From 27b740664b2a5dc0212b40d1230ecccd16c84002 Mon Sep 17 00:00:00 2001 From: Martin Kronbichler Date: Mon, 10 Jul 2017 21:00:27 +0200 Subject: [PATCH] Add new class TensorProductMatrix Tests for new TensorProductMatrix class --- include/deal.II/lac/tensor_product_matrix.h | 412 ++++++++++++++++++ tests/lac/tensor_product_matrix_01.cc | 103 +++++ ..._product_matrix_01.with_lapack=true.output | 45 ++ tests/lac/tensor_product_matrix_02.cc | 103 +++++ ..._product_matrix_02.with_lapack=true.output | 45 ++ tests/lac/tensor_product_matrix_03.cc | 103 +++++ ...r_product_matrix_03.wih_lapack=true.output | 45 ++ 7 files changed, 856 insertions(+) create mode 100644 include/deal.II/lac/tensor_product_matrix.h create mode 100644 tests/lac/tensor_product_matrix_01.cc create mode 100644 tests/lac/tensor_product_matrix_01.with_lapack=true.output create mode 100644 tests/lac/tensor_product_matrix_02.cc create mode 100644 tests/lac/tensor_product_matrix_02.with_lapack=true.output create mode 100644 tests/lac/tensor_product_matrix_03.cc create mode 100644 tests/lac/tensor_product_matrix_03.wih_lapack=true.output diff --git a/include/deal.II/lac/tensor_product_matrix.h b/include/deal.II/lac/tensor_product_matrix.h new file mode 100644 index 0000000000..24b920c1e0 --- /dev/null +++ b/include/deal.II/lac/tensor_product_matrix.h @@ -0,0 +1,412 @@ +// --------------------------------------------------------------------- +// +// Copyright (C) 2017 by the deal.II authors +// +// This file is part of the deal.II library. +// +// The deal.II library is free software; you can use it, redistribute +// it, and/or modify it under the terms of the GNU Lesser General +// Public License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. +// The full text of the license can be found in the file LICENSE at +// the top level of the deal.II distribution. +// +// --------------------------------------------------------------------- + +#ifndef dealii__tensor_product_matrix_h +#define dealii__tensor_product_matrix_h + + +#include +#include +#include +#include + +DEAL_II_NAMESPACE_OPEN + +template class Vector; +template class FullMatrix; + +/** + * This is a special matrix class defined as the tensor product (or Kronecker + * product) of 1D matrices of the type + * @f{align*}{ + * L &= A \otimes M + M \otimes A + * @f} + * in 2D and + * @f{align*}{ + * L &= A \otimes M \otimes M + M \otimes A \otimes M + M \otimes M \otimes A + * @f} + * in 3D. The typical application setting is a discretization of the Laplacian + * $L$ on a Cartesian (axis-aligned) geometry, where it can be exactly + * represented by the Kronecker or tensor product of a 1D mass matrix $M$ and + * a 1D Laplace matrix $A$ in each dimension. The dimension of the resulting + * class is the product of the one-dimensional matrices. + * + * This class implements two basic operations, namely the usual multiplication + * by a vector and the inverse. For both operations, fast tensorial techniques + * can be applied that implement the operator evaluation in + * $\text{size}(M)^{d+1}$ arithmetic operations, considerably less than + * $\text{size}(M)^{2d}$ for the naive forward transformation and + * $\text{size}(M)^{3d}$ for setting up the inverse of $L$. + * + * Interestingly, the exact inverse of the matrix $L$ can be found through + * tensor products due to an article by R. E. Lynch, J. R. Rice, + * D. H. Thomas, Direct solution of partial difference equations by tensor + * product methods, Numerische Mathematik 6, 185-199 from 1964, + * @f{align*}{ + * L^{-1} &= S \otimes S (\Lambda \otimes I + I \otimes \Lambda)^{-1} + * S^\mathrm T \otimes S^\mathrm T, + * @f} + * where $S$ is the matrix of eigenvectors to the generalized eigenvalue problem + * @f{align*}{ + * A s &= \lambda M s, + * @f} + * and $\Lambda$ is the diagonal matrix representing the generalized + * eigenvalues $\lambda$. Note that the vectors $s$ are such that they + * simultaneously diagonalize $A$ and $M$, $S^{\mathrm T} A S = \Lambda$ and + * $S^{\mathrm T} B S = I$. This method of matrix inversion is called fast + * diagonalization method. + * + * This class requires LAPACK support. + * + * Note that this class allows for two modes of usage. The first is a use case + * with run time constants for the matrix dimensions that is achieved by + * setting the optional template parameter for the size to -1. The second mode + * of usage that is faster allows to set the template parameter as a compile + * time constant, giving significantly faster code in particular for small + * sizes of the matrix. + * + * @note This class uses a temporary array for storing intermediate results + * that is a class member. A mutex is used to protect access to this array and + * ensure correct results. If several threads run parallel instances of this + * class, it is recommended that each threads holds its own matrix version. + * + * @tparam dim Dimension of the problem. Currently, 1D, 2D, and 3D codes are + * implemented. + * + * @tparam Number Type of the underlying array elements. Note that the + * underlying LAPACK implementation supports only float and double numbers, so + * only these two types are currently supported. + * + * @tparam size Compile-time array lengths. By default at -1, which means that + * the run-time info stored in the matrices passed to the reinit() + * function is used. + * + * @author Martin Kronbichler, 2017 + */ +template +class TensorProductMatrixSymmetricSum +{ +public: + /** + * Constructor. + */ + TensorProductMatrixSymmetricSum(); + + /** + * Constructor that is equivalent to the previous constructor and + * immediately calling reinit(). + */ + TensorProductMatrixSymmetricSum(const FullMatrix &mass_matrix, + const FullMatrix &derivative_matrix); + + /** + * Initializes the matrix to the given mass matrix $M$ and derivative matrix + * $A$. Note that the current implementation requires $M$ to be symmetric + * and positive definite and $A$ to be symmetric and invertible but not + * necessarily positive defininte. + */ + void reinit (const FullMatrix &mass_matrix, + const FullMatrix &derivative_matrix); + + /** + * Returns the number of rows of this matrix, given by the dim-th power of + * the size of the 1D matrices passed to the constructor. + */ + unsigned int m() const; + + /** + * Returns the number of columns of this matrix, given by the dim-th power + * of the size of the 1D matrices passed to the constructor. + */ + unsigned int n() const; + + /** + * Implements a matrix-vector product with the underlying matrix as + * described in the main documentation of this class. + */ + void vmult (Vector &dst, + const Vector &src) const; + + /** + * Implements a matrix-vector product with the underlying matrix as + * described in the main documentation of this class. Same as the other + * vmult() function, but operating on plain pointers rather than a vector + * (no check of array bounds possible). + */ + void vmult (Number *dst, + const Number *src) const; + + /** + * Implements a matrix-vector product with the underlying matrix as + * described in the main documentation of this class. + */ + void apply_inverse (Vector &dst, + const Vector &src) const; + + /** + * Implements a matrix-vector product with the underlying matrix as + * described in the main documentation of this class. Same as the other + * apply_inverse() function, but operating on plain pointers rather than a + * vector (no check of array bounds possible). + */ + void apply_inverse (Number *dst, + const Number *src) const; + +private: + /** + * A copy of the @p mass_matrix object passed to the reinit() method. + */ + FullMatrix mass_matrix; + + /** + * A copy of the @p derivative_matrix object passed to the reinit() method. + */ + FullMatrix derivative_matrix; + + /** + * A vector containing the generalized eigenvalues of A s = lambda B s. + */ + AlignedVector eigenvalues; + + /** + * The matrix containing the generalized eigenvectors. + */ + Table<2,Number> eigenvectors; + + /** + * An array for temporary data. + */ + mutable AlignedVector tmp_array; + + /** + * A mutex that guards access to the array @p tmp_array. + */ + mutable Threads::Mutex mutex; +}; + + +/*----------------------- Inline functions ----------------------------------*/ + +#ifndef DOXYGEN + + +template +inline +TensorProductMatrixSymmetricSum +::TensorProductMatrixSymmetricSum() +{} + + + +template +inline +TensorProductMatrixSymmetricSum +::TensorProductMatrixSymmetricSum(const FullMatrix &mass_matrix, + const FullMatrix &derivative_matrix) +{ + reinit(mass_matrix, derivative_matrix); +} + + + +template +inline +void +TensorProductMatrixSymmetricSum +::reinit(const FullMatrix &mass_matrix, + const FullMatrix &derivative_matrix) +{ + Assert(size == -1 || + (size > 0 && static_cast(size) == mass_matrix.m()), + ExcDimensionMismatch(size, mass_matrix.m())); + AssertDimension(mass_matrix.m(), mass_matrix.n()); + AssertDimension(mass_matrix.m(), derivative_matrix.m()); + AssertDimension(mass_matrix.m(), derivative_matrix.n()); + + this->mass_matrix = mass_matrix; + this->derivative_matrix = derivative_matrix; + + std::vector > eigenvecs(mass_matrix.m()); + LAPACKFullMatrix mass_copy(mass_matrix.m(), mass_matrix.n()); + LAPACKFullMatrix deriv_copy(derivative_matrix.m(), derivative_matrix.n()); + mass_copy = mass_matrix; + deriv_copy = derivative_matrix; + + deriv_copy.compute_generalized_eigenvalues_symmetric(mass_copy, eigenvecs); + AssertDimension(eigenvecs.size(), mass_matrix.m()); + eigenvectors.reinit(mass_matrix.m(), mass_matrix.m()); + for (unsigned int i=0; i +inline +unsigned int +TensorProductMatrixSymmetricSum::m() const +{ + return Utilities::fixed_power(mass_matrix.m()); +} + + + +template +inline +unsigned int +TensorProductMatrixSymmetricSum::n() const +{ + return Utilities::fixed_power(mass_matrix.n()); +} + + + +template +inline +void +TensorProductMatrixSymmetricSum +::vmult(Vector &dst, + const Vector &src) const +{ + AssertDimension(dst.size(), Utilities::fixed_power(eigenvalues.size())); + AssertDimension(src.size(), Utilities::fixed_power(eigenvalues.size())); + vmult(dst.begin(), src.begin()); +} + + + +template +inline +void +TensorProductMatrixSymmetricSum +::apply_inverse(Vector &dst, + const Vector &src) const +{ + AssertDimension(dst.size(), Utilities::fixed_power(eigenvalues.size())); + AssertDimension(src.size(), Utilities::fixed_power(eigenvalues.size())); + apply_inverse(dst.begin(), src.begin()); +} + + + +template +inline +void +TensorProductMatrixSymmetricSum +::vmult(Number *dst, + const Number *src) const +{ + Threads::Mutex::ScopedLock lock(this->mutex); + const unsigned int n = Utilities::fixed_power(size > 0 ? size : eigenvalues.size()); + tmp_array.resize_fast(n*2); + const int kernel_size = size > 0 ? size-1 : -1; + internal::EvaluatorTensorProduct + eval(AlignedVector(), AlignedVector(), + AlignedVector(), mass_matrix.m()-1, mass_matrix.m()); + const Number *A = &derivative_matrix(0,0); + const Number *M = &mass_matrix(0,0); + Number *t = tmp_array.begin(); + if (dim == 1) + eval.template apply<0, true, false>(A, src, dst); + else if (dim == 2) + { + eval.template apply<0, true, false>(M, src, t); + eval.template apply<1, true, false>(A, t, dst); + eval.template apply<0, true, false>(A, src, t); + eval.template apply<1, true, true> (M, t, dst); + } + else if (dim == 3) + { + eval.template apply<0, true, false>(M, src, t+n); + eval.template apply<1, true, false>(M, t+n, t); + eval.template apply<2, true, false>(A, t, dst); + eval.template apply<1, true, false>(A, t+n, t); + eval.template apply<0, true, false>(A, src, t+n); + eval.template apply<1, true, true> (M, t+n, t); + eval.template apply<2, true, true> (M, t, dst); + } + else + AssertThrow(false, ExcNotImplemented()); +} + + + +template +inline +void +TensorProductMatrixSymmetricSum +::apply_inverse(Number *dst, + const Number *src) const +{ + Threads::Mutex::ScopedLock lock(this->mutex); + const unsigned int n = size > 0 ? size : eigenvalues.size(); + tmp_array.resize_fast(Utilities::fixed_power(n)); + const int kernel_size = size > 0 ? size-1 : -1; + internal::EvaluatorTensorProduct + eval(AlignedVector(), AlignedVector(), + AlignedVector(), mass_matrix.m()-1, mass_matrix.m()); + const Number *S = &eigenvectors(0,0); + Number *t = tmp_array.begin(); + + switch (dim) + { + case 1: + eval.template apply<0, true, false> (S, src, t); + for (unsigned int i=0; i (S, t, dst); + break; + + case 2: + eval.template apply<0, true, false> (S, src, t); + eval.template apply<1, true, false> (S, t, dst); + for (unsigned int i=0, c=0; i (S, dst, t); + eval.template apply<0, false, false> (S, t, dst); + break; + + case 3: + eval.template apply<0, true, false> (S, src, t); + eval.template apply<1, true, false> (S, t, dst); + eval.template apply<2, true, false> (S, dst, t); + for (unsigned int i=0, c=0; i (S, t, dst); + eval.template apply<1, false, false> (S, dst, t); + eval.template apply<0, false, false> (S, t, dst); + break; + + default: + Assert(false, ExcNotImplemented()); + } +} + + + +#endif + +DEAL_II_NAMESPACE_CLOSE + +#endif diff --git a/tests/lac/tensor_product_matrix_01.cc b/tests/lac/tensor_product_matrix_01.cc new file mode 100644 index 0000000000..c618001c47 --- /dev/null +++ b/tests/lac/tensor_product_matrix_01.cc @@ -0,0 +1,103 @@ +// --------------------------------------------------------------------- +// +// Copyright (C) 2017 by the deal.II authors +// +// This file is part of the deal.II library. +// +// The deal.II library is free software; you can use it, redistribute +// it, and/or modify it under the terms of the GNU Lesser General +// Public License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. +// The full text of the license can be found in the file LICENSE at +// the top level of the deal.II distribution. +// +// --------------------------------------------------------------------- + + +// Test non-templated path of TensorProductMatrix + +#include "../tests.h" +#include "../testmatrix.h" +#include +#include +#include +#include +#include +#include + + +template +void do_test(const unsigned int size) +{ + deallog << "Testing dim=" << dim << ", degree=" << size << std::endl; + FullMatrix mass(size, size); + FullMatrix laplace(size, size); + for (unsigned int i=0; i 0) + mass(i,i-1) = 1./6.; + if (i 0) + laplace(i,i-1) = -1.; + if (i < size-1) + laplace(i,i+1) = -1.; + } + TensorProductMatrixSymmetricSum mat; + mat.reinit(mass, laplace); + Vector v1(mat.m()), v2(mat.m()), v3(mat.m()); + for (unsigned int i=0; i full(v1.size(), v1.size()); + for (unsigned int i=0, c=0; i<(dim>2?size:1); ++i) + for (unsigned int j=0; j<(dim>1?size:1); ++j) + for (unsigned int k=0; k2?size:1); ++ii) + for (unsigned int jj=0; jj<(dim>1?size:1); ++jj) + for (unsigned int kk=0; kk(1); + do_test<1>(2); + do_test<1>(5); + do_test<2>(1); + do_test<2>(2); + do_test<2>(5); + do_test<2>(11); + do_test<3>(1); + do_test<3>(2); + do_test<3>(3); + do_test<3>(7); + + return 0; +} diff --git a/tests/lac/tensor_product_matrix_01.with_lapack=true.output b/tests/lac/tensor_product_matrix_01.with_lapack=true.output new file mode 100644 index 0000000000..bde376ccf4 --- /dev/null +++ b/tests/lac/tensor_product_matrix_01.with_lapack=true.output @@ -0,0 +1,45 @@ + +DEAL::Testing dim=1, degree=1 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=1, degree=2 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=1, degree=5 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=2, degree=1 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=2, degree=2 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=2, degree=5 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=2, degree=11 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=3, degree=1 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=3, degree=2 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=3, degree=3 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=3, degree=7 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 diff --git a/tests/lac/tensor_product_matrix_02.cc b/tests/lac/tensor_product_matrix_02.cc new file mode 100644 index 0000000000..e5c5fb0f94 --- /dev/null +++ b/tests/lac/tensor_product_matrix_02.cc @@ -0,0 +1,103 @@ +// --------------------------------------------------------------------- +// +// Copyright (C) 2017 by the deal.II authors +// +// This file is part of the deal.II library. +// +// The deal.II library is free software; you can use it, redistribute +// it, and/or modify it under the terms of the GNU Lesser General +// Public License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. +// The full text of the license can be found in the file LICENSE at +// the top level of the deal.II distribution. +// +// --------------------------------------------------------------------- + + +// Test templated path of TensorProductMatrix + +#include "../tests.h" +#include "../testmatrix.h" +#include +#include +#include +#include +#include +#include + + +template +void do_test() +{ + deallog << "Testing dim=" << dim << ", degree=" << size << std::endl; + FullMatrix mass(size, size); + FullMatrix laplace(size, size); + for (unsigned int i=0; i 0) + mass(i,i-1) = 1./6.; + if (i 0) + laplace(i,i-1) = -1.; + if (i < size-1) + laplace(i,i+1) = -1.; + } + TensorProductMatrixSymmetricSum mat; + mat.reinit(mass, laplace); + Vector v1(mat.m()), v2(mat.m()), v3(mat.m()); + for (unsigned int i=0; i full(v1.size(), v1.size()); + for (unsigned int i=0, c=0; i<(dim>2?size:1); ++i) + for (unsigned int j=0; j<(dim>1?size:1); ++j) + for (unsigned int k=0; k2?size:1); ++ii) + for (unsigned int jj=0; jj<(dim>1?size:1); ++jj) + for (unsigned int kk=0; kk(); + do_test<1,2>(); + do_test<1,5>(); + do_test<2,1>(); + do_test<2,2>(); + do_test<2,5>(); + do_test<2,11>(); + do_test<3,1>(); + do_test<3,2>(); + do_test<3,3>(); + do_test<3,7>(); + + return 0; +} diff --git a/tests/lac/tensor_product_matrix_02.with_lapack=true.output b/tests/lac/tensor_product_matrix_02.with_lapack=true.output new file mode 100644 index 0000000000..bde376ccf4 --- /dev/null +++ b/tests/lac/tensor_product_matrix_02.with_lapack=true.output @@ -0,0 +1,45 @@ + +DEAL::Testing dim=1, degree=1 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=1, degree=2 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=1, degree=5 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=2, degree=1 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=2, degree=2 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=2, degree=5 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=2, degree=11 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=3, degree=1 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=3, degree=2 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=3, degree=3 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=3, degree=7 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 diff --git a/tests/lac/tensor_product_matrix_03.cc b/tests/lac/tensor_product_matrix_03.cc new file mode 100644 index 0000000000..e06ed514ad --- /dev/null +++ b/tests/lac/tensor_product_matrix_03.cc @@ -0,0 +1,103 @@ +// --------------------------------------------------------------------- +// +// Copyright (C) 2017 by the deal.II authors +// +// This file is part of the deal.II library. +// +// The deal.II library is free software; you can use it, redistribute +// it, and/or modify it under the terms of the GNU Lesser General +// Public License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. +// The full text of the license can be found in the file LICENSE at +// the top level of the deal.II distribution. +// +// --------------------------------------------------------------------- + + +// Test templated path of TensorProductMatrix with float instead of double + +#include "../tests.h" +#include "../testmatrix.h" +#include +#include +#include +#include +#include +#include + + +template +void do_test() +{ + deallog << "Testing dim=" << dim << ", degree=" << size << std::endl; + FullMatrix mass(size, size); + FullMatrix laplace(size, size); + for (unsigned int i=0; i 0) + mass(i,i-1) = 1./6.; + if (i 0) + laplace(i,i-1) = -1.; + if (i < size-1) + laplace(i,i+1) = -1.; + } + TensorProductMatrixSymmetricSum mat; + mat.reinit(mass, laplace); + Vector v1(mat.m()), v2(mat.m()), v3(mat.m()); + for (unsigned int i=0; i full(v1.size(), v1.size()); + for (unsigned int i=0, c=0; i<(dim>2?size:1); ++i) + for (unsigned int j=0; j<(dim>1?size:1); ++j) + for (unsigned int k=0; k2?size:1); ++ii) + for (unsigned int jj=0; jj<(dim>1?size:1); ++jj) + for (unsigned int kk=0; kk(); + do_test<1,2>(); + do_test<1,5>(); + do_test<2,1>(); + do_test<2,2>(); + do_test<2,5>(); + do_test<2,11>(); + do_test<3,1>(); + do_test<3,2>(); + do_test<3,3>(); + do_test<3,7>(); + + return 0; +} diff --git a/tests/lac/tensor_product_matrix_03.wih_lapack=true.output b/tests/lac/tensor_product_matrix_03.wih_lapack=true.output new file mode 100644 index 0000000000..bde376ccf4 --- /dev/null +++ b/tests/lac/tensor_product_matrix_03.wih_lapack=true.output @@ -0,0 +1,45 @@ + +DEAL::Testing dim=1, degree=1 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=1, degree=2 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=1, degree=5 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=2, degree=1 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=2, degree=2 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=2, degree=5 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=2, degree=11 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=3, degree=1 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=3, degree=2 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=3, degree=3 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 +DEAL::Testing dim=3, degree=7 +DEAL::Verification of vmult and inverse: 0 +DEAL::Verifiction of vmult: 0 +DEAL::Verification of inverse: 0 -- 2.39.5