From 45f34eb18e90eed9ab86eed585c7ad2a4af28963 Mon Sep 17 00:00:00 2001 From: Joerg Frohne Date: Fri, 23 Aug 2013 19:32:46 +0000 Subject: [PATCH] more comments git-svn-id: https://svn.dealii.org/trunk@30455 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-42/step-42.cc | 58 +++++++++++++++++++++-------- 1 file changed, 43 insertions(+), 15 deletions(-) diff --git a/deal.II/examples/step-42/step-42.cc b/deal.II/examples/step-42/step-42.cc index efcdad4921..ada66613fb 100644 --- a/deal.II/examples/step-42/step-42.cc +++ b/deal.II/examples/step-42/step-42.cc @@ -217,7 +217,7 @@ double Input::obstacle_function(double x, double y) { } // As mentioned above this function reads in the -// obstacle datas and stores them in the std::vector +// obstacle data and stores them in the std::vector // obstacle_data. It will be used only in run (). template void Input::read_obstacle(const char* name) { @@ -244,11 +244,11 @@ void Input::read_obstacle(const char* name) { // This class provides an interface // for a constitutive law. In this -// example we are using an elasto -// plastic material behavior with linear, +// example we are using an elastoplastic +// material behavior with linear, // isotropic hardening. -// For gamma = 0 we obtain perfect elasto -// plasticity behavior. +// For gamma = 0 we obtain perfect elastoplastic +// behavior. template class ConstitutiveLaw { public: @@ -312,7 +312,8 @@ ConstitutiveLaw::ConstitutiveLaw(double _E, double _nu, double _sigma_0, // @sect3{ConstitutiveLaw::ConstitutiveLaw} -// Calculates the strain for the shape functions. +// Calculates the strain $\varepsilon(\varphi)=\dfrac{1}{2}\left(\nabla\varphi + \nabla\varphi^T$ +// for the shape functions $\varphi$. template inline SymmetricTensor<2, dim> ConstitutiveLaw::get_strain( const FEValues &fe_values, const unsigned int shape_func, @@ -331,7 +332,9 @@ inline SymmetricTensor<2, dim> ConstitutiveLaw::get_strain( // deviator part of the stresses in a quadrature point back to // the yield stress plus the linear isotropic hardening. // Also we sum up the elastic and the plastic quadrature -// points. +// points. We need this function to calculate the nonlinear +// residual in +// PlasticityContactProblem::residual_nl_system(TrilinosWrappers::MPI::Vector &u). template void ConstitutiveLaw::plast_linear_hardening( SymmetricTensor<4, dim> &stress_strain_tensor, @@ -364,8 +367,16 @@ void ConstitutiveLaw::plast_linear_hardening( // @sect3{ConstitutiveLaw::linearized_plast_linear_hardening} -// This function returns the linearized stress strain tensor. -// It contains the derivative of the nonlinear constitutive law. +// This function returns the linearized stress strain tensor +// in the solution $u^{i-1}$ of the previous Newton $i-1$ step. +// The parameter strain_tensor $\varepsilon(u^{i-1})$ is calculated +// by $u^{i-1}$. It contains the derivative of the nonlinear +// constitutive law. As the result this function returns +// the stress_strain_tensor of the nonlinear problem as well as +// the stress_strain_tensor_linearized of the linearized problem. +// See +// PlasticityContactProblem::assemble_nl_system(TrilinosWrappers::MPI::Vector &u) +// where this function is used. template void ConstitutiveLaw::linearized_plast_linear_hardening( SymmetricTensor<4, dim> &stress_strain_tensor_linearized, @@ -426,7 +437,7 @@ double RightHandSide::value(const Point &p, if (component == 1) return_value = 0.0; if (component == 2) - return_value = 0.0;//-26923.07692; + return_value = 0.0; return return_value; } @@ -592,7 +603,7 @@ private: void output_results(const std::string &title); void - output_for_benchmark(const unsigned int cycle); + output_contact_force(const unsigned int cycle); double to_refine_factor; double to_coarsen_factor; @@ -606,6 +617,9 @@ private: FESystem fe; DoFHandler dof_handler; + // We are using the SolutionTransfer class to interpolate the + // solution on the new refined mesh. It appears in th refine_grid() + // and the run() function. std_cxx1x::shared_ptr< parallel::distributed::SolutionTransfer > soltrans; @@ -1755,10 +1769,24 @@ void PlasticityContactProblem::output_results( move_mesh(tmp); } -// @sect4{PlasticityContactProblem::output_for_benchmark} - +// @sect4{PlasticityContactProblem::output_contact_force} + +// This function provides the contact force by calculating +// an integral over the contact pressure in z-directions +// over the contact area. For this purpose we set the contact +// pressure lambda to 0 for all inactive dofs. For all +// active dofs we lambda contains the quotient of the nonlinear +// residual (resid_vector) and corresponding diagonal entry +// of the mass matrix (diag_mass_matrix_vector). Because it is +// not unlikely that hanging nodes shows up in the contact area +// it is important to apply contraints_hanging_nodes.distribute +// to the distributed_lambda vector. +// To calculate the contact pressure in a certain point in the +// contact area, we have make use of the Functions::FEFieldFunction +// In parallel this is little tricky because we have to find the +// process with the right cell which contains this point. template -void PlasticityContactProblem::output_for_benchmark( +void PlasticityContactProblem::output_contact_force( const unsigned int cycle) { Functions::FEFieldFunction, TrilinosWrappers::MPI::Vector> solution_function(dof_handler, @@ -1819,7 +1847,7 @@ void PlasticityContactProblem::output_for_benchmark( typename DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), endc = dof_handler.end(); for (; cell != endc; ++cell) - if (cell->is_locally_owned()) + if (cell->is_locally_owned()) for (unsigned int face = 0; face < GeometryInfo < dim > ::faces_per_cell; ++face) if (cell->face(face)->at_boundary() -- 2.39.5