From 2664fb2728a5bbdfb9217fb1c3474faf0c782963 Mon Sep 17 00:00:00 2001 From: Timo Heister Date: Mon, 23 Mar 2020 08:39:22 -0400 Subject: [PATCH] address comments, add documentation --- include/deal.II/lac/precondition.h | 59 ++++++++++++++++-------------- 1 file changed, 32 insertions(+), 27 deletions(-) diff --git a/include/deal.II/lac/precondition.h b/include/deal.II/lac/precondition.h index 7f07e70f9f..f2261ddc52 100644 --- a/include/deal.II/lac/precondition.h +++ b/include/deal.II/lac/precondition.h @@ -914,7 +914,7 @@ private: * which are computed during the first invocation of vmult(). The algorithm * invokes a conjugate gradient solver (i.e., Lanczos iteration) so symmetry * and positive definiteness of the (preconditioned) matrix system are - * requirements. The eigenvalue algorithm can be controlled by + * required. The eigenvalue algorithm can be controlled by * PreconditionChebyshev::AdditionalData::eig_cg_n_iterations specifying how * many iterations should be performed. The iterations are started from an * initial vector that depends on the vector type. For the classes @@ -929,16 +929,20 @@ private: * length of the vector, except for the very first entry that is zero, * triggering high-frequency content again. * - * The computation of eigenvalues happens the first time one of the - * vmult(), Tvmult(), step() or Tstep() functions is called. This is because - * temporary vectors of the same layout as the source and destination vectors - * are necessary for these computations and this information gets only - * available through vmult(). + * The computation of eigenvalues happens the first time one of the vmult(), + * Tvmult(), step() or Tstep() functions is called or when + * estimate_eigenvalues() is called directly. In the latter case, it is + * necessary to provide a temporary vector of the same layout as the source + * and destination vectors used during application of the preconditioner. * - * Due to the cost of the eigenvalue estimate in the first vmult(), this class - * is most appropriate if it is applied repeatedly, e.g. in a smoother for a - * geometric multigrid solver, that can in turn be used to solve several - * linear systems. + * The estimates for minimum and maximum eigenvalue are taken from SolverCG + * (even if the solver did not converge in the requested number of + * iterations). Finally, the maximum eigenvalue is multiplied by a safety + * factor of 1.2. + * + * Due to the cost of the eigenvalue estimate, this class is most appropriate + * if it is applied repeatedly, e.g. in a smoother for a geometric multigrid + * solver, that can in turn be used to solve several linear systems. * *

Bypassing the eigenvalue computation

* @@ -1161,25 +1165,26 @@ public: n() const; /** - * Struct that contains information about the eigenvalue estimation performed - * by this class. + * A struct that contains information about the eigenvalue estimation + * performed by the PreconditionChebychev class. */ struct EigenvalueInformation { /** * Estimate for the smallest eigenvalue. */ - double min_eigenvalue; + double min_eigenvalue_estimate; /** * Estimate for the largest eigenvalue. */ - double max_eigenvalue; + double max_eigenvalue_estimate; /** * Number of CG iterations performed or 0. */ unsigned int cg_iterations; /** - * The degree (either as set or estimated). + * The degree of the Chebyshev polynomial (either as set using + * AdditionalData::degree or estimated as described there). */ unsigned int degree; }; @@ -2325,28 +2330,28 @@ PreconditionChebyshev:: // read the eigenvalues from the attached eigenvalue tracker if (eigenvalue_tracker.values.empty()) - info.min_eigenvalue = info.max_eigenvalue = 1.; + info.min_eigenvalue_estimate = info.max_eigenvalue_estimate = 1.; else { - info.min_eigenvalue = eigenvalue_tracker.values.front(); + info.min_eigenvalue_estimate = eigenvalue_tracker.values.front(); // include a safety factor since the CG method will in general not // be converged - info.max_eigenvalue = 1.2 * eigenvalue_tracker.values.back(); + info.max_eigenvalue_estimate = 1.2 * eigenvalue_tracker.values.back(); } info.cg_iterations = control.last_step(); } else { - info.max_eigenvalue = data.max_eigenvalue; - info.min_eigenvalue = data.max_eigenvalue / data.smoothing_range; + info.max_eigenvalue_estimate = data.max_eigenvalue; + info.min_eigenvalue_estimate = data.max_eigenvalue / data.smoothing_range; } - const double alpha = - (data.smoothing_range > 1. ? - info.max_eigenvalue / data.smoothing_range : - std::min(0.9 * info.max_eigenvalue, info.min_eigenvalue)); + const double alpha = (data.smoothing_range > 1. ? + info.max_eigenvalue_estimate / data.smoothing_range : + std::min(0.9 * info.max_eigenvalue_estimate, + info.min_eigenvalue_estimate)); // in case the user set the degree to invalid unsigned int, we have to // determine the number of necessary iterations from the Chebyshev error @@ -2355,7 +2360,7 @@ PreconditionChebyshev:: // R. S. Varga, Matrix iterative analysis, 2nd ed., Springer, 2009 if (data.degree == numbers::invalid_unsigned_int) { - const double actual_range = info.max_eigenvalue / alpha; + const double actual_range = info.max_eigenvalue_estimate / alpha; const double sigma = (1. - std::sqrt(1. / actual_range)) / (1. + std::sqrt(1. / actual_range)); const double eps = data.smoothing_range; @@ -2372,10 +2377,10 @@ PreconditionChebyshev:: const_cast< PreconditionChebyshev *>(this) - ->delta = (info.max_eigenvalue - alpha) * 0.5; + ->delta = (info.max_eigenvalue_estimate - alpha) * 0.5; const_cast< PreconditionChebyshev *>(this) - ->theta = (info.max_eigenvalue + alpha) * 0.5; + ->theta = (info.max_eigenvalue_estimate + alpha) * 0.5; // We do not need the second temporary vector in case we have a // DiagonalMatrix as preconditioner and use deal.II's own vectors -- 2.39.5