From 288b6f2961bf8d1e8ce290c50bcb0c9c4b5fa8e9 Mon Sep 17 00:00:00 2001 From: David Wells Date: Tue, 20 Oct 2015 11:12:15 -0400 Subject: [PATCH] Remove duplicate copies of MappingQ1 functions. During refactoring we ended up with two nearly identical copies of the same three functions. --- source/fe/mapping_q_generic.cc | 122 --------------------------------- 1 file changed, 122 deletions(-) diff --git a/source/fe/mapping_q_generic.cc b/source/fe/mapping_q_generic.cc index b2cf9d06bb..91db94cfc0 100644 --- a/source/fe/mapping_q_generic.cc +++ b/source/fe/mapping_q_generic.cc @@ -201,128 +201,6 @@ namespace internal { namespace MappingQGeneric { - // These are left as templates on the spatial dimension (even though dim - // == spacedim must be true for them to make sense) because templates are - // expanded before the compiler eliminates code due to the 'if (dim == - // spacedim)' statement (see the body of the general - // transform_real_to_unit_cell). - template - Point<1> - transform_real_to_unit_cell - (const std_cxx11::array, GeometryInfo<1>::vertices_per_cell> &vertices, - const Point &p) - { - Assert(spacedim == 1, ExcInternalError()); - return Point<1>((p[0] - vertices[0](0))/(vertices[1](0) - vertices[0](0))); - } - - - - template - Point<2> - transform_real_to_unit_cell - (const std_cxx11::array, GeometryInfo<2>::vertices_per_cell> &vertices, - const Point &p) - { - Assert(spacedim == 2, ExcInternalError()); - const double x = p(0); - const double y = p(1); - - const double x0 = vertices[0](0); - const double x1 = vertices[1](0); - const double x2 = vertices[2](0); - const double x3 = vertices[3](0); - - const double y0 = vertices[0](1); - const double y1 = vertices[1](1); - const double y2 = vertices[2](1); - const double y3 = vertices[3](1); - - const double a = (x1 - x3)*(y0 - y2) - (x0 - x2)*(y1 - y3); - const double b = -(x0 - x1 - x2 + x3)*y + (x - 2*x1 + x3)*y0 - (x - 2*x0 + x2)*y1 - - (x - x1)*y2 + (x - x0)*y3; - const double c = (x0 - x1)*y - (x - x1)*y0 + (x - x0)*y1; - - const double discriminant = b*b - 4*a*c; - // fast exit if the point is not in the cell (this is the only case - // where the discriminant is negative) - if (discriminant < 0.0) - { - return Point<2>(2, 2); - } - - double eta1; - double eta2; - // special case #1: if a is zero, then use the linear formula - if (a == 0.0 && b != 0.0) - { - eta1 = -c/b; - eta2 = -c/b; - } - // special case #2: if c is very small or the square root of the - // discriminant is nearly b. - else if (std::abs(c) < 1e-12*std::abs(b) - || std::abs(std::sqrt(discriminant) - b) <= 1e-14*std::abs(b)) - { - eta1 = (-b - std::sqrt(discriminant)) / (2*a); - eta2 = (-b + std::sqrt(discriminant)) / (2*a); - } - // finally, use the numerically stable version of the quadratic formula: - else - { - eta1 = 2*c / (-b - std::sqrt(discriminant)); - eta2 = 2*c / (-b + std::sqrt(discriminant)); - } - // pick the one closer to the center of the cell. - const double eta = (std::abs(eta1 - 0.5) < std::abs(eta2 - 0.5)) ? eta1 : eta2; - - /* - * There are two ways to compute xi from eta, but either one may have a - * zero denominator. - */ - const double subexpr0 = -eta*x2 + x0*(eta - 1); - const double xi_denominator0 = eta*x3 - x1*(eta - 1) + subexpr0; - const double max_x = std::max(std::max(std::abs(x0), std::abs(x1)), - std::max(std::abs(x2), std::abs(x3))); - - if (std::abs(xi_denominator0) > 1e-10*max_x) - { - const double xi = (x + subexpr0)/xi_denominator0; - return Point<2>(xi, eta); - } - else - { - const double max_y = std::max(std::max(std::abs(y0), std::abs(y1)), - std::max(std::abs(y2), std::abs(y3))); - const double subexpr1 = -eta*y2 + y0*(eta - 1); - const double xi_denominator1 = eta*y3 - y1*(eta - 1) + subexpr1; - if (std::abs(xi_denominator1) > 1e-10*max_y) - { - const double xi = (subexpr1 + y)/xi_denominator1; - return Point<2>(xi, eta); - } - else // give up and try Newton iteration - { - return Point<2>(2, 2); - } - } - } - - - - template - Point<3> - transform_real_to_unit_cell - (const std_cxx11::array, GeometryInfo<3>::vertices_per_cell> &/*vertices*/, - const Point &/*p*/) - { - // It should not be possible to get here - Assert(false, ExcInternalError()); - return Point<3>(); - } - - - template void compute_shape_function_values (const unsigned int n_shape_functions, -- 2.39.5