From 2712d7c06fecf984835692e607e2a08ca9cbfcab Mon Sep 17 00:00:00 2001 From: wolf Date: Tue, 18 Apr 2000 11:32:14 +0000 Subject: [PATCH] Fix latex errors. git-svn-id: https://svn.dealii.org/trunk@2742 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/deal.II/include/numerics/derivative_approximation.h | 6 +++--- deal.II/deal.II/include/numerics/gradient_estimator.h | 6 +++--- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/deal.II/deal.II/include/numerics/derivative_approximation.h b/deal.II/deal.II/include/numerics/derivative_approximation.h index 7edfc8b742..7834338d75 100644 --- a/deal.II/deal.II/include/numerics/derivative_approximation.h +++ b/deal.II/deal.II/include/numerics/derivative_approximation.h @@ -82,9 +82,9 @@ * approximation of the gradient, you will have to scale the results * of this class by an appropriate power of the mesh width. For * example, since - * $\|u-u_h\|^2_{L_2} \le C h^2 \|\grad u\|^2_{L_2}$, it might be the - * right thing to scale the indicators as $\eta_K = h \|\grad u\|_K$, - * i.e. $\eta_K = h^{1+d/2} \|\grad u\|_{\infty;K}$, i.e. the right + * $\|u-u_h\|^2_{L_2} \le C h^2 \|\nabla u\|^2_{L_2}$, it might be the + * right thing to scale the indicators as $\eta_K = h \|\nabla u\|_K$, + * i.e. $\eta_K = h^{1+d/2} \|\nabla u\|_{\infty;K}$, i.e. the right * power is $1+d/2$. * * @author Wolfgang Bangerth, 2000 diff --git a/deal.II/deal.II/include/numerics/gradient_estimator.h b/deal.II/deal.II/include/numerics/gradient_estimator.h index 7edfc8b742..7834338d75 100644 --- a/deal.II/deal.II/include/numerics/gradient_estimator.h +++ b/deal.II/deal.II/include/numerics/gradient_estimator.h @@ -82,9 +82,9 @@ * approximation of the gradient, you will have to scale the results * of this class by an appropriate power of the mesh width. For * example, since - * $\|u-u_h\|^2_{L_2} \le C h^2 \|\grad u\|^2_{L_2}$, it might be the - * right thing to scale the indicators as $\eta_K = h \|\grad u\|_K$, - * i.e. $\eta_K = h^{1+d/2} \|\grad u\|_{\infty;K}$, i.e. the right + * $\|u-u_h\|^2_{L_2} \le C h^2 \|\nabla u\|^2_{L_2}$, it might be the + * right thing to scale the indicators as $\eta_K = h \|\nabla u\|_K$, + * i.e. $\eta_K = h^{1+d/2} \|\nabla u\|_{\infty;K}$, i.e. the right * power is $1+d/2$. * * @author Wolfgang Bangerth, 2000 -- 2.39.5