From 26fc8a3a92e5600c4d9c6f70b2e201552e359c2b Mon Sep 17 00:00:00 2001 From: Daniel Arndt Date: Wed, 29 Jun 2022 10:40:20 -0400 Subject: [PATCH] Remove QTrapezoid --- include/deal.II/base/quadrature_lib.h | 16 ---------------- include/deal.II/fe/fe_tools.templates.h | 3 +-- include/deal.II/grid/reference_cell.h | 2 +- source/grid/manifold_lib.cc | 4 ++-- tests/bits/point_value_03.cc | 2 +- tests/matrix_free/tensor_product_evaluate_01.cc | 2 +- tests/matrix_free/tensor_product_evaluate_02.cc | 2 +- tests/matrix_free/tensor_product_evaluate_03.cc | 2 +- tests/matrix_free/tensor_product_evaluate_04.cc | 2 +- tests/matrix_free/tensor_product_evaluate_05.cc | 2 +- tests/matrix_free/tensor_product_evaluate_06.cc | 2 +- 11 files changed, 11 insertions(+), 28 deletions(-) diff --git a/include/deal.II/base/quadrature_lib.h b/include/deal.II/base/quadrature_lib.h index bbf666ab47..87b2718a06 100644 --- a/include/deal.II/base/quadrature_lib.h +++ b/include/deal.II/base/quadrature_lib.h @@ -127,22 +127,6 @@ public: }; -/** - * An alias for QTrapezoid available for historic reasons. This name is - * deprecated. - * - * The class was originally named QTrapez, a poorly named choice since the - * proper name of the quadrature formula - * is "trapezoidal rule", or sometimes also called the "trapezoid rule". The - * misnomer resulted from the fact that its original authors' poor English - * language skills led them to translate the name incorrectly from the German - * "Trapezregel". - */ -template -using QTrapez DEAL_II_DEPRECATED = QTrapezoid; - - - /** * The Milne rule for numerical quadrature formula. The Milne rule is a closed * Newton-Cotes formula and is exact for polynomials of degree 5. diff --git a/include/deal.II/fe/fe_tools.templates.h b/include/deal.II/fe/fe_tools.templates.h index ad976353b2..3cedc410e8 100644 --- a/include/deal.II/fe/fe_tools.templates.h +++ b/include/deal.II/fe/fe_tools.templates.h @@ -2489,8 +2489,7 @@ namespace FETools // find sub-quadrature position = name.find('('); const std::string subquadrature_name(name, 0, position); - AssertThrow(subquadrature_name == "QTrapez" || - subquadrature_name == "QTrapezoid", + AssertThrow(subquadrature_name == "QTrapezoid", ExcNotImplemented( "Could not detect quadrature of name " + subquadrature_name)); diff --git a/include/deal.II/grid/reference_cell.h b/include/deal.II/grid/reference_cell.h index c1a922361c..abf78f3fd3 100644 --- a/include/deal.II/grid/reference_cell.h +++ b/include/deal.II/grid/reference_cell.h @@ -236,7 +236,7 @@ public: * * @note The weights of the quadrature object are left unfilled and * consequently the object cannot usefully be used for actually - * computing integrals. This is in contrast to, for example, the QTrapez + * computing integrals. This is in contrast to, for example, the QTrapezoid * class that correctly sets quadrature weights. */ template diff --git a/source/grid/manifold_lib.cc b/source/grid/manifold_lib.cc index 63437b5873..30f7be3672 100644 --- a/source/grid/manifold_lib.cc +++ b/source/grid/manifold_lib.cc @@ -1689,10 +1689,10 @@ TransfiniteInterpolationManifold::initialize( // // In the co-dimension one case (meaning dim < spacedim) we have to fall // back to a simple GridTools::affine_cell_approximation() which - // requires 2^dim points, instead. Thus, initialize the QIteraded + // requires 2^dim points, instead. Thus, initialize the QIterated // quadrature with no subdivisions. std::vector> unit_points = - QIterated(QTrapez<1>(), (dim == spacedim ? 2 : 1)).get_points(); + QIterated(QTrapezoid<1>(), (dim == spacedim ? 2 : 1)).get_points(); std::vector> real_points(unit_points.size()); for (const auto &cell : triangulation.active_cell_iterators()) diff --git a/tests/bits/point_value_03.cc b/tests/bits/point_value_03.cc index 738b2e8b5a..2067fecc84 100644 --- a/tests/bits/point_value_03.cc +++ b/tests/bits/point_value_03.cc @@ -124,7 +124,7 @@ check() parallel::distributed::Triangulation tria(MPI_COMM_WORLD); make_mesh(tria); - FE_Q element(QIterated<1>(QTrapez<1>(), 3)); + FE_Q element(QIterated<1>(QTrapezoid<1>(), 3)); DoFHandler dof(tria); dof.distribute_dofs(element); diff --git a/tests/matrix_free/tensor_product_evaluate_01.cc b/tests/matrix_free/tensor_product_evaluate_01.cc index 05010a1fcb..1dea372cbf 100644 --- a/tests/matrix_free/tensor_product_evaluate_01.cc +++ b/tests/matrix_free/tensor_product_evaluate_01.cc @@ -65,7 +65,7 @@ test(const unsigned int degree) const std::vector> evaluation_points = dim == 3 ? QGauss(2).get_points() : - QIterated(QTrapez<1>(), 3).get_points(); + QIterated(QTrapezoid<1>(), 3).get_points(); deallog << "Evaluate in " << dim << "d with polynomial degree " << degree << std::endl; diff --git a/tests/matrix_free/tensor_product_evaluate_02.cc b/tests/matrix_free/tensor_product_evaluate_02.cc index b3a4fce8ce..584c0d33f8 100644 --- a/tests/matrix_free/tensor_product_evaluate_02.cc +++ b/tests/matrix_free/tensor_product_evaluate_02.cc @@ -60,7 +60,7 @@ test(const unsigned int degree) const std::vector> evaluation_points = dim == 3 ? QGauss(2).get_points() : - QIterated(QTrapez<1>(), 3).get_points(); + QIterated(QTrapezoid<1>(), 3).get_points(); deallog << "Evaluate in " << dim << "d with polynomial degree " << degree << std::endl; diff --git a/tests/matrix_free/tensor_product_evaluate_03.cc b/tests/matrix_free/tensor_product_evaluate_03.cc index 4fc54cf14e..d7120cc0bd 100644 --- a/tests/matrix_free/tensor_product_evaluate_03.cc +++ b/tests/matrix_free/tensor_product_evaluate_03.cc @@ -61,7 +61,7 @@ test(const unsigned int degree) const std::vector> evaluation_points = dim == 3 ? QGauss(2).get_points() : - QIterated(QTrapez<1>(), 3).get_points(); + QIterated(QTrapezoid<1>(), 3).get_points(); deallog << "Evaluate in " << dim << "d with polynomial degree " << degree << std::endl; diff --git a/tests/matrix_free/tensor_product_evaluate_04.cc b/tests/matrix_free/tensor_product_evaluate_04.cc index 3c0c5146ef..4f0ace43a5 100644 --- a/tests/matrix_free/tensor_product_evaluate_04.cc +++ b/tests/matrix_free/tensor_product_evaluate_04.cc @@ -58,7 +58,7 @@ test(const unsigned int degree) const std::vector> evaluation_points = dim == 3 ? QGauss(2).get_points() : - QIterated(QTrapez<1>(), 3).get_points(); + QIterated(QTrapezoid<1>(), 3).get_points(); deallog << "Evaluate in " << dim << "d with polynomial degree " << degree << std::endl; diff --git a/tests/matrix_free/tensor_product_evaluate_05.cc b/tests/matrix_free/tensor_product_evaluate_05.cc index 911b8cceeb..b22d56ce22 100644 --- a/tests/matrix_free/tensor_product_evaluate_05.cc +++ b/tests/matrix_free/tensor_product_evaluate_05.cc @@ -59,7 +59,7 @@ test(const unsigned int degree) const std::vector> evaluation_points = dim == 3 ? QGauss(2).get_points() : - QIterated(QTrapez<1>(), 3).get_points(); + QIterated(QTrapezoid<1>(), 3).get_points(); deallog << "Evaluate in " << dim << "d with polynomial degree " << degree << std::endl; diff --git a/tests/matrix_free/tensor_product_evaluate_06.cc b/tests/matrix_free/tensor_product_evaluate_06.cc index 9aaa947906..7876cd1591 100644 --- a/tests/matrix_free/tensor_product_evaluate_06.cc +++ b/tests/matrix_free/tensor_product_evaluate_06.cc @@ -55,7 +55,7 @@ test(const unsigned int degree) const std::vector> evaluation_points = dim == 3 ? QGauss(2).get_points() : - QIterated(QTrapez<1>(), 3).get_points(); + QIterated(QTrapezoid<1>(), 3).get_points(); deallog << "Evaluate in " << dim << "d with polynomial degree " << degree << std::endl; -- 2.39.5