From 3a7083a286cc59056b817dd1b1ab8139448c5d4a Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Wed, 10 Jan 2018 18:04:20 -0700 Subject: [PATCH] Update ReadMe.md --- time_dependent_navier_stokes/Readme.md | 16 ++++++++++------ 1 file changed, 10 insertions(+), 6 deletions(-) diff --git a/time_dependent_navier_stokes/Readme.md b/time_dependent_navier_stokes/Readme.md index 989029b..d592c5e 100644 --- a/time_dependent_navier_stokes/Readme.md +++ b/time_dependent_navier_stokes/Readme.md @@ -17,7 +17,7 @@ end up with the following linear system: m(u^{n+1}, v) + \Delta{t}\cdot a((u^{n+1}, p^{n+1}), (v, q))=m(u^n, v)-\Delta{t}c(u^n;u^n, v) @f} -where $a((u, p), (v, q))$ is the bilinear form of the diffusion term: +where $a((u, p), (v, q))$ is the bilinear form of the diffusion term plus the pressure gradient and its transpose (the divergence constraints): @f{eqnarray*} a((u, p), (v, q)) = \int_\Omega \nu\nabla{u}\nabla{v}-p\nabla\cdot v-q\nabla\cdot ud\Omega @f} @@ -26,7 +26,6 @@ $m(u, v)$ is the mass matrix: @f{eqnarray*} m(u, v) = \int_{\Omega} u \cdot v d\Omega @f} - and $c(u;u, v)$ is the convection term: @f{eqnarray*} c(u;u, v) = \int_{\Omega} (u \cdot \nabla u) \cdot v d\Omega @@ -65,8 +64,13 @@ The system we want to solve can be written in matrix form: #### Grad-Div stablization #### -Similar to step-57, we add $\gamma B^T M_p^{-1} B$ to the upper left block of the system, -thus the system becomes: +Similar to step-57, we add $\gamma B^T M_p^{-1} B$ to the upper left block of the system. This is a +term that is consistent, i.e., the corresponding operators applied to the exact solution would +be zero. (This is because $\gamma B^T M_p^{-1} B$ applied to the velocity vector corresponds to +the operator $\gamma\text{grad}\;\text{div}$ applied to the velocity field -- which is of course +zero because of the incompressibility constraint $\text{div}\;\mathbf{u}=0$. On the other hand, +the term is not zero when applied to a finite element approximation of the exact velocity.) +With this, the system becomes: @f{eqnarray*} \left( @@ -91,7 +95,7 @@ thus the system becomes: @f} where $\tilde{A} = A + \gamma B^T M_p^{-1} B$. -Detailed explaination of the Grad-Div stablization can be found in [1]. +A detailed explanation of the Grad-Div stablization can be found in [1]. #### Block preconditioner #### @@ -128,7 +132,7 @@ number 100. The geometry setup of the case can be found on [this webpage](http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark2_re100.html). ### Acknowledgements ### -Thank Wolfgang Bangerth, Timo Heister and Martin Kronbichler for their helpful discussions +Thanks go to Wolfgang Bangerth, Timo Heister and Martin Kronbichler for their helpful discussions on my numerical formulation and implementation. ------------------------------------------ -- 2.39.5