.150 -0.023 -0.023 -0.004 -0.004 0.204 0.204 -0.056 0.020 0.036 0.036 -0.056 0.020 0.500 0.500 -0.178 -0.178 -0.500 0.200 -0.014 -0.014 -0.003 -0.003 0.126 0.126 -0.063 0.018 0.032 0.032 -0.063 0.018 0.567 0.567 -0.162 -0.162 -0.500 0.250 -0.007 -0.007 -0.002 -0.002 0.066 0.066 -0.066 0.013 0.022 0.022 -0.066 0.013 0.593 0.593 -0.119 -0.119 -0.500 0.300 -0.002 -0.002 -0.001 -0.001 0.022 0.022 -0.065 0.006 0.009 0.009 -0.065 0.006 0.585 0.585 -0.053 -0.053 -0.500 0.350 0.001 0.001 0.001 0.001 -0.009 -0.009 -0.061 -0.003 -0.005 -0.005 -0.061 -0.003 0.547 0.547 0.029 0.029 -0.500 0.400 0.003 0.003 0.002 0.002 -0.027 -0.027 -0.054 -0.014 -0.018 -0.018 -0.054 -0.014 0.486 0.486 0.122 0.122 -0.500 0.450 0.004 0.004 0.003 0.003 -0.035 -0.035 -0.045 -0.024 -0.029 -0.029 -0.045 -0.024 0.407 0.407 0.219 0.219 -0.500 0.500 0.004 0.004 0.004 0.004 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 0.316 0.316 0.316 0.316 -0.500 0.550 0.003 0.003 0.004 0.004 -0.029 -0.029 -0.024 -0.045 -0.035 -0.035 -0.024 -0.045 0.219 0.219 0.407 0.407 -0.500 0.600 0.002 0.002 0.003 0.003 -0.018 -0.018 -0.014 -0.054 -0.027 -0.027 -0.014 -0.054 0.122 0.122 0.486 0.486 -0.500 0.650 0.001 0.001 0.001 0.001 -0.005 -0.005 -0.003 -0.061 -0.009 -0.009 -0.003 -0.061 0.029 0.029 0.547 0.547 -0.500 0.700 -0.001 -0.001 -0.002 -0.002 0.009 0.009 0.006 -0.065 0.022 0.022 0.006 -0.065 -0.053 -0.053 0.585 0.585 -0.500 0.750 -0.002 -0.002 -0.007 -0.007 0.022 0.022 0.013 -0.066 0.066 0.066 0.013 -0.066 -0.119 -0.119 0.593 0.593 -0.500 0.800 -0.004 -0.004 -0.014 -0.014 0.032 0.032 0.018 -0.063 0.126 0.126 0.018 -0.063 -0.162 -0.162 0.567 0.567 -0.500 0.850 -0.004 -0.004 -0.023 -0.023 0.036 0.036 0.020 -0.056 0.204 0.204 0.020 -0.056 -0.178 -0.178 0.500 0.500 -0.500 0.900 -0.004 -0.004 -0.033 -0.033 0.033 0.033 0.018 -0.043 0.301 0.301 0.018 -0.043 -0.159 -0.159 0.387 0.387 -0.500 0.950 -0.002 -0.002 -0.047 -0.047 0.022 0.022 0.011 -0.025 0.420 0.420 0.011 -0.025 -0.102 -0.102 0.222 0.222 -0.500 1.000 0.000 0.000 -0.062 -0.062 0.000 0.000 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 0.000 0.000 - -0.550 0.000 -0.051 -0.063 0.000 0.000 0.390 0.724 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.550 0.050 -0.038 -0.047 -0.002 -0.002 0.291 0.541 -0.025 0.011 0.015 0.028 -0.020 0.009 0.154 0.286 -0.132 -0.071 -0.550 0.100 -0.027 -0.034 -0.004 -0.003 0.209 0.388 -0.043 0.018 0.023 0.043 -0.035 0.015 0.268 0.498 -0.205 -0.111 -0.550 0.150 -0.019 -0.023 -0.004 -0.003 0.141 0.262 -0.056 0.020 0.025 0.046 -0.046 0.016 0.347 0.644 -0.228 -0.123 -0.550 0.200 -0.011 -0.014 -0.004 -0.003 0.087 0.162 -0.063 0.018 0.022 0.041 -0.052 0.015 0.393 0.730 -0.208 -0.112 -0.550 0.250 -0.006 -0.007 -0.002 -0.002 0.046 0.085 -0.066 0.013 0.015 0.028 -0.054 0.011 0.411 0.764 -0.153 -0.082 -0.550 0.300 -0.002 -0.002 -0.001 -0.001 0.015 0.028 -0.065 0.006 0.006 0.012 -0.053 0.005 0.405 0.753 -0.068 -0.037 -0.550 0.350 0.001 0.001 0.001 0.000 -0.006 -0.011 -0.061 -0.003 -0.003 -0.006 -0.050 -0.003 0.379 0.704 0.037 0.020 -0.550 0.400 0.002 0.003 0.002 0.002 -0.019 -0.035 -0.054 -0.014 -0.012 -0.023 -0.044 -0.011 0.337 0.625 0.156 0.084 -0.550 0.450 0.003 0.004 0.003 0.003 -0.024 -0.045 -0.045 -0.024 -0.020 -0.037 -0.037 -0.020 0.282 0.524 0.282 0.152 -0.550 0.500 0.003 0.004 0.004 0.003 -0.024 -0.045 -0.035 -0.035 -0.024 -0.045 -0.029 -0.029 0.219 0.407 0.407 0.219 -0.550 0.550 0.003 0.003 0.004 0.003 -0.020 -0.037 -0.024 -0.045 -0.024 -0.045 -0.020 -0.037 0.152 0.282 0.524 0.282 -0.550 0.600 0.002 0.002 0.003 0.002 -0.012 -0.023 -0.014 -0.054 -0.019 -0.035 -0.011 -0.044 0.084 0.156 0.625 0.337 -0.550 0.650 0.000 0.001 0.001 0.001 -0.003 -0.006 -0.003 -0.061 -0.006 -0.011 -0.003 -0.050 0.020 0.037 0.704 0.379 -0.550 0.700 -0.001 -0.001 -0.002 -0.002 0.006 0.012 0.006 -0.065 0.015 0.028 0.005 -0.053 -0.037 -0.068 0.753 0.405 -0.550 0.750 -0.002 -0.002 -0.007 -0.006 0.015 0.028 0.013 -0.066 0.046 0.085 0.011 -0.054 -0.082 -0.153 0.764 0.411 -0.550 0.800 -0.003 -0.004 -0.014 -0.011 0.022 0.041 0.018 -0.063 0.087 0.162 0.015 -0.052 -0.112 -0.208 0.730 0.393 -0.550 0.850 -0.003 -0.004 -0.023 -0.019 0.025 0.046 0.020 -0.056 0.141 0.262 0.016 -0.046 -0.123 -0.228 0.644 0.347 -0.550 0.900 -0.003 -0.004 -0.034 -0.027 0.023 0.043 0.018 -0.043 0.209 0.388 0.015 -0.035 -0.111 -0.205 0.498 0.268 -0.550 0.950 -0.002 -0.002 -0.047 -0.038 0.015 0.028 0.011 -0.025 0.291 0.541 0.009 -0.020 -0.071 -0.132 0.286 0.154 -0.550 1.000 0.000 -0.000 -0.063 -0.051 -0.000 -0.000 -0.000 0.000 0.390 0.724 0.000 0.000 0.000 -0.000 0.000 -0.000 - -0.600 0.000 -0.032 -0.048 0.000 0.000 0.216 0.864 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.600 0.050 -0.024 -0.036 -0.002 -0.001 0.161 0.645 -0.019 0.009 0.008 0.034 -0.013 0.006 0.085 0.342 -0.157 -0.039 -0.600 0.100 -0.017 -0.026 -0.003 -0.002 0.116 0.463 -0.033 0.014 0.013 0.051 -0.022 0.009 0.149 0.595 -0.245 -0.061 -0.600 0.150 -0.012 -0.017 -0.003 -0.002 0.078 0.313 -0.043 0.015 0.014 0.055 -0.028 0.010 0.192 0.768 -0.273 -0.068 -0.600 0.200 -0.007 -0.011 -0.003 -0.002 0.048 0.194 -0.048 0.014 0.012 0.048 -0.032 0.009 0.218 0.871 -0.249 -0.062 -0.600 0.250 -0.004 -0.006 -0.002 -0.001 0.025 0.101 -0.051 0.010 0.008 0.034 -0.034 0.007 0.228 0.911 -0.182 -0.046 -0.600 0.300 -0.001 -0.002 -0.001 -0.001 0.008 0.033 -0.050 0.005 0.004 0.014 -0.033 0.003 0.225 0.898 -0.082 -0.020 -0.600 0.350 0.000 0.001 0.000 0.000 -0.003 -0.013 -0.047 -0.002 -0.002 -0.007 -0.031 -0.002 0.210 0.840 0.044 0.011 -0.600 0.400 0.002 0.002 0.002 0.001 -0.010 -0.041 -0.041 -0.010 -0.007 -0.028 -0.028 -0.007 0.187 0.746 0.187 0.047 -0.600 0.450 0.002 0.003 0.002 0.002 -0.014 -0.054 -0.035 -0.019 -0.011 -0.044 -0.023 -0.012 0.156 0.625 0.337 0.084 -0.600 0.500 0.002 0.003 0.003 0.002 -0.014 -0.054 -0.027 -0.027 -0.014 -0.054 -0.018 -0.018 0.122 0.486 0.486 0.122 -0.600 0.550 0.002 0.002 0.003 0.002 -0.011 -0.044 -0.019 -0.035 -0.014 -0.054 -0.012 -0.023 0.084 0.337 0.625 0.156 -0.600 0.600 0.001 0.002 0.002 0.002 -0.007 -0.028 -0.010 -0.041 -0.010 -0.041 -0.007 -0.028 0.047 0.187 0.746 0.187 -0.600 0.650 0.000 0.000 0.001 0.000 -0.002 -0.007 -0.002 -0.047 -0.003 -0.013 -0.002 -0.031 0.011 0.044 0.840 0.210 -0.600 0.700 -0.001 -0.001 -0.002 -0.001 0.004 0.014 0.005 -0.050 0.008 0.033 0.003 -0.033 -0.020 -0.082 0.898 0.225 -0.600 0.750 -0.001 -0.002 -0.006 -0.004 0.008 0.034 0.010 -0.051 0.025 0.101 0.007 -0.034 -0.046 -0.182 0.911 0.228 -0.600 0.800 -0.002 -0.003 -0.011 -0.007 0.012 0.048 0.014 -0.048 0.048 0.194 0.009 -0.032 -0.062 -0.249 0.871 0.218 -0.600 0.850 -0.002 -0.003 -0.017 -0.012 0.014 0.055 0.015 -0.043 0.078 0.313 0.010 -0.028 -0.068 -0.273 0.768 0.192 -0.600 0.900 -0.002 -0.003 -0.026 -0.017 0.013 0.051 0.014 -0.033 0.116 0.463 0.009 -0.022 -0.061 -0.245 0.595 0.149 -0.600 0.950 -0.001 -0.002 -0.036 -0.024 0.008 0.034 0.009 -0.019 0.161 0.645 0.006 -0.013 -0.039 -0.157 0.342 0.085 -0.600 1.000 0.000 -0.000 -0.048 -0.032 0.000 -0.000 -0.000 -0.000 0.216 0.864 0.000 0.000 -0.000 0.000 0.000 0.000 - -0.650 0.000 -0.008 -0.015 0.000 0.000 0.051 0.973 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.650 0.050 -0.006 -0.012 -0.001 -0.000 0.038 0.726 -0.006 0.003 0.002 0.038 -0.003 0.002 0.020 0.385 -0.177 -0.009 -0.650 0.100 -0.004 -0.008 -0.001 -0.000 0.027 0.521 -0.011 0.004 0.003 0.058 -0.006 0.002 0.035 0.670 -0.276 -0.015 -0.650 0.150 -0.003 -0.006 -0.001 -0.001 0.019 0.352 -0.014 0.005 0.003 0.062 -0.007 0.003 0.046 0.865 -0.307 -0.016 -0.650 0.200 -0.002 -0.003 -0.001 -0.000 0.011 0.218 -0.016 0.004 0.003 0.054 -0.008 0.002 0.052 0.980 -0.280 -0.015 -0.650 0.250 -0.001 -0.002 -0.001 -0.000 0.006 0.114 -0.016 0.003 0.002 0.038 -0.009 0.002 0.054 1.026 -0.205 -0.011 -0.650 0.300 -0.000 -0.001 -0.000 -0.000 0.002 0.037 -0.016 0.001 0.001 0.016 -0.009 0.001 0.053 1.011 -0.092 -0.005 -0.650 0.350 0.000 0.000 0.000 0.000 -0.001 -0.015 -0.015 -0.001 -0.000 -0.008 -0.008 -0.000 0.050 0.946 0.050 0.003 -0.650 0.400 0.000 0.001 0.000 0.000 -0.002 -0.047 -0.013 -0.003 -0.002 -0.031 -0.007 -0.002 0.044 0.840 0.210 0.011 -0.650 0.450 0.001 0.001 0.001 0.000 -0.003 -0.061 -0.011 -0.006 -0.003 -0.050 -0.006 -0.003 0.037 0.704 0.379 0.020 -0.650 0.500 0.001 0.001 0.001 0.001 -0.003 -0.061 -0.009 -0.009 -0.003 -0.061 -0.005 -0.005 0.029 0.547 0.547 0.029 -0.650 0.550 0.000 0.001 0.001 0.001 -0.003 -0.050 -0.006 -0.011 -0.003 -0.061 -0.003 -0.006 0.020 0.379 0.704 0.037 -0.650 0.600 0.000 0.000 0.001 0.000 -0.002 -0.031 -0.003 -0.013 -0.002 -0.047 -0.002 -0.007 0.011 0.210 0.840 0.044 -0.650 0.650 0.000 0.000 0.000 0.000 -0.000 -0.008 -0.001 -0.015 -0.001 -0.015 -0.000 -0.008 0.003 0.050 0.946 0.050 -0.650 0.700 -0.000 -0.000 -0.001 -0.000 0.001 0.016 0.001 -0.016 0.002 0.037 0.001 -0.009 -0.005 -0.092 1.011 0.053 -0.650 0.750 -0.000 -0.001 -0.002 -0.001 0.002 0.038 0.003 -0.016 0.006 0.114 0.002 -0.009 -0.011 -0.205 1.026 0.054 -0.650 0.800 -0.000 -0.001 -0.003 -0.002 0.003 0.054 0.004 -0.016 0.011 0.218 0.002 -0.008 -0.015 -0.280 0.980 0.052 -0.650 0.850 -0.001 -0.001 -0.006 -0.003 0.003 0.062 0.005 -0.014 0.019 0.352 0.003 -0.007 -0.016 -0.307 0.865 0.046 -0.650 0.900 -0.000 -0.001 -0.008 -0.004 0.003 0.058 0.004 -0.011 0.027 0.521 0.002 -0.006 -0.015 -0.276 0.670 0.035 -0.650 0.950 -0.000 -0.001 -0.012 -0.006 0.002 0.038 0.003 -0.006 0.038 0.726 0.002 -0.003 -0.009 -0.177 0.385 0.020 -0.650 1.000 -0.000 0.000 -0.015 -0.008 -0.000 0.000 -0.000 0.000 0.051 0.973 0.000 0.000 0.000 0.000 0.000 -0.000 - -0.700 0.000 0.016 0.038 0.000 0.000 -0.094 1.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.700 0.050 0.012 0.029 0.002 0.001 -0.071 0.776 0.015 -0.007 -0.004 0.041 0.007 -0.003 -0.037 0.411 -0.189 0.017 -0.700 0.100 0.009 0.021 0.002 0.001 -0.051 0.557 0.027 -0.011 -0.006 0.062 0.011 -0.005 -0.065 0.716 -0.295 0.027 -0.700 0.150 0.006 0.014 0.002 0.001 -0.034 0.377 0.034 -0.012 -0.006 0.066 0.015 -0.005 -0.084 0.924 -0.328 0.030 -0.700 0.200 0.004 0.009 0.002 0.001 -0.021 0.233 0.039 -0.011 -0.005 0.058 0.017 -0.005 -0.095 1.048 -0.299 0.027 -0.700 0.250 0.002 0.005 0.002 0.001 -0.011 0.122 0.041 -0.008 -0.004 0.041 0.017 -0.003 -0.100 1.096 -0.219 0.020 -0.700 0.300 0.001 0.001 0.001 0.000 -0.004 0.040 0.040 -0.004 -0.002 0.017 0.017 -0.002 -0.098 1.081 -0.098 0.009 -0.700 0.350 -0.000 -0.001 -0.000 -0.000 0.001 -0.016 0.037 0.002 0.001 -0.009 0.016 0.001 -0.092 1.011 0.053 -0.005 -0.700 0.400 -0.001 -0.002 -0.001 -0.001 0.005 -0.050 0.033 0.008 0.003 -0.033 0.014 0.004 -0.082 0.898 0.225 -0.020 -0.700 0.450 -0.001 -0.002 -0.002 -0.001 0.006 -0.065 0.028 0.015 0.005 -0.053 0.012 0.006 -0.068 0.753 0.405 -0.037 -0.700 0.500 -0.001 -0.002 -0.002 -0.001 0.006 -0.065 0.022 0.022 0.006 -0.065 0.009 0.009 -0.053 0.585 0.585 -0.053 -0.700 0.550 -0.001 -0.002 -0.002 -0.001 0.005 -0.053 0.015 0.028 0.006 -0.065 0.006 0.012 -0.037 0.405 0.753 -0.068 -0.700 0.600 -0.001 -0.001 -0.002 -0.001 0.003 -0.033 0.008 0.033 0.005 -0.050 0.004 0.014 -0.020 0.225 0.898 -0.082 -0.700 0.650 -0.000 -0.000 -0.001 -0.000 0.001 -0.009 0.002 0.037 0.001 -0.016 0.001 0.016 -0.005 0.053 1.011 -0.092 -0.700 0.700 0.000 0.001 0.001 0.001 -0.002 0.017 -0.004 0.040 -0.004 0.040 -0.002 0.017 0.009 -0.098 1.081 -0.098 -0.700 0.750 0.001 0.002 0.005 0.002 -0.004 0.041 -0.008 0.041 -0.011 0.122 -0.003 0.017 0.020 -0.219 1.096 -0.100 -0.700 0.800 0.001 0.002 0.009 0.004 -0.005 0.058 -0.011 0.039 -0.021 0.233 -0.005 0.017 0.027 -0.299 1.048 -0.095 -0.700 0.850 0.001 0.002 0.014 0.006 -0.006 0.066 -0.012 0.034 -0.034 0.377 -0.005 0.015 0.030 -0.328 0.924 -0.084 -0.700 0.900 0.001 0.002 0.021 0.009 -0.006 0.062 -0.011 0.027 -0.051 0.557 -0.005 0.011 0.027 -0.295 0.716 -0.065 -0.700 0.950 0.001 0.002 0.029 0.012 -0.004 0.041 -0.007 0.015 -0.071 0.776 -0.003 0.007 0.017 -0.189 0.411 -0.037 -0.700 1.000 0.000 -0.000 0.038 0.016 -0.000 0.000 0.000 0.000 -0.094 1.039 -0.000 -0.000 -0.000 0.000 -0.000 0.000 - -0.750 0.000 0.039 0.117 0.000 0.000 -0.211 1.055 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.750 0.050 0.029 0.088 0.005 0.002 -0.158 0.788 0.046 -0.021 -0.008 0.041 0.015 -0.007 -0.083 0.417 -0.192 0.038 -0.750 0.100 0.021 0.063 0.007 0.002 -0.113 0.565 0.081 -0.033 -0.013 0.063 0.027 -0.011 -0.145 0.726 -0.299 0.060 -0.750 0.150 0.014 0.042 0.007 0.002 -0.076 0.382 0.104 -0.037 -0.013 0.067 0.035 -0.012 -0.188 0.938 -0.333 0.067 -0.750 0.200 0.009 0.026 0.007 0.002 -0.047 0.236 0.118 -0.034 -0.012 0.059 0.039 -0.011 -0.213 1.063 -0.304 0.061 -0.750 0.250 0.005 0.014 0.005 0.002 -0.025 0.124 0.124 -0.025 -0.008 0.041 0.041 -0.008 -0.222 1.112 -0.222 0.044 -0.750 0.300 0.002 0.005 0.002 0.001 -0.008 0.041 0.122 -0.011 -0.003 0.017 0.041 -0.004 -0.219 1.096 -0.100 0.020 -0.750 0.350 -0.001 -0.002 -0.001 -0.000 0.003 -0.016 0.114 0.006 0.002 -0.009 0.038 0.002 -0.205 1.026 0.054 -0.011 -0.750 0.400 -0.002 -0.006 -0.004 -0.001 0.010 -0.051 0.101 0.025 0.007 -0.034 0.034 0.008 -0.182 0.911 0.228 -0.046 -0.750 0.450 -0.002 -0.007 -0.006 -0.002 0.013 -0.066 0.085 0.046 0.011 -0.054 0.028 0.015 -0.153 0.764 0.411 -0.082 -0.750 0.500 -0.002 -0.007 -0.007 -0.002 0.013 -0.066 0.066 0.066 0.013 -0.066 0.022 0.022 -0.119 0.593 0.593 -0.119 -0.750 0.550 -0.002 -0.006 -0.007 -0.002 0.011 -0.054 0.046 0.085 0.013 -0.066 0.015 0.028 -0.082 0.411 0.764 -0.153 -0.750 0.600 -0.001 -0.004 -0.006 -0.002 0.007 -0.034 0.025 0.101 0.010 -0.051 0.008 0.034 -0.046 0.228 0.911 -0.182 -0.750 0.650 -0.000 -0.001 -0.002 -0.001 0.002 -0.009 0.006 0.114 0.003 -0.016 0.002 0.038 -0.011 0.054 1.026 -0.205 -0.750 0.700 0.001 0.002 0.005 0.002 -0.003 0.017 -0.011 0.122 -0.008 0.041 -0.004 0.041 0.020 -0.100 1.096 -0.219 -0.750 0.750 0.002 0.005 0.014 0.005 -0.008 0.041 -0.025 0.124 -0.025 0.124 -0.008 0.041 0.044 -0.222 1.112 -0.222 -0.750 0.800 0.002 0.007 0.026 0.009 -0.012 0.059 -0.034 0.118 -0.047 0.236 -0.011 0.039 0.061 -0.304 1.063 -0.213 -0.750 0.850 0.002 0.007 0.042 0.014 -0.013 0.067 -0.037 0.104 -0.076 0.382 -0.012 0.035 0.067 -0.333 0.938 -0.188 -0.750 0.900 0.002 0.007 0.063 0.021 -0.013 0.063 -0.033 0.081 -0.113 0.565 -0.011 0.027 0.060 -0.299 0.726 -0.145 -0.750 0.950 0.002 0.005 0.088 0.029 -0.008 0.041 -0.021 0.046 -0.158 0.788 -0.007 0.015 0.038 -0.192 0.417 -0.083 -0.750 1.000 0.000 0.000 0.117 0.039 0.000 0.000 0.000 0.000 -0.211 1.055 0.000 0.000 0.000 0.000 0.000 0.000 - -0.800 0.000 0.056 0.224 0.000 0.000 -0.288 1.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.800 0.050 0.042 0.167 0.009 0.002 -0.215 0.753 0.089 -0.041 -0.011 0.040 0.022 -0.010 -0.114 0.399 -0.183 0.052 -0.800 0.100 0.030 0.120 0.013 0.003 -0.154 0.540 0.154 -0.064 -0.017 0.060 0.039 -0.016 -0.198 0.694 -0.286 0.082 -0.800 0.150 0.020 0.081 0.014 0.004 -0.104 0.365 0.199 -0.071 -0.018 0.064 0.050 -0.018 -0.256 0.896 -0.318 0.091 -0.800 0.200 0.013 0.050 0.013 0.003 -0.065 0.226 0.226 -0.065 -0.016 0.056 0.056 -0.016 -0.290 1.016 -0.290 0.083 -0.800 0.250 0.007 0.026 0.009 0.002 -0.034 0.118 0.236 -0.047 -0.011 0.039 0.059 -0.012 -0.304 1.063 -0.213 0.061 -0.800 0.300 0.002 0.009 0.004 0.001 -0.011 0.039 0.233 -0.021 -0.005 0.017 0.058 -0.005 -0.299 1.048 -0.095 0.027 -0.800 0.350 -0.001 -0.003 -0.002 -0.000 0.004 -0.016 0.218 0.011 0.002 -0.008 0.054 0.003 -0.280 0.980 0.052 -0.015 -0.800 0.400 -0.003 -0.011 -0.007 -0.002 0.014 -0.048 0.194 0.048 0.009 -0.032 0.048 0.012 -0.249 0.871 0.218 -0.062 -0.800 0.450 -0.004 -0.014 -0.011 -0.003 0.018 -0.063 0.162 0.087 0.015 -0.052 0.041 0.022 -0.208 0.730 0.393 -0.112 -0.800 0.500 -0.004 -0.014 -0.014 -0.004 0.018 -0.063 0.126 0.126 0.018 -0.063 0.032 0.032 -0.162 0.567 0.567 -0.162 -0.800 0.550 -0.003 -0.011 -0.014 -0.004 0.015 -0.052 0.087 0.162 0.018 -0.063 0.022 0.041 -0.112 0.393 0.730 -0.208 -0.800 0.600 -0.002 -0.007 -0.011 -0.003 0.009 -0.032 0.048 0.194 0.014 -0.048 0.012 0.048 -0.062 0.218 0.871 -0.249 -0.800 0.650 -0.000 -0.002 -0.003 -0.001 0.002 -0.008 0.011 0.218 0.004 -0.016 0.003 0.054 -0.015 0.052 0.980 -0.280 -0.800 0.700 0.001 0.004 0.009 0.002 -0.005 0.017 -0.021 0.233 -0.011 0.039 -0.005 0.058 0.027 -0.095 1.048 -0.299 -0.800 0.750 0.002 0.009 0.026 0.007 -0.011 0.039 -0.047 0.236 -0.034 0.118 -0.012 0.059 0.061 -0.213 1.063 -0.304 -0.800 0.800 0.003 0.013 0.050 0.013 -0.016 0.056 -0.065 0.226 -0.065 0.226 -0.016 0.056 0.083 -0.290 1.016 -0.290 -0.800 0.850 0.004 0.014 0.081 0.020 -0.018 0.064 -0.071 0.199 -0.104 0.365 -0.018 0.050 0.091 -0.318 0.896 -0.256 -0.800 0.900 0.003 0.013 0.120 0.030 -0.017 0.060 -0.064 0.154 -0.154 0.540 -0.016 0.039 0.082 -0.286 0.694 -0.198 -0.800 0.950 0.002 0.009 0.167 0.042 -0.011 0.040 -0.041 0.089 -0.215 0.753 -0.010 0.022 0.052 -0.183 0.399 -0.114 -0.800 1.000 0.000 -0.000 0.224 0.056 0.000 0.000 -0.000 0.000 -0.288 1.008 0.000 0.000 -0.000 0.000 -0.000 0.000 - -0.850 0.000 0.064 0.362 0.000 0.000 -0.316 0.889 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.850 0.050 0.048 0.271 0.014 0.003 -0.236 0.664 0.143 -0.066 -0.012 0.035 0.025 -0.012 -0.125 0.352 -0.162 0.057 -0.850 0.100 0.034 0.194 0.022 0.004 -0.169 0.476 0.249 -0.103 -0.019 0.053 0.044 -0.018 -0.217 0.612 -0.252 0.089 -0.850 0.150 0.023 0.131 0.023 0.004 -0.114 0.322 0.322 -0.114 -0.020 0.057 0.057 -0.020 -0.281 0.791 -0.281 0.100 -0.850 0.200 0.014 0.081 0.020 0.004 -0.071 0.199 0.365 -0.104 -0.018 0.050 0.064 -0.018 -0.318 0.896 -0.256 0.091 -0.850 0.250 0.007 0.042 0.014 0.002 -0.037 0.104 0.382 -0.076 -0.012 0.035 0.067 -0.013 -0.333 0.938 -0.188 0.067 -0.850 0.300 0.002 0.014 0.006 0.001 -0.012 0.034 0.377 -0.034 -0.005 0.015 0.066 -0.006 -0.328 0.924 -0.084 0.030 -0.850 0.350 -0.001 -0.006 -0.003 -0.001 0.005 -0.014 0.352 0.019 0.003 -0.007 0.062 0.003 -0.307 0.865 0.046 -0.016 -0.850 0.400 -0.003 -0.017 -0.012 -0.002 0.015 -0.043 0.313 0.078 0.010 -0.028 0.055 0.014 -0.273 0.768 0.192 -0.068 -0.850 0.450 -0.004 -0.023 -0.019 -0.003 0.020 -0.056 0.262 0.141 0.016 -0.046 0.046 0.025 -0.228 0.644 0.347 -0.123 -0.850 0.500 -0.004 -0.023 -0.023 -0.004 0.020 -0.056 0.204 0.204 0.020 -0.056 0.036 0.036 -0.178 0.500 0.500 -0.178 -0.850 0.550 -0.003 -0.019 -0.023 -0.004 0.016 -0.046 0.141 0.262 0.020 -0.056 0.025 0.046 -0.123 0.347 0.644 -0.228 -0.850 0.600 -0.002 -0.012 -0.017 -0.003 0.010 -0.028 0.078 0.313 0.015 -0.043 0.014 0.055 -0.068 0.192 0.768 -0.273 -0.850 0.650 -0.001 -0.003 -0.006 -0.001 0.003 -0.007 0.019 0.352 0.005 -0.014 0.003 0.062 -0.016 0.046 0.865 -0.307 -0.850 0.700 0.001 0.006 0.014 0.002 -0.005 0.015 -0.034 0.377 -0.012 0.034 -0.006 0.066 0.030 -0.084 0.924 -0.328 -0.850 0.750 0.002 0.014 0.042 0.007 -0.012 0.035 -0.076 0.382 -0.037 0.104 -0.013 0.067 0.067 -0.188 0.938 -0.333 -0.850 0.800 0.004 0.020 0.081 0.014 -0.018 0.050 -0.104 0.365 -0.071 0.199 -0.018 0.064 0.091 -0.256 0.896 -0.318 -0.850 0.850 0.004 0.023 0.131 0.023 -0.020 0.057 -0.114 0.322 -0.114 0.322 -0.020 0.057 0.100 -0.281 0.791 -0.281 -0.850 0.900 0.004 0.022 0.194 0.034 -0.019 0.053 -0.103 0.249 -0.169 0.476 -0.018 0.044 0.089 -0.252 0.612 -0.217 -0.850 0.950 0.003 0.014 0.271 0.048 -0.012 0.035 -0.066 0.143 -0.236 0.664 -0.012 0.025 0.057 -0.162 0.352 -0.125 -0.850 1.000 -0.000 0.000 0.362 0.064 -0.000 -0.000 0.000 -0.000 -0.316 0.889 -0.000 0.000 0.000 -0.000 -0.000 -0.000 - -0.900 0.000 0.059 0.536 0.000 0.000 -0.283 0.688 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.900 0.050 0.044 0.400 0.021 0.002 -0.212 0.514 0.212 -0.097 -0.011 0.027 0.024 -0.011 -0.112 0.272 -0.125 0.052 -0.900 0.100 0.032 0.287 0.032 0.004 -0.152 0.369 0.369 -0.152 -0.017 0.041 0.041 -0.017 -0.195 0.474 -0.195 0.080 -0.900 0.150 0.022 0.194 0.034 0.004 -0.103 0.249 0.476 -0.169 -0.018 0.044 0.053 -0.019 -0.252 0.612 -0.217 0.089 -0.900 0.200 0.013 0.120 0.030 0.003 -0.064 0.154 0.540 -0.154 -0.016 0.039 0.060 -0.017 -0.286 0.694 -0.198 0.082 -0.900 0.250 0.007 0.063 0.021 0.002 -0.033 0.081 0.565 -0.113 -0.011 0.027 0.063 -0.013 -0.299 0.726 -0.145 0.060 -0.900 0.300 0.002 0.021 0.009 0.001 -0.011 0.027 0.557 -0.051 -0.005 0.011 0.062 -0.006 -0.295 0.716 -0.065 0.027 -0.900 0.350 -0.001 -0.008 -0.004 -0.000 0.004 -0.011 0.521 0.027 0.002 -0.006 0.058 0.003 -0.276 0.670 0.035 -0.015 -0.900 0.400 -0.003 -0.026 -0.017 -0.002 0.014 -0.033 0.463 0.116 0.009 -0.022 0.051 0.013 -0.245 0.595 0.149 -0.061 -0.900 0.450 -0.004 -0.034 -0.027 -0.003 0.018 -0.043 0.388 0.209 0.015 -0.035 0.043 0.023 -0.205 0.498 0.268 -0.111 -0.900 0.500 -0.004 -0.033 -0.033 -0.004 0.018 -0.043 0.301 0.301 0.018 -0.043 0.033 0.033 -0.159 0.387 0.387 -0.159 -0.900 0.550 -0.003 -0.027 -0.034 -0.004 0.015 -0.035 0.209 0.388 0.018 -0.043 0.023 0.043 -0.111 0.268 0.498 -0.205 -0.900 0.600 -0.002 -0.017 -0.026 -0.003 0.009 -0.022 0.116 0.463 0.014 -0.033 0.013 0.051 -0.061 0.149 0.595 -0.245 -0.900 0.650 -0.000 -0.004 -0.008 -0.001 0.002 -0.006 0.027 0.521 0.004 -0.011 0.003 0.058 -0.015 0.035 0.670 -0.276 -0.900 0.700 0.001 0.009 0.021 0.002 -0.005 0.011 -0.051 0.557 -0.011 0.027 -0.006 0.062 0.027 -0.065 0.716 -0.295 -0.900 0.750 0.002 0.021 0.063 0.007 -0.011 0.027 -0.113 0.565 -0.033 0.081 -0.013 0.063 0.060 -0.145 0.726 -0.299 -0.900 0.800 0.003 0.030 0.120 0.013 -0.016 0.039 -0.154 0.540 -0.064 0.154 -0.017 0.060 0.082 -0.198 0.694 -0.286 -0.900 0.850 0.004 0.034 0.194 0.022 -0.018 0.044 -0.169 0.476 -0.103 0.249 -0.019 0.053 0.089 -0.217 0.612 -0.252 -0.900 0.900 0.004 0.032 0.287 0.032 -0.017 0.041 -0.152 0.369 -0.152 0.369 -0.017 0.041 0.080 -0.195 0.474 -0.195 -0.900 0.950 0.002 0.021 0.400 0.044 -0.011 0.027 -0.097 0.212 -0.212 0.514 -0.011 0.024 0.052 -0.125 0.272 -0.112 -0.900 1.000 -0.000 -0.000 0.536 0.059 -0.000 -0.000 0.000 -0.000 -0.283 0.688 -0.000 -0.000 0.000 -0.000 -0.000 0.000 - -0.950 0.000 0.039 0.747 0.000 0.000 -0.182 0.395 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.950 0.050 0.029 0.558 0.029 0.002 -0.136 0.295 0.295 -0.136 -0.007 0.016 0.016 -0.007 -0.072 0.156 -0.072 0.033 -0.950 0.100 0.021 0.400 0.044 0.002 -0.097 0.212 0.514 -0.212 -0.011 0.024 0.027 -0.011 -0.125 0.272 -0.112 0.052 -0.950 0.150 0.014 0.271 0.048 0.003 -0.066 0.143 0.664 -0.236 -0.012 0.025 0.035 -0.012 -0.162 0.352 -0.125 0.057 -0.950 0.200 0.009 0.167 0.042 0.002 -0.041 0.089 0.753 -0.215 -0.010 0.022 0.040 -0.011 -0.183 0.399 -0.114 0.052 -0.950 0.250 0.005 0.088 0.029 0.002 -0.021 0.046 0.788 -0.158 -0.007 0.015 0.041 -0.008 -0.192 0.417 -0.083 0.038 -0.950 0.300 0.002 0.029 0.012 0.001 -0.007 0.015 0.776 -0.071 -0.003 0.007 0.041 -0.004 -0.189 0.411 -0.037 0.017 -0.950 0.350 -0.001 -0.012 -0.006 -0.000 0.003 -0.006 0.726 0.038 0.002 -0.003 0.038 0.002 -0.177 0.385 0.020 -0.009 -0.950 0.400 -0.002 -0.036 -0.024 -0.001 0.009 -0.019 0.645 0.161 0.006 -0.013 0.034 0.008 -0.157 0.342 0.085 -0.039 -0.950 0.450 -0.002 -0.047 -0.038 -0.002 0.011 -0.025 0.541 0.291 0.009 -0.020 0.028 0.015 -0.132 0.286 0.154 -0.071 -0.950 0.500 -0.002 -0.047 -0.047 -0.002 0.011 -0.025 0.420 0.420 0.011 -0.025 0.022 0.022 -0.102 0.222 0.222 -0.102 -0.950 0.550 -0.002 -0.038 -0.047 -0.002 0.009 -0.020 0.291 0.541 0.011 -0.025 0.015 0.028 -0.071 0.154 0.286 -0.132 -0.950 0.600 -0.001 -0.024 -0.036 -0.002 0.006 -0.013 0.161 0.645 0.009 -0.019 0.008 0.034 -0.039 0.085 0.342 -0.157 -0.950 0.650 -0.000 -0.006 -0.012 -0.001 0.002 -0.003 0.038 0.726 0.003 -0.006 0.002 0.038 -0.009 0.020 0.385 -0.177 -0.950 0.700 0.001 0.012 0.029 0.002 -0.003 0.007 -0.071 0.776 -0.007 0.015 -0.004 0.041 0.017 -0.037 0.411 -0.189 -0.950 0.750 0.002 0.029 0.088 0.005 -0.007 0.015 -0.158 0.788 -0.021 0.046 -0.008 0.041 0.038 -0.083 0.417 -0.192 -0.950 0.800 0.002 0.042 0.167 0.009 -0.010 0.022 -0.215 0.753 -0.041 0.089 -0.011 0.040 0.052 -0.114 0.399 -0.183 -0.950 0.850 0.003 0.048 0.271 0.014 -0.012 0.025 -0.236 0.664 -0.066 0.143 -0.012 0.035 0.057 -0.125 0.352 -0.162 -0.950 0.900 0.002 0.044 0.400 0.021 -0.011 0.024 -0.212 0.514 -0.097 0.212 -0.011 0.027 0.052 -0.112 0.272 -0.125 -0.950 0.950 0.002 0.029 0.558 0.029 -0.007 0.016 -0.136 0.295 -0.136 0.295 -0.007 0.016 0.033 -0.072 0.156 -0.072 -0.950 1.000 -0.000 0.000 0.747 0.039 0.000 -0.000 0.000 -0.000 -0.182 0.395 0.000 0.000 -0.000 0.000 -0.000 0.000 - -1.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.050 0.000 0.747 0.039 0.000 0.000 0.000 0.395 -0.182 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.100 0.000 0.535 0.060 0.000 0.000 0.000 0.689 -0.284 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.150 0.000 0.362 0.064 0.000 0.000 0.000 0.889 -0.316 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.200 0.000 0.224 0.056 0.000 0.000 0.000 1.008 -0.288 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.250 0.000 0.117 0.039 0.000 0.000 0.000 1.055 -0.211 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.300 0.000 0.039 0.017 0.000 0.000 0.000 1.040 -0.095 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.350 0.000 -0.015 -0.008 0.000 0.000 0.000 0.973 0.051 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.400 0.000 -0.048 -0.032 0.000 0.000 0.000 0.864 0.216 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.450 0.000 -0.063 -0.051 0.000 0.000 0.000 0.724 0.390 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.500 0.000 -0.062 -0.062 0.000 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.550 0.000 -0.051 -0.063 0.000 0.000 0.000 0.390 0.724 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.600 0.000 -0.032 -0.048 0.000 0.000 0.000 0.216 0.864 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.650 0.000 -0.008 -0.015 0.000 0.000 0.000 0.051 0.973 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.700 0.000 0.016 0.038 0.000 0.000 0.000 -0.094 1.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.750 0.000 0.039 0.117 0.000 0.000 0.000 -0.211 1.055 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.800 0.000 0.056 0.224 0.000 0.000 0.000 -0.288 1.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.850 0.000 0.064 0.362 0.000 0.000 0.000 -0.316 0.889 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.900 0.000 0.059 0.536 0.000 0.000 0.000 -0.283 0.688 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.950 0.000 0.039 0.747 0.000 0.000 0.000 -0.182 0.395 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 - diff --git a/tests/fe/Q4.check b/tests/fe/Q4.check deleted file mode 100644 index d95362f947..0000000000 --- a/tests/fe/Q4.check +++ /dev/null @@ -1,462 +0,0 @@ -0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.050 0.638 0.000 0.000 -0.034 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.638 -0.426 0.182 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.100 0.374 0.000 0.000 -0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.998 -0.562 0.230 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.150 0.190 0.000 0.000 -0.034 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.142 -0.490 0.190 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.200 0.070 0.000 0.000 -0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.126 -0.282 0.102 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.250 -0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.300 -0.034 0.000 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.806 0.302 -0.090 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.350 -0.042 0.000 0.000 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.582 0.582 -0.146 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.400 -0.034 0.000 0.000 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.358 0.806 -0.154 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.450 -0.018 0.000 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.158 0.950 -0.106 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.500 -0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.550 0.014 0.000 0.000 -0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.106 0.950 0.158 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.600 0.022 0.000 0.000 -0.034 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.154 0.806 0.358 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.650 0.022 0.000 0.000 -0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.146 0.582 0.582 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.700 0.014 0.000 0.000 -0.034 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.090 0.302 0.806 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.750 -0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.800 -0.018 0.000 0.000 0.070 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.102 -0.282 1.126 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.850 -0.034 0.000 0.000 0.190 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.190 -0.490 1.142 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.900 -0.042 0.000 0.000 0.374 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.230 -0.562 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.950 -0.034 0.000 0.000 0.638 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.182 -0.426 0.638 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 1.000 -0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 - -0.050 0.000 0.638 -0.034 0.000 0.000 0.638 -0.426 0.182 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.050 0.050 0.408 -0.021 0.001 -0.021 0.408 -0.272 0.116 -0.021 0.014 -0.006 -0.021 0.014 -0.006 0.408 -0.272 0.116 0.408 0.116 0.033 0.116 -0.272 -0.078 -0.078 -0.272 0.181 -0.050 0.100 0.239 -0.013 0.001 -0.027 0.239 -0.159 0.068 -0.034 0.019 -0.008 -0.027 0.018 -0.008 0.637 -0.359 0.147 0.637 0.182 0.042 0.147 -0.425 -0.102 -0.098 -0.359 0.239 -0.050 0.150 0.122 -0.006 0.001 -0.021 0.122 -0.081 0.035 -0.038 0.016 -0.006 -0.021 0.014 -0.006 0.729 -0.313 0.122 0.729 0.208 0.035 0.122 -0.486 -0.089 -0.081 -0.313 0.208 -0.050 0.200 0.045 -0.002 0.001 -0.011 0.045 -0.030 0.013 -0.038 0.009 -0.003 -0.011 0.007 -0.003 0.719 -0.180 0.065 0.719 0.205 0.019 0.065 -0.479 -0.051 -0.044 -0.180 0.120 -0.050 0.250 -0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.034 0.000 0.000 -0.000 0.000 0.000 0.638 -0.000 -0.000 0.638 0.182 -0.000 -0.000 -0.426 -0.000 -0.000 0.000 -0.000 -0.050 0.300 -0.021 0.001 -0.000 0.009 -0.021 0.014 -0.006 -0.027 -0.010 0.003 0.009 -0.006 0.003 0.515 0.193 -0.057 0.515 0.147 -0.016 -0.057 -0.343 0.055 0.038 0.193 -0.129 -0.050 0.350 -0.027 0.001 -0.001 0.014 -0.027 0.018 -0.008 -0.020 -0.020 0.005 0.014 -0.010 0.004 0.372 0.372 -0.093 0.372 0.106 -0.027 -0.093 -0.248 0.106 0.062 0.372 -0.248 -0.050 0.400 -0.021 0.001 -0.001 0.014 -0.021 0.014 -0.006 -0.012 -0.027 0.005 0.014 -0.010 0.004 0.229 0.515 -0.098 0.229 0.065 -0.028 -0.098 -0.153 0.147 0.065 0.515 -0.343 -0.050 0.450 -0.011 0.001 -0.000 0.009 -0.011 0.007 -0.003 -0.005 -0.032 0.004 0.009 -0.006 0.003 0.101 0.607 -0.067 0.101 0.029 -0.019 -0.067 -0.067 0.173 0.045 0.607 -0.404 -0.050 0.500 -0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.034 -0.000 -0.000 0.000 0.000 0.000 0.638 -0.000 0.000 -0.000 -0.000 0.000 0.000 0.182 0.000 0.638 -0.426 -0.050 0.550 0.009 -0.000 0.001 -0.011 0.009 -0.006 0.003 0.004 -0.032 -0.005 -0.011 0.007 -0.003 -0.067 0.607 0.101 -0.067 -0.019 0.029 0.101 0.045 0.173 -0.067 0.607 -0.404 -0.050 0.600 0.014 -0.001 0.001 -0.021 0.014 -0.010 0.004 0.005 -0.027 -0.012 -0.021 0.014 -0.006 -0.098 0.515 0.229 -0.098 -0.028 0.065 0.229 0.065 0.147 -0.153 0.515 -0.343 -0.050 0.650 0.014 -0.001 0.001 -0.027 0.014 -0.010 0.004 0.005 -0.020 -0.020 -0.027 0.018 -0.008 -0.093 0.372 0.372 -0.093 -0.027 0.106 0.372 0.062 0.106 -0.248 0.372 -0.248 -0.050 0.700 0.009 -0.000 0.001 -0.021 0.009 -0.006 0.003 0.003 -0.010 -0.027 -0.021 0.014 -0.006 -0.057 0.193 0.515 -0.057 -0.016 0.147 0.515 0.038 0.055 -0.343 0.193 -0.129 -0.050 0.750 -0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.034 -0.000 0.000 0.000 0.000 -0.000 0.638 0.000 0.000 0.182 0.638 0.000 -0.000 -0.426 0.000 0.000 -0.050 0.800 -0.011 0.001 -0.002 0.045 -0.011 0.007 -0.003 -0.003 0.009 -0.038 0.045 -0.030 0.013 0.065 -0.180 0.719 0.065 0.019 0.205 0.719 -0.044 -0.051 -0.479 -0.180 0.120 -0.050 0.850 -0.021 0.001 -0.006 0.122 -0.021 0.014 -0.006 -0.006 0.016 -0.038 0.122 -0.081 0.035 0.122 -0.313 0.729 0.122 0.035 0.208 0.729 -0.081 -0.089 -0.486 -0.313 0.208 -0.050 0.900 -0.027 0.001 -0.013 0.239 -0.027 0.018 -0.008 -0.008 0.019 -0.034 0.239 -0.159 0.068 0.147 -0.359 0.637 0.147 0.042 0.182 0.637 -0.098 -0.102 -0.425 -0.359 0.239 -0.050 0.950 -0.021 0.001 -0.021 0.408 -0.021 0.014 -0.006 -0.006 0.014 -0.021 0.408 -0.272 0.116 0.116 -0.272 0.408 0.116 0.033 0.116 0.408 -0.078 -0.078 -0.272 -0.272 0.181 -0.050 1.000 -0.000 0.000 -0.034 0.638 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 0.638 -0.426 0.182 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 - -0.100 0.000 0.374 -0.042 0.000 0.000 0.998 -0.562 0.230 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.100 0.050 0.239 -0.027 0.001 -0.013 0.637 -0.359 0.147 -0.027 0.018 -0.008 -0.034 0.019 -0.008 0.239 -0.159 0.068 0.637 0.147 0.042 0.182 -0.359 -0.098 -0.102 -0.425 0.239 -0.100 0.100 0.140 -0.016 0.002 -0.016 0.374 -0.210 0.086 -0.042 0.023 -0.010 -0.042 0.023 -0.010 0.374 -0.210 0.086 0.997 0.230 0.053 0.230 -0.561 -0.129 -0.129 -0.561 0.315 -0.100 0.150 0.071 -0.008 0.001 -0.013 0.190 -0.107 0.044 -0.048 0.020 -0.008 -0.034 0.019 -0.008 0.428 -0.183 0.071 1.141 0.263 0.044 0.190 -0.642 -0.113 -0.107 -0.489 0.275 -0.100 0.200 0.026 -0.003 0.001 -0.007 0.070 -0.040 0.016 -0.047 0.012 -0.004 -0.018 0.010 -0.004 0.422 -0.105 0.038 1.125 0.260 0.024 0.102 -0.633 -0.065 -0.058 -0.281 0.158 -0.100 0.250 -0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.042 0.000 0.000 -0.000 0.000 0.000 0.374 -0.000 -0.000 0.998 0.230 -0.000 -0.000 -0.562 -0.000 -0.000 0.000 -0.000 -0.100 0.300 -0.013 0.001 -0.001 0.005 -0.034 0.019 -0.008 -0.034 -0.013 0.004 0.014 -0.008 0.003 0.302 0.113 -0.034 0.805 0.186 -0.021 -0.089 -0.453 0.070 0.050 0.302 -0.170 -0.100 0.350 -0.016 0.002 -0.001 0.008 -0.042 0.023 -0.010 -0.024 -0.024 0.006 0.022 -0.013 0.005 0.218 0.218 -0.055 0.581 0.134 -0.034 -0.145 -0.327 0.134 0.082 0.581 -0.327 -0.100 0.400 -0.013 0.001 -0.001 0.008 -0.034 0.019 -0.008 -0.015 -0.034 0.006 0.022 -0.013 0.005 0.134 0.302 -0.058 0.358 0.083 -0.035 -0.153 -0.201 0.186 0.086 0.805 -0.453 -0.100 0.450 -0.007 0.001 -0.001 0.005 -0.018 0.010 -0.004 -0.007 -0.040 0.004 0.014 -0.008 0.003 0.059 0.356 -0.040 0.158 0.036 -0.024 -0.105 -0.089 0.219 0.059 0.949 -0.534 -0.100 0.500 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.042 -0.000 -0.000 0.000 0.000 0.000 0.374 0.000 0.000 -0.000 -0.000 0.000 0.000 0.230 0.000 0.998 -0.562 -0.100 0.550 0.005 -0.001 0.001 -0.007 0.014 -0.008 0.003 0.004 -0.040 -0.007 -0.018 0.010 -0.004 -0.040 0.356 0.059 -0.105 -0.024 0.036 0.158 0.059 0.219 -0.089 0.949 -0.534 -0.100 0.600 0.008 -0.001 0.001 -0.013 0.022 -0.013 0.005 0.006 -0.034 -0.015 -0.034 0.019 -0.008 -0.058 0.302 0.134 -0.153 -0.035 0.083 0.358 0.086 0.186 -0.201 0.805 -0.453 -0.100 0.650 0.008 -0.001 0.002 -0.016 0.022 -0.013 0.005 0.006 -0.024 -0.024 -0.042 0.023 -0.010 -0.055 0.218 0.218 -0.145 -0.034 0.134 0.581 0.082 0.134 -0.327 0.581 -0.327 -0.100 0.700 0.005 -0.001 0.001 -0.013 0.014 -0.008 0.003 0.004 -0.013 -0.034 -0.034 0.019 -0.008 -0.034 0.113 0.302 -0.089 -0.021 0.186 0.805 0.050 0.070 -0.453 0.302 -0.170 -0.100 0.750 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.042 -0.000 0.000 0.000 0.000 -0.000 0.374 0.000 -0.000 0.230 0.998 0.000 -0.000 -0.562 0.000 -0.000 -0.100 0.800 -0.007 0.001 -0.003 0.026 -0.018 0.010 -0.004 -0.004 0.012 -0.047 0.070 -0.040 0.016 0.038 -0.105 0.422 0.102 0.024 0.260 1.125 -0.058 -0.065 -0.633 -0.281 0.158 -0.100 0.850 -0.013 0.001 -0.008 0.071 -0.034 0.019 -0.008 -0.008 0.020 -0.048 0.190 -0.107 0.044 0.071 -0.183 0.428 0.190 0.044 0.263 1.141 -0.107 -0.113 -0.642 -0.489 0.275 -0.100 0.900 -0.016 0.002 -0.016 0.140 -0.042 0.023 -0.010 -0.010 0.023 -0.042 0.374 -0.210 0.086 0.086 -0.210 0.374 0.230 0.053 0.230 0.997 -0.129 -0.129 -0.561 -0.561 0.315 -0.100 0.950 -0.013 0.001 -0.027 0.239 -0.034 0.019 -0.008 -0.008 0.018 -0.027 0.637 -0.359 0.147 0.068 -0.159 0.239 0.182 0.042 0.147 0.637 -0.102 -0.098 -0.359 -0.425 0.239 -0.100 1.000 -0.000 0.000 -0.042 0.374 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 0.998 -0.562 0.230 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 - -0.150 0.000 0.190 -0.034 0.000 0.000 1.142 -0.490 0.190 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.150 0.050 0.122 -0.021 0.001 -0.006 0.729 -0.313 0.122 -0.021 0.014 -0.006 -0.038 0.016 -0.006 0.122 -0.081 0.035 0.729 0.122 0.035 0.208 -0.313 -0.081 -0.089 -0.486 0.208 -0.150 0.100 0.071 -0.013 0.001 -0.008 0.428 -0.183 0.071 -0.034 0.019 -0.008 -0.048 0.020 -0.008 0.190 -0.107 0.044 1.141 0.190 0.044 0.263 -0.489 -0.107 -0.113 -0.642 0.275 -0.150 0.150 0.036 -0.006 0.001 -0.006 0.218 -0.093 0.036 -0.038 0.016 -0.006 -0.038 0.016 -0.006 0.218 -0.093 0.036 1.305 0.218 0.036 0.218 -0.559 -0.093 -0.093 -0.559 0.240 -0.150 0.200 0.013 -0.002 0.001 -0.003 0.080 -0.034 0.013 -0.038 0.009 -0.003 -0.020 0.009 -0.003 0.214 -0.054 0.019 1.287 0.214 0.019 0.117 -0.551 -0.054 -0.050 -0.322 0.138 -0.150 0.250 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.034 0.000 0.000 -0.000 0.000 0.000 0.190 -0.000 -0.000 1.142 0.190 -0.000 -0.000 -0.490 -0.000 -0.000 0.000 -0.000 -0.150 0.300 -0.006 0.001 -0.000 0.003 -0.038 0.016 -0.006 -0.027 -0.010 0.003 0.016 -0.007 0.003 0.154 0.058 -0.017 0.921 0.154 -0.017 -0.102 -0.395 0.058 0.044 0.345 -0.148 -0.150 0.350 -0.008 0.001 -0.001 0.004 -0.048 0.020 -0.008 -0.020 -0.020 0.005 0.026 -0.011 0.004 0.111 0.111 -0.028 0.665 0.111 -0.028 -0.166 -0.285 0.111 0.071 0.665 -0.285 -0.150 0.400 -0.006 0.001 -0.001 0.004 -0.038 0.016 -0.006 -0.012 -0.027 0.005 0.026 -0.011 0.004 0.068 0.154 -0.029 0.409 0.068 -0.029 -0.175 -0.175 0.154 0.075 0.921 -0.395 -0.150 0.450 -0.003 0.001 -0.000 0.003 -0.020 0.009 -0.003 -0.005 -0.032 0.004 0.016 -0.007 0.003 0.030 0.181 -0.020 0.181 0.030 -0.020 -0.121 -0.078 0.181 0.052 1.086 -0.465 -0.150 0.500 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.034 0.000 -0.000 0.000 0.000 0.000 0.190 0.000 0.000 -0.000 0.000 0.000 0.000 0.190 0.000 1.142 -0.490 -0.150 0.550 0.003 -0.000 0.001 -0.003 0.016 -0.007 0.003 0.004 -0.032 -0.005 -0.020 0.009 -0.003 -0.020 0.181 0.030 -0.121 -0.020 0.030 0.181 0.052 0.181 -0.078 1.086 -0.465 -0.150 0.600 0.004 -0.001 0.001 -0.006 0.026 -0.011 0.004 0.005 -0.027 -0.012 -0.038 0.016 -0.006 -0.029 0.154 0.068 -0.175 -0.029 0.068 0.409 0.075 0.154 -0.175 0.921 -0.395 -0.150 0.650 0.004 -0.001 0.001 -0.008 0.026 -0.011 0.004 0.005 -0.020 -0.020 -0.048 0.020 -0.008 -0.028 0.111 0.111 -0.166 -0.028 0.111 0.665 0.071 0.111 -0.285 0.665 -0.285 -0.150 0.700 0.003 -0.000 0.001 -0.006 0.016 -0.007 0.003 0.003 -0.010 -0.027 -0.038 0.016 -0.006 -0.017 0.058 0.154 -0.102 -0.017 0.154 0.921 0.044 0.058 -0.395 0.345 -0.148 -0.150 0.750 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.034 -0.000 0.000 0.000 0.000 -0.000 0.190 0.000 -0.000 0.190 1.142 0.000 -0.000 -0.490 0.000 -0.000 -0.150 0.800 -0.003 0.001 -0.002 0.013 -0.020 0.009 -0.003 -0.003 0.009 -0.038 0.080 -0.034 0.013 0.019 -0.054 0.214 0.117 0.019 0.214 1.287 -0.050 -0.054 -0.551 -0.322 0.138 -0.150 0.850 -0.006 0.001 -0.006 0.036 -0.038 0.016 -0.006 -0.006 0.016 -0.038 0.218 -0.093 0.036 0.036 -0.093 0.218 0.218 0.036 0.218 1.305 -0.093 -0.093 -0.559 -0.559 0.240 -0.150 0.900 -0.008 0.001 -0.013 0.071 -0.048 0.020 -0.008 -0.008 0.019 -0.034 0.428 -0.183 0.071 0.044 -0.107 0.190 0.263 0.044 0.190 1.141 -0.113 -0.107 -0.489 -0.642 0.275 -0.150 0.950 -0.006 0.001 -0.021 0.122 -0.038 0.016 -0.006 -0.006 0.014 -0.021 0.729 -0.313 0.122 0.035 -0.081 0.122 0.208 0.035 0.122 0.729 -0.089 -0.081 -0.313 -0.486 0.208 -0.150 1.000 -0.000 0.000 -0.034 0.190 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 1.142 -0.490 0.190 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 - -0.200 0.000 0.070 -0.018 0.000 0.000 1.126 -0.282 0.102 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.200 0.050 0.045 -0.011 0.001 -0.002 0.719 -0.180 0.065 -0.011 0.007 -0.003 -0.038 0.009 -0.003 0.045 -0.030 0.013 0.719 0.065 0.019 0.205 -0.180 -0.044 -0.051 -0.479 0.120 -0.200 0.100 0.026 -0.007 0.001 -0.003 0.422 -0.105 0.038 -0.018 0.010 -0.004 -0.047 0.012 -0.004 0.070 -0.040 0.016 1.125 0.102 0.024 0.260 -0.281 -0.058 -0.065 -0.633 0.158 -0.200 0.150 0.013 -0.003 0.001 -0.002 0.214 -0.054 0.019 -0.020 0.009 -0.003 -0.038 0.009 -0.003 0.080 -0.034 0.013 1.287 0.117 0.019 0.214 -0.322 -0.050 -0.054 -0.551 0.138 -0.200 0.200 0.005 -0.001 0.000 -0.001 0.079 -0.020 0.007 -0.020 0.005 -0.002 -0.020 0.005 -0.002 0.079 -0.020 0.007 1.269 0.115 0.010 0.115 -0.317 -0.029 -0.029 -0.317 0.079 -0.200 0.250 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.018 0.000 0.000 -0.000 0.000 0.000 0.070 -0.000 -0.000 1.126 0.102 -0.000 -0.000 -0.282 -0.000 -0.000 0.000 0.000 -0.200 0.300 -0.002 0.001 -0.000 0.001 -0.038 0.009 -0.003 -0.014 -0.005 0.002 0.016 -0.004 0.001 0.057 0.021 -0.006 0.908 0.083 -0.009 -0.101 -0.227 0.031 0.025 0.341 -0.085 -0.200 0.350 -0.003 0.001 -0.000 0.002 -0.047 0.012 -0.004 -0.010 -0.010 0.003 0.025 -0.006 0.002 0.041 0.041 -0.010 0.656 0.060 -0.015 -0.164 -0.164 0.060 0.041 0.656 -0.164 -0.200 0.400 -0.002 0.001 -0.000 0.002 -0.038 0.009 -0.003 -0.006 -0.014 0.003 0.025 -0.006 0.002 0.025 0.057 -0.011 0.404 0.037 -0.016 -0.173 -0.101 0.083 0.043 0.908 -0.227 -0.200 0.450 -0.001 0.000 -0.000 0.001 -0.020 0.005 -0.002 -0.003 -0.017 0.002 0.016 -0.004 0.001 0.011 0.067 -0.007 0.178 0.016 -0.011 -0.119 -0.045 0.097 0.030 1.071 -0.268 -0.200 0.500 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.018 0.000 -0.000 0.000 0.000 0.000 0.070 0.000 0.000 -0.000 0.000 0.000 0.000 0.102 0.000 1.126 -0.282 -0.200 0.550 0.001 -0.000 0.000 -0.001 0.016 -0.004 0.001 0.002 -0.017 -0.003 -0.020 0.005 -0.002 -0.007 0.067 0.011 -0.119 -0.011 0.016 0.178 0.030 0.097 -0.045 1.071 -0.268 -0.200 0.600 0.002 -0.000 0.001 -0.002 0.025 -0.006 0.002 0.003 -0.014 -0.006 -0.038 0.009 -0.003 -0.011 0.057 0.025 -0.173 -0.016 0.037 0.404 0.043 0.083 -0.101 0.908 -0.227 -0.200 0.650 0.002 -0.000 0.001 -0.003 0.025 -0.006 0.002 0.003 -0.010 -0.010 -0.047 0.012 -0.004 -0.010 0.041 0.041 -0.164 -0.015 0.060 0.656 0.041 0.060 -0.164 0.656 -0.164 -0.200 0.700 0.001 -0.000 0.001 -0.002 0.016 -0.004 0.001 0.002 -0.005 -0.014 -0.038 0.009 -0.003 -0.006 0.021 0.057 -0.101 -0.009 0.083 0.908 0.025 0.031 -0.227 0.341 -0.085 -0.200 0.750 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.018 -0.000 0.000 0.000 0.000 -0.000 0.070 0.000 -0.000 0.102 1.126 0.000 -0.000 -0.282 0.000 -0.000 -0.200 0.800 -0.001 0.000 -0.001 0.005 -0.020 0.005 -0.002 -0.002 0.005 -0.020 0.079 -0.020 0.007 0.007 -0.020 0.079 0.115 0.010 0.115 1.269 -0.029 -0.029 -0.317 -0.317 0.079 -0.200 0.850 -0.002 0.001 -0.003 0.013 -0.038 0.009 -0.003 -0.003 0.009 -0.020 0.214 -0.054 0.019 0.013 -0.034 0.080 0.214 0.019 0.117 1.287 -0.054 -0.050 -0.322 -0.551 0.138 -0.200 0.900 -0.003 0.001 -0.007 0.026 -0.047 0.012 -0.004 -0.004 0.010 -0.018 0.422 -0.105 0.038 0.016 -0.040 0.070 0.260 0.024 0.102 1.125 -0.065 -0.058 -0.281 -0.633 0.158 -0.200 0.950 -0.002 0.001 -0.011 0.045 -0.038 0.009 -0.003 -0.003 0.007 -0.011 0.719 -0.180 0.065 0.013 -0.030 0.045 0.205 0.019 0.065 0.719 -0.051 -0.044 -0.180 -0.479 0.120 -0.200 1.000 -0.000 0.000 -0.018 0.070 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 1.126 -0.282 0.102 0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 - -0.250 0.000 -0.000 -0.000 0.000 0.000 1.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.250 0.050 -0.000 -0.000 0.000 0.000 0.638 -0.000 -0.000 -0.000 0.000 0.000 -0.034 0.000 0.000 -0.000 -0.000 -0.000 0.638 -0.000 -0.000 0.182 0.000 -0.000 -0.000 -0.426 0.000 -0.250 0.100 -0.000 -0.000 0.000 0.000 0.374 -0.000 -0.000 -0.000 0.000 0.000 -0.042 0.000 0.000 -0.000 -0.000 -0.000 0.998 -0.000 -0.000 0.230 0.000 -0.000 -0.000 -0.562 0.000 -0.250 0.150 -0.000 0.000 0.000 0.000 0.190 -0.000 -0.000 -0.000 0.000 0.000 -0.034 0.000 0.000 -0.000 -0.000 -0.000 1.142 -0.000 -0.000 0.190 0.000 -0.000 -0.000 -0.490 0.000 -0.250 0.200 -0.000 0.000 0.000 0.000 0.070 -0.000 -0.000 -0.000 0.000 0.000 -0.018 0.000 0.000 -0.000 -0.000 -0.000 1.126 -0.000 -0.000 0.102 0.000 -0.000 -0.000 -0.282 0.000 -0.250 0.250 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000 1.000 -0.000 -0.000 -0.000 0.000 -0.000 -0.000 0.000 0.000 -0.250 0.300 -0.000 0.000 0.000 0.000 -0.034 -0.000 -0.000 -0.000 0.000 0.000 0.014 0.000 0.000 0.000 -0.000 -0.000 0.806 -0.000 -0.000 -0.090 0.000 -0.000 -0.000 0.302 0.000 -0.250 0.350 -0.000 0.000 0.000 0.000 -0.042 -0.000 -0.000 -0.000 0.000 0.000 0.022 0.000 0.000 0.000 -0.000 -0.000 0.582 -0.000 -0.000 -0.146 0.000 -0.000 -0.000 0.582 0.000 -0.250 0.400 -0.000 0.000 0.000 0.000 -0.034 -0.000 -0.000 -0.000 0.000 0.000 0.022 0.000 0.000 0.000 -0.000 -0.000 0.358 -0.000 -0.000 -0.154 0.000 -0.000 -0.000 0.806 0.000 -0.250 0.450 -0.000 0.000 0.000 0.000 -0.018 -0.000 -0.000 -0.000 0.000 0.000 0.014 0.000 0.000 0.000 -0.000 -0.000 0.158 -0.000 -0.000 -0.106 0.000 -0.000 -0.000 0.950 0.000 -0.250 0.500 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 1.000 0.000 -0.250 0.550 -0.000 0.000 0.000 0.000 0.014 -0.000 -0.000 -0.000 0.000 -0.000 -0.018 0.000 0.000 0.000 -0.000 0.000 -0.106 -0.000 0.000 0.158 0.000 -0.000 0.000 0.950 0.000 -0.250 0.600 -0.000 0.000 0.000 0.000 0.022 -0.000 -0.000 -0.000 0.000 -0.000 -0.034 0.000 0.000 0.000 -0.000 0.000 -0.154 -0.000 0.000 0.358 0.000 -0.000 0.000 0.806 0.000 -0.250 0.650 -0.000 0.000 0.000 0.000 0.022 -0.000 -0.000 -0.000 0.000 -0.000 -0.042 0.000 0.000 0.000 -0.000 0.000 -0.146 -0.000 0.000 0.582 0.000 -0.000 0.000 0.582 0.000 -0.250 0.700 -0.000 0.000 0.000 0.000 0.014 -0.000 -0.000 -0.000 0.000 -0.000 -0.034 0.000 0.000 0.000 -0.000 0.000 -0.090 -0.000 0.000 0.806 0.000 -0.000 0.000 0.302 0.000 -0.250 0.750 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 1.000 0.000 -0.000 0.000 0.000 0.000 -0.250 0.800 -0.000 0.000 0.000 0.000 -0.018 -0.000 -0.000 -0.000 0.000 -0.000 0.070 0.000 0.000 0.000 -0.000 0.000 0.102 -0.000 0.000 1.126 0.000 -0.000 0.000 -0.282 0.000 -0.250 0.850 -0.000 0.000 0.000 0.000 -0.034 -0.000 -0.000 -0.000 0.000 -0.000 0.190 0.000 0.000 0.000 -0.000 0.000 0.190 -0.000 0.000 1.142 0.000 -0.000 0.000 -0.490 0.000 -0.250 0.900 -0.000 0.000 0.000 0.000 -0.042 -0.000 -0.000 -0.000 0.000 -0.000 0.374 0.000 0.000 0.000 -0.000 0.000 0.230 -0.000 0.000 0.998 0.000 -0.000 0.000 -0.562 0.000 -0.250 0.950 -0.000 0.000 0.000 0.000 -0.034 -0.000 -0.000 -0.000 0.000 -0.000 0.638 0.000 0.000 0.000 -0.000 0.000 0.182 -0.000 0.000 0.638 0.000 -0.000 0.000 -0.426 0.000 -0.250 1.000 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 - -0.300 0.000 -0.034 0.014 0.000 0.000 0.806 0.302 -0.090 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.300 0.050 -0.021 0.009 -0.000 0.001 0.515 0.193 -0.057 0.009 -0.006 0.003 -0.027 -0.010 0.003 -0.021 0.014 -0.006 0.515 -0.057 -0.016 0.147 0.193 0.038 0.055 -0.343 -0.129 -0.300 0.100 -0.013 0.005 -0.001 0.001 0.302 0.113 -0.034 0.014 -0.008 0.003 -0.034 -0.013 0.004 -0.034 0.019 -0.008 0.805 -0.089 -0.021 0.186 0.302 0.050 0.070 -0.453 -0.170 -0.300 0.150 -0.006 0.003 -0.000 0.001 0.154 0.058 -0.017 0.016 -0.007 0.003 -0.027 -0.010 0.003 -0.038 0.016 -0.006 0.921 -0.102 -0.017 0.154 0.345 0.044 0.058 -0.395 -0.148 -0.300 0.200 -0.002 0.001 -0.000 0.001 0.057 0.021 -0.006 0.016 -0.004 0.001 -0.014 -0.005 0.002 -0.038 0.009 -0.003 0.908 -0.101 -0.009 0.083 0.341 0.025 0.031 -0.227 -0.085 -0.300 0.250 -0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 0.014 0.000 0.000 -0.000 0.000 0.000 -0.034 -0.000 -0.000 0.806 -0.090 -0.000 -0.000 0.302 -0.000 -0.000 0.000 -0.000 -0.300 0.300 0.001 -0.000 0.000 -0.000 -0.027 -0.010 0.003 0.012 0.004 -0.001 0.012 0.004 -0.001 -0.027 -0.010 0.003 0.650 -0.072 0.008 -0.072 0.244 -0.027 -0.027 0.244 0.091 -0.300 0.350 0.001 -0.001 0.000 -0.001 -0.034 -0.013 0.004 0.008 0.008 -0.002 0.018 0.007 -0.002 -0.020 -0.020 0.005 0.470 -0.052 0.013 -0.117 0.176 -0.052 -0.044 0.470 0.176 -0.300 0.400 0.001 -0.000 0.000 -0.001 -0.027 -0.010 0.003 0.005 0.012 -0.002 0.018 0.007 -0.002 -0.012 -0.027 0.005 0.289 -0.032 0.014 -0.124 0.108 -0.072 -0.046 0.650 0.244 -0.300 0.450 0.001 -0.000 0.000 -0.000 -0.014 -0.005 0.002 0.002 0.014 -0.002 0.012 0.004 -0.001 -0.005 -0.032 0.004 0.128 -0.014 0.009 -0.085 0.048 -0.085 -0.032 0.766 0.287 -0.300 0.500 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.014 0.000 -0.000 0.000 0.000 0.000 -0.034 0.000 0.000 -0.000 0.000 -0.000 0.000 -0.090 -0.000 0.806 0.302 -0.300 0.550 -0.000 0.000 -0.000 0.001 0.012 0.004 -0.001 -0.002 0.014 0.002 -0.014 -0.005 0.002 0.004 -0.032 -0.005 -0.085 0.009 -0.014 0.128 -0.032 -0.085 0.048 0.766 0.287 -0.300 0.600 -0.001 0.000 -0.000 0.001 0.018 0.007 -0.002 -0.002 0.012 0.005 -0.027 -0.010 0.003 0.005 -0.027 -0.012 -0.124 0.014 -0.032 0.289 -0.046 -0.072 0.108 0.650 0.244 -0.300 0.650 -0.001 0.000 -0.001 0.001 0.018 0.007 -0.002 -0.002 0.008 0.008 -0.034 -0.013 0.004 0.005 -0.020 -0.020 -0.117 0.013 -0.052 0.470 -0.044 -0.052 0.176 0.470 0.176 -0.300 0.700 -0.000 0.000 -0.000 0.001 0.012 0.004 -0.001 -0.001 0.004 0.012 -0.027 -0.010 0.003 0.003 -0.010 -0.027 -0.072 0.008 -0.072 0.650 -0.027 -0.027 0.244 0.244 0.091 -0.300 0.750 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.014 -0.000 0.000 0.000 0.000 -0.000 -0.034 0.000 -0.000 -0.090 0.806 0.000 -0.000 0.302 0.000 -0.000 -0.300 0.800 0.001 -0.000 0.001 -0.002 -0.014 -0.005 0.002 0.001 -0.004 0.016 0.057 0.021 -0.006 -0.003 0.009 -0.038 0.083 -0.009 -0.101 0.908 0.031 0.025 0.341 -0.227 -0.085 -0.300 0.850 0.001 -0.000 0.003 -0.006 -0.027 -0.010 0.003 0.003 -0.007 0.016 0.154 0.058 -0.017 -0.006 0.016 -0.038 0.154 -0.017 -0.102 0.921 0.058 0.044 0.345 -0.395 -0.148 -0.300 0.900 0.001 -0.001 0.005 -0.013 -0.034 -0.013 0.004 0.003 -0.008 0.014 0.302 0.113 -0.034 -0.008 0.019 -0.034 0.186 -0.021 -0.089 0.805 0.070 0.050 0.302 -0.453 -0.170 -0.300 0.950 0.001 -0.000 0.009 -0.021 -0.027 -0.010 0.003 0.003 -0.006 0.009 0.515 0.193 -0.057 -0.006 0.014 -0.021 0.147 -0.016 -0.057 0.515 0.055 0.038 0.193 -0.343 -0.129 -0.300 1.000 -0.000 0.000 0.014 -0.034 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 0.806 0.302 -0.090 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 - -0.350 0.000 -0.042 0.022 0.000 0.000 0.582 0.582 -0.146 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.350 0.050 -0.027 0.014 -0.001 0.001 0.372 0.372 -0.093 0.014 -0.010 0.004 -0.020 -0.020 0.005 -0.027 0.018 -0.008 0.372 -0.093 -0.027 0.106 0.372 0.062 0.106 -0.248 -0.248 -0.350 0.100 -0.016 0.008 -0.001 0.002 0.218 0.218 -0.055 0.022 -0.013 0.005 -0.024 -0.024 0.006 -0.042 0.023 -0.010 0.581 -0.145 -0.034 0.134 0.581 0.082 0.134 -0.327 -0.327 -0.350 0.150 -0.008 0.004 -0.001 0.001 0.111 0.111 -0.028 0.026 -0.011 0.004 -0.020 -0.020 0.005 -0.048 0.020 -0.008 0.665 -0.166 -0.028 0.111 0.665 0.071 0.111 -0.285 -0.285 -0.350 0.200 -0.003 0.002 -0.000 0.001 0.041 0.041 -0.010 0.025 -0.006 0.002 -0.010 -0.010 0.003 -0.047 0.012 -0.004 0.656 -0.164 -0.015 0.060 0.656 0.041 0.060 -0.164 -0.164 -0.350 0.250 -0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 0.022 0.000 0.000 -0.000 0.000 0.000 -0.042 -0.000 -0.000 0.582 -0.146 -0.000 -0.000 0.582 -0.000 -0.000 0.000 -0.000 -0.350 0.300 0.001 -0.001 0.000 -0.001 -0.020 -0.020 0.005 0.018 0.007 -0.002 0.008 0.008 -0.002 -0.034 -0.013 0.004 0.470 -0.117 0.013 -0.052 0.470 -0.044 -0.052 0.176 0.176 -0.350 0.350 0.002 -0.001 0.001 -0.001 -0.024 -0.024 0.006 0.013 0.013 -0.003 0.013 0.013 -0.003 -0.024 -0.024 0.006 0.339 -0.085 0.021 -0.085 0.339 -0.085 -0.085 0.339 0.339 -0.350 0.400 0.001 -0.001 0.001 -0.001 -0.020 -0.020 0.005 0.008 0.018 -0.003 0.013 0.013 -0.003 -0.015 -0.034 0.006 0.209 -0.052 0.022 -0.089 0.209 -0.117 -0.089 0.470 0.470 -0.350 0.450 0.001 -0.000 0.000 -0.001 -0.010 -0.010 0.003 0.004 0.021 -0.002 0.008 0.008 -0.002 -0.007 -0.040 0.004 0.092 -0.023 0.015 -0.062 0.092 -0.138 -0.062 0.554 0.554 -0.350 0.500 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.022 0.000 -0.000 0.000 0.000 0.000 -0.042 0.000 0.000 -0.000 0.000 -0.000 0.000 -0.146 0.000 0.582 0.582 -0.350 0.550 -0.001 0.000 -0.000 0.001 0.008 0.008 -0.002 -0.002 0.021 0.004 -0.010 -0.010 0.003 0.004 -0.040 -0.007 -0.062 0.015 -0.023 0.092 -0.062 -0.138 0.092 0.554 0.554 -0.350 0.600 -0.001 0.001 -0.001 0.001 0.013 0.013 -0.003 -0.003 0.018 0.008 -0.020 -0.020 0.005 0.006 -0.034 -0.015 -0.089 0.022 -0.052 0.209 -0.089 -0.117 0.209 0.470 0.470 -0.350 0.650 -0.001 0.001 -0.001 0.002 0.013 0.013 -0.003 -0.003 0.013 0.013 -0.024 -0.024 0.006 0.006 -0.024 -0.024 -0.085 0.021 -0.085 0.339 -0.085 -0.085 0.339 0.339 0.339 -0.350 0.700 -0.001 0.000 -0.001 0.001 0.008 0.008 -0.002 -0.002 0.007 0.018 -0.020 -0.020 0.005 0.004 -0.013 -0.034 -0.052 0.013 -0.117 0.470 -0.052 -0.044 0.470 0.176 0.176 -0.350 0.750 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.022 -0.000 0.000 0.000 0.000 -0.000 -0.042 0.000 -0.000 -0.146 0.582 0.000 -0.000 0.582 0.000 -0.000 -0.350 0.800 0.001 -0.000 0.002 -0.003 -0.010 -0.010 0.003 0.002 -0.006 0.025 0.041 0.041 -0.010 -0.004 0.012 -0.047 0.060 -0.015 -0.164 0.656 0.060 0.041 0.656 -0.164 -0.164 -0.350 0.850 0.001 -0.001 0.004 -0.008 -0.020 -0.020 0.005 0.004 -0.011 0.026 0.111 0.111 -0.028 -0.008 0.020 -0.048 0.111 -0.028 -0.166 0.665 0.111 0.071 0.665 -0.285 -0.285 -0.350 0.900 0.002 -0.001 0.008 -0.016 -0.024 -0.024 0.006 0.005 -0.013 0.022 0.218 0.218 -0.055 -0.010 0.023 -0.042 0.134 -0.034 -0.145 0.581 0.134 0.082 0.581 -0.327 -0.327 -0.350 0.950 0.001 -0.001 0.014 -0.027 -0.020 -0.020 0.005 0.004 -0.010 0.014 0.372 0.372 -0.093 -0.008 0.018 -0.027 0.106 -0.027 -0.093 0.372 0.106 0.062 0.372 -0.248 -0.248 -0.350 1.000 0.000 0.000 0.022 -0.042 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 0.582 0.582 -0.146 0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 - -0.400 0.000 -0.034 0.022 0.000 0.000 0.358 0.806 -0.154 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.400 0.050 -0.021 0.014 -0.001 0.001 0.229 0.515 -0.098 0.014 -0.010 0.004 -0.012 -0.027 0.005 -0.021 0.014 -0.006 0.229 -0.098 -0.028 0.065 0.515 0.065 0.147 -0.153 -0.343 -0.400 0.100 -0.013 0.008 -0.001 0.001 0.134 0.302 -0.058 0.022 -0.013 0.005 -0.015 -0.034 0.006 -0.034 0.019 -0.008 0.358 -0.153 -0.035 0.083 0.805 0.086 0.186 -0.201 -0.453 -0.400 0.150 -0.006 0.004 -0.001 0.001 0.068 0.154 -0.029 0.026 -0.011 0.004 -0.012 -0.027 0.005 -0.038 0.016 -0.006 0.409 -0.175 -0.029 0.068 0.921 0.075 0.154 -0.175 -0.395 -0.400 0.200 -0.002 0.002 -0.000 0.001 0.025 0.057 -0.011 0.025 -0.006 0.002 -0.006 -0.014 0.003 -0.038 0.009 -0.003 0.404 -0.173 -0.016 0.037 0.908 0.043 0.083 -0.101 -0.227 -0.400 0.250 -0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 0.022 0.000 0.000 -0.000 0.000 0.000 -0.034 -0.000 -0.000 0.358 -0.154 -0.000 -0.000 0.806 -0.000 -0.000 0.000 -0.000 -0.400 0.300 0.001 -0.001 0.000 -0.000 -0.012 -0.027 0.005 0.018 0.007 -0.002 0.005 0.012 -0.002 -0.027 -0.010 0.003 0.289 -0.124 0.014 -0.032 0.650 -0.046 -0.072 0.108 0.244 -0.400 0.350 0.001 -0.001 0.001 -0.001 -0.015 -0.034 0.006 0.013 0.013 -0.003 0.008 0.018 -0.003 -0.020 -0.020 0.005 0.209 -0.089 0.022 -0.052 0.470 -0.089 -0.117 0.209 0.470 -0.400 0.400 0.001 -0.001 0.001 -0.001 -0.012 -0.027 0.005 0.008 0.018 -0.003 0.008 0.018 -0.003 -0.012 -0.027 0.005 0.128 -0.055 0.024 -0.055 0.289 -0.124 -0.124 0.289 0.650 -0.400 0.450 0.001 -0.000 0.000 -0.000 -0.006 -0.014 0.003 0.004 0.021 -0.002 0.005 0.012 -0.002 -0.005 -0.032 0.004 0.057 -0.024 0.016 -0.038 0.128 -0.146 -0.085 0.341 0.766 -0.400 0.500 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.022 0.000 -0.000 0.000 0.000 0.000 -0.034 0.000 0.000 -0.000 0.000 0.000 0.000 -0.154 0.000 0.358 0.806 -0.400 0.550 -0.000 0.000 -0.000 0.001 0.005 0.012 -0.002 -0.002 0.021 0.004 -0.006 -0.014 0.003 0.004 -0.032 -0.005 -0.038 0.016 -0.024 0.057 -0.085 -0.146 0.128 0.341 0.766 -0.400 0.600 -0.001 0.001 -0.001 0.001 0.008 0.018 -0.003 -0.003 0.018 0.008 -0.012 -0.027 0.005 0.005 -0.027 -0.012 -0.055 0.024 -0.055 0.128 -0.124 -0.124 0.289 0.289 0.650 -0.400 0.650 -0.001 0.001 -0.001 0.001 0.008 0.018 -0.003 -0.003 0.013 0.013 -0.015 -0.034 0.006 0.005 -0.020 -0.020 -0.052 0.022 -0.089 0.209 -0.117 -0.089 0.470 0.209 0.470 -0.400 0.700 -0.000 0.000 -0.001 0.001 0.005 0.012 -0.002 -0.002 0.007 0.018 -0.012 -0.027 0.005 0.003 -0.010 -0.027 -0.032 0.014 -0.124 0.289 -0.072 -0.046 0.650 0.108 0.244 -0.400 0.750 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.022 -0.000 0.000 0.000 0.000 -0.000 -0.034 0.000 -0.000 -0.154 0.358 0.000 -0.000 0.806 0.000 -0.000 -0.400 0.800 0.001 -0.000 0.002 -0.002 -0.006 -0.014 0.003 0.002 -0.006 0.025 0.025 0.057 -0.011 -0.003 0.009 -0.038 0.037 -0.016 -0.173 0.404 0.083 0.043 0.908 -0.101 -0.227 -0.400 0.850 0.001 -0.001 0.004 -0.006 -0.012 -0.027 0.005 0.004 -0.011 0.026 0.068 0.154 -0.029 -0.006 0.016 -0.038 0.068 -0.029 -0.175 0.409 0.154 0.075 0.921 -0.175 -0.395 -0.400 0.900 0.001 -0.001 0.008 -0.013 -0.015 -0.034 0.006 0.005 -0.013 0.022 0.134 0.302 -0.058 -0.008 0.019 -0.034 0.083 -0.035 -0.153 0.358 0.186 0.086 0.805 -0.201 -0.453 -0.400 0.950 0.001 -0.001 0.014 -0.021 -0.012 -0.027 0.005 0.004 -0.010 0.014 0.229 0.515 -0.098 -0.006 0.014 -0.021 0.065 -0.028 -0.098 0.229 0.147 0.065 0.515 -0.153 -0.343 -0.400 1.000 0.000 0.000 0.022 -0.034 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 0.358 0.806 -0.154 0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 - -0.450 0.000 -0.018 0.014 0.000 0.000 0.158 0.950 -0.106 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.450 0.050 -0.011 0.009 -0.000 0.001 0.101 0.607 -0.067 0.009 -0.006 0.003 -0.005 -0.032 0.004 -0.011 0.007 -0.003 0.101 -0.067 -0.019 0.029 0.607 0.045 0.173 -0.067 -0.404 -0.450 0.100 -0.007 0.005 -0.001 0.001 0.059 0.356 -0.040 0.014 -0.008 0.003 -0.007 -0.040 0.004 -0.018 0.010 -0.004 0.158 -0.105 -0.024 0.036 0.949 0.059 0.219 -0.089 -0.534 -0.450 0.150 -0.003 0.003 -0.000 0.001 0.030 0.181 -0.020 0.016 -0.007 0.003 -0.005 -0.032 0.004 -0.020 0.009 -0.003 0.181 -0.121 -0.020 0.030 1.086 0.052 0.181 -0.078 -0.465 -0.450 0.200 -0.001 0.001 -0.000 0.000 0.011 0.067 -0.007 0.016 -0.004 0.001 -0.003 -0.017 0.002 -0.020 0.005 -0.002 0.178 -0.119 -0.011 0.016 1.071 0.030 0.097 -0.045 -0.268 -0.450 0.250 -0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 0.014 0.000 0.000 -0.000 0.000 0.000 -0.018 -0.000 -0.000 0.158 -0.106 -0.000 -0.000 0.950 -0.000 -0.000 0.000 0.000 -0.450 0.300 0.001 -0.000 0.000 -0.000 -0.005 -0.032 0.004 0.012 0.004 -0.001 0.002 0.014 -0.002 -0.014 -0.005 0.002 0.128 -0.085 0.009 -0.014 0.766 -0.032 -0.085 0.048 0.287 -0.450 0.350 0.001 -0.001 0.000 -0.000 -0.007 -0.040 0.004 0.008 0.008 -0.002 0.004 0.021 -0.002 -0.010 -0.010 0.003 0.092 -0.062 0.015 -0.023 0.554 -0.062 -0.138 0.092 0.554 -0.450 0.400 0.001 -0.000 0.000 -0.000 -0.005 -0.032 0.004 0.005 0.012 -0.002 0.004 0.021 -0.002 -0.006 -0.014 0.003 0.057 -0.038 0.016 -0.024 0.341 -0.085 -0.146 0.128 0.766 -0.450 0.450 0.000 -0.000 0.000 -0.000 -0.003 -0.017 0.002 0.002 0.014 -0.002 0.002 0.014 -0.002 -0.003 -0.017 0.002 0.025 -0.017 0.011 -0.017 0.151 -0.100 -0.100 0.151 0.903 -0.450 0.500 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.014 0.000 -0.000 0.000 0.000 0.000 -0.018 0.000 0.000 -0.000 0.000 0.000 0.000 -0.106 0.000 0.158 0.950 -0.450 0.550 -0.000 0.000 -0.000 0.000 0.002 0.014 -0.002 -0.002 0.014 0.002 -0.003 -0.017 0.002 0.002 -0.017 -0.003 -0.017 0.011 -0.017 0.025 -0.100 -0.100 0.151 0.151 0.903 -0.450 0.600 -0.000 0.000 -0.000 0.001 0.004 0.021 -0.002 -0.002 0.012 0.005 -0.005 -0.032 0.004 0.003 -0.014 -0.006 -0.024 0.016 -0.038 0.057 -0.146 -0.085 0.341 0.128 0.766 -0.450 0.650 -0.000 0.000 -0.001 0.001 0.004 0.021 -0.002 -0.002 0.008 0.008 -0.007 -0.040 0.004 0.003 -0.010 -0.010 -0.023 0.015 -0.062 0.092 -0.138 -0.062 0.554 0.092 0.554 -0.450 0.700 -0.000 0.000 -0.000 0.001 0.002 0.014 -0.002 -0.001 0.004 0.012 -0.005 -0.032 0.004 0.002 -0.005 -0.014 -0.014 0.009 -0.085 0.128 -0.085 -0.032 0.766 0.048 0.287 -0.450 0.750 0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.014 -0.000 0.000 0.000 0.000 -0.000 -0.018 0.000 -0.000 -0.106 0.158 0.000 -0.000 0.950 0.000 0.000 -0.450 0.800 0.000 -0.000 0.001 -0.001 -0.003 -0.017 0.002 0.001 -0.004 0.016 0.011 0.067 -0.007 -0.002 0.005 -0.020 0.016 -0.011 -0.119 0.178 0.097 0.030 1.071 -0.045 -0.268 -0.450 0.850 0.001 -0.000 0.003 -0.003 -0.005 -0.032 0.004 0.003 -0.007 0.016 0.030 0.181 -0.020 -0.003 0.009 -0.020 0.030 -0.020 -0.121 0.181 0.181 0.052 1.086 -0.078 -0.465 -0.450 0.900 0.001 -0.001 0.005 -0.007 -0.007 -0.040 0.004 0.003 -0.008 0.014 0.059 0.356 -0.040 -0.004 0.010 -0.018 0.036 -0.024 -0.105 0.158 0.219 0.059 0.949 -0.089 -0.534 -0.450 0.950 0.001 -0.000 0.009 -0.011 -0.005 -0.032 0.004 0.003 -0.006 0.009 0.101 0.607 -0.067 -0.003 0.007 -0.011 0.029 -0.019 -0.067 0.101 0.173 0.045 0.607 -0.067 -0.404 -0.450 1.000 0.000 0.000 0.014 -0.018 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 0.158 0.950 -0.106 0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 - -0.500 0.000 -0.000 -0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.500 0.050 -0.000 -0.000 0.000 0.000 0.000 0.638 0.000 -0.000 0.000 0.000 -0.000 -0.034 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.638 0.000 0.182 0.000 -0.426 -0.500 0.100 -0.000 0.000 0.000 0.000 0.000 0.374 0.000 -0.000 0.000 0.000 -0.000 -0.042 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.998 0.000 0.230 0.000 -0.562 -0.500 0.150 -0.000 0.000 0.000 0.000 0.000 0.190 0.000 -0.000 0.000 0.000 -0.000 -0.034 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 1.142 0.000 0.190 0.000 -0.490 -0.500 0.200 -0.000 0.000 0.000 0.000 0.000 0.070 0.000 -0.000 0.000 0.000 -0.000 -0.018 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 1.126 0.000 0.102 0.000 -0.282 -0.500 0.250 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 1.000 0.000 -0.000 0.000 0.000 -0.500 0.300 -0.000 0.000 0.000 0.000 0.000 -0.034 0.000 -0.000 0.000 0.000 -0.000 0.014 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.806 0.000 -0.090 0.000 0.302 -0.500 0.350 -0.000 0.000 0.000 0.000 0.000 -0.042 0.000 -0.000 0.000 0.000 -0.000 0.022 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.582 0.000 -0.146 0.000 0.582 -0.500 0.400 -0.000 0.000 0.000 0.000 0.000 -0.034 0.000 -0.000 0.000 0.000 -0.000 0.022 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.358 0.000 -0.154 0.000 0.806 -0.500 0.450 -0.000 0.000 0.000 0.000 0.000 -0.018 0.000 -0.000 0.000 0.000 -0.000 0.014 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.158 0.000 -0.106 0.000 0.950 -0.500 0.500 -0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 -0.500 0.550 -0.000 0.000 0.000 0.000 -0.000 0.014 0.000 -0.000 0.000 -0.000 -0.000 -0.018 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.106 0.000 0.158 0.000 0.950 -0.500 0.600 -0.000 0.000 0.000 0.000 -0.000 0.022 0.000 -0.000 0.000 -0.000 -0.000 -0.034 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.154 0.000 0.358 0.000 0.806 -0.500 0.650 0.000 0.000 0.000 0.000 -0.000 0.022 0.000 -0.000 0.000 -0.000 -0.000 -0.042 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.146 0.000 0.582 0.000 0.582 -0.500 0.700 0.000 0.000 0.000 0.000 -0.000 0.014 0.000 -0.000 0.000 -0.000 -0.000 -0.034 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.090 0.000 0.806 0.000 0.302 -0.500 0.750 0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 -0.500 0.800 0.000 0.000 0.000 0.000 -0.000 -0.018 0.000 -0.000 0.000 -0.000 -0.000 0.070 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.102 0.000 1.126 0.000 -0.282 -0.500 0.850 0.000 0.000 0.000 0.000 -0.000 -0.034 0.000 -0.000 0.000 -0.000 -0.000 0.190 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.190 0.000 1.142 0.000 -0.490 -0.500 0.900 0.000 0.000 0.000 0.000 -0.000 -0.042 0.000 -0.000 0.000 -0.000 -0.000 0.374 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.230 0.000 0.998 0.000 -0.562 -0.500 0.950 0.000 0.000 0.000 0.000 -0.000 -0.034 0.000 -0.000 0.000 -0.000 -0.000 0.638 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.182 0.000 0.638 0.000 -0.426 -0.500 1.000 0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 - -0.550 0.000 0.014 -0.018 0.000 0.000 -0.106 0.950 0.158 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.550 0.050 0.009 -0.011 0.001 -0.000 -0.067 0.607 0.101 -0.011 0.007 -0.003 0.004 -0.032 -0.005 0.009 -0.006 0.003 -0.067 0.101 0.029 -0.019 0.607 -0.067 0.173 0.045 -0.404 -0.550 0.100 0.005 -0.007 0.001 -0.001 -0.040 0.356 0.059 -0.018 0.010 -0.004 0.004 -0.040 -0.007 0.014 -0.008 0.003 -0.105 0.158 0.036 -0.024 0.949 -0.089 0.219 0.059 -0.534 -0.550 0.150 0.003 -0.003 0.001 -0.000 -0.020 0.181 0.030 -0.020 0.009 -0.003 0.004 -0.032 -0.005 0.016 -0.007 0.003 -0.121 0.181 0.030 -0.020 1.086 -0.078 0.181 0.052 -0.465 -0.550 0.200 0.001 -0.001 0.000 -0.000 -0.007 0.067 0.011 -0.020 0.005 -0.002 0.002 -0.017 -0.003 0.016 -0.004 0.001 -0.119 0.178 0.016 -0.011 1.071 -0.045 0.097 0.030 -0.268 -0.550 0.250 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.018 0.000 0.000 -0.000 0.000 -0.000 0.014 -0.000 -0.000 -0.106 0.158 0.000 -0.000 0.950 0.000 -0.000 0.000 0.000 -0.550 0.300 -0.000 0.001 -0.000 0.000 0.004 -0.032 -0.005 -0.014 -0.005 0.002 -0.002 0.014 0.002 0.012 0.004 -0.001 -0.085 0.128 -0.014 0.009 0.766 0.048 -0.085 -0.032 0.287 -0.550 0.350 -0.001 0.001 -0.000 0.000 0.004 -0.040 -0.007 -0.010 -0.010 0.003 -0.002 0.021 0.004 0.008 0.008 -0.002 -0.062 0.092 -0.023 0.015 0.554 0.092 -0.138 -0.062 0.554 -0.550 0.400 -0.000 0.001 -0.000 0.000 0.004 -0.032 -0.005 -0.006 -0.014 0.003 -0.002 0.021 0.004 0.005 0.012 -0.002 -0.038 0.057 -0.024 0.016 0.341 0.128 -0.146 -0.085 0.766 -0.550 0.450 -0.000 0.000 -0.000 0.000 0.002 -0.017 -0.003 -0.003 -0.017 0.002 -0.002 0.014 0.002 0.002 0.014 -0.002 -0.017 0.025 -0.017 0.011 0.151 0.151 -0.100 -0.100 0.903 -0.550 0.500 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 -0.018 0.000 -0.000 0.000 -0.000 -0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.158 0.000 -0.106 0.950 -0.550 0.550 0.000 -0.000 0.000 -0.000 -0.002 0.014 0.002 0.002 -0.017 -0.003 0.002 -0.017 -0.003 -0.002 0.014 0.002 0.011 -0.017 0.025 -0.017 -0.100 0.151 0.151 -0.100 0.903 -0.550 0.600 0.000 -0.000 0.001 -0.000 -0.002 0.021 0.004 0.003 -0.014 -0.006 0.004 -0.032 -0.005 -0.002 0.012 0.005 0.016 -0.024 0.057 -0.038 -0.146 0.128 0.341 -0.085 0.766 -0.550 0.650 0.000 -0.000 0.001 -0.001 -0.002 0.021 0.004 0.003 -0.010 -0.010 0.004 -0.040 -0.007 -0.002 0.008 0.008 0.015 -0.023 0.092 -0.062 -0.138 0.092 0.554 -0.062 0.554 -0.550 0.700 0.000 -0.000 0.001 -0.000 -0.002 0.014 0.002 0.002 -0.005 -0.014 0.004 -0.032 -0.005 -0.001 0.004 0.012 0.009 -0.014 0.128 -0.085 -0.085 0.048 0.766 -0.032 0.287 -0.550 0.750 0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.018 -0.000 0.000 -0.000 0.000 -0.000 0.014 0.000 0.000 0.158 -0.106 0.000 0.000 0.950 0.000 0.000 -0.550 0.800 -0.000 0.000 -0.001 0.001 0.002 -0.017 -0.003 -0.002 0.005 -0.020 -0.007 0.067 0.011 0.001 -0.004 0.016 -0.011 0.016 0.178 -0.119 0.097 -0.045 1.071 0.030 -0.268 -0.550 0.850 -0.000 0.001 -0.003 0.003 0.004 -0.032 -0.005 -0.003 0.009 -0.020 -0.020 0.181 0.030 0.003 -0.007 0.016 -0.020 0.030 0.181 -0.121 0.181 -0.078 1.086 0.052 -0.465 -0.550 0.900 -0.001 0.001 -0.007 0.005 0.004 -0.040 -0.007 -0.004 0.010 -0.018 -0.040 0.356 0.059 0.003 -0.008 0.014 -0.024 0.036 0.158 -0.105 0.219 -0.089 0.949 0.059 -0.534 -0.550 0.950 -0.000 0.001 -0.011 0.009 0.004 -0.032 -0.005 -0.003 0.007 -0.011 -0.067 0.607 0.101 0.003 -0.006 0.009 -0.019 0.029 0.101 -0.067 0.173 -0.067 0.607 0.045 -0.404 -0.550 1.000 0.000 0.000 -0.018 0.014 -0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.106 0.950 0.158 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 0.000 - -0.600 0.000 0.022 -0.034 0.000 0.000 -0.154 0.806 0.358 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.600 0.050 0.014 -0.021 0.001 -0.001 -0.098 0.515 0.229 -0.021 0.014 -0.006 0.005 -0.027 -0.012 0.014 -0.010 0.004 -0.098 0.229 0.065 -0.028 0.515 -0.153 0.147 0.065 -0.343 -0.600 0.100 0.008 -0.013 0.001 -0.001 -0.058 0.302 0.134 -0.034 0.019 -0.008 0.006 -0.034 -0.015 0.022 -0.013 0.005 -0.153 0.358 0.083 -0.035 0.805 -0.201 0.186 0.086 -0.453 -0.600 0.150 0.004 -0.006 0.001 -0.001 -0.029 0.154 0.068 -0.038 0.016 -0.006 0.005 -0.027 -0.012 0.026 -0.011 0.004 -0.175 0.409 0.068 -0.029 0.921 -0.175 0.154 0.075 -0.395 -0.600 0.200 0.002 -0.002 0.001 -0.000 -0.011 0.057 0.025 -0.038 0.009 -0.003 0.003 -0.014 -0.006 0.025 -0.006 0.002 -0.173 0.404 0.037 -0.016 0.908 -0.101 0.083 0.043 -0.227 -0.600 0.250 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.034 0.000 0.000 -0.000 0.000 -0.000 0.022 -0.000 -0.000 -0.154 0.358 0.000 -0.000 0.806 0.000 -0.000 0.000 -0.000 -0.600 0.300 -0.001 0.001 -0.000 0.000 0.005 -0.027 -0.012 -0.027 -0.010 0.003 -0.002 0.012 0.005 0.018 0.007 -0.002 -0.124 0.289 -0.032 0.014 0.650 0.108 -0.072 -0.046 0.244 -0.600 0.350 -0.001 0.001 -0.001 0.001 0.006 -0.034 -0.015 -0.020 -0.020 0.005 -0.003 0.018 0.008 0.013 0.013 -0.003 -0.089 0.209 -0.052 0.022 0.470 0.209 -0.117 -0.089 0.470 -0.600 0.400 -0.001 0.001 -0.001 0.001 0.005 -0.027 -0.012 -0.012 -0.027 0.005 -0.003 0.018 0.008 0.008 0.018 -0.003 -0.055 0.128 -0.055 0.024 0.289 0.289 -0.124 -0.124 0.650 -0.600 0.450 -0.000 0.001 -0.000 0.000 0.003 -0.014 -0.006 -0.005 -0.032 0.004 -0.002 0.012 0.005 0.004 0.021 -0.002 -0.024 0.057 -0.038 0.016 0.128 0.341 -0.085 -0.146 0.766 -0.600 0.500 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 -0.034 0.000 -0.000 0.000 -0.000 -0.000 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.358 0.000 -0.154 0.806 -0.600 0.550 0.000 -0.000 0.001 -0.000 -0.002 0.012 0.005 0.004 -0.032 -0.005 0.003 -0.014 -0.006 -0.002 0.021 0.004 0.016 -0.038 0.057 -0.024 -0.085 0.341 0.128 -0.146 0.766 -0.600 0.600 0.001 -0.001 0.001 -0.001 -0.003 0.018 0.008 0.005 -0.027 -0.012 0.005 -0.027 -0.012 -0.003 0.018 0.008 0.024 -0.055 0.128 -0.055 -0.124 0.289 0.289 -0.124 0.650 -0.600 0.650 0.001 -0.001 0.001 -0.001 -0.003 0.018 0.008 0.005 -0.020 -0.020 0.006 -0.034 -0.015 -0.003 0.013 0.013 0.022 -0.052 0.209 -0.089 -0.117 0.209 0.470 -0.089 0.470 -0.600 0.700 0.000 -0.000 0.001 -0.001 -0.002 0.012 0.005 0.003 -0.010 -0.027 0.005 -0.027 -0.012 -0.002 0.007 0.018 0.014 -0.032 0.289 -0.124 -0.072 0.108 0.650 -0.046 0.244 -0.600 0.750 0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.034 -0.000 0.000 -0.000 0.000 -0.000 0.022 0.000 0.000 0.358 -0.154 0.000 0.000 0.806 0.000 -0.000 -0.600 0.800 -0.000 0.001 -0.002 0.002 0.003 -0.014 -0.006 -0.003 0.009 -0.038 -0.011 0.057 0.025 0.002 -0.006 0.025 -0.016 0.037 0.404 -0.173 0.083 -0.101 0.908 0.043 -0.227 -0.600 0.850 -0.001 0.001 -0.006 0.004 0.005 -0.027 -0.012 -0.006 0.016 -0.038 -0.029 0.154 0.068 0.004 -0.011 0.026 -0.029 0.068 0.409 -0.175 0.154 -0.175 0.921 0.075 -0.395 -0.600 0.900 -0.001 0.001 -0.013 0.008 0.006 -0.034 -0.015 -0.008 0.019 -0.034 -0.058 0.302 0.134 0.005 -0.013 0.022 -0.035 0.083 0.358 -0.153 0.186 -0.201 0.805 0.086 -0.453 -0.600 0.950 -0.001 0.001 -0.021 0.014 0.005 -0.027 -0.012 -0.006 0.014 -0.021 -0.098 0.515 0.229 0.004 -0.010 0.014 -0.028 0.065 0.229 -0.098 0.147 -0.153 0.515 0.065 -0.343 -0.600 1.000 0.000 0.000 -0.034 0.022 -0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.154 0.806 0.358 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 - -0.650 0.000 0.022 -0.042 0.000 0.000 -0.146 0.582 0.582 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.650 0.050 0.014 -0.027 0.001 -0.001 -0.093 0.372 0.372 -0.027 0.018 -0.008 0.005 -0.020 -0.020 0.014 -0.010 0.004 -0.093 0.372 0.106 -0.027 0.372 -0.248 0.106 0.062 -0.248 -0.650 0.100 0.008 -0.016 0.002 -0.001 -0.055 0.218 0.218 -0.042 0.023 -0.010 0.006 -0.024 -0.024 0.022 -0.013 0.005 -0.145 0.581 0.134 -0.034 0.581 -0.327 0.134 0.082 -0.327 -0.650 0.150 0.004 -0.008 0.001 -0.001 -0.028 0.111 0.111 -0.048 0.020 -0.008 0.005 -0.020 -0.020 0.026 -0.011 0.004 -0.166 0.665 0.111 -0.028 0.665 -0.285 0.111 0.071 -0.285 -0.650 0.200 0.002 -0.003 0.001 -0.000 -0.010 0.041 0.041 -0.047 0.012 -0.004 0.003 -0.010 -0.010 0.025 -0.006 0.002 -0.164 0.656 0.060 -0.015 0.656 -0.164 0.060 0.041 -0.164 -0.650 0.250 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.042 0.000 0.000 -0.000 0.000 -0.000 0.022 -0.000 -0.000 -0.146 0.582 0.000 -0.000 0.582 0.000 -0.000 0.000 -0.000 -0.650 0.300 -0.001 0.001 -0.001 0.000 0.005 -0.020 -0.020 -0.034 -0.013 0.004 -0.002 0.008 0.008 0.018 0.007 -0.002 -0.117 0.470 -0.052 0.013 0.470 0.176 -0.052 -0.044 0.176 -0.650 0.350 -0.001 0.002 -0.001 0.001 0.006 -0.024 -0.024 -0.024 -0.024 0.006 -0.003 0.013 0.013 0.013 0.013 -0.003 -0.085 0.339 -0.085 0.021 0.339 0.339 -0.085 -0.085 0.339 -0.650 0.400 -0.001 0.001 -0.001 0.001 0.005 -0.020 -0.020 -0.015 -0.034 0.006 -0.003 0.013 0.013 0.008 0.018 -0.003 -0.052 0.209 -0.089 0.022 0.209 0.470 -0.089 -0.117 0.470 -0.650 0.450 -0.000 0.001 -0.001 0.000 0.003 -0.010 -0.010 -0.007 -0.040 0.004 -0.002 0.008 0.008 0.004 0.021 -0.002 -0.023 0.092 -0.062 0.015 0.092 0.554 -0.062 -0.138 0.554 -0.650 0.500 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 -0.042 0.000 -0.000 0.000 -0.000 -0.000 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.582 0.000 -0.146 0.582 -0.650 0.550 0.000 -0.001 0.001 -0.000 -0.002 0.008 0.008 0.004 -0.040 -0.007 0.003 -0.010 -0.010 -0.002 0.021 0.004 0.015 -0.062 0.092 -0.023 -0.062 0.554 0.092 -0.138 0.554 -0.650 0.600 0.001 -0.001 0.001 -0.001 -0.003 0.013 0.013 0.006 -0.034 -0.015 0.005 -0.020 -0.020 -0.003 0.018 0.008 0.022 -0.089 0.209 -0.052 -0.089 0.470 0.209 -0.117 0.470 -0.650 0.650 0.001 -0.001 0.002 -0.001 -0.003 0.013 0.013 0.006 -0.024 -0.024 0.006 -0.024 -0.024 -0.003 0.013 0.013 0.021 -0.085 0.339 -0.085 -0.085 0.339 0.339 -0.085 0.339 -0.650 0.700 0.000 -0.001 0.001 -0.001 -0.002 0.008 0.008 0.004 -0.013 -0.034 0.005 -0.020 -0.020 -0.002 0.007 0.018 0.013 -0.052 0.470 -0.117 -0.052 0.176 0.470 -0.044 0.176 -0.650 0.750 0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.042 -0.000 0.000 -0.000 0.000 -0.000 0.022 0.000 0.000 0.582 -0.146 0.000 0.000 0.582 0.000 -0.000 -0.650 0.800 -0.000 0.001 -0.003 0.002 0.003 -0.010 -0.010 -0.004 0.012 -0.047 -0.010 0.041 0.041 0.002 -0.006 0.025 -0.015 0.060 0.656 -0.164 0.060 -0.164 0.656 0.041 -0.164 -0.650 0.850 -0.001 0.001 -0.008 0.004 0.005 -0.020 -0.020 -0.008 0.020 -0.048 -0.028 0.111 0.111 0.004 -0.011 0.026 -0.028 0.111 0.665 -0.166 0.111 -0.285 0.665 0.071 -0.285 -0.650 0.900 -0.001 0.002 -0.016 0.008 0.006 -0.024 -0.024 -0.010 0.023 -0.042 -0.055 0.218 0.218 0.005 -0.013 0.022 -0.034 0.134 0.581 -0.145 0.134 -0.327 0.581 0.082 -0.327 -0.650 0.950 -0.001 0.001 -0.027 0.014 0.005 -0.020 -0.020 -0.008 0.018 -0.027 -0.093 0.372 0.372 0.004 -0.010 0.014 -0.027 0.106 0.372 -0.093 0.106 -0.248 0.372 0.062 -0.248 -0.650 1.000 0.000 0.000 -0.042 0.022 -0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.146 0.582 0.582 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.000 - -0.700 0.000 0.014 -0.034 0.000 0.000 -0.090 0.302 0.806 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.700 0.050 0.009 -0.021 0.001 -0.000 -0.057 0.193 0.515 -0.021 0.014 -0.006 0.003 -0.010 -0.027 0.009 -0.006 0.003 -0.057 0.515 0.147 -0.016 0.193 -0.343 0.055 0.038 -0.129 -0.700 0.100 0.005 -0.013 0.001 -0.001 -0.034 0.113 0.302 -0.034 0.019 -0.008 0.004 -0.013 -0.034 0.014 -0.008 0.003 -0.089 0.805 0.186 -0.021 0.302 -0.453 0.070 0.050 -0.170 -0.700 0.150 0.003 -0.006 0.001 -0.000 -0.017 0.058 0.154 -0.038 0.016 -0.006 0.003 -0.010 -0.027 0.016 -0.007 0.003 -0.102 0.921 0.154 -0.017 0.345 -0.395 0.058 0.044 -0.148 -0.700 0.200 0.001 -0.002 0.001 -0.000 -0.006 0.021 0.057 -0.038 0.009 -0.003 0.002 -0.005 -0.014 0.016 -0.004 0.001 -0.101 0.908 0.083 -0.009 0.341 -0.227 0.031 0.025 -0.085 -0.700 0.250 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.034 0.000 0.000 -0.000 0.000 -0.000 0.014 -0.000 -0.000 -0.090 0.806 0.000 -0.000 0.302 0.000 -0.000 0.000 -0.000 -0.700 0.300 -0.000 0.001 -0.000 0.000 0.003 -0.010 -0.027 -0.027 -0.010 0.003 -0.001 0.004 0.012 0.012 0.004 -0.001 -0.072 0.650 -0.072 0.008 0.244 0.244 -0.027 -0.027 0.091 -0.700 0.350 -0.001 0.001 -0.001 0.000 0.004 -0.013 -0.034 -0.020 -0.020 0.005 -0.002 0.007 0.018 0.008 0.008 -0.002 -0.052 0.470 -0.117 0.013 0.176 0.470 -0.044 -0.052 0.176 -0.700 0.400 -0.000 0.001 -0.001 0.000 0.003 -0.010 -0.027 -0.012 -0.027 0.005 -0.002 0.007 0.018 0.005 0.012 -0.002 -0.032 0.289 -0.124 0.014 0.108 0.650 -0.046 -0.072 0.244 -0.700 0.450 -0.000 0.001 -0.000 0.000 0.002 -0.005 -0.014 -0.005 -0.032 0.004 -0.001 0.004 0.012 0.002 0.014 -0.002 -0.014 0.128 -0.085 0.009 0.048 0.766 -0.032 -0.085 0.287 -0.700 0.500 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 -0.034 0.000 -0.000 0.000 -0.000 -0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.806 0.000 -0.090 0.302 -0.700 0.550 0.000 -0.000 0.001 -0.000 -0.001 0.004 0.012 0.004 -0.032 -0.005 0.002 -0.005 -0.014 -0.002 0.014 0.002 0.009 -0.085 0.128 -0.014 -0.032 0.766 0.048 -0.085 0.287 -0.700 0.600 0.000 -0.001 0.001 -0.000 -0.002 0.007 0.018 0.005 -0.027 -0.012 0.003 -0.010 -0.027 -0.002 0.012 0.005 0.014 -0.124 0.289 -0.032 -0.046 0.650 0.108 -0.072 0.244 -0.700 0.650 0.000 -0.001 0.001 -0.001 -0.002 0.007 0.018 0.005 -0.020 -0.020 0.004 -0.013 -0.034 -0.002 0.008 0.008 0.013 -0.117 0.470 -0.052 -0.044 0.470 0.176 -0.052 0.176 -0.700 0.700 0.000 -0.000 0.001 -0.000 -0.001 0.004 0.012 0.003 -0.010 -0.027 0.003 -0.010 -0.027 -0.001 0.004 0.012 0.008 -0.072 0.650 -0.072 -0.027 0.244 0.244 -0.027 0.091 -0.700 0.750 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 -0.034 -0.000 0.000 -0.000 0.000 -0.000 0.014 0.000 0.000 0.806 -0.090 0.000 0.000 0.302 0.000 -0.000 -0.700 0.800 -0.000 0.001 -0.002 0.001 0.002 -0.005 -0.014 -0.003 0.009 -0.038 -0.006 0.021 0.057 0.001 -0.004 0.016 -0.009 0.083 0.908 -0.101 0.031 -0.227 0.341 0.025 -0.085 -0.700 0.850 -0.000 0.001 -0.006 0.003 0.003 -0.010 -0.027 -0.006 0.016 -0.038 -0.017 0.058 0.154 0.003 -0.007 0.016 -0.017 0.154 0.921 -0.102 0.058 -0.395 0.345 0.044 -0.148 -0.700 0.900 -0.001 0.001 -0.013 0.005 0.004 -0.013 -0.034 -0.008 0.019 -0.034 -0.034 0.113 0.302 0.003 -0.008 0.014 -0.021 0.186 0.805 -0.089 0.070 -0.453 0.302 0.050 -0.170 -0.700 0.950 -0.000 0.001 -0.021 0.009 0.003 -0.010 -0.027 -0.006 0.014 -0.021 -0.057 0.193 0.515 0.003 -0.006 0.009 -0.016 0.147 0.515 -0.057 0.055 -0.343 0.193 0.038 -0.129 -0.700 1.000 0.000 0.000 -0.034 0.014 -0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.090 0.302 0.806 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 - -0.750 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.750 0.050 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.638 -0.000 0.000 0.000 -0.000 0.000 -0.034 -0.000 -0.000 -0.000 0.000 0.638 0.182 0.000 0.000 -0.426 -0.000 0.000 0.000 -0.750 0.100 -0.000 0.000 0.000 0.000 0.000 -0.000 0.374 -0.000 0.000 0.000 -0.000 0.000 -0.042 -0.000 -0.000 -0.000 0.000 0.998 0.230 -0.000 0.000 -0.562 -0.000 0.000 0.000 -0.750 0.150 -0.000 0.000 0.000 0.000 0.000 -0.000 0.190 -0.000 0.000 0.000 -0.000 0.000 -0.034 -0.000 -0.000 -0.000 0.000 1.142 0.190 -0.000 0.000 -0.490 -0.000 0.000 0.000 -0.750 0.200 -0.000 0.000 0.000 0.000 0.000 -0.000 0.070 -0.000 0.000 0.000 -0.000 0.000 -0.018 -0.000 -0.000 -0.000 0.000 1.126 0.102 -0.000 0.000 -0.282 -0.000 0.000 0.000 -0.750 0.250 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 1.000 0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 -0.750 0.300 -0.000 0.000 0.000 0.000 0.000 -0.000 -0.034 -0.000 0.000 0.000 -0.000 0.000 0.014 -0.000 -0.000 -0.000 0.000 0.806 -0.090 -0.000 0.000 0.302 -0.000 0.000 0.000 -0.750 0.350 -0.000 0.000 0.000 0.000 0.000 -0.000 -0.042 -0.000 0.000 0.000 -0.000 0.000 0.022 -0.000 -0.000 -0.000 0.000 0.582 -0.146 -0.000 0.000 0.582 -0.000 0.000 0.000 -0.750 0.400 -0.000 0.000 0.000 0.000 0.000 -0.000 -0.034 -0.000 0.000 0.000 -0.000 0.000 0.022 -0.000 -0.000 -0.000 0.000 0.358 -0.154 -0.000 0.000 0.806 -0.000 0.000 0.000 -0.750 0.450 0.000 0.000 0.000 0.000 0.000 -0.000 -0.018 -0.000 0.000 0.000 -0.000 0.000 0.014 -0.000 -0.000 -0.000 0.000 0.158 -0.106 -0.000 0.000 0.950 -0.000 0.000 0.000 -0.750 0.500 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 -0.750 0.550 0.000 0.000 0.000 0.000 0.000 -0.000 0.014 -0.000 0.000 -0.000 -0.000 0.000 -0.018 -0.000 -0.000 0.000 0.000 -0.106 0.158 0.000 0.000 0.950 0.000 0.000 0.000 -0.750 0.600 0.000 0.000 0.000 0.000 0.000 -0.000 0.022 -0.000 0.000 -0.000 -0.000 0.000 -0.034 -0.000 -0.000 0.000 0.000 -0.154 0.358 0.000 0.000 0.806 0.000 0.000 0.000 -0.750 0.650 0.000 0.000 0.000 0.000 0.000 -0.000 0.022 -0.000 0.000 -0.000 -0.000 0.000 -0.042 -0.000 -0.000 0.000 0.000 -0.146 0.582 0.000 0.000 0.582 0.000 0.000 0.000 -0.750 0.700 0.000 0.000 0.000 0.000 0.000 -0.000 0.014 -0.000 0.000 -0.000 -0.000 0.000 -0.034 0.000 -0.000 0.000 0.000 -0.090 0.806 0.000 0.000 0.302 0.000 0.000 0.000 -0.750 0.750 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.750 0.800 0.000 0.000 0.000 0.000 0.000 -0.000 -0.018 -0.000 0.000 -0.000 -0.000 0.000 0.070 0.000 -0.000 0.000 0.000 0.102 1.126 0.000 0.000 -0.282 0.000 0.000 0.000 -0.750 0.850 0.000 0.000 0.000 0.000 0.000 -0.000 -0.034 -0.000 0.000 -0.000 -0.000 0.000 0.190 0.000 -0.000 0.000 0.000 0.190 1.142 0.000 0.000 -0.490 0.000 0.000 0.000 -0.750 0.900 0.000 0.000 0.000 0.000 0.000 -0.000 -0.042 -0.000 0.000 -0.000 -0.000 0.000 0.374 0.000 -0.000 0.000 0.000 0.230 0.998 0.000 0.000 -0.562 0.000 0.000 0.000 -0.750 0.950 0.000 0.000 0.000 0.000 0.000 -0.000 -0.034 -0.000 0.000 -0.000 -0.000 0.000 0.638 0.000 -0.000 0.000 0.000 0.182 0.638 0.000 0.000 -0.426 0.000 0.000 0.000 -0.750 1.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 - -0.800 0.000 -0.018 0.070 0.000 0.000 0.102 -0.282 1.126 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.800 0.050 -0.011 0.045 -0.002 0.001 0.065 -0.180 0.719 0.045 -0.030 0.013 -0.003 0.009 -0.038 -0.011 0.007 -0.003 0.065 0.719 0.205 0.019 -0.180 -0.479 -0.051 -0.044 0.120 -0.800 0.100 -0.007 0.026 -0.003 0.001 0.038 -0.105 0.422 0.070 -0.040 0.016 -0.004 0.012 -0.047 -0.018 0.010 -0.004 0.102 1.125 0.260 0.024 -0.281 -0.633 -0.065 -0.058 0.158 -0.800 0.150 -0.003 0.013 -0.002 0.001 0.019 -0.054 0.214 0.080 -0.034 0.013 -0.003 0.009 -0.038 -0.020 0.009 -0.003 0.117 1.287 0.214 0.019 -0.322 -0.551 -0.054 -0.050 0.138 -0.800 0.200 -0.001 0.005 -0.001 0.000 0.007 -0.020 0.079 0.079 -0.020 0.007 -0.002 0.005 -0.020 -0.020 0.005 -0.002 0.115 1.269 0.115 0.010 -0.317 -0.317 -0.029 -0.029 0.079 -0.800 0.250 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.070 0.000 0.000 -0.000 0.000 -0.000 -0.018 -0.000 -0.000 0.102 1.126 0.000 -0.000 -0.282 0.000 -0.000 0.000 -0.000 -0.800 0.300 0.001 -0.002 0.001 -0.000 -0.003 0.009 -0.038 0.057 0.021 -0.006 0.001 -0.004 0.016 -0.014 -0.005 0.002 0.083 0.908 -0.101 -0.009 -0.227 0.341 0.025 0.031 -0.085 -0.800 0.350 0.001 -0.003 0.002 -0.000 -0.004 0.012 -0.047 0.041 0.041 -0.010 0.002 -0.006 0.025 -0.010 -0.010 0.003 0.060 0.656 -0.164 -0.015 -0.164 0.656 0.041 0.060 -0.164 -0.800 0.400 0.001 -0.002 0.002 -0.000 -0.003 0.009 -0.038 0.025 0.057 -0.011 0.002 -0.006 0.025 -0.006 -0.014 0.003 0.037 0.404 -0.173 -0.016 -0.101 0.908 0.043 0.083 -0.227 -0.800 0.450 0.000 -0.001 0.001 -0.000 -0.002 0.005 -0.020 0.011 0.067 -0.007 0.001 -0.004 0.016 -0.003 -0.017 0.002 0.016 0.178 -0.119 -0.011 -0.045 1.071 0.030 0.097 -0.268 -0.800 0.500 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.070 0.000 -0.000 0.000 -0.000 -0.000 -0.018 0.000 0.000 0.000 0.000 0.000 0.000 1.126 0.000 0.102 -0.282 -0.800 0.550 -0.000 0.001 -0.001 0.000 0.001 -0.004 0.016 -0.007 0.067 0.011 -0.002 0.005 -0.020 0.002 -0.017 -0.003 -0.011 -0.119 0.178 0.016 0.030 1.071 -0.045 0.097 -0.268 -0.800 0.600 -0.000 0.002 -0.002 0.001 0.002 -0.006 0.025 -0.011 0.057 0.025 -0.003 0.009 -0.038 0.003 -0.014 -0.006 -0.016 -0.173 0.404 0.037 0.043 0.908 -0.101 0.083 -0.227 -0.800 0.650 -0.000 0.002 -0.003 0.001 0.002 -0.006 0.025 -0.010 0.041 0.041 -0.004 0.012 -0.047 0.003 -0.010 -0.010 -0.015 -0.164 0.656 0.060 0.041 0.656 -0.164 0.060 -0.164 -0.800 0.700 -0.000 0.001 -0.002 0.001 0.001 -0.004 0.016 -0.006 0.021 0.057 -0.003 0.009 -0.038 0.002 -0.005 -0.014 -0.009 -0.101 0.908 0.083 0.025 0.341 -0.227 0.031 -0.085 -0.800 0.750 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 0.070 -0.000 0.000 -0.000 0.000 -0.000 -0.018 0.000 0.000 1.126 0.102 0.000 0.000 -0.282 0.000 -0.000 -0.800 0.800 0.000 -0.001 0.005 -0.001 -0.002 0.005 -0.020 0.007 -0.020 0.079 0.007 -0.020 0.079 -0.002 0.005 -0.020 0.010 0.115 1.269 0.115 -0.029 -0.317 -0.317 -0.029 0.079 -0.800 0.850 0.001 -0.002 0.013 -0.003 -0.003 0.009 -0.038 0.013 -0.034 0.080 0.019 -0.054 0.214 -0.003 0.009 -0.020 0.019 0.214 1.287 0.117 -0.054 -0.551 -0.322 -0.050 0.138 -0.800 0.900 0.001 -0.003 0.026 -0.007 -0.004 0.012 -0.047 0.016 -0.040 0.070 0.038 -0.105 0.422 -0.004 0.010 -0.018 0.024 0.260 1.125 0.102 -0.065 -0.633 -0.281 -0.058 0.158 -0.800 0.950 0.001 -0.002 0.045 -0.011 -0.003 0.009 -0.038 0.013 -0.030 0.045 0.065 -0.180 0.719 -0.003 0.007 -0.011 0.019 0.205 0.719 0.065 -0.051 -0.479 -0.180 -0.044 0.120 -0.800 1.000 0.000 0.000 0.070 -0.018 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.102 -0.282 1.126 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 -0.000 -0.000 - -0.850 0.000 -0.034 0.190 0.000 0.000 0.190 -0.490 1.142 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.850 0.050 -0.021 0.122 -0.006 0.001 0.122 -0.313 0.729 0.122 -0.081 0.035 -0.006 0.016 -0.038 -0.021 0.014 -0.006 0.122 0.729 0.208 0.035 -0.313 -0.486 -0.089 -0.081 0.208 -0.850 0.100 -0.013 0.071 -0.008 0.001 0.071 -0.183 0.428 0.190 -0.107 0.044 -0.008 0.020 -0.048 -0.034 0.019 -0.008 0.190 1.141 0.263 0.044 -0.489 -0.642 -0.113 -0.107 0.275 -0.850 0.150 -0.006 0.036 -0.006 0.001 0.036 -0.093 0.218 0.218 -0.093 0.036 -0.006 0.016 -0.038 -0.038 0.016 -0.006 0.218 1.305 0.218 0.036 -0.559 -0.559 -0.093 -0.093 0.240 -0.850 0.200 -0.002 0.013 -0.003 0.001 0.013 -0.034 0.080 0.214 -0.054 0.019 -0.003 0.009 -0.020 -0.038 0.009 -0.003 0.214 1.287 0.117 0.019 -0.551 -0.322 -0.050 -0.054 0.138 -0.850 0.250 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.190 0.000 0.000 -0.000 0.000 -0.000 -0.034 -0.000 -0.000 0.190 1.142 0.000 -0.000 -0.490 0.000 -0.000 0.000 0.000 -0.850 0.300 0.001 -0.006 0.003 -0.000 -0.006 0.016 -0.038 0.154 0.058 -0.017 0.003 -0.007 0.016 -0.027 -0.010 0.003 0.154 0.921 -0.102 -0.017 -0.395 0.345 0.044 0.058 -0.148 -0.850 0.350 0.001 -0.008 0.004 -0.001 -0.008 0.020 -0.048 0.111 0.111 -0.028 0.004 -0.011 0.026 -0.020 -0.020 0.005 0.111 0.665 -0.166 -0.028 -0.285 0.665 0.071 0.111 -0.285 -0.850 0.400 0.001 -0.006 0.004 -0.001 -0.006 0.016 -0.038 0.068 0.154 -0.029 0.004 -0.011 0.026 -0.012 -0.027 0.005 0.068 0.409 -0.175 -0.029 -0.175 0.921 0.075 0.154 -0.395 -0.850 0.450 0.001 -0.003 0.003 -0.000 -0.003 0.009 -0.020 0.030 0.181 -0.020 0.003 -0.007 0.016 -0.005 -0.032 0.004 0.030 0.181 -0.121 -0.020 -0.078 1.086 0.052 0.181 -0.465 -0.850 0.500 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.190 0.000 -0.000 0.000 -0.000 -0.000 -0.034 0.000 0.000 0.000 0.000 0.000 0.000 1.142 0.000 0.190 -0.490 -0.850 0.550 -0.000 0.003 -0.003 0.001 0.003 -0.007 0.016 -0.020 0.181 0.030 -0.003 0.009 -0.020 0.004 -0.032 -0.005 -0.020 -0.121 0.181 0.030 0.052 1.086 -0.078 0.181 -0.465 -0.850 0.600 -0.001 0.004 -0.006 0.001 0.004 -0.011 0.026 -0.029 0.154 0.068 -0.006 0.016 -0.038 0.005 -0.027 -0.012 -0.029 -0.175 0.409 0.068 0.075 0.921 -0.175 0.154 -0.395 -0.850 0.650 -0.001 0.004 -0.008 0.001 0.004 -0.011 0.026 -0.028 0.111 0.111 -0.008 0.020 -0.048 0.005 -0.020 -0.020 -0.028 -0.166 0.665 0.111 0.071 0.665 -0.285 0.111 -0.285 -0.850 0.700 -0.000 0.003 -0.006 0.001 0.003 -0.007 0.016 -0.017 0.058 0.154 -0.006 0.016 -0.038 0.003 -0.010 -0.027 -0.017 -0.102 0.921 0.154 0.044 0.345 -0.395 0.058 -0.148 -0.850 0.750 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 0.190 -0.000 0.000 -0.000 0.000 -0.000 -0.034 0.000 0.000 1.142 0.190 0.000 0.000 -0.490 0.000 0.000 -0.850 0.800 0.001 -0.003 0.013 -0.002 -0.003 0.009 -0.020 0.019 -0.054 0.214 0.013 -0.034 0.080 -0.003 0.009 -0.038 0.019 0.117 1.287 0.214 -0.050 -0.322 -0.551 -0.054 0.138 -0.850 0.850 0.001 -0.006 0.036 -0.006 -0.006 0.016 -0.038 0.036 -0.093 0.218 0.036 -0.093 0.218 -0.006 0.016 -0.038 0.036 0.218 1.305 0.218 -0.093 -0.559 -0.559 -0.093 0.240 -0.850 0.900 0.001 -0.008 0.071 -0.013 -0.008 0.020 -0.048 0.044 -0.107 0.190 0.071 -0.183 0.428 -0.008 0.019 -0.034 0.044 0.263 1.141 0.190 -0.113 -0.642 -0.489 -0.107 0.275 -0.850 0.950 0.001 -0.006 0.122 -0.021 -0.006 0.016 -0.038 0.035 -0.081 0.122 0.122 -0.313 0.729 -0.006 0.014 -0.021 0.035 0.208 0.729 0.122 -0.089 -0.486 -0.313 -0.081 0.208 -0.850 1.000 0.000 0.000 0.190 -0.034 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.190 -0.490 1.142 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 - -0.900 0.000 -0.042 0.374 0.000 0.000 0.230 -0.562 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.900 0.050 -0.027 0.239 -0.013 0.001 0.147 -0.359 0.637 0.239 -0.159 0.068 -0.008 0.019 -0.034 -0.027 0.018 -0.008 0.147 0.637 0.182 0.042 -0.359 -0.425 -0.102 -0.098 0.239 -0.900 0.100 -0.016 0.140 -0.016 0.002 0.086 -0.210 0.374 0.374 -0.210 0.086 -0.010 0.023 -0.042 -0.042 0.023 -0.010 0.230 0.997 0.230 0.053 -0.561 -0.561 -0.129 -0.129 0.315 -0.900 0.150 -0.008 0.071 -0.013 0.001 0.044 -0.107 0.190 0.428 -0.183 0.071 -0.008 0.019 -0.034 -0.048 0.020 -0.008 0.263 1.141 0.190 0.044 -0.642 -0.489 -0.107 -0.113 0.275 -0.900 0.200 -0.003 0.026 -0.007 0.001 0.016 -0.040 0.070 0.422 -0.105 0.038 -0.004 0.010 -0.018 -0.047 0.012 -0.004 0.260 1.125 0.102 0.024 -0.633 -0.281 -0.058 -0.065 0.158 -0.900 0.250 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.374 0.000 0.000 -0.000 0.000 -0.000 -0.042 -0.000 -0.000 0.230 0.998 0.000 -0.000 -0.562 0.000 -0.000 0.000 0.000 -0.900 0.300 0.001 -0.013 0.005 -0.001 -0.008 0.019 -0.034 0.302 0.113 -0.034 0.003 -0.008 0.014 -0.034 -0.013 0.004 0.186 0.805 -0.089 -0.021 -0.453 0.302 0.050 0.070 -0.170 -0.900 0.350 0.002 -0.016 0.008 -0.001 -0.010 0.023 -0.042 0.218 0.218 -0.055 0.005 -0.013 0.022 -0.024 -0.024 0.006 0.134 0.581 -0.145 -0.034 -0.327 0.581 0.082 0.134 -0.327 -0.900 0.400 0.001 -0.013 0.008 -0.001 -0.008 0.019 -0.034 0.134 0.302 -0.058 0.005 -0.013 0.022 -0.015 -0.034 0.006 0.083 0.358 -0.153 -0.035 -0.201 0.805 0.086 0.186 -0.453 -0.900 0.450 0.001 -0.007 0.005 -0.001 -0.004 0.010 -0.018 0.059 0.356 -0.040 0.003 -0.008 0.014 -0.007 -0.040 0.004 0.036 0.158 -0.105 -0.024 -0.089 0.949 0.059 0.219 -0.534 -0.900 0.500 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.374 0.000 -0.000 0.000 -0.000 -0.000 -0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.000 0.230 -0.562 -0.900 0.550 -0.001 0.005 -0.007 0.001 0.003 -0.008 0.014 -0.040 0.356 0.059 -0.004 0.010 -0.018 0.004 -0.040 -0.007 -0.024 -0.105 0.158 0.036 0.059 0.949 -0.089 0.219 -0.534 -0.900 0.600 -0.001 0.008 -0.013 0.001 0.005 -0.013 0.022 -0.058 0.302 0.134 -0.008 0.019 -0.034 0.006 -0.034 -0.015 -0.035 -0.153 0.358 0.083 0.086 0.805 -0.201 0.186 -0.453 -0.900 0.650 -0.001 0.008 -0.016 0.002 0.005 -0.013 0.022 -0.055 0.218 0.218 -0.010 0.023 -0.042 0.006 -0.024 -0.024 -0.034 -0.145 0.581 0.134 0.082 0.581 -0.327 0.134 -0.327 -0.900 0.700 -0.001 0.005 -0.013 0.001 0.003 -0.008 0.014 -0.034 0.113 0.302 -0.008 0.019 -0.034 0.004 -0.013 -0.034 -0.021 -0.089 0.805 0.186 0.050 0.302 -0.453 0.070 -0.170 -0.900 0.750 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 0.374 -0.000 0.000 -0.000 0.000 -0.000 -0.042 0.000 0.000 0.998 0.230 0.000 0.000 -0.562 0.000 0.000 -0.900 0.800 0.001 -0.007 0.026 -0.003 -0.004 0.010 -0.018 0.038 -0.105 0.422 0.016 -0.040 0.070 -0.004 0.012 -0.047 0.024 0.102 1.125 0.260 -0.058 -0.281 -0.633 -0.065 0.158 -0.900 0.850 0.001 -0.013 0.071 -0.008 -0.008 0.019 -0.034 0.071 -0.183 0.428 0.044 -0.107 0.190 -0.008 0.020 -0.048 0.044 0.190 1.141 0.263 -0.107 -0.489 -0.642 -0.113 0.275 -0.900 0.900 0.002 -0.016 0.140 -0.016 -0.010 0.023 -0.042 0.086 -0.210 0.374 0.086 -0.210 0.374 -0.010 0.023 -0.042 0.053 0.230 0.997 0.230 -0.129 -0.561 -0.561 -0.129 0.315 -0.900 0.950 0.001 -0.013 0.239 -0.027 -0.008 0.019 -0.034 0.068 -0.159 0.239 0.147 -0.359 0.637 -0.008 0.018 -0.027 0.042 0.182 0.637 0.147 -0.102 -0.425 -0.359 -0.098 0.239 -0.900 1.000 0.000 0.000 0.374 -0.042 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.230 -0.562 0.998 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 - -0.950 0.000 -0.034 0.638 0.000 0.000 0.182 -0.426 0.638 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.950 0.050 -0.021 0.408 -0.021 0.001 0.116 -0.272 0.408 0.408 -0.272 0.116 -0.006 0.014 -0.021 -0.021 0.014 -0.006 0.116 0.408 0.116 0.033 -0.272 -0.272 -0.078 -0.078 0.181 -0.950 0.100 -0.013 0.239 -0.027 0.001 0.068 -0.159 0.239 0.637 -0.359 0.147 -0.008 0.018 -0.027 -0.034 0.019 -0.008 0.182 0.637 0.147 0.042 -0.425 -0.359 -0.098 -0.102 0.239 -0.950 0.150 -0.006 0.122 -0.021 0.001 0.035 -0.081 0.122 0.729 -0.313 0.122 -0.006 0.014 -0.021 -0.038 0.016 -0.006 0.208 0.729 0.122 0.035 -0.486 -0.313 -0.081 -0.089 0.208 -0.950 0.200 -0.002 0.045 -0.011 0.001 0.013 -0.030 0.045 0.719 -0.180 0.065 -0.003 0.007 -0.011 -0.038 0.009 -0.003 0.205 0.719 0.065 0.019 -0.479 -0.180 -0.044 -0.051 0.120 -0.950 0.250 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.638 0.000 0.000 -0.000 0.000 -0.000 -0.034 -0.000 -0.000 0.182 0.638 0.000 -0.000 -0.426 0.000 -0.000 0.000 0.000 -0.950 0.300 0.001 -0.021 0.009 -0.000 -0.006 0.014 -0.021 0.515 0.193 -0.057 0.003 -0.006 0.009 -0.027 -0.010 0.003 0.147 0.515 -0.057 -0.016 -0.343 0.193 0.038 0.055 -0.129 -0.950 0.350 0.001 -0.027 0.014 -0.001 -0.008 0.018 -0.027 0.372 0.372 -0.093 0.004 -0.010 0.014 -0.020 -0.020 0.005 0.106 0.372 -0.093 -0.027 -0.248 0.372 0.062 0.106 -0.248 -0.950 0.400 0.001 -0.021 0.014 -0.001 -0.006 0.014 -0.021 0.229 0.515 -0.098 0.004 -0.010 0.014 -0.012 -0.027 0.005 0.065 0.229 -0.098 -0.028 -0.153 0.515 0.065 0.147 -0.343 -0.950 0.450 0.001 -0.011 0.009 -0.000 -0.003 0.007 -0.011 0.101 0.607 -0.067 0.003 -0.006 0.009 -0.005 -0.032 0.004 0.029 0.101 -0.067 -0.019 -0.067 0.607 0.045 0.173 -0.404 -0.950 0.500 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.638 0.000 -0.000 0.000 -0.000 -0.000 -0.034 0.000 0.000 0.000 0.000 0.000 0.000 0.638 0.000 0.182 -0.426 -0.950 0.550 -0.000 0.009 -0.011 0.001 0.003 -0.006 0.009 -0.067 0.607 0.101 -0.003 0.007 -0.011 0.004 -0.032 -0.005 -0.019 -0.067 0.101 0.029 0.045 0.607 -0.067 0.173 -0.404 -0.950 0.600 -0.001 0.014 -0.021 0.001 0.004 -0.010 0.014 -0.098 0.515 0.229 -0.006 0.014 -0.021 0.005 -0.027 -0.012 -0.028 -0.098 0.229 0.065 0.065 0.515 -0.153 0.147 -0.343 -0.950 0.650 -0.001 0.014 -0.027 0.001 0.004 -0.010 0.014 -0.093 0.372 0.372 -0.008 0.018 -0.027 0.005 -0.020 -0.020 -0.027 -0.093 0.372 0.106 0.062 0.372 -0.248 0.106 -0.248 -0.950 0.700 -0.000 0.009 -0.021 0.001 0.003 -0.006 0.009 -0.057 0.193 0.515 -0.006 0.014 -0.021 0.003 -0.010 -0.027 -0.016 -0.057 0.515 0.147 0.038 0.193 -0.343 0.055 -0.129 -0.950 0.750 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 0.638 -0.000 0.000 -0.000 0.000 -0.000 -0.034 0.000 0.000 0.638 0.182 0.000 0.000 -0.426 0.000 0.000 -0.950 0.800 0.001 -0.011 0.045 -0.002 -0.003 0.007 -0.011 0.065 -0.180 0.719 0.013 -0.030 0.045 -0.003 0.009 -0.038 0.019 0.065 0.719 0.205 -0.044 -0.180 -0.479 -0.051 0.120 -0.950 0.850 0.001 -0.021 0.122 -0.006 -0.006 0.014 -0.021 0.122 -0.313 0.729 0.035 -0.081 0.122 -0.006 0.016 -0.038 0.035 0.122 0.729 0.208 -0.081 -0.313 -0.486 -0.089 0.208 -0.950 0.900 0.001 -0.027 0.239 -0.013 -0.008 0.018 -0.027 0.147 -0.359 0.637 0.068 -0.159 0.239 -0.008 0.019 -0.034 0.042 0.147 0.637 0.182 -0.098 -0.359 -0.425 -0.102 0.239 -0.950 0.950 0.001 -0.021 0.408 -0.021 -0.006 0.014 -0.021 0.116 -0.272 0.408 0.116 -0.272 0.408 -0.006 0.014 -0.021 0.033 0.116 0.408 0.116 -0.078 -0.272 -0.272 -0.078 0.181 -0.950 1.000 0.000 0.000 0.638 -0.034 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.182 -0.426 0.638 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 - -1.000 0.000 -0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.050 -0.000 0.638 -0.034 0.000 0.000 0.000 0.000 0.638 -0.426 0.182 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.100 -0.000 0.374 -0.042 0.000 0.000 0.000 0.000 0.998 -0.562 0.230 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.150 -0.000 0.190 -0.034 0.000 0.000 0.000 0.000 1.142 -0.490 0.190 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.200 -0.000 0.070 -0.018 0.000 0.000 0.000 0.000 1.126 -0.282 0.102 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.250 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.300 -0.000 -0.034 0.014 0.000 0.000 0.000 0.000 0.806 0.302 -0.090 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.350 0.000 -0.042 0.022 0.000 0.000 0.000 0.000 0.582 0.582 -0.146 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.400 0.000 -0.034 0.022 0.000 0.000 0.000 0.000 0.358 0.806 -0.154 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.450 0.000 -0.018 0.014 0.000 0.000 0.000 0.000 0.158 0.950 -0.106 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 1.000 0.000 -0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.550 0.000 0.014 -0.018 0.000 0.000 0.000 0.000 -0.106 0.950 0.158 -0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.600 0.000 0.022 -0.034 0.000 0.000 0.000 0.000 -0.154 0.806 0.358 -0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.650 0.000 0.022 -0.042 0.000 0.000 0.000 0.000 -0.146 0.582 0.582 -0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.700 0.000 0.014 -0.034 0.000 0.000 0.000 0.000 -0.090 0.302 0.806 -0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.750 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 1.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.800 0.000 -0.018 0.070 0.000 0.000 0.000 0.000 0.102 -0.282 1.126 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.850 0.000 -0.034 0.190 0.000 0.000 0.000 0.000 0.190 -0.490 1.142 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.900 0.000 -0.042 0.374 0.000 0.000 0.000 0.000 0.230 -0.562 0.998 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.950 0.000 -0.034 0.638 0.000 0.000 0.000 0.000 0.182 -0.426 0.638 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 - diff --git a/tests/fe/Transform-Q1.check b/tests/fe/Transform-Q1.check deleted file mode 100644 index ceb8065a99..0000000000 --- a/tests/fe/Transform-Q1.check +++ /dev/null @@ -1,462 +0,0 @@ --1 -1 4 --1 -0.9 4.2 --1 -0.8 4.4 --1 -0.7 4.6 --1 -0.6 4.8 --1 -0.5 5 --1 -0.4 5.2 --1 -0.3 5.4 --1 -0.2 5.6 --1 -0.1 5.8 --1 0 6 --1 0.1 6.2 --1 0.2 6.4 --1 0.3 6.6 --1 0.4 6.8 --1 0.5 7 --1 0.6 7.2 --1 0.7 7.4 --1 0.8 7.6 --1 0.9 7.8 --1 1 8 - --0.9 -1 4.1 --0.895 -0.8975 4.3 --0.89 -0.795 4.5 --0.885 -0.6925 4.7 --0.88 -0.59 4.9 --0.875 -0.4875 5.1 --0.87 -0.385 5.3 --0.865 -0.2825 5.5 --0.86 -0.18 5.7 --0.855 -0.0775 5.9 --0.85 0.025 6.1 --0.845 0.1275 6.3 --0.84 0.23 6.5 --0.835 0.3325 6.7 --0.83 0.435 6.9 --0.825 0.5375 7.1 --0.82 0.64 7.3 --0.815 0.7425 7.5 --0.81 0.845 7.7 --0.805 0.9475 7.9 --0.8 1.05 8.1 - --0.8 -1 4.2 --0.79 -0.895 4.4 --0.78 -0.79 4.6 --0.77 -0.685 4.8 --0.76 -0.58 5 --0.75 -0.475 5.2 --0.74 -0.37 5.4 --0.73 -0.265 5.6 --0.72 -0.16 5.8 --0.71 -0.055 6 --0.7 0.05 6.2 --0.69 0.155 6.4 --0.68 0.26 6.6 --0.67 0.365 6.8 --0.66 0.47 7 --0.65 0.575 7.2 --0.64 0.68 7.4 --0.63 0.785 7.6 --0.62 0.89 7.8 --0.61 0.995 8 --0.6 1.1 8.2 - --0.7 -1 4.3 --0.685 -0.8925 4.5 --0.67 -0.785 4.7 --0.655 -0.6775 4.9 --0.64 -0.57 5.1 --0.625 -0.4625 5.3 --0.61 -0.355 5.5 --0.595 -0.2475 5.7 --0.58 -0.14 5.9 --0.565 -0.0325 6.1 --0.55 0.075 6.3 --0.535 0.1825 6.5 --0.52 0.29 6.7 --0.505 0.3975 6.9 --0.49 0.505 7.1 --0.475 0.6125 7.3 --0.46 0.72 7.5 --0.445 0.8275 7.7 --0.43 0.935 7.9 --0.415 1.0425 8.1 --0.4 1.15 8.3 - --0.6 -1 4.4 --0.58 -0.89 4.6 --0.56 -0.78 4.8 --0.54 -0.67 5 --0.52 -0.56 5.2 --0.5 -0.45 5.4 --0.48 -0.34 5.6 --0.46 -0.23 5.8 --0.44 -0.12 6 --0.42 -0.01 6.2 --0.4 0.1 6.4 --0.38 0.21 6.6 --0.36 0.32 6.8 --0.34 0.43 7 --0.32 0.54 7.2 --0.3 0.65 7.4 --0.28 0.76 7.6 --0.26 0.87 7.8 --0.24 0.98 8 --0.22 1.09 8.2 --0.2 1.2 8.4 - --0.5 -1 4.5 --0.475 -0.8875 4.7 --0.45 -0.775 4.9 --0.425 -0.6625 5.1 --0.4 -0.55 5.3 --0.375 -0.4375 5.5 --0.35 -0.325 5.7 --0.325 -0.2125 5.9 --0.3 -0.1 6.1 --0.275 0.0125 6.3 --0.25 0.125 6.5 --0.225 0.2375 6.7 --0.2 0.35 6.9 --0.175 0.4625 7.1 --0.15 0.575 7.3 --0.125 0.6875 7.5 --0.1 0.8 7.7 --0.075 0.9125 7.9 --0.05 1.025 8.1 --0.025 1.1375 8.3 -0 1.25 8.5 - --0.4 -1 4.6 --0.37 -0.885 4.8 --0.34 -0.77 5 --0.31 -0.655 5.2 --0.28 -0.54 5.4 --0.25 -0.425 5.6 --0.22 -0.31 5.8 --0.19 -0.195 6 --0.16 -0.08 6.2 --0.13 0.035 6.4 --0.1 0.15 6.6 --0.07 0.265 6.8 --0.04 0.38 7 --0.01 0.495 7.2 -0.02 0.61 7.4 -0.05 0.725 7.6 -0.08 0.84 7.8 -0.11 0.955 8 -0.14 1.07 8.2 -0.17 1.185 8.4 -0.2 1.3 8.6 - --0.3 -1 4.7 --0.265 -0.8825 4.9 --0.23 -0.765 5.1 --0.195 -0.6475 5.3 --0.16 -0.53 5.5 --0.125 -0.4125 5.7 --0.09 -0.295 5.9 --0.055 -0.1775 6.1 --0.02 -0.06 6.3 -0.015 0.0575 6.5 -0.05 0.175 6.7 -0.085 0.2925 6.9 -0.12 0.41 7.1 -0.155 0.5275 7.3 -0.19 0.645 7.5 -0.225 0.7625 7.7 -0.26 0.88 7.9 -0.295 0.9975 8.1 -0.33 1.115 8.3 -0.365 1.2325 8.5 -0.4 1.35 8.7 - --0.2 -1 4.8 --0.16 -0.88 5 --0.12 -0.76 5.2 --0.08 -0.64 5.4 --0.04 -0.52 5.6 -1.38778e-16 -0.4 5.8 -0.04 -0.28 6 -0.08 -0.16 6.2 -0.12 -0.04 6.4 -0.16 0.08 6.6 -0.2 0.2 6.8 -0.24 0.32 7 -0.28 0.44 7.2 -0.32 0.56 7.4 -0.36 0.68 7.6 -0.4 0.8 7.8 -0.44 0.92 8 -0.48 1.04 8.2 -0.52 1.16 8.4 -0.56 1.28 8.6 -0.6 1.4 8.8 - --0.1 -1 4.9 --0.055 -0.8775 5.1 --0.01 -0.755 5.3 -0.035 -0.6325 5.5 -0.08 -0.51 5.7 -0.125 -0.3875 5.9 -0.17 -0.265 6.1 -0.215 -0.1425 6.3 -0.26 -0.02 6.5 -0.305 0.1025 6.7 -0.35 0.225 6.9 -0.395 0.3475 7.1 -0.44 0.47 7.3 -0.485 0.5925 7.5 -0.53 0.715 7.7 -0.575 0.8375 7.9 -0.62 0.96 8.1 -0.665 1.0825 8.3 -0.71 1.205 8.5 -0.755 1.3275 8.7 -0.8 1.45 8.9 - -0 -1 5 -0.05 -0.875 5.2 -0.1 -0.75 5.4 -0.15 -0.625 5.6 -0.2 -0.5 5.8 -0.25 -0.375 6 -0.3 -0.25 6.2 -0.35 -0.125 6.4 -0.4 5.55112e-17 6.6 -0.45 0.125 6.8 -0.5 0.25 7 -0.55 0.375 7.2 -0.6 0.5 7.4 -0.65 0.625 7.6 -0.7 0.75 7.8 -0.75 0.875 8 -0.8 1 8.2 -0.85 1.125 8.4 -0.9 1.25 8.6 -0.95 1.375 8.8 -1 1.5 9 - -0.1 -1 5.1 -0.155 -0.8725 5.3 -0.21 -0.745 5.5 -0.265 -0.6175 5.7 -0.32 -0.49 5.9 -0.375 -0.3625 6.1 -0.43 -0.235 6.3 -0.485 -0.1075 6.5 -0.54 0.02 6.7 -0.595 0.1475 6.9 -0.65 0.275 7.1 -0.705 0.4025 7.3 -0.76 0.53 7.5 -0.815 0.6575 7.7 -0.87 0.785 7.9 -0.925 0.9125 8.1 -0.98 1.04 8.3 -1.035 1.1675 8.5 -1.09 1.295 8.7 -1.145 1.4225 8.9 -1.2 1.55 9.1 - -0.2 -1 5.2 -0.26 -0.87 5.4 -0.32 -0.74 5.6 -0.38 -0.61 5.8 -0.44 -0.48 6 -0.5 -0.35 6.2 -0.56 -0.22 6.4 -0.62 -0.09 6.6 -0.68 0.04 6.8 -0.74 0.17 7 -0.8 0.3 7.2 -0.86 0.43 7.4 -0.92 0.56 7.6 -0.98 0.69 7.8 -1.04 0.82 8 -1.1 0.95 8.2 -1.16 1.08 8.4 -1.22 1.21 8.6 -1.28 1.34 8.8 -1.34 1.47 9 -1.4 1.6 9.2 - -0.3 -1 5.3 -0.365 -0.8675 5.5 -0.43 -0.735 5.7 -0.495 -0.6025 5.9 -0.56 -0.47 6.1 -0.625 -0.3375 6.3 -0.69 -0.205 6.5 -0.755 -0.0725 6.7 -0.82 0.06 6.9 -0.885 0.1925 7.1 -0.95 0.325 7.3 -1.015 0.4575 7.5 -1.08 0.59 7.7 -1.145 0.7225 7.9 -1.21 0.855 8.1 -1.275 0.9875 8.3 -1.34 1.12 8.5 -1.405 1.2525 8.7 -1.47 1.385 8.9 -1.535 1.5175 9.1 -1.6 1.65 9.3 - -0.4 -1 5.4 -0.47 -0.865 5.6 -0.54 -0.73 5.8 -0.61 -0.595 6 -0.68 -0.46 6.2 -0.75 -0.325 6.4 -0.82 -0.19 6.6 -0.89 -0.055 6.8 -0.96 0.08 7 -1.03 0.215 7.2 -1.1 0.35 7.4 -1.17 0.485 7.6 -1.24 0.62 7.8 -1.31 0.755 8 -1.38 0.89 8.2 -1.45 1.025 8.4 -1.52 1.16 8.6 -1.59 1.295 8.8 -1.66 1.43 9 -1.73 1.565 9.2 -1.8 1.7 9.4 - -0.5 -1 5.5 -0.575 -0.8625 5.7 -0.65 -0.725 5.9 -0.725 -0.5875 6.1 -0.8 -0.45 6.3 -0.875 -0.3125 6.5 -0.95 -0.175 6.7 -1.025 -0.0375 6.9 -1.1 0.1 7.1 -1.175 0.2375 7.3 -1.25 0.375 7.5 -1.325 0.5125 7.7 -1.4 0.65 7.9 -1.475 0.7875 8.1 -1.55 0.925 8.3 -1.625 1.0625 8.5 -1.7 1.2 8.7 -1.775 1.3375 8.9 -1.85 1.475 9.1 -1.925 1.6125 9.3 -2 1.75 9.5 - -0.6 -1 5.6 -0.68 -0.86 5.8 -0.76 -0.72 6 -0.84 -0.58 6.2 -0.92 -0.44 6.4 -1 -0.3 6.6 -1.08 -0.16 6.8 -1.16 -0.02 7 -1.24 0.12 7.2 -1.32 0.26 7.4 -1.4 0.4 7.6 -1.48 0.54 7.8 -1.56 0.68 8 -1.64 0.82 8.2 -1.72 0.96 8.4 -1.8 1.1 8.6 -1.88 1.24 8.8 -1.96 1.38 9 -2.04 1.52 9.2 -2.12 1.66 9.4 -2.2 1.8 9.6 - -0.7 -1 5.7 -0.785 -0.8575 5.9 -0.87 -0.715 6.1 -0.955 -0.5725 6.3 -1.04 -0.43 6.5 -1.125 -0.2875 6.7 -1.21 -0.145 6.9 -1.295 -0.0025 7.1 -1.38 0.14 7.3 -1.465 0.2825 7.5 -1.55 0.425 7.7 -1.635 0.5675 7.9 -1.72 0.71 8.1 -1.805 0.8525 8.3 -1.89 0.995 8.5 -1.975 1.1375 8.7 -2.06 1.28 8.9 -2.145 1.4225 9.1 -2.23 1.565 9.3 -2.315 1.7075 9.5 -2.4 1.85 9.7 - -0.8 -1 5.8 -0.89 -0.855 6 -0.98 -0.71 6.2 -1.07 -0.565 6.4 -1.16 -0.42 6.6 -1.25 -0.275 6.8 -1.34 -0.13 7 -1.43 0.015 7.2 -1.52 0.16 7.4 -1.61 0.305 7.6 -1.7 0.45 7.8 -1.79 0.595 8 -1.88 0.74 8.2 -1.97 0.885 8.4 -2.06 1.03 8.6 -2.15 1.175 8.8 -2.24 1.32 9 -2.33 1.465 9.2 -2.42 1.61 9.4 -2.51 1.755 9.6 -2.6 1.9 9.8 - -0.9 -1 5.9 -0.995 -0.8525 6.1 -1.09 -0.705 6.3 -1.185 -0.5575 6.5 -1.28 -0.41 6.7 -1.375 -0.2625 6.9 -1.47 -0.115 7.1 -1.565 0.0325 7.3 -1.66 0.18 7.5 -1.755 0.3275 7.7 -1.85 0.475 7.9 -1.945 0.6225 8.1 -2.04 0.77 8.3 -2.135 0.9175 8.5 -2.23 1.065 8.7 -2.325 1.2125 8.9 -2.42 1.36 9.1 -2.515 1.5075 9.3 -2.61 1.655 9.5 -2.705 1.8025 9.7 -2.8 1.95 9.9 - -1 -1 6 -1.1 -0.85 6.2 -1.2 -0.7 6.4 -1.3 -0.55 6.6 -1.4 -0.4 6.8 -1.5 -0.25 7 -1.6 -0.1 7.2 -1.7 0.05 7.4 -1.8 0.2 7.6 -1.9 0.35 7.8 -2 0.5 8 -2.1 0.65 8.2 -2.2 0.8 8.4 -2.3 0.95 8.6 -2.4 1.1 8.8 -2.5 1.25 9 -2.6 1.4 9.2 -2.7 1.55 9.4 -2.8 1.7 9.6 -2.9 1.85 9.8 -3 2 10 - diff --git a/tests/fe/show_shapes.cc b/tests/fe/show_shapes.cc deleted file mode 100644 index 8da719e7d0..0000000000 --- a/tests/fe/show_shapes.cc +++ /dev/null @@ -1,67 +0,0 @@ -// $Id$ -// (c) Guido Kanschat -// -// Show the shape functions implemented. - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -char fname[50]; - -template -inline void -plot_shape_functions(FiniteElement& finel, const char* name) -{ - const unsigned int div = 20; - - QTrapez<1> q_trapez; - QIterated q(q_trapez, div); - FEValues fe(finel, q, UpdateFlags(update_values)); - - sprintf(fname, "%s.dat", name); - ofstream gnuplot(fname); - gnuplot.setf(ios::fixed); - gnuplot.precision (3); - - unsigned int k=0; - for (unsigned int m=0;m<=div;++m) - { - for (unsigned int n=0;n<=div;++n) - { - gnuplot << q.point(k); - - for (unsigned int i=0;i q1; - plot_shape_functions(q1,"Q1"); - FEQ2<2> q2; - plot_shape_functions(q2,"Q2"); - FEQ3<2> q3; - plot_shape_functions(q3,"Q3"); - FEQ4<2> q4; - plot_shape_functions(q4,"Q4"); - - return 0; -} diff --git a/tests/fe/show_transfer.cc b/tests/fe/show_transfer.cc deleted file mode 100644 index 5a160c4abc..0000000000 --- a/tests/fe/show_transfer.cc +++ /dev/null @@ -1,108 +0,0 @@ -//---------------------------- show_transfer.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- show_transfer.cc --------------------------- -// -// Print multigrid transfer matrices between one and four cells. -// -//---------------------------- show_transfer.cc --------------------------- - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include - -char fname[50]; - -#define TEST(l,el) { el fe; print_matrix(of, tr, l, fe, #el); } - -template -inline void -print_matrix(ostream& of, - Triangulation& tr, - unsigned int level, - const FiniteElement& finel, - const char* name) -{ - MGDoFHandler dof(tr); - dof.distribute_dofs(finel); - - MGTransferPrebuilt transfer; - transfer.build_matrices(dof); - - DataOut<2> dout; - dout.attach_dof_handler(dof); - - unsigned int n_coarse = dof.n_dofs(level-1); - unsigned int n_fine = dof.n_dofs(level); - Vector in(n_coarse); - vector > out(n_coarse, n_fine); - - ofstream file(name); - - for (unsigned int i=0;i tr; - - GridGenerator::hyper_cube(tr, -1., 1.); - tr.refine_global(2); - - ofstream of("transfer.dat"); - -// TEST(1,FEQ1<2>); -// TEST(1,FEQ2<2>); -// TEST(1,FEQ3<2>); -// TEST(1,FEQ4<2>); - -// TEST(1,FEDG_Q0<2>); -// TEST(1,FEDG_Q1<2>); -// TEST(1,FEDG_Q2<2>); -// TEST(1,FEDG_Q3<2>); -// TEST(1,FEDG_Q4<2>); - -// TEST(2,FEQ1<2>); -// TEST(2,FEQ2<2>); -// TEST(2,FEQ3<2>); -// TEST(2,FEQ4<2>); - - TEST(2,FEDG_Q0<2>); - TEST(2,FEDG_Q1<2>); - TEST(2,FEDG_Q2<2>); -// TEST(2,FEDG_Q3<2>); -// TEST(2,FEDG_Q4<2>); - return 0; -} diff --git a/tests/fe/show_transform.cc b/tests/fe/show_transform.cc deleted file mode 100644 index 9c40663893..0000000000 --- a/tests/fe/show_transform.cc +++ /dev/null @@ -1,73 +0,0 @@ -// $Id$ -// (c) Guido Kanschat -// -// Show the shape functions implemented. - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -char fname[50]; - -template -inline void -plot_transformation(FiniteElement& finel, - DoFHandler::cell_iterator& c, - const char* name) -{ - const unsigned int div = 20; - - QTrapez<1> q_trapez; - QIterated q(q_trapez, div); - FEValues fe(finel, q, - UpdateFlags(update_values | update_q_points | update_JxW_values)); - - fe.reinit(c); - - sprintf(fname, "%s.dat", name); - ofstream gnuplot(fname); - - unsigned int k=0; - for (unsigned int m=0;m<=div;++m) - { - for (unsigned int n=0;n<=div;++n) - { - gnuplot << fe.quadrature_point(k); - double J = fe.JxW(k) / q.weight(k); - gnuplot << ' ' << J << endl; - k++; - } - gnuplot << endl; - } -} - - -int -main() -{ - Triangulation<2> tr; - FEQ1<2> q1; - DoFHandler<2> dof(tr); - - GridGenerator::hyper_cube(tr, -1., 1.); - dof.distribute_dofs(q1); - - DoFHandler<2>::cell_iterator c = dof.begin(); - - Point<2>& v = c->vertex(2); - - v(0) = 3.; - v(1) = 2.; - - plot_transformation(q1,c,"Transform-Q1"); - - return 0; -} diff --git a/tests/fe/transfer.check b/tests/fe/transfer.check deleted file mode 100644 index 0dd987f569..0000000000 --- a/tests/fe/transfer.check +++ /dev/null @@ -1,402 +0,0 @@ -FEQ1<2> -1.000 0.000 0.000 0.000 -0.500 0.500 0.000 0.000 -0.250 0.250 0.250 0.250 -0.500 0.000 0.000 0.500 -0.000 1.000 0.000 0.000 -0.000 0.500 0.500 0.000 -0.000 0.000 1.000 0.000 -0.000 0.000 0.500 0.500 -0.000 0.000 0.000 1.000 - -FEQ2<2> -1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 -0.375 -0.125 0.000 0.000 0.750 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.375 0.000 -0.125 0.000 0.750 -0.000 0.000 0.000 0.000 0.000 -0.125 0.000 0.375 0.750 -0.375 0.000 0.000 -0.125 0.000 0.000 0.000 0.750 0.000 -0.141 -0.047 0.016 -0.047 0.281 -0.094 -0.094 0.281 0.562 -0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 --0.125 0.375 0.000 0.000 0.750 0.000 0.000 0.000 0.000 -0.000 0.375 -0.125 0.000 0.000 0.750 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.375 0.000 -0.125 0.750 --0.047 0.141 -0.047 0.016 0.281 0.281 -0.094 -0.094 0.562 -0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 -0.000 -0.125 0.375 0.000 0.000 0.750 0.000 0.000 0.000 -0.000 0.000 0.375 -0.125 0.000 0.000 0.750 0.000 0.000 -0.000 0.000 0.000 0.000 -0.125 0.000 0.375 0.000 0.750 -0.016 -0.047 0.141 -0.047 -0.094 0.281 0.281 -0.094 0.562 -0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.125 0.375 0.000 0.000 0.750 0.000 0.000 --0.125 0.000 0.000 0.375 0.000 0.000 0.000 0.750 0.000 --0.047 0.016 -0.047 0.141 -0.094 -0.094 0.281 0.281 0.562 - -FEQ3<2> -1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --0.062 -0.062 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.004 0.004 0.004 0.004 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 0.316 0.316 0.316 0.316 --0.062 0.000 0.000 -0.062 0.000 0.000 0.000 0.000 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 -0.312 0.062 0.000 0.000 0.938 -0.312 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --0.020 -0.020 -0.004 -0.004 0.176 0.176 -0.059 0.020 0.035 0.035 -0.059 0.020 0.527 0.527 -0.176 -0.176 -0.000 0.000 0.000 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 -0.062 0.000 0.562 0.562 0.000 0.000 --0.020 -0.004 -0.004 -0.020 -0.059 0.020 0.035 0.035 -0.059 0.020 0.176 0.176 0.527 -0.176 -0.176 0.527 -0.000 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 0.562 0.000 0.000 0.562 -0.312 0.000 0.000 0.062 0.000 0.000 0.000 0.000 0.000 0.000 0.938 -0.312 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 -0.098 0.020 0.004 0.020 0.293 -0.098 0.059 -0.020 0.059 -0.020 0.293 -0.098 0.879 -0.293 0.098 -0.293 -0.000 0.000 0.000 0.000 0.312 0.000 0.000 0.000 0.062 0.000 0.000 0.000 0.938 0.000 0.000 -0.312 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.062 0.000 0.000 0.000 0.312 0.000 0.938 -0.312 0.000 0.000 -0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.062 -0.062 0.000 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.062 0.312 0.000 0.000 -0.312 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.312 0.062 0.000 0.000 0.000 0.938 -0.312 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 0.562 0.562 0.000 --0.004 -0.020 -0.020 -0.004 0.020 -0.059 0.176 0.176 0.020 -0.059 0.035 0.035 -0.176 0.527 0.527 -0.176 -0.000 0.000 0.000 0.000 0.000 0.312 0.000 0.000 0.000 0.062 0.000 0.000 0.000 0.938 -0.312 0.000 -0.020 0.098 0.020 0.004 -0.098 0.293 0.293 -0.098 -0.020 0.059 0.059 -0.020 -0.293 0.879 -0.293 0.098 -0.000 0.000 0.000 0.000 0.000 0.000 0.312 0.000 0.000 0.000 0.062 0.000 -0.312 0.938 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 -0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.062 -0.062 0.000 0.000 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.062 0.312 0.000 0.000 0.000 -0.312 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.312 0.062 0.000 0.000 0.000 0.000 -0.312 0.938 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 -0.062 0.000 0.000 0.562 0.562 --0.004 -0.004 -0.020 -0.020 0.035 0.035 0.020 -0.059 0.176 0.176 0.020 -0.059 -0.176 -0.176 0.527 0.527 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.312 0.000 0.000 0.000 0.062 0.000 0.000 0.938 -0.312 -0.004 0.020 0.098 0.020 -0.020 0.059 -0.098 0.293 -0.098 0.293 -0.020 0.059 0.098 -0.293 0.879 -0.293 -0.000 0.000 0.000 0.000 0.000 0.062 0.000 0.000 0.000 0.312 0.000 0.000 0.000 -0.312 0.938 0.000 -0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.062 0.312 0.000 0.000 0.000 0.000 0.938 -0.312 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 -0.062 0.000 0.000 0.312 0.000 0.000 0.000 0.000 0.000 0.000 -0.312 0.938 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.062 0.000 0.000 0.000 0.312 0.000 0.000 -0.312 0.938 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 -0.000 0.000 0.000 0.000 0.062 0.000 0.000 0.000 0.312 0.000 0.000 0.000 -0.312 0.000 0.000 0.938 -0.020 0.004 0.020 0.098 0.059 -0.020 -0.020 0.059 0.293 -0.098 -0.098 0.293 -0.293 0.098 -0.293 0.879 - -FEQ4<2> -1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.273 -0.039 0.000 0.000 1.094 -0.547 0.219 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --0.039 0.023 0.000 0.000 0.469 0.703 -0.156 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.094 0.000 0.219 0.000 -0.547 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.469 0.000 -0.156 0.000 0.703 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 0.000 0.219 0.000 1.094 -0.547 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 -0.156 0.000 0.469 0.703 -0.273 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.094 -0.547 0.219 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --0.039 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.469 0.703 -0.156 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.075 -0.011 0.002 -0.011 0.299 -0.150 0.060 -0.043 0.021 -0.009 -0.043 0.021 -0.009 0.299 -0.150 0.060 1.196 0.239 0.048 0.239 -0.598 -0.120 -0.120 -0.598 0.299 --0.011 0.006 -0.001 0.002 0.128 0.192 -0.043 0.026 -0.013 0.005 -0.018 -0.027 0.006 -0.043 0.021 -0.009 0.513 -0.171 -0.034 0.103 0.769 0.085 0.154 -0.256 -0.385 -0.002 -0.001 0.001 -0.001 -0.018 -0.027 0.006 0.011 0.016 -0.004 0.011 0.016 -0.004 -0.018 -0.027 0.006 0.220 -0.073 0.024 -0.073 0.330 -0.110 -0.110 0.330 0.494 --0.011 0.002 -0.001 0.006 -0.043 0.021 -0.009 -0.018 -0.027 0.006 0.026 -0.013 0.005 0.128 0.192 -0.043 0.513 0.103 -0.034 -0.171 -0.256 0.154 0.085 0.769 -0.385 -0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 1.094 0.000 0.000 0.219 0.000 0.000 0.000 -0.547 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.469 -0.156 0.000 0.000 0.703 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.469 0.000 0.000 -0.156 0.000 0.000 0.000 0.703 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 1.094 0.219 0.000 0.000 -0.547 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.023 -0.039 0.000 0.000 -0.156 0.703 0.469 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --0.039 0.273 0.000 0.000 0.219 -0.547 1.094 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.273 -0.039 0.000 0.000 0.000 0.000 1.094 -0.547 0.219 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.039 0.023 0.000 0.000 0.000 0.000 0.469 0.703 -0.156 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.469 0.000 -0.156 0.703 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 1.094 0.000 0.219 -0.547 -0.006 -0.011 0.002 -0.001 -0.043 0.192 0.128 -0.043 0.021 -0.009 0.006 -0.027 -0.018 0.026 -0.013 0.005 -0.171 0.513 0.103 -0.034 0.769 -0.256 0.154 0.085 -0.385 --0.011 0.075 -0.011 0.002 0.060 -0.150 0.299 0.299 -0.150 0.060 -0.009 0.021 -0.043 -0.043 0.021 -0.009 0.239 1.196 0.239 0.048 -0.598 -0.598 -0.120 -0.120 0.299 -0.002 -0.011 0.006 -0.001 -0.009 0.021 -0.043 0.128 0.192 -0.043 0.005 -0.013 0.026 -0.018 -0.027 0.006 0.103 0.513 -0.171 -0.034 -0.256 0.769 0.085 0.154 -0.385 --0.001 0.002 -0.001 0.001 0.006 -0.027 -0.018 -0.018 -0.027 0.006 -0.004 0.016 0.011 0.011 0.016 -0.004 -0.073 0.220 -0.073 0.024 0.330 0.330 -0.110 -0.110 0.494 -0.000 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 1.094 0.219 0.000 0.000 -0.547 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.219 1.094 0.000 0.000 -0.547 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.469 -0.156 0.000 0.000 0.703 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 -0.156 0.469 0.000 0.000 0.703 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.023 -0.039 0.000 0.000 0.000 0.000 -0.156 0.703 0.469 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.039 0.273 0.000 0.000 0.000 0.000 0.219 -0.547 1.094 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.039 0.023 0.000 0.000 0.000 0.000 0.000 0.000 -0.156 0.703 0.469 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.273 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.219 -0.547 1.094 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.156 0.000 0.469 0.000 0.703 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.219 0.000 1.094 0.000 -0.547 -0.001 -0.001 0.002 -0.001 -0.004 0.016 0.011 0.006 -0.027 -0.018 0.006 -0.027 -0.018 -0.004 0.016 0.011 0.024 -0.073 0.220 -0.073 -0.110 0.330 0.330 -0.110 0.494 --0.001 0.006 -0.011 0.002 0.005 -0.013 0.026 -0.043 0.192 0.128 -0.009 0.021 -0.043 0.006 -0.027 -0.018 -0.034 -0.171 0.513 0.103 0.085 0.769 -0.256 0.154 -0.385 -0.002 -0.011 0.075 -0.011 -0.009 0.021 -0.043 0.060 -0.150 0.299 0.060 -0.150 0.299 -0.009 0.021 -0.043 0.048 0.239 1.196 0.239 -0.120 -0.598 -0.598 -0.120 0.299 --0.001 0.002 -0.011 0.006 0.006 -0.027 -0.018 -0.009 0.021 -0.043 -0.043 0.192 0.128 0.005 -0.013 0.026 -0.034 0.103 0.513 -0.171 0.154 -0.256 0.769 0.085 -0.385 -0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 -0.156 0.469 0.000 0.000 0.703 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 1.094 0.219 0.000 0.000 -0.547 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.219 1.094 0.000 0.000 -0.547 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.469 -0.156 0.000 0.000 0.703 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.039 0.273 0.000 0.000 0.000 0.000 0.000 0.000 1.094 -0.547 0.219 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.023 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.469 0.703 -0.156 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.023 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.156 0.703 0.469 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --0.039 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.219 -0.547 1.094 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.006 -0.001 0.002 -0.011 0.026 -0.013 0.005 0.006 -0.027 -0.018 -0.043 0.021 -0.009 -0.043 0.192 0.128 -0.171 -0.034 0.103 0.513 0.085 0.154 -0.256 0.769 -0.385 --0.001 0.001 -0.001 0.002 0.011 0.016 -0.004 -0.004 0.016 0.011 -0.018 -0.027 0.006 0.006 -0.027 -0.018 -0.073 0.024 -0.073 0.220 -0.110 -0.110 0.330 0.330 0.494 -0.002 -0.001 0.006 -0.011 -0.018 -0.027 0.006 0.005 -0.013 0.026 0.128 0.192 -0.043 -0.009 0.021 -0.043 0.103 -0.034 -0.171 0.513 0.154 0.085 0.769 -0.256 -0.385 --0.011 0.002 -0.011 0.075 -0.043 0.021 -0.009 -0.009 0.021 -0.043 0.299 -0.150 0.060 0.060 -0.150 0.299 0.239 0.048 0.239 1.196 -0.120 -0.120 -0.598 -0.598 0.299 -0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 -0.156 0.000 0.000 0.469 0.000 0.000 0.000 0.703 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 -0.156 0.469 0.000 0.000 0.703 0.000 0.000 -0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 0.219 0.000 0.000 1.094 0.000 0.000 0.000 -0.547 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.219 1.094 0.000 0.000 -0.547 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 - -FEDG_Q0<2> -1.000 -1.000 -1.000 -1.000 - -FEDG_Q1<2> -1.000 0.000 0.000 0.000 -0.500 0.500 0.000 0.000 -0.250 0.250 0.250 0.250 -0.500 0.000 0.000 0.500 -0.500 0.500 0.000 0.000 -0.000 1.000 0.000 0.000 -0.000 0.500 0.500 0.000 -0.250 0.250 0.250 0.250 -0.250 0.250 0.250 0.250 -0.000 0.500 0.500 0.000 -0.000 0.000 1.000 0.000 -0.000 0.000 0.500 0.500 -0.500 0.000 0.000 0.500 -0.250 0.250 0.250 0.250 -0.000 0.000 0.500 0.500 -0.000 0.000 0.000 1.000 - -FEDG_Q2<2> -1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 -0.375 -0.125 0.000 0.000 0.750 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.375 0.000 -0.125 0.000 0.750 -0.000 0.000 0.000 0.000 0.000 -0.125 0.000 0.375 0.750 -0.375 0.000 0.000 -0.125 0.000 0.000 0.000 0.750 0.000 -0.141 -0.047 0.016 -0.047 0.281 -0.094 -0.094 0.281 0.562 -0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 -0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 --0.125 0.375 0.000 0.000 0.750 0.000 0.000 0.000 0.000 -0.000 0.375 -0.125 0.000 0.000 0.750 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.375 0.000 -0.125 0.750 -0.000 0.000 0.000 0.000 0.375 0.000 -0.125 0.000 0.750 --0.047 0.141 -0.047 0.016 0.281 0.281 -0.094 -0.094 0.562 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 -0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 -0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.375 0.000 -0.125 0.750 -0.000 -0.125 0.375 0.000 0.000 0.750 0.000 0.000 0.000 -0.000 0.000 0.375 -0.125 0.000 0.000 0.750 0.000 0.000 -0.000 0.000 0.000 0.000 -0.125 0.000 0.375 0.000 0.750 -0.016 -0.047 0.141 -0.047 -0.094 0.281 0.281 -0.094 0.562 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 -0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 -0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.125 0.000 0.375 0.750 -0.000 0.000 0.000 0.000 -0.125 0.000 0.375 0.000 0.750 -0.000 0.000 -0.125 0.375 0.000 0.000 0.750 0.000 0.000 --0.125 0.000 0.000 0.375 0.000 0.000 0.000 0.750 0.000 --0.047 0.016 -0.047 0.141 -0.094 -0.094 0.281 0.281 0.562 - -FEDG_Q3<2> -1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --0.062 -0.062 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.004 0.004 0.004 0.004 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 0.316 0.316 0.316 0.316 --0.062 0.000 0.000 -0.062 0.000 0.000 0.000 0.000 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 -0.312 0.062 0.000 0.000 0.938 -0.312 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --0.020 -0.020 -0.004 -0.004 0.176 0.176 -0.059 0.020 0.035 0.035 -0.059 0.020 0.527 0.527 -0.176 -0.176 -0.000 0.000 0.000 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 -0.062 0.000 0.562 0.562 0.000 0.000 --0.020 -0.004 -0.004 -0.020 -0.059 0.020 0.035 0.035 -0.059 0.020 0.176 0.176 0.527 -0.176 -0.176 0.527 -0.000 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 0.562 0.000 0.000 0.562 -0.312 0.000 0.000 0.062 0.000 0.000 0.000 0.000 0.000 0.000 0.938 -0.312 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 -0.098 0.020 0.004 0.020 0.293 -0.098 0.059 -0.020 0.059 -0.020 0.293 -0.098 0.879 -0.293 0.098 -0.293 -0.000 0.000 0.000 0.000 0.312 0.000 0.000 0.000 0.062 0.000 0.000 0.000 0.938 0.000 0.000 -0.312 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.062 0.000 0.000 0.000 0.312 0.000 0.938 -0.312 0.000 0.000 --0.062 -0.062 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.062 -0.062 0.000 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.004 0.004 0.004 0.004 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 0.316 0.316 0.316 0.316 -0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.062 0.312 0.000 0.000 -0.312 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.312 0.062 0.000 0.000 0.000 0.938 -0.312 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 0.562 0.562 0.000 --0.004 -0.020 -0.020 -0.004 0.020 -0.059 0.176 0.176 0.020 -0.059 0.035 0.035 -0.176 0.527 0.527 -0.176 --0.020 -0.020 -0.004 -0.004 0.176 0.176 -0.059 0.020 0.035 0.035 -0.059 0.020 0.527 0.527 -0.176 -0.176 -0.000 0.000 0.000 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 -0.062 0.000 0.562 0.562 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.312 0.000 0.000 0.000 0.062 0.000 0.000 0.000 0.938 -0.312 0.000 -0.020 0.098 0.020 0.004 -0.098 0.293 0.293 -0.098 -0.020 0.059 0.059 -0.020 -0.293 0.879 -0.293 0.098 -0.000 0.000 0.000 0.000 0.000 0.000 0.312 0.000 0.000 0.000 0.062 0.000 -0.312 0.938 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 -0.004 0.004 0.004 0.004 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 0.316 0.316 0.316 0.316 -0.000 -0.062 -0.062 0.000 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.062 -0.062 0.000 0.000 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 0.562 0.562 0.000 --0.004 -0.020 -0.020 -0.004 0.020 -0.059 0.176 0.176 0.020 -0.059 0.035 0.035 -0.176 0.527 0.527 -0.176 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.062 0.312 0.000 0.000 0.000 -0.312 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.312 0.062 0.000 0.000 0.000 0.000 -0.312 0.938 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 -0.062 0.000 0.000 0.562 0.562 --0.004 -0.004 -0.020 -0.020 0.035 0.035 0.020 -0.059 0.176 0.176 0.020 -0.059 -0.176 -0.176 0.527 0.527 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.312 0.000 0.000 0.000 0.062 0.000 0.000 0.938 -0.312 -0.004 0.020 0.098 0.020 -0.020 0.059 -0.098 0.293 -0.098 0.293 -0.020 0.059 0.098 -0.293 0.879 -0.293 -0.000 0.000 0.000 0.000 0.000 0.062 0.000 0.000 0.000 0.312 0.000 0.000 0.000 -0.312 0.938 0.000 --0.062 0.000 0.000 -0.062 0.000 0.000 0.000 0.000 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 -0.004 0.004 0.004 0.004 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 0.316 0.316 0.316 0.316 -0.000 0.000 -0.062 -0.062 0.000 0.000 0.000 0.000 0.562 0.562 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --0.020 -0.004 -0.004 -0.020 -0.059 0.020 0.035 0.035 -0.059 0.020 0.176 0.176 0.527 -0.176 -0.176 0.527 -0.000 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 0.562 0.000 0.000 0.562 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.062 0.000 0.000 0.000 -0.062 0.000 0.000 0.562 0.562 --0.004 -0.004 -0.020 -0.020 0.035 0.035 0.020 -0.059 0.176 0.176 0.020 -0.059 -0.176 -0.176 0.527 0.527 -0.000 0.000 0.062 0.312 0.000 0.000 0.000 0.000 0.938 -0.312 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 -0.062 0.000 0.000 0.312 0.000 0.000 0.000 0.000 0.000 0.000 -0.312 0.938 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.062 0.000 0.000 0.000 0.312 0.000 0.000 -0.312 0.938 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 -0.000 0.000 0.000 0.000 0.062 0.000 0.000 0.000 0.312 0.000 0.000 0.000 -0.312 0.000 0.000 0.938 -0.020 0.004 0.020 0.098 0.059 -0.020 -0.020 0.059 0.293 -0.098 -0.098 0.293 -0.293 0.098 -0.293 0.879 - -FEDG_Q4<2> -1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.273 -0.039 0.000 0.000 1.094 -0.547 0.219 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --0.039 0.023 0.000 0.000 0.469 0.703 -0.156 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.094 0.000 0.219 0.000 -0.547 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.469 0.000 -0.156 0.000 0.703 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 0.000 0.219 0.000 1.094 -0.547 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 -0.156 0.000 0.469 0.703 -0.273 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.094 -0.547 0.219 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --0.039 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.469 0.703 -0.156 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.075 -0.011 0.002 -0.011 0.299 -0.150 0.060 -0.043 0.021 -0.009 -0.043 0.021 -0.009 0.299 -0.150 0.060 1.196 0.239 0.048 0.239 -0.598 -0.120 -0.120 -0.598 0.299 --0.011 0.006 -0.001 0.002 0.128 0.192 -0.043 0.026 -0.013 0.005 -0.018 -0.027 0.006 -0.043 0.021 -0.009 0.513 -0.171 -0.034 0.103 0.769 0.085 0.154 -0.256 -0.385 -0.002 -0.001 0.001 -0.001 -0.018 -0.027 0.006 0.011 0.016 -0.004 0.011 0.016 -0.004 -0.018 -0.027 0.006 0.220 -0.073 0.024 -0.073 0.330 -0.110 -0.110 0.330 0.494 --0.011 0.002 -0.001 0.006 -0.043 0.021 -0.009 -0.018 -0.027 0.006 0.026 -0.013 0.005 0.128 0.192 -0.043 0.513 0.103 -0.034 -0.171 -0.256 0.154 0.085 0.769 -0.385 -0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 1.094 0.000 0.000 0.219 0.000 0.000 0.000 -0.547 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.469 -0.156 0.000 0.000 0.703 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.469 0.000 0.000 -0.156 0.000 0.000 0.000 0.703 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 1.094 0.219 0.000 0.000 -0.547 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 -0.023 -0.039 0.000 0.000 -0.156 0.703 0.469 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --0.039 0.273 0.000 0.000 0.219 -0.547 1.094 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.273 -0.039 0.000 0.000 0.000 0.000 1.094 -0.547 0.219 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.039 0.023 0.000 0.000 0.000 0.000 0.469 0.703 -0.156 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.469 0.000 -0.156 0.703 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 1.094 0.000 0.219 -0.547 -0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.094 0.000 0.219 0.000 -0.547 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.469 0.000 -0.156 0.000 0.703 -0.006 -0.011 0.002 -0.001 -0.043 0.192 0.128 -0.043 0.021 -0.009 0.006 -0.027 -0.018 0.026 -0.013 0.005 -0.171 0.513 0.103 -0.034 0.769 -0.256 0.154 0.085 -0.385 --0.011 0.075 -0.011 0.002 0.060 -0.150 0.299 0.299 -0.150 0.060 -0.009 0.021 -0.043 -0.043 0.021 -0.009 0.239 1.196 0.239 0.048 -0.598 -0.598 -0.120 -0.120 0.299 -0.002 -0.011 0.006 -0.001 -0.009 0.021 -0.043 0.128 0.192 -0.043 0.005 -0.013 0.026 -0.018 -0.027 0.006 0.103 0.513 -0.171 -0.034 -0.256 0.769 0.085 0.154 -0.385 --0.001 0.002 -0.001 0.001 0.006 -0.027 -0.018 -0.018 -0.027 0.006 -0.004 0.016 0.011 0.011 0.016 -0.004 -0.073 0.220 -0.073 0.024 0.330 0.330 -0.110 -0.110 0.494 -0.000 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 1.094 0.219 0.000 0.000 -0.547 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.219 1.094 0.000 0.000 -0.547 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.469 -0.156 0.000 0.000 0.703 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 -0.156 0.469 0.000 0.000 0.703 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.469 0.000 -0.156 0.703 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 1.094 0.000 0.219 -0.547 -0.000 0.023 -0.039 0.000 0.000 0.000 0.000 -0.156 0.703 0.469 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.039 0.273 0.000 0.000 0.000 0.000 0.219 -0.547 1.094 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.039 0.023 0.000 0.000 0.000 0.000 0.000 0.000 -0.156 0.703 0.469 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.273 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.219 -0.547 1.094 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.156 0.000 0.469 0.000 0.703 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.219 0.000 1.094 0.000 -0.547 -0.001 -0.001 0.002 -0.001 -0.004 0.016 0.011 0.006 -0.027 -0.018 0.006 -0.027 -0.018 -0.004 0.016 0.011 0.024 -0.073 0.220 -0.073 -0.110 0.330 0.330 -0.110 0.494 --0.001 0.006 -0.011 0.002 0.005 -0.013 0.026 -0.043 0.192 0.128 -0.009 0.021 -0.043 0.006 -0.027 -0.018 -0.034 -0.171 0.513 0.103 0.085 0.769 -0.256 0.154 -0.385 -0.002 -0.011 0.075 -0.011 -0.009 0.021 -0.043 0.060 -0.150 0.299 0.060 -0.150 0.299 -0.009 0.021 -0.043 0.048 0.239 1.196 0.239 -0.120 -0.598 -0.598 -0.120 0.299 --0.001 0.002 -0.011 0.006 0.006 -0.027 -0.018 -0.009 0.021 -0.043 -0.043 0.192 0.128 0.005 -0.013 0.026 -0.034 0.103 0.513 -0.171 0.154 -0.256 0.769 0.085 -0.385 -0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 -0.156 0.469 0.000 0.000 0.703 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 1.094 0.219 0.000 0.000 -0.547 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.219 1.094 0.000 0.000 -0.547 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.469 -0.156 0.000 0.000 0.703 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 0.000 0.219 0.000 1.094 -0.547 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 -0.156 0.000 0.469 0.703 -0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.156 0.000 0.469 0.000 0.703 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.219 0.000 1.094 0.000 -0.547 -0.000 0.000 -0.039 0.273 0.000 0.000 0.000 0.000 0.000 0.000 1.094 -0.547 0.219 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.023 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.469 0.703 -0.156 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.023 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.156 0.703 0.469 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --0.039 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.219 -0.547 1.094 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.006 -0.001 0.002 -0.011 0.026 -0.013 0.005 0.006 -0.027 -0.018 -0.043 0.021 -0.009 -0.043 0.192 0.128 -0.171 -0.034 0.103 0.513 0.085 0.154 -0.256 0.769 -0.385 --0.001 0.001 -0.001 0.002 0.011 0.016 -0.004 -0.004 0.016 0.011 -0.018 -0.027 0.006 0.006 -0.027 -0.018 -0.073 0.024 -0.073 0.220 -0.110 -0.110 0.330 0.330 0.494 -0.002 -0.001 0.006 -0.011 -0.018 -0.027 0.006 0.005 -0.013 0.026 0.128 0.192 -0.043 -0.009 0.021 -0.043 0.103 -0.034 -0.171 0.513 0.154 0.085 0.769 -0.256 -0.385 --0.011 0.002 -0.011 0.075 -0.043 0.021 -0.009 -0.009 0.021 -0.043 0.299 -0.150 0.060 0.060 -0.150 0.299 0.239 0.048 0.239 1.196 -0.120 -0.120 -0.598 -0.598 0.299 -0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 -0.156 0.000 0.000 0.469 0.000 0.000 0.000 0.703 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 -0.156 0.469 0.000 0.000 0.703 0.000 0.000 -0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000 0.219 0.000 0.000 1.094 0.000 0.000 0.000 -0.547 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.219 1.094 0.000 0.000 -0.547 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 - diff --git a/tests/lac/.cvsignore b/tests/lac/.cvsignore deleted file mode 100644 index ada2eb75cc..0000000000 --- a/tests/lac/.cvsignore +++ /dev/null @@ -1,6 +0,0 @@ -Makefile Make.depend Makefile.depend -*.go -*.testcase -*.output -T -*.check diff --git a/tests/lac/Makefile.in b/tests/lac/Makefile.in deleted file mode 100644 index b3d1baa69a..0000000000 --- a/tests/lac/Makefile.in +++ /dev/null @@ -1,261 +0,0 @@ -############################################################ -# $Id$ -# Copyright (C) 2000 by the deal.II authors -############################################################ - -############################################################ -# Include general settings for including DEAL libraries -############################################################ - -D = @DEAL2_DIR@ - -include $D/common/Make.global_options - - -############################################################ -# Set debug-mode as a default -############################################################ - -debug-mode = on - - -############################################################ -# Define library names -############################################################ - -libs.g = $(lib-deal2-2d.g) \ - $(lib-lac.g) \ - $(lib-base.g) -libs = $(lib-deal2-2d.o) \ - $(lib-lac.o) \ - $(lib-base.o) - - -############################################################ -# Select compiler flags according to debug-mode -############################################################ - -ifeq ($(debug-mode),on) -libraries = $(libs.g) -flags = $(CXXFLAGS.g) $(CXXFLAGS) -Wno-missing-noreturn -endif - -ifeq ($(debug-mode),off) -libraries = $(libs) -flags = $(CXXFLAGS.o) $(CXXFLAGS) -Wno-missing-noreturn -endif - -# If in multithread mode, add the ACE library to the libraries which -# we need to link with: -ifneq ($(with-multithreading),no) - libraries += $(lib-ACE) -endif - - - -%.go : %.cc Makefile - @echo =====debug========= $< - @$(CXX) $(flags) -c $< -o $@ -%.o : %.cc Makefile - @echo =====optimized===== $< - @$(CXX) $(flags) -c $< -o $@ - - -# mgbase.check mg.check are removed until the sutructure of the -# multigrid classes will be fixed. -all: vector-vector.check block_vector.check block_matrices.check full_matrix.check solver.check -exe: $(all:.check=.testcase) benchmark -run: $(all:.check=.output) - - - -############################################################ -# Typical block for building a running program -# -# 1. provide a list of source files in ...-cc-files -# -# 2. generate the list of object files according to debug-mode -# -# 3. make executable -# -# 4. Explicit dependencies of object files (will be automatic soon) -# -############################################################ - -vector-vector-cc-files = vector-vector.cc - -ifeq ($(debug-mode),on) -vector-vector-o-files = $(vector-vector-cc-files:.cc=.go) -else -vector-vector-o-files = $(vector-vector-cc-files:.cc=.o) -endif - -vector-vector.testcase: $(vector-vector-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ - -block_matrices-cc-files = block_matrices.cc - -ifeq ($(debug-mode),on) -block_matrices-o-files = $(block_matrices-cc-files:.cc=.go) -else -block_matrices-o-files = $(block_matrices-cc-files:.cc=.o) -endif - -block_matrices.testcase: $(block_matrices-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ - -block_vector-cc-files = block_vector.cc - -ifeq ($(debug-mode),on) -block_vector-o-files = $(block_vector-cc-files:.cc=.go) -else -block_vector-o-files = $(block_vector-cc-files:.cc=.o) -endif - -block_vector.testcase: $(block_vector-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ - - -solver-cc-files = solver.cc testmatrix.cc - -ifeq ($(debug-mode),on) -solver-o-files = $(solver-cc-files:.cc=.go) -else -solver-o-files = $(solver-cc-files:.cc=.o) -endif - -solver.testcase: $(solver-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ - - -full_matrix-cc-files = full_matrix.cc - -ifeq ($(debug-mode),on) -full_matrix-o-files = $(full_matrix-cc-files:.cc=.go) -else -full_matrix-o-files = $(full_matrix-cc-files:.cc=.o) -endif - -full_matrix.testcase: $(full_matrix-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - - -############################################################ - - -mgbase-cc-files = mgbase.cc - -ifeq ($(debug-mode),on) -mgbase-o-files = $(mgbase-cc-files:.cc=.go) -else -mgbase-o-files = $(mgbase-cc-files:.cc=.o) -endif - -mgbase.testcase: $(mgbase-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - - -############################################################ - - -mg-cc-files = mg.cc testmatrix.cc - -ifeq ($(debug-mode),on) -mg-o-files = $(mg-cc-files:.cc=.go) -else -mg-o-files = $(mg-cc-files:.cc=.o) -endif - -mg.testcase: $(mg-o-files) $(libraries) - @echo =====linking======= $< - @$(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - - -############################################################ -# Continue with other targets if needed -############################################################ - - -benchmark-cc-files = benchmark.cc - -ifeq ($(debug-mode),on) -benchmark-o-files = $(benchmark-cc-files:.cc=.go) -else -benchmark-o-files = $(benchmark-cc-files:.cc=.o) -endif - -benchmark.testcase: $(benchmark-o-files) $(libraries) - $(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - -############################################################ -# Continue with other targets if needed -############################################################ - - -target1-cc-files = t1.cc t2.cc t3.cc - -ifeq ($(debug-mode),on) -target1-o-files = $(target1-cc-files:.cc=.go) -else -target1-o-files = $(target1-cc-files:.cc=.o) -endif - -target1: $(target1-o-files) $(libraries) - $(CXX) $(LDFLAGS) -g -o $@ $^ $(LIBS) - - -############################################################ -# Postprocessing -############################################################ - -%.output:%.testcase - @echo =====Running======= $< - @./$< - @perl -pi -e 's/JobId.*//;s/value.*//;s/error occur.*//;' $@ - -%.check:%.output - @-diff $< $(patsubst %.output,%.checked, $<) && echo '=====OK============' - @touch $@ -############################################################ -# Cleanup targets -############################################################ - -clean: - rm -f Makefile.depend *.o *.go *.output T - -veryclean: clean - rm -f *.testcase *.inp *.gpl *.eps *.gnuplot - -############################################################ -# Automatic generation of dependencies -############################################################ - -all-cc-files = $(shell echo *.cc) - -Makefile.depend: $(all-cc-files) - @echo =====Dependencies== Makefile.depend - @$(CXX) $(flags) $^ -M > $@ - @perl -pi -e 's/(^[^.]+)\.o:/\1.o \1.g.o:/;' $@ - -include Makefile.depend diff --git a/tests/lac/benchmark.cc b/tests/lac/benchmark.cc deleted file mode 100644 index 07c8150190..0000000000 --- a/tests/lac/benchmark.cc +++ /dev/null @@ -1,66 +0,0 @@ -//---------------------------- benchmark.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- benchmark.cc --------------------------- - - -#include -#include -#include "quickmatrix.h" -#include - -#define ITER 100 -main() -{ - Vector u; - Vector v; - - clock_t start; - clock_t diff; - - deallog << "Iterations: " << ITER << endl; - - for (unsigned int nx=32; nx<8192 ; nx*=2) - { - const unsigned int dim=(nx-1)*(nx-1); - - deallog << "size = " << nx << " dim = " << dim << endl; - - start = clock(); - for (unsigned int i=0;i A(nx,nx); - - start = clock(); - for (unsigned int i=0;i -#include -#include -#include -#include -#include - - - - -void test () -{ - ofstream logfile("block_matrices.output"); - logfile.setf(ios::fixed); - logfile.precision(3); - deallog.attach(logfile); - deallog.depth_console(0); - - BlockSparsityPattern bsp(3,2); - // set sizes - bsp.block(0,0).reinit ( 2, 10, 7); - bsp.block(0,1).reinit ( 2, 19, 8); - bsp.block(1,0).reinit ( 7, 10, 6); - bsp.block(1,1).reinit ( 7, 19, 7); - bsp.block(2,0).reinit (10, 10, 6); - bsp.block(2,1).reinit (10, 19, 12); - bsp.collect_sizes (); - - // add this pseudo-random sparsity - // pattern: - // 0 1 1 1 1 1 1 1 1 1 1 - // 1 1 1 1 1 1 1 1 1 1 1 - // 2 1 1 1 1 1 1 1 1 1 1 - // 3 1 1 1 1 1 1 1 1 1 1 - // 4 1 1 1 1 1 1 1 1 1 1 - // 5 1 1 1 1 1 1 1 1 1 1 - // 6 1 1 1 1 1 1 1 1 1 1 - // 7 1 1 1 1 1 1 1 1 1 1 - // 8 1 1 1 1 1 1 1 1 1 1 - // 9 11 1 1 1 1 1 1 1 1 1 - // 1 1 1 1 1 1 1 1 1 1 1 - // 11 1 1 1 1 1 1 1 1 1 1 - // 12 1 11 1 1 1 1 1 1 1 1 - // 13 1 111 1 1 1 1 1 1 1 - // 14 1 11 1 1 1 1 1 1 1 1 - // 15 1 1 1 1 1 1 1 1 1 1 - // 16 1 1 1 1 1 1 1 1 1 1 - // 17 1 1 11 1 1 1 1 1 1 1 - // 18 1 1 111 1 1 1 1 1 1 - for (unsigned int row=0; row<19; ++row) - for (unsigned int i=0; i<10; ++i) - bsp.add (row, (row*5+i*9)%29); - bsp.compress (); - - // now check whether the elements - // we inserted are indeed those - // that are in there. for now, we - // only check their number, but - // their places are checked later - // with the matrix-vector - // operations. - unsigned int total_nonzero_elements = 0; - for (unsigned int row=0; row<19; ++row) - { - // first count the number of - // elements in each row - vector t(29, false); - for (unsigned int i=0; i<10; ++i) - t[(row*5+i*9)%29] = true; - // if we are in the third block - // row, then the first matrix - // is square, so there may be - // an additional element - if (row>=9) - t[row-9] = true; - - deallog << "Row " << row << " sparsity: "; - for (unsigned int i=0; i<29; ++i) - deallog << t[i]; - deallog << endl; - - const unsigned int c=count(t.begin(), t.end(), true); - - // now see how many elements - // there really are: - unsigned int ac=0; - for (unsigned int col=0; col<2; ++col) - if (row<2) - ac += bsp.block(0,col).row_length(row-0); - else - if (row<9) - ac += bsp.block(1,col).row_length(row-2); - else - ac += bsp.block(2,col).row_length(row-9); - deallog << "Row=" << row - << ": expected length=" << c - << ", actual length=" << ac - << endl; - total_nonzero_elements += ac; - AssertThrow (c==ac, ExcInternalError()); - }; - deallog << total_nonzero_elements << "==" - << bsp.n_nonzero_elements() - << endl; - AssertThrow (total_nonzero_elements == bsp.n_nonzero_elements(), - ExcInternalError()); - - - - - // now make a matrix with this - // sparsity pattern - BlockSparseMatrix bsm (bsp); - deallog << total_nonzero_elements << "==" - << bsm.n_nonzero_elements() - << endl; - AssertThrow (total_nonzero_elements == bsm.n_nonzero_elements(), - ExcInternalError()); - - // try to write something into it, - // set entry (i,j) to i*j - for (unsigned int row=0; row<19; ++row) - for (unsigned int i=0; i<10; ++i) - bsm.set (row, (row*5+i*9)%29, row*((row*5+i*9)%29)); - // and add .5 to each value - for (unsigned int row=0; row<19; ++row) - for (unsigned int i=0; i<10; ++i) - bsm.add (row, (row*5+i*9)%29, 0.5); - - // now allocate two block vectors - // and see what we can get after - // vmults: - BlockVector src; - vector src_sizes (2); - src_sizes[0] = 10; - src_sizes[1] = 19; - src.reinit (src_sizes); - - BlockVector dst; - vector dst_sizes (3); - dst_sizes[0] = 2; - dst_sizes[1] = 7; - dst_sizes[2] = 10; - dst.reinit (dst_sizes); - - for (unsigned int i=0; i<29; ++i) - src(i) = i; - - bsm.vmult (dst, src); - // now check what came out - for (unsigned int row=0; row<19; ++row) - { - vector t(29, 0); - // first check which elements - // in this row exist - for (unsigned int i=0; i<10; ++i) - t[(row*5+i*9)%29] = row*((row*5+i*9)%29); - - for (unsigned int i=0; i<10; ++i) - t[(row*5+i*9)%29] += 0.5; - - // compute the exact result - double row_sum = 0; - for (unsigned int i=0; i<29; ++i) - row_sum += t[i]*i; - - // compare to vmult result - Assert (row_sum == dst(row), ExcInternalError()); - deallog << "vmult " << row << ' ' << row_sum << ' ' << dst(row) << endl; - }; - - - // test matrix_scalar_product. note that dst=M*src - const double msp1 = dst.norm_sqr (); - const double msp2 = bsm.matrix_scalar_product (dst, src); - Assert (msp1 == msp2, ExcInternalError()); - deallog << "matrix_scalar_product " << msp1 << ' ' << msp2 << endl; -}; - - - - -int main () -{ - try - { - test (); - } - catch (exception &e) - { - cerr << endl << endl - << "----------------------------------------------------" - << endl; - cerr << "Exception on processing: " << e.what() << endl - << "Aborting!" << endl - << "----------------------------------------------------" - << endl; - // abort - return 2; - } - catch (...) - { - cerr << endl << endl - << "----------------------------------------------------" - << endl; - cerr << "Unknown exception!" << endl - << "Aborting!" << endl - << "----------------------------------------------------" - << endl; - // abort - return 3; - }; - - - return 0; -}; diff --git a/tests/lac/block_matrices.checked b/tests/lac/block_matrices.checked deleted file mode 100644 index cdf08f7c9a..0000000000 --- a/tests/lac/block_matrices.checked +++ /dev/null @@ -1,61 +0,0 @@ - -DEAL::Row 0 sparsity: 10000101010000101010000101010 -DEAL::Row=0: expected length=10, actual length=10 -DEAL::Row 1 sparsity: 01010100001010100001010100001 -DEAL::Row=1: expected length=10, actual length=10 -DEAL::Row 2 sparsity: 00001010101000010101000010101 -DEAL::Row=2: expected length=10, actual length=10 -DEAL::Row 3 sparsity: 10101000010101010000101010000 -DEAL::Row=3: expected length=10, actual length=10 -DEAL::Row 4 sparsity: 10000101010000101010100001010 -DEAL::Row=4: expected length=10, actual length=10 -DEAL::Row 5 sparsity: 01010100001010100001010101000 -DEAL::Row=5: expected length=10, actual length=10 -DEAL::Row 6 sparsity: 01000010101000010101000010101 -DEAL::Row=6: expected length=10, actual length=10 -DEAL::Row 7 sparsity: 10101010000101010000101010000 -DEAL::Row=7: expected length=10, actual length=10 -DEAL::Row 8 sparsity: 10000101010100001010100001010 -DEAL::Row=8: expected length=10, actual length=10 -DEAL::Row 9 sparsity: 11010100001010101000010101000 -DEAL::Row=9: expected length=11, actual length=11 -DEAL::Row 10 sparsity: 01000010101000010101010000101 -DEAL::Row=10: expected length=10, actual length=10 -DEAL::Row 11 sparsity: 00101010000101010000101010100 -DEAL::Row=11: expected length=10, actual length=10 -DEAL::Row 12 sparsity: 10110001010100001010100001010 -DEAL::Row=12: expected length=11, actual length=11 -DEAL::Row 13 sparsity: 01011101000010101000010101000 -DEAL::Row=13: expected length=11, actual length=11 -DEAL::Row 14 sparsity: 01000110101010000101010000101 -DEAL::Row=14: expected length=11, actual length=11 -DEAL::Row 15 sparsity: 00101010000101010100001010100 -DEAL::Row=15: expected length=10, actual length=10 -DEAL::Row 16 sparsity: 10100001010100001010101000010 -DEAL::Row=16: expected length=10, actual length=10 -DEAL::Row 17 sparsity: 00010101100010101000010101010 -DEAL::Row=17: expected length=11, actual length=11 -DEAL::Row 18 sparsity: 01010000111010000101010000101 -DEAL::Row=18: expected length=11, actual length=11 -DEAL::196==196 -DEAL::196==196 -DEAL::vmult 0 72.000 72.000 -DEAL::vmult 1 2658.000 2658.000 -DEAL::vmult 2 6332.500 6332.500 -DEAL::vmult 3 6288.000 6288.000 -DEAL::vmult 4 10810.500 10810.500 -DEAL::vmult 5 12221.500 12221.500 -DEAL::vmult 6 18749.000 18749.000 -DEAL::vmult 7 14275.500 14275.500 -DEAL::vmult 8 20949.000 20949.000 -DEAL::vmult 9 20999.000 20999.000 -DEAL::vmult 10 29845.500 29845.500 -DEAL::vmult 11 29848.500 29848.500 -DEAL::vmult 12 31135.500 31135.500 -DEAL::vmult 13 29638.500 29638.500 -DEAL::vmult 14 40618.000 40618.000 -DEAL::vmult 15 39010.000 39010.000 -DEAL::vmult 16 39234.000 39234.000 -DEAL::vmult 17 51127.500 51127.500 -DEAL::vmult 18 51714.500 51714.500 -DEAL::matrix_scalar_product 15416941535.500 15416941535.500 diff --git a/tests/lac/block_vector.cc b/tests/lac/block_vector.cc deleted file mode 100644 index 0736abedf1..0000000000 --- a/tests/lac/block_vector.cc +++ /dev/null @@ -1,155 +0,0 @@ -//-------------------------------------------------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//-------------------------------------------------------------------- - - -#include -#include -#include -#include -#include -#include - -void abort () -{} - - -void test () -{ - deallog.push("BlockIndices"); - - vector ivector(4); - ivector[0] = 3; - ivector[1] = 0; - ivector[2] = 1; - ivector[3] = 2; - - BlockIndices i1(ivector); - BlockIndices i2 = i1; - BlockIndices i3; - // no output expected here - deallog.push("empty constructor"); - for (unsigned int i=0 ; ilocal"); - - unsigned int n = i1.total_size(); - for (unsigned int i=0;iglobal"); - for (unsigned int i=0 ; ilocal::0 0 0 0 0 0 0 -DEAL:BlockIndices:global->local::1 0 1 0 1 0 1 -DEAL:BlockIndices:global->local::2 0 2 0 2 0 2 -DEAL:BlockIndices:global->local::3 2 0 2 0 2 0 -DEAL:BlockIndices:global->local::4 3 0 3 0 3 0 -DEAL:BlockIndices:global->local::5 3 1 3 1 3 1 -DEAL:BlockIndices:local->global::0 0 0 -DEAL:BlockIndices:local->global::0 1 1 -DEAL:BlockIndices:local->global::0 2 2 -DEAL:BlockIndices:local->global::2 0 3 -DEAL:BlockIndices:local->global::3 0 4 -DEAL:BlockIndices:local->global::3 1 5 -DEAL:BlockIndices:reinit::0 0 0 -DEAL:BlockIndices:reinit::1 0 1 -DEAL:BlockIndices:reinit::2 0 2 -DEAL:BlockIndices:reinit::3 0 3 -DEAL:BlockIndices:reinit::4 0 4 -DEAL:BlockIndices:reinit::5 1 0 -DEAL:BlockIndices:reinit::6 1 1 -DEAL:BlockIndices:reinit::7 1 2 -DEAL:BlockIndices:reinit::8 3 0 -DEAL:BlockIndices:reinit::9 4 0 -DEAL:BlockIndices:reinit::10 4 1 -DEAL:BlockIndices:reinit::--- -DEAL:BlockIndices:reinit::0 0 0 -DEAL:BlockIndices:reinit::1 1 0 -DEAL:BlockIndices:reinit::2 1 1 -DEAL:BlockIndices::Range --------------------------------------------------------- -An - struct pair BlockIndices::global_to_local(unsigned int) const -The violated condition was: - i -#include -#include -#include - -#include -#include -#include -#include - -// Create a positive definite random matrix - -void random_matrix(FullMatrix& A) -{ - for (unsigned int i=0; i A(i,i), B(i,i); - - // Create matrix and its inverse - random_matrix(A); - B.invert(A); - - // Check if unit vectors are recovered - deallog << "Inverse(dim=" << i <<"):"; - for (unsigned int j=0;j x(i); - Vector y(i); - Vector z(i); - x(j) = 1.; - A.vmult(y,x); - B.vmult(z,y); - z.add(-1.,x); - double a = z.l2_norm(); - if (a > 1.e-12) deallog << a << ' '; - } - deallog << endl; - } - - if (true) - { - FullMatrix A(5,5), C(5,5), D(5,5), H(5,5); - D(0,0) = 1.; - D(1,1) = 2.; - D(2,2) = 3.; - D(3,3) = 4.; - D(4,4) = 5.; - - A = D; - - for (unsigned int i=0;i<4;++i) - { - // Setup rotation matrix - C.clear(); - C.diagadd(1.); - C(i,i) = C(i+1,i+1) = cos(i+1); - C(i+1,i) = sin(i+1); - C(i,i+1) = -sin(i+1); - - C.print_formatted (logfile); - deallog << "l1-norm: " << C.l1_norm() << endl; - D = C; - D.gauss_jordan(); - D.print_formatted (logfile); - deallog << "linfty-norm: " << D.linfty_norm() << endl - << "Frobenius-norm: " << D.norm2() << endl; - - // Rotate original matrix - A.mmult(H,C); - C.Tmmult(A,H); - } - - A.print_formatted (logfile); - - Vector u(5); - GrowingVectorMemory > mem; - - SolverControl control (500,1.e-8, false, true); - - if (true) - { - u = 1.; - EigenPower > - von_Mises(control, mem, 0.); - double eigen = 0.; - von_Mises.solve(eigen, A, u); - deallog << "Eigenvalue: " << eigen << endl; - } - if (true) - { - u = 1.; - EigenPower > - von_Mises(control, mem, -4.); - double eigen = 0.; - von_Mises.solve(eigen, A, u); - deallog << "Eigenvalue: " << eigen << endl; - } - H = A; - H.gauss_jordan(); - H.print_formatted (logfile); - if (true) - { - u = 1.; - EigenPower > - von_Mises(control, mem, 0.); - double eigen = 0.; - von_Mises.solve(eigen, H, u); - deallog << "Eigenvalue: " << eigen << endl; - } - if (true) - { - u = 1.; - EigenPower > - von_Mises(control, mem, -4.); - double eigen = 0.; - von_Mises.solve(eigen, H, u); - deallog << "Eigenvalue: " << eigen << endl; - } - } -} - - diff --git a/tests/lac/full_matrix.checked b/tests/lac/full_matrix.checked deleted file mode 100644 index 483c83127f..0000000000 --- a/tests/lac/full_matrix.checked +++ /dev/null @@ -1,86 +0,0 @@ - -DEAL::Inverse(dim=1): -DEAL::Inverse(dim=2): -DEAL::Inverse(dim=3): -DEAL::Inverse(dim=4): -DEAL::Inverse(dim=5): -DEAL::Inverse(dim=6): -DEAL::Inverse(dim=7): -DEAL::Inverse(dim=8): -DEAL::Inverse(dim=9): -5.403e-01 -8.415e-01 -8.415e-01 5.403e-01 - 1.000e+00 - 1.000e+00 - 1.000e+00 -DEAL::l1-norm: 1.38 -5.403e-01 8.415e-01 --8.415e-01 5.403e-01 - 1.000e+00 - 1.000e+00 - 1.000e+00 -DEAL::linfty-norm: 1.38 -DEAL::Frobenius-norm: 2.24 -1.000e+00 - -4.161e-01 -9.093e-01 - 9.093e-01 -4.161e-01 - 1.000e+00 - 1.000e+00 -DEAL::l1-norm: 1.33 -1.000e+00 - -4.161e-01 9.093e-01 - -9.093e-01 -4.161e-01 - 1.000e+00 - 1.000e+00 -DEAL::linfty-norm: 1.33 -DEAL::Frobenius-norm: 2.24 -1.000e+00 - 1.000e+00 - -9.900e-01 -1.411e-01 - 1.411e-01 -9.900e-01 - 1.000e+00 -DEAL::l1-norm: 1.13 -1.000e+00 - 1.000e+00 - -9.900e-01 1.411e-01 - -1.411e-01 -9.900e-01 - 1.000e+00 -DEAL::linfty-norm: 1.13 -DEAL::Frobenius-norm: 2.24 -1.000e+00 - 1.000e+00 - 1.000e+00 - -6.536e-01 7.568e-01 - -7.568e-01 -6.536e-01 -DEAL::l1-norm: 1.41 -1.000e+00 - 1.000e+00 - 1.000e+00 - -6.536e-01 -7.568e-01 - 7.568e-01 -6.536e-01 -DEAL::linfty-norm: 1.41 -DEAL::Frobenius-norm: 2.24 -1.708e+00 -1.892e-01 4.093e-01 -3.813e-02 4.415e-02 --1.892e-01 2.704e+00 6.399e-01 -5.962e-02 6.903e-02 -4.093e-01 6.399e-01 1.636e+00 2.203e-01 -2.551e-01 --3.813e-02 -5.962e-02 2.203e-01 4.552e+00 5.184e-01 -4.415e-02 6.903e-02 -2.551e-01 5.184e-01 4.400e+00 -DEAL:Power method::Starting -DEAL:Power method::Convergence step 21 -DEAL::Eigen -DEAL:Power method::Starting -DEAL:Power method::Convergence step 27 -DEAL::Eigen -6.460e-01 9.460e-02 -2.046e-01 1.907e-02 -2.208e-02 -9.460e-02 4.235e-01 -1.951e-01 1.817e-02 -2.104e-02 --2.046e-01 -1.951e-01 7.536e-01 -4.693e-02 5.433e-02 -1.907e-02 1.817e-02 -4.693e-02 2.257e-01 -2.980e-02 --2.208e-02 -2.104e-02 5.433e-02 -2.980e-02 2.345e-01 -DEAL:Power method::Starting -DEAL:Power method::Convergence step 17 -DEAL::Eigen -DEAL:Power method::Starting -DEAL:Power method::Convergence step 177 -DEAL::Eigen -DEAL::GrowingVectorMemory:Overall allocated vectors: 8 -DEAL::GrowingVectorMemory:Maximum allocated vectors: 2 diff --git a/tests/lac/mg.cc b/tests/lac/mg.cc deleted file mode 100644 index fdf03630ac..0000000000 --- a/tests/lac/mg.cc +++ /dev/null @@ -1,237 +0,0 @@ -//---------------------------- mg.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- mg.cc --------------------------- - - -#include -#include -#include "testmatrix.h" -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - -#define TYPE double -#define ACCURACY 1.e-5 - -// template -// void print_vector(ostream& s, const VECTOR& v) -// { -// const unsigned int n = (unsigned int)(sqrt(v.size())+.3); -// unsigned int k=0; - -// for (unsigned int i=0;i > >matrices; - public: - FDMG(unsigned int maxlevel, MGLevelObject >& matrices, - FDMGTransfer& transfer); - - -virtual void level_vmult (unsigned int level, - Vector& dst, - const Vector& src, - const Vector& rhs); - - void copy_to_mg(const Vector& rhs); - void copy_from_mg(Vector& lsg); - virtual void print_vector(unsigned int, - const Vector &, - const char *) const; - -}; - -class MGSmootherLAC - : - public MGSmootherBase -{ - private: - SmartPointer > >matrices; - public: - MGSmootherLAC(MGLevelObject >&); - - virtual void smooth (const unsigned int level, - Vector &u, - const Vector &rhs) const; - -}; - -typedef MGCoarseGridLACIteration, - SparseMatrix, - PreconditionIdentity > Coarse; - - -int main() -{ - ofstream logfile("mg.output"); - deallog.attach(logfile); - deallog.depth_console(0); - - PrimitiveVectorMemory > mem; - SolverControl control(10000, ACCURACY); - - const unsigned int base = 3; - const unsigned int maxlevel = 5; - - const unsigned int maxsize = base * (1 << maxlevel); - - // grid transfer - FDMGTransfer transfer(maxsize, maxsize, maxlevel); - - // coarse grid solver - PrimitiveVectorMemory<> cgmem; - ReductionControl cgcontrol(100, 1.e-30, 1.e-2, false, false); - SolverCG<> cgcg(cgcontrol,cgmem); - - -for (unsigned int level = 0; level <= maxlevel; ++level) - { - const unsigned int minlevel = 0; - - const unsigned int size = base * (1 << level); - - const unsigned int dim = (size-1)*(size-1); - deallog << "Level " << level << " size " << size << endl; - - // Make matrix - vector structure(maxlevel+1); - MGLevelObject > A(minlevel,maxlevel); - - FDMatrix testproblem(size, size); - - for(unsigned ll = minlevel; ll <= level; ++ll) - { - const unsigned int size = base * (1 << ll); - const unsigned int dim = (size-1)*(size-1); - FDMatrix testproblem(size, size); - structure[ll].reinit(dim, dim, 5); - testproblem.build_structure(structure[ll]); - structure[ll].compress(); - A[ll].reinit(structure[ll]); - testproblem.laplacian(A[ll]); - } - - FDMG multigrid(level, A, transfer); - -// PreconditionRelaxation<> - PreconditionIdentity - cgprec;//(A[minlevel], &SparseMatrix ::template precondition_SSOR, 1.2); - - Coarse coarsegrid(cgcg, A[minlevel], cgprec); - - MGSmootherLAC smoother(A); -// MGSmootherIdentity smoother; - - PreconditionMG > - precondition(multigrid, smoother, smoother, coarsegrid); - -// SolverRichardson > solver(control, mem); - SolverCG > solver(control, mem); - - Vector u(dim); - Vector f(dim); - u = 0.; - f = 1.;//(size*size); - - solver.solve(A[level], u, f, precondition); - ofstream out("T"); - testproblem.gnuplot_print(out,u); - } -} - -FDMG::FDMG(unsigned int maxlevel, MGLevelObject >& matrices, - FDMGTransfer& transfer) - : - MGBase(transfer, 0, maxlevel), - matrices(&matrices) -{ - for (unsigned int level = minlevel; level<=maxlevel ; ++level) - { - solution[level].reinit(matrices[level].m()); - defect[level].reinit(matrices[level].m()); - } -} - - -void -FDMG::level_vmult (unsigned int level, - Vector& dst, - const Vector& src, - const Vector&) -{ - (*matrices)[level].vmult(dst, src); -} - -void -FDMG::copy_to_mg(const Vector& v) -{ - defect[maxlevel] = v; -} - -void -FDMG::copy_from_mg(Vector& v) -{ - v = solution[maxlevel]; -} - -void -FDMG::print_vector(unsigned int, - const Vector &, - const char *) const -{} - - - -MGSmootherLAC::MGSmootherLAC(MGLevelObject >& matrix) - : - matrices(&matrix) -{} - - -void -MGSmootherLAC::smooth (const unsigned int level, - Vector &u, - const Vector &rhs) const -{ - SolverControl control(1,1.e-300,false,false); - PrimitiveVectorMemory<> mem; - SolverRichardson<> rich(control, mem); - PreconditionSSOR<> prec; - prec.initialize((*matrices)[level], 1.); - - rich.solve((*matrices)[level], u, rhs, prec); -} diff --git a/tests/lac/mg.checked b/tests/lac/mg.checked deleted file mode 100644 index 49f335c997..0000000000 --- a/tests/lac/mg.checked +++ /dev/null @@ -1,19 +0,0 @@ - -DEAL::Level 0 size 3 -DEAL:cg::Starting -DEAL:cg::Convergence step 1 -DEAL::Level 1 size 6 -DEAL:cg::Starting -DEAL:cg::Convergence step 5 -DEAL::Level 2 size 12 -DEAL:cg::Starting -DEAL:cg::Convergence step 10 -DEAL::Level 3 size 24 -DEAL:cg::Starting -DEAL:cg::Convergence step 19 -DEAL::Level 4 size 48 -DEAL:cg::Starting -DEAL:cg::Convergence step 45 -DEAL::Level 5 size 96 -DEAL:cg::Starting -DEAL:cg::Convergence step 88 diff --git a/tests/lac/mgbase.cc b/tests/lac/mgbase.cc deleted file mode 100644 index 3aa316f284..0000000000 --- a/tests/lac/mgbase.cc +++ /dev/null @@ -1,152 +0,0 @@ -//---------------------------- mgbase.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- mgbase.cc --------------------------- - - -#include -#include -#include - -#include - -class TransferTest - : - public MGTransferBase -{ - virtual void prolongate(unsigned l, - Vector& dst, - const Vector& src) const; - virtual void restrict_and_add (unsigned l, - Vector& dst, - const Vector& src) const; - friend class MGBase; -}; - -class SmoothTest - : - public MGSmootherBase -{ - public: - virtual void smooth (const unsigned int level, - Vector &u, - const Vector& rhs) const; -}; - -class MGCoarseGridTest - : - public MGCoarseGridSolver -{ - public: - virtual void operator () (unsigned int level, - Vector& dst, - const Vector& src) const ; -}; - - -class MGTest - : - public MGBase -{ - MGSmootherBase& smoother; - MGCoarseGridSolver& solver; - - public: - MGTest(TransferTest& t, SmoothTest& sm, MGCoarseGridTest& cs) - : MGBase(t, 3, 9), - smoother(sm), - solver(cs) - { - for (unsigned int l = minlevel; l <= maxlevel; ++l) - { - defect[l].reinit(1); - solution[l].reinit(1); - } - } - - virtual void level_vmult(unsigned level, - Vector& dst, - const Vector& src, - const Vector& rhs); - - virtual void print_vector(unsigned int, - const Vector &, - const char *) const; - - void doit() - { - level_mgstep(9, smoother, smoother, solver); - } -}; - -int main() -{ - ofstream logfile("mgbase.output"); - deallog.attach(logfile); - deallog.depth_console(0); - - TransferTest tr; - SmoothTest s; - MGCoarseGridTest c; - - MGTest mg(tr, s, c); - mg.doit(); - -} - -void -TransferTest::prolongate(unsigned l, - Vector&, - const Vector&) const -{ - deallog << "Prolongating " << l-1 << " to " << l << endl; -} - -void -TransferTest::restrict_and_add (unsigned l, - Vector&, - const Vector&) const -{ - deallog << "Restricting " << l << " to " << l-1 << endl; -} - -void -SmoothTest::smooth (const unsigned int level, - Vector &, - const Vector&) const -{ - deallog << "Smoothing on " << level << endl; -} - -void -MGTest::level_vmult(unsigned l, - Vector&, - const Vector&, - const Vector&) -{ - deallog << "Residual on " << l << endl; -} - -void -MGTest::print_vector(unsigned int, - const Vector &, - const char *) const -{} - - - -void -MGCoarseGridTest::operator() (unsigned int level, - Vector&, - const Vector&) const -{ - deallog << "Solving on " << level << endl; -} diff --git a/tests/lac/mgbase.checked b/tests/lac/mgbase.checked deleted file mode 100644 index e4f121c0f4..0000000000 --- a/tests/lac/mgbase.checked +++ /dev/null @@ -1,32 +0,0 @@ - -DEAL::Smoothing on 9 -DEAL::Residual on 9 -DEAL::Restricting 9 to 8 -DEAL::Smoothing on 8 -DEAL::Residual on 8 -DEAL::Restricting 8 to 7 -DEAL::Smoothing on 7 -DEAL::Residual on 7 -DEAL::Restricting 7 to 6 -DEAL::Smoothing on 6 -DEAL::Residual on 6 -DEAL::Restricting 6 to 5 -DEAL::Smoothing on 5 -DEAL::Residual on 5 -DEAL::Restricting 5 to 4 -DEAL::Smoothing on 4 -DEAL::Residual on 4 -DEAL::Restricting 4 to 3 -DEAL::Solving on 3 -DEAL::Prolongating 3 to 4 -DEAL::Smoothing on 4 -DEAL::Prolongating 4 to 5 -DEAL::Smoothing on 5 -DEAL::Prolongating 5 to 6 -DEAL::Smoothing on 6 -DEAL::Prolongating 6 to 7 -DEAL::Smoothing on 7 -DEAL::Prolongating 7 to 8 -DEAL::Smoothing on 8 -DEAL::Prolongating 8 to 9 -DEAL::Smoothing on 9 diff --git a/tests/lac/quickmatrix.h b/tests/lac/quickmatrix.h deleted file mode 100644 index 18af4f6af5..0000000000 --- a/tests/lac/quickmatrix.h +++ /dev/null @@ -1,89 +0,0 @@ -// $Id$ - -/** - * Hard-coded Laplacian matrix. - * Just a quick matrix to investigate processor performance. - * It implements a finite difference scheme on a grid of grid size 1 - * with #nx# times #ny# grid points. - * The diagonal is scaled to 1, resulting in an effective mesh width of 1/2. - */ - -template -class QuickMatrix -{ -public: - /** - * Constructor initializing the grid size. - */ - QuickMatrix(unsigned int nx, unsigned int ny); - - /** - * Matrix-vector-product. - */ - template - void vmult(Vector&, const Vector&) const; -protected: - const unsigned int nx; - const unsigned int ny; -}; - - -template -QuickMatrix::QuickMatrix(unsigned int nx, unsigned int ny) - : -nx(nx), ny(ny) -{} - -template -template -void -QuickMatrix::vmult(Vector& d, - const Vector& s) const -{ - const unsigned int step = nx-1; - const unsigned int right = step-1; - const unsigned int top = ny-1; - - // Bottom row - - d(0) = s(0) - .25 * ( s(1) + s(step) ); - - for (unsigned int x=1; x -#include -#include -#include "testmatrix.h" -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -template -void -check_method( SOLVER& solver, const MATRIX& A, - VECTOR& u, VECTOR& f, const PRECONDITION& P) -{ - u = 0.; - f = 1.; - solver.solve(A,u,f,P); -} - -int main() -{ - ofstream logfile("solver.output"); - logfile.setf(ios::fixed); - logfile.precision(3); - deallog.attach(logfile); - deallog.depth_console(0); - - GrowingVectorMemory<> mem; - SolverControl control(100, 1.e-5); - SolverControl verbose_control(100, 1.e-5, true); - SolverCG<> cg(control, mem); - SolverGMRES<> gmres(control, mem,20); - SolverBicgstab<> bicgstab(control, mem); - SolverRichardson<> rich(control, mem); - SolverQMRS<> qmrs(control, mem); - - for (unsigned int size=4; size <= 40; size *= 3) - { - unsigned int dim = (size-1)*(size-1); - - deallog << "Size " << size << " Unknowns " << dim << endl; - - // Make matrix - FDMatrix testproblem(size, size); - SparsityPattern structure(dim, dim, 5); - testproblem.build_structure(structure); - structure.compress(); - SparseMatrix A(structure); - testproblem.laplacian(A); - - PreconditionIdentity prec_no; - PreconditionSOR<> prec_sor; - prec_sor.initialize(A, 1.2); - PreconditionSSOR<> prec_ssor; - prec_ssor.initialize(A, 1.2); - - Vector f(dim); - Vector u(dim); - Vector res(dim); - - f = 1.; - u = 1.; - - A.residual(res,u,f); - A.SOR(res); - res.add(1.,u); - A.SOR_step(u,f); - res.add(-1.,u); - - deallog << "SOR-diff:" << res*res << endl; - - deallog.push("no"); - - check_method(cg,A,u,f,prec_no); - check_method(bicgstab,A,u,f,prec_no); - check_method(gmres,A,u,f,prec_no); - check_method(qmrs,A,u,f,prec_no); - - deallog.pop(); - - deallog.push("ssor"); - - check_method(rich,A,u,f,prec_ssor); - check_method(cg,A,u,f,prec_ssor); - check_method(bicgstab,A,u,f,prec_ssor); - check_method(gmres,A,u,f,prec_ssor); - check_method(qmrs,A,u,f,prec_ssor); - - deallog.pop(); - - deallog.push("sor"); - - check_method(rich,A,u,f,prec_sor); - check_method(cg,A,u,f,prec_sor); - check_method(bicgstab,A,u,f,prec_sor); - check_method(gmres,A,u,f,prec_sor); - check_method(qmrs,A,u,f,prec_sor); - - deallog.pop(); - }; -}; - diff --git a/tests/lac/solver.checked b/tests/lac/solver.checked deleted file mode 100644 index e12e98fc49..0000000000 --- a/tests/lac/solver.checked +++ /dev/null @@ -1,93 +0,0 @@ - -DEAL::Size 4 Unknowns 9 -DEAL::SOR-diff:0.000 -DEAL:no:cg::Starting -DEAL:no:cg::Convergence step 3 -DEAL:no:Bicgstab::Starting -DEAL:no:Bicgstab::Convergence step 3 -DEAL:no:GMRES::Starting -DEAL:no:GMRES::Convergence step 3 -DEAL:no:QMRS::Starting -DEAL:no:QMRS::Convergence step 3 -DEAL:ssor:Richardson::Starting -DEAL:ssor:Richardson::Convergence step 15 -DEAL:ssor:cg::Starting -DEAL:ssor:cg::Convergence step 5 -DEAL:ssor:Bicgstab::Starting -DEAL:ssor:Bicgstab::Convergence step 3 -DEAL:ssor:GMRES::Starting -DEAL:ssor:GMRES::Convergence step 4 -DEAL:ssor:QMRS::Starting -DEAL:ssor:QMRS::Convergence step 5 -DEAL:sor:Richardson::Starting -DEAL:sor:Richardson::Convergence step 10 -DEAL:sor:cg::Starting -DEAL:sor:cg::Failure step 100 -DEAL:sor:Bicgstab::Starting -DEAL:sor:Bicgstab::Convergence step 5 -DEAL:sor:GMRES::Starting -DEAL:sor:GMRES::Convergence step 5 -DEAL:sor:QMRS::Starting -DEAL:sor:QMRS::Failure step 100 -DEAL::Size 12 Unknowns 121 -DEAL::SOR-diff:0.000 -DEAL:no:cg::Starting -DEAL:no:cg::Convergence step 17 -DEAL:no:Bicgstab::Starting -DEAL:no:Bicgstab::Convergence step 13 -DEAL:no:GMRES::Starting -DEAL:no:GMRES::Convergence step 17 -DEAL:no:QMRS::Starting -DEAL:no:QMRS::Convergence step 18 -DEAL:ssor:Richardson::Starting -DEAL:ssor:Richardson::Convergence step 88 -DEAL:ssor:cg::Starting -DEAL:ssor:cg::Convergence step 11 -DEAL:ssor:Bicgstab::Starting -DEAL:ssor:Bicgstab::Convergence step 6 -DEAL:ssor:GMRES::Starting -DEAL:ssor:GMRES::Convergence step 10 -DEAL:ssor:QMRS::Starting -DEAL:ssor:QMRS::Convergence step 12 -DEAL:sor:Richardson::Starting -DEAL:sor:Richardson::Failure step 100 -DEAL:sor:cg::Starting -DEAL:sor:cg::Failure step 100 -DEAL:sor:Bicgstab::Starting -DEAL:sor:Bicgstab::Convergence step 19 -DEAL:sor:GMRES::Starting -DEAL:sor:GMRES::Convergence step 25 -DEAL:sor:QMRS::Starting -DEAL:sor:QMRS::Failure step 100 -DEAL::Size 36 Unknowns 1225 -DEAL::SOR-diff:0.000 -DEAL:no:cg::Starting -DEAL:no:cg::Convergence step 59 -DEAL:no:Bicgstab::Starting -DEAL:no:Bicgstab::Convergence step 44 -DEAL:no:GMRES::Starting -DEAL:no:GMRES::Failure step 100 -DEAL:no:QMRS::Starting -DEAL:no:QMRS::Convergence step 63 -DEAL:ssor:Richardson::Starting -DEAL:ssor:Richardson::Failure step 100 -DEAL:ssor:cg::Starting -DEAL:ssor:cg::Convergence step 27 -DEAL:ssor:Bicgstab::Starting -DEAL:ssor:Bicgstab::Convergence step 18 -DEAL:ssor:GMRES::Starting -DEAL:ssor:GMRES::Convergence step 26 -DEAL:ssor:QMRS::Starting -DEAL:ssor:QMRS::Convergence step 28 -DEAL:sor:Richardson::Starting -DEAL:sor:Richardson::Failure step 100 -DEAL:sor:cg::Starting -DEAL:sor:cg::Failure step 100 -DEAL:sor:Bicgstab::Starting -DEAL:sor:Bicgstab::Convergence step 60 -DEAL:sor:GMRES::Starting -DEAL:sor:GMRES::Failure step 100 -DEAL:sor:QMRS::Starting -DEAL:sor:QMRS::Failure step 100 -DEAL::GrowingVectorMemory:Overall allocated vectors: 345 -DEAL::GrowingVectorMemory:Maximum allocated vectors: 20 diff --git a/tests/lac/testmatrix.cc b/tests/lac/testmatrix.cc deleted file mode 100644 index 77d38427dd..0000000000 --- a/tests/lac/testmatrix.cc +++ /dev/null @@ -1,253 +0,0 @@ -//---------------------------- testmatrix.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- testmatrix.cc --------------------------- - - -#include "testmatrix.h" -#include - -FDMatrix::FDMatrix(unsigned int nx, unsigned int ny) - : - nx(nx), ny(ny) -{} - -void -FDMatrix::build_structure(SparsityPattern& structure) const -{ - for(unsigned int i=0;i<=ny-2;i++) - { - for(unsigned int j=0;j<=nx-2; j++) - { - // Number of the row to be entered - unsigned int row = j+(nx-1)*i; - structure.add(row, row); - if (j>0) - { - structure.add(row-1, row); - structure.add(row, row-1); - } - if (j0) - { - structure.add(row-(nx-1), row); - structure.add(row, row-(nx-1)); - } - if (i -void -FDMatrix::laplacian(SparseMatrix& A) const -{ - for(unsigned int i=0;i<=ny-2;i++) - { - for(unsigned int j=0;j<=nx-2; j++) - { - // Number of the row to be entered - unsigned int row = j+(nx-1)*i; - - A.set(row, row, 4.); - if (j>0) - { - A.set(row-1, row, -1.); - A.set(row, row-1, -1.); - } - if (j0) - { - A.set(row-(nx-1), row, -1.); - A.set(row, row-(nx-1), -1.); - } - if (i -void -FDMatrix::gnuplot_print(ostream& s, const Vector& V) const -{ - for(unsigned int i=0;i<=ny-2;i++) - { - for(unsigned int j=0;j<=nx-2; j++) - { - // Number of the row to be entered - unsigned int row = j+(nx-1)*i; - s << (j+1)/(float)nx << '\t' << (i+1)/(float)ny << '\t' << V(row) << endl; - } - s << endl; - } - s << endl; -} - -FDMGTransfer::FDMGTransfer(unsigned int nx, unsigned int ny, - unsigned int nlevels) - : - structures(nlevels), matrices(nlevels) -{ - unsigned int power = 1 << nlevels; - - Assert ((nx%power)==0, ExcDivide(nx,power)); - Assert ((ny%power)==0, ExcDivide(ny,power)); - - nx /= power; - ny /= power; - - for (unsigned int level = 0; level < nlevels; ++ level) - { - build_matrix(nx,ny,structures[level],matrices[level]); - nx *= 2; - ny *= 2; - } -} - -void -FDMGTransfer::build_matrix(unsigned int nx, unsigned int ny, - SparsityPattern& structure, SparseMatrix& matrix) -{ - structure.reinit((nx-1)*(ny-1),(2*nx-1)*(2*ny-1),9); - - // Traverse all points of coarse grid - for (unsigned int i=1 ; i0) - { - structure.add(ncoarse,nfine-1); - // lower left - if (i>0) - structure.add(ncoarse,nfine-(2*nx-1)-1); - // upper left - if (i0) - structure.add(ncoarse,nfine-(2*nx-1)+1); - // upper right - if (i0) - structure.add(ncoarse,nfine-(2*nx-1)); - // upper - if (i0) - { - matrix.set(ncoarse,nfine-1,.5); - // lower left - if (i>0) - matrix.set(ncoarse,nfine-(2*nx-1)-1,.25); - // upper left - if (i0) - matrix.set(ncoarse,nfine-(2*nx-1)+1,.25); - // upper right - if (i0) - matrix.set(ncoarse,nfine-(2*nx-1),.5); - // upper - if (i &dst, - const Vector &src) const -{ - Assert((to_level>0) && (to_level<=matrices.size()), - ExcIndexRange(to_level, 0, matrices.size()+1)); - - matrices[to_level-1].Tvmult(dst,src); -} - - -void -FDMGTransfer::restrict_and_add (const unsigned int from_level, - Vector &dst, - const Vector &src) const -{ - Assert((from_level>0) && (from_level<=matrices.size()), - ExcIndexRange(from_level, 0, matrices.size()+1)); - - matrices[from_level-1].vmult(dst,src); -} - - -template void FDMatrix::laplacian(SparseMatrix&) const; -template void FDMatrix::laplacian(SparseMatrix&) const; -template void FDMatrix::laplacian(SparseMatrix&) const; -template void FDMatrix::gnuplot_print(ostream& s, const Vector& V) const; -template void FDMatrix::gnuplot_print(ostream& s, const Vector& V) const; -template void FDMatrix::gnuplot_print(ostream& s, const Vector& V) const; - diff --git a/tests/lac/testmatrix.h b/tests/lac/testmatrix.h deleted file mode 100644 index 1529df0a5c..0000000000 --- a/tests/lac/testmatrix.h +++ /dev/null @@ -1,105 +0,0 @@ -// $Id$ - -#include -#include -#include - -/** - * Finite difference matrix on uniform grid. - * Generator for simple 5-point discretization of Laplace problem. - */ - -class FDMatrix -{ - public: - /** - * Constructor specifying grid resolution. - */ - FDMatrix(unsigned int nx, unsigned int ny); - - /** - * Generate the matrix structure. - */ - void build_structure(SparsityPattern& structure) const; - - /** - * Fill the matrix with values. - */ - template - void laplacian(SparseMatrix&) const; - - template - void gnuplot_print(ostream&, const Vector&) const; - - private: - /** - * Number of gridpoints in x-direction. - */ - unsigned int nx; - - /** - * Number of gridpoints in y-direction. - */ - unsigned int ny; -}; - -/** - * Grid transfer for finite differences on uniform grid. - */ - -class FDMGTransfer - : - public MGTransferBase -{ - public: - /** - * Constructor. Prepares grid - * transfer matrices for #nlevels# - * levels on an #nx# times #ny# - * grid. - */ - FDMGTransfer(unsigned int nx, unsigned int ny, - unsigned int nlevels); - - /** - * Implementation of abstract - * function in #MGTranferBase#. - */ - virtual void prolongate (const unsigned int to_level, - Vector &dst, - const Vector &src) const; - - /** - * Implementation of abstract - * function in #MGTranferBase#. - */ - virtual void restrict_and_add (const unsigned int from_level, - Vector &dst, - const Vector &src) const; - - /** - * Exception. - */ - DeclException2(ExcDivide, unsigned int, unsigned int, - << "Cannot divide " << arg1 << " by " << arg2); - - private: - /** - * Prolongation matrix structures. - */ - vector structures; - /** - * Prolongation matrices. - */ - vector > matrices; - - /** - * Matrix generator. - * The arguments #nx# and #ny# - * are the numbers on the COARSE level. - * Builds a transfer matrix from - * fine to coarse (#vmult#). - */ - void build_matrix(unsigned int nx, unsigned int ny, - SparsityPattern&, SparseMatrix&); -}; diff --git a/tests/lac/vector-vector.cc b/tests/lac/vector-vector.cc deleted file mode 100644 index 1799acc847..0000000000 --- a/tests/lac/vector-vector.cc +++ /dev/null @@ -1,169 +0,0 @@ -//---------------------------- solver.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// Copyright (C) 1998, 1999, 2000 by the deal.II authors -// -// This file is subject to QPL and may not be distributed -// without copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- solver.cc --------------------------- - - -#include -#include -#include -#include - - - - -const unsigned int N=10; -unsigned int check_point = 0; - - - - -template -void print (const Vector &v) -{ -// deallog << "Check point " << check_point << endl; -// check_point++; - - for (unsigned int i=0; i -void check_vectors (Vector &d1, Vector &d2) -{ - deallog << "Fill & Swap" << endl; - Vector d3(d1.size()); - print (d3); - - for (unsigned int i=0; isum) sum = t; - } - deallog << d3.linfty_norm() << '\t' << sum << endl; - - deallog << "add & sub" << endl; - - d1 += d2; - print (d1); - - d2 -= d1; - print (d2); - - d1.add (1.5); - print (d1); - - d1.add (2, d3); - print (d1); - - d1.add (2., d2, .5, d3); - print (d1); - - deallog << "sadd & scale" << endl; - - d2.sadd (2., d1); - print (d2); - - d2.sadd (2., .5, d1); - print (d2); - - d1.sadd (2, 2, d2, 2, d3); - print (d1); - - d1.scale (4.); - print (d1); - - deallog << "equ" << endl; - - d2.equ (.25, d1); - print (d2); - - d2.equ (.25, d1, 2, d3); - print (d2); - - d1.ratio (d1, d2); - print (d1); -}; - - -int main() -{ - ofstream logfile("vector-vector.output"); - logfile.setf(ios::fixed); - logfile.precision(2); - deallog.attach(logfile); - deallog.depth_console(0); - - Vector d1(N), d2(N); - Vector f1(N), f2(N); - Vector l1(N), l2(N); - - // cross-tests with double/float - // vectors at the same time are not - // supported at present, - // unfortunately, as many functions - // don't accept other data types as - // arguments - check_vectors (d1, d2); - check_vectors (f1, f2); - check_vectors (l1, l2); -}; - - diff --git a/tests/lac/vector-vector.checked b/tests/lac/vector-vector.checked deleted file mode 100644 index 38d8d968a7..0000000000 --- a/tests/lac/vector-vector.checked +++ /dev/null @@ -1,91 +0,0 @@ - -DEAL::Fill & Swap -DEAL::0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -DEAL::0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 -DEAL::0.00 2.00 8.00 18.00 32.00 50.00 72.00 98.00 128.00 162.00 -DEAL::2.00 1.50 1.00 0.50 0.00 -0.50 -1.00 -1.50 -2.00 -2.50 -DEAL::0.00 2.00 8.00 18.00 32.00 50.00 72.00 98.00 128.00 162.00 -DEAL::0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 -DEAL::2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 -DEAL::Extract number -DEAL::-105.00 -105.00 -DEAL::1140.00 1140.00 -DEAL::33.76 33.76 -DEAL::-0.25 -0.25 -DEAL::12.50 12.50 -DEAL::2.50 2.50 -DEAL::add & sub -DEAL::2.50 4.50 6.50 8.50 10.50 12.50 14.50 16.50 18.50 20.50 -DEAL::-2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -DEAL::4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 -DEAL::8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 -DEAL::4.00 4.75 5.50 6.25 7.00 7.75 8.50 9.25 10.00 10.75 -DEAL::sadd & scale -DEAL::-1.00 -0.25 0.50 1.25 2.00 2.75 3.50 4.25 5.00 5.75 -DEAL::0.00 1.88 3.75 5.62 7.50 9.38 11.25 13.12 15.00 16.88 -DEAL::12.00 16.25 20.50 24.75 29.00 33.25 37.50 41.75 46.00 50.25 -DEAL::48.00 65.00 82.00 99.00 116.00 133.00 150.00 167.00 184.00 201.00 -DEAL::equ -DEAL::12.00 16.25 20.50 24.75 29.00 33.25 37.50 41.75 46.00 50.25 -DEAL::16.00 19.25 22.50 25.75 29.00 32.25 35.50 38.75 42.00 45.25 -DEAL::3.00 3.38 3.64 3.84 4.00 4.12 4.23 4.31 4.38 4.44 -DEAL::Fill & Swap -DEAL::0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -DEAL::0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 -DEAL::0.00 2.00 8.00 18.00 32.00 50.00 72.00 98.00 128.00 162.00 -DEAL::2.00 1.50 1.00 0.50 0.00 -0.50 -1.00 -1.50 -2.00 -2.50 -DEAL::0.00 2.00 8.00 18.00 32.00 50.00 72.00 98.00 128.00 162.00 -DEAL::0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 -DEAL::2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 -DEAL::Extract number -DEAL::-105.00 -105.00 -DEAL::1140.00 1140.00 -DEAL::33.76 33.76 -DEAL::-0.25 -0.25 -DEAL::12.50 12.50 -DEAL::2.50 2.50 -DEAL::add & sub -DEAL::2.50 4.50 6.50 8.50 10.50 12.50 14.50 16.50 18.50 20.50 -DEAL::-2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -DEAL::4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 -DEAL::8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 -DEAL::4.00 4.75 5.50 6.25 7.00 7.75 8.50 9.25 10.00 10.75 -DEAL::sadd & scale -DEAL::-1.00 -0.25 0.50 1.25 2.00 2.75 3.50 4.25 5.00 5.75 -DEAL::0.00 1.88 3.75 5.62 7.50 9.38 11.25 13.12 15.00 16.88 -DEAL::12.00 16.25 20.50 24.75 29.00 33.25 37.50 41.75 46.00 50.25 -DEAL::48.00 65.00 82.00 99.00 116.00 133.00 150.00 167.00 184.00 201.00 -DEAL::equ -DEAL::12.00 16.25 20.50 24.75 29.00 33.25 37.50 41.75 46.00 50.25 -DEAL::16.00 19.25 22.50 25.75 29.00 32.25 35.50 38.75 42.00 45.25 -DEAL::3.00 3.38 3.64 3.84 4.00 4.12 4.23 4.31 4.38 4.44 -DEAL::Fill & Swap -DEAL::0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -DEAL::0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 -DEAL::0.00 2.00 8.00 18.00 32.00 50.00 72.00 98.00 128.00 162.00 -DEAL::2.00 1.50 1.00 0.50 0.00 -0.50 -1.00 -1.50 -2.00 -2.50 -DEAL::0.00 2.00 8.00 18.00 32.00 50.00 72.00 98.00 128.00 162.00 -DEAL::0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 -DEAL::2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 -DEAL::Extract number -DEAL::-105.00 -105.00 -DEAL::1140.00 1140.00 -DEAL::33.76 33.76 -DEAL::-0.25 -0.25 -DEAL::12.50 12.50 -DEAL::2.50 2.50 -DEAL::add & sub -DEAL::2.50 4.50 6.50 8.50 10.50 12.50 14.50 16.50 18.50 20.50 -DEAL::-2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -DEAL::4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 -DEAL::8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 -DEAL::4.00 4.75 5.50 6.25 7.00 7.75 8.50 9.25 10.00 10.75 -DEAL::sadd & scale -DEAL::-1.00 -0.25 0.50 1.25 2.00 2.75 3.50 4.25 5.00 5.75 -DEAL::0.00 1.88 3.75 5.62 7.50 9.38 11.25 13.12 15.00 16.88 -DEAL::12.00 16.25 20.50 24.75 29.00 33.25 37.50 41.75 46.00 50.25 -DEAL::48.00 65.00 82.00 99.00 116.00 133.00 150.00 167.00 184.00 201.00 -DEAL::equ -DEAL::12.00 16.25 20.50 24.75 29.00 33.25 37.50 41.75 46.00 50.25 -DEAL::16.00 19.25 22.50 25.75 29.00 32.25 35.50 38.75 42.00 45.25 -DEAL::3.00 3.38 3.64 3.84 4.00 4.12 4.23 4.31 4.38 4.44 -- 2.39.5