From 22efc827040dbfbcba5935162c93abe69f1ffe2a Mon Sep 17 00:00:00 2001 From: bangerth Date: Thu, 9 Feb 2012 13:19:07 +0000 Subject: [PATCH] Go over the text. Add a couple of pictures. git-svn-id: https://svn.dealii.org/trunk@25020 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-41/doc/step-41-doc.tex | 422 ++++++++++++------ .../step-41/doc/step-41.active-set.png | Bin 0 -> 50948 bytes .../step-41/doc/step-41.displacement.png | Bin 0 -> 79173 bytes 3 files changed, 287 insertions(+), 135 deletions(-) create mode 100644 deal.II/examples/step-41/doc/step-41.active-set.png create mode 100644 deal.II/examples/step-41/doc/step-41.displacement.png diff --git a/deal.II/examples/step-41/doc/step-41-doc.tex b/deal.II/examples/step-41/doc/step-41-doc.tex index 71f7baea0c..6d5a8fcb99 100644 --- a/deal.II/examples/step-41/doc/step-41-doc.tex +++ b/deal.II/examples/step-41/doc/step-41-doc.tex @@ -2,6 +2,8 @@ \usepackage{amsmath} \usepackage{amssymb} +\usepackage{a4wide} +\usepackage{graphicx} \title{Documentation of step-41, The obstacle problem} \author{Joerg Frohne} @@ -11,192 +13,342 @@ \section{Introduction} -This example is based on the Laplace equation in a two-dimensional space $\Omega = \left[-1,1\right]^2$. It shows how to handle an obstacle problem. Therefore we have to solve a variational inequality. We will derive it from classical formulation.\\ -As a physical interpretation you imagine a membrane which is fixed on the boundary $\partial\Omega$. The membrane shows elastic material behavior with Young's modulus $E = 1.0$ for simplicity and there acts a force like from the earth gravitation on it. So the membrane dents in one direction and hits the cascaded obstacle which is described by the function $g$. +This example is based on the Laplace equation in a two-dimensional space +$\Omega = \left[-1,1\right]^2$ and deals with the question what happens if a +membrane is deflected by some external force but is also constrained by an +obstacle. In other words, think of a elastic membrane clamped at the boundary +to a rectangular frame and that sags through due to gravity acting on it. What +happens now if there is an obstacle under the membrane that prevents it from +reaching its equilibrium position if gravity was the only existing force? In +the current example program, we will consider that under the membrane is a +stair step obstacle against which gravity pushes the membrane. + +This problem is typically called the "obstacle problem", and it results in a +variational inequality, rather than a variational equation when put into the +weak form. We will below derive it from classical formulation, but before we +go on to discuss the mathematics let us show the solution of the problem we +will consider in this tutorial program looks to gain some intuition of what +we should expect: + +XXX (see files step-41.*.png) XXX + +Here, at the left, we see the displacement of the membrane. The shape of the +obstacle underneath is clearly visible. On the right, we overlay which parts +of the membrane are in contact with the obstacle. We will later call this set +of points the "active set" to indicate that an inequality constraint is active +there. + \section{Classical formulation} The classical formulation of the problem possesses the following form: -\begin{align} - -div (\sigma) &\geq f & &\quad\text{in } \Omega,\\ - \sigma &= E\nabla u & &\quad\text{in } \Omega,\\ - u(x,y) &= 0 & &\quad\text{on }\partial\Omega,\\ -(\Delta u + f)(u - g) &= 0 & &\quad\text{in } \Omega,\\ - u(x,y) &\geq g(x,y) & &\quad\text{in } \Omega -\end{align} -with $u\in H^2(\Omega)$. - -\noindent -$u$ is a scalar valued function that denotes the displacement of the membrane. The first equation is called equilibrium condition with the force of areal density $f$. The second one is known as Hooke's Law with the stresses $\sigma$. At the boundary we have zero Dirichlet conditions. And (4) together with the last inequality builds the obstacle condition which has to hold for the hole domain.\\ -In this case it is possible to join the first two equations which yields the Laplace equation: -\begin{equation} - -\Delta u(x,y) \geq f(x,y)\quad\text{in }(x,y)\in \Omega. -\end{equation} -As mentioned above we choose $E=1.0$ for simplicity. +\begin{align*} + -\textrm{div}\ \sigma &\geq f & &\quad\text{in } \Omega,\\ + \sigma &= \nabla u & &\quad\text{in } \Omega,\\ + u(\mathbf x) &= 0 & &\quad\text{on }\partial\Omega,\\ +(-\Delta u - f)(u - g) &= 0 & &\quad\text{in } \Omega,\\ + u(\mathbf x) &\geq g(\mathbf x) & &\quad\text{in } \Omega +\end{align*} +with $u\in H^2(\Omega)$. $u$ is a scalar valued function that denotes the +displacement of the membrane. The first equation is called equilibrium +condition with the force of areal density $f$. Here, this force is +gravity. The second one is known as Hooke's Law that says that the stresses +$\sigma$ are proportional to the gradient of the displacements $u$ (the +proportionality constant, often denoted by $E$, has been set to one here, +without loss of generality; if it is constant, it can be put into the right +hand side function). At the boundary we have zero Dirichlet +conditions. Obviously, the first two equations can be combined to yield +$-\Delta u \ge f$. + +Intuitively, gravity acts downward and so $f(\mathbf x)$ is a negative +function (we choose $f=-10$ in this program). The first condition then means +that the total force acting on the membrane is gravity plus something +positive: namely the upward force that the obstacle exerts on the membrane at +those places where the two of them are in contact. How big is this additional +force? We don't know yet (and neither do we know "where" it actually acts) but +it must be so that the membrane doesn't penetrate the obstacle. + +The fourth equality above together with the last inequality forms the +obstacle condition which has to hold for the whole domain. The latter of these +two means that the membrane must be above the obstacle $g(\mathbf x)$ +everywhere. The second to last equation, often called the "complementarity +condition" says that where the membrane is not in contact with the obstacle +(i.e., those $\mathbf x$ where $u(\mathbf x) - g(\mathbf x) \neq 0$), then +$-\Delta u=f$ at these locations; in other words, no additional forces act +there, as expected. On the other hand, where $u=g$ we can have $-\Delta u-f +\neq 0$, i.e., there can be additional forces (though there don't have to be: +it is possible for the membrane to just touch, not press against, the obstacle). + \section{Derivation of the variational inequality} An obvious way to obtain the variational formulation of the obstacle problem is to consider the total potential energy: -\begin{equation} +\begin{equation*} E(u):=\dfrac{1}{2}\int\limits_{\Omega} \nabla u \cdot \nabla - \int\limits_{\Omega} fu. -\end{equation} +\end{equation*} We have to find a solution $u\in G$ of the following minimization problem -\begin{equation} +\begin{equation*} E(u)\leq E(v)\quad \forall v\in G, -\end{equation} +\end{equation*} with the convex set of admissble displacements: -\begin{equation} +\begin{equation*} G:=\lbrace v\in V: v\geq g \text{ a.e. in } \Omega\rbrace,\quad V:=H^1_0(\Omega). -\end{equation} -This set takes care of the conditions (3) and (5).\\ -Now we consider a function -\begin{equation} - F(\varepsilon) := E(u+\varepsilon(v-u)),\quad\varepsilon\in\left[0,1\right],\quad u,v\in G, -\end{equation} -which takes its minimum at $\varepsilon = 0$, so that $F'(0)\geq 0$. Note that $u+\varepsilon(v-u) = (1-\varepsilon)u+\varepsilon v\in G$ because of the convexity of $G$. If we compute $F'(\varepsilon)\vert_{\varepsilon=0}$ it yields the variational formulation we are searching for:\\ +\end{equation*} +This set takes care of the third and fifth conditions above (the boundary +values and the complementarity condition). + +Consider now the minimizer $u\in G$ of $E$ and any other function $v\in +G$. Then the function +\begin{equation*} + F(\varepsilon) := E(u+\varepsilon(v-u)),\quad\varepsilon\in\left[0,1\right], +\end{equation*} +takes its minimum at $\varepsilon = 0$, so that $F'(0)\geq 0$ for any choice +of $v$. Note that +$u+\varepsilon(v-u) = (1-\varepsilon)u+\varepsilon v\in G$ because of the +convexity of $G$. If we compute $F'(\varepsilon)\vert_{\varepsilon=0}$ it +yields the variational formulation we are searching for: + \textit{Find a function $u\in G$ with} -\begin{equation} +\begin{equation*} \left(\nabla u, \nabla(v-u)\right) \geq \left(f,v-u\right) \quad \forall v\in G. -\end{equation} -For the equivalent saddle point formulation of this problem we introduce a Lagrange multiplier $\lambda$ and the convex cone $K\subset W:=V^*$ of Lagrange multipliers. This yields to:\\ -Find $u\in V$ and $\lambda\in K$ such that -\begin{eqnarray} - a(u,v) + b(v,\lambda) &=& f(v),\quad v\in V\\ - b(u,\mu - \lambda) &\leq& \langle g,(\mu - \lambda)\rangle,\quad\mu\in K, -\end{eqnarray} -with -\begin{eqnarray} - a(u,v) &:=& \left(\nabla u, \nabla v\right),\quad u,v\in V\\ - b(u,\mu) &:=& (u,\mu),\quad u\in V,\quad\mu\in W. -\end{eqnarray} -The existence and uniqueness of $(u,\mu)\in V\times K$ of the saddle point problem (14) and (15) has been stated in Grossmann and Roos: Numerical treatment of partial differential equations, Springer-Verlag, Heidelberg-Berlin, 2007, 596 pages, ISBN 978-3-540-71582-5. - - - -\section{Active Set methods to solve (11)} - -There are different methods to solve the variational inequality. As one possibility you can understand (11) as a convex quadratic program (QP) with inequality constraints.\\ -After we discretized the saddle point problem, we obtain the following system of equations and inequalities for $p\in\mathcal{S}:=\Omega_h\backslash\partial\Omega_h$: -\begin{eqnarray} - &A_h u_h + B_h\lambda_h = f_h,&\\ - &u_{n,p} \leq g_p,\quad \lambda_p \geq 0,\quad \lambda_p(u_{n,p} - g_p) = 0.& -\end{eqnarray} -with $u_{n,p}:=D_{pp} u_p\leq g_p, p\in S$ as a non-pentration condition. The matrix $B_h$ has the form $B_h:=D$ where $D$ is a diagonal matrix with the entries -\begin{equation} - D_{pp} := \int\limits_{\Omega}\varphi_p^2 dx,\quad p\in\mathcal{S}. -\end{equation} -Now we define for each vertex $p\in \mathcal{S}$ the function -\begin{equation} - C(u_{n,p},\lambda_p):=\lambda_p - \max\lbrace 0, \lambda_p + c( u_{n,p} - g_p\rbrace,\quad c>0. -\end{equation} -So we can express the conditions in (17) as -\begin{equation} - C(u_{n,p},\lambda_p) = 0,\quad p\in\mathcal{S}. -\end{equation} -The primal-dual active set strategy is an iterative scheme which is based on (19) to predict the next active and inactive sets $\mathcal{A}_k$ and $\mathcal{F}_k$. (See Hintermueller, Ito, Kunisch: The primal-dual active set strategy as a semismooth newton method, SIAM J. OPTIM., 2003, Vol. 13, No. 3, pp. 865-888.)\\ -% \begin{eqnarray} -% \min\limits_{u_h} q(u_h) &=& \dfrac{1}{2}u_h^TAu_h + u_h^Tb\\ -% \text{subject to}\quad c_i^Tu_h &=& 0,\quad i\in I_{\partial\Omega}\\ -% c_i^T u_h &\geq& g_i,\quad i\in I_{\Omega}. -% \end{eqnarray} -% In this formulation $A$ is the mass matrix with $A_{ij} = \left(\nabla\varphi_i,\nabla\varphi_j\right)$ which includes the Dirichlet-Boundary conditions and $b$ is the right-hand-side with $b_i = \left(f_i,\varphi_i\right)$. $u_h$ and $c$ are also vectors with the same dimension as $b$.\\ -The algorithm for primal-dual active set method works as follows: +\end{equation*} + +This is the typical form of variational inequalities, where not just $v$ +appears in the bilinear form but in fact $v-u$. The reason is this: if $u$ is +not constrained, then we can find test functions $v$ in $G$ so that $v-u$ can have +any sign. By choosing test functions $v_1,v_2$ so that $v_1-u = -(v_2-u)$ it +follows that the inequality can only hold for both $v_1$ and $v_2$ if the two +sides are in fact equal, i.e., we obtain a variational equality. + +On the other hand, if $u=g$ then $G$ only allows test functions $v$ so that in fact +$v-u\ge 0$. This means that we can't test the equation with both $v-u$ and +$-(v-u)$ as above, and so we can no longer conclude that the two sides are in +fact equal. Thus, this mimicks the way we have discussed the complementarity +condition above. + +\section{Formulation as a saddle point problem} + +The variational inequality above is awkward to work with. We would therefore +like to reformulate it as an equivalent saddle point problem. We introduce a +Lagrange multiplier $\lambda$ and the convex cone $K\subset W:=V^*, K=\{\mu\in +W: \mu(\mathbf x)\le 0\}$ of +\marginpar{JF: Is this definition of $K$ correct?} +Lagrange multipliers. This yields: + +\textit{Find $u\in V$ and $\lambda\in K$ such that} +\begin{align*} + a(u,v) + b(v,\lambda) &= f(v),\quad &&v\in V\\ + b(u,\mu - \lambda) &\leq \langle g,(\mu - \lambda)\rangle,\quad&&\mu\in K, +\end{align*} +\textit{with} +\begin{align*} + a(u,v) &:= \left(\nabla u, \nabla v\right),\quad &&u,v\in V\\ + b(u,\mu) &:= (u,\mu),\quad &&u\in V,\quad\mu\in W. +\end{align*} +In other words, we can consider $\lambda$ as the negative of the additional, positive force that the +obstacle exerts on the membrane. The inequality in the second line of the +statement above only appears to have the wrong sign because we have +$\mu-\lambda<0$ at points where $\lambda=0$, given the definition of $K$. + +The existence and uniqueness of $(u,\lambda)\in V\times K$ of this saddle +point problem has been stated in Grossmann and Roos: Numerical treatment of +partial differential equations, Springer-Verlag, Heidelberg-Berlin, 2007, 596 +pages, ISBN 978-3-540-71582-5. + + + +\section{Active Set methods to solve the saddle point problem} + +There are different methods to solve the variational inequality. As one +possibility you can understand the saddle point problem as a convex quadratic program (QP) with +inequality constraints. + +To get there, let us assume that we discretize both $u$ and $\lambda$ with the +same finite element space, for example the usual $Q_k$ spaces. We would then +get the equations +\marginpar{JF: Aren't the inequalities the wrong way around here (and below)?} +\begin{eqnarray*} + &A U + B\Lambda = F,&\\ + &[BU-G]_i \le 0, \quad \Lambda_i \geq 0,\quad \Lambda_i[BU-G]_i = 0 +\qquad \forall i.& +\end{eqnarray*} +where $B$ is the mass matrix on the chosen finite element space and the +indices $i$ above are for all degrees of freedom in the set $\cal S$ of degrees of +freedom located in the interior of the domain +(we have Dirichlet conditions on the perimeter). However, we +can make our life simpler if we use a particular quadrature rule when +assembling all terms that yield this mass matrix, namely a quadrature formula +one where quadrature points are only located at the interpolation points at +which shape functions are defined; since all but one shape function are zero +at these locations, we get a diagonal mass matrix with +\begin{align*} + B_{ii} = \int_\Omega \varphi_i(\mathbf x)^2\ \textrm{d}x, + \qquad + B_{ij}=0 \ \text{for } i\neq j. +\end{align*} + +With this, the equations above can be restated as +\begin{eqnarray*} + &A U + B\Lambda = F,&\\ + &U_i-B_{ii}^{-1}G_i \le 0, \quad \Lambda_i \geq 0,\quad \Lambda_i[U_i-B_{ii}^{-1}G_i] = 0 +\qquad \forall i\in{\cal S}.& +\end{eqnarray*} + +Now we define for each degree of freedom $i$ the function +\begin{equation*} + C([BU]_i,\Lambda_i):=\Lambda_i - \max\lbrace 0, \Lambda_i + c([BU]_i - G_i) \rbrace, +\end{equation*} +with some $c>0$. +\marginpar{JF: How do you choose $c$?} +After some headscratching one can then convince oneself that the inequalities +above can equivalently be rewritten as +\begin{equation*} + C([BU]_i,\Lambda_i) = 0, \qquad \forall i\in{\cal S} +\end{equation*} +The primal-dual active set strategy we will use here is an iterative scheme which is based on +this condition to predict the next active and inactive sets $\mathcal{A}_k$ and +$\mathcal{F}_k$ (that is, those complementary sets of indices $i$ for which +$U_i$ is either equal to or not equal to the value of the obstacle +$B^{-1}G$). For a more in depth treatment of this approach, see Hintermueller, Ito, Kunisch: The primal-dual active set +strategy as a semismooth newton method, SIAM J. OPTIM., 2003, Vol. 13, No. 3, +pp. 865-888. + +\section{The primal-dual active set algorithm} + +The algorithm for the primal-dual active set method works as follows: \begin{itemize} \item [(0)] Initialize $\mathcal{A}_k$ and $\mathcal{F}_k$, such that $\mathcal{S}=\mathcal{A}_k\cup\mathcal{F}_k$ and $\mathcal{A}_k\cap\mathcal{F}_k=\O{}$ and set $k=1$. - \item [(1)] Find the primal-dual pair $(u^k_h,\lambda^k_h)$\\ - \begin{equation} - \begin{split} - A_h u^k_h + B_h\lambda^k_h = f_h,\\ - u^k_{n,p} = g_p\quad\forall p\in\mathcal{A}_k,\\ - \lambda_p = 0\quad\forall p\in\mathcal{F}_k. - \end{split} - \end{equation} + \item [(1)] Find the primal-dual pair $(U^k,\Lambda^k)$ that satisfies + \begin{align*} + AU^k + B\Lambda^k &= F,\\ + [BU^k]_i &= G\quad&&\forall i\in\mathcal{A}_k,\\ + \Lambda_i^k &= 0\quad&&\forall i\in\mathcal{F}_k. + \end{align*} + Note that the second and third conditions imply that exactly $|S|$ unknowns + are fixed, with the first condition yielding the remaining $|S|$ equations + necessary to determine both $U$ and $\Lambda$. \item [(2)] Define the new active and inactive sets by - \begin{equation} + \begin{equation*} \begin{split} - \mathcal{A}_{k+1}:=\lbrace p\in\mathcal{S}:\lambda^k_p + c(u^k_{n,p} - g_p)> 0\rbrace,\\ - \mathcal{F}_{k+1}:=\lbrace p\in\mathcal{S}:\lambda^k_p + c(u^k_{n,p} - g_p)\leq 0\rbrace. + \mathcal{A}_{k+1}:=\lbrace i\in\mathcal{S}:\Lambda^k_i + c([BU^k]_i - G_i)> 0\rbrace,\\ + \mathcal{F}_{k+1}:=\lbrace i\in\mathcal{S}:\Lambda^k_i + c([BU^k]_i - G_i)\leq 0\rbrace. \end{split} - \end{equation} - \item [(3)] If $\mathcal{A}_{k+1}=\mathcal{A}_k$ and $\mathcal{F}_{k+1}=\mathcal{F}_k$ then stop, else set $k=k+1$ and go to step (1). -% \item [(2)] Solve $A^k u_h^k = b^k$. -% \item [(3)] Error control -% \item [(4)] Compute $res = b - Au_h^k$ -% \item [(5)] Set $u_h^{k+1} = u_h^k,\quad k = k+1$ and go to step (1). + \end{equation*} + \item [(3)] If $\mathcal{A}_{k+1}=\mathcal{A}_k$ (and then, obviously, also $\mathcal{F}_{k+1}=\mathcal{F}_k$) then stop, else set $k=k+1$ and go to step (1). \end{itemize} -For any the primal-dual pair $(u^k_h,\lambda^k_h)$ that satisfies the conditions in step (3), we differ between three cases: +The method is called "primal-dual" because it uses both primal (the +displacement $U$) as well as dual variables (the Lagrange multiplier +$\Lambda$) to determine the next active set. + +At the end of this section, let us add two observations. First, +for any primal-dual pair $(U^k,\Lambda^k)$ that satisfies these +condition, we can distinguish the following cases: \begin{itemize} - \item [1.] $\lambda^k_p + c(u^k_{n,p} - g_p)> 0$ (p active):\\ - Then either $u^k_{n,p}>g_p$ and $\lambda^k_{n,p}=0$ (pentration) or $\lambda^k_{n,p}>0$ and $u^k_{n,p}=g_p$ (pressing load). - \item [2.] $\lambda^k_p + c(u^k_{n,p} - g_p)\leq 0$ (p inactive):\\ - Then either $u^k_{n,p}\leq g_p$ and $\lambda^k_{n,p}=0$ (no contact) or $\lambda^k_{n,p}\leq0$ and $u^k_{n,p}=g_p$ (unpressing load). + \item [1.] $\Lambda^k_i + c([BU^k]_i - G_i)> 0$ (p active): + + Then either $[BU^k]_i>G_i$ and $\Lambda^k_{n,p}=0$ (penetration) or $\Lambda^k_{n,p}>0$ and $[BU^k]_i=G_i$ (pressing load). + \item [2.] $\Lambda^k_i + c([BU^k]_i - G_i)\leq 0$ (p inactive): + + Then either $[BU^k]_i\leq G_i$ and $\Lambda^k_{n,p}=0$ (no contact) or $\Lambda^k_{n,p}\leq0$ and $[BU^k]_i=G_i$ (unpressing load). \end{itemize} -Now we want to show the slantly derivation function of $C(.,.)$: -\begin{equation} - \dfrac{\partial}{\partial u^k_p}C(u^k_p,\lambda^k_p) = \begin{cases} - -cD_{pp},\quad \lambda^k_p + c(u^k_{n,p} - g_p)> 0\\ - 0\lambda^k_p,\quad \lambda^k_p + c(u^k_{n,p} - g_p)\leq 0. + +Second, the method above appears untuitively correct and useful but a bit ad +hoc. However, it can be derived in a concisely in the following way. To this +end, note that we'd like to solve the nonlinear system +\begin{eqnarray*} + &A U + B\Lambda = F,&\\ + &C([BU-G]_i, \Lambda_i) = 0, +\qquad \forall i.& +\end{eqnarray*} +We can iteratively solve this by always linearizing around the previous +iterate (i.e., applying a Newton method), but for this we need to linearize +the function $C(\cdot,\cdot)$ that is not differentiable. That said, it is +slantly differentiable, and in fact we have +\marginpar{JF: what should be in the second line? Zero or Lambda?} +\begin{equation*} + \dfrac{\partial}{\partial U^k_i}C([BU^k]_i,\Lambda^k_i) = \begin{cases} + -cB_{ii},& \text{if}\ \Lambda^k_i + c([BU^k]_i - G_i)> 0\\ + 0\Lambda^k_i,& \text{if}\ \Lambda^k_i + c([BU^k]_i - G_i)\leq 0. \end{cases} -\end{equation} -\begin{equation} - \dfrac{\partial}{\partial\lambda^k_p}C(u^k_p,\lambda^k_p) = \begin{cases} - 0,\quad \lambda^k_p + c(u^k_{n,p} - g_p)> 0\\ - \lambda^k_p,\quad \lambda^k_p + c(u^k_{n,p} - g_p)\leq 0. +\end{equation*} +\begin{equation*} + \dfrac{\partial}{\partial\Lambda^k_i}C([BU^k]_i,\Lambda^k_i) = \begin{cases} + 0,& \text{if}\ \Lambda^k_i + c([BU^k]_i - G_i)> 0\\ + \Lambda^k_i,& \text{if}\ \Lambda^k_i + c([BU^k]_i - G_i)\leq 0. \end{cases} -\end{equation} +\end{equation*} This suggest a semismooth Newton step of the form -\begin{equation} +\begin{equation*} \begin{pmatrix} - A_{\mathcal{F}_k\mathcal{F}_k} & A_{\mathcal{F}_k\mathcal{A}_k} & D_{\mathcal{F}_k} & 0\\ - A_{\mathcal{A}_k\mathcal{F}_k} & A_{\mathcal{A}_k\mathcal{A}_k} & 0 & D_{\mathcal{A}_k}\\ + A_{\mathcal{F}_k\mathcal{F}_k} & A_{\mathcal{F}_k\mathcal{A}_k} & B_{\mathcal{F}_k} & 0\\ + A_{\mathcal{A}_k\mathcal{F}_k} & A_{\mathcal{A}_k\mathcal{A}_k} & 0 & B_{\mathcal{A}_k}\\ 0 & 0 & Id_{\mathcal{F}_k} & 0\\ - 0 & -cD_{\mathcal{A}_k} & 0 & 0 + 0 & -cB_{\mathcal{A}_k} & 0 & 0 \end{pmatrix} \begin{pmatrix} - \delta u^k_{\mathcal{F}_k}\\ \delta u^k_{\mathcal{A}_k}\\ \delta \lambda^k_{\mathcal{F}_k}\\ \delta \lambda^k_{\mathcal{A}_k} + \delta U^k_{\mathcal{F}_k}\\ \delta U^k_{\mathcal{A}_k}\\ \delta \Lambda^k_{\mathcal{F}_k}\\ \delta \Lambda^k_{\mathcal{A}_k} \end{pmatrix} = -\begin{pmatrix} - (Au^k + \lambda^k - f)_{\mathcal{F}_k}\\ (Au^k + \lambda^k - f)_{\mathcal{A}_k}\\ \lambda^k_{\mathcal{F}_k}\\ -c(D_{\mathcal{A}_k} u^k - g)_{\mathcal{A}_k} -\end{pmatrix}. -\end{equation} -The algebraic representation of (20) follows now by setting $\delta u^k := u^{k+1} - u^k$ and $\delta \lambda^k := \lambda^{k+1} - \lambda^k$ -\begin{equation} + (AU^k + \Lambda^k - F)_{\mathcal{F}_k}\\ (AU^k + \Lambda^k - F)_{\mathcal{A}_k}\\ \Lambda^k_{\mathcal{F}_k}\\ -c(B_{\mathcal{A}_k} U^k - G)_{\mathcal{A}_k} +\end{pmatrix}, +\end{equation*} +where we have split matrices $A,B$ as well as vectors in the natural way into +rows and columns whose indices belong to either the active set +${\mathcal{A}_k}$ or the inactive set ${\mathcal{F}_k}$. + +Rather than solving for updates $\delta U, \delta \Lambda$, we can also solve +for the variables we are interested in right away by setting $\delta U^k := +U^{k+1} - U^k$ and $\delta \Lambda^k := \Lambda^{k+1} - \Lambda^k$ and +bringing all known terms to the right hand side. This yields +\begin{equation*} \begin{pmatrix} - A_{\mathcal{F}_k\mathcal{F}_k} & A_{\mathcal{F}_k\mathcal{A}_k} & D_{\mathcal{F}_k} & 0\\ - A_{\mathcal{A}_k\mathcal{F}_k} & A_{\mathcal{A}_k\mathcal{A}_k} & 0 & D_{\mathcal{A}_k}\\ + A_{\mathcal{F}_k\mathcal{F}_k} & A_{\mathcal{F}_k\mathcal{A}_k} & B_{\mathcal{F}_k} & 0\\ + A_{\mathcal{A}_k\mathcal{F}_k} & A_{\mathcal{A}_k\mathcal{A}_k} & 0 & B_{\mathcal{A}_k}\\ 0 & 0 & Id_{\mathcal{F}_k} & 0\\ - 0 & D_{\mathcal{A}_k} & 0 & 0 + 0 & B_{\mathcal{A}_k} & 0 & 0 \end{pmatrix} \begin{pmatrix} - u^k_{\mathcal{F}_k}\\ u^k_{\mathcal{A}_k}\\ \lambda^k_{\mathcal{F}_k}\\ \lambda^k_{\mathcal{A}_k} + U^k_{\mathcal{F}_k}\\ U^k_{\mathcal{A}_k}\\ \Lambda^k_{\mathcal{F}_k}\\ \Lambda^k_{\mathcal{A}_k} \end{pmatrix} = \begin{pmatrix} f_{\mathcal{F}_k}\\ f_{\mathcal{A}_k}\\ 0\\ g_{\mathcal{A}_k} \end{pmatrix}. -\end{equation} -It's easy to see that we can eliminate the third row and the third column because it implies $\lambda_{\mathcal{F}_k} = 0$: -\begin{equation} +\end{equation*} +These are the equations outlines above in the description of the basic algorithm. + +We could even drive this a bit further. +It's easy to see that we can eliminate the third row and the third column +because it implies $\Lambda_{\mathcal{F}_k} = 0$: +\begin{equation*} \begin{pmatrix} A_{\mathcal{F}_k\mathcal{F}_k} & A_{\mathcal{F}_k\mathcal{A}_k} & 0\\ - A_{\mathcal{A}_k\mathcal{F}_k} & A_{\mathcal{A}_k\mathcal{A}_k} & D_{\mathcal{A}_k}\\ - 0 & D_{\mathcal{A}_k} & 0 + A_{\mathcal{A}_k\mathcal{F}_k} & A_{\mathcal{A}_k\mathcal{A}_k} & B_{\mathcal{A}_k}\\ + 0 & B_{\mathcal{A}_k} & 0 \end{pmatrix} \begin{pmatrix} - u^k_{\mathcal{F}_k}\\ u^k_{\mathcal{A}_k}\\ \lambda^k_{\mathcal{A}_k} + U^k_{\mathcal{F}_k}\\ U^k_{\mathcal{A}_k}\\ \Lambda^k_{\mathcal{A}_k} \end{pmatrix} = \begin{pmatrix} - f_{\mathcal{F}_k}\\ f_{\mathcal{A}_k}\\ g_{\mathcal{A}_k} + F_{\mathcal{F}_k}\\ F_{\mathcal{A}_k}\\ G_{\mathcal{A}_k} \end{pmatrix}. -\end{equation} -And it yields -\begin{equation} - \lambda_h = D^{-1}\left(f_{\mathcal{S}} - A_{\mathcal{S}}u_{\mathcal{S}}\right). -\end{equation} +\end{equation*} +This shows that one in fact only needs to solve for the Lagrange multipliers +located on the active set. One would then recover the full Lagrange multiplier +vector through +\begin{equation*} + \Lambda = B^{-1}\left(f_{\mathcal{S}} - A_{\mathcal{S}}u_{\mathcal{S}}\right). +\end{equation*} + +Finally we have to solve linear problems for which we use CG-Solver with a AMG +preconditioner from Trilinos. +\marginpar{Which system do we actually solve with CG?} + +\section{Implementation} -Finally we have to solve linear problems for what we use CG-Solver with a AMG preconditioner from Trilinos. +... need to write something here... \end{document} \ No newline at end of file diff --git a/deal.II/examples/step-41/doc/step-41.active-set.png b/deal.II/examples/step-41/doc/step-41.active-set.png new file mode 100644 index 0000000000000000000000000000000000000000..6eaaa2cbbea0581300c3f23701681ec7969ea7f2 GIT binary patch literal 50948 zcmV*zKs>*RP)V>IGcGYOVJ&KPZDMamX?QC|ZfGEH zW*{;!FgGwYGB6MAGNb?iAOJ~3K~#90?7eAlT-TN7`FokzNB{(>g#RHZ7DmMUO9atVR}{v8a#N3b~v-h-*o z0O#RFst{I{s#GjN^=)~i5(EK!AL?Kxbir8wra%MKKnQurK@I}g246J;tDj3%s^Uu( zupXfVK>)uG^Wg^6z!UHogm4IIpa$~L4cj3PAp{UW$(`ma=D+GERh6n#O~OYi{~Si( z5-fpP&IJpeXBE$o1P2q1z;3P!r22*9t*aS;3lx&g?Wnks}<<;x~j4eL=!5PSpj zFa_#h6`X<@Fdcwq2w@-8K?wbjgUisS^eiiV&}OETnr`oGCt;B(RX@D8N-{g;8jMxv&ssC>pCyU@L%rxCnD(CIeU{RW8O)_OWQS zE7mQN)&~qg^+T`9=Txd3)+a1M@HHtGU=Zq|3`3BIQTPzvhi?L~9(F+c2u2!m9E)k*bFENlFlWA1*@xbubSuh)FmN8le`Np#f^4 z2{yx<5W;q-g#fyRgYQ;=H3%Q17=V`EGU9VvKoJIEc4oI2##PrPtMVC@DqwwLQY;pG zdj1S9Lk;904|T%3&x8?J1IM5l*27^az%x(-`$VzogatxlZBugx?x|vkH4rB9}ro?YTn$}j;!m9EqNENU?0SSTtUJ`Jb z2baVo9E8Pi4w_&&)IkfJhPki+n&BYip$2LpgdFU&v&w`PGD_}g6V<4}@r=Yu)G^!b z0$hRR70lCZ6|w3!sw$68s(|&dB4`B!kcZjup}rhhV$OW}iu!JgvRiy%{0@fr&p;aT?g;uyMu+;$<0jP%@G(aAf!fBWStKmJ^0LNfG z9DrKrh8oyw=5}MD`~8!r;EshAA5g}1fGElgdpw=aKhcF0OEW`X3jrv()PCsAP?AD5 zYeiKOqzYJ*5m&b|no*-fH3J=RNt_!DjrBCtz1y1l2b%2=MB$X3eCAi>1XGmO1Ny8s#VN@aP%Pm#Fny|QNW!Lg@FdJ^eU6>13 zAb{yG439w@T!0#=hgKMZb?^>Mf%PyI_COtMhP?t?+f`^`;3Ah54JEoBug`=WAkw@a zisN+vwgTQ_W$0a%y;|$k8m4s6O_AIBPaf1(zr$Y|sRGu7B?w-!MVKYn6u@k_0tkmS z4Ti-e%t1Zef;N~6Km%+L8mkN56xwSLx?neSNfrl#Qz2{<ZXPq(} zAc`{lLZ%CanWWeAK22k_La8aK)+k*UGhF_^O=-oQQ@6Go2&0N(UkIrJ)&wL7dIYCt zi82)^y4^@#;&K9U3eCe}cneygUV?QRU?wbtMmPj{sE3WP50Du`2w;b(SI8Md1(&51 zXVEnC4Uha{Jm3qG(m!Mj?-s)_qeINN)6tHhcO@nFFm$=3yp9bfDQ1r;Mzt(v^{{pR+so><(vy5 z=keKEd=oDb*8*vcNd{WQI#_HG@+hGB5C5Xq1{9 zv?^B1x?)`r49Y{T#ON%88kh>lU^ToiY5eM8Jv6``sD+KN7dFFAVf4Gin=}OE9qWLz z?&}wO_l$(@nVtNIw(n>6UWA`&`QZ`(qB;%2X6JX*yN>5Kd&FU zX?8+&&A5-Q%N=N&s*2dBELFf7M-*C3g}YLnODR}?cLP}S;XFJAXT{cA3MXI%OogMc z7T$w3a2Rs184d#Q0elN`um?87b~%MM54*e+G@*O#C09QR-KLmW3sI9_f!iU&H^M)~ zL}@R*L>RLlWAH)J^`ii&9tbi0BTOuP!O(2OkPf zg;G;et%t`8n(-~fjuZp1=5TI6w|`8VJk{$ zdW9;4JsPP3R;mO+0N;WuqFc>^%SxrvZVi@zw{&~En1neo`W}PXLSs#VKtdJD4MkRZb#xa%x#{r#iJY6^(3DmlUe|NHY>G^X1d(fs0Ln%h_jpY{go)x`#fi z)i<7r7rX2XuZY-KTvm%r9W(8`7WMRVwzAnBm8PJbf@dFGNA-1kIH>|wvIIfku9O*x zp;aTaz$FNv4KBJS;dz)3=fos5YlY9iDOd(m;25lgsqi-BVFMfipiW{8H^6TA0A|A` z(X)W<>Potlg@}4*E+ws(m6D9aAjwJ!lm=wfE)8nFOIM6dw~sDLYK>hLNd~6wQ%b2v zlqqdO`W^hSrKD_y83Q%?Y?DCIRL!T+U+gw>k-R@Pc60F#zhJ4%WaSKsz2;OPf0XHyHH4qb3=^PBGcb0)*7R<636VX;PW2c%N5oViSc`#S?l}wi^V8uo0Rx{xP0A@+y<6fS&WoyiKgvKPy$-f#|D_jD3 zI0LujXZEP%Z?H>>hR;H1_yG3GSp;nZ`)5*q2i;5r%G48rNPTK|&eg_X*vau1NvVHZ}PqR4`j#wI$%GY!2vnNW})7- zKRvKX4sBv(MEUZKL_9<@tsSt}rI5@Ji$3;F(-b0~)gq-eMro0RN`09wrX_C%(&G^Q zu?FmnV`}8JW}npXS(O7&;-yX+0j+$g6|pK{eJm-u)fEYHHWpv2n2NT5s3#W1a;{03 zg9UH~>R_RmgiE0TjtgeJ19?~rZv#*ZYvCZQgZ%((fHzK7$Z^h z!8^Qr?UK&cPr}GWFJLfc`}D~ApplXk-b`V&VpM&U)Eaq^hlhHhdss?oDoupa!ejB% zruCcbVFmz2nb`CfFdGiTf9KX$f?2WpFA;=Q0qcRJ=vH`|6rxPE!6j&d7Fm7ItG|YF z$_b@4AI?Ip&{%bF5|%*&91}7NsDpY~35Owo4UiMhEW}#eC2kNq)rmGjq!MYxE>(k9 zzaSbe^OYwqdUdjxq-PZczpQk_)=Wh#_GOE)TH|VJwkE82na^JzBomlkuh8B+-H;+Hnc2HaG!Io{|*^3e*CShsR(D zmPodl6Yw0=!!f9XK(hS>Vh@@%N25Ji*lLFkK#=q7Y?Q+tE(UFaeyQ24Xe@Ih zT?&!6t5N2eY!e#G;6+Re^Z9toOr;U$k&AkNehSw95lla05t#<;2bQ3 z0M5bVFbht@Gf*d(bwWJ0R>HgRA$%PU!CKf4HLwN_!dln^AHgg+-Fg5bcthRIda)S| zco_h?3bPdFW$LdeZK6vo#}JTjxw$U`6Qv}@Q}gjYs}*_mvDQSYK6E?BOiMiLvgFOL zXDFrAN8?5LBwmu4?V|hKv}D_Wt#BBgugumX1%oEqKcoKh=UPz(ES-h{_4*mz>Nea_ zz6-z|SSY?%Kod+CqDmW&c~Q7J-~taaH=LCO3`<05uY>oY4r<{ecp2UUpaxo@6AlQC zRRgQx4Z$yyp)?W{GvH;6#LF;8*e+malDTI&`#=!QDqqO@W2nC9+B__|$c1MolCqGO z&8FK{^M%YX4~-X?{@#|{&S6TuZXFlz(v}@#qkJZQLN;Ke%9RXBtdGr^-9H=4KI;(n zWd|%t!+@(&871o)JSH_cx1e!tjsO?3EheBbW(mA%Z=k*;z4%Mi<)!kwclX7 z&e*N;ostrVSWF5t+?vi?#Z;<9u02X&#A1jR%YGBOttIy`#>eYce_)i7Y|9_z1JD(B zDKG{!+2p;iNlhBdG$5w+567D%fYPU!wW11GxS@g;t!4{0Y2C`;mx*~cbo))10fR7C zz$;MfyZP4%=O70&;0c9UkHJmRzm~#rm<3m1xiSow!Mjp^UQ)lWfH%cM)u31%ya@Z@ z3ao^A0&0icJFWu+&VU1guo0{muX7~-VyR*9|MNvYx! zcVmp5*SAbdZqL|x6Px^jU2+(DO<^VgZA&Uw7?4Oh;!KFTO1mWF%bz`or3H+HQur+; zas844mYXzYnu@AHe6RGHAfiCsku+F=s%#SnbOT=Jl}|&v5LlgJ47R{bI1P)S22R4$ zkcVqn4~l0gzL+VadZ6t+yiNl+R3Q+)3oEH0PCOTACjTKO23bnr0*% zPnjBo+38tNV|tm9A5Myf-zF0t&Q!q?XN%SU1>mW28U3@(z}VRnJC~#o0!cu28W!_O zL)e!Qu#%F-pu9t4x|LlMwE1N0sJX5O7BCM6B^K{I6yU71&KK|Y8E_jAlQ57DIe134 zus5dSB6V1XQK*G70B!IDyan~}EW9m0aZBL{G>C?UBsE3LsLFn;l?Yx3Qq~8_bZbad4DBc_ ziF(braJJ1mb%mIfraC3sfK0>;#8d9fkdm4q24q2sV*3^I-=tyZO9xouauwV8rqxxl z5Cia%s8P7kW_7DU0jargUZ7_Po)I%pS9ymL@UI@{zdpD%!M_u7hZ;(xY`F$ zBVWyJt|wY|(hn~RHEbdFWlQ9(5_PfIsI>6IaR=&C*sC3cE1o`;2290?XWBBAY0eOp z*npAC#7~I2B1v^ZK+QJ;$DJfpl}5D;+@_M$=$<7h#6F;jLD-iIuv`aG15&e;PXqFx zTg57jxjR_DcB@l@qM;6!F6bXsSv?pcn_w)HJC1yOW`m~fvfO1 zl%WBhhy8+jjj#^(!OO5qa!z!?E)~#YRV`f7eNf2$7$o_CRaD(HqQ$_-XSJ+k;GjM= zVu8jOv63o>Zp=-rNsDP}hcjO5xTDMxUfNP%B^Kp2v0Ep%q!^~u>rvVKm!6>nq^MMZ zn@}k5RAAH>Bb49N2Sz|5G<}HxOC^n&sj@Ewx(l?zX*XXxo^E9UYpxi8Kr_rxG*%!4 z7NSFSib-f)A8x@k#mxg_A4AoK(eEGJGHP=&Peg7@3e?=oY-w#`_e(Rr`M1|Tn#PfT z!JbC>T8uyoEQWVsiWC}P37mjV_y~X&$sW-qE?wrUxm^^il5!$NIX9F5g%MhG2=s)Y zC+5kO227Q>M3}=+T`HO65;J58hA~Wsq`T zB~Qt+^|sP>upfke^&*8?Wf+64Faq}^!1h%jilQ$IU}c61n&6xHE_Kx?-VA~Kl+96E zm9-P?Y&qHE3rQ=S6ZRc}Btv7(ha8-Og>V|C!*u{|!Za9T)7bY8yf$X(GC)YLCUw}P zfXPY=+(;P`tEu@8e_k_>?VF!|rSItIGX8QUH>bdeVc)<1um1Gs^?dXn{}JxORro68 zVZYq0wGFq6R$^2tYa155Fhg96%rp(k<~@nvQsLIEX|48LBpHtxmLuuF^k(M%W3d6cW`NdB3htIaS5 zqi_$3a0hMya20CckG~Xve660}YXcfFmvtUEgbSeIlSaJuKjfKcomqFc=q-6{|5 zkQ3c%I^0xeK~T)VRtua2UVZt`n|}TA#V6vD#L#Q4a0{#{SK> zw|w;a#O_Y3RFz02SavnfKm6Wwe*7J%hp$RXuLjr%2Vt{vj?c@p4cu>h;NgpX+NM5A z@-M}M9^ZJZkk!%>B>_`A>>1B;G!jaoq+Yhr?eqF%H@slHCA@J}FkdF8IvM#3i2zH) zvM%=xDoG)nU}YqgrmzVj7=tk=!6>YUA`HW2xDF#Q2p6Jg*B2bHT;A%6yBcUh1*fH0 zf+zrL^N98~vHse{=*vMfJSK~S)8H||EYxZsf{donZ2b?O`-4AUwk7#4DnXgs<0)B{ zt6fK5<>33j$I%(E9tPlXsDmcxgaxo0UV8n6w5LenL63@PeqbM};mx z|HZ@6@VfG%pzBMChgtglGEMF9^NKgTh`~gnrt>hA zmaR;qw9+OCRb|PmjJz2l)iV-ZHG=!%6b-C`Vb~5I!jPCgc{l=B;eHgI{lWs43T&S0 zS$Vj+RSdR_v->TTO4LA-b!E5!P4JlLR@PMPP=4(N88{#w3@zTNBZyd7es$~zO`6e~ zpk%KVCU!`xIr$2E?tP7-+1qsr%z~$ckE@6E&1nGlwx0cA|Ae_2dS zY(@l|m7W#BCh=exgTIuou;7acSd!u@wk&uhCHRIE zOR&w&8`B2IVKLl*J1$OH-72pp(b}1v--v;f2yXqe@BVee4^nR=8*3h3tI{)k@C^Sr zZyx`!9C9!P^3V*mum&E3Q?lvw5!fW|?={c`IhD?#AP)U_(a}_pF2=7M1g%>--o z@r}p6^wtck(}%oJ3Z--=zBG{>54ye`_CB0vsjg2m11CydRcJFtZe>YTM)J>?sAYHp z)=K=wb~ptu!)+)EV0{Q9a39XY@P=5jU1rQ3&~S(nHvxr|v@@8YFY!3vde7!*nTphYGETxlQ8K9 z*aZ7zGwK?l;X^=$86r%4w|F)n+e%kr17?s@mGD++1EchT84ChN`YO|>BDaHX3RMSP zAM4-`Nt{Z*zcEVdQJaBLdZpE~B6X)@P=<{{U5&y|p$YE8i?9_Izz!IKd(Z&y!8N!A zBXAdPexU&CIo>kgbhY;=aVL;*s zW70wM$=(%xS`m2|8_>roGI_2T@STSDU*hV8mwC@7IL!%WjldMBfkv1LwXg}AB#)r+ z8r=mwutS-F*1y4in~k1T^7N@}F9aVcaCbS>quNuvu`-&-B)s~R`jbs*g{oWvGX1dZ zkSL{9kNTmCaMtyDNF^AA>mi{#JPc+Eo_E&B&Tx@x*-p{ z)v`mEf~^uDSZ1ZvaN4sMm1)0VWCr~q@>DGWtJl@rBxzX z9+4S1PqG*piM$m_jae}>5K*=4;^3(0R%KWVJK$LuhQE_k-A}?Ba6=52dvF`>3Siy& zf&f-ZiYwCH*|p1+aU%T?o)b$j<{&x;-iKy4e$Yk>n#r|pWzh=ggaPqr2W~+dz5lVd zZWQTMZjC5QbqG z%5e9K09anA;4IewY?Re5pSQ9^`$=d_abjpv{o4UitbhW%3)57Gz(uPVbp@2^9qjG< z&7^PEk8^$)X@Q^iaQSKvM{*DdeO@axRt}zqGtdML;@@yWHp}RO{Sd+~sDsU-aBWu) zp<5n;eowlUZHT<{9UiL{$-aSlpdLa>(?kg`3qXl+i)l@Xml3*$B`IWEi2kTVuuB_~ zJyk5HLf2%mEJ~@=b4D;I$ssl=tI#s;tAx7R0e4{pUVv@z6zqg6P==ZCAsmA{a36+X z7)D?$itfVaJRjD0XqAzj9R(j{#WrR8-$yA;Ml8P;y7eVh4pYK(@J1yn zZY9?72Apreq@yqyC#mqx3*@j+_4nS#yS7K8d*!4-Clf+Tl zJWM;6kx&XHDWvgMu?;VxhoiJ~|L7sS-Zv*zYBMnMI&Tv_%b0;1#Mx>)j7a>=N+`l} zum^6#Fce@P48u*h2BUBj?!a9bgZlzl_xSt*mYas*3`})H1(Bck)+E>p+?;&Y92(&?yatDA&A|+8nFnHC?``gDb}=&q zdR!Z@B;^VTuOKO)ha{g>(-fui_ldBTrWxT532~&P%3%_pl`$k^sx+yPx{6XdYctT4 ztr@u4H3K7f3zon-iNE#9*a^dMA8v|&^@pO}U-AHJgwH8pDYSY}k-n=S zD!EmYBC~8#F-x?cfTkoTh9OxfG&O0U4>ApiJ*?diw?+{>BT$6*Rx562H@P zJ@m7Ttup}u+1Zjd+Mrb@48l_aSWDp)G{7o20W0A>sDXNz2c2*LHc6hWK&=(-NC_v@ zj0rNzbcp25*GOkYgF?2BX6w7XsK%l~t_&uAYh_IqBE#`CqruD##L`AhD06%z^%{nJ zcLxIq6Ey>k7&CCpH3Qedc31(UunX?M3$PbD;GlT1k4S>KYZ9q*SFp^`Ugann=1INz+(*V8PYh zE_SlDvw?%_xo*)GiGs{as7*UufdX8H94v*iFcXGgH5`TY@Gh*Cy;?&_IFnQ9{kjDW z|5APX0|*5^O6rm|d~|y_5+rFxKCzW%0|qHkglXhdQFyd8{ywZY5HfTROYWiN<8^(; zkWl$yUaY`N%hp@OF_J;IM_zq}W?(Cnl`ne)KZeHuSPi4F4W5TRFa*nBHx%GQI1D#o z3>qYpjPYZ*XLC86IPu6KIso}SN%D}O z0!qu)$Mme&%okxboJ$J6(Ug`p4JO@%Yv3@&k2)d)T_MYV0c;)?dFXt0BYyK z0m&UYKV?~v#@;R8NJ_?_rE(5_a*1Vh&%px4&RX92CtSHBcY&*2UKGl+1Kx+{;Swy6 z1=Fce4|CxfSeeKK|fFx;WdcsI{`iU{|X)Y1bc(z_P03|k=U)k)efoW6udKQ^+Hnx9B z)!Uvn(bXowDNDDHzfe-EaptQ7{hugIcdyLf@riFr5$o`4}}fL6E(HLyHd?TuC#__{@T?*1fC3Xjfp$EF#|8b*G0G5F6c7?i{LsOFyVnP3yw*s z+>kh4-50vuYHgoCz%sv(b`MmIR=1Tqd(JBaDsN1it5umoPEbkvhz2lE^r@H=11?&1 zdbm;MYvor%xtx6TT?^xie41?ab(xk*E z1`68jY%%I;t>=vuBd1W4BqCa3QzE5BWlMzi?8fFDH)Tzf)TI04sz_QaE!CCO8L{}Z z{uQa<8zlI~reUzTuExX>bOnsS4j6&+qKV&z+3>dHW|#u!T&{gYQYRbTt^BzGER}}g z;nC`Zdav!WAj(HH=eb;I>dN?e1)@?7sGohSVU?ND{_3(nY3fgaq=~K%`ZF*o+iUfB&<;$r1Rkztbhwp19k8m9ETU+1mwjqd`Ee2ZGyc* zgymrq>=2XCM(vn)V2A5wopb5lejEuEoT1*R!>)B^aG^u^duuaV{IZg$ZN*R~Etf+K z(JCB8lEOujK9vYSBxy`W(pa!Cr9Q2{rmpa^#2}eMjZ>%%zA1|b!$tUp%6i;yxF;Be zrQ&S$rqJ#8;kGOY-hv^hg)0&^sM)LN^8{Gqp_M6QpcN@j3_8ozg(MsBw)iL%B+=Cw z0jW;43yw)8dKzxQGUFrqV(*qE;v{@u*;l83d z&vG&Igl?r>ywggVHWdeDGiodU9#%-%_Kc}unu(9GS~2u7=HZ~{S`j4yQ=*X=x_#^t z;q#gL6iH2?>v5VG#1kb^SF!pociKpn8aK(IRjeY<>&n`OBd`+2V3(})jlk2e2j;_m ziEJBE%Yq}qwGRsgb{`N8izqTX>wLBW%MHGXp%sd8Z&d~BAbJWK$3rV4mY*_FIPGv$ zmI8094uSl&|9olYk6!Ej6W_n#W65CI-%i)6CL{%yryuO5$Ws*ONxQxs;~A@$3!6Y^ zZZL|KDa?jh&;X|;C21{OhgnbutKl$QfjO{VIIN$^`nQFx?E;bZVk~mm49iyY%6aj+ zzJ*wj-;Ypga6g^E(~mk_7mA{1=%FSgg^7>BnUQXV8a~oZh|&sOR=%X_(}tv(b!Lb* z>ui5bT}57fBrFw*x-x)e*rknvQ)T!|my7#tJkt1M@UqUeFc#Ag?`}R{&0XB)XxLLhUIadYf7Z%J&muOz08|X8~<>@U60qD`i%ddq3*qBuoTiG*?x59xE$_ zOug(j9PVadq?;W!GF_3#Xwgy*0hP6&{#hIe5Ow8LRo z1Ah-Qp%&J|Zb{DuFUht?s}KI4e;&W#P8&0fJd(=E%a-XA!WH(8}<9*5%4l zS247DFo9dpE?2rf=WZuqDhtwtP*=M3tnz5@R9oPbf$#Kg$xUPnoZrIMID;X@U;)Jr z0A{(0>M%3{>S;Q|>x9GF2UlU1BzQog zqfxMhBDQSPCMov|mPN`tG4J(HB)q!iP{UTvg^ZFacc*9O>y~RUl9;L4numkwOJQ#3QDqIhSZ7RX>M!R^Y9J1EHPIw+hVGj($3fK*c z;0?GBcVs(>yFy*vfo8ZUI5j4OS0wrxF~G9#@MlFPf>xI@(aNlR8?-_?w24V*XutEK zWZ9SYtQZlNXa@#hKxf4G~-u&3`exEvkD22St-Nkzyl4ntmO|V3x#Wtd^KE zYdGwHwervC|CYZnZ}NKi;+CKvHp2$_XQT{87=t2gQ@b9#4khSPdr1KiY*iQ$Cb3ke z(CuQ1hLv7{q;~lC?g!GXl&NB-Js3Nwk&=68uB{E03lImcYCo7V#7tF6s^6BvyO+HB zi&7s6Fl|&FcEAo%g3PZ`1l!?70QShHcDrGj(B}m~EAtUQE}!g&nyXT$_*mULapHun z{cLGiDQKlx_5tM}YA{GM?lw7|b!WfhdNXJz1_Z5glDImTLbT`LCbYQmH&(;CLGPhI z>KiZ(h4GBR41a};Zi)S~b+p6Z;_Zvw^qX6_EBcg?oGKXShC7m8!dk@UpQYXdA>d8r zGB_?-v1*`3jK?*yoqY|gfj7j(!9?>!upib*GG(KDMY3HO@-;Q8*+!|^qrSeIgtoU7 zKH@fEq~HDZ3d9!-FC?W$b?fsqqhb;hAEhWqY4sDOw8(VS3guj}dfQ}b28HZ9EZYuR zF)(BnB4g-a%|okdZIgng+w~8?I{EEc1v_PR?*$lzo$##udfkWll9k~o+<{SOh5@(- z_h1z6iAgvrt_&8!$|p{oFpUlmX z{^k}m(p&EB%L>3Le4-Ab70y4nnPT1=gD6c(Z@>`)L&2haiMVLqIL8dxX^{OS}) z&4Q0$1=PX2kb_n5wlHGz1fBrv^q+?{5WxYdiNtB%d=-DLG{N;QVUOUNwkUNX6pdV# z3+saI@=6ElJ-3vWEf~>Il4#0h08laAxfJE`;Pd??nTI73M4NTGL#WO|I?TnWDdN%lptP+Wf?R7w&)P1!^C&zg%G5zw4eW%Q@Q%2%m&G0&mi+D`f>vcw!7OeX()}~W zVX2KIPzm`oTE$$hNJlF?cXm9Ns|hU&&QDDpGr!#1+V}C^3nGQ|#0-@?PbJ!nmE?OE zoJVmXoc$e6-c<_}jpDoD-=>LGx~YK7ZjYLS`Lf&6Qwp;JQK@R+d8m^;R*kB)LbflQ z3v*zf;@xXu73>uiY!6(4Rd4~;z;38jDp)Nd zcd2?!X+_E}R6AI0gzd0aVb(kFeIW;S3FwT$Gq4w)g8c$sb49%x7RRf5P$O2+h{s;p z;KYc}Bw+Q3Vr5bS*z60&iznvJj+;u<8iN|GjM#!vuk!Bx^6gTIw=7slBHFc-;nwf| z;or3U>4WPV7oIW}1pOg}%GMbRNjBr2Zcfro(efP{e9a9uijim`%&r*DgY(bmLoKX?2o9^C@fwK4 zc-#YZ07L?9+JyWNW(k?KQvlISQmYKc9wC5oVjGsAM_EtWxwMq@jAOQ*F}TK6j{N$J zrbKhnAEGa>%k5^HLKpRP&MYI5)VHdsGR#0+OVDOLwv}crZ@F;o_aqnlVz?#zrlGEe zU^)zmF*qtFVOhoEjH&fO3zVNRz;e;bC^8zY5_Kz|Xt%M=mS4{alQraKVrZ68+KB19iPy{^!0dj>$@PYob)*)8Kc*7=yE)iM8xBAnESEwgx>y-r zgne)Wo)jS42X&&30d-`;=B3uPxp>d;C_PE97vB~oB9GjLE|y^TuE>6fu<6jc3G=yPBhjKD4! zg9|VN?m_`>!8c~@hV|`&|KeV2(W_S+ki6eaQBj6f@p;bX^x>4 z;&Nq28NfO#CSj+Fzp>x%PC*+Rg#(o7J^Dv|`v=nRt1wyiJ774?ELR= ze3~+-ZBoOSIcx#Tc(D36Y^|pr2q496e4JYnQ#=Ig+roS z)xt6;OCMki>S4JMTlI2z5!Atp0$%k}xe5-6+O-!V$th@tTja9yyaa*ru-DpF(OY`6 zOnjOK6hjl7 zz0B9@p%relAkvDU6&}B?<8Ruf#*Wfy`7B!5clegKENJ8wH1bNh_h8@07w$=6f{9;r zpTY!K$+iRwy7dUsq!)8Z3JYF2NHriTV9MB-dXD zn_#EFR==XO`W1m?zbDSkg=>}a)&x-k@>KS|$47tdXY6?}kl!8sT!%3mr zed;Q5^{hx`5ZxdkQWllU(CxcmIgE)VXfW$3I0ywe2=}2KZp**Za9yHswByx%(W)$9 znaleu0+#tfn+drjv@*bN_Rm-#<#EvpFIrHe)sQ3+H5OAM(QcLn2c)J`!ke3+Omn&S zIy-qPN)%B&&j{V zkcSiSBzy=t7?b`_!7*9%X@lu-QofXTU;)g4GcX2=;9Zykh{hDbv+$NwE``I;0MA1i zehu@WEY@WMtblzm1tJ)QsjwQ}k~?}C0@x!P`Iv{$Ery}#Q*@n9OPO)eh@0qaHAFYr z*DAx-OS2r)^epR@8hTA($`F!P6(d!z%{`Ne!H>T|^jTxC?G%M*wK&r)hd0!E-y*mT zhu}Wkg*HjdFaX!!N%0gdi*0C^7d0tXwwJ0g>Qe)(VzJoM^T$9+s2~ch8U>QO`u2_lZ9h^h|BE~NM4)1AW z(B4tbU8V@!rZ%O|HcO~iPRylF$*z-!`H+`~vj}o;I&>VSBuxxeOM{6 zI7{Ilpbr7u0j;xf?(Ew7=wszHA5|)n*L?D3DX{Yo4p4V!w?B|HL3y+wo73Ymct0_hG*anm%X|T@4+1?!!QhqB{(W!gJoG#90A<* z!RWIBSh7zSYON|U_{K<^OJFe`TH(bupHE75Yzj8%l{Nixt|fTHCEBm{_Wjb{$b={- zErra8s%lX zv{wHz(?&Ak7>x1s=r=BHX}mW6qZn7~%s{vLmHcEWH!pvWp(!(-`cKzB`Y-wG+5Gd% z4Blt)8{fNh^tE^YC(g`(ufcne6U+*r2XbN?n#=ByreezKp^-#ZYb%b#`d=6?_&G}7 zt`(1=e_duX2^*}rS5jlO4H$WJd*s%e!%Ye!tQoiw`o*1nhk(}@tb#GvEr@dgUV{Cw z5DvjG+<^*Fowb_$gt&LcG*2iw@On2}4r!_hQj5LM9X z)m+!H)|%3W(t1oDS|^+lx*heBYckP%*Ka`cx4-vi`Pat3(??OG>wo;eaR2}OH!u}m zfhVCBn#7rFGwc?{$|m6o+$BQ$7`x?At4M=zStu?01|_C>KUYE`RWKDZcfH3+jHQgnO2pq0^pRtVRAU)-sd!5i?DNf9D?(-V^V>X-~4 zmMG|4Y*QQ+O>IrW2lA-_RuWoS>cl8n129#Ze6-SeW9B5G)p7M5ZdYiPgL6us%Bh&a zP8Y3=88{$Kr=ei-h`!pprOA!JDWsF@wlJY|#)a{8tAV6>_IGoPjTGyo!aSnc>gkb$ zR))Gd35~LAndy^PJ6-3+(ZOO?04=g@+$~rRr$oIfLzzE#w|C3FPdpLDL?yq3*Oq>h zpR9x%Fa^E>$6yn@2|4J11(1`ieNeE4t8K+9i{m+D#SFS`)hCe-i&>6|Dwvi~3MDDT z^r@0M>{9ibqSC6?Hf4NSudA|{ffps~aaqBZVF{my5!feOyHV{6@Ft9iJA12ysSe1R z;IQafk z{?kgGz*2>)K=0ZSKI3FGL*(7%yhXb3aBMo zl(ZhS$r6=Umo}xZlpSIAv3?YPHMQfb--jotJ=T3s`w*ha9{E(?kQEraV7R0cJU3!~gal3V-a}MM0^A zjE6y!?t|y=c5@2FuPo(f&q5tcgXz!(r=T7-KqKVgXD}NI0>Rq_r!=KyEx|NO%h-Uv za+IiNMXD(=_&LUf>EUUx6|2|pa!Cq_)D>Quc591iud9BAS!J;VN5!4}IQ%Y*z#S+- zz2x4TC6=IBLB0u%FetkX-j_WJ$Aom(fQ5EwF!I|5tfatZT%sN2#DM1@YOqYBmCYM7 z=sGbZq7~`!H*Z6;LaS@)n_qaaz2NVkdiAgRnub5Vox-G8_JQ=V6Pi$C!NG2hvVo#? z>DI=e-f&PWvq+`=J5R!HjI(R=^KnCGu0o4rt5t z6gATAA{vzi>lmZ2>txQi7NEoB8ETwe>mI~Ki7OyL_inkJWO4#6TG3b^E z(CRD{lF-U%3W57}6yO@PF#lBV{Jz4kCyY>uQm8=lsxUwr7+goOp_ScF zGpw1ZSW1Rr`FSv{n)uVKmMOQxO_(7{mhBd}1^d_P?YF-E-M^aggO9ImaxVT_Cb#3P znWyiS7XChj0$hhi$sjllLUO-kSt|U@Ty54q+1q|AcZW{tGmKp-E&~j6HNz`nPqAERD-ST zZh%V$t!9ZbHOob-MwkyIIbPj$YvxM*Z8#_KUkEA{AO{8a7Nd^~-@UTp2Tn@W8!{Ia zpjBcYJwvwWK23173vQTj!iz8p9SZvH!gBGzS})}B2Bq4R0O)cZog&3gX&S5OkxDTs zDv}--t*i`6Pb=LX-WAog*)x{hdGwX&CaZHrUjD*J0tx$Jqof$KNfQl(t%E(V3s%b2 z?tvFzpMcJ&aseHMd15o3h4W(f-Bq-Gq;g%^-@LMWRax?AH7tp|!41A?ln7)zx(YYQ z*%YiLsQGnMh{ZPRWkFP;s{)`5!vUFaeu|H1J6xmp|L*MrXn`4(nR018tyB`&Y?UnE z-PHCx*v(PaQ8bLzH8F&(lI0tNxPX;Qa{6z9>5}T86V8gK70NcW^I(6Xzx(QI(ch-u z^FuhSO+tS9RfhlZ>o5;Kg2$vVB72c-hGzIjm<9E)33fq`3XKjQBE~SIsZS+%NgFcg zC9cuhna@w@8cnyyDkHbErmiA4_-378$_^DGvr6*wy$E~YNf?Bsf>T3qSlILtSr$AY zw&6WlG1NI^h9RdyopIv_0nS z3BTYGQJkMMURO$qLnWrF;*+X+$%~4QUJ?H zsLG`j8!%FO=)dbha1#t;70KgT@7Vn*2@xqvlo`aK4I2JVIk~?1#nn451*yj ztGh4*E{G*KBA7L%yyPRLeBol2+>Z-TkIEzrg6{~+enkb}Aiw!G-Ib-Q>~^OX&MwMi zZK8Y)y1do&B(ypY7vR8nXl3fpKuZEz{mb@Ox9vt5Xic8QXRNk@`#L37B9(}JYo@Kl zibTD}X3oJ@el`SGo@IEd(w;7hF=!2E^B65!wMmCN?yQJ9)}i{hLm)xU=CnrtGEd2V zfv)rTjXyl@pw(@;*)+6Dv+|nU4g*p%P?=$9x46lsC1wLI7sT1>#_ObsH4n97rH7PMLBGbY%dQh8K`Zm_ zY=i$G8&7OgaA3M^5^ZZETvBG>S^#z{52;_k7%Yc_LR1VZ5^6*+=$;sc=Vj^e0|iO< zm1}6()ubk%Gd&UwD+s>h+IlgT-H2Tlj2VD>?-o3dc8gYaJBb)tX*?&%Y1ylRlMvsZT;Kl2dT-b`dgv(L7c}S9Z z7rH-6)(Kl@bprKfo^jC% z$q>T)MGw#_X2fMk#=57Lx05Q<)*K4}Tx{Si9_Ot2Cft&j^OpRQFM+q@H~(3P;FMT2 zYs4TjhM}Q>H_0Me*z$GM6g+<8#Tt@p!8oa+Y6$+uJ*zhya+2{45q^`T{Eyr=yroatuO}Dq;pw8 zQY2_)4`WUYmC7fnVVyjAa^b@N74Ymqt7lm+A#DKOQQt#rCz>Hm(jS$HVXoTz23MOf zhbB(2U0jEPpwea?x-Aj+APkwyE+ag&O_J1k;(??Ix+K#Zz>j3aoin%)oiDQ?kFB?IiBN4amV5 zOoc0ON8m~8R;Cb)yFSRHGYNwraPtS*t>r9uHL9Jmbmbkf5NE4pL2Jk$AcbenG`ssO z#FB^>0HNE>E9Wl@b~?!z@_i4sJE&L+pWIS?A=9)RTurg@aSlAkO>?ucn87wT=En4y z<5|3&wPHAi^d8>r_n?EkAWzECLYtj-sMJR87EF6yE~5KeoCBk5~tJdb9za-XZjpv(%E!6$t0OfraRp|ot}v;!EMK~ zEjjzx2DDHjWl5IARa`(mZr~zu13-WT@LtUy7vCRmE$;!OB}eL+dw3oTzxq|Zs(Mx5 z`riBd-ur{Sa2^)GC22%QT-xBME7@LAOXTtgt7(5Q3s{-VXWlKqa%g3q;G$eE2EzeG3-Cba(*13lGAJ zt}1kZtzZofIG#-(QD;u^5S}a#cHKqi*I5K}VRIk4@-?s~3|%3f^_;MvPfX$g7eCtW z#GFQ{?tlus41F41-JseGR!rs{xE+R6P}D{STVVuR;FNsE5W2c5%o-K3GMuWo)65Fo z&E9>66-5#JwEoIW%&<7u9;(Xu(0jnOWm>SCCZBxMlooSm0`2*5`<}F-Jt_>e&nZ3e z@$Vb0-n*JAyF1y%o%F2Dy#_o0`7E3zX*aNzGZ<;!AS=-qD#?^xRfYn3Rr<^m@qfFX z*j(SyGm9rdMF$lY40~uz=XU13PV4*^+vtB`8>02e9*OfH}FA6UaCsIG32`6$)H{oxP-ZItWx`k$k7IP71qMDFk3w9nquw7t>(iC z7==NYCg0pJE=tci=*11Fh4&n=(w^Y3;wgsWQEi?@ZiLI)?Q!Z$rz`tCWJC=1r};G& zXwMY7il7zd*H*NbDZNtadg}(yyQaO1!}+$WzPssJxrlGy#rcp=(++$$%L*#h-#OnR!dYs#z&6E6u=6V+5={7g;(X@ZIHU^P1TbLlcA1iI-IK1 zSR)SUGIA}i#=;#&;{LpD@8&3BE^ZaOp}=$La#u#R?9G2BUG8d$qF3hn9nKxqaxt$U zV!-_w7A!y(&NZcB~wgd`T}fsLuQH7SXSXVsYw&n z)p;n*5zKlNP46ixdexI2C0y!O1+?nZCidsU@Q}-JOk8TA_xlnDUe+E8A8*m0AJLwz zy`s`rz>A7r+430N0k6Vlb^8vCX|SSQV02Bs-gKx!1T8MUepRRxN-`AEqZ{B%H_x!5 zD1y)Eud|tzfEynK%5qq6+N(4A!9uoRlZ(zQcm2cXsT$dWnGr7J(U_9xSi0V^S(Qy~ zrIn9UFfceNn~V<_e}5y4yF1y%ZS>4bv#KyLs*kn%kwGL_vp$Dmc8+b4yL3@{Ax}uF zl)m&>S0#U(-fncT@8@a6QZlv0n2^?2;Q8!w~F;Yj6Q(zzDR$DYyy|OoMmQX@g_hTZmo- zmyn`QcOl*tmoSPV_(yP7uQIRe$;YkoY6jBUg|K-T4P2oGYY9GJyZbYfEojUu(#;<^ z{3-*QSkSBr+*x{JeOK|Lazmb-Z;Tz8$~R7OSN82=Kg?G~=dkN`&Ibg+=|%Iyf8jGI zMH*c6DkEaBd1M=eS-whgAXn+;45?+K(`GXdqc+mNVxGFT(l6Mc^ zgxee~3hk$1X&Rn92HCkhl-?C-H;@|)U4{1Gg_%sWnx15^qG<;cDHwne$wXJfo6roc zFa&QYfHeXO;3}Mi*>KKPyc%;Nh9DMAiu9sP60mN@C5)m7e#m)zP4WbBse(TG-lDX@ zNG_qT&fcn*OdhQwI0b!h5>7&+l%nL&>bU#5vUB=yrDFnGwZQfOdIFak|FN zfc~sP>(Y%Wv?7f%^^*rpGTN&BdL?b)wsG!!26KYaz8Snp(>Uf_zn$#00bnI0Jubn^VQZM=k2$pnVgC?K}{%C&F`rov{J2}hw3?iR_4U@AxfaJ*>#8(;ut z^RsP_y!d!iI(8i2NDO83jiAzm9mqBI-9=Ax3w!V6TqGYbpMyynrkkMENv^`GWoef% z6TR|#XmC(fcF<9U)*pN9-?u(qd^IL1=E!)3<@7?K)nEJNPAWb3!OR?s9EN6r*Hj6z zrb!*T6=uLuXn=cQChU>_h*a+n!cKQ_9u{nc8_!_TBbS-AJg2pu`Uf%oPw?JGHir5;2O+^3kqN@fnhiV*I*%B zg%gr5RNVv_b-E1wh+6W*r&ONTixA$6k=$FO|(=$*YtQ(FLB!AE4zK=&9^tz^#RTI z@jl?iq7GrJe6nHReD2;XcV|g4tQv_~24a6P@V&Z^Kyo zV2|9K*Yu#8ztaFO0$LlQ!WBLLABG3qKx9?;@)76yJqHh|P~IM0n=FeXbXU8@&ko8#;~I3XSM6_Gn{o_7NBR5W9gQ26a1Pe-E*1# z%!iO`1==HMb(NQF)iK418x(Pm-Q!^4_BJTDm7e&Su7c#g$yj0MxHg%p-=Wqq?Cs$V*J5^hbSl`ZU& zjv+`i14e{toP7k!0Ba1s3!7B_7`O&&;SEjRbq!9#9WVq};i%(NL3kB>z={THD=y-m zH~{sq6Atg)V^}>sJyG;OiW!{|lNwBa$0Gd;P<2MUAYAB05?=XQu6|l(zhKhP#G#de zm#13CT}xS;$IclXkZSHCk3Ij9uIocodF@YJ_aYQ_F6WjD8#7;5cHG48w(m~fSU8VE zE1dWi)#tOha6HMf*FcDRSfdwSS<42%LHs%QXQc1n`EW##bc>*BuGWsY!>&q4nz(2G z#_aIn!v(+YWEfUYPtUe(znkV(i{OmJ9Vq%vTE8CT4olL=Xv=<}FvF_QxVvq>92y;3 zHNtT*4nz%XS1Z%mBpsRzwG3^Pc9p*V48vKxsX**sM^ROVDoy>L-}cPqZx)|#-s-P4 zyP+JW!p=K8>Fw?0c%%aM7VB(CN8gQYO@S%U2&**iyb+Emwlxjz)bwA#eefpS3*Q42 zhTox5S$5qXQ0|Ta#CEltCez|v4?619=+>ghy}2EMI^imXzFnJwJy_Iu+6_CBM!LM} zDuk}8=?rK4bE|mP26#=nP@oO=xXEv-k~A8z8iWP#wi|e@rioS6sYa^~VNqk|^Sa#( z!|Ltr-L~zE(k0yDwCsjfXLXC7O}mE)G&?newTIAEulh8(Sd2fI#6|S`(r9I7SvaxK zsx^mJz)`q7j#hUbDV=&I9tIa+8gxv@zwOIK*C7+S%5=^zQxwlC+;gx?Te-OKes)Gq zBNA+}e84b;hmBn{3#ZJ6lqgPGVQVjdg_1IybnZ+?QHHbZk#Al8=5=NiPY$i(x~I9h z?%FuLkVmWD`Sh}ws{-DBP+3 z=GNI$eXqm~zG-02au|HrrL?Q@b;iMZD3{;{` z`OIF#(5|3WgTTuiz_NRMs_F5ap?&&SuTgLisr)SP=dLQO^$igY4 zR{`Hwr=<)bwiPb*aw$a&xiV6QkTz(N(L8CdvZY!Y?xKL0PhgV|X5EDC>*V$Go$Lyy zIa^VcS&lHy(fn_b7*+#J6|q_eWl0&V80mD_FS%(1_ra^uoi@U~@G98sVSlMxJ%L66 z(~Axz9}w*_;CNo`jSfl>6t<-`gTBA*@WEU==?ojswjOY}@O(OSWpS%}q!hJ(p(;Zd zc^H8$ni0p;?G?wZOeWedcdrHdU&G!ilc>)!d^NqD^Yze#OK+}(Ld^k<7A}u#)a!Rw=E}zL{FKJCD z$mwf_6Pj(%UoJcEM5%&yfGMTu{HU;467l5wUEFYde}Cra;8O{ZwDm)u845`7~HM-jVq34 z-K#&J1w_Hd+=EjQr5bZo>zJZom9#Dt2P^jP0WB<-BGl|b7k4)hd_g6i18{7Ido{^m z74FuqUWE$W2Eb<5xF?rSbItLo=^7I}2d#>%N7}q0jX`5t$lw(22zeJq38N^2&uNb% z+UXg%#a&P!f^$W2wMfn&8p(<@$QACk$f4C~EkwEz!&HM&x&{MqLf_IMdeu=xXsQ6E z@0Ggt`Xh^LGpzb!Rg;Nf`LVw|cdKP@b@JN6d-zJwuSe+x@8g7#!Csi1t|3FZ9BW%n zcomDE2JRLqdS$As4vjG#;p5fPce)G=x7s8xf4KU;yhoMo*20sKj<__)6l2SQ^G7$SD%7|X}!CR61LSC77S<= z$_d2TJN(nt(hK8gl_{JMmVKmYbM3MLP3iVfWudGuCLIwgr}q{Y?bCMBcN?!Uix+*K zfL%R5keZoQ2xaG-ai1Oyn%%M&UUlejB7NEcn(FH4I9kE&bH>ripJO0OUII#Ow2ISz z-Y8n-Q<`2xN~!U9u-TAqKcABX^y!f}CV~(_0*7EF91sIq2MNqm(r*|PdpVs_cS;ZE z3or(E!U&v%3Oo-ZVm)_jKYtFuJunLQxQL1uG#URo1IN>`YVYWI^r^a0zvuMtc_|)F z!)c}Cg#P#HcKVtNU7@d=r^p>J1`p^sce#UE?jmuwzyd|J8XY_ZG8LASGz{f|X|k-! zTLHt0q6j_@Rp`@gk%?j1=|wP0k4*!dQy4x{7%PISFf&aPqI6KkmW@n#UHfvUz{(5@ zcDP}|4!EdtSLhLl$6<6!TWS5{e6{$@YYEnw=t0WZgd5i1+t?z$vypdNKh4u`YcylA zldVxiugF!rTCO3mWiEMOIW$OkWfZl+Mg1bxZp~0*D|%I2-ac4{iq=2J`fKZN;z?QG zo%FPXs`i<2=Mcj}^vW(p3(VKWX@oU!92&*5j>1NmrsR?axD)ol?eHutfT?gh?1DQr z#g5q&xC;_^-5tghxJM7_PS^Qf*y+ZLe1BXN%*<1;C|&Oqw-f*Tf5h>Z7qno`P*r0E zFUi|I33sMLR~3b>UX$=@RAr8lv^@x~s;YR^1ea6>E8uS;EE|=Mq^g6wvGKw29uubK zL{S8v6lt2H=Bv6D&be99--ZQlAi!DzEk_HXWr?_YAnmx8KDS|`mP6QOzlH_pK_tKm z3@dMKP~K8{;wQQ$K$ARdO;Y8MX}9GtsYJQ%hTaZz@+uqX31li33H*(RwpS9oW=1Oqsznk-t8dD^2Wf`6`8%{4`x z!l2bTH+`;+5C<$jCvl@6h+XL7$03BA@mlRCIi=(q6tuJU}^HeO{0y>@XH!LZYdo^gFM zB^fL|APg7cBJRtz&T?t*J@mkPX? znJRruSvB_WDFN97@RNXqU5J{!q-V{%GbSDk6}jO;a;^~WPA4^UySs@P zd|5lcd?PZ^BO5u#TE6CU1B_m^q_c1gr)KNw1@Q~II9||TQU(hJ&T*Qx4mbv}CPr;g zlJY#bplt^L{>A^pUlk-Umy4=jmEFmD3q+|Yx3<O)xP#>>WeNII0c^9EyD0i=-h5JNvwhQC#bIB(a)%*fp zfm_A1z6({@1?yms+{T%3z`1o5xFjjoJZVJDpRK6Mn2%2-Igm`-9rI{9U9zCDnmybeBZg&X2F%v;~Byuu8QE^|0Vx>&n` zMzdhc{>*zl|e^>J-$$7P;%7#0lWr)IOETKeYOIL|+Snt98kjEA;z(SH0U z{t{(!27?W3f&MMIW>2zgImkO~uO~HtljwXC{X~c15F~IA4#0jGfpe-(w+2Sxq$US_ z17hfhVR#D;!7yBaS6~R{!8zCggK!>p!Vt8>K6nvcf>m$yCw=2 zX7{^8Lzdf}>gpc&gfJpM8ff?u8b1Vg!$Ns;FF9q|RzUnKjEauw#Wo6ug#gpF+c7xj zuxUhl2tlj-10HZHa*f}YMM;uG(Rk=Rio$+dU>3}jmuEGwr@(;X|BaH0%~$a90?dc= z>B#PE31lJ-%twlmMM@`(TyegQfOdYuMTJkK9l#9jYKO92i^ZiUekeU*SDX`AWkTcL zLJYoDDTrYw`M7e%;-dbUMq3_R$a9-GGyl^(^>+9n(j^(fL)faTw8SYz8u3M|*WcV~B;Dc~4*r zU_Nw4iH;aAnJetJ zQ#j{_1!q9NzJgr19f;IOF1}vRTg*?PYL)`5?7Hjt6~hQjg}E>b24P5}$P1t!=0bxq zk7fv!W~-{-d5K6Ha+qbyrAiMkt_pdBt!`ubyCedYX_ zq#qt8l61yJC_|0@ew@*EUe0ySYD8rHD*MlzY|V9;bX2|(HRFg?-3^mv>NfaM!Q zmQomH9)|U;3i5$hQo_G9CHU)jaoM zjwV0F7tIA(1&5#s)`88{G+Qs}y)X;5!Y()uDA?oL7b19B=NO6(+~)vm zhd2>%m&2?b!j8kx1{~rDg7x(DY}@v8uuz3KHVBNY9>aX)WS!S#wfo~1m;&#>BG(?Jmm8&Nuua12 zt_>o=Rt%A(j}1^3&$7?<@oJ)vwUqwTf8hM2-sf?ScGc<=mM3IbwRWD_ux~3p^QY2# zC&y>OA}G5FP<@ROWE$%W<-gv^@Xn7jJnYg2^J)g1rlB$Yr@z@c6m|%5hbXs`>iA>1y!zRO zFN}qN#H4Ld)pGJD75xZL-Z87RYpA)Ozy3JK4}X^b)2itkgqdS&4`Vaj4pU$^%u@Xc zJ4h2@SZ?DE^}o*{MO9fiV-B;vo1PqSJ-i94V7IGg)dmOL@aU)$UNsBu6LkpM-9mw52KF06uSFdJ6D|E)EfV7{^<8$_xX!v(kn8sHtdgn6_&*x6|s~7QCKgRYZO+IG&m1)od_d+9l589zm?xERE2M6~! z%-SJ$54a7+;APkhuR{yG17muDwZk3}tEw9Z7!i$X)e<0ipnr_q$@WiQ2oSXU9(lgH=f8r^A=A;wSvcYLv+j^fPX9xb@JVXxAN3H zD&g6yc{z4!8(|j>y};0ceAHs!rDr%|G+-pS3-k za`bL4Su)cS*S<2Do)OIWCI0k3{TcwRa4$@SH&nVSl6wg31mLW+M0Yz7`7Tu8G%V0G z&Z8>UZeX+)_Cg!%O?!etdod;yYtpFNn4l^+o0+(K^}PeEhFUA?*f0O`FDJ?Oy1Rcz zL%f490=K|n_$Yh|J_;X&x$u|pjC8kWV47o$eb5I>(pu9&s4DPzObhMM0!?yZ%8&>R z5@1H@I$DudQQ2~#G$B@JYRea5CtnD|f3fx%c0zjF%mIX*_ig373#anxJcX`i3$3n7 zcr~o|n31fZv@>XC0(!yKe;&{Z$ zj_A>g{m-U;({PY}Ow%vdI+t*=VT!X_)|B310$&rAadGR{whbr{BAsAv3IEYZ7uZ08i;oOJm4XkQNGSLn=lZLJE zd0IOT($J+sD0>!8rq%68%5c(UT!usIQ0<)#*ab0EnNclWdo_0+*U!QpqyQpb3tCH^ z;5YZne)FbDh#UIa;7pv`u~#z~eg%*k(#0|LK$C=NNluO20bAfQB$8##vAgkSe&!3M zC!fhfPwbA3+_FE}yfx)UT7zXye9)oWQ1U+rK5RtzWg*KQDrFUDOL&e<)^|p_(29#I z*|c2&p4MvZStn}<`#BD$;fxc7R^bvqYrqgi6vMZdMaO{QJLzK;+pnfWSGZ#BE7Q*4EM;HjZMimF zE|<`{UD5G+vsEi~8SKG1D*qb(;kS6I_*{ZDIS}!}G;0hZ+X-#L&Ani?Z$1Z@%l^pC z5@6*chDllE25nG={5oh>RY>16EL?D74tCcag@jL5s!v?sAWk2Ausk|vTH;&>Z+=%9 zWNZ?;Ma$vUC7SSkozyBpnjb1X7#Q6Jcfy_Na+|LRlD4|Q*4Z48&4#yNh1|VSr&_4O zTo{9?Fr4<_M$)hqz{?_86^CNpADk?os^#{*JII$LN4vZKS2zRLpdXIFRk#R?U@?rq zVMt&ZtPnf3@$<*w=iwLh{{JRC4PQ@Rg{oUFU;kWx^wEYVH}{VJ9p`9NQyM-l*6ov_ zV}nI~P#|8j7lWmN4h*bsH@~p}`gQV$IcqUK7DPhw|_i2ZmA3KW` zbdOwpK0A*#)>c1%>RdQfCVJAmgguzYox;sS6~Qr^*vT}$DHdCL&_xCj9U9)jJ|paQGlO}Of& zgcx&9+!?un0fX+4O7;xA=7`uv8xDroU9NHrRk#cXrLYZr%KW~!VGazz6sKVDx~l9o z)N%UPL!sT6Gidg%QMJy_&LlbbHy84IU zb@&DN9rzu%0`uT5_&xYCd?^=bPd485Wb$N+I{9U9)_ysiCs^2rx>SqFMZQSm;OQ2Q zZ-Te)=TM|)uUQL=(?KhPEkmn7ua>9xy-a&R^vXV4)WL3kL$nU396*yf8)jAE;zYY)xvmfOipNZ^Pj`t`7IWMd*8kGs0Q@79LBVU<5-pVlRM>%{hW=D&w#9(L@0_v@4LBs4^ zti8`Ygdq#Z9@xyO^Xj!!&!~}RiI5O z&;g4aDta{q5;zGhBBUc}cPD)MU^HpY^)A~DPgQ>dyN;}g`%IV#%`m2twNu=Pa)ZX0 zJEUR<*4Pf<2&~jXBdpfGd)@NC0zRM1wuy`Gvq7gyM^8~Ru&VULz3DV2f8=|l z*v_2YO=uko_g~H}`^Kj`x$^qQxfH~r!_qM2rX^3m{tc<2%GSV|(bPa#r{IB`mS(pY}q}ZGWcf&sEv?G05R&yd0 ztEz5H@cSw-7tX?3coSACWpV@tV6BG8g7zwbF$n|1PG-X8v{8Lz8 zyeqKxHilK>D^EZ93%u!T$B zK@K{GGj2I@)5qc}G&IW}v@H57a0%LBvm3hV&_zBn?iJ3h-czH-s;5ZdjQpvUYn*0Y zf#m~s8T0#(ejL6xs3~9%NbA!8Z@?xOM^Dmngj)qzueh}vVS^~u9v6L&p$b#sC@fWh znyS#M0&lCTpW)6RBzhMHGBv8AgMKLR`(;?&-QBfTy@w1dSWi#Swr!t>8PEi6VDAlk zE3VWpaRR2QW)q@XYXLY4E4477_eli3VCj)Zl+U=D@kyyxL!{+D0ZO@}if^21m2(~H z_c^+amx$T1Qg9Sr?7`y;^r|K2Cr0U5yP?%7afdMT;0Z^pLSjnUL0$)3)C3bYt?Uut zryhG^suQneY%-i8T(Ni}3KriW9ecKuQ{(fb;+T{r(r3h?NbJ4_PCE{Tm{gk-%a;D# zP~#ba3}BtssgX__Y;fxKC{579ZtX}fLMx?jm%4UPviASIUy%58gBoSkxPAg$0R9vXu1dyvVwQnrvu`1W{5d3fO zNAO2o{L{zzqb_*Hxsb7r))w-j2V9?E`97yxIJgiNeo|-^lthahf>^Ou^9^mBJ|n!U zgH{$<_myPqxFU&}8X$H9Vc|$yY1~y}M_hD9g^hKrTw^)Y7`x%rIKBUua|duHhIi~W zb2f(w<{sKfg}Hc}TqBZ*cyWZU#9i-&OwCHE2~#ahVF7 zw(1QTDM;TAz%dwB`7zw@?)g{bhJHN%>ecdLty%*S9C8c5|6yBZyvX=QsMg!tcxmBA zo@r%xrV7a578W~gkuS+`+Qr(VT&&$Lm!DiVcEl=%{m|r;qV|+_IE5ro<*}Wm#}D}f z4r#jn?CMOYQET~zEPR)DEnk{X&(;=t?sDf?NUuo8*Ow}Do?N(no|~MpL4e-xO6zQa zqm;Inx{ln?8O7;KmpQLGE%n{)82;`b@aorp6q;cwtc6oB1arp^l?IrqDg(E{E}i&! zMI94?QSjhKVIAy+5om{3V5VbLmOMBh(mDz)@U}FoQ_}f^kC|c& z&F)VNy@%mHbU1dio>coFH0#`tBHNw7iMcfbkseN?c%X!Q(!q9f)1g~6!H8qf!9I(w6{a#lwSv3oGa4wx5S=s(Wr@^cK9oCXiaB zSqM+VRbA~18WXIfkHPD$!k0D_K~lXC)lIvKf1eD?TUS@tqmMog(_scog9xUHj7(Ft zqu?Hzi{z&-3{}};J-WN0Imf@R3KUEL03ZNKL_t)H_D@lOzt=4wCoy=4focWs!vO05 ztOvC4kL?u9g&h10&zx=N<*i(4%Apm`E5tcCq2d)e)=-~bolNg1f*2a$qVsyVUQ_g^ z+DflIK7Ou67T5Om28$@zPlvl)h5le@TK%eb!DcsxG@P;VPm0Xu1wxNymB8;_kNOd<|6dzUOgd_HAUQNDr|xM>9A2o z=zvJmO3CGC!zHDiT!W*+tf~eCn^gfh(N2s#g>I2FePvi%UDGvEoZzm--3k#~e zdyxXg-QA_Q6sKr{6n9B*r?|TmcbAX*d9N?O&d;2EX3wlyvu4Hx#i`RYUo+7*$^h+f zgHTkJ-E_^{+q?0{laxRdqCU$;wmj?Sp2%OO&Vyls)w7pWY^0&Q5JA{9@dZH<9WpRty$xDT5t_+A} z^0y4v6;TsJSS^at<2$JP@-Hst?3|I(+E$eG5eRb~ZOa76vS6gZNuU z2;qmLtQ>^O)q;?DILNSuS@rQ6_d@#+;rH{@T-297UUmh)JI*@jnP2dW${THdxlw5k zo(^EzM35{9HUlZH2LHBr!a8}RYmtpd7v;%B^YwiRZu1^Aa+q==Vww|C={z3fjGsgh z!p%=lds%~DJfv;e%(?Iz282QIvLTJaV4jncBj;S!_LNY-TKSKONR9QJ8eLq#5c?vM ze*81tA$AyI2oY~AGyP*kQ2#QB=)yj*1L0^> zWwQ$+c>lo{uk(H8a?>U&ZDHJP^8FVfX7cR;h#eUxzqh-?U1`FAw_c}hh-LE0;JAQJ zh3Iudu&t=+u7V-=AZM>a229Y{h_qgYNtaBNW!cU&HhA<>%-( zRQap|^0>fybBl|av<}?L&HfaYFq{BO$R|&I^%OP6BPvRl*r8D$Q4LeY3l6kz;BYTa zR2iz^5Ng#E?;y>3KKM4?;mOY!7QR-M2dOF=3#G6f<@|Um;&mg=(IfmQ zaxn)8+v5HExn0uOJPFNoEG2QKa}_m45Vai}SgU@Bbx?8_yNz)Ba=Y2BZ5cd|v#MnI zYJ$ocD|Xq$=!Mw5twRqZ@T;;4D@z3_%|h&JnBcMiHQHG2M)2;UUyRgRQczRK9pp_4 z)?P|^&13~@MH%a}3e}`cvMeX5;xy#q!WfbC`4Y^|IKor^{4dK-qJ3&@dwXw8bR5g) zVRG4wE>Yu7TxP2>nKaX3MOk5Fowc(Kk*HGhG;{^SV@Qz3Ld5TLdkq?!h%g3;4d88E zB{etLn$eG7u_!XNXoTm>iAG6%^v&PC76-3Gvk1u zYFfCFOyv6ivU?`WvxPprWo)KhN#5YPe_Snyzv;_1Dc_R=G!PTC@tkqD7$O4kU+ZH& z=MQ%O98qB=%&|@VK1=EIXKiy<-JExK?lZm{Cz`QAgjd|zjtm4nG|J|IJj_Uk>EDF@ z&u+oZLE=BmF?a$xbvLff2jYYO;~_B^hSp9`#R6R%;n=_AT@jQ*@RcG2Di#^pO86ytTSoP>+3N+- zxj)YF7x^t6c{HkW@P~l#Fo>o0Cr{yjWu(#81oE0(R^r0!K8NQXB^X;t3kM%Pgh9@~`%i zUs&?tN=>jwv5K?K!r#Ds82M_f99W=0AuSZ8@)(V0-(|1pnIv;qsOF9VKP zYvHi`m@;2=tF3{9lAM(NCPc&bU%vg}xxVcu(#jq&803;W#O(Pcp9LVEry`i!yxbVW zfJ1fAG65XB3|cgQd z8piEYe;&YUxt#ohKMcCp58!k!Yp@|sUv*|98b)VLvqd2^Fh4dqJ@9O-Gu=bY3G+DB z`(Sir$^o8UxoEU|o0BNq&_p5&XGZU)<3~~`C~SaoO8I2aRPh`K?-n^9;AqEm*my_ zdSX;m!laRAev zpZ=cCm}$=4?nU!j((B)Bt7FK3z^nv4GH<~-vqSQf`+Y+QoA6bE%)NWauVBaG9U*LR zSox(R^g|e+wWz`|Cf`bN!>oFTD>V;fosAlY8DF+C{k~(!u6cvGO&jkG)$OU!H5-jj zRn|L_Q%qDA`>J(Q4e~|-Got^0IefUlC2Pr%ONqM31j^J;2wKoQY7{McyBR|XA6KYA zta#5P8mNGeJcJK66rr8OxfN+6(C1m$`G@TGjQ`yS`$_sIGUp%8Y*Yycb$XGTO4fUS zs?#XChLs9bOe0Vlv^ymiu$qv%n$CDGheI^o-9M344RL})VM{HE+!1PgU*BC^;h6mi zSw@i@8+6n%H(xFlxO5{s|LbPj+9pS8ZHpv~?C{rHYY*ja=BZ4xjVBLM$rmwjI4SOg!#G<5KYxLpDmjv%xWqDg; z$+#1MsY`!ueeFbTDT#EUW4d^TUF1SSLdiP@No0yieD7p5ay*2XAI&O9)=ZVl2hAo8 z|DhGJ!x5VRio?&!VAc{XRKz)#;c_>MWKd4jzNptU{Hptgm0`T^>3=`OeY%OLQ~G4i zaa`#KXx-pC2&N3*Jx90)cxEMNioNk^o9Bm9?z<$FZ^Bp#Mj(L=G(~x)d-StyS)rpo z<&K2V#A&Wk=h?!bJ`!Am3cqC~A;xr0Yf*5AvGN60FuN zwed-dlz#HJSfy$n;5fDgdOfn)Io9kybO*~i^#LSy&});lQd3%5T3vlMCG!TTmnbqf zx^0n7^8VUK^AL4XXc$+;dI&S>rd;S1X{$LvukJt5@mFy}^D>c$_>yeh8EivyJby;s z-Y5L91mo~;{$`Cj-uJ`}Eup9typlhyZH?=m@%zP%fl%Y>caph!Bz0!hDrk9G6Pa}; zN|Zfda-|!QPFwold*6kJwt`HX=l)}&qV$?TW`kFh?aD9-33 zb)`1(iitD2leu)G1n(%f~G@ok4DfXllRE@X5Ns<1kR3jH};x4%Y+R61O**zD^lm_89M(B9g|5IiNWPnEaa4pMt4qT-^Eak(p z_td!H!0Qpu>Q(PT<;xm9pn3vPwww7n9s34fcFarx@mgxVU9xCLetc)Nh1{RQQyGkj zjc%uJZ!!x_))1$6bwc`*V-D^brs`~{M1HOQF$~M(MMRqVedV&j3Dy#jJi`pvJZGsu zoBLViZvosL02OzYWomj!cA9RQm~A#bNOzqWKYw^x_x(yPdHW>Kzv&B=b{a*@z(ng^ zobUF)AE_h!_0QSzdw-7FpZ7_DSoU|qwx10`ZCfu9z2b(qQGOEYsLR4+RjelA=3BDL zx%`O@TW@__H=TSDA(=~&xJf-dT@NdA#Afdyb;PggL1>1fIj6sds`JU%Nwo+WP2f8Y zeDVQ8^sAi6H?~f-!gea5-l^&J0fc1YS7|7t5w=Nc3l4am2o+rnA>X>WB1{k%Bx4p?Jo6V?aB-MbTk=J=2fRb1oF(F$%8lNg|X) zb|W8h?w&yB_yMOGjDnQdD&n*e{7JebjuNh!n9dFaYCS3`-lPv*JDM&;+;5!=(5vps zJQSO!)J#9`pb!7&+dl!zsefgC4dIc~Q~oZ!qQf&RjgE<$U`7-&-(YU8kEl-n^9p0b zhQZD&CS}aYt1?Y=PIfMMkfr_LcCND+?x7;OfBup(sCr?owW_XWy&gY-U)f2G!N9$0 zH(#F}zJ|DS8Zz#}?b#Rqqj7{WqjJKO7x94W$fd_JyOlfx>BLd-)r8*FjVBf}?N+NC zmbwS-TJdk`RbgFw3QzSLG6D1y;~-|%#A$ZB23uKz7}$fyDA{H6w>rp(zxw%C$oN^^ zGX1-F89g0=ea~>MuvhBNIt{+JbAMIX zBP7fI79yD{V>Mb3{J1y=k8H;*%g*6XyrV$GjM6VLv>1sztUauvkI~k_nL#-MQBTod z2F#P4s(jB!WDanhsx}z*#uy$+|IS9#Am55|uWgosZ?KV6Zd2^t>0r!z=2C=$FkzMH zZT9((ceIJoc6GR~hwW6Is$`u&Khahb)Fc> zyKLuU=eU^2sdm>JzlW)pMW!)5nm_#@ymr>x<@b*?s>GVjs>1H5Qy%7I{x^pZp^8YC z`BYaih8B?C3y7kvD%P9vlKAy8>88g8rQ`4r>HB}V_hkn|-ZPyi(k--R2Qp7fLJ?A& z^@&EY;=oOxDx?)Urt*Cb)mH1cAj$ne@lS(tyPdt-XX67$^I5C=8}`mee&dEkk#Pd1x1Z6k*(4)P!(iTxnLl@Y1ALG7m}=lcB~V9o70WT0Av(W(tsm} zq<)}nb+f}aY+oD(xZf_#fb?HF$mv}hW4+$JjC&cwx zv10s8Pk~(EE)OaHa!uw``K+(zcqPyyPML%;Y;A7;3YL{vSDlWn^V_y6r{uoQ;{3KL z7D>7y?E;vz_ZE=@qAClxD=G>HJ|*6Lv2c4?mkh=Vt)n@VToWyhTM^uj6Myp0em=gS zvGe3@LackNq80frzjUoOF+^^uhH%~qQtz_#L(~t1I86k6>o=kgMguXC%Bc^t5qa=a zWM|O5N&}C|COyfxhp!M{IbxIFXZBOjT}O%SJ{O)?EY1<47lgQFuoHZkc~x_y#il_p zJwJ-VM)PC7(13g|Pes~_RFu?-XlD6*jV{p!`&S+ZfYfzGyu$%o@H?%d@Al+7Ni_HL zO|edsnQo}+-K(VuI^~95(q!HEC_Z{#ooh#bBQ8d5p!}p|yQWUG6{wT?f`&lF{13hy zKVxD6ajL1}%K$5M=5y=s02<>4#s!0g9fQHuLOZu(rh7NfikMPw_h&?rF2vPIK)0@T zLCUG2mv8pUM-#NjYMoXug&1pDCY)nu zh@T;eoPcIOIZ}gge`}BGyz@1!G5b2(O z_`zOHRj_=$LhL!g^=8#~(HuML?M%}(IX4F^T5k61et+d*!T-={1LI+!EvJU*s?__M zAcL&>f?4~FqFtIo^q_cMbkR{^M6zI1vd|z`Pun!IFC36obgguN>cS~P!zw?vYl zinyAIzOxhTHqC8$J9X>Ph;DjcLjU(}N}S(sz!ORrMVoS#Psu1vO$Ypd3f5r?IhF{J zo~b)=)>)h}vN7enEbZ`gF(lUsfV!8?O>oP7;GJuP5Wq#dWF3f8s14j(rY#!C=J#p< zsbn&;joN1rdH3nCI1*cm7s_!ao-=cZBHKo+=1J<^s@=*8mCwc7%yM;o9%cm_b+n2y zJ#=$|yQ(K=L(~3Kg9K>P@K0}iGzd|MwrOC({G*FMbKK|IHVw(B#E$T0$w^)S2fmE+ z1bw<}FfK%;ysga>#{F7NfY9|Bd1+3_ER|0~Y83lT5VMT|8xHNwy>#Fa?Zoz+_a1OB zbx*c}761r9Z8jj|#*N32h5d&=2KrQcU~qza(P}pfbmOLuPKzJCmu2 z?G+}yzf;INP(aS!W5Iv;4YgZdNj%VqA)-J#{SklwQB@%7(}$VX$}p|6Pf{bK;YQ>8 zjTC?GedS@dmuM$Tv$1o6NO5u$c+)BMVGXGO^!Ps#tXh(iEEL2nQ#YxFT2C9r71fB| z0X1-V(|$2kec?;Ovq+o>f* zsyn*~F%27Xs>f-WUl}{HPgNIOPH!B#DAQ0%(^~#X#fzh-uZGSxaaVQgp+pqG<8X~( zL>3rs{o0my%Pr>W`Pye?r+sD(Wpb1v;!$8DPT+7bZwaIP>BsqQt;ChVbVF0`*K@iT z2`K!Eb1mrQ#BpuwJ1N|=IEjI@`b-#ZP|2=GnW1f4wG)C=4KKmIvh?-4Ao0FaNXReL zQ76abe~oKW4K@fBpUYj4zt8S#oORQe=B=Hyj|<+Co&)X?MMswO)I&IDk!`*jQQQjVr@b8t=K*to}|8$ zaedN0{pFwDD6HQte%~H$rQe?e0^z(XO55_*cM_4H*A9n5i#&Ap&)CxNxGmvv#q#G`j7fORltPw9r!{g3-XPhicb?#9D+a;hOpg+E1HCirk+2ma*rW333s8cH=%?mYU~ z<(@3VE}+bNR33?dC5NFIEAaD+0L(PLy~=M7%8&7nGT4;V%%dJ(n;p*ff)O<_EyAK7dBfzF=PzNb7q>Mj0B0V3;*)74dW^YdJ1#rthLtgnZ>?Li%g&3v7M?e>1Rrhy4A2;eCmp zQH|xj3kckzZJ-+c5JFyM%j7#=la2{VZMXlU4Z8&pwoAL=EUp%;er8bM2!dVRwtVRP zA`9TEVU!8HmRH=Z2wF*oj`!9X~9ZJ=D)HK?6T~in4{s!u`%^n5I8|M~}|7Q{r`g6U1^_S9Z zdS7cXWc5wnrRvu6Qay8em6d}cqoZ56zR(SA#Ly)em%l*|5`kB0l@e7cPACkt#^Ndt zXD28ZM>*Gw-_9wU6nA_?0bMr?!mEALhR<``CeFUm5_>&nZ0K{UoV`*PtoruDUh$%% z0lOHUt9vU3?7PEG)*9@lZ7hu;gDG7bQAHuSRrNiB{iE7z6GSbLoSbIB zrPF&d0lv(CgP}PRHdQoD|`f9Fwd=3GP2s6)GQpqBbv$OjdFztyXz?k<)DP?323h62->Ic9(<zKhSjr=t^q@|*B4Z$c=z+)GBk68@hL{_gA6%UdN^Oh4r|rF zmY`N1e{zP?U7m$osfL^EmeYn=!g-(bRczYJj58#WKEln~rmy@3PGPedt!&#``=j`0 zZYkA;_-?$6P4%2A2oKR;s+X>l94|WqUGLR^;;IQUpLDT441OX)&yFfxl{Om)hZhp(grk?;_&At{82#nv$4FfM zki_1cl$pa0I(9v#+6w#E`^S~nH6N`$sTD6wz=s_Kc>wJcQ(AzuC<+?N!jsEsqUQt~{d`tXT8UE@EsPop&*g@<~wd zb_$MuEWYAz)4@1zp%|w3ki4G3%QVZq$13^3tOY(t2j6k;$D5yB;ET2Xz7Iy(@(!y>Y!XNr1c$pxG=TY{A=qt zY*+|@VgWJ_$eZ_ApXd8@NBS?iepOOGAI;!c_>I?$q_U+S ztzbN<@5nPENLIA6Ho0|zn{FgneJpZ29um+NHz0*i+tQn6O^;{4b;@~1dFnG1bX;ql zIUAQ4=sKzGIKmoOVtT@nO%M0Re(~A+VhV0xDRxuMyPvX?Mev!(vBWOQZqbqjx(6f4 zD*S&fz(FX9qJsM@-dVK!lawFQ+^i~Axxg}U+v0)}?+_&_3A22L*;SXn-;!n4Hzg4l ze6f^j3mQE(c?n!&ZJ=;cB#3hR>J8;tv*_;xjm@78|17P<3-<6`I-;ffbMQ;1;6`Xx zvseh)d4VO#$#k|Aln3S{D~r4M#qIlfR=6#g_Br}DFfih=t!wnv$z@*8w}`rWcdid5 z>-HGC*MKeQlntwJM$dhZdpWx17DJyH+yE?hg;ka(YbbwkCLL`N!0kqu($E^!`pdA4 z+Rt!49auJ?$o}NoAF5r>xn0UGV5x|0D_OUr0$LVqofYjY8QkI(P8yTMGptht)jrCm2L@M>@yKP`$%uD%gVy|`0Rjb)#fyZmqxs(<|FEp!15Ef z1Ek(hrT4XP-*o2YdxrLYp&toJyvWqvPOb4zOh@DRS>0yLGbk}a8-@j_<+GI~F-b}A z6a#?2tl~VdmjCs1EVj~OSL^H0Z1~8w0%Xa#cHxqth7Ni2b#iiYW1}e_fB|C4e|Z_T z2tYh*p3^HE81!$^zBB3aeZ+aziD@r{sYsj`JwPx~hemSY!zwbSMpJZ9_HP2Z=~^b0 z_>D$}3bR2s{5~KDgAg>y6(&{n_hsx4o$7!}v^?GgQaS6THPRi6+*%lP! zkK6V)wX$1y;RsGYzNM`Y2g~<0C!)pFnl(b+-;2geM?b;2g$#0z8E}ueLEIj=&k3(^ zj$C2(hb|+6jvs`np)~T%z2$pUW8g4?(rLMce&RiSaEJZrb(v_Vv{At%BU}zu2{rX- zQrGWZNeuYO#G7N6=EBT{f|{QRGUF4`U{{%@N1?||5mSVhoJ7&#)S!ecN`vRwbuONO z-WC5}%GXMsNUw;`qR+^$2(D3;t*$$`e`cj%1Z#t$D`;|57p^4KHZ!gg?C@(xw?DkD1%pcjp$#MI+P2V}qj||@1j=p=z+!vlsnp$OF7>5? z&63||AvP{c8Bo|{d)|e4jj_3ZDdv(z@XX4%=Z@ViE-|T8EFSQ#T*!#!uSSvzGKl)T!ssVRxIs6KuOLTb8_glMuePLb7-}`dNssu&wvnkiHUN>~u*6fFjWqlW? zV?zJx$rb1aP;<>X%Bw=T?>~sCr%;V3^|h^pztP^1)L)V+mEVOa*T}U~q){1vjM-)nV9 zr7v5-$LAf05(9QZ6Y%X5H-x8md*=;CZjAk2Jl#^gsy05Sxf#;*t+>yh z%Qtg;nyHkoyoed>`1^Lih<<;x^ro@sfPt2R*zpEL@tz(&*#6Quf!?Z3MmBn4@UTlZ zjs8Pjhvjm*DYgbjzY>+o7kQ=K>#9F4fSwctDA9y-g)pEJ12@rG54q==P~5+8`=3H# z`Kvibx8F%A!B(agVzGqHi6fjGynsFg|50M%q2a3LGL=(}g){ZbS9wxL7TR2!6xA`M z(*my~+l4p=5=ypZviGaQ4JxR~PGVNqnfhuw=*K!AqoS~2?HEpszJXo58q9uG z<9pWaZK~+_B_yf|EqA`?_;RMNr`HVafxt9Ui`Vv5;q$mk> zA4fOu{Rjf_jjYG_{#<{}Yx&#GzP6pnWBO~%e{#{_gnD+hv5r<9w*I&z{|2j5 zmgd=E7TRhv5zl<}2WaXFo0pCd=B~3qDAKnN+N7?7ba7SB`sZA%6+uG+Lsgg?B&;@> zV8*swNS>Q$AMAlUH27BS-*7+8BTpld2y5Mrc|c?~oiUjr*(8z&9ri=GQJdjUC^df? z3kr=_1Ls-w`vid`*$Td2(Yc!SJHNcFUeTMRBoEf#FiO*WlAIU>Ll_P~2vdSE&~wU^ z?FJ7Am{$UrldTed`eu$1YiwI{mR{Y@UheC)3T1^1e->rSK{vrDRao@Qsq5hrrqWqQ z#KI9w{FSL?N?+KR7#BtUY9?n?Q%((x>7uU9{ZB?#fH+R4i{m7jupUN8iV0 z$+6)VX+MPN8@nJVNZzR78CO32=-89)$>Oz*U(~F{CvH`!lIm@c-oMbTVL6Rz@WgM~ z|4!Agyl5q~eBgO~UDc}26`54%dXr-*@(S}R+K$wPdIo8~9OcKjL2uYoFRwb)D=jE$ zYVx4FTeJ&H1%u+gv>0HRCUNl0iv{DNI{N*lvWbCP3--TXQ0n8=p0#v#wKZ{qts43z zmJgmYRMKX(V9@hmEamRh;)iCr^z#G4NV%5GPg6V_hTUYj|p0*6!o{UXL zOve#&_=GVv$P+nG3!lQ{tY9x)LtIrY+!;FS2nyc)iWZDALbS0TaMzaezHubOzce~& zHf$G%W?xGte=}YgZWi6QX5q_NFAL38Cb~o_AF=mMKel;Fxhx~#>4~X6&x@H^cNWS( z(=Ds*^Bu!2?M{in*Zb&Y(6;n(m`!9`3Jzk)92}~L zxer+El6rgllW}*l?Zu>CWA!0*&`cjjFEGe_gN`dr^mJ-I<}{Kx(Xf3s<{dwJq)?O% zhhP8kU{7@WojpDdvk^a>^_STdG7El)e%ODZl5qOYVXfV3yI(9!@=-U?C_|NKmeCH| z$fhGiO3A@j31J)dAK1qchP^u}12m7&HuxzWTfBZJV)avYi+`zr!kWHbXBwHVIC`pt zd<-1Q9wXQ^CNezoH0e6612I^91D>G+%Lgga~uGkQ5B*3=Vz$Zh3u4dh~($3w(hOy zpQGNr^$*-$+QZ37EKdG=g&Jh?bE=t~dy?>?b9AHOQnBshTeL$p7nM;rl#)K6KXIA$ z&_I5{}h4a(hRw##$XZJ155g98d9R^-w49X-|ZBFBe>m>iv| zRfUT@c9c$Ke5Ez_0!=ULj*u~*hi0TtnRBDqF-R-!6VntgZk`LFsMUB9==?rtTv<#x zYF4cA5IL?awssy6_F6_rUK0P|TndN5gtzU5-NSwQBfLntrvJRCvlMt(aGl`90;iE+ z*SW=jJ%Y2M(SQ2h>p+9%!M+(;VUn)g z!t9VNJ1mPtctPo^21bP?^(=yODYi23BTvAIu^AMFrMSwSpvt(50s_VAmn16J?1ZO; zk_m^WXZ45yVmKLc^+M$`H13dDUMg&CqevCAXN13AiN=<)_t5zbyM#okQSPcbNEk5= z;p>G9SMwtcc)*VK5cMQ1uCkx2C4OaG*>z2$u5R?@r^(k}bk!00wddfDxZ;Cv+d=dL zEiBJJ3VgpeUtB4jUCdwdfX>={;tVbiPBDTT^$h?ke+Kix82}`P=Gt{~? zRpY6R+{B!E1|2wO8ii`?Qmr{A|5;8A?WUvJGdR=W`S}g!BQtmk42kZbbQE%$Pl{;T zAx+XA6&&SpAeIGcHO%qz6x4)cqmls(hvX{=^hVeD4x2&jt=P7$uxh4`XWfxzKq;PO zN^+Lpm6McZ`nVfDc<8w)4!mqJhpdXSQS%$3!r>F|0ZvaqtI}Z3j@6W|afy8J(>&`a z^cOSEnP9mEX{Xaw=zC}Y#7!NtSK()ZO0ivbsV|M(9}?!iytld#M(5AhbMlV=WZ#l6 zlGR4jV^UvWD=#1rL{85{9nbTg@%>~HqtQn(Ej{UvJv36tZS2#Z<)mp#?loZ3JL`SB z4?0r$zH~_K%JfftI(-_v$2kGHlHWCs;B4uHFjIT!pn%>38o`ejB2kS7PxsgJyNt8TFk*F09V{A5sIRuBtAX4Q4# zMbdvTI~+d%a;W&Zv^dII!V^Tn13x0O8>7t*Z7Tpl3d{>rjKjZ&yHOSs_YFfTvxc9) zAEZn@w5vae$5#LgbAeTMpKVe&@k82(=5SLvsLKNg`!^${V_G*Q4`y8R*oWS+-~`!o zeWSS-(YBsbd2d$dt>0ulyO-8*e7u+UlD4cfvDtXtX1XhTLbO>~pC)rFuQa2cRkg2$ z$1=VLV7us*eT?L|x6LPAM82H}EA9`XPrin_x<7$3nfvjWwB$+ULE_-y9GN=kKq!?( z6m8lO@f70XX(zr5=nKbs_c$WK|M~a?h2o}sG=hAEoVOC#N`M7g&(bGiq+SD$I;YA( z12q@ov)=sj#7M*X7n?9W2Rt4+()r{x{*u`ynDv9 zGOlYA_>^Ml%ARPI21YQV0Vbk>dyhkG^SA{Cz2`oem+tv+?4XVN6cCMlh9%X5uMBaN zN>b;j?^9IeEuO?Z5o0QQH}$)G`W%HUJW1c%MXrFk9_PleyV6Q+8vW3(s{A{1szp{zpw0T9|a@+L{Bcfvv3I3oE{ zKfhc}ILpyiu?|3x?p;LSy)zF$Bi*Sy>;tBDcz?fYGD@rj#<;PgXmB;BPffq`ftBk2 zgxg`09f?jM?`z^IZHSyGl*LgjHz&%4uer+r9iRLvfAWlJrGJU6Wzi;;?)bdj8)>-t z+9tq|b*N;in~V>1&kc9iy4YwH#K7RIpcL8K*%?tzG<0Xz(zJmp3qGVB(k!0bpOyIx z6gEmkO&amBnk?gH#fw%E2OHKB+7?!P_d_8MWuW4*eZ8VfqYKsI>i1>__X1JAAY(G8 zdThFQBCBkEY{%mw*9w_t%G9--o~yrS`D?J9rLrBz2BqVzB6j=4+}{w(J0-T1hU z@M9K!m2)4s&+D>^p+BP%I01wJkK%7=|NA51|JgW^aPUAhM8DS+D2N6?+oBd*HLK#9 zSMX;YF>rU&eOch7OE}EWnkE!rCH1~?1Qkf2oa;?<>XQ zu5ugWiRLJ9bEgu8F1!TWjoN79Cir|^C!a*?;6%cmq?0@^)6fDUQUHnh;W^%qKr+Mr zl?NC!J02=W0fb0Xg}!4}pR8o-9QU}&5?;)yl7Gt$PE+{gQwz0Tk>sb^210v!H18nr ziOfSImX*iOY@Wlrf^U;#y{+Z6?6<6G!D&F?C-C&A=SiYvV3EvO6yzxv+D@A7?~t{*n_LuOGTQnZfz?^ww1zoNV8 zY4zi@7spi)Nb>Z!^^EQPOH{2j_CXW2XfUnZ81^_A)T81iHuw-Ez2>VNz-4>;1NxUzp!qwJqZwU8-qsR+j= zV65E>Sl-?gX4mJ94P-{d)%zGa^zOMKxNI_(G+Qx;dAtmQF|c_C<&oTt&QXEPD{MG8sXSo8%cq^GoRYT6cES`+?1kuJH5Zh z{mYPdoBG(i0&rwwxmsjaLm#sWzGL#U@|DW+K(P^f-V`%n(`RF`04k7|OF2U<^9|Uw znY#q|@7eefBMQbcbt6(ZL>Lw(q);R6L;{D5S`Er|K5P zCS*D8rT?ewVtqM%WzcW@msl>j;Amf`xjv)NzFpCdHl9q&Wle77nYC-RjIQBc>P(K^ zg{+GlZ(*EgH{HAwERjpc)k)v&L8z#M8%96XU{fnn-8r05Hw5v|EXl%lDl*G15e_g0 z>$LOfl%q%EhQp7_rKx1?JhG;hw%O9aHp|<+AyYD+Ac~$Zpl$PhHgBpPRnOpB>;^C<`PdVej8Ug>HdB4=gC4LCkDOie`=i<*Njp6OOBPTHerre4|FMjN2!!ps`1(Y0>O!Yd|7VL; zs_tsvZ3$PoulH-)n_vQlHn`xJvr9ePv?P(-(!i@?lGbX*OFjL{$|lU8%lT(bZCu95 zK{(1m7}r7I^kngd1gkS;x6_|l!}1CaJp(P~x4qfL3f@d`kj-3KO_E#c`62S=^w7{7 zDrN!dgcj*uY-Pn`n1{gL;f(w7Aen}qNET4tExLRniit9ce^a>HfRkE#Ebe_*#!XwS zjv;nUxI0mmVJl_MXx!ZmTj}p-6-V5WR~)p&>IOA6&2)dN6OqDZbLCGLf5iZK-Gx|7E;C)z(x)e%7C?NVzxRq0>fNh_IiGUXARDnauRkBZDG zYLP3|bT_T}k0SP#QL`2uB)GAb1bTqwrHf1SrAh6aC^3%j!1(!{?25F{(!Y5 z#l*}<Y%rbORhY`9AyKLKZM29vR5x;8ovXE=x%6(8G6L$|TGV0RK-&9c zO*;x}2K`>B%l&hPg|^gm{0g!Abw2mEHFfjHGIyKi&RD1YvSX|na5Jc(_LfH1(#UN8 z;P&UuP$xL)y}>ipW8Op5#TL-;d9_XuB0r}E38xO7U`bsMCibKU3euI|5Upvh)R$CY zP6sa7sFQ!RF$3AZ2qr3x&Kokr9k|sUzJve8NPY*W87)&$S|=t2M@#b@yQIV6MV(yA zqv8BJ3qBiEx{Pg0k4!By_whckGu)3AghiWEIX%Yu5)Wr=%h<}sx|(Pm1XH>rW>Z`f zb&$Fjq2(skN^;)pDbPV=2Y6H-)v|>kfa1~$1Ua|0)@fgA&gD{StE3u{ld%l&FA#!i zjI_(+dWKl}`cSw!5ZFON9%A-iS9waMV64zcrPEipY8MFWp#U`Lwqc`xPTF__Q?YW$ zsEG?7$`L#}H5Q_^l*Z)Vzx{W{^bxAq|5YCR(cszvSLa0I&=k=or@rqrCGb_(LRG&` zp`G9vxLYCfSN>Q@F~yd_r0A6jj?F@_bR5Qd#M$a(QdGUXCfU* zK%=M!?$`sPhen_mzTdWefI|^LB~tuoP$i1zaFH8jLq>jc0l?q|CXa z?>rD4jX1JO5Vzw8f?4nP1(1-s|1d&IrL}Hyr7k{ObxqQq{DLSE2?+_=Gp}{TXPrR4 zO&(uVqyln+2IofHIvf}S4ZAjxwq3J}LwlD-aWbakntE~qsvAN351{U!Z^E5qZJFe{KeW}sp&AV*c| zZ;`sI{OgMx9~~o(Qq%O;Z+vFre7UR0&eI`>ZDpl`I}OW29D>j)NlcznI<}HcvXv08 zgCHcmq$9df2Z(cN{!)k^UoOz+%ICI`Pd{m~>oIE@{{P*)4Zq~_s39r1DhoK2D2f;~X zk5@^`96NKQw@0#Hb%2ouGq4`3iNGAaCkl&hH{(u~nhE-0O{22ELyzZ9LS{011;pt-wOy)li44X8E$kQFWOV2O|2*MlcKgaaJa zLU7YJPO8ZItK{Uoo0R(iX(UJW?fYBVlcT|vQKRqle}y-S>~KjKvf;;T>urH-O^Gcc zvOt&fAVj3R9^Nmn9aNU|r%(h&3&7JX#0-_dm)H3?6sBpDs2u=xL{EEvi-c+TCSNZ0 ztm(l=Tmp8ctPB>@CJBq}>gaaxOF7?hP{=ufFF40)lg7=xF*|)gim~U3B!DdZ7Sc{u zTNL`P@Ki4T78h2dB|FyrtUJpfS#vE{U932)7@;m>n{_w(P#qwG44t(%Cstd=R zuXe|c2rDLY!zP4K-oX$nVAGYDn*K`1?%C<9VyHPCs*f|@qUZnH(xdv%9!ktouNZ!SX51;clUCKU}H&Q+94g`m&&(+pRlR#qITr z`EOt4&zM`lX4jbfA!gB=jIsc`OEIRuUq_!i&Hq89&q0(g zi}(2S4LfqhJ2QIUdPMwW_xLk)!|KF8N2jYk5xiT((U+0R?j2IQZ1x`E{3~g_Tl%uT zDmaUTh5gkH)7szcBwZ~$du{?q&+CUOHw-m0dtHk^dUFN2oLhCUY0kgJn|7@+GqK$o zu=3Btb4n|FyWMgNpJ)Lc7}pS-XbxP7VSQ-R6lY)W?RM)!{vF7>5vlU@;)D&?T90lE zcQg4I?sQ1+z%jvV-)7AUep4EJXXbihBN1Gw%0{Z^VUx)2nAX{VZ-$e zz`g-k;-zaw(0Yh;A#RaMrAn{8o! z(G^yA?<ne2K`FMETP*AyCYdi6Wwqm05M2>7`FsqiGH`sGWV@5`u=y!D$l{EsMiMf(s+r&CI zY~u#8bh=$4Zi|4Do>EcY)m_W)O>W=nI}v1;l2GDX9+iJy9twij_*@^YZ;@>*{qLZ5 z=oYWXBlBiK=U) zK{`w(y_~nf)8o(9@(qRF!fLHkft>Dgl|5EK6*-KTp1f_@syMZU^EMyQ1G5wb!w!|X z10CAo62WQB)46|}`l5^b3j3^29`?FX=<)A*oSV{`mbtx0;;XrUjw=JYDc92M%UZvd zsT*cb{EODb!aC)Mw_1grUXWA>k|ocacWVNQqIlJh@ZcT)h` z!WrEYdmw)HHzA-uRC4s+1pK@8qGvbAE1b8vSN^Q!R%r#=lsw^wHb|e}QMo7UfqvrL z%@Tbges*%gM4L4&Ex-}Xtbbc)3jPPn2+uwlKYQ6rka=%7-}F6O4fLVVH>EO-deuW- zz~o{02iRp)R8;KGJsl66o&%;~tDJ{V7J~G0TC=TuoZ;kjsPEu^_FqrDC13u$B*(zO gz+U3%>&kwIiIbC8dfu;R20$SOPgg&ebxsLQ08v*%*#H0l literal 0 HcmV?d00001 diff --git a/deal.II/examples/step-41/doc/step-41.displacement.png b/deal.II/examples/step-41/doc/step-41.displacement.png new file mode 100644 index 0000000000000000000000000000000000000000..2336716aca2ded6702149f49e7b1f6e9e8e97eee GIT binary patch literal 79173 zcmV*tKtjKXP)V>IGcGYOVJ&KPZDMamX?QC|ZfGEH zW*{;!FgGwYGB6MAGNb?iAOJ~3K~#90?7iu897&qq`SXa#Oxzbi97!C!S-fu+cz_wn zs?lgywz9P~X-BrLFRMMw_E2}%{tK(WVa@bi)ibt|Y-dLr)9z|inaQh27VoQg69j=w zAi)Fol^GHH!QCS~09JKXb@fblRlXl!neHAQkqN|u=Y9O~H$)Hw)S?!(sKp;cSbx_S zP>WjBq88sZoWJV}_*umNDnuuw;1l>*H`cgqEo$+7L)31Y-*@~AAx6QqnF3%H`r(`) zQN;!uMqr;FT>Ev@q88s0HHP*3ja)AG%;KcYSb(s}+C1^`;XF73M__|%v0O!ffWHw! z9{4AEh8l#`q84G)7}oDGo~NO@e*3`;;(aNbjxR;O#)EW zKRt>8>7>G}zX3e50zV<-nCGw)s6kjQel}5KSihGLLi|GuA!xGM?(i0Di!&)UCU{;2 zXcV}0Bm`Gh$ktI&R7=(Y$gM;J0#q&u3e-X& zp!VCZ#UEGH0PDvLA;h0T+GgHjRbboHStM)@)-mF7qKS?qUoX>aG2F)8McfuH&XKgR zz-{5;G}&eV0r_c)6^0sly-K!TpFoqT+?;OF;FWdaV>E;Xzb%){RRIQImmXOAlc>cX zY}5ejM++gupMbEj1W5~Fvm?n^z=3)kn+Xrw=2R2yDK5>jF~O&uBn8*!umylE$TlHB z2+q%tZG|eiSpXqHN04n^mjEtAn00%R&)U`wAf8JGaC?={Qn3M4$@ywP__GFKwfF;! z8esi6A%yr8giVvhiolX7VI5;0`|4><@v=gbg=2HNgSG^B=SU=I5S-nBBe*gRV0mn= zXIni&Ab=|QX_PN3WKvD!X7uYu0IHgB`TA}%rXDvb_J2^_)MjXauXxPzPX z*n*TrrW0Fm=`DCz0>Bcu8FyykZSR_5H-O15#m!Jun_`BfQ_(7T41xIp79EMTd-|P73O?4 z)zO$Bksz~?JJX!&;;R`P!PzdZzQOIr^0@E@P{b?f5_f z_<4!6BvulVS~Rklh@*A=+shoP(?o0ya;-#=G+rTXY1uv;;KkP~1wj?yMJ<=C#qTX@ zfc3k^Cqf7tV3Wh7Kv*~yeRWKE3^wp+nG>x{RIqGXlJqn%=X1J~`*Sonoav&`;p%&A zfhBNzxIBrw5dnp=VR7gJ$d{o?wu@XDSjUw%#3AXuF-8t(jYE(0KGIB zJBv*KxmEo(5zjQi4gZ?7w4VoRHvL-sNKpf<-zh#30vo`#5HcmS5f+w(V`E#S64(|g z2ivA8Nn?WECT3O{PILDi15JF?#oKhWxpzR6ONJ|wp;ERcmvj@lJ>+!r3?&#{ zjmEoNH*(Ct!-Y^@tNjJm;=4x;uzq-aB1E@f(!#QkDPdodiGXIC&N@mS2@A(& zR~w_tG$z?t&$3TLf^;*}E1d1)_8V-$xqh4kUrnmwWHz{Igy8&mM6y%}vR#Ck8C7x< z>V*uMJen=Jl5Pn#sn+kMLmYefU{)tE2L zU8m^h;qL)82&=_6M-8xkV0U%IZaNiSiPkZCf|sT?916CCaOOrsogaRi+74_41-*WC3^(kek;7w5TtIt^5jj zxJhzLu>mg8gqTE3TPr@&{k1>TT2KS59~RG_KmQ+hY>&_iu&|w2N|77OoY^3}OlX&3$^C6k46ztZ+(H$&XT;C*2HH zvI78A$&UeKd&rIH>oe90<=ZfwRE%uR0Q9mWqnr(vLwyp*=1?!s-f_I2rh1;d0h_a%xlts$h0CKPlbqek zl~=f15gr#tlp)LAO5vqOD9DdMm4P-!XUJ}j=Vham=1Dh1EqpT(3&(_ThC#&4{7x!j z>xr1@4wDgR==uB|>4X6~b+JpLN`7hWSyZZ+1jw(^^5x{_;fA$h0Cvj(wLj*cdei{x z`-KqVoX!M=0E;C-qoZEiHtBk%stAjgI+lGbn`8pVX3s_%QY0K2>v-~>kNbJ@o`k?j zl5#k+g?fj}BW&(s+XgJbgE2LA(9cE$*Qn`<#o7-%F z&O+1yMd97z3*0*Q^HkQSS>4VboCUrxi88`W_LYRfAy30*gk6MNP77 z8w3MQlqv{8B7v~j-p1=i>XKMC`+Imk&EY

UmUVXe*D)3~l4~Yit{L2UkZ(*kF^e zIJ*@~aPc|r4$eOV80=v54eoZ3n+=~BS0({v8&t`?1QZ?1y)^K`R|lHuB#;|hOS`h^ z7;DQLy8f;Ae6}NY(p-5ROCqM(=ibN3nz=OT;Wm?>i;MA%@v|F5EZi6A+EHVEHDZgd zabZBd5)A|XRL@%boB!jD8eo0b5JF@H-4eI=? zy8ynJh|)9v*dJZg0P8!2L@Vh#5H_+9jAhf4V#34L;3X`CL&8>X9S7USaoEsAx|P>+ z*cPcIjze9FkGJw*g1Q7lyJ$%A?{3l8j%AVEgC)4~Or6>mxO?O^aQ;zrC%bznJV1ae z!OJ5r5zVJKL%LNbi8AEv{X9-~wkpCU4@Nj-*O%jN&}$P>S+(jwu!Q z;#wg;+oN6t;ruW4;SxJG#4roUzlpAmkZ@^HKO|!6@byGYA9ZJ$g9**TWN$@XvpigN z>B}n^a#%m?0csHThZ;4&`t2cv$bvM8nrMYZPaWkdSS$rJCBVkEu`HVF>1<$pk!>4z zJx3~u<&bo+9O{y!lDvM$e|?h16!(fa7Q_3vGXjus7~ajbr<~o35L|ks)(VBd5@hxv zsuUjT3k%T-3iklq-Q>Ui5T)9tTdL%q0!D`DMT`t7eud>9#`)idq61}^TrArc>k6uh zY87Xd@Sp8cNn+&rDytX8CDQe{dUaBvQrzk4wrl@HmHdqHiPp$r;o-CTbOsU2uQ!N! z+Wx9@*n+VxnXzI>TBzlce@IaStlttLT6I}W358a@DJFdoSQc1dV_Bq|D6L>y2nS0r z(80t4n>#7avyTf8 zn0!yVgUkVdix0@`1}NMID7_)wfx8!oZp-}Lh#ARncWcGxF;vO!BKO#Ew{HQ+Jwte8 zw*%xJ>yK|TGELcX&$J^f1jIBLt9Yg^7R0&O2hFY_in(1-(Ns$lvEV~Qthfpu7w>3?DhLlD z$Q+IosPlILeSaPR$lpRf;n3Yp{vLq7z0^_eUJy`0K<;Zb&z(^|3oF2f=1h={{Yv-w5(= z2%xk?xx%l~G0Z}uoBkl{<*?E!y*77N`DNVERtRnSJ{c!sXH+Q|6%aEXzzf)``)haE zj}Imp(%;U+0)rbV&0*W@>|^8&btyXA zm|sG2WrJ{_F%aqIm$tY0A@l_9=+yCeJ-FZg`zk zDoI=RLUB&3T3gnpc#5e7+@9puhm9^th~j2fw+E`^CzT{0o>Y!^J7Y8Fr;J`A#ma30 z$iFkbjkp|U8pNbKte|trj1vi7f$Y@?TQHzD6R%oP(397Q*zXuM!1{26+zJa})16?_ zQ}EQ7U@_3U2nE=hcG=iASPXP9K8LVz9E456p}m>z4GORlDMhaqmgwAor5l)7McAa9C@m`i-nQA)&TNIwX2xgP(!*<+ z5?Ul2I@?)TC7ELHHeQrSrT|VHqCUmFXPh`dD#eZa*hwtG*%Me6*KTv>I2W%o*vEK@ z;UfsRbd$5kIsX*^9+pMsn0gHquE*sqpUe>oHTRwft0rn#P_3Y#`inqy!ir5Of$DZa;Y*fGFJnPh^_4i;8PN*OCjvYvO-{QWHT zDQ-R_nIw_mF*>0JWc4nX+`X8h4`lafqt@5p zk^P9=qqrArCqbai7VEZTyMytTs-{{##d*?Anu2L)`xYYhn->giRJ)Y$aJvli>biBw z=yYZsM94J7F0U{Rfx7HWQ|xqw#Ta;Hj8fEv#c0kWBfenn!k+8r)*fj{&Y+2M};(h|AX*KBg}F!WArC z|KRM$Q04qJEDIoWgu*rb@qCp_W{#+a^VcKg3m^9g0ubb{fiM;dg*tCmCYXZU_2^5> z#wD}Q^D4Dey}CwBPyxt2r1*w(n?9qN#7RJW3RQ|Tl;`>NnP^)1Gj9+v!0jVHLLh0^ zfbNwu_r*X2QxWsEo~0{@$y$jDvo`8olks)Q(h7L=rZn3Es+wv^*a{OokNmuWbowzx zQnr_(z8scG#gR@w18{u&L5Dy-cOmX}$_Z|V9K8X<%L##DhC|8rnrHNa9K(JHq2MsF1i z*;Y>j<%-hRL(8ZHtjPtiX{u+bs;bTOcTt)Fi-ZFXI|i|AUYBWaXK95*65An}!m_a) zjvgUZ$J7-4gQQa2yp59t!SE@B;KohGbnFDDP6AxJ#_1DW`Vvr*{OMEb&-db&OueC} z)A(#2md)8Aja*j%tNwE{iDJI7eNwJk61~O1vasDGViG&t%^G?}Bg}%e zL@ZyVI7@E>ci!@=-BCLs3j;hd8-a+372X1r78P=3jQx^@X+wrLg)oo8yq?XlR!Bv^ zRHavPVdD|Gk)n@Q?$;>#kTI%O{Pc3k8eoCmD%fRH4)mI!kFe=ZGU@Bw(8dyA(U_vO zo{1%}5r9o!2gNy-Jeum&c0w#12L!gmU?1aCSPnZjGctjbWa9?rmq;YA9P9*%6t>0D z<2-rxdZV7$0E3K zdjRs|;NkX?ACIml({0ROr7#t}&2(zWC=-Mh~KWa|BSc_$5?VWX7i)3Vs{gPoW z39(hkFqgz5^T+QFs{s~5h(8mQEr6Z`lNd{Z+Ron7KzTLVg@Z+79g7uu+n8J=-NtN{ zrB#px{A?ChXl(|W&Dq#C?d@#b$mG@F7miCHHI zFu0P=Rh1ZjEOK4uzKR)8gHRDOiP$}W;uPr)vir2kt|!kMM9keq{;}#(g~Og2XsC&p z66tk`p4;R6dMI|rKoYTV?_po;lJcXPOhKkME|5>^e+B^=nN(H)3ff(9XPN`e0GSpw zTfvb0Gp*~eOsZq?3W%zUST0GZ=!Z7_&;=H*b(-yegt_F;9k4!FhCy*FPp5?8b{vaz z6B8>eR%uLu4HlL~x`T;1ZOF1{Ze+1SOCuc}yq>~w5Du12M>`ugGBS>nz)sM)k+}uz z1dhYOgFJbH4~LKP;Gtqw2#$Wt?Himp$<6EZ^|PrT0`A=8*brY`;cc1pCQb|y1YEm< zZFA-nUtU%p&34F~Cj9kYy-HsnV`G5Q@4vi?fZ-u7T#61kJETPSOJ9;1rch8_mPPgq zR1t#QB}x;ddo(tkB7d3e$7*EmGWZlHnS8@%|16F>*8qwo(i;hk)KY0)Hz-aLK>0m~ zwrV*{-@R*yn4&*>)H~@f3kSG{B9?#5Ks#5Sl5Pc!V!?VMCJ!7S{}Le64|3Tt#4MwT z7~zU!ocm-3t^7#G7)fQouV(>^&X>)u9BlrEIhUO z>>|UaAHyu2OJtf8=40Ne0-AI*8xtRf`Dt6 z)ttZ?y#{whGN7trQnpRzEP(L1Ak{1Rjai&Ktq#duP{kgA>{$fl@&MU0(xmZ{Z&~#K74ziGl79R{*6sdK&;TU9qDIW>VQ@?7p6e zW(!|P7FN(j5HoFYEYnYxG*>4v6#Yz6mac5lO*2aj^=E0RgNdYLS8_&9g2kw~bV5wO8Y0-P99?){tBnVh7%TVgc{ z2jJ8h5^(V%TedJZ#_%u~F5oz1G6=!>^9X?uxGthf{yfvia}Nn^q5sQqkD z?D`AZkTmqfELxh^UH{bUkRZ=tG(g&R?2HGL0^ zQu_QYLfFp~uwo^yBvb`47rU@P(3oP$Q)DXL#Kf{{Z)#wn0v3Ip6lV~!yi6CRY5KY; zz0)o&2VtwH>1^G`>yj=>>fks8Ldjdg!nfGHm#0tI*v*?a>^aD@#{>bE!$PMzWMB_=26>%+|;1eY(7ak)@XUzdPSvj{;xPc};~r%qZb@rz#=b>HFh ze?_`SoiwYd8C7x@$POz;hAcsI%Gjy%<+{}GSnMtE`M)DAvn`M8QKPF$?iLUUNs0k! zsX2d3Pvz@IO~mqF$BY;5j@TK)vaW%rSeThhhA(6;86H@8WoX`-pcTd_%>wi^f~OM6 z@Tib#WxC_-Q%1VirV>f>)N2&|$fh4E`kro=lcWH(&Kqu)ytB+NP5Xsjmz0U5%o+2> zqNHo&l6n1PNq%n-_HzU*6Rmn2CItu@Z59RHDIP7er&-lIw!$I}no=RaK?u_AJbTN| zG{sr^J1Nf4*TwjIwKCY;Oh-G@3oNcE>AkIu&MscP#&WQ2THBbJSGy5~P9%jO0O4TU zZ2O33j{rJ*=;-A66SjZEqr0T)@O^xrWRjhG`T7oZ_4olF?dSPpf`I*p2m&75CY1u% zcbEq^)gB-TXCfe#Qdma7*LRqjWMdZrB$FIJ1p!}uNivBo0GtG8G6=zyiwtYnvIOVO zsqgcAj?6hO=EAQR2eR4d3(w^U0&d^t&_1#*VBpT@^vWU)GPOJtr%RUsibZ<6!BhMz zN*?1x3}UiZ?uL;(9*9QfZm+%1-2-tx^&m>_LLwG+g#>Di-!=aXp!AONJii={CvJsz z0G9v&AOJ~3K~ygd&3iC*l%iUCwE<7Du!7-YRsIP%e$v3K4&xMW*5PJ6m&7Au6xt8n zVVQO4&XMkN z#g;*Y!|M`4J`GH;bvwf5#Y?vC#Ikw!j%oQ%Ph00VZ)fxw6(7sOtE$2>wvFfGRTRDQ zeUd2xAKxccudLpIPpX04`v`m<-KDM`Ab=pCp^m+W2?FllBvl6>0uCJI(LD$_c$^^M z-CL%{As|`LiBnjD|L@<^)uYNipK=j`s~5sQPZEMNStZf~mvh=N59hKJasZhu4&*hQ z*#X4ijEbUK#W5z!eD=>{m<5I+7OGlu?@<7r*1Tl$s8{+TEHjfwO~fRPl2of$CcPoH zm69s?yT$`Ac7sH*3K$Qz6;vgnu(VWE0ig%P+sDf#=3ztj>#Gx8KYRm+FUYRd<+*K>Wm_; z;lBj4AazyMeROT(%h3zLS$O_CK-kX?u);D7OM(WujAAK}YIIl>0F6mn>zG*9CI&%c z9gChCnQqgH)eL=Il-`4_(ni|`o54-Ip2SKp(8u@$!e;YUgw5-5+S-_zV{V@2*2p#y z!0apskMr^wp0A#4*teOHX8`A#j}UhHz>dY8tMpO*M1(|AyvojLp;3A^c1~)>^+3<^Ym->AK~tG>gqW>#Ozd?PwgzHl{13(&o? z{eYqC2mB^auU^Y@_r{)nW|pXSjoQ=FT~V5)w}s5+*cBEG$v?AMw|h#wS6J3dVJu={ zg>gMTUT`&3^fShzBrz2I%mziN3hyW`BA~p=!3IOlkMpl+=6M6NjP|^K)_2w+zY;6G z4Y&ydv-IIvW0^9i$?SK`C4XLk^}&tJi$d4rt7l?0va>g)Sn@%z=+l@4TdfJIg2)?~ zm?PcE>J8slS^8yET5MF_4H035+kmMb}g zU?__NmvaDpgG`KaTEmtD7rtPkNKaZ})^Ha2FXMa;8!}l6Ul9JQ{xqIcLL9Ts#*@d3 z^l#$IRVA4zk42a~UQ{oNCDL60t|5EnzcLh=L;8?#S9y4s9*WJWw6HLFG!(J?17pG+ zv0-67{>)Yi+8~zM9z7CCcEvKv5#2r*VHqe1Yz>4o#Rb^)neeF^{?`@+r&!!HF^YnF4oQ*a` ziv)m`P;|+X0@embONwx9*}~{JLV!(xDg+n^un-Uk`~YF$2lxSj2NsnozWzH4VJM9C zEx$Du=IP$V{0ymje4ikoz5yhbHQ;-A9;rIsPtn{)BFXG5$1}WoM%zXjn>jMf!y9TV zwdHW!MF?(P;8>RHc>qTMe4GWrwH&9jT*<3bOGp~ZMz4c_|Lb!$=`DU|v$2u?`g1nv zhj!VzH{6{fm9k=ybQ&bplCg$}NiW5R6fu*C$#l{^M*gY+F-Kx^=C2cYYPYuP3Nhaq^h1L_P$);AF4JzfTZO{1@PS6i#Y#YyZwlFgAsq01yeV*gU{!3EN?Qk^TD_8C8_3rIi`E zv@Gb~#>h(qc!Ao)SM>=z#gBe#`~c+omU%22-@|egR@OC>-b$*TWCM=Fi9f-zd3a5! zRJOwr30vnmn&oCr<%Y*}Zg?}t$LF|~0|Rb=Q(5H{yPk_0&%`kcxT1R>-r|4yEY{^{ zMkYhP2t~16F8-hVEJ0P-EV3sx)smQXItB`#|0VdEf5}Bjy=s}i7NL*YmUt*SFs~~n zX5t15Wufp@F6r*mRZ;^AccUxJ?2coTrdpYuP>p4a5oQ_6ec`2{j+yNv#wq%sN@1J; zCgy+-c=QXC>S{Ax1`L&=^JX?cRj&qyJgY6bsz0AlkChD18~zmF>UtG{@hA}2A%LJt z0J&8H4K9*6rMf5iB=&vqG^$U|L_|&rWM>A%L3fY5d@sb;-C-><=zDYysqWc zvZmr?V8dyhMP4*8D@3bHTIRoKprPyPJ1_u`&;NpSug0w57+3(gOW;wQpj_tH|6SA$ z0S~GkrxGkxSqPY^l3(Se4*{<{az6*a`al^5X=nH8 zPEz*hsb^x9bR!e1^fXdl(Tjtvl;$IYs7eOs6l}?F{jC2 zf-3GQFtjkLxbeM*`D+xXz@z+*U;SBZ!u-u|7Q&2r)|veV&^$2OL(G!W)dTe|V<`He z93~efqf=BVywvTRjSKcD=$(?8eq->s9vtp5(&sHLP+sO&9~mOLP9)tO!1O>qir2K#wEfp8ccz;YNJ zL)ZiYA@E^fD+|M)W; z?Q)e+ax)i^tYg_&0{GXTv#}SwqRUX0zyPMNasZP>(rHe`G0V}KSGma4B>#&(sT@#< zb2O>zOHnLWi0*CI*i@9i$as;o6o9-~7gh3Cq5`Du3C+lS++z_DlO+N@4;e&t($`eaqV%w%NQD z;MHq9uq zg=Gwnh3k^f>%J;(M!k?f^A|vRvI5*QQ9F>oY{>1$BI|tq8dNDw(YtXSX36q95)KZ> zW-HtQkJ4Lu+rVI9h5H7jl6(9rx?RSH6n&XU7W7kcmCd3NAhX5L;B_L2+|I4Pgu<9^ z>^7XDC5_RBDJ&|YUsYzYpi1Gbag*SLmT&5?%!4%6CmVEy5J-*Lwhui|Q z9upPHJ}W*WKViTMi^j+&Hg`Kr23lxOF;dZ61+_u+#XQ^FBZFvfD-(-q7mh?L%h4u= z73FM@CWcVPiWUbg=9g%0W`2R)`@mvkL@_J?!Q31T&5BzE5cuEbU04&p*9`IfTLOVo zPhc^4fS32_=p)sFm10kp(j&H=;nghwJIO~Go?c}4IUb(}5Ei?$2>80do-7VL%<;ZR z`zH2eN$A}0L0;7klyN8va4*MU4KWWwi>V%SOn2Qi1+Rc(S%qT9veCE`!}D{lU6ORYkX4`@&!QOz-P&S0pJcpmHb7cG^nnx zFC!l&m3q^RdjcSD*k3cp;+SRZ_s$rFcm5(rZyTj|^tQ&@BSpVTW_NUKEX~{+jVV0S zjoa3)NaAy6f`c0)M@5)Onh%l8k4Na~_9_BJK%uB8XJ#WomBN%-vZz)8&a~izSK<6L z)v7WT&aAR0$(+aE%rIA_3$8EmuF6}V6`#^i6|g?Yt>oq#ES3Tq5+GCo?PJjPNI&=< zX!Y&7`)@_1HM~rYH;;NZ#fCIflh`Q&i@v?Qo5D)aumLB9mExl;uOG1e45K#yItJ<9 zi4Z)y#4eX71!dIOl?8Z`XK$8A`RD@n8@?(DXW{ET8Yb?qQ>K6eSsb{N12`%{N~6qS znLG-B+h0Tz$`~?u*0mfx15A#pmNn~=U*_oVXM9xY`sO5G>gy~Q=}B|ejk=^oR{r{2 z*Qn3+1we6}-W~w=q&`62-skmOKPH6bFGE17MDIp2Ck)h(4-*Ly@IW+G;kLoE4uC{A zVi{#-ufem7`mXEcd^Nuz+ZS}bu*^VoV3bI1ibg8_1$dm@6g7sA!achoS`aLh2w=Ds zKcG-%*`w-Fsjvcg^gGP0@>lP$0?I2a_)J%r4JbT$wr$(CpCDkZ-zq4dDkz0^nH9?F z>}%}op+R)9%8u^Ha-~R?ps$DVw=Ar%dmA&0EUc)tMQjEKz)~Jj>Hi$qqKH*s;lt=i zbcH@NwK6mPUD4{>!RWUdwZ0?6dNV~wFYn(GSlB5@kf^7w4J%2q87qmMVrLc-BpR@6 zUR_mdquX7C;Dz3@(>_S&Hu;O-MUI{4cw&&I5YZg?TIX@EZu6&c??M7Deoni#nC^?K zT6Yc10*)F!d*D`%bUzQS(3w^$e%N(gD`k&v^WT0J>yo_$Ocr@p=D+_ecE(EvlAdw7 zoCg?omB%7f-#&F?Uupht0E#7grCVZH*%}l(1AN?*su948Q7xqxgpUykG0UtJ1_k}J zw~VRiS0i}J?5ChB5t(iSQ_e3K2K|_vuZ1wvov+LmfFIYtUa2i&(nx{K1dEDTo$aDf zBB)Xg@T>S9r#IqNsQ6r%suOa%l#J%%OGs>`Nq zY;0bF2FH-4P$1RQpw|bNl|fXZRb!o^QR#MOD=e<612=Uu{#Kb7;$zB96Xldt`o#(XazdozhI5DtNbRYxF5 zG!j^(T4>+Q!YrvK`iCgp$F67d8OCq2^(>=T0k&q;9!Ugu{(_dYLay!SK*PbaygHE$ zJF+~@Az*hF;ISbj0ecOI`C7xo`y#Vt{$U(q?#C6V0|qm?V|2Z^#g0RoivfllCN+3d zSL6^PGnCe(n52GYvP zfM8IX81zwng9r;BUX2pK;1&YGs}YD+knm+b=tWn)9$bFM1aQq@zEz}uGl>sNOKjT3 zn+dEGsa7f#a7Z+fY=i`fCY&bvPcnW7%Vx_tiq{!D%j-+{wknmi?Hocdl2Bn5j?=SoE3xi2+uKR$YQuuth$b%Zio-LpyuA-mqLXGqI$rT-DRs zKyh9JnWLSe7Q&*bnT{5SScF2Y1=}wmGTpkjgVyUEaSJZ z90s!p8#~FXOSBF$H%7n9*afz@2*GF`1Of)KAQ;QB`5eHAfj(Q}_NZ3|h-^3L($jUq zR+v;iTGzEluk-;A;uLJZG3VVcVqL(YY}9i1i&)oDeVx)0@l_5RzP`=wL!5GB=8P+v zPo2pCT+T;xT6)4^7f?<#v=AnTDGHWfYisyM70e@Z(%@MV%OrxFpm15el}nQfo(@LS z77SBsM8OOpEVFN&{w0?Mc7Qhh7aqri{OI8z0e8kY*sBVPoZiIwQTz({oZ5s};Xl3P zXcw2pSgo*9VP_NPi}clVb&B`PR6Lx37mG|+0G2%F_z3})Sv2MqG-&gbOxB{Uf~!$= zcBxzSv?x1!X;B+Q=jhu&aYii*7N-#wn|dg{1)G61V`Z9K=xFEl1j3@Fo%sc@*s_I} zuM{}?fFOXrExaC~sg;=-`ZhB*f*&Yu^}V3#yJ+e^%!E~*z?Z%-8(&~0NVc%DLf~Mf zNHh{SbRQ$t!qg+IMl6SPhVmT%C&{K^#;>Xz(6ULp2$;M;pUYSQpk;u$*Yss^U^J&j znmA>{pe9_e<4c5FeL1DisC*d+Br9wcCDgysPjz9lepdZzg(@ zYP}z)GaY4=60>d?S0aBN*Gb~FyaFQ&hTPbP{j1;5o#ydv_8#I?#?bZi(LBRi)R&m6 zC|C(RdV6v89>d6T;gK=+7!@w4M&vWx!rbs$G)6s=@+v^-4ZZD@-cWwa!5xthR?u}U zG6!PmYG|j(>>~d#;&HNyv>%Y!Mi3BGIsc5nBM3MMF%KPHg1TIK6e;C^Nmns>k#Sb5&NWEC(!mEc}!JE8N&DnUt&`svdx9Y`(!J-N3{u zJx!FuddGs^HYOIpVzEk7oid0<#!;CAzM;99_BI~Bq^SjAF*v}(r?j-v(#HHez9FE{nYlq->oP46Bc4B)19DEBaL13|ACkwMwJ?uI*?89ln zZszSn>;`&HA{r=P$FdO?-RD41{!)QaItv0vP&!ZArIZIiFkq|_j^)&TX&IZdjOGBg zW&!ouOcJ+fa`eJLirFIV>9t(Ul*9HIa#+a4ri+~XMNHj)pu66UbM_Z8%#ub5+c1vF zjM9c%#+96K)qq>_!v@Amr5jxysJ-G5?Fs-+xhkoYANh>NzV#WUX|2frC;iGJ6W?Q0 zxTIm_R9w2!>15_u)Cd%==y{GB7#H%aLy$+W!__{%Ce6au=JAw ztXR<)5j|BduE6IFWZc)1c8L}g9Bo+c)jz>3w43H=J;vY_1C{P-2kEqb@$q}nZL zIp8ohMpKK@*JtO9k_;%1=-eEQ%^yIk??t1&i|GC>lYcNKODci&G{XukL;_#XzLVJr zf&`rhn0ZadLF{G{&AhpfT}S6>?0Vi@ML2Yx<;@kkGn6lCD~X`zoH86t7NXNxfFP}L zq?`l6LXpOF1ZNJ6#Q_Tg$Sl~Ljpda}Aj>If?77kPQC6jsl8!z3kY^&~Vqbp|gQ~#b zV)u=%!&!x5hqDlH$4L5)x$0QpW}f#&2zXcKpZ+>(mtEmmPQ=Cg|NA%e_VVBkdk=Ef zjV|(%fmy@GSrP`-lD-O+Et*S#abK&VV30AN{h@_0s$@aT^%g1aN#9OtIRC1QekO@H_Obe z@O~LQ=Buputol>~mV$tvK(&T*LUhTe3Wh3`@tm$Tn{T8+v?&?0Tq%*uj!X<~Evgd3 zrY@e0(cBy@3ksY5e#R#vP}{N%kH{VRY9tcc16Y`&UM>#$(NDg=YW{;c*SEl&M62Z` zl8yKRUv4By;0r{8z=kAt18uvQ83P-;kqsXsnwh?faOlkN{wBhvVUYPELa^~1LhwfZ z8y5&cZ&tmY%Bz!F(352%2ZFvVz(fvUxk$q%g=G#(&7Lq)$iBEiVbqY@C5lPc=u3@C zlE9e)|I2ljRJly~B!>;V+_maH@O2IwcDw3@jDyCN+{>w5*)oo}(G>#s^ryCEE*V4v zR9PN478mcY8OGW(E>|?|I_YvPuckU}oW+3)x*hn$B@9yw%bWrzt~BPF*770y4TQo*lqY6o70>MFU% zR4Y^}tW@}@gNrX1XyL2Z%q&u=FuTga3U8OGcvL)Ad@4R(!17N3up+e522r_HP?D_Z z$v5%p>~e3j(6(q<`vugj%8lkLq~>pm+8!ap!lz;>&1pnm$&EXbOGMvSuWC;2Ix8m@Gb|?m8ERBnH)in zt6xJ=+qK@@;XvFTCArvqk>xVS<4&%z9IXS)j7Aw{*n9hP+VqZ-UGc7`2ASFu@4E7@ zuuunvCRkJ5e^&&^{x`A9c#u~wY&evOu<33d;LZO}-J3nfact{;zs#!c2D%#qM*vL_ z1UQJAsezhEg6QTx*N!-0-w40ldmZ+xAN*wR{pv^m0sbpwJ5GdsZk#ybxDWTT0dNvU z4HQL*lsJP>V<1700D7#dOh061RW$%ol(f&;QUwB0$QrxQ{q?uL^{tgP>!go^N+asW zkK#nR>ud(*B$kE6Y-_7>Z^ma+1aN8!a9KZt-CHQw%tbf&Nz#`UoPHlM^+9*PR-?hc zZDT+UGhd=%VVR*FoIHvOP?~esP_XcrzkiFcLl80jJ)I5%IR>+Q`G7q+RyO#y##)CR z8SbvK(V-a&0lQjG8IG8(>{ z#)mh`t{Pn9!Q18J5D%_SC$HN4ey?mbdn<=+QNc_^Dcz=+XZ_><#n1?k7kIqP|NOtW zd)5G#X6zxSr@(=%og&vD&gm3pop-f0QAz@f^{2Pcxosik@=>$Am2gUAQ0GB{$zgE`x zevyqf?GE)08y&)kc0@-JXq2Y&hX$;4)0lXEc@qE{w902-Q+M`Q=W=YzFs9N@7S|~4 zVey&W!OVXnC8Hy@s=2S99Xoiqh}@DE+$yw#g{`@Jwp8#XxmCOvJW6BP3wC?St?Afs zd4UMBd74ckqqt+6H1r+d*#bI4VVwFBN+NQ2d9)8XM4n8E;0b*v@$x+V9FYT$9aF4+ zWVH( z&7%e0|B%Ip$?e7WX7;!I3kaB*b#rY*Or2t8CTZ_wYcoQoK1PS2nYn1u?euYUfCe4# z5C4hXgQ$>`Z=*Uy0T;fd)h6r^bO<`UQR4F-86D*EZCY(g1)kJdUFX&#>K%fRR)=Op z6w%Ry8l?&TxPWDw#z>aaXl0};hgQQm7Q9y)1D}Pss@XuB z50ddQzW9dW5t|k?Lc0kD4Y%4PwCDS5rNZ+7>t7<``&pPP4siP>%0;qWfYCWB1u!65yO|vb*&J>P3tpc=bD}h;!|E$G0QatNciUtA_j+X6+F+&)tWp~hBZ0oye zE4umcR%-mZdrFptxex0HWxjIq*70u4`rKib@rcEjyE0?XlXg^iaDK*~yfOtTgIG+# zrcPUIO6s~bQy*F6(wdnI0JQ~%cX0B3>t#Q885MHPXUhYlU$j|f<%u-Twh%#}#>jWMNy zraQaoAS$Ibh{kBOZ;;vs#a=u4jj>$aTBMj~-(I{-Vq%zIvS_s_EocHjlNMZGr`XTf zgcaI>(gY9hp%uje*4!KP&8u?eK|Afv^ ze4CBi6yApd8@I^pC3_f|XZeO z?$g-sKKakKkfz-gR;wV`QNef0m)UA&LE7!$Y1JLOc9mD-QXTL4Pdauk#aKb!4K2PpGV6!y>M%~ z>-Bo@M(QX(#lnu26F{*njILvi7WRe1EEy*vHNY1$$!U$X)qv?mhgnlo){|k7Zg$4* zeEKxtRH`b#H{WpVO;o_-ClE4w2_2$-Q)-J zPH6v^5T}0Kq5F3m19;8`A?jbV@c^bFrc^_F|?L1;P zg;TV@CHo1juK@C8B1!Wz@~3H@2TAV~%~^a&z6{Wqv2k3!j1To$3T1$L>VsEIK}n;U z+_?t>4iuic>|uP=-U=&K5DZlSR=O3j5mz0(?2>(}U-Rl;y7c>n)D&bf3p4-F#Z(`N z(QdWt$4^01EFqo!HAb1c-S^zrfy+Pfwx)2<)FT zmxwwLa^g5DAnI`b3Y`{Vz=y9h`z3E3Vje{nx^fgOWfM$(gnb-cDToe~q7WdPdOL;HMBduCsGuPT*Nigev zDo7l6XmxiQ57uh7!J*bk$1)9*(;K+_Mc5pQ{XqKT0 zD^+$mK-o55X_$+lS}{5#)-Y`&M@eEX(=b}5Hk}+YmJ-f=xIc}A^%`gfOB_sXy+57Y z!;zFkWg<#*^KZKRqfHJhup@wrf0#On)|@*>*g|PrGpHllE#7;ROP6Uj2-*-aQR1ub7}?2J*V$+gbg0+K zXSlyat4$P9Z=)hQ5kX`DOa0*hD~(o7krXz^#W%*z9veirTCPS0S!mc6DDmVs@pKZl zZ;S-V*ghK)3Xi^i>J9L%iD7G6P{G3owmIME1glS2d$w6<{}&acHZ3uzZC#dXD9Ge# zHZ4L$fS@qK(?zsP6e{x!`|s0k_;yM(T>=xLfYgnejBb znH}za!;xdjpB}6%@N}6Y#}YX|*@d>0t zDwN{+`yfVCN|e3s}!t05BuZb7Tqa+NkQq|pkG+N!N>_B?C3GAX~YF`jNvZ&>f>*f^fo zg;o#lCCR~k6Z~+E-aht?^YAV_CoTB1j?kB(PMbFIbIsl3b1v4bZe;|x5HbZ?4e}$b zEn69033|rZSU`F7jL}#^33LXz7qJ)JL;DWoP&rf%Jmkkj*AORBUlDo8Nsy35eTEoA zOrS0x%K+-U{kD*&QL`W|;fiMLMB|{KnSv~ilsdbPDk%aMQ6<_JqHNp z>{0y{8#5LvG~*ah;HSVYE%5s(jSN^#k*OW&G-Y=qhuxJVNBN{XHXQD*vaY3U83IPj z$@y#3$!=pQS$%#wIa_?iSIPi)QpGw)Qc~3I)FH1qn9Dd*muOwuI!{V8`9 z%{3DqYTh$uSB(!>W~_+z<27D=i;qtsHCl1y94I76O&IdgM~H~a7ihNu-hGR6v%K*N zUwlD*gN+T2?C04tuHB$sr%`7|fqOL?P1YM$q;E$AAqpae(zY+t9|N$qM=O!E4^4`1 zo?{SA?Cfi<{$|~(?4}a~9%I8GEnxNav12F5RQ-*Y7)0ab;KsT$TivH`fM?HaNcdZV z!IxQn7Sy%^+~Xw%cJX+5OE74}EDt~yXg4fiwblt5D2ejO9-%o0Ig~)YLFWP5gB|OsDZd&$>V3_MsA)`Zz_i5GyieJP4){ zf=n4T?OvY1gPg;lFvX{ePHS>q;pA{S`~Q3Ke`Mq|!Wuz1sA3bXc=?aK1BdELowqf=c+#VpLIV2P~$e==BN ztwwX1(lIM|0r#epYN6N5$$4%#smp`cQv6RXjqBS2(;%UB|wGZ;6 zQ)rE+_~IN(KQXiy0mnZ^M0_^G@#9>+$fHGe?cmKfxj4%!hq-*2PJ>Rso_?M^W9=Dt z9BvOX!W!4U<^Pn@Of@pHtqSd#w!yH8ib02 z!A=t|k5{16BowaGyhmmqjYSY-CTPr)Jxp^BvWVB{+=C1{i}Hwaa2#$D`NrD=-(UlV z6CPi{Nig-a<~!q*K)}V+n@vWXcI&gL3>E;ML`(r_C#fKi-5O9hgIYkA@E}tL2&U<+ zKq^l3M1o~Lv{LCsvuCqv30ET}T@{=R53E=5A*c~7v(Nb?%vQtB!Wx}r#{Zm*15Z-5 zheH*si;Yx3^Tgeo#8w~~7+QAY2K8i$h0UiT$AjhMJ|Cob)$5@@)Owc@d zy1>RVW5?V#fm5%ZEUj4_Q}JXkT?%;&Uc!Nwnno|+@53wGeGHa$?GFet6@2J83bqX|OC8c% zp?Nk59^2h%$G(dFNUx`KtAPsjDq1JG$oT4eQlPm~#e-Ijo)RAHE!%N(>7{AAGMqx^ z1$+Li6q^ zwC4IOS|c^@pW>@?5c2Lvd~*>MLBz55Amr+2y!t9vuh4Gt)*IBtNFhw*FEO+&(ktz)QP7Rs7>S z2$N`u$`A_3q9yuO!Z|xg7JQHQp~vHf;<4nv@wf&b`+OAvWZ{z>pM{*xa4`gsaLVU= zh!-*Gb1nopAemQ8`VevFl zranC5sFrnvnb+d7b!L+fr82cmrY#q~O_YPgRQqG(Hc+VX{P^yU3-w4w@x4xBI2uAP>7H_H~6>z4ju621zvrP^Z%KiEKz_8 z*t3VVC*1sjW}SAE-Yg3Xgb}S4?SM{)(4kdml2_XN{(S@1X0(zl=@+7vq*P?l_2f%i zu1qI}t~#6Uw4n4DE!ni-Mw9+NTP+y3<%^{&O(L{wsIPP6Z5s?0`mCeBN2)V0ZXjxY~)r1+GvjKys&hRX?H0V~tVwPF_LJLTTM%7L;Sd^k;W zf#OJVi07pD^%{dC;E3DN(*U04){G5NUvncSB)mC;2lLk$dxJMmAr)G4;~bu5Wr4~6 z7NJlP-(MtbL&*J`{MY{-s>3&*ap*ALUg7Z~@4QRn8Eb3Y`hl>+#yZV9?G~*ztu|WG z321i^5MlF!Ms(M|XTVA~jY*dZ#?sYRwAyTEucr!|o#iSvF_=HchEr)l$=H5d+iZhG znF#H1clI}qS?Maxt=J-6y_o*Qsl9C*HoRc@6`|!qjlsRFJR*Wt6Te{5$|97Y(?sU& zpR!1&nNTf!B1t5Xhv>|qGw2NJ2+T=*fs|wg?`F8E$$<3uD8qEfZpkM(z6d$h!{=?A z;q%}`4&d`na&r<+<@p4RlPoIeD#FR+%0Y?xn#^CiSYe}z2YnTM&06Xnc9oN>fZasOWMKArnmS}}3bPicld9~oa@3jXy1fZ&m&g9 zvG2k!t<*_hC=Leuhge;*97?$#opy~1N3WdgT^^wQ6W%z%8tf+c3GJa?fjNm3_>zo= zCwM1E4lYCtN#5%v2VX}Pq)z0x5^yTdI^Mrgu_AOuaQ?bPTBZoA57es6$v=gyt~?a1MmL95{cQnJ{gkYS*g#Rhnk z`oZJQDuo_OgUC$EawWGnF>Fc;8gAufzkURG96RXlCuN>ZCLjo>gX~@%K4@y&Z-G_OHS>sa466&R%p9nI+yk* z5w6pc#uJ<v_tda0C*FJ5a&bF8O;96KqJ5S8G0Vctre`TxeMdQw(hUVOn+)?Z`#+vZXw>kO zHLUwi&NrXA@zc!DAhbg(ji)&1hflXx{DRX243wf7Q=-ZQd<#y#b)%qaqrYKg(za4WHF9lt`P56nxZc z$1^e2itq&*i)DoT(>lXGz=^yiWv3hqdlWL_Gnoar*kr1gnHGQtO*!CFd+XCy&IejoDZGQH87$+$>U47W-Z&KqzUI*k9;|-D z?zbTw3_3owe-hux?GI=16cV&z;-qz5&7VgoRLH@Pks%K*G4?hOJ|k*FfP{UAx&Jjo z`?-6SXN&apv2z!5KhoMDXn~^bNLIa$iU=|q&*NC0A36ZO$DRyhIj(MSe2}l#8O<@0HUCXNt_$0i>W(fRLF6X9`ps?)_)534rM)kix7Us&y(k`=>dirWnzdlmUcPLx5UH zNl^B>rre4nO0#H)r#MW-fax5i5A9EpC7Y= z@Fl_knc%G=KQuw|PJtV3G-L$YZTh~B(yRmwvUPoi;$EECPp=S?ANDfLKN~Gkl&wcQug)k}c zB~s!Eq=zrj;0d(k?IJfDC@A%?C(E@pJb}_=BtWFedqZ~s03ZNKL_t)^dc0XA(p-GT zt_)hEG(8^2`cRs$pVA`%-s$7Zb#jvT`_Lg@tdsN5nh*NW@J-#$@TuTg#J}B%(p*|6 zC+#~uCpgv5g*E;(h=6m?@B~14fZ0_l{Q%Xq#Pd}tFuhKt&;D6;y<)*)98j&hNg9C2 zj#rxyQR$)DO0dZ!C<&|x)B zD8oLC#hW@$^thi=yaF~^)#LgafXoxd|od$)&7O<4F zGKf)vHP}J;jA$oO4aVRn4qrilEd@38}e$NI~~>|Ch`nt@jQO0gNG-G zG@c-cOGpHfCWNdY(f~PWzf5x;PXcyih%~((Zxm5*ZH-3A4j-V`L%}j zGNdp|Y@uN0&rT}R>?tRds^LQq$LJdY8HY@gDonX}846uX{{~qvIhP+3U&1eek99sA;J>Uek^_%F?MA?* zRm!`VU12=WT$A!3Gfz0P6QKG8T%OFJ)$}Tr9aJBs9=Woc079y!M~C8SgFg?Yq${XC z1JDsyTl{%v3bW#LXGA4Owc(&mb`i1I-D+aw=^#0(?EJ3XCW(ZCX*>v~?WSy6($WMj zOPDv^U$q?<+Ctlo(`b#a@ib3o2^Pri!H3IFoA&;X*t-gl58OBW$Tw-|bp zOU&4Nnrb3EKo6qQI(God7_Ews_FQgZzE~%b?Y=2XqxS zo8lWhHWUrPa1Oi#t%i#%H^HM3a(EYbc49%}XqR4BCx)$PgdK1}RwA3}%oZ9DbQ7dUuw`9gqYLQv!{4bru^TMc@8T zFVYBynyj=TUeQNu4(9o>PTu24fgkD=Je1~Wp1CHG=CvZ%*T`pVSIQobKoKhT_424g z(c`_H+-=|qo&^l&$$CufMhGrGHt#|NRQ5u^^kdHK2Ep`WdrOtUMB%C~rS4Tx*+F%c z$_@xQyJ`pR5;{Z+sjh=VoJyaCFr)fgsucm0Q{p}FX#*6?ia#5FEJ+eGImEeMEu7io zEd_IwDsq}vE-klf+Ky@!Q7E$V5Y<6Pgl&R0oi+l(fG|XB>%ijq z0v3N0z_Mr+n;4uyvea4(3YGas%eU!jMA-Y&GFyKjt13nKYx#dcyaJ*^V7 z8e?wJPT=f$$wc#XH@bRwKM~qrd5ed4Uo=}6{5)y;*{v_IN4)shI5XJOp9F)(*$@YV zofN%Nkl9D0=FANqvP4jG#w*j`U3vhX&zR3VNDm>90^xBekMy|LvTREWgg^+CW}?9D z24H8uR4;sYZAGrFBk__kSf){$z6_Bj@1bBK&kySqJwgaISwUM9DI(3sdw639-#+Ev zjBt5{tk3BovJxRUw}j`kD+!g|0MpBy8A{+uL{#E1FrezNjEKrEyLxts$}Xxa31%4y zth#DPV#KKoqQ>x}tkd%m6Bpp~f>wB6ZT z+o4sri6NHHO(%vfv`Wo{IzHyog1$woxjEP9io_$j)zQu`X~ys?5`QmPe%AN!ykIb% z$g5|V_2tc4d()V$n&^V-hjoBx9yJE@5+M-M8XCrXn2TsYpO2JmX!?Eo4=_+=ls_Sf z6cN@)^D@ix5NaU9vmn_AUI=Z@H!qCnXrvmCkv#o5_T)J+#PwA?LB_W?{HGEE&MhW1 z>dcT!5vB%-5KtKgAWTuM6qe}#;L~|Zjw_|ZM&Rsf0##Pg*AAOvHPmDki*9@^b)nuQ zBT2|~JK)M*y{uWzDgaioXCOpz*$eV>abS%%n6xuPeUsH7(be!B-SdSl6hh zXq-of_%QGR8LN$rn5TTkx9ilev22v0O zHY8LLQA8A3oHGBt-wR+Fv@&VIN5a~yV#m3$v*T@#R=B<~>ml`U8xsR=I*D{A1|zp` zwAeqoP5sS-xgEdaER7AK|SRim8c?7-4d%vfRr4N%n2rZ=CE279tV4P5OA;;>2a@( zkQS=Un_mmYdbwQ(euh~6mSq#bZHsqiup=4Hv$segL(b>#M!B|v^jL1PugKIsE-q3o zAq4;TkL+{8`I!;BBH+{8lnM}1DIuU*vmjMn03hP)RsQl?LUXE179*}c<@dHF$YppIUJwvQo+h8a;HOPv_-wCM7Q!m z%^;m+)B_Yfr-)`Pei=il4C(tAPqA@GW~BLLRS8n>>$w-b|2^Im+Y8e z^&4~x)kKCwEtFwcny^9CCh8y*VLK79toJGewgIfOXU|qDv84B}3s|NN10KuTnl^_r zEJfR+RVfdGyA6sNkPP=B{nVt*DHB5@px6tN(jFTOrsr+$>tmw{UW!{u=H?UEm6-*{ zpp}_XqJO9D(QY+Am2j(VyS}{G*6=*UdEOK_FVmznhQDnygE76zmsndwK~IT|MU)^j zLUWM_{88F9i|6S*eNZ^8qYDO5CZ9xth%Pp&?`W4sKA{D3WTwKxp&;w zB~6-s%d#!u+Pse<P6o1glCK^k1fHZkiV*k`VCJEv9F;Mu4>&XG z*w#D%5obp2nX7YDN>pori}gyJttEuZ9zx2du+zSiEYd+`&>n7-{w|-yV7KpdE#;Hw zWqP9v$PCPtd%GnqCy-5LQYR0YjvzuuObJ_4sbLb&xv{d7R?I@7&mkknzdpuSG|y4^ zfX*dEhzRIEPV+Lw*N_2E{u9|gM1&Vm7)5RHn!sg2&-7dLi;9Rn>gXdx-APS;v!hf>jie zaWe!cg;v&q#TLNgZxs@rk#;VWVc+Hi3qB1P%7WZ%5Z#Pcl7+?=w0a8ui%bkLTJ`l) zZ&|aIY0FpaXKmfq-)K1CTF1nbq2hwU`Z`Mgd|0uW#5l798_B*gP6-HW3)b}a1>dmc@5o0hUg}=poQ<#SpkJ^ z614~$2#tzJ{ons|2FYG0h8PEfkQS}(2ju;3JG<-2 zhsRRW=_IB>yGXiR#gpF{wAz#wOwg*aO|_u4iNf5RMJ~EMqT5a{xNR=)C7IVRDrWv! zmuVRCXgNWvb_=hU;tg4`C$blXAa?K>G6@0 zfBcqGKfswI2oQqVyUBUZjDvG#Rn2&+Do{jJCeS2UW_G9?04#N?&RI%zb(v#3shGGj z=3*|QG$@u-O*xhLAB8Gi*#8fXjM8j;| zV$-BaGnv6QQDkr6lgND08RYVmEgQ_ehZhoELWYPC(MCdHg63D`Cuo0*ZXzRSLL1#i zwNXv-12mRUZIt6yIwTAb5QS)sifsMhCI^;T{#60%&Ye5|(~-k_T?}Cgo2}nUvJ}yT zyuaCU6{FQ+T+%Gqw-W@ljjp~ii0w=al6s3`U#eQLyZ#0kn|P6@FQZj$T^@%BNiN5ZUIM{DFU36Xjo9jRlSw6FC2!D>K%Z}0f%Tt1-lDS*$+^?pBz#y zfkUy%DAjpKh?He#I*#=gsWl*?)N3slR)gjm4qqvtT4Z^@6M z>$Gnmng|6gdirVpgfba|fT)9NqeFCrj_9=UBvFKN`N6+EUB{CT@ z9*>&*_a7n!S)cQ_T#ezY%-*7M)GAriKOlgJ%2B3&pmNk+uKKI2YG$60L9rx77!x{0WwaZB(z^a$d-(J`wI-!3wI<6Ajtx>Cv?s6>%*23B>asBB zrX#l_ipd-rX4fpen#`i$T%9Q5M3(a{REPo;$Bm&g;-6puPaz^QZ=%1T=M}=Ucs+cx9NsEm@vjD0X*)ZvR1j0x z>#Dej35~F)92BkYOY)T8J(Q2bXf4@x#nqct3 zeR~ha(Vm`BVw0o&*UdG*t-SS1HLq3$kX6Vh4&GOC|gGFvX=HyWZdbzQLl=S%EQ+XXvaOoCPuW{}sQX*jL zbex0;Lj(! zQ-SvZP?X2IAk1tvOL;hPZxJ%R=u(73-EzCLTmYvBz_2!L!%4&7P8VDl81fHK*()rH zoyb_8b-qCup&^R+Sa80>dx|LHvxopML`3+n!xb_|2+xu!LX(~`IyaF`guyHYO>_rZ z=n$cZ+UNisg0kK#9f7tT`*0%6-v+RR5N80-ehm+MR=P?THru%*1kz(T58f7os7Sh8 z6?s;eR9>TcgNjqo zt2etn>5VSAa-53u+bpY z%qoOvh1N`(DM>3SC;1Ty6`(_up;VFm9Xa;7EnsZ|D9OLT5~I~#VbN*{E3^+~ ztf4^&i&n#h&1i+RXq8y5q@7qWMyuLt7h3fdELx52Xa7EsjE!}nm4dZ(M#mYOU~UUq zjZX0FNrF~NB|K=;Qs3A-^5Pvf!HuCy@yX+z)66Tq=dJ6TZ)33r&}{N#2@R28b;*W@ z`C+S1nFx37E;5By{;1X3m1ALy*{>5uC3ScRW4_~A0$@Cg6pZ&Wo_FFiZbdSlCjzY# z)Yu9=GdZUAb9&5;uR|}|+(VAj!|05CQRd|5+RU~&u^XM?^*+czj*Agdjt~04 zXIXMV^M0N$Ji;u0$`bm7Ui1agE2w}Fc($SPxYU0FTNRyeB^ zHW`w&gGct>B@X_5BIPbCjE|^QDV75BvW<8ePe3tjP9nk zngE%hQGEsKEk;M}fwo$(wz)0e=(w%FG165Ut>*5rZ=Cu2jEpgVck?UyMb>t+{OTxj zTOn+dO>}TCj~^vEy53^E>M3;vgT`6vjS{RO2I;J!2MK=MPHT_tS29Jf;u4&#^vc$% z0>3th3gP*Aq3~Yb(v78ylYQBV%gLJ-l2_$Htg5#moE>v(na zkBAmBB0EU*5Lyr*19Znmf;s?&j!=R;gBE&5 z&|pU0Ej>trAP1=DMGzoi-UiU4o&*8Xlb~NOqmgC?tr=i|{>yuJ>z4QQt_+JNT|}I7 z^bjW^gGp1Yy7zBD2LzFfj0k2%X0BX&?X~wFsAaeqMTO9qVUx?-0_%Sr{wBJ66%NMd zTzT?oADKcrI4Pt{I!z{no94$JCKt$LsjH#31~*OG<=i12zGm>b_?#6*kO1W@JVq1 zH;*VFULnf}kMw5L2yPBFg#=T^coAS3n<5O=E3MJ7$$v%7v)%lM11uW}M&HDt#E!#o zP_bEcWUR_wG}NU)*qmUv=X5c0CWZ!4VbQA6H%1_$8@*i>k`*=)MOLZ>N5{V|w39%q zSZH5IEMFD2s@AH)`375(uD_}>gRA%FTkdNQ_p}|a62>dth+ag8!Qi9-Nnc2;Bn3gv zT}H1O(=4b8S^-8dAJA39d^8w!BPD)SE2+CTrkE&xJr%f)4PweeILH)2TEI%B$)ss+ zq^p(5FZ6dZU!=B{nhdElZkoYExDMGm9Lb$0wqED_5w1Pt!Z8F~eqaspLr1xEkDrc# zfPjnl>1$_nnhQrFlJx+@a^3167k>u0us0ICLUy(ZJGd1)^q(M zD(Y2yqy`mmW1jtK?naok1AZ>iFL+cY(3BM2I0eKTQcaiArypSR!poE zCIAu9t0+moYPR_g1z0g!wK~ii+M+fLbxy_3E*++Qkkq9p8ro|ulbR{o5RxePSZTS6 z(WS%&+k-B-i>;WEc#Z zaKhjWr6QXL_%dVB$}7^it5l06(2T2(H}Y!U?Y2v4ZQ+aSPX%?s4HT7w_2r zD>N65Mh_z3;{E8hj>5?h(Hf*t?=Xhjvv82LI1Hbk<{F zYMzepO%v5WTf((Sd#xo_7|wNadDt?qb6r+wHwGPWbqcM}iqlPKgATYdg9&VZ9-}x| zLl98%@fCL#PyvBrheN^R7Y|=kQk0eKz$qY$Fp3CMgk>lrdAh=k=T9Daka zrGgf%B;y}#kM>oYh*qK1=&tbc|M98 zB?^a5aqkz-9p}aaTMO+t44weNwGfyDfD{a!v?S}&?Zku7c9#psBY3)#@RuG<0MMN% z{!s`RI+So-MJ(*X{%FfD%QAz&P?T-7XM1WvYG`Ldx-vFww9-|N-EIt*-+^Lsk+vEz zoNmYXXt*|pR!lDPXMMJ6=H?7M>mgkL03ZNKL_t&sbKL$!V9){kYq|HCAJX`Wdy6y* zW=oVbfuh6k!lPs;Dba>gM2sRmBsgi*2k^m1XiSi(K~j-i6&V^Te$l@jhV@5@7FR@t z%`=AfG&4FOU1cM^++n61WdH?4L!09+SA~H3EJ$*-Y-)%UE2l!ELd7a}iYA+gA{igA z)Zg?+(p9dJ#^!3F{pDk}|H$~eUuE^I^0j{}7=3l4AMkN@m6i-vYmcgMlG7zp0Odd$ zzg-k3Q4xe$uY*A6FwLlOD$aE&tw(ent$m<|_a*!4>d55B+KeeiqNLybTj^C*vElmk z%JOX&C(^L`+nHJTJ-lHvgP%TFJA2Y5y0Qu<-GR4gi=0DWdl(E7_mJrhouUrC;W!*Y0ru43 zNJf;M+*Jt%Sw^pVYj_t1dePhFtIGOUL2Z3{wGK{&XP7F3gK!ZJ(nYvP7wO`rNoR0e zcJ?zpkK=M+54AaRIo^zM^Z?J_;ifrvlAj-gB$ejuNp9cg{3)*8!f^lw&v5M~gJ%(N z`MSLzLuVo2@=b=$09?AB0GiVYK6Nd+ZUGlgR?MZq@BW(3uxF{}!ja1Mi}#mR0){t+ z4gy@dpOCH+O}H*SsWgxo+-*sg3Ap?Mv_0fp9|p^(uDnJEHd;L0VZ*>{BPbsQCgAxe zw&gg|MBsCC2BlB|fhO?Tp5>P>^riSEPo3tIPa70{3IXpGo)Q604lxaRBnWL87D0qr z+RE+5ptZdLiNJ8hi~QRI)}Kp(#KgfM*1g%50*9G^_AE1gRA&=Mh4mopsIH3T3UKL3 zm>5FEy}LCk6_kLbTH$|LDzbNX6c|dI7JTxITs;d*?AeEgvC%b!c35+$#8>0Ns-t2o z+c+4l1$N1eRSjf9n`rE=Vns`aWH1>14ue4*7dbBr2BQ{zNv%C>)VI>gpoP7B{WYtD z)H>MoWPz@ljdq?{RlQnE)SvP}AW{~vWD4QnrjZV*Ea?mbJN;$9cJhpz@@7Q8R1JL zq9eF)27rKzH=>OITsUTLT)ZAVnItwHgMdpB3mZCO?V}+cU3$pmEFGJf`b0-qk)tcp z)zn93=h@#4QEZ5|mIdJ4RY1;F~FuxX5l zex&tVg%~swRN_A2&|U)$)8)$a=7Nd>Mu*PEs9lUixJZY|&*TFuVA=O1HU=ar9SQdj zBf-&e`ui=t3ejq%qrH28=W96H*O!^XwJO_M^{B6w7OvcLC2l4&gAHxW&Dvnl&cd0s z6LD5GUTF!SqF^wDDm4#zz(GL4VNVL_GOCf$mxdHHrdTkm(5qxH7_YAu+5F12K0yPf z0z~*_l>&*ALby07ni?tixEV4ToD4tiVC(}eEfh**YRT4+&2r)dKmWqH^Zfh}k;Zj7 zdzRa`Id={zxpBk(uL~FK)wp_5V}LoasXwuD!BW1~kg&SO-dTbCjtsG^H(O?c2otX?E80^DO0nlE)9V6v{kVpxfoe z5@k)hpy)GP#xwX@mJ!OLl{AQOwrmjLs*3FFQAkJvAy-Gf4AK^jRMj?zfR#k6szz6< z3hl6ZXTD#_wvy{tZVYP%Kh4@IoMI8Tb`_hbj*16k<5gINqp=M|MK}ILG8mNfI(!l2 zB@GVEX`HAaU^rlF7U3}LS$ego*x$hW0=;!SUZBoh#e4PD=2q*2+ILhM#%s!p-X$*5 zffSBILp_B6Crx7m#ekgyEP8ZyGCobFhD?@B4Q`rj4VhY8my;*SX1RM8nPO&!t}f1= z!%ZOs*RLU?UJgPqI0%9(mr03b4?_rsh9E>Jm>i?4lcB+ci4-nfwAeLtDmpBT>8>y_ zLsuI=KjyFg6T97n>R41xICR_s(4~8o1`oia7aZ6giB=KS>S^Y$Z*!p6wm~@e16Q7* zeT$5zw_*(1=gM<*IEFT`Mu)>~D1-93IZP1n@*{t5D}m45Nq)%jHxtyml*=eZ$*0Su z81N=fS)moBfSh4U2_LBuKEi`C!XWJTXC)pCaaBhG&EE!Ky?y)kpX}I<#0VRmg(il$ zxdPI5j0tbg`XH#wB<$?c0$g}waEG=uvP&ErD?r)`m9A;Bgb zw_1CTiz96?*x<4x$eU^_!=h$?J?~2_2Gpl5z3Q*A*tAx#7Orn4T&vna*AeL}^vbsa zR>@G4#c?aKp_?X^28SI3OwS?HWHO{`@O)ZYEmUPPxEWlBqo;WEGp9~-=RQ*4NKT*Q z)(y@MA>ig!J45Kqd2U?e>>w^&y$o2R*0~{ExN->ugF{@uWFP0y5SK3l3=V?NrOQBt zZ3%6;*u`*v1Dc`J5OC>+-7+~tXS3aZF!WD^Fn7BmQ4JohP_4@kE4ur+eb%oT603i9 zjg}l}PVYo}Xdmr!{SAIpksP*IKiG-#`RnIwO5>H-*UZCdw$}6W2Lhk6N680Gn@iE- zZ5~fi3Q!7P<7wd;36u~)^kZ!OBC&d<5Q&^b($=tY{RV&~g!prqiP|t2VdIAOR0Lj{ z_6#$=r9V~-apcf|zCV14be*1q_b%ntkof`WxD+fcNN zU@BIx90b&-*zDLAeR1(%7;KA>Rn;?GUJ(qkp0#}~todq8w?WhC%FN@WhmhbR9E59= zGIezn6>b{o;-qoXR((%pa8hLJ$Y$y4Wp0jCmV-yBsp0VxK7Qcu{(XLV$cZ!DzJ==o zoE}05ZeQcf5Vx-a2+65I1l+ldkenIh`elIWDY`p3J7h1B3sd)3wpcN;#qCJ#G`CNZN5P;@LCpX`)zm2;ics@!|_W7}iLXjsQ=&9w#BpCsU zR)?a;`vS#)g@BBvqzDY2mIZ`FDDV*~!LSU((v?X7Rv091fL`$(fF*?ZV=8SJ+8m6m zG_IOa)+ri`>((6_In<|1_PZ*M3PZH2=<6-u*wD|Wss-a8=<8XAR<>F&YRu5v3l17a zM=V-tDm~igKU3e#_-2-{j`lE=Nw1%JS?n8cv); zN>UlL;8A1^J$V5Ecdv1Bh&xvRgyig?z4z8-n=K08)dr;C{2;*f%OuiJHfDr~i^1#^ zot+E~Rg(Fa{w8{c%X5W8Co8$g!PAivA5yLB0LEwV_;Ts$HiT|0#hLwFy^k`S-o>?_ zZDuf(l#Xn(UDj{Bw8P_3>}e(NxigFkDEs&xTCugBLXoGR@O*rq#WJp;7~m=V05rt_ z4?HD{2muPA5DFB+Kx7t;aW#I@e?Y(zLi{Bd2L#j5=7MC#*h!idx4N*I!LSVjf?2O( zxr#Nc&PIgGa6jqKgYW~3n5NLZ9>sv*IA7zno@SR$ymLLOe)R3BfNfX%@9XU;@0rwKEg#vj-TVE`|Gw%gzF^W3}2@j(C=Ze6x&*U3RUHY>!kxF5>-K`>muj4L=h#I7pxYovLz zohT7sg76Zp)kpNJD*HxKe&4ayiakf(Set0FW-vypxC$qk8I13ZjaS|zMpOlZRlfGf zbSngnDHgS*y92cd$!DMW@auhzn!ZHN1HRu>S;^8lL@P&vWn;Pw#X143F=CKntYg@Hv3TH#mBp zdshM5So!FA?p?tV93SM)W&7CPJZATPjt^P@x^BDA zqdMyBUDHK68WDo&Ji-OY)spvZ60qojAXgi8>5D?hFz73k$mPIANP2r2o1lMSS^Z6S zA4o=rF(HNuhz535Nmuczs!85RU>NVP(unZY75}?+dOTFwL>t;DERm|O^ydq!aI(?w z(jrcy^|hBGUwcr**?~WqpkwvW6it^%`r50?21BTt^O@Jx!QfIr&RMfO5H^(5`}H6d zugMa)l%OU}8EP^K4J$`c*@{A$!c8O7xG7rNY2L!a zab7;+(??o55Q0PJ5rQXoA}P<|&{+^Xyvorb9$d8#=HyV6?t%x`n46-d1K{X+94xvW zALPMhyW6QjOUJ^v^5*3P3p>yC%Lr*X8c{?!6h)w}0l0kG!jrXzMg94}I?B(TMEjUn zy1Hrc3q{~_at}(QJ^sZ-n(8nCN4In91^apkJpT0^Hl+yycD3qW8OIMOm+?H5 zrW~S`$GnHD2{gWsrzr*qP+Is#Mpgz9s#gkOqS8kG@PH+R_>ZvgG!3ne#VI3gTfW$= zBOK~nauM4St_>BZii3NO!RKj?8xQ zZ;(02;TNpdu88`zOP2ZCH#saw2I8`Sz&b@MT^Xo$iei2n`DuM#wn3?@zm^+cqBlfT zks};Rn!4Huxl)t@>gq{lX>6jUovA5sF@kiK&F##6;fF(Hvb=l6moGH8viB4(AF}rh zuYN`VE_+Y&^cDxt16=)=Y;Ly?;Lwo0aq*wi+5vFrEDx_DC5O)Az=JD%oMhiA`UdQt z#^A!eD@4QYI6hbj3GanMn8AgUQH&X`+hHye03mP;1}+S8B@t1cKX0)K!{tj5pbd{7 zvv-d*i=IBnwVSq?3knkuD30w$dEERNzl;tzvYnexEN0z#h4LwT;M3pC<1u>cc|J)w zpzNUo%08Y?qr>=;HI(`qPazCtEdmp(S0TL;v2LX!!E(ym_;2+qS9~|LcGy zg!p&B2pjt8NTt#u0af9^E{9p4wyf=~G~?O3N}AfVwYi6ZUdJY+6FEPf$g<#o%j74z z+YyP{X2)f0nxz8u4K!>bpQm@gw&fcQJC_N%`z>09b#LIds)Vk}COR`hb3b2ZmKm?&%;3U%WG#LHQMatfS%K&#m_Q|sSF2hX;wd;{wXO`r zg*adPO532~UX?mzZC=n7JD_&mU)D|WjBQeYyGx)W(w$Io*wvZ0? zR)dxEL;iL1iVYhbIC~B^;wo1z+FpRb>0_2;UAxA_B(0mR>+1NA+<3^LA5b2*e#ZAu z9*4GZ`zb$mbMGZPTY31Fz(@O(J$mXXmU%T}gFzjz$z@`RvWKrx0lvl$@J-kZUIr1j zG7u&TSq-ofr8)d23`+>{AA=E0NsK^+*yN%kO=?Ebma)Jz6M%@gRfJ`soxP*pS{W+# z^svQ(8@aI@gk&Mj8 z{RZH|w=k?^=(mxxg~4E)87voZYHbO3_+79FS%ukNw)6whz6@QJ22 zBsh{E&jJ|3^RU|4ShRN>_MNrz(=S)SARLaIuY`CZ7yCFxTL%~ppSL)5?+Tx%XzL<; z)sCNsh-%%9FfRPliGGKvwQ!=mjDE|gR4GInxj8*^8ta!!JXWB z#Pke}b)fm7i=UsfwT;K`@Jf`+py+I%Sfp6w?MFNx9nk19zDQ0mmPcxoCQ$f>vPPOJ zzzS7%kx<<2itSe$Ghy*n!1_;x2)Wf1Y;mpYN;@``n+XqQr&L1Mm4Lml1Sc8Bq4`g%b!K4m#t7z`%Ug1uXL`j}n&86U<# zcR$Y`vvVKg!_~pySAk|D3@Zks?*PHI%5;)7gGrlcx`8j#+kQshvZ;;51&n0ZG2T66;Uh=?l=r`| z^Ej^`TC(Xl{BVlbciDXk;Q3AK&DnjLSGU=H2H@p2fYv@fj}_Lk4L7e~KpM`S!x$WcHaMDV zSCNM4XMpC zBdvfPMEbfW3IiPsmQU5DC}>)1EF^`$XN$HOgB^9gB4Zf7=pkCga8{qQW93EUy6THe z3}IT(aZu0~p%u`xmCti5#*X%WMu+L@XMWB$V_3(du$CX{n;h_8U0-Eb)pG{p>c42< zpxbCOgZb$SPKBceQ&B@v(Md3spksO1ozU9DuZZ3>j$}kLkVQ(~`%#~ngq0ygDGlV!LB?V1gopmZWDH@tsD&eLv0^!iJjV}u{wK6`6lR-yaXk?0} zcIH2^^(bS{F#;zA4%?40{4+aF@H%Sk;<)TM!RuSdgu`QRM4et-N4OOL0vw0kXD$7C zdX0q-Y-wljIs55!;qkQ!7#%oQ(XAd|1&|U48%2ia3{@~K2FoxhA;qU&R`7E zpfz`{Av8ww{3*M4bL@~E2yyc!ei`j^WG{E_vu7JYnY)irK3)kF-i3)zi2@y2Nejkp`C_!v zFg}Wgo~>vYAF)>>zsQb#j19vY!QlEa-CC)`ssq28C0x~AwHCvwsu>J%D%Vy~ud0k! z*+j=HajW=g?craDLVI2CRWN z-$$BOo_QU6*D^PQV*yL1qAx(#x<-*WXsPCDwN{L5mcF5H}OkW((+3DxSa>Tu)T-JPbrrO6kA&;7J2>- z-^cUt%CzMe{y@2eAJQuyt?&Z^WsRd63s|9*K}VSNhX$;R7cc%#fBaL2U>r6(Aea(t zj#$!+VT)^-lokkw57E%(@Uu{tCa-L3_V#*vBNn8l7U*h;(5ltms=kTw;WZuY8#Ju1?|4|}z_r%;9{R-v45V@t^A+P&+)Z@V zmJBjyJ6?sO24k(gy2v@!+Ho1z)ml4}t+fbg2TTmqS^HJ85a*kcgXzdM9q=D{O&^z!p#JP!WyeTu1h z0)UJM9gF+LvrIgm} zZs(-dMWR(gx(c&_GYfQXW@-@x-4Sf{v`3ibFg|PLcE@FGiuwkYiuCm&Qvjo5XklGf zPajj?K+jg&QT~}FTqALS@Jvq2R#Hkt=_}yI`s!nL#3~uGyFO;R? z}UFqVGQr@;H2&4k_N|R>j@0Jy9vPJyu3jwWuI((sbc+}gv1W)i*&9hkqkdK&E|HbflzLbba$9AgTn_20`A?$E1`T;z^<)4_?hk9{PK*TOu3Bm@jc2VyfU7L=iz%aXPNwh z9~noLCJ0a(U!e%6S4fQ@Q9?*Uy^0MDUjwXFp{W|ME?&I&|NQh*7!1C}+S$FZJ**_a z!dA(Ui3nF+ioB+^7Ag7Q(OO%fRKj64Uy-gVN|sX*vmCb~xA$~e7B)UjZ!cq$mShcV z1(r9u8bJsQbZ@nkYJ8Z^ej5yK&?CxsAB0!V9G8O6jvttuW-(7~y=6}_iY1k#YZoHL)H`tK+RNl?8{!EE1HFeCe~O7v z!$99L0?pJDo1fp*r{HhR001BWNkl@1R1_V;S2SxNZ5Lu zcXx17Y&(f#czY|n-Z(BhP6MRi zQHt==Kc}gMPm{E^ao_|(BNZs_UPow*!U5%TU_S)hy-VQX6$#2HpKZN7enQ|=F5#C6 ze7v#+EZ@WT@I17#XoaTWVKjk8DU3lGp^S+5+;SeVEJe7i*XU|%Rlt(TKizKkZYuSfbsX0YZ9YXd+)L* zS(mdw)7cMHkSM+#uW(~>`{XdWM!P+n!@OfJ`K4tiN&chcivMGBfOC9cehCAgXUXPl zsbE7p2I|`|g1UA-zsJDRG)|6eyOrUW-eSP*jJnE%m4gK|1QP(do&;J+AnMl+BR<0c zPf85?G^7CfYXIJt7^nr%hB@DEk9keFlH;0LZR&DzwsRHqgn0C1!QQS~;gLGx7vq;gxCG zNucl*Wsg#kmR%GJcpk+PZ*Ea8QCP$)vt<|4FPVAEs~eQc6w9>kq2)(PCA<=^u97eE z{2FDC%qBdKlE<^F)+}BskuTGJh_a6d#elp=*<;D0;-kXDDiRoMFdl0!>--;3`E;NmJ6C{xg0&NkbcD!@V2azD`k7)a*Ns0?$zNdHI?< z_bCJfu=_`FP=ZhM1O_cohTd)h@B$mqX~X6Q3Vy`u4a!i~m3s|%6;v`Yw3rn)e#NRV zEFr`{hB3*!pi?jnHImPOKnlvj&Ls#yNLn&TfsXuBA3e6z^06H8CalLj4j6@`vl-zs zGf(Fhgu~<)+eT*cQ$(^Hgd|^N&+bb5_E2co&^v%h2<@Z8mSKgUsi}-^o*Z7!Bg%62 z1gkKqRd-%_d*kWCRS%3agW+h2WMZ-;oa(0rl$|GVcgM@C0bgb6C1PxB5 z19Ggj_lN3L8DOA}Ul!Q6iFbK4EcuXdbym%i_)V1cux^0AkbE0(i%5K z>mDW_;YN|5RybL@_hB>>k4R?#tI#_c`VNC(>;a_(axDxTwWMP79!>_wMBmt?bH(>W!UR?t$tCCnh{r*#Ejno*;(;EmyYX>vq>_1|=fBtgI zmLq?jr=4_Al{1U8SK;fDku0U1t_Nx0=QM1l| zd-BO)cI<`a>}lm%mDBCm%giLrtr%!(=kp9i7cKm$ZMT`hrD+Ug+wHxjsbxkMRX~Hu zV?a9*S`qh+c0thK(BP7jEE$k2X!>ic@oKmjzWBT^u&;r4QBE-DE@M4Ssb%!4ih0E= zdC1Cp8&h8)YyGvWgo^RKlOAB(Kju|MZnM85ePO9+zu5~VtN4cToi;2k(AJAK6qZoN z4uc6anRQa{%uV8zDK4SPG;}gINqLF<9HVz>>}TmSr2?PF zDdow3;{9!kOLzs!B|cA3%2O&(F7fI*g*=;gB2tt~Jip58YZMDs8*14f#av~4@H|Ro zIu6l(n39hclmog?-~|-I8=A6ac8Y)Vzl8H0@IZqPpJ%A=<5D87M$X;7D9a8Kl6KNJ-8m<={BX1r|+0 zE02)~Nozfyi?lS@b^unca+zJEqZ#Qk^M%e9glmfj!{%#_i;zstM2*EAn;Zm2$1%dj zgJYxg^kXEW!}JU=I!sUKy6R)>J)Qk%z0uJ%e507Pa^w19*7}vz=`0^-N!3y;qM@Ok z&oh--IEG3UPAqAK9j_G2j8|cib7FWG)H^I;eeI#vKCVDAkg-nDq}Cp)SN*ljDH`2s zt$nThU3@#HKUFMjN58lHVoW47OmxS?*?V$kmhgY>H62)Hd*C5gck8$Tc%H zVOyr*Qp}U7r)3AY%)ZA6T6XdA4GM}2)HI_tExY*miXgC`Fzq88Hudr08D5D@1IEM2 z($vStSEOnzt54Np6q|SO;RUHW`ytNMfuU_L(@(&Vs)5KB@74fxA7bhufSU#AJ%%e7 zy@wFE8IU-z?KDC#5~U_%$HVS3);=1F?k}z*Beo?qMzQM%Lh<}ITUz)$$?gLv#j|_t z-o^8W1Z9lI1Z>~Vi^pi+y4$@17+M=C6&M+3egOxXYMJ_oQurRiQ1^*fxIjy! zptYX45?kt#(nf_JiwHqUQ=756yNm^RhpslJKGD;GNLkDppSDetL$neO!%>mo*odW6 zMk1hdzzXf-?*TgctVeV$eLcC>GFY*(2=O~Q%&b~7SQQMCXvq+p+QWvThKlh@Zo*$! zUgR8F8RUv_IAJH5fh?l|{aJ)$IN=mUR;WsE&4vnblIxqSSnJ&T)flr<>MU&}D3-e! z>Kj-pM?qo=CvACt7!QUyR3R~rt$;O>Qh`i^4G9s{G_y3vmLK@|2BnZL8k+j~^akyb z|4d^SrFpbk<#EO}Tc|3ZLjc z!r}})M;L!dO-*GwWZ1$%hT-8E5WKw+S+`)vsmR%&d36(^5t<)P^7^K&CERt0m$$9g z;D`O-^XwiwcJcfHCO~`a{DJ3>A)vdH2lq%jcqLSTU&bpFcs5ID0(>78Sf{(u*4&`N z2^R*fMSu_po#0t30PCwM!fykt1GFITn?K#Bu2Au+6w9rs?Zrd;;Op+lv+m$-R5DwcF40(h|G(Ga6P4 zj#Ql3VeM3M{TiWaRYUwbdB*j{tg4+K-k_pX<8+N?XvSN!@5<<5BZOp!mK1PZlsC4u7mPjvuXH;!z>Su0v*$&|rAt^7Asjuv8u*?fc*I}Sz4>L~z zng>|=0DvS@$G}OX!}xui48ZnNHvV-Z=R|&*hBiXuyQA50oYyyy*qURhFabid;{Y%2 zVti2S+|SE<2fuL7jO^9dA6 zqZK}(okA#tK`c)Z3RxLh%?1FAb!-jm16H^$UcC4p{>e{G&|tU`y?n=-ab5BXAt-A) z8c4f1E^|ezDp-HDQz2H;p{|aS7a1K~8##7&F)>45FCxXnloizb`WYRwAK;z==H^&h zv>#mo8oK)#AGS|;t0VPdvssgqyX3!KH-O9#-Lm9j}~Dif<4( zYrIkuiP7_6ayf+LZZ9Pthts**KPcAD^oFk4dwr z2*>BHCbw6$nlaGU&E%BDtgwyu=3ZvUF%H>A>b9UIABHi)ws|wg60vaDOxWelXbVY6 zBw7hutF8_17E`cv4h)-j^6@2``Y3(|$Trb^3@6R(BbPp2}W*1=yHexObJFK z0tD8zX)B@?I$-;L2zYy+xfvQ7kkG%KH;?J>=k;T>!jzHF*+EdERN(0oQWDQ&O9SJR z1U`iV!k{C1r9-o*LTi*F0HM()q<4bla{Ka+=XV2^T)Ao0b>YH=@xVL|%zyd6{~vo? zPPrU&*gVhPPn@0O(MMi<=Hf6Pivlz&=gG9s9w7o>xPJ5v=h#Y_ckwb&*wkmrCtwOCmFF>$_ zeQ_Jy3T7Rs2N*6gA6TuuDaE^dBzT*O9G+Crb1qAPH6>KR%|@&bNdZ2IdR43HKgPF1 zO&wMd+GX4rM1UZdqqEB`vwmOhLozrf-rKD@IRv^bAeC<7Yh zqXRpsAtY8I=p=blI)}Hk%8MPZrvA!->+cD8dAtHkvnYWfe(S3M+kCLKmFM-0>Wb1kP z1Qk$LC{0%%z9wJd)-8O6G7R)v`@-}GOqhan&|!Hq_R{$p11W)teO&P1F32fBS+v!`ysJrC?j5VRIuj zSz0#J+DvPUjqtS_1*m;m)+2EpLNztD{!f?sX?;5DFk7>9>e{JLxU6H4YS5@AyzjpP! z;W}x)sy)}YaaFE$DarswdB944qWJkra&;gml$e~t7z%mXyIEXB!_+w091C-__Oi6V z%qRw0`l#8AGBowm)K9wJ!c)@#Xg2ksd@>Eo9!VAMwC!E}LIK&vYIIw%mc$&H{R6xryI*w6NbRMUyQJR<62@D-a@IisEtn142 z2sFOJSJZ5xYZt?>D0xhb;43_ZujuGOD>}Nkf1j~2CZ-9rwXhqF(kN~5D8wusl^>OL zHB^a>bD?ir-+9&x7cM+2ng8+M{J!9_=t72)%NvLHDcUpq`ziiWia&Sx;}QPoEr0To zYtOj)3;)+8z`oP8rme+3$HgTyOiUmgMn|p7FT^Pk^)(+KMhH|G{TVQf4b#!b#5>+R zsn94^Gjmo^Eh31iS}_}1n4`0wh9r9m9Uav#`?!!xcM4F%=F4G^S{bjG9%v2^cQe zkS)2Ahlgt|_*-c!UG?zrDcBWZab=?bY5V`@%OL3Nq+t^pYU-FA#~9jsG0@UWVTtKc zw)BFbu*B>zAKxJaAK&rm9mcR}0HgW%24ndA4r9nR+W)*NT}nby6_%Ce?UwMs5BNBNXBfFbQQ2k*t;c9RMxgNm-rl0^D4r%T zR%7xsna#X(IE6ev>}7O>-T}r(VR<;*(aXdzY%G8G z-NMs4`)^RNPmY$bFQ~A#vSpb;Y;&tnYZp13M3J+WlqWF)x}wGmd8iMIoFx;IUe`9_ zNe*)kn_k6%Ayhv3+Rz&&`=UH~Qa=hU1;54%n!NoT;@4zAZQ8cJDricYnrvc5j%)o5 zp$6aC!}KgQIqI7jpF~mVh}6>0^aKXB3}7T5M(r!nyp<2{E3u5$Xic_};+%aXYw1uc zg{_r4um-(a|5V9yZrXv{Kzb94xk}OzouVXzx&^b9aI zW@APn=o(;rxFWY#J^YPBOsqYT2G={Z!+d;%lcw`HLNI+N8hse*>(FtS z>Dy?7R2H64bnRv00r;4J!W=t}F!7X*UM60k$`}s}#;2tXRU#-eJw`Ug(gJ=N-zO*& z_!vbH5ct-1tCfX#3@Y-GDkH?&fE7Qv@3Oh`TLD(ME?&I&U;q7|T*D@b3j-Nu%3(o0 zLeu9m9*_#3iDtk>Xodq84M&B2R__$s1!(@eh(!I_Kdi*VVf*9o<5t&5LlYD4S9uuU z?dn`-{Yv^aJ%uqAuo~K!n?DbF~1qWSh>L{HubHCEbFZGA?aIB z_4z$ykTu}2*0Rn7v2&12rv{VM$HfVP@}wMkqeLVRIjyKZ4K1 z15gOx&W~^HW$GDiJxsnrdlVO`$)Y^8k1C@Al#dDU%lIA+6bfjK3Qz%_j{||Wvn@>I zEz$`7e*#$Hx_I&8fA#PEw8_DNER+>{YmtV@GHBA0eivaFEwiL)k_tw9*J!GEg({)_*f$q`#N7(Uxy14$dVU#&yOss>oF!t*sfg@MM_3abjoIDeU` zv}8!m!U==HWXG#8Cs>}u6wq}MU?qL+VGo&6O@EegMQ?_&pkie>P`_+`S6ns-U+L19 zT?*6z*{SFuI%h5uO zlY%rdjdAhPbo?Y2D{=dX%cE~0B(C7-_kei93^pU^`vzKZ^m{aSQ$C<~77?)b19~So zSisaMpEB|d4sz&_$9?RtQaUG{#zcz?LsWnYtQ9^oj;a8OosVpB%Gf*$Y-72(3Rp?| zXd=EufEC63{QR%{*_Ro~V4B?$?JiQ|3kK6j&D#pXFz#D-+h&z^K~Xd6uwFyJsDn_f zD=@e)CRhs)5LsW>H2-a!g8i%Cy)*rJcv|!juhzre?a6bF_R-Mxn3JOh8Ej3U)#U+N zS~6%7#;fGSD?kiT-Lrz19>iQruj;$zZE?_PY{40AvcqK28Qwq@Pedq4SS(vCN~N;`9}c z577NB5S;x!&_De$Kx`8@59+1tX)TqlF(wp}>sK8pKjiQ7+U)mpCV+a)4jdt;y| z0)d?wCI#F!0Xgb(&g(>RFdll<=F#E4M^Q?){yl5`V8!aL6Yh_jX3>^riea2yIpEUY z!~Pk-A#M)GcxR2!AcxI7=1z^-Ki?@geR zSd%<{pwxBO^_?_IQmfEDO@0@dhO~V)q)*pRa=L^gK+^S1PW~WXyebhPQUg5t2&oVu zhd;nJNh=)1<8clb=pN>HiSilgG$?cciq0;Mwy9j;rywK@(KW&VRiin>`8i>Ljt3$~ z8dj9kRYSCW_UgHnsF%8L1+02S@k<3*!2JCD_x}9LRu9LJmZStvnm8!oVkaXCjR%7n z-j<07a0E$cMpK~qtVCB9B<+@Su&{WyC(#xK1%zD7G!%uYnOY$!!~&jr`Rgllxoxm z!$!5C;W-8YV-9H6LWE{avKDfw`QxsA$yPPvwgALmyPAS=TTzdPbs#?QoFD$*v_Ixu z%mmL4G4X1NBpFQiQcM&OBh#51iS7~;t5=o`)|;HUu?{C9gVDA@?wx=fSs6AHgBfl@ z)x(Q=pId!THcsE{#fe5=l?_d4ghy{XMMsgg#R3;ue-Z8|qY=puL@wBU+j`Il(bht5$B;3Z*a#Z7|w4gx5U{ak=tJ^Rub{h=?zF zhLw!@`T4){3op|WN1zqHq}fHlXfpzK3t;eIs0pEYTcQ+_br?wjY!+#Exd`o+5Ma!M zh%IVd!Js3_;U1fUa=5h6x}< z2S|geViYDog_wZ0R?bcc11e=C*4CgEI+Cu8JuuXhEDE-gk76I$)2;C_zp>t8NDA(%VHbOw4A80ZV%EYzA(V+hc~< zJ;L!el>&XwF@krSRPv;NsPamiYUGzgdw2v`Z3h=`M71^z1y@bYKh zuWDU0Jt)obq1CNU;x3%19Vgl|=r-fGqPQ~tIO@VtP~HQH6378`oL;FCW(vIz1Ckwq zfRaOtyrQ+&NAyMM)ksrgf7eEd;TCIUh|;UiAwt~~pDzWwd1I7b^|o?YxzEiI-Cno6 z-zv9j5urO;QYqrK5UmB)ai?zk2=6u^0a(d=hlKOsy=A`o`46Fo@0Gf0WxNiQ#DC1? zE~E%bG*3}IrTHUDs}Q+lQ zP6_K@e#HPQiboxyrxgj0Tc}p?T_g;(v7e7ItA*VQFt`FVL#@2MfOsF$a1&@Y^9Y!T zkgEiSkrbO1@&WA*V`nF22Qh`&li2ZyH63!b#HdJHhvjWF!yZN@a%VxN@lOB@(!2H4Eo8y)PyNCq?;WzaZ=@eFGv z(2S)Knzb^3W0-Jb$fKXqGk82H@Y)a6`pE+{ZwBkL|@V ziTQl?O_U&mncl{3RR0O(J-c1PfP9+J+C>trBslES(AtN6>u%o+5u&lo`R0NNt~y0O z$cT`Hm7DRvdB^qRTV=BAlSOZHGt`?0TiYm97#L)G48jEk1wl9|DzC~lDIrFufkH!NUT%o4PIWT8ZA zil0G<1Q8-aS|=zhVgiCwyfhNB{amghLQG%_h=dT3ZR6rF7PA7f&0L<4twWV)bpM+8#`^^Bt3jEnEk>=P>bS~)z$ zi-5x*G{YST&CUf`k8;3Z7Gcu9K&b^V7&l_u?*|QxXzeDXx1u> z`3TKgmAv9x8H8q~f`AFfqF9u0O-q&)(*j^QU>XE0D}etZepUYD&+{&(gmvSU7Mveq zpeYjCCFx!ilnyP5x%~u}ge62jMxsPQYwtkqz!2JSX-#7zDTi3_~rT+0Ij_((W^yjhSO4N@9!IV@;s>;U&V*;V_rzqGV$nPa+^&77pw|R7U zcU~cR!d+KLMiSTdDm-rCI0Q*cI$q=z`50n1Lw_Iprwzc89*_Ik-M=cg3v0%W_+ZD7 z-3ENTN#_V!aI#6NjZ7!+HZZz@R`qxYZ2dTz`ps{VM6qg-YK2rEUN`wYnkUJ>#pxg@ zf=l`tm%oqKWf568WS&u70Pwm|?`;2|QHT(s5h2phGECt$1U9P@0Rpm*$ZtVl^>xS4 z(#pjlC~75Ki7;qICdJt)0LsekDnt-3D^8$Q!i3cTtgFwiN$^2FyhO;C5U}boKR^F( z{^HAQ6DbD){hhqKz<2BuG1Q4L?498W2HL=|djD~Hu9Zif0|=jImL+9^~iR2g{6 z-XYQ@0K^sP%0Txp2RjfIR_kukD9^gIa(m&FOvn3YGeq$P+DGp}x=8Xb7tkI?qJ<@f zxM&Xz=~+q}2nQ2UV?ZDrGINv`z@SfXI}jQa%@c@_(h>wXK#lBEiYwTGq(R&}6JP>@ z0-0vQ3fUGek1-k(P^;j3aZ_Q!-EI>r-B_@0TLnH4unc!0&Q}t!qL`nb|M)vEGd|f! z;gVqRT`>5PzIG1I@MPl&8tDSf&Kbhs3I^LjvmJdY8E$1Oo^%vxVQ5CPpxL;j5YX;1 z*2LN+LNK0Ttw6g+p=K5Rl_HaI{6MHp;oC_vn&EidRdUo!a{GKl1`8oA z&UO9hR;app0uN5XZeHynEz^-%lz6A9aA;0b(pI|4wonWZt~HC|Fz}Si5{1%rcl+Z( z)^emt_E13U!U|2z z6i#h@Fq+_Q$za?zs6zk;Y9U%9Av94pa~-N0ihJ~g*A4C@aO!IbSoQeilTZHrzwvR( zC+(5;@Ld2EknyS1Xv@&s&cO+ugD~{Bu@|vLD|aJcw4Lp9zz*SZBYCG4p?UR=4xiB$ zFl^+lQNFIhjHeNTwM#AoIy@#btdy8cfkp^ciZ&6GFqN{4l$L8uy9ijWFy*maLjsx^ zfe;Dg(##lu*9zcoYk|nAVpeE-2??nc@qLViM zduX4rXa%7ss0HX~b4Me?sy9EA>>o@3Rs&|f-hfq)`T2R^mw)MHwh3WKc{bq!QjX2P zdfQpw1H;S{gl6xQVwLtZ10A5*J+ojm*v{KC>zNqN+K+|JGh7&J1I_vcW36ml-~x*A zR?w_oB0y*>Z%tgODWByV9T+A|m@R`nS&$*Bw@&1{sfH{v8`ibnB4e$F4$ynfHsqT|rzsCLyX zs;tmn3K<`ySffzo$rJY8U7yw0GsyV`%^e&>gZl2^gXIE#maY*_Hmr*zdi%Y1%*%V@ zL#6tAzFnn&a&WR#OK6wOD3v_5OHz{fq?btr=Pxf@#3!M@2dw`$(Wy?|1NTpE7H0m#*uaS@7~ z2F;8FMNV5d`#5^1{f!Q*wGXGRr&rg=V0}Gm@^9mdMV}u(tXVY6VYRWytG9!rqNRkr zJsh5cU0)ax z#r+P?&qo*^2x_GQT4EeRfpO3dxF{C`#s$Y39ilQqYL@bAgtU{ez-Bcv#Au|#Z9$)s z8Kk^S^ApPJ$Y|zV4FZI+#w(&O^Z=CY%Za*hjIyW`)~s|TO*{!JDpth1u%hF;CSk?i zhAV)TklwGwJ)O^d)d8y>LWoa4{q&c9>1Em{;{z6_1|IS56yN1>JB1QqKyL>JC-{zi zwuHfx479UzVnJ=F4I$V%K^P`FL9=nrXe*oNOtrCg!C2O^^tE#wm}~{j$~lv*2+i-E z(C#tQ1e)a{(-{OT=fNaI`S+pn1Q8i%}jol3O&4c|SBd)I{rv9M_`+eUW0<%953<<;R;`R^LAz)N z?OMXcF(a&QuxBs$qWVXT|C@9ae;y1=k?0vb;++R4U=eI+7q zsxXYVBQ&dL2#q6|%*M#2cvAp{h`X<+>c|Dt8Gz*?D5L<*Oxj*KS7ycq$W@s2L6Hl< z@XTeY3NR}HmICII5T;pzS%o#>|I&a(EAH)cz7`*ZJ|84K zTmh`aRGG%+=MMoa5nb!+4OsU_q*=7PyALL&sr=S*dJb3wk!Pj^}+ zYdLR`>vf))CUQjtNX<+NAXj8I4H1QO5s<4egA6MOt-qIZtCt2Z#FC!Py(-mN**QAPK;SQ7#HK%ZxRea4yiE; z3El|7YwL8E3U!9tf($SLLRrOK8ZvE&fYOoWhLKKzvg(zHrpLs?MWX>&(Nr1C^$e?C zBBWu8{6hq+|DQwzUcdN@FViV9KIsU&d@2>%nruaOxRIjCUY3>!&z^iFSl$<;)g^ZS^n<0-;zwXSx+M%Xx%mwi)2{B{MCc z$mN-B22HMH6Rx=wxiT{;gtCA|l!f^SO|F*sG^;0HRpwk!EQZWUP%LWZ0Qk=5z^^3Y zzz0}EA7X>}onta7gbTt>WkAx`MLwV$CeSLztbsxHj;y;qY96fHuezRcwA<)*j`*OK zyxVHnuMGHYq;J@-etaLpLu_0R60ii?K}F*nM=9M7kkI}j_oat@~;Sq zCLbdN8%GxArn+O~GOWF$P~%&@)>gW5!ekpOXJC+q=}7FqU^;6LqSq<1`^{!SlPfUO zgn-;77-pKt6}SxfnHGRtftd_KldCY}*(?kl=U*TUb1sXu1ab+0#gJ!LA?)X`LD&P6 zqx&-{xZQ7cvw!eCqp#|6d)>`2!NI#*-0jhOxNDHZ9XqN)2@vrjue#l)(p9B6nhBzE~PNKR^HNZ@=v6217c<(_Y@4kn#|Ql*>Rjd&hXvz6`!(P zmN1SzV*SvX8{8PwCb|%?dW-{;U7%Tc$7Cl$^X7z$Du1E}bewa+n=?>MwX=K&=7FtiEX8Mb99+J63Lw z#H@%98i&nAQdtmGiu66Ve6W(I_aokI&^~C<>fwVH?k^X9A;rXK^H_R-d^97?Aq3;# zjZuEvz$_$MBD)Er8uldNGGO2S{wN}Zkl^=`X{5p*Bv>QeOKroF!DzvkOn_8$3mSqL zuoOmvBCH`LMxhk~!q|!xHRYJP2}>gy!C;(0ZYXH>aQzc{UOEt{QTbD z-mm@I$4x0RX@>eZJ|PuNM(sx!_6`|;!uEl!FpfNC^8jIR9mXCZG;1-CO?0z*$iySi ztQ;W>Gmj9OH^)qN#ce$&pzXxL={5kNd40}w7U1<+?SL8h4Uu?BK-b)2$Gl**t<^miBoM@ZIKa&89)fmf^ zrHx4y|2OWTkRKX%j=qZB4ACg$Y%7I|mD{6XGJON=?OS*I-cCbqZ>*n)g~k6$AEP|Y4gfL-uYEh4fghoFqpYEeu}w1em(JV#4}uv6-zaK=HSmoaBJ ztvEx-0JVyU{Ojj9&B(xtS&^`n=|lunj%<<@$sCd59$^-Mvdah2c#?7zqimX#1guz; z5(z7V5EzA!37kp*)=kI}iGS}0tS@fn zp(+RjYlrq#86F@oZ0_Ot4D}Lf)(;Ubq!@e3@*emspW3?4LHB9)ewqIORj^mYw*47&6V2FKzyFWjc(Z8h}BH z_=mxoW|ARdw2E*_UhjN=rP@Ib1pQY$LchB7m)2v|G?7o8$^%DI6wkbtlXGwle?Vi7!aid-JN__Q#- znu0WQK8samTr}u1#%HmLOvT7m12_Iij&2F~tw_cH&7C0zlvOMAUJ)LIsRa*4xj9uIS{P4^H=@@|{1A&lgBi+7s{ z=>3S@&q!r0OjIsz*(Z1nS+4akzc&TDOVYXv;G%D8f1Uzi3E2!0$Vf_C_@h+bVq5?@ zig2iHq9qud3Dg_JB>Ihgh*giWpwP#$1|PwkMuHBh9UwHu*nf4H5XKFTL%C=lq5^#1 zPGSJU$Sw%lAVh=UMImlT>?$^7CDbdfJ}4RQ1*t11|8q+Cp)o%{|CfH{Wwx2-4CxfY z;5kT;hOt2;Z13VqMxP)Io4YuIvA);pEFUr5#p`3vEBs790&>U9wA*`gXBNeBX9-to8$yxGTm3%D=^`(F zu4vPLVVG+I#bTMc6u@GUXKBzeNrc4;fYhLw^AO4UW5Aq)P}e1}Tks1SlSO;76ct5n zzie*0>Snk@Za31-Zf|ZS)6T&znO2I0Mz{03tww#21RuO>JVP=fWVxAwCGWj?oQ#{& z*v)&dU32dhO4w<$+CfRXG|3&M`WEFRN}>`Y5S{3A06C6ciGM?dP;tYJLWIcJFB(+_ z9Us3L5!nB#$1x4m5P-4fEE8*0O=(I6ltKka8866*$0F;P-CY|jBdiF<4Zx}+%{9oW z^TFsK{5ny>FN4AL#fuk9pPBjj`M>@jyfhLCHO1&K2m1t)w>t>I&>(?fYX{ds2||yJ zw>SdfG2D+5{9u{Z3}l!XVr7T1UKFhCaZ!uYD~~o0S*yc!v6EK&In%z)DVe zzl-rDnPbnh_XFJ9e}-tL=?Q16&`fH8;x19oc5M@P4CzqW!WiTzY7?;BP=j7Uj=>v? z!jabP458P+*v8rjeFUfym5W$$SEwpN;d+f+%rZJiWeBR2;#^qDxGV^+v~C6x8B_g0 z#`0HER=@ZCdM&+LUR}NK>^QUkYQ&cTt?KdO#f#tnXJ%oMlS@i9*4}b@$=WXIEO-Qx zwSA07=<;-s)jdW>Q7%Ixyg6d+h}Jg7$51YzM{7GPCy)YEt(H&0XKIk~ z0hEjOSvuwQMa&IT;4$-rseZJF_F24SF?p{KX-I?5)MK=V_RuL7E97d-JZ{_@eLEax zyD%y6(J2-}jF&j4e&9oz4xhO!+QWDlk5>}yvgpJoL=SWl*Z24z)BL)__dUMdhn!MYybct z07*naR7h73qr)f<<)Iu%v2qL^+?W z?aV0ZXD07T=5g2JE(oh%$AF)0s61hj)SyjwR36c0&({W>2ZLUzHisC7qrRe$vR_Sq%? z>q|wruEm%6XN%&+ix;ndV4h3};gZSF)z9e>g&M^g0SpcCW`l_dR<~&Dq?l)Pn9vYP zTlgEBVr`wVQI@w5AU!6YBH;BFNM0Wz0pAK(%iAc>KFe>dTVkr8Icp8KFVi# z7hG~@%=D7mZ{%OOBXkO4@yihjfIDHP&x)qGlUUXASS&Nw5vNERDh+s=X~uxAqEjs9 zxe$r^V|0#z6ev2=%y|HdWps+gGWaZLo~5A@OJK1hk{URm_;rWp2H@5I{y%>NDE_tR z8UI&)nWwWHYy${szmX86+bHGff6mFK<%7|-)O*0_{<_{h&eCfbbn}`wnd7yC$|ZmS zw~4}z)zsAm>JoPZ^%eu>g76|Xmz|*^`@lFRl6zWhS=sR`u9jG5_^{`svv@ z3!hP}vbupt(bhwuMp^NCg>uNzDNlw7;SUzTXLOp-V|kmFPSy?>pTxL~j-h;(cep4s zF~P(*V`FFsHlyBW^e| zz~mEDEPi#gk;_AxTp@<1NF(b-yBH7cu~16T#?%!FY_5~GG&*h1d{tvnfqR<-7W2p1 zR!kb>W752m*UzyB8OX$_n&vlre%s@>|F^&U+u#4sfBT>O7XR08@{j*M|Mc$z7%1h@ zaI$G%lCuqMiH61E>Lj54po^Cz!+Cy$~%yiq86Rw@zfg9!=G?L(w*z3hIrfgyF5C*afv znI-^9iu-jYaqT^tIN4l7x9g9zcRF|6pNy{nCH$(ORTM8?yjcCA>6;M3r54iC&B`iI zhdDi?tpi6hGDaa}XNz=}{y}P*%}qRyu70{T%Fx=$@(xpD;FIk{`3S?x8q-r?n3!N? z6YYWG|IN{sX*f%#hCs2j&D1ctZO}+R&UbvKdjJ-9m>y(t7eIOmZkT3ffZPEyPtXx3 z)#NUj=>j+QYDKD6A4|t^@+B>Qw6Fq{<1DPkTnoVBIXcDC1-L9m{?#Dfvv-w9KJ!>8 zq0_e1{z}Jx!hTE@BzO%w*ek_z_>FoB_Pd`vCy|2v%YT!T4N7@ZS?d?Q8OeO-o^%P` zpMqU`RI*l>>ELpg)+b~-u3yJMt<$wAn_6wv{~;Pw*kG>BnTMohI6yaTA5HD>PVAfcUySL%F@B#c)OMiKqrfsiY= z)DIF}IrpmVSI&J%hV>NytgmA1ubBDy`M>a2U)EMgrPrqGZ+i= zV=Ql@4JxueIJ`b(xn0D|C%l0Rlv-VVGzTNzc;5$OX1g!Fb@&E%{6#BHTu0K6-{ z)PVIBB7-;M#fukz@9%v2oqy+LlOmC4t&>pW! zNE4q!!q`=2t_`7B%v(Q%saObW2>b!WUEC2$zEeDF0mVWE?Xge=pI3tCQ5NR#+_P1P zh9h4A`~#0y0na5YeDVr@^&b36O6J$Z^_%08Zx!$FZ|;er&N25t1MF_+porQ5fzyV% zL>s~_h!!J_pe1TEHg=3*)-XQ-tI&q&L`I{m0@OMpddo*O!4k$pKzI~?Z-Xi$e5&U- z9>jaPQq5E^8zQ}cTFuHumKR1BOdyajgfVBl_8z^hR(Nawps08AhA?d^0Lpw7)qmEUT<5+yv?vCS>8Z-0B_b~_NT3?WtDp$G{2jp zy(PXk1!-nR$n9CXY2>Jw=_j|F=nC?gejJw+&q3R+$vSNW@R{oZ&C)R@#lp!|yeO{G$=3~HUJ_8KGY2epgRmgwf0lW%$zVt~1 z0S`*SBD6|M@3*F4w;tcq++(aK0k4$+{HJy%vOh>=2SDXv3xie5jerx(D69c+4yPC( znhT1(rZt|Y?R>s#5ti_Ld#nPKwwaB<;+LO7E2JO{E&N1?;!2c4N^06xNND6%R@N6+ z(dv$Ou(*0;z&pvRUv;#q$BP#){>%U9zx%6y`{PswO8APNAnaAd=5Bpm|ls z_{^pGQ3*h%V*RTY%V9E3zG4V_6+u|^X1^;1tH(7L`{BZaoDes=rt5x-@+p3IO#1|t zx0d(ScJPL%ZX>es+?Y}HCKxz_a~OqKcQ*<-gbY#ZU@(`^1mO0dcL7YjZ7@>Y6Pzu| zvyu^w=u4$2ml}8zwG)OKV^9X-r;&!0L0p9@bI0+`kTGa~wE^qv6yN>scfb4H?`9s0 z);^kAdAo}5)B1$`0i}SmJzR&5em2%{T|4Gq2z-a9qwK9SG{);Uj80L7a)=acts$Ta zL*uNiGC6^Ql{K7%j&3w6h0qv>zP=Z+sRm5X3-JFBd9EG1mdGc#KZ7c!cm+EHT%XK(1m#0-I|= zz`{8u4GQD&s=`OvMDmr2$!5@?sLvzohC+CW6s)d)MMjE5^7X35b3abOA|u$sCqM(j ze)@Y?`gLx)7PyK^w>A|f;mkm$8zt-)M&PvLv{T&$LwErohhsjt4gxWTUI!g#Sj41k zEryRL=u3-G;UUuCbrT+-i+Cw}zOLdnp=-z8M`yIo75 zVwf@dhM4t$5caPIM<5@NqI?+v>uW#;Z;kSinV+Bkxxe(Xxg90gUB~y?*+5D>Y@X$T z6gUFcrR^!JD+s~bI!{M=vuu&eb&)VUX49^8E4dX$CkQ|($_7WE1db0W-Yi3!@iCM_ zyX3Y&Bc0g#FwOFcWsaw1I@=PY?BwrECdEhbkgr!4fyD=K=@u~pC^-Ud@9l0WbJ!?ZNjF0wM z$RiwH1w3!M1-V`Ye3a&STxWb$j8RYXnX$Vs8dXS-=h4HjHbq(p`@R3>IdCh5tj9Go zYCQ$3Hx=G=V39N@Tv`WKsPvaWD!EwVE|aM6jf zpWc3IBEEEh^>sz7C|4=4qc144K_$k|)^huB(03LKa2 zLDp6f@MeYK3HCMsiXpq}xDG-vJVsej)c~(o7@wpH6QfiVp#gZk#`HA!Oh(Lcg~Eb^@5wv(%n;aP^oGoH0!LI`+OYw%EXgEqdpUyWYff9XHGGU?&g6s)di?S6*W zO1XdrB&h+4dw7F{JJh!DMoF>Qvx8bEYSi|$!-=HZ=`VobIl45%mDUgD` zVag#Tg#%9}C@Lxn0UPT)8RP$B@7-b}OSe3)-@ZoJnZ9Q_Go6`E-@@BF!ahem>VZZe zA=k`dr0JJNXawlA)WA%mVYmz+c;EpcA&rDa4bAj4LIMFpa|*T4Ao_tBBs3~N3|z<2s%3zKKM#`X0WwEz|0>X=>7Gkz4g|p=GDqbFI0VO(?p#&1 z@&Hp~6mRSLrpyt%#<-+W?@M4k)@MLcKGk?fpU3HvV;5XDW-{c8hU%Lct6Cq?3y+n< zw&W;b#=1(uQXwqV_sw?1hQ)^94*Z)9qeLcYMrqtaHyo~A%D!nANEh>tKp#<=+pbaxL& z6r;oy0%e=T@~T*+|1{ovgX$u3og1r{K3x4UB0W8>U(h=-7nV#a#9e~vmjfVD%3Y*Fv#RByvICwrt>J5ZL zV~>;WP(d(QH22egm<|vz%Br%SvIHOKJ4p7^V%#hg6d`q2f=bd5FL>lCqBY-h`Ly& zo+lGt5XU$cD4i9i7qM;P7{E4(65U03Nun-ONdx4&==3q%!^|954)nhK^dZ3dnNyoT z-O1nwSV;+5 zX@TGg#rsI1!3&q*gwkC~4+&mUx=m>g0LkdtJ}AchZrEcSecIj2(ww; zBNIgDpa_Ss;wp^bhaL+n)8`>EllO*5elt ztm` zXxF_0rornS=9buLU|N{)aG9RqX&V!obrwC`3GOV>OTeHns5MzC5Wz};t^f!X}^ z(!ehPRO(<+-35u28?tn*={XQcs!#D(hS-yfx1=Xe1kZKzwoV&Um+1=CU6hNG9EAjL zD9vRFT6TrfT`&lqAZ?7a9rBp`vyKxKHqk;tWcnT(-{u4C}qr?_%hY z92>K2AE8EAcTli>Nx{-8WQwPm1#J7AjZrOreZU9?hQ)?Eq}<0>+KD#aZzp>82OGoq zHT^GX2UaRHKQDmwi-}g3 zvAMa~4b;}w*026MpO^+wLT-{I!F1`xgaXyUxk>*R+vXzX`~cHn>=E6Bmu2!dxm%!@ z@OBqqx5@niuXixuLhyQreh2TD04@^xf@VX@TPDmc(G`S(Y7Ns)z11ug=n6u`kEyJZ4J}UTKKCVb=p{KXI6koL+5~!3<*vE*vqKN1>`a2U_Uz{)==Wi5O*OVKGxSX&@)KW z5HWU&0}3G-$srQ@i5`m#*rxV041{#0p(=d~b0{&r^5+-ErEYa8x__h{;^zghu7eb| zww1kT2$Lkn$}#$ow=FCe!(!wPz2``SSG(lK5Iwpvra|rwH*V93F%9|x+hS%>1Cs$y zceuO6%N;riCcN6guz0YH2`}2*U#3yVHUSn2nDDg8qg5(3Yztsz6%%$EbOn1&T|0_l z#ivn6T3|6bOKp!ek7^a%44!I8mufxhK+JS>->2F}x?phBqwdq>Y&Ab76zEagystIPN6cUZqq`338<1Ea(A4c2EtQhu%Hb19qc3pS>*%etBQ zOR#;x#yGfaj02j2k)T{2r@OVS%x!`u{+kK90{du+{Hk^!t zF>th|6f7MIrl2hT$94D@2KmyzI`sRJ-sAJI3pYR@_p$Gxo?zr5K_yrq-eTn-A?abe zpfGJvNP(%yjna)sB5aFX9wq7Za2;HSF#G`WD6kX)-KO(CGJSOa;H9C#7?K3PG=BDg z^$VK}eo-X5YHMrj2fz7=bDMYv+r>;UUEa2^9QvoYlf=hZ4o*zxDJGbcm>_(jEDIA|b_CuYach~`WuCV&p({9S(L3iZ+$(U<#DZ?ZlNOdq z2oF}-X|S?NSI}-?oAd#Ab;O!SY@kvqF_dum>jUH(7)LKFfVWs%KpG%8>QQ-4>Cq7J zaVRZf2!dTy4kehLA$Uz`{)!Fa@|vl(6+A)a2%dmL`Iz-bl%KJF_q~^-*T01XWh3*H zUuB?^0^$f8F5AZ%xh{?P8xtVd&Z>|qtwLHu7S?xM_%Ym+|2iD#G|aq*tRWAv?x3FO52x%wd$Z-B1SYs+#Ao`! zu#08u5olo_r4WKhA|;MRtRS6!C3R~~GUQyix-18>XFl$3HVjOqJ95&W)`zC(zZ*Ye zz`91O560%^X3|nyTU&qrU-`rw#{z2%%fSN6C5#xkPydj3S9g&1V!BT-^2E?hI6q)y zoTS5zhdga!!qXPBD|$B6MZ(bzmW4B}#rwX%fRg<%m^RG9nnyofWNlGtQ7r1&TmCxL2GYT>IO-7WQ}TweLo#)X zwIyv|C_lk4hhQSp#oqKO6_6lZ%7?&*#-gTr))K)}oj)pv@@sIjzM?O9$@+cDud;q1 zm&fNAQuDrzdu+dEV`f0X=w+lYgRsY^Y}{Zy$KzArDukt!>WqyW8o7qO_}d+1UMpzj z9=L2vHuAdWxXw@q%uq-7-_;cCzZq;N(x?4-)C&L|AqE)5@%& zSw{{E>vH9Uk@Y94!GxL1n{~Jm=Tfx#Am{pmkQr2&Fbc`X=|Vqaz`91OpAegyn_^#W zZEbz>mp`#gtdwdQ*e=mN?oHx|kvaN@h+Qp6aNlFU&V|H+ zkqNfztgf+B2k<=ll1QKcjp7-OXVm%qWnBFRlK9e54~jl7Dg(8Wshv1zDvQbR1#Ao zg@hdI=}5lR6qWTtUY@yq&c+RpS11^Qa*y>1QrCMbd8-`d9+((XPpTMDFhSX%WKseI z|BFKqQ!-KV9|V$;;9pFChi?8^R6>$2eFM;ICeje`V4jR+>rI6UEQ18%1luObdZ(4r zHm~92?J8z{{LO4+(;7^04HBh)7+)Gc`;_oHesXMXZmJyxY;A4*xqtH$( z=u7tMJn#tN{vy59Cn1SaWSrpEGF`#5CYC`67Q8xQ(W5Kqr`1N?48rmnmO-ORU(%{! zSQ$X%@C#rdCDNv{`vFnBSfWxJjI}90Wqm0#UKtq*z?%-GRn4bVj$n_I%O2_X{iQag z2Ouavr*v17uR#&uLwbA)VZinaZLN6x1|-J&-IQ4`QTZ+Fle&>eds)*n`)o(>PCJnr zLar|BIsIwVp@yYAGTr%TgQBdv@3af7oGy+u1`E1z_anx68y`TC^NYNGPArZ zM8xPAVF!^6jOyZ2LeF&dL}nvklvb~d_maVnrdLMxRjXHu)DQPD@iPOg>tyh&#^&ax ztf;N6txtaQ&l#>V(;cpNAi;#>00YdJkw-+&F$|7&F(5w1wCTq56HJ&`rW+F{U|`xz z&2zR#C*gDt+aeKKo9`VH!|i1*5<9(1tBbZ z^du&PlAy+_PXr+>_%v&DCG{#6BsNAmlGnvAf}mPOI#gSnbU$E`FBVYg+^!r!gVX+d z$l^erQh{I>mGv-gA7;LaOYwfF{#bfM@RZU$NK5$+Sd@?0xbv>epSsU3A6dVxYoqDo zk3VFjSiej84eL`wUe+AzW1!eRLFOr?$>1qRP>xu?p%tC=JmquNN3TxDcPZrwx)gH+ zJyZ?^GbZI2BX`w^F9-}u1|>l9KRX05MH9|j75Ezi{L&l4F#rG{07*naRGNLygq5O_ z1V|F3yn<7gan;K3@o04!Ro-|@v?;pFI!BlaK6XXf+k1QlAE9>H4$snSzN<_80J^G5QK_yg+h@C`mo^B zuF?}=(5hmaL||En6uiE#kqZN5Q`x2HU$w~RDU}GC*~l7)@&W71SJJw{WUeKU1iQ!_ zK^t6xRNx=hvqk`deM%1~Edg17b)MikM=|9i*6&;;Un3wWzhwOu>-PX%g-o3d%GHhB zDIZ+F3uO9NdWCLwg;UmV>t|Cth0KP6m1EYYGa!zKK+~n<>c`)7DUAVacPZs4I+P<+ z3Y{iEIU1s10wwv8gG%47^Qt27;WsXA1=ExIKn-n9ONxCF^7zXN;QJ?TRpmWBQ z)Vyu$-y6#wAeUuhLL%tKob6)Sn1X%`1}DcX{4%CNFCmod)Uhp`31$jhBv=N=$E0^< z4EI*(37*t3(Qp>QvPV}EDuN1zp_P6E9{KE4=?W}^Q1W?|qEDRhFI?7qUCs;ISt9n% zyg-Li0fio#8q|m8*$cZ_Vah23_s#8n+BIm5v^Cgfe>Gu*E!Ab}vn74gB`) z<8I2%E3B8SQq~8I4BkQafnT*@0tx&QqL;!~E(k>I*MaZqqfq;5{Wn{uuxV@*JLmNNo?@O7YUbDEMxnNj&~_`;HLEVT)e$rx~qp}?BQt}`2jeR$4YrVLx|)W20w zbY4uXETUj>$ShSf8vzZT3GSaWLvJb5(^q`1C}a+_8aV9t4cbt?EYf$iw&%0k{e@_Y zA%?ZT6HrI}L#AIIiB$&lAv^ZjVzYh?3mll?7w7Fd}<`vdla;B z812jgC2YXp6fM8b^PmxKbR;km)JT!y!B4c!*7yal*nYK8=5M zK$+$^FmqCRS50^ZskwJCH&aZqDLnlIcZj1+6`(}#0!Jn^3F zO5flqbyo%>6*4itR2mgBc(3RTAd6X88o56?hOZucmaDFdiVCJGfm@W7YTOmeZ-+Mn zSp&7eYz@Sbz6X5dJIshlHF0M3@0)A^N%4PDO$vXIr0pu=Cb$pr3^K_4GZrAh5V@xH zwg*&0TjtSwX1PzmKWhHy(KM2dVoq{aN&LjAkO|{bzRye%h*slda%w&O6k@1MaADj@ zkBrV1pNUj3uN(?tqBQtzS=Ti1*m*gu#Rtmr|LW1jWm?D-GU|r@JE#%OoEp8~RH$L3 zh(p_9H2zPiWKgA^#pSQ{w6xq!)c+HW?{D8zp!--$cIBdgjEnc@*EYmpp^m5#-gq$1 zYr7RZ@SVt~|GZqPG0Ka-3kHhUk1h-4G`zO9Xxw^*G?56%T$fK94%q~FKFPv5i8%-N z7GTx++V6?7*Dk_7T;9n&OnG<<0}kL@lWnVt$w?BSi4rby`7v z;J*-zL9(7z0#XZg;TiXg4#@A#d!N#&a#wjsl$wk-n+$@Tg{6q#ZCBw{~!$z-{RWX~X-27w4@7rLN1ufeR}P(@pq*ueah zp!gZ}W==~` zzI5o`!QJv59=VLG+>)VAO~1@Ha_WlP`~`8~N32U6M$hm>?Bja;4!hi%pB!UzBID6XQj2J(ZBmi-MfAZy1lBVdVA{G>y%| z{n3BqKs#=rzSz(_iGT|KR6jN$_76$}#?a$+O5J`}G{yVhh%fY7X$MU^@5mz0Z2`mb z^0~TuQ?avA)X%e#)Pv}8`h;B)U?&B(y=Fz=ke@fWK0x6Zcuuti^~|SsB%fD|1emrr z4xUi^4K(qaNcr*y=O0{zvcp$R;Clz3{VR#mjOJ)tJ&_fc{ZweMJf0@Zb-b9ed3PdT z4f}?XqXx`*$a+A-Xu(VyW)>?umQyfpFRS0LT3%VY&8zUskY-75AmC1x z0aRlK%E%%4U*Pz?>--&P($4Cai2t35 z&|gRA0{F5x*Cb#MjVXtC}KjB!>7 zVff#Mafh%7VIkSd$L?6zaxia2f$U2e0BMPt0Z+m5Qq`gH5<43+BrsX|)CU3oW9XA1 z_u(k5b+C)(h<1ns$6C>CLO=JI^l# zJzsSny)&T!H~w1~;Ne1zF!ZV>ubEAuc)Qy%n^m()=WUX(yCs!SmxyMkjy{prZ$>ps z_Q`FHq*6E;A>(o)h(eIY+~!810=nWEu0)xbhxHbw^b=8KySpLy$%44z&<3)XBv{lg zR&KKl+7A~qZfSo9S{CBchoW3QZ{9?ir}Hs=!GBw#v}d_)kSV?8qk_N2x16d$7V^9b z7mr$#AYzDchCjsNjBxJ%V|8%uqun%4HYwJTimh^wgZ=}Ozne8f;YM(z_PMM%d;P(M zfiP{z$npjMXZ@{&jTA?D3cY8I-;+5M#IbhKH$aNu9~DszoWr-$wFn-T9uVZI>tos!fswO&Pn;y;dQ1JaNY8~ zrYB-W5?qDNO1ae+SYnB3lrabva>8YQ&f)Wv2vE;}=$?NoO$>U zrJ|iOgjJOk>O`x5m=Pw$J6Wbw1k7y0kH86|GQi*Jq2h9Z0$%t07g7=gc?c%gT>*b# zweA+j+R$}YCw2>NbqxQzv;u$@sQcI`m_erEXb@T|saVu|h$j-5V}N~}Z6PKKu>=t# z#88|CWk9!l2gy^@$~2DX84hD6o;Zs-6gOe9Q>yN7D!7^SJziSb*(I&b?Vfq_;}=WL z-#68A+Hj%CT7f2K-LsP#AMvoNJFQNp!Lnf^d-xi1H)HN$hTb1W_BrT6&LxQH!nLUs zFd>=p4JpeM+9HYTJ*O&6un1hgtueDZ`O02_Lqy-BEHRhGau(pqEJWc|u3$wi3ijZE zsSk|8#`dVFOky1jIg`wBio6=}s?qzIXJ95hz%LOP4rMJYyXyL@@~ca=fEc;{qIJoQ z*I#<0AL41_$N{BM4OxAX`>E1AINag@Jy0-6dX0tyC%W$7>%VtxNKFEA^jF-5y7@C@ zb!)RPLhBnF&jS#`UDIdANHxT~k=EFm&~YiDYaafU9kXI}1^z2{t_>A;(J;9nMT z`3I7kHJ`P#9GfY5Mhpt_sWq11gw$XCt~D9pF0{U{jBCJsV*h>)f(8S!Wbzm4XQRSj zSlYOEC&iQ7K^EqO6+d&QF4Qm4fdQYCu!_L;m%nQ0O~|7IwVV72UJM*G`TF|`z_qkY zFOS%ws$Rh&5dauD6(MtI>|zyx;hZu@BfV|S>>b8Z$zQG8l5B|6t1PpW!0A<(!NO%p zhEUl(4xZ^_wvHqS(SJu+E5D?y&f_}uzX6(rzcFF^UOo#} zU5}3id-n$`S3VB?i@CB%kI`Ue!S_-rRVz|CFj1WqTdTscV7a*YZs>K_8%+TzlAtke z302^F0gPZyYUZ^g{-y%kGB9JDrD`#xxpL@Ksq4dvC1Rz8%cblAY-otJEz-7&L~mT5DhIr^y`y1{=LAZO%Umf?C%J&^ zFYwpKV65;hC_Qj6ugR~lWcHBCqfmL!ZV|W29hMxmWwTvr=_Ha3`7;*wSxO9!fDv2{ zPb7?VzVS7;v~;=TxQLs~n8WoE|591GJ|p?bGS8V^K$<6nL%W2PYc?lN^pu@d!Y~r< zKcS#Au@Gjl!DY^Qvn44QnOctHLxRaAiZE9CuyGJR7bz2#o8Vo*ka-}rjO?L}xb31J zx$r&4=$=(nUhK`56mE1TT zG1>@M_=&R+k^XA_@%jM)MfM#D6~vlQz;Om(GL=QiOYD2w@nbGt7P$Hbv*O0_7=u?O z_*Ib1WW^LnKz4@eC22U0l2r*xw+uF+F;#$f3%;>Bp_K`O^}>cP=2kUG$mN;4`Nu!T zYpp1xIL+^dAzw0ein~beCuZcNGcY+Gk9Y*ay`|kJ|5|f_yvb;z!4bhRMyS~dK+k2| z(7b%%ANlmD({*-rj}V9Ptjdd8p2~x%7DH@ph&mAQH=03NM6e%u;qGhZNUU#JNd+Ks zK(9jIqz46Sgj%#A@3(KWDxZqR0yhox+y$CrB^id-3H~zDJ4bH;=9IT|Ae+jT*>4lN z{utP{YT=+%wH|TVQpGo}A09S>7Ek2pH!$K0-r>#Gd6cv_ZAsiwAgA#JfGl-N?*U7B z@6Fwxhk67;Z9B{zlu7-PWj5nV`kq<;^FL0e^X!p!&sYW-?9z5k`{ToahiQhQe`b5& zXVkoMtpIP-W6WnOBIX7OkSraq4Iqf5g3T4#?F_3$kXlT6fsh^C(3IdE>q%0Yug%rc z;hM4yjTBQ{;R$f`=J*RK4UZ~mQ-Bh*ezMvNSiJlsk5sJKmt{w&T0tVYW~F(;`@p-Ni;-8cSo_o#e>nO(VEMBvVGxe2+UrJEDA^ zw2FD90=y_#Dtz5sZ}xIKr7?0s=gb=U7KRamgJQbCbVimEGPEB+0!Eev?`bEAeava? zB_nFPBZ|Z|nVexdCm9w%N*;}PNIZ!1G3Vd1l?di%zvagx;uWsXZ>Il|*Bin+|JmuC zH!cU!ZR+O8xgVOQp2?2t6A}~YgX!h{`XC!)pK)#!bJ8D!f}=qEYGWSnsVtI(6osl7jY zDU8%F-H&K$pOtB~?7|Cv!)kt7l61;nre?-Zj}~MBXy{DKrQArmGXbMB=W6FP3pvxd zY68iPUiV>!`kQeG(z%Fk3dzQQ1r&S<U7i8#@~;39?L(qm04~wUqPJw5kY9j?98G&Yb4!eZbS9%`Oi*%4$#O z>XqVu8hL(A#S3vsNk3Skc8;Rk~W4K7<;6rpO(>Zq9nwOw-mh=sO=eA^D=FUeSBt)gMzkUxAJr z`xNUHnw)EP(i42JsfhiSv><(btM45Yl z4P$yLPO{k)_Ys;LC9TtkpOBy~2?m+ZA$)SC;&^2w#saxD7;^{Npo#uZu-Wvc6$Yj$LC{_Pz8uo@niFX(hWqaiqZx3msfT!*~1g0@0ilX~QQBXBA9 zktoF#YBv~c-YB{&Irdz1ra7eBe|_p5O+gca@@FZ5A%VhzRSOY}1#i_#R5Y1ar?Q=D z`v%$zXehM5&vq4eip;2{o;pi>X6RF=ymUj77P{H&(=TKuVT(%jsZ#Bb?X)Amhp1e& z5AHLSs0-FDWcV5u(d#nc$eBVsyvGO@ig(o+sO-@sQx$I*<0@p3O_~~Ny9Ov&7rf<6 zofl{tlj!_pMT$tB$glSzH|}{>>~A#3sC~^a&Pl%2?Z2rk)0kPN`jjYaz$l8%m`DeO zl*o|f-xB}0nk&XvcU+Idp%XxDm5|Az^Z=y;nZ0!i!D5@khLS-ou|N=gB*_d3T_lZu zLN6#?LQ^QK2Dw#Q$I3OWmr|{}+L$EvrMr&fbpLrc@qv^7mgC*+Q;n+Ob-6CZZl#>a z#}9H?!D2xiVGUivi^4vdmrvPP`rMt9bmDpsPDW2`!;V@UKK_!4R!lJG4EQt{-Xl>t}-%R$8)CQzI%+e z$Dt<4Q^RZkeo{5!M5mk5&N^Tumzyq|(u*;y6X>9o>QE76!j**ggy)LlC&J+!fK=mh zl`%S&*j2}HKyC+BGqj5WPnP`L3tCrkoSrOLa;=B5{>h$-;4 zHBOnwDKDfl*9g`0^UcJERg;tKbYbY%h@E!4C%}7u{AXzjhu8vx zNJt-w@0a%lA5mRBm)wMbN%ME?pNXLKdSH@yqo^EHaP~b!@N+4fSM#u8N{F_ClG8a= zmm&}ZNSa#{LjerrROpAk=Iy*q+U#b~85*UX_`(Oe2d-q_H4V3F2Hj0M+o={aLX7t%m%r0mtJ(JStG60+x&hAd1sjIVf^ua#vKQk(o( zI@*o=w|TTXLM9p65(^_EZE|}#DaN#>0{pzFtOPu~#D||l zw~=SO%(sY*lyZs{<=f$N5v1e+yt2S(2uKfa+ zrdHisOyAKnn8J^ZCTKh7Kn;>xz-6cs@uIfjY;O}aDh99urUV59K&Va<)TehRcaH`B zFUN4-9#177{`c(()6>(l?<*Dh4E)h+<-T$bp=)$bkp`wQFN+{nj*lvb*0Kcj&7d9j z+eqbKYCOD+x*Y?PmHAT|9yUk)MZ4n`>I|Ri@K&0+ICUj!7c!vp^=hpv^*;>clZ%23 zTOZxEmKRmnFpRkf!r3_oW`u@P<(r#`X_8<)T|{pv$_>yltS*ywALEpzkiBaJ ze|8J0s8qMYU{Uwi62M?$iUWMXeTqswaZ9teL_>{&=N;X{UE+a@)f4G3e9C9F^%eJ9 z?lO-af673Mz)%+ktGvV~T+R4%c#0t%Fwb@YY^)@;(?T(hw zpV{vibhpYxc}oyu78Q*A1reU2ol1|vaRe#%KihhTl6e9(nbAW?9_ZOsj1wk!v|ymj zB?}ELo1VLl^-m(t^p?g(G$Jq0 z80X#!FK)iSRg?|=?gjeBoFv958#D8Z%^X4Nm{A{;s2Zc}$ra|6+QE~9Kv}F`)MV*& zIDDlLNMqXjF$@e)L{>sfV?KSifj4}7k)01rH8!azfdv+ymf+sQ4wrY ze!v_)M{^a4Xdq@ZCsM3egdHVafki$@lk6>I3gWAF{5(H=<~$hNA%(C)GJ}H~v+I^d zsL4;?UCXg|Q!Gc}T$MsDwd!fOKT6`)-Z45(vH~h0HzNmc-V*82s>ObDE)iuQW@f*{ z9mpKp3J69S6*A4dZN}yf?IEdFEZnL;sEW|fT5Awroy=5Kr105O2Yp-6#g*Ngl&zQ1A*m8&r)Tomy zF8GhM$H2<-csU~_AA&JP-ieucz#tiNiW{p@Fi7Bo(D#1QqAinkMA@zc8Q zX6i(p_g@&@1lIS4M)?|Pl688ScMW$yZ zgHtm2vYnbUH5+e<94xG54#Z^xni(X+tAFh`x^hM7g^N+r%Bf0bBwkcd9?Sdm&5dR{M58=0*2 z6pd9074g!~8<)+a!SYnPo3D^?@$|39zay(1*w21Fz~8nUwdd{eU%6w`Bu8%!KH7!k zqVAIL1`dKfd1n^!>^wPV2EYV`I%H;lfavKCf#wfnpqdg&YmZMGX%)*R76_1qv!H%X z&SSW2Kb365tYl5RLfj@aQJQ_Diew{L_VZm6SVnYs-BlW=CB}PTE04;68iA#_&MIK- zkfw)(N66bvF$0=V+BsSPHu?Z)Wh%;0_m?G;!EwX5JFtq^o?R7YL>G@%tO$trgObl4 z!Y`x?Ztb^0-#vm?`nl;jeu||=jVGZ1z#SVlc;EKW#Ci2rxk+ zBP}qphL=1_LZihof1~#=Z~eY^Ci$3~l+YkQO;xUu87PGBC%mM_*cFVon?o(u2L^A& zP8>9>e@3~ef!dg(8K|^oKNv>5LRJ+WSa48B(|PTSL9LWPN-$zk;ZO0PNEuUe@lE>6 z>wx!}*%-fHF?%)O|Bc&U1!5zxvxw=f_CL4N#YYu+y2h-08od$B-CHNM3wc7tir2}v z{P&T;PAAv+fvA*~jdcrQjSq3+Ofj)pfaQ3d4>_z#hZs?;24aE$`braT)=f739vFbn z5@?B#%tZ={%hbdJVNNhnS|?6_9^*7Y88r7(iEkEED5GektUK>C7o2MPUY~K;cl&cb zc(f`9F|~MgR|*!mMOVT&@hrWzU#OBiZ=oPrQB|eopX7j7MwC^tD8*4f7VivkQiAm}l8QrjFxI7+<`7I6ndTwJw48%MCKYa8t{D=-4`gYxYe&D4tn@6ak`EvY~ z%rTO8Djvr!0e)V;(xx?`AZ!Gx*%jl#j7oL^&E{%}(;@9LI<+^faz(0g@Uggl;pj?; z!cA8FHJ4V^17SqL7J(}yzc@OZT1<%vH*68)+f^6=2T{8RE--{jt0*oK+39d0le@>( zb-%1Gm_Ndke6w*sipsVm=G^A|{egt^B=Qj^MT`rKKkJHA^^SV(=`p3?Lj2JW)@@eimhK@(`L)tj)9+XdD@QNY5 zf5B8np1!!Q6fzXolUD1iKk7)_mO17DNsV1-pYv{rmJXSdit2tB&F1Z#vE1{dZf#c) zMg`Kk=BNMijY}{8E@d#U#R;6DZqe3|b2qY9pT86=)he>I&c{(!-754_=u+%bk@?p@ur>vUs&lEz<8f+rjw=U2%B+e{shbUXhiS9@Yhwkhw6M`! z>2QI{HL>1>R~YiJ*3lo+eN}*F>H2}DIkd>Ti;=3x{0T@GQxpR7CnP7Ajr|6}EteRL z0)TUtHuxyP>c|Y_5Z0veAgX5|y;&bpl;qqn?Iz;fa31}+^&ET1#_%vs5%nAvW`>sO zUB$ocF3FlUiTymE>$qSjF5Avil!c!z6W*iEWilyKj!eQs;E&36c8*pHzWekKg4nS7 z6Z3|_x%ui}uWw=XBFvL>SH~3_yv7H4^~T%{8+p;P@3f8olCd8w6zbN)v`UCN5CIQK zo`BYJTyyR;Pig?pk#I$wMknHuXj9-zYsQtFG3Usd)|9)V`qF`c3J_Bs30`tK`8QA$ zmj~N+OVJDoLkSC`+>R}RABiVsCG+3F6XuJaCDzJ35^xx6k~Vm}>~!8$``^)ycjxeS z3^dyY5}1AR(D~gXpuk*|sd>M)5#x@j7a3`1WZsk91-mL&{VQ}nF(coP)zymCA4vBr z$kHTtnr0@)mmLv{bc`k5{ROcD!+H{5uhALtB=;*s7&Ci;`01C!AcnO7!DqChPdM_u z+!x+{sC^^J%8f4K)ks7hd{GyQQy)eXJ;c-(4)j%0G5C<-E&Mt#(!)5+ix7|qL?OgS zVqJDbmImBh_7PbKdUJ4xbJx6XidD`uJI%Iq0|5AP6$ZhVcWfCX5WILnKXP0F%=99$ z`vZ!gUg8DktWhwX0AhHaA3KZEcQ@k*+Pohz==;1_q!IUNWlk%~7mw$faf<};16&8J z<%u?A4BEW5Nmsh$MXpNzYlbdU6)ga}>lq;N1IHIB^)E>e11evVvDvfL zB(^J-jx>@Q13vW6(7K>vq|y)=$YnP}MjCd%7pXd4nUV6jhHHF6ZN*OtaZVJ+i7#o9Z9s-}L>v>0|*uT9{S9U#e4#Q(VD0OsU0Gk1ISVL}CMnMsay} z8=a;uXw+n|S&?aY*+-)*5iLR4;)#C4gaAQfUonKZKO%iby@dRQxTlGKWj2 zXY8ZqiC#D<@4?9e*S3hcAkiwmQ8XxIr$0{a@MI3~L^$ zqAxlDA>aP%hHY$_uuxdmP%2ppV~6mJ7m&Vyif-nwr~Ev=4HzN-R=mkO?#~yE^VfUz zx!s1R1*`!;Vjj%ahX51$*qHr7U6D(FM>tokV`?6>vzCqnz7CV!Yy3iADTmB!zQ9vf zpF=ewhSl*hm`OK+6l0yQiNEy^hwIkaLWvmKV2wVs_gwH*Nb^GvS~?DV>3_{E5i#-2r5p}nr$mv##+AHp9FIa!qKB|Hr3mhfd5A&7 zM9v5=BlWeQkZ@L5<*w@ZP94FbC@lNH?@IBSTHYEy&k{8C{=MDcSC zXJ z&??{_LR!xbB3}1Qb4P&-l*2z{zX{zEiuPfd3Z}b`G$=+$k_O_?I%4n+Ljw+qJ|O@! z&SNn@@eCXZJE4Sk*l;H>RH7wahM} zwqlK!^47p|X1^Zc_0KTR+mSc1WBq5fA#--UrY0EhIrQ!oh~d-P3@%=Nj{d2?(MEA> z13Of?nP8L`?DF6xvfCHc7457^sI>yF+uEQ9NbJQjjH7(U;=6kvARHwUiorO9qodX< zSviM)VUP)q)_;~6nz@G3FJ4@#)qu18zZoG(@6%=mU}XOmI=MVW@TuJy1X*)GbWynS zBU*DO=y<|(YcjGhbZ(0-C40)!ipxQD^cj69-~mh>M^aIzV~6i&Q;W!K1|%i-(UEjKwkv9N%9oYZ=@pS z8d)aEg)t|)!F*whKavmJeF*WE?j)SE5B3fGdS}PwFz)VI0T>NEs~=b8k0?UCKAIp~ z`+40tx(DacGzUAN(qN9x5TwzqxMQuUHQ$|$Q9Q_2d!N09TP?6TdAK1PQ6wuQE8vE< zV~L3_nS*C*AlaB4#N`!yYi$X3c?DK~!nR6w=M2u^W=-5lc1NI)F!t=7y#N`*6B?1B zRl?>geDARm;Q9o$4WhN+@GtN?^xVVIYby42?|a7~$<+@O?gqyViqEu{4N851Ruu1i z6I5M4YntBO_`F;%sDReR_G6A+y;gu@`YwHCI zrQy8w(2W)07XG*+k=H|`si`RpxoZArW*zOF&rsQ%0thcde{joDAW#QA*(FdG2*vS3 zc(^rJznCO6W}IhqNQQ#qufZRFmgTVb_mO7&#}G_x^%_`>no_l4uqe=sGTw%{ICF7v zS^3?+f#0pDKE&-#IoUr-;G00$t64Gxlp=vUMAME{C%rrss*2Tl36= zdEGVenfE;JGDQA#&-S}jd+3!sTl`3af&h=u*5oUvqrG>@b{_l&+d!xIGwty1nL)$z z?a}e7NMp>+S(%YIMxE``)9*#x6+M~0(DpVYHXZH%ZbXoT|95i&S#{fLP+o1=Ue_+D zx*A;#!wEU5i)+|cf(jGuGWvh1E$62}-X8XHkKe{$RU=6q<50U+|5qYWkYfBMx4=gA z9EWh8<89UlG8Fgyb}s0u?0--fb}JuAN;zPDK%TTDu)O%y7> zE6I3E7+ScKh*0xKrVrZqJD2^f?Vc7-p3zL^V?skaSUl4P{TC4fUDrPz-~HK!5m8qH zll-G#oqzx1pw$Wa4=(t+u6<1hN77CYG7XpLP*s}rw3{-h5593N4i=OP3n${RZh22gvpf;{#a0?4?HH z@iGMP5UhktE5e@e4-M+pE=o{h_{qLgk{ikVl_8gM^w`9ME(_SL#{_7;} zd9R*Ck>8Z&c<*%QxmivzMjc2SSk*QH`ibA0pk8q=)b~Ogwx^fqzr~80j`K(9`L1*O z!-AvON<*lphx4QM7-nfTB$#%%rQ`UmGe}uIm{y{G^Tz)!7y;S`)NkGa&~K11B0BNk zTAR^>N_ey0<=)wu>g2d{ZaVfkTqmU1V~THb zc|86lgVyob#JoKp{lWlkjX&|pRR;9;KK2dIv;zQf{j(c?*@jS@KDE9(`Bp9zs_l_) zo3GHC;ux|2kdgh4#^;TRJYis9kX>aJC6PDbP*Jh)x-f(WppRf=C6y%V#Epah50+;2 ASpWb4 literal 0 HcmV?d00001 -- 2.39.5