From 30e270867d0fe2de88da8c8103de077dc472d4e1 Mon Sep 17 00:00:00 2001 From: bonito Date: Thu, 6 Jan 2011 15:55:00 +0000 Subject: [PATCH] git-svn-id: https://svn.dealii.org/trunk@23137 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-38/doc/intro.dox | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/deal.II/examples/step-38/doc/intro.dox b/deal.II/examples/step-38/doc/intro.dox index dc10b5df6f..b8b40fc867 100644 --- a/deal.II/examples/step-38/doc/intro.dox +++ b/deal.II/examples/step-38/doc/intro.dox @@ -55,7 +55,7 @@ Since $\Delta_S = \nabla_S \cdot \nabla_S$, we deduce @f[ \Delta_S v = \Delta \tilde v - \mathbf n^T \ D^2 \tilde v \ \mathbf n - (\mathbf n \cdot \nabla \tilde v) (\nabla \cdot \mathbf n - \mathbf n^T \ D \mathbf n \ \mathbf n ). @f] -Worth mentioning, the term $\nabla^T \cdot \mathbf n - \mathbf n \ D \mathbf n \ \mathbf n$ appearing in the above expression is the total curvature of the surface (sum of principal curvatures). +Worth mentioning, the term $\nabla \cdot \mathbf n - \mathbf n \ D \mathbf n \ \mathbf n$ appearing in the above expression is the total curvature of the surface (sum of principal curvatures). As usual, we are only interested in weak solutions for which we can use $C^0$ finite elements (rather than requiring $C^1$ continuity as for strong -- 2.39.5