From 406c1e4e4b789827d218cca68318b46706ebf421 Mon Sep 17 00:00:00 2001 From: schrage Date: Mon, 7 Jun 1999 14:31:52 +0000 Subject: [PATCH] Comments to the source code added. git-svn-id: https://svn.dealii.org/trunk@1380 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/doc/tutorial/chapter-1.elements/rhs.html | 11 +++++++---- 1 file changed, 7 insertions(+), 4 deletions(-) diff --git a/deal.II/doc/tutorial/chapter-1.elements/rhs.html b/deal.II/doc/tutorial/chapter-1.elements/rhs.html index 9490c77f1c..b0e8da5431 100644 --- a/deal.II/doc/tutorial/chapter-1.elements/rhs.html +++ b/deal.II/doc/tutorial/chapter-1.elements/rhs.html @@ -119,24 +119,27 @@ Vector<double> elvec(fe.total_dofs); FullMatrix<double> elmat(fe.total_dofs); for (DoFHandler<2>::active_cell_iterator c = dof.begin_active() - ; c != dof.end() ; ++c) + ; c != dof.end() ; ++c) { fevalues.reinit(c, stb); elmat.clear(); elvec.clear(); c->get_dof_indices(indices); - + + // The loop over the quadrature points starts here. In effect, the + // integration is performed in this loop. for (unsigned k=0;k<qc.n_quadrature_points;++k) { for (unsigned i=0;i<fe.total_dofs;++i) { - const Point<2> dv = fevalues.shape_grad(i,k); + const Point<2> dv = fevalues.shape_grad(i,k); for (unsigned j=0;j<fe.total_dofs;++j) { const Point<2> du = fevalues.shape_grad(j,k); - + + // Perform the integration using the discretized Laplace operator. elmat(i,j) += fevalues.JxW(k) * du * dv ; -- 2.39.5