From 475ee66baae86fc65ebeeee7eeac85df0367de83 Mon Sep 17 00:00:00 2001 From: Martin Kronbichler Date: Fri, 23 Aug 2013 22:38:34 +0000 Subject: [PATCH] Add function VectorTools::compute_normal_flux_constraints git-svn-id: https://svn.dealii.org/trunk@30466 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/doc/news/changes.h | 7 + .../include/deal.II/numerics/vector_tools.h | 427 +- .../deal.II/numerics/vector_tools.templates.h | 290 +- tests/deal.II/normal_flux_01.cc | 94 + tests/deal.II/normal_flux_01/cmp/generic | 9560 +++++++++++++++++ tests/deal.II/normal_flux_02.cc | 98 + tests/deal.II/normal_flux_02/cmp/generic | 9560 +++++++++++++++++ tests/deal.II/normal_flux_03.cc | 88 + tests/deal.II/normal_flux_03/cmp/generic | 2384 ++++ 9 files changed, 22131 insertions(+), 377 deletions(-) create mode 100644 tests/deal.II/normal_flux_01.cc create mode 100644 tests/deal.II/normal_flux_01/cmp/generic create mode 100644 tests/deal.II/normal_flux_02.cc create mode 100644 tests/deal.II/normal_flux_02/cmp/generic create mode 100644 tests/deal.II/normal_flux_03.cc create mode 100644 tests/deal.II/normal_flux_03/cmp/generic diff --git a/deal.II/doc/news/changes.h b/deal.II/doc/news/changes.h index 95099c18b9..9dba3186c6 100644 --- a/deal.II/doc/news/changes.h +++ b/deal.II/doc/news/changes.h @@ -68,6 +68,13 @@ inconvenience this causes.

Specific improvements

    +
  1. + New: The method VectorTools::compute_normal_flux_constraints can be used to + force a vector finite element function to be normal to the boundary. +
    + (Martin Kronbichler, 2013/08/23) +
  2. +
  3. Improved: MappingQ now uses the points of the Gauss-Lobatto quadrature formula as support points instead of equispaced ones. This allows its use diff --git a/deal.II/include/deal.II/numerics/vector_tools.h b/deal.II/include/deal.II/numerics/vector_tools.h index 1121e1ff66..f83d28fc42 100644 --- a/deal.II/include/deal.II/numerics/vector_tools.h +++ b/deal.II/include/deal.II/numerics/vector_tools.h @@ -1404,300 +1404,167 @@ namespace VectorTools /** - * Compute the constraints that - * correspond to boundary conditions of - * the form $\vec n \cdot \vec u=0$, - * i.e. no normal flux if $\vec u$ is a - * vector-valued quantity. These - * conditions have exactly the form - * handled by the ConstraintMatrix class, - * so instead of creating a map between - * boundary degrees of freedom and - * corresponding value, we here create a - * list of constraints that are written - * into a ConstraintMatrix. This object - * may already have some content, for - * example from hanging node constraints, - * that remains untouched. These - * constraints have to be applied to the - * linear system like any other such - * constraints, i.e. you have to condense - * the linear system with the constraints - * before solving, and you have to - * distribute the solution vector - * afterwards. - * - * The use of this function is - * explained in more detail in - * step-31. It - * doesn't make much sense in 1d, - * so the function throws an - * exception in that case. - * - * The second argument of this - * function denotes the first - * vector component in the finite - * element that corresponds to - * the vector function that you - * want to constrain. For - * example, if we were solving a - * Stokes equation in 2d and the - * finite element had components - * $(u,v,p)$, then @p - * first_vector_component would - * be zero. On the other hand, if - * we solved the Maxwell - * equations in 3d and the finite - * element has components - * $(E_x,E_y,E_z,B_x,B_y,B_z)$ - * and we want the boundary - * condition $\vec n\cdot \vec - * B=0$, then @p - * first_vector_component would - * be 3. Vectors are implicitly - * assumed to have exactly - * dim components - * that are ordered in the same - * way as we usually order the - * coordinate directions, - * i.e. $x$-, $y$-, and finally - * $z$-component. The function - * assumes, but can't check, that - * the vector components in the - * range - * [first_vector_component,first_vector_component+dim) - * come from the same base finite - * element. For example, in the - * Stokes example above, it would - * not make sense to use a - * FESystem@(FE_Q@(2), - * 1, FE_Q@(1), dim) - * (note that the first velocity - * vector component is a $Q_2$ - * element, whereas all the other - * ones are $Q_1$ elements) as - * there would be points on the - * boundary where the - * $x$-velocity is defined but no - * corresponding $y$- or - * $z$-velocities. - * - * The third argument denotes the set of - * boundary indicators on which the - * boundary condition is to be - * enforced. Note that, as explained - * below, this is one of the few - * functions where it makes a difference - * where we call the function multiple - * times with only one boundary - * indicator, or whether we call the - * function onces with the whole set of - * boundary indicators at once. - * - * The mapping argument is used to - * compute the boundary points where the function - * needs to request the normal vector $\vec n$ - * from the boundary description. - * - * @note When combining adaptively - * refined meshes with hanging node - * constraints and boundary conditions - * like from the current function within - * one ConstraintMatrix object, the - * hanging node constraints should always - * be set first, and then the boundary - * conditions since boundary conditions - * are not set in the second operation on - * degrees of freedom that are already - * constrained. This makes sure that the - * discretization remains conforming as - * is needed. See the discussion on - * conflicting constraints in the module - * on @ref constraints . + * Compute the constraints that correspond to boundary conditions of the + * form $\vec n \cdot \vec u=0$, i.e. no normal flux if $\vec u$ is a + * vector-valued quantity. These conditions have exactly the form handled by + * the ConstraintMatrix class, so instead of creating a map between boundary + * degrees of freedom and corresponding value, we here create a list of + * constraints that are written into a ConstraintMatrix. This object may + * already have some content, for example from hanging node constraints, + * that remains untouched. These constraints have to be applied to the + * linear system like any other such constraints, i.e. you have to condense + * the linear system with the constraints before solving, and you have to + * distribute the solution vector afterwards. + * + * The use of this function is explained in more detail in step-31. It + * doesn't make much sense in 1d, so the function throws an exception in + * that case. + * + * The second argument of this function denotes the first vector component + * in the finite element that corresponds to the vector function that you + * want to constrain. For example, if we were solving a Stokes equation in + * 2d and the finite element had components $(u,v,p)$, then @p + * first_vector_component would be zero. On the other hand, if we solved the + * Maxwell equations in 3d and the finite element has components + * $(E_x,E_y,E_z,B_x,B_y,B_z)$ and we want the boundary condition $\vec + * n\cdot \vec B=0$, then @p first_vector_component would be 3. Vectors are + * implicitly assumed to have exactly dim components that are + * ordered in the same way as we usually order the coordinate directions, + * i.e. $x$-, $y$-, and finally $z$-component. The function assumes, but + * can't check, that the vector components in the range + * [first_vector_component,first_vector_component+dim) come + * from the same base finite element. For example, in the Stokes example + * above, it would not make sense to use a + * FESystem@(FE_Q@(2), 1, FE_Q@(1), dim) + * (note that the first velocity vector component is a $Q_2$ element, + * whereas all the other ones are $Q_1$ elements) as there would be points + * on the boundary where the $x$-velocity is defined but no corresponding + * $y$- or $z$-velocities. + * + * The third argument denotes the set of boundary indicators on which the + * boundary condition is to be enforced. Note that, as explained below, this + * is one of the few functions where it makes a difference where we call the + * function multiple times with only one boundary indicator, or whether we + * call the function onces with the whole set of boundary indicators at + * once. + * + * The mapping argument is used to compute the boundary points where the + * function needs to request the normal vector $\vec n$ from the boundary + * description. + * + * @note When combining adaptively refined meshes with hanging node + * constraints and boundary conditions like from the current function within + * one ConstraintMatrix object, the hanging node constraints should always + * be set first, and then the boundary conditions since boundary conditions + * are not set in the second operation on degrees of freedom that are + * already constrained. This makes sure that the discretization remains + * conforming as is needed. See the discussion on conflicting constraints in + * the module on @ref constraints . * * *

    Computing constraints in 2d

    * - * Computing these constraints requires - * some smarts. The main question - * revolves around the question what the - * normal vector is. Consider the - * following situation: - *

    - * @image html no_normal_flux_1.png + * Computing these constraints requires some smarts. The main question + * revolves around the question what the normal vector is. Consider the + * following situation:

    @image html no_normal_flux_1.png *

    * - * Here, we have two cells that use a - * bilinear mapping - * (i.e. MappingQ1). Consequently, for - * each of the cells, the normal vector - * is perpendicular to the straight - * edge. If the two edges at the top and - * right are meant to approximate a - * curved boundary (as indicated by the - * dashed line), then neither of the two - * computed normal vectors are equal to - * the exact normal vector (though they - * approximate it as the mesh is refined - * further). What is worse, if we - * constrain $\vec n \cdot \vec u=0$ at - * the common vertex with the normal - * vector from both cells, then we - * constrain the vector $\vec u$ with - * respect to two linearly independent - * vectors; consequently, the constraint - * would be $\vec u=0$ at this point - * (i.e. all components of the - * vector), which is not what we wanted. - * - * To deal with this situation, the - * algorithm works in the following way: - * at each point where we want to - * constrain $\vec u$, we first collect - * all normal vectors that adjacent cells - * might compute at this point. We then - * do not constrain $\vec n \cdot \vec - * u=0$ for each of these normal - * vectors but only for the - * average of the normal - * vectors. In the example above, we - * therefore record only a single - * constraint $\vec n \cdot \vec {\bar - * u}=0$, where $\vec {\bar u}$ is the - * average of the two indicated normal - * vectors. - * - * Unfortunately, this is not quite - * enough. Consider the situation here: + * Here, we have two cells that use a bilinear mapping + * (i.e. MappingQ1). Consequently, for each of the cells, the normal vector + * is perpendicular to the straight edge. If the two edges at the top and + * right are meant to approximate a curved boundary (as indicated by the + * dashed line), then neither of the two computed normal vectors are equal + * to the exact normal vector (though they approximate it as the mesh is + * refined further). What is worse, if we constrain $\vec n \cdot \vec u=0$ + * at the common vertex with the normal vector from both cells, then we + * constrain the vector $\vec u$ with respect to two linearly independent + * vectors; consequently, the constraint would be $\vec u=0$ at this point + * (i.e. all components of the vector), which is not what we wanted. + * + * To deal with this situation, the algorithm works in the following way: at + * each point where we want to constrain $\vec u$, we first collect all + * normal vectors that adjacent cells might compute at this point. We then + * do not constrain $\vec n \cdot \vec u=0$ for each of these normal + * vectors but only for the average of the normal vectors. In the + * example above, we therefore record only a single constraint $\vec n \cdot + * \vec {\bar u}=0$, where $\vec {\bar u}$ is the average of the two + * indicated normal vectors. + * + * Unfortunately, this is not quite enough. Consider the situation here: * *

    * @image html no_normal_flux_2.png *

    * - * If again the top and right edges - * approximate a curved boundary, and the - * left boundary a separate boundary (for - * example straight) so that the exact - * boundary has indeed a corner at the - * top left vertex, then the above - * construction would not work: here, we - * indeed want the constraint that $\vec - * u$ at this point (because the normal - * velocities with respect to both the - * left normal as well as the top normal - * vector should be zero), not that the - * velocity in the direction of the - * average normal vector is zero. - * - * Consequently, we use the following - * heuristic to determine whether all - * normal vectors computed at one point - * are to be averaged: if two normal - * vectors for the same point are - * computed on different cells, - * then they are to be averaged. This - * covers the first example above. If - * they are computed from the same cell, - * then the fact that they are different - * is considered indication that they - * come from different parts of the - * boundary that might be joined by a - * real corner, and must not be averaged. - * - * There is one problem with this - * scheme. If, for example, the same - * domain we have considered above, is - * discretized with the following mesh, - * then we get into trouble: + * If again the top and right edges approximate a curved boundary, and the + * left boundary a separate boundary (for example straight) so that the + * exact boundary has indeed a corner at the top left vertex, then the above + * construction would not work: here, we indeed want the constraint that + * $\vec u$ at this point (because the normal velocities with respect to + * both the left normal as well as the top normal vector should be zero), + * not that the velocity in the direction of the average normal vector is + * zero. + * + * Consequently, we use the following heuristic to determine whether all + * normal vectors computed at one point are to be averaged: if two normal + * vectors for the same point are computed on different cells, then + * they are to be averaged. This covers the first example above. If they are + * computed from the same cell, then the fact that they are different is + * considered indication that they come from different parts of the boundary + * that might be joined by a real corner, and must not be averaged. + * + * There is one problem with this scheme. If, for example, the same domain + * we have considered above, is discretized with the following mesh, then we + * get into trouble: * *

    * @image html no_normal_flux_3.png *

    * - * Here, the algorithm assumes that the - * boundary does not have a corner at the - * point where faces $F1$ and $F2$ join - * because at that point there are two - * different normal vectors computed from - * different cells. If you intend for - * there to be a corner of the exact - * boundary at this point, the only way - * to deal with this is to assign the two - * parts of the boundary different - * boundary indicators and call this - * function twice, once for each boundary - * indicators; doing so will yield only - * one normal vector at this point per - * invocation (because we consider only - * one boundary part at a time), with the - * result that the normal vectors will - * not be averaged. + * Here, the algorithm assumes that the boundary does not have a corner at + * the point where faces $F1$ and $F2$ join because at that point there are + * two different normal vectors computed from different cells. If you intend + * for there to be a corner of the exact boundary at this point, the only + * way to deal with this is to assign the two parts of the boundary + * different boundary indicators and call this function twice, once for each + * boundary indicators; doing so will yield only one normal vector at this + * point per invocation (because we consider only one boundary part at a + * time), with the result that the normal vectors will not be averaged. * * *

    Computing constraints in 3d

    * - * The situation is more - * complicated in 3d. Consider - * the following case where we - * want to compute the - * constraints at the marked - * vertex: + * The situation is more complicated in 3d. Consider the following case + * where we want to compute the constraints at the marked vertex: * *

    * @image html no_normal_flux_4.png *

    * - * Here, we get four different - * normal vectors, one from each - * of the four faces that meet at - * the vertex. Even though they - * may form a complete set of - * vectors, it is not our intent - * to constrain all components of - * the vector field at this - * point. Rather, we would like - * to still allow tangential - * flow, where the term - * "tangential" has to be - * suitably defined. - * - * In a case like this, the - * algorithm proceeds as follows: - * for each cell that has - * computed two tangential - * vectors at this point, we - * compute the unconstrained - * direction as the outer product - * of the two tangential vectors - * (if necessary multiplied by - * minus one). We then average - * these tangential - * vectors. Finally, we compute - * constraints for the two - * directions perpendicular to - * this averaged tangential - * direction. - * - * There are cases where one cell - * contributes two tangential - * directions and another one - * only one; for example, this - * would happen if both top and - * front faces of the left cell - * belong to the boundary - * selected whereas only the top - * face of the right cell belongs - * to it. This case is not - * currently implemented. + * Here, we get four different normal vectors, one from each of the four + * faces that meet at the vertex. Even though they may form a complete set + * of vectors, it is not our intent to constrain all components of the + * vector field at this point. Rather, we would like to still allow + * tangential flow, where the term "tangential" has to be suitably defined. + * + * In a case like this, the algorithm proceeds as follows: for each cell + * that has computed two tangential vectors at this point, we compute the + * unconstrained direction as the outer product of the two tangential + * vectors (if necessary multiplied by minus one). We then average these + * tangential vectors. Finally, we compute constraints for the two + * directions perpendicular to this averaged tangential direction. + * + * There are cases where one cell contributes two tangential directions and + * another one only one; for example, this would happen if both top and + * front faces of the left cell belong to the boundary selected whereas only + * the top face of the right cell belongs to it. This case is not currently + * implemented. * * *

    Results

    * - * Because it makes for good - * pictures, here are two images - * of vector fields on a circle - * and on a sphere to which the - * constraints computed by this + * Because it makes for good pictures, here are two images of vector fields + * on a circle and on a sphere to which the constraints computed by this * function have been applied: * *

    @@ -1705,16 +1572,10 @@ namespace VectorTools * @image html no_normal_flux_6.png *

    * - * The vectors fields are not - * physically reasonable but the - * tangentiality constraint is - * clearly enforced. The fact - * that the vector fields are - * zero at some points on the - * boundary is an artifact of the - * way it is created, it is not - * constrained to be zero at - * these points. + * The vectors fields are not physically reasonable but the tangentiality + * constraint is clearly enforced. The fact that the vector fields are zero + * at some points on the boundary is an artifact of the way it is created, + * it is not constrained to be zero at these points. * * @ingroup constraints * @@ -1728,6 +1589,22 @@ namespace VectorTools ConstraintMatrix &constraints, const Mapping &mapping = StaticMappingQ1::mapping); + /** + * Compute the constraints that correspond to boundary conditions of the + * form $\vec n \times \vec u=0$, i.e. flow normal to the boundary if $\vec + * u$ is a vector-valued quantity. This function constrains exactly those + * vector-valued components that are left unconstrained by + * compute_no_normal_flux_constraints, and leaves the one component + * unconstrained that is constrained by compute_no_normal_flux_constraints. + */ + template class DH, int spacedim> + void + compute_normal_flux_constraints (const DH &dof_handler, + const unsigned int first_vector_component, + const std::set &boundary_ids, + ConstraintMatrix &constraints, + const Mapping &mapping = StaticMappingQ1::mapping); + //@} /** diff --git a/deal.II/include/deal.II/numerics/vector_tools.templates.h b/deal.II/include/deal.II/numerics/vector_tools.templates.h index 32bd467905..99cb82e21b 100644 --- a/deal.II/include/deal.II/numerics/vector_tools.templates.h +++ b/deal.II/include/deal.II/numerics/vector_tools.templates.h @@ -60,6 +60,7 @@ #include #include +#include #include #include #include @@ -3183,19 +3184,10 @@ namespace VectorTools } } - // Create the system - // matrix by - // multiplying the - // assembling matrix - // with its transposed - // and the right - // hand side vector - // by mutliplying - // the assembling - // matrix with the - // assembling vector. - // Invert the system - // matrix. + // Create the system matrix by multiplying the assembling matrix + // with its transposed and the right hand side vector by mutliplying + // the assembling matrix with the assembling vector. Invert the + // system matrix. assembling_matrix.mTmult (cell_matrix, assembling_matrix); cell_matrix_inv.invert (cell_matrix); assembling_matrix.vmult (cell_rhs, assembling_vector); @@ -3225,12 +3217,8 @@ namespace VectorTools } } - // Now we do the - // same as above - // with the vertical - // shape functions - // instead of the - // horizontal ones. + // Now we do the same as above with the vertical shape functions + // instead of the horizontal ones. for (unsigned int q_point = 0; q_point < fe_values.n_quadrature_points; ++q_point) { @@ -3335,32 +3323,18 @@ namespace VectorTools ConstraintMatrix &constraints, const Mapping &mapping) { - // Projection-based interpolation - // is performed in two (in 2D) - // respectively three (in 3D) - // steps. First the tangential - // component of the function is - // interpolated on each edge. This - // gives the values for the degrees - // of freedom corresponding to the - // edge shape functions. Now we are - // done for 2D, but in 3D we possibly - // have also degrees of freedom, which - // are located in the interior of - // the faces. Therefore we compute - // the residual of the function - // describing the boundary values - // and the interpolated part, which - // we have computed in the last - // step. On the faces there are - // two kinds of shape functions, - // the horizontal and the vertical - // ones. Thus we have to solve two - // linear systems of equations of - // size degree * (degree + - // 1) to obtain the values for - // the corresponding degrees of - // freedom. + // Projection-based interpolation is performed in two (in 2D) respectively + // three (in 3D) steps. First the tangential component of the function is + // interpolated on each edge. This gives the values for the degrees of + // freedom corresponding to the edge shape functions. Now we are done for + // 2D, but in 3D we possibly have also degrees of freedom, which are + // located in the interior of the faces. Therefore we compute the residual + // of the function describing the boundary values and the interpolated + // part, which we have computed in the last step. On the faces there are + // two kinds of shape functions, the horizontal and the vertical + // ones. Thus we have to solve two linear systems of equations of size + // degree * (degree + 1) to obtain the values for the + // corresponding degrees of freedom. const unsigned int superdegree = dof_handler.get_fe ().degree; const QGauss reference_face_quadrature (2 * superdegree); const unsigned int dofs_per_face = dof_handler.get_fe ().dofs_per_face; @@ -3603,19 +3577,12 @@ namespace VectorTools for (unsigned int face = 0; face < GeometryInfo::faces_per_cell; ++face) if (cell->face (face)->boundary_indicator () == boundary_component) { - // if the FE is a - // FE_Nothing object - // there is no work to - // do + // if the FE is a FE_Nothing object there is no work to do if (dynamic_cast*> (&cell->get_fe ()) != 0) return; - // This is only - // implemented, if the - // FE is a Nedelec - // element. If the FE is - // a FESystem we cannot - // check this. + // This is only implemented, if the FE is a Nedelec + // element. If the FE is a FESystem we cannot check this. if (dynamic_cast*> (&cell->get_fe ()) == 0) { typedef FiniteElement FEL; @@ -3689,19 +3656,12 @@ namespace VectorTools for (unsigned int face = 0; face < GeometryInfo::faces_per_cell; ++face) if (cell->face (face)->boundary_indicator () == boundary_component) { - // if the FE is a - // FE_Nothing object - // there is no work to - // do + // if the FE is a FE_Nothing object there is no work to do if (dynamic_cast*> (&cell->get_fe ()) != 0) return; - // This is only - // implemented, if the - // FE is a Nedelec - // element. If the FE is - // a FESystem we cannot - // check this. + // This is only implemented, if the FE is a Nedelec + // element. If the FE is a FESystem we cannot check this. if (dynamic_cast*> (&cell->get_fe ()) == 0) { typedef FiniteElement FEL; @@ -3731,11 +3691,8 @@ namespace VectorTools first_vector_component, dof_values, dofs_processed); - // If there are higher - // order shape - // functions, there is - // still some work - // left. + // If there are higher order shape functions, there is still + // some work left. if (degree > 0) internals ::compute_face_projection_curl_conforming (cell, face, fe_face_values, @@ -3772,10 +3729,8 @@ namespace VectorTools namespace internals { - // This function computes the - // projection of the boundary - // function on the boundary - // in 2d. + // This function computes the projection of the boundary function on the + // boundary in 2d. template void compute_face_projection_div_conforming (const cell_iterator &cell, @@ -3786,13 +3741,9 @@ namespace VectorTools const std::vector > &jacobians, ConstraintMatrix &constraints) { - // Compute the intergral over - // the product of the normal - // components of the boundary - // function times the normal - // components of the shape - // functions supported on the - // boundary. + // Compute the intergral over the product of the normal components of + // the boundary function times the normal components of the shape + // functions supported on the boundary. const FEValuesExtractors::Vector vec (first_vector_component); const FiniteElement<2> &fe = cell->get_fe (); const std::vector > &normals = fe_values.get_normal_vectors (); @@ -3802,9 +3753,7 @@ namespace VectorTools values (fe_values.n_quadrature_points, Vector (2)); Vector dof_values (fe.dofs_per_face); - // Get the values of the - // boundary function at the - // quadrature points. + // Get the values of the boundary function at the quadrature points. { const std::vector > & quadrature_points = fe_values.get_quadrature_points (); @@ -3834,10 +3783,8 @@ namespace VectorTools cell->face (face)->get_dof_indices (face_dof_indices, cell->active_fe_index ()); - // Copy the computed values - // in the ConstraintMatrix only, - // if the degree of freedom is - // not already constrained. + // Copy the computed values in the ConstraintMatrix only, if the degree + // of freedom is not already constrained. for (unsigned int i = 0; i < fe.dofs_per_face; ++i) if (!(constraints.is_constrained (face_dof_indices[i]))) { @@ -3848,9 +3795,7 @@ namespace VectorTools } } - // dummy implementation of above - // function for all other - // dimensions + // dummy implementation of above function for all other dimensions template void compute_face_projection_div_conforming (const cell_iterator &, @@ -3864,10 +3809,8 @@ namespace VectorTools Assert (false, ExcNotImplemented ()); } - // This function computes the - // projection of the boundary - // function on the boundary - // in 3d. + // This function computes the projection of the boundary function on the + // boundary in 3d. template void compute_face_projection_div_conforming (const cell_iterator &cell, @@ -3879,13 +3822,9 @@ namespace VectorTools std::vector &dof_values, std::vector &projected_dofs) { - // Compute the intergral over - // the product of the normal - // components of the boundary - // function times the normal - // components of the shape - // functions supported on the - // boundary. + // Compute the intergral over the product of the normal components of + // the boundary function times the normal components of the shape + // functions supported on the boundary. const FEValuesExtractors::Vector vec (first_vector_component); const FiniteElement<3> &fe = cell->get_fe (); const std::vector > &normals = fe_values.get_normal_vectors (); @@ -4711,6 +4650,153 @@ namespace VectorTools + namespace + { + template + struct PointComparator + { + bool operator ()(const std_cxx1x::array &p1, + const std_cxx1x::array &p2) + { + for (unsigned int d=0; d class DH, int spacedim> + void + compute_normal_flux_constraints (const DH&dof_handler, + const unsigned int first_vector_component, + const std::set &boundary_ids, + ConstraintMatrix &constraints, + const Mapping &mapping) + { + ConstraintMatrix no_normal_flux_constraints(constraints.get_local_lines()); + compute_no_normal_flux_constraints (dof_handler, + first_vector_component, + boundary_ids, + no_normal_flux_constraints, + mapping); + + // Extract a list that collects all vector components that belong to the + // same node (scalar basis function). When creating that list, we use an + // array of dim components that stores the global degree of freedom. + std::set, PointComparator > vector_dofs; + std::vector face_dofs; + + std::vector > cell_vector_dofs; + for (typename DH::active_cell_iterator cell = + dof_handler.begin_active(); cell != dof_handler.end(); ++cell) + if (!cell->is_artificial()) + for (unsigned int face_no=0; face_no < GeometryInfo::faces_per_cell; + ++face_no) + if (boundary_ids.find(cell->face(face_no)->boundary_indicator()) + != boundary_ids.end()) + { + const FiniteElement &fe = cell->get_fe(); + typename DH::face_iterator face=cell->face(face_no); + + // get the indices of the dofs on this cell... + face_dofs.resize (fe.dofs_per_face); + face->get_dof_indices (face_dofs, cell->active_fe_index()); + + unsigned int n_scalar_indices = 0; + cell_vector_dofs.resize(fe.dofs_per_face); + for (unsigned int i=0; i= first_vector_component && + fe.face_system_to_component_index(i).first < first_vector_component + dim) + { + n_scalar_indices = + std::max(n_scalar_indices, + fe.face_system_to_component_index(i).second); + cell_vector_dofs[fe.face_system_to_component_index(i).second] + [fe.face_system_to_component_index(i).first-first_vector_component] + = face_dofs[i]; + } + + // now we identified the vector indices on the cell, so next + // insert them into the set (it would be expensive to directly + // insert incomplete points into the set) + for (unsigned int i=0; i,PointComparator >:: + const_iterator it=vector_dofs.begin(); it!=vector_dofs.end(); ++it) + { + unsigned int n_constraints = 0; + bool is_constrained[dim]; + for (unsigned int d=0; d 0 && n_constraints < dim) + { + // if more than one no-flux constraint is present, no normal flux + // can be set on the boundary + if (n_constraints > 1) + { + for (unsigned int d=0; d normal; + unsigned constrained_index = -1; + for (unsigned int d=0; d >* constrained + = no_normal_flux_constraints.get_constraint_entries((*it)[constrained_index]); + // find components to which this index is constrained to + Assert(constrained != 0, ExcInternalError()); + Assert(constrained->size() < dim, ExcInternalError()); + for (unsigned int c=0; csize(); ++c) + { + int index = -1; + for (unsigned int d=0; d 1e-13) + constraints.add_entry(new_index, (*it)[constrained_index], + -normal[d]); + } + } + } + } + } + + + namespace internal { template diff --git a/tests/deal.II/normal_flux_01.cc b/tests/deal.II/normal_flux_01.cc new file mode 100644 index 0000000000..b0ec01d7f8 --- /dev/null +++ b/tests/deal.II/normal_flux_01.cc @@ -0,0 +1,94 @@ +// --------------------------------------------------------------------- +// $Id$ +// +// Copyright (C) 2007 - 2013 by the deal.II authors +// +// This file is part of the deal.II library. +// +// The deal.II library is free software; you can use it, redistribute +// it, and/or modify it under the terms of the GNU Lesser General +// Public License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. +// The full text of the license can be found in the file LICENSE at +// the top level of the deal.II distribution. +// +// --------------------------------------------------------------------- + + + +// check the creation of normal flux boundary conditions for a finite +// element that consists of only a single set of vector components +// (i.e. it has dim components). Similar as the no-flux test in no_flux_01.cc + +#include "../tests.h" +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include + + +template +void test (const Triangulation &tr, + const FiniteElement &fe) +{ + DoFHandler dof(tr); + dof.distribute_dofs(fe); + + for (unsigned int i=0; i::faces_per_cell; ++i) + { + deallog << "FE=" << fe.get_name() + << ", case=" << i + << std::endl; + + std::set boundary_ids; + for (unsigned int j=0; j<=i; ++j) + boundary_ids.insert (j); + + ConstraintMatrix cm; + VectorTools::compute_normal_flux_constraints (dof, 0, boundary_ids, cm); + + cm.print (deallog.get_file_stream ()); + } +} + + +template +void test_hyper_cube() +{ + Triangulation tr; + GridGenerator::hyper_cube(tr); + + for (unsigned int i=0; i::faces_per_cell; ++i) + tr.begin_active()->face(i)->set_boundary_indicator (i); + + tr.refine_global(2); + + for (unsigned int degree=1; degree<4; ++degree) + { + FESystem fe (FE_Q(degree), dim); + test(tr, fe); + } +} + + +int main() +{ + std::ofstream logfile ("normal_flux_01/output"); + deallog << std::setprecision (2); + deallog << std::fixed; + deallog.attach(logfile); + deallog.depth_console (0); + deallog.threshold_double(1.e-12); + + test_hyper_cube<2>(); + test_hyper_cube<3>(); +} diff --git a/tests/deal.II/normal_flux_01/cmp/generic b/tests/deal.II/normal_flux_01/cmp/generic new file mode 100644 index 0000000000..4e4bf7d8d4 --- /dev/null +++ b/tests/deal.II/normal_flux_01/cmp/generic @@ -0,0 +1,9560 @@ + +DEAL::FE=FESystem<2>[FE_Q<2>(1)^2], case=0 + 1 = 0 + 5 = 0 + 13 = 0 + 31 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(1)^2], case=1 + 1 = 0 + 5 = 0 + 13 = 0 + 23 = 0 + 25 = 0 + 29 = 0 + 31 = 0 + 45 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(1)^2], case=2 + 2 = 0 + 5 = 0 + 8 = 0 + 13 = 0 + 18 = 0 + 25 = 0 + 29 = 0 + 31 = 0 + 45 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(1)^2], case=3 + 2 = 0 + 5 = 0 + 8 = 0 + 13 = 0 + 18 = 0 + 25 = 0 + 29 = 0 + 31 = 0 + 38 = 0 + 40 = 0 + 45 = 0 + 46 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(2)^2], case=0 + 1 = 0 + 5 = 0 + 31 = 0 + 91 = 0 + 111 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(2)^2], case=1 + 1 = 0 + 5 = 0 + 31 = 0 + 63 = 0 + 65 = 0 + 83 = 0 + 91 = 0 + 111 = 0 + 139 = 0 + 155 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(2)^2], case=2 + 2 = 0 + 5 = 0 + 18 = 0 + 31 = 0 + 50 = 0 + 65 = 0 + 83 = 0 + 91 = 0 + 111 = 0 + 139 = 0 + 155 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(2)^2], case=3 + 2 = 0 + 5 = 0 + 18 = 0 + 31 = 0 + 50 = 0 + 65 = 0 + 83 = 0 + 91 = 0 + 112 = 0 + 122 = 0 + 139 = 0 + 146 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(3)^2], case=0 + 1 = 0 + 5 = 0 + 10 = 0 + 57 = 0 + 62 = 0 + 183 = 0 + 188 = 0 + 225 = 0 + 230 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(3)^2], case=1 + 1 = 0 + 5 = 0 + 10 = 0 + 57 = 0 + 62 = 0 + 123 = 0 + 125 = 0 + 128 = 0 + 165 = 0 + 168 = 0 + 183 = 0 + 188 = 0 + 225 = 0 + 230 = 0 + 285 = 0 + 288 = 0 + 321 = 0 + 324 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(3)^2], case=2 + 2 = 0 + 5 = 0 + 10 = 0 + 16 = 0 + 32 = 0 + 40 = 0 + 57 = 0 + 62 = 0 + 98 = 0 + 106 = 0 + 125 = 0 + 128 = 0 + 130 = 0 + 165 = 0 + 168 = 0 + 183 = 0 + 188 = 0 + 225 = 0 + 230 = 0 + 285 = 0 + 288 = 0 + 321 = 0 + 324 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(3)^2], case=3 + 2 = 0 + 5 = 0 + 10 = 0 + 16 = 0 + 32 = 0 + 40 = 0 + 57 = 0 + 62 = 0 + 98 = 0 + 106 = 0 + 125 = 0 + 128 = 0 + 130 = 0 + 165 = 0 + 168 = 0 + 183 = 0 + 188 = 0 + 226 = 0 + 230 = 0 + 236 = 0 + 248 = 0 + 254 = 0 + 285 = 0 + 288 = 0 + 302 = 0 + 308 = 0 + 324 = 0 + 326 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(1)^3], case=0 + 1 = 0 + 2 = 0 + 7 = 0 + 8 = 0 + 13 = 0 + 14 = 0 + 19 = 0 + 20 = 0 + 37 = 0 + 38 = 0 + 43 = 0 + 44 = 0 + 55 = 0 + 56 = 0 + 61 = 0 + 62 = 0 + 73 = 0 + 74 = 0 + 136 = 0 + 137 = 0 + 142 = 0 + 143 = 0 + 154 = 0 + 155 = 0 + 160 = 0 + 161 = 0 + 172 = 0 + 173 = 0 + 181 = 0 + 182 = 0 + 226 = 0 + 227 = 0 + 232 = 0 + 233 = 0 + 244 = 0 + 245 = 0 + 253 = 0 + 254 = 0 + 259 = 0 + 260 = 0 + 271 = 0 + 272 = 0 + 316 = 0 + 317 = 0 + 325 = 0 + 326 = 0 + 334 = 0 + 335 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(1)^3], case=1 + 1 = 0 + 2 = 0 + 7 = 0 + 8 = 0 + 13 = 0 + 14 = 0 + 19 = 0 + 20 = 0 + 37 = 0 + 38 = 0 + 43 = 0 + 44 = 0 + 55 = 0 + 56 = 0 + 61 = 0 + 62 = 0 + 73 = 0 + 74 = 0 + 94 = 0 + 95 = 0 + 97 = 0 + 98 = 0 + 100 = 0 + 101 = 0 + 103 = 0 + 104 = 0 + 112 = 0 + 113 = 0 + 115 = 0 + 116 = 0 + 124 = 0 + 125 = 0 + 127 = 0 + 128 = 0 + 133 = 0 + 134 = 0 + 136 = 0 + 137 = 0 + 142 = 0 + 143 = 0 + 154 = 0 + 155 = 0 + 160 = 0 + 161 = 0 + 172 = 0 + 173 = 0 + 181 = 0 + 182 = 0 + 196 = 0 + 197 = 0 + 199 = 0 + 200 = 0 + 208 = 0 + 209 = 0 + 211 = 0 + 212 = 0 + 217 = 0 + 218 = 0 + 223 = 0 + 224 = 0 + 226 = 0 + 227 = 0 + 232 = 0 + 233 = 0 + 244 = 0 + 245 = 0 + 253 = 0 + 254 = 0 + 259 = 0 + 260 = 0 + 271 = 0 + 272 = 0 + 286 = 0 + 287 = 0 + 289 = 0 + 290 = 0 + 295 = 0 + 296 = 0 + 304 = 0 + 305 = 0 + 307 = 0 + 308 = 0 + 313 = 0 + 314 = 0 + 316 = 0 + 317 = 0 + 325 = 0 + 326 = 0 + 334 = 0 + 335 = 0 + 355 = 0 + 356 = 0 + 361 = 0 + 362 = 0 + 367 = 0 + 368 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(1)^3], case=2 + 0 = 0 + 1 = 0 + 2 = 0 + 3 = 0 + 5 = 0 + 7 = 0 + 8 = 0 + 12 = 0 + 13 = 0 + 14 = 0 + 15 = 0 + 17 = 0 + 19 = 0 + 20 = 0 + 24 = 0 + 26 = 0 + 30 = 0 + 32 = 0 + 37 = 0 + 38 = 0 + 43 = 0 + 44 = 0 + 54 = 0 + 55 = 0 + 56 = 0 + 57 = 0 + 59 = 0 + 61 = 0 + 62 = 0 + 66 = 0 + 68 = 0 + 73 = 0 + 74 = 0 + 81 = 0 + 83 = 0 + 87 = 0 + 89 = 0 + 93 = 0 + 94 = 0 + 95 = 0 + 97 = 0 + 98 = 0 + 99 = 0 + 100 = 0 + 101 = 0 + 103 = 0 + 104 = 0 + 112 = 0 + 113 = 0 + 115 = 0 + 116 = 0 + 117 = 0 + 119 = 0 + 123 = 0 + 124 = 0 + 125 = 0 + 127 = 0 + 128 = 0 + 133 = 0 + 134 = 0 + 136 = 0 + 137 = 0 + 142 = 0 + 143 = 0 + 154 = 0 + 155 = 0 + 160 = 0 + 161 = 0 + 172 = 0 + 173 = 0 + 181 = 0 + 182 = 0 + 196 = 0 + 197 = 0 + 199 = 0 + 200 = 0 + 208 = 0 + 209 = 0 + 211 = 0 + 212 = 0 + 217 = 0 + 218 = 0 + 223 = 0 + 224 = 0 + 225 = 0 + 226 = 0 + 227 = 0 + 228 = 0 + 230 = 0 + 232 = 0 + 233 = 0 + 237 = 0 + 239 = 0 + 244 = 0 + 245 = 0 + 252 = 0 + 253 = 0 + 254 = 0 + 255 = 0 + 257 = 0 + 259 = 0 + 260 = 0 + 264 = 0 + 266 = 0 + 271 = 0 + 272 = 0 + 279 = 0 + 281 = 0 + 285 = 0 + 286 = 0 + 287 = 0 + 289 = 0 + 290 = 0 + 295 = 0 + 296 = 0 + 297 = 0 + 299 = 0 + 303 = 0 + 304 = 0 + 305 = 0 + 307 = 0 + 308 = 0 + 313 = 0 + 314 = 0 + 316 = 0 + 317 = 0 + 325 = 0 + 326 = 0 + 334 = 0 + 335 = 0 + 355 = 0 + 356 = 0 + 361 = 0 + 362 = 0 + 367 = 0 + 368 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(1)^3], case=3 + 0 = 0 + 1 = 0 + 2 = 0 + 3 = 0 + 5 = 0 + 7 = 0 + 8 = 0 + 12 = 0 + 13 = 0 + 14 = 0 + 15 = 0 + 17 = 0 + 19 = 0 + 20 = 0 + 24 = 0 + 26 = 0 + 30 = 0 + 32 = 0 + 37 = 0 + 38 = 0 + 43 = 0 + 44 = 0 + 54 = 0 + 55 = 0 + 56 = 0 + 57 = 0 + 59 = 0 + 61 = 0 + 62 = 0 + 66 = 0 + 68 = 0 + 73 = 0 + 74 = 0 + 81 = 0 + 83 = 0 + 87 = 0 + 89 = 0 + 93 = 0 + 94 = 0 + 95 = 0 + 97 = 0 + 98 = 0 + 99 = 0 + 100 = 0 + 101 = 0 + 103 = 0 + 104 = 0 + 112 = 0 + 113 = 0 + 115 = 0 + 116 = 0 + 117 = 0 + 119 = 0 + 123 = 0 + 124 = 0 + 125 = 0 + 127 = 0 + 128 = 0 + 133 = 0 + 134 = 0 + 136 = 0 + 137 = 0 + 142 = 0 + 143 = 0 + 153 = 0 + 154 = 0 + 155 = 0 + 156 = 0 + 158 = 0 + 159 = 0 + 160 = 0 + 161 = 0 + 162 = 0 + 164 = 0 + 165 = 0 + 167 = 0 + 168 = 0 + 170 = 0 + 172 = 0 + 173 = 0 + 180 = 0 + 181 = 0 + 182 = 0 + 183 = 0 + 185 = 0 + 186 = 0 + 188 = 0 + 196 = 0 + 197 = 0 + 199 = 0 + 200 = 0 + 201 = 0 + 203 = 0 + 204 = 0 + 206 = 0 + 207 = 0 + 208 = 0 + 209 = 0 + 210 = 0 + 211 = 0 + 212 = 0 + 217 = 0 + 218 = 0 + 219 = 0 + 221 = 0 + 222 = 0 + 223 = 0 + 224 = 0 + 225 = 0 + 226 = 0 + 227 = 0 + 228 = 0 + 230 = 0 + 232 = 0 + 233 = 0 + 237 = 0 + 239 = 0 + 244 = 0 + 245 = 0 + 252 = 0 + 253 = 0 + 254 = 0 + 255 = 0 + 257 = 0 + 259 = 0 + 260 = 0 + 264 = 0 + 266 = 0 + 271 = 0 + 272 = 0 + 279 = 0 + 281 = 0 + 285 = 0 + 286 = 0 + 287 = 0 + 289 = 0 + 290 = 0 + 295 = 0 + 296 = 0 + 297 = 0 + 299 = 0 + 303 = 0 + 304 = 0 + 305 = 0 + 307 = 0 + 308 = 0 + 313 = 0 + 314 = 0 + 316 = 0 + 317 = 0 + 324 = 0 + 325 = 0 + 326 = 0 + 327 = 0 + 329 = 0 + 330 = 0 + 332 = 0 + 334 = 0 + 335 = 0 + 342 = 0 + 343 = 0 + 344 = 0 + 345 = 0 + 347 = 0 + 348 = 0 + 350 = 0 + 355 = 0 + 356 = 0 + 357 = 0 + 359 = 0 + 360 = 0 + 361 = 0 + 362 = 0 + 367 = 0 + 368 = 0 + 369 = 0 + 371 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(1)^3], case=4 + 3 = 0 + 4 = 0 + 5 = 0 + 6 = 0 + 7 = 0 + 8 = 0 + 9 = 0 + 10 = 0 + 12 = 0 + 13 = 0 + 14 = 0 + 15 = 0 + 17 = 0 + 19 = 0 + 20 = 0 + 24 = 0 + 25 = 0 + 26 = 0 + 27 = 0 + 28 = 0 + 30 = 0 + 32 = 0 + 36 = 0 + 37 = 0 + 38 = 0 + 39 = 0 + 40 = 0 + 43 = 0 + 44 = 0 + 48 = 0 + 49 = 0 + 54 = 0 + 55 = 0 + 56 = 0 + 57 = 0 + 59 = 0 + 61 = 0 + 62 = 0 + 66 = 0 + 68 = 0 + 73 = 0 + 74 = 0 + 81 = 0 + 82 = 0 + 83 = 0 + 84 = 0 + 85 = 0 + 87 = 0 + 89 = 0 + 96 = 0 + 97 = 0 + 98 = 0 + 99 = 0 + 100 = 0 + 101 = 0 + 103 = 0 + 104 = 0 + 105 = 0 + 106 = 0 + 111 = 0 + 112 = 0 + 113 = 0 + 115 = 0 + 116 = 0 + 117 = 0 + 119 = 0 + 123 = 0 + 124 = 0 + 125 = 0 + 127 = 0 + 128 = 0 + 133 = 0 + 134 = 0 + 135 = 0 + 136 = 0 + 137 = 0 + 138 = 0 + 139 = 0 + 142 = 0 + 143 = 0 + 147 = 0 + 148 = 0 + 156 = 0 + 157 = 0 + 158 = 0 + 159 = 0 + 160 = 0 + 161 = 0 + 162 = 0 + 164 = 0 + 165 = 0 + 166 = 0 + 167 = 0 + 168 = 0 + 170 = 0 + 172 = 0 + 173 = 0 + 180 = 0 + 181 = 0 + 182 = 0 + 183 = 0 + 185 = 0 + 186 = 0 + 188 = 0 + 189 = 0 + 190 = 0 + 195 = 0 + 196 = 0 + 197 = 0 + 199 = 0 + 200 = 0 + 201 = 0 + 202 = 0 + 203 = 0 + 204 = 0 + 206 = 0 + 210 = 0 + 211 = 0 + 212 = 0 + 217 = 0 + 218 = 0 + 219 = 0 + 221 = 0 + 222 = 0 + 223 = 0 + 224 = 0 + 225 = 0 + 226 = 0 + 227 = 0 + 228 = 0 + 230 = 0 + 232 = 0 + 233 = 0 + 237 = 0 + 239 = 0 + 244 = 0 + 245 = 0 + 252 = 0 + 253 = 0 + 254 = 0 + 255 = 0 + 257 = 0 + 259 = 0 + 260 = 0 + 264 = 0 + 266 = 0 + 271 = 0 + 272 = 0 + 279 = 0 + 281 = 0 + 285 = 0 + 286 = 0 + 287 = 0 + 289 = 0 + 290 = 0 + 295 = 0 + 296 = 0 + 297 = 0 + 299 = 0 + 303 = 0 + 304 = 0 + 305 = 0 + 307 = 0 + 308 = 0 + 313 = 0 + 314 = 0 + 316 = 0 + 317 = 0 + 324 = 0 + 325 = 0 + 326 = 0 + 327 = 0 + 329 = 0 + 330 = 0 + 332 = 0 + 334 = 0 + 335 = 0 + 342 = 0 + 343 = 0 + 344 = 0 + 345 = 0 + 347 = 0 + 348 = 0 + 350 = 0 + 355 = 0 + 356 = 0 + 357 = 0 + 359 = 0 + 360 = 0 + 361 = 0 + 362 = 0 + 367 = 0 + 368 = 0 + 369 = 0 + 371 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(1)^3], case=5 + 3 = 0 + 4 = 0 + 5 = 0 + 6 = 0 + 7 = 0 + 8 = 0 + 9 = 0 + 10 = 0 + 12 = 0 + 13 = 0 + 14 = 0 + 15 = 0 + 17 = 0 + 19 = 0 + 20 = 0 + 24 = 0 + 25 = 0 + 26 = 0 + 27 = 0 + 28 = 0 + 30 = 0 + 32 = 0 + 36 = 0 + 37 = 0 + 38 = 0 + 39 = 0 + 40 = 0 + 43 = 0 + 44 = 0 + 48 = 0 + 49 = 0 + 54 = 0 + 55 = 0 + 56 = 0 + 57 = 0 + 59 = 0 + 61 = 0 + 62 = 0 + 66 = 0 + 68 = 0 + 73 = 0 + 74 = 0 + 81 = 0 + 82 = 0 + 83 = 0 + 84 = 0 + 85 = 0 + 87 = 0 + 89 = 0 + 96 = 0 + 97 = 0 + 98 = 0 + 99 = 0 + 100 = 0 + 101 = 0 + 103 = 0 + 104 = 0 + 105 = 0 + 106 = 0 + 111 = 0 + 112 = 0 + 113 = 0 + 115 = 0 + 116 = 0 + 117 = 0 + 119 = 0 + 123 = 0 + 124 = 0 + 125 = 0 + 127 = 0 + 128 = 0 + 133 = 0 + 134 = 0 + 135 = 0 + 136 = 0 + 137 = 0 + 138 = 0 + 139 = 0 + 142 = 0 + 143 = 0 + 147 = 0 + 148 = 0 + 156 = 0 + 157 = 0 + 158 = 0 + 159 = 0 + 160 = 0 + 161 = 0 + 162 = 0 + 164 = 0 + 165 = 0 + 166 = 0 + 167 = 0 + 168 = 0 + 170 = 0 + 172 = 0 + 173 = 0 + 180 = 0 + 181 = 0 + 182 = 0 + 183 = 0 + 185 = 0 + 186 = 0 + 188 = 0 + 189 = 0 + 190 = 0 + 195 = 0 + 196 = 0 + 197 = 0 + 199 = 0 + 200 = 0 + 201 = 0 + 202 = 0 + 203 = 0 + 204 = 0 + 206 = 0 + 210 = 0 + 211 = 0 + 212 = 0 + 217 = 0 + 218 = 0 + 219 = 0 + 221 = 0 + 222 = 0 + 223 = 0 + 224 = 0 + 225 = 0 + 226 = 0 + 227 = 0 + 228 = 0 + 230 = 0 + 232 = 0 + 233 = 0 + 237 = 0 + 239 = 0 + 244 = 0 + 245 = 0 + 255 = 0 + 256 = 0 + 257 = 0 + 258 = 0 + 259 = 0 + 260 = 0 + 261 = 0 + 262 = 0 + 264 = 0 + 265 = 0 + 266 = 0 + 267 = 0 + 268 = 0 + 270 = 0 + 271 = 0 + 272 = 0 + 273 = 0 + 274 = 0 + 276 = 0 + 277 = 0 + 279 = 0 + 281 = 0 + 285 = 0 + 286 = 0 + 287 = 0 + 289 = 0 + 290 = 0 + 295 = 0 + 296 = 0 + 297 = 0 + 298 = 0 + 299 = 0 + 300 = 0 + 301 = 0 + 306 = 0 + 307 = 0 + 308 = 0 + 309 = 0 + 310 = 0 + 312 = 0 + 313 = 0 + 314 = 0 + 316 = 0 + 317 = 0 + 324 = 0 + 325 = 0 + 326 = 0 + 327 = 0 + 329 = 0 + 330 = 0 + 332 = 0 + 333 = 0 + 334 = 0 + 335 = 0 + 336 = 0 + 337 = 0 + 339 = 0 + 340 = 0 + 345 = 0 + 346 = 0 + 347 = 0 + 348 = 0 + 349 = 0 + 350 = 0 + 355 = 0 + 356 = 0 + 357 = 0 + 359 = 0 + 360 = 0 + 361 = 0 + 362 = 0 + 363 = 0 + 364 = 0 + 366 = 0 + 367 = 0 + 368 = 0 + 369 = 0 + 370 = 0 + 371 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(2)^3], case=0 + 1 = 0 + 2 = 0 + 7 = 0 + 8 = 0 + 13 = 0 + 14 = 0 + 19 = 0 + 20 = 0 + 25 = 0 + 26 = 0 + 37 = 0 + 38 = 0 + 49 = 0 + 50 = 0 + 55 = 0 + 56 = 0 + 136 = 0 + 137 = 0 + 142 = 0 + 143 = 0 + 148 = 0 + 149 = 0 + 157 = 0 + 158 = 0 + 166 = 0 + 167 = 0 + 226 = 0 + 227 = 0 + 232 = 0 + 233 = 0 + 238 = 0 + 239 = 0 + 250 = 0 + 251 = 0 + 256 = 0 + 257 = 0 + 316 = 0 + 317 = 0 + 322 = 0 + 323 = 0 + 331 = 0 + 332 = 0 + 676 = 0 + 677 = 0 + 682 = 0 + 683 = 0 + 688 = 0 + 689 = 0 + 697 = 0 + 698 = 0 + 706 = 0 + 707 = 0 + 766 = 0 + 767 = 0 + 772 = 0 + 773 = 0 + 778 = 0 + 779 = 0 + 787 = 0 + 788 = 0 + 796 = 0 + 797 = 0 + 856 = 0 + 857 = 0 + 862 = 0 + 863 = 0 + 871 = 0 + 872 = 0 + 916 = 0 + 917 = 0 + 922 = 0 + 923 = 0 + 931 = 0 + 932 = 0 + 1216 = 0 + 1217 = 0 + 1222 = 0 + 1223 = 0 + 1228 = 0 + 1229 = 0 + 1240 = 0 + 1241 = 0 + 1246 = 0 + 1247 = 0 + 1306 = 0 + 1307 = 0 + 1312 = 0 + 1313 = 0 + 1321 = 0 + 1322 = 0 + 1366 = 0 + 1367 = 0 + 1372 = 0 + 1373 = 0 + 1378 = 0 + 1379 = 0 + 1390 = 0 + 1391 = 0 + 1396 = 0 + 1397 = 0 + 1456 = 0 + 1457 = 0 + 1462 = 0 + 1463 = 0 + 1471 = 0 + 1472 = 0 + 1756 = 0 + 1757 = 0 + 1762 = 0 + 1763 = 0 + 1771 = 0 + 1772 = 0 + 1816 = 0 + 1817 = 0 + 1822 = 0 + 1823 = 0 + 1831 = 0 + 1832 = 0 + 1876 = 0 + 1877 = 0 + 1882 = 0 + 1883 = 0 + 1891 = 0 + 1892 = 0 + 1936 = 0 + 1937 = 0 + 1942 = 0 + 1943 = 0 + 1951 = 0 + 1952 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(2)^3], case=1 + 1 = 0 + 2 = 0 + 7 = 0 + 8 = 0 + 13 = 0 + 14 = 0 + 19 = 0 + 20 = 0 + 25 = 0 + 26 = 0 + 37 = 0 + 38 = 0 + 49 = 0 + 50 = 0 + 55 = 0 + 56 = 0 + 136 = 0 + 137 = 0 + 142 = 0 + 143 = 0 + 148 = 0 + 149 = 0 + 157 = 0 + 158 = 0 + 166 = 0 + 167 = 0 + 226 = 0 + 227 = 0 + 232 = 0 + 233 = 0 + 238 = 0 + 239 = 0 + 250 = 0 + 251 = 0 + 256 = 0 + 257 = 0 + 316 = 0 + 317 = 0 + 322 = 0 + 323 = 0 + 331 = 0 + 332 = 0 + 430 = 0 + 431 = 0 + 433 = 0 + 434 = 0 + 436 = 0 + 437 = 0 + 439 = 0 + 440 = 0 + 442 = 0 + 443 = 0 + 451 = 0 + 452 = 0 + 460 = 0 + 461 = 0 + 463 = 0 + 464 = 0 + 520 = 0 + 521 = 0 + 523 = 0 + 524 = 0 + 526 = 0 + 527 = 0 + 532 = 0 + 533 = 0 + 538 = 0 + 539 = 0 + 592 = 0 + 593 = 0 + 595 = 0 + 596 = 0 + 598 = 0 + 599 = 0 + 607 = 0 + 608 = 0 + 610 = 0 + 611 = 0 + 652 = 0 + 653 = 0 + 655 = 0 + 656 = 0 + 661 = 0 + 662 = 0 + 676 = 0 + 677 = 0 + 682 = 0 + 683 = 0 + 688 = 0 + 689 = 0 + 697 = 0 + 698 = 0 + 706 = 0 + 707 = 0 + 766 = 0 + 767 = 0 + 772 = 0 + 773 = 0 + 778 = 0 + 779 = 0 + 787 = 0 + 788 = 0 + 796 = 0 + 797 = 0 + 856 = 0 + 857 = 0 + 862 = 0 + 863 = 0 + 871 = 0 + 872 = 0 + 916 = 0 + 917 = 0 + 922 = 0 + 923 = 0 + 931 = 0 + 932 = 0 + 1012 = 0 + 1013 = 0 + 1015 = 0 + 1016 = 0 + 1018 = 0 + 1019 = 0 + 1024 = 0 + 1025 = 0 + 1030 = 0 + 1031 = 0 + 1084 = 0 + 1085 = 0 + 1087 = 0 + 1088 = 0 + 1090 = 0 + 1091 = 0 + 1096 = 0 + 1097 = 0 + 1102 = 0 + 1103 = 0 + 1144 = 0 + 1145 = 0 + 1147 = 0 + 1148 = 0 + 1153 = 0 + 1154 = 0 + 1192 = 0 + 1193 = 0 + 1195 = 0 + 1196 = 0 + 1201 = 0 + 1202 = 0 + 1216 = 0 + 1217 = 0 + 1222 = 0 + 1223 = 0 + 1228 = 0 + 1229 = 0 + 1240 = 0 + 1241 = 0 + 1246 = 0 + 1247 = 0 + 1306 = 0 + 1307 = 0 + 1312 = 0 + 1313 = 0 + 1321 = 0 + 1322 = 0 + 1366 = 0 + 1367 = 0 + 1372 = 0 + 1373 = 0 + 1378 = 0 + 1379 = 0 + 1390 = 0 + 1391 = 0 + 1396 = 0 + 1397 = 0 + 1456 = 0 + 1457 = 0 + 1462 = 0 + 1463 = 0 + 1471 = 0 + 1472 = 0 + 1552 = 0 + 1553 = 0 + 1555 = 0 + 1556 = 0 + 1558 = 0 + 1559 = 0 + 1567 = 0 + 1568 = 0 + 1570 = 0 + 1571 = 0 + 1612 = 0 + 1613 = 0 + 1615 = 0 + 1616 = 0 + 1621 = 0 + 1622 = 0 + 1672 = 0 + 1673 = 0 + 1675 = 0 + 1676 = 0 + 1678 = 0 + 1679 = 0 + 1687 = 0 + 1688 = 0 + 1690 = 0 + 1691 = 0 + 1732 = 0 + 1733 = 0 + 1735 = 0 + 1736 = 0 + 1741 = 0 + 1742 = 0 + 1756 = 0 + 1757 = 0 + 1762 = 0 + 1763 = 0 + 1771 = 0 + 1772 = 0 + 1816 = 0 + 1817 = 0 + 1822 = 0 + 1823 = 0 + 1831 = 0 + 1832 = 0 + 1876 = 0 + 1877 = 0 + 1882 = 0 + 1883 = 0 + 1891 = 0 + 1892 = 0 + 1936 = 0 + 1937 = 0 + 1942 = 0 + 1943 = 0 + 1951 = 0 + 1952 = 0 + 2020 = 0 + 2021 = 0 + 2023 = 0 + 2024 = 0 + 2029 = 0 + 2030 = 0 + 2068 = 0 + 2069 = 0 + 2071 = 0 + 2072 = 0 + 2077 = 0 + 2078 = 0 + 2116 = 0 + 2117 = 0 + 2119 = 0 + 2120 = 0 + 2125 = 0 + 2126 = 0 + 2164 = 0 + 2165 = 0 + 2167 = 0 + 2168 = 0 + 2173 = 0 + 2174 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(2)^3], case=2 + 0 = 0 + 1 = 0 + 2 = 0 + 3 = 0 + 5 = 0 + 7 = 0 + 8 = 0 + 12 = 0 + 13 = 0 + 14 = 0 + 15 = 0 + 17 = 0 + 19 = 0 + 20 = 0 + 25 = 0 + 26 = 0 + 30 = 0 + 32 = 0 + 37 = 0 + 38 = 0 + 42 = 0 + 44 = 0 + 48 = 0 + 49 = 0 + 50 = 0 + 51 = 0 + 53 = 0 + 55 = 0 + 56 = 0 + 81 = 0 + 83 = 0 + 87 = 0 + 89 = 0 + 96 = 0 + 98 = 0 + 105 = 0 + 107 = 0 + 111 = 0 + 113 = 0 + 136 = 0 + 137 = 0 + 142 = 0 + 143 = 0 + 148 = 0 + 149 = 0 + 157 = 0 + 158 = 0 + 166 = 0 + 167 = 0 + 225 = 0 + 226 = 0 + 227 = 0 + 228 = 0 + 230 = 0 + 232 = 0 + 233 = 0 + 238 = 0 + 239 = 0 + 243 = 0 + 245 = 0 + 249 = 0 + 250 = 0 + 251 = 0 + 252 = 0 + 254 = 0 + 256 = 0 + 257 = 0 + 279 = 0 + 281 = 0 + 288 = 0 + 290 = 0 + 294 = 0 + 296 = 0 + 316 = 0 + 317 = 0 + 322 = 0 + 323 = 0 + 331 = 0 + 332 = 0 + 375 = 0 + 377 = 0 + 381 = 0 + 383 = 0 + 390 = 0 + 392 = 0 + 399 = 0 + 401 = 0 + 405 = 0 + 407 = 0 + 429 = 0 + 430 = 0 + 431 = 0 + 433 = 0 + 434 = 0 + 435 = 0 + 436 = 0 + 437 = 0 + 439 = 0 + 440 = 0 + 442 = 0 + 443 = 0 + 444 = 0 + 446 = 0 + 451 = 0 + 452 = 0 + 453 = 0 + 455 = 0 + 459 = 0 + 460 = 0 + 461 = 0 + 463 = 0 + 464 = 0 + 520 = 0 + 521 = 0 + 523 = 0 + 524 = 0 + 526 = 0 + 527 = 0 + 532 = 0 + 533 = 0 + 538 = 0 + 539 = 0 + 555 = 0 + 557 = 0 + 564 = 0 + 566 = 0 + 570 = 0 + 572 = 0 + 591 = 0 + 592 = 0 + 593 = 0 + 595 = 0 + 596 = 0 + 598 = 0 + 599 = 0 + 600 = 0 + 602 = 0 + 606 = 0 + 607 = 0 + 608 = 0 + 610 = 0 + 611 = 0 + 652 = 0 + 653 = 0 + 655 = 0 + 656 = 0 + 661 = 0 + 662 = 0 + 676 = 0 + 677 = 0 + 682 = 0 + 683 = 0 + 688 = 0 + 689 = 0 + 697 = 0 + 698 = 0 + 706 = 0 + 707 = 0 + 766 = 0 + 767 = 0 + 772 = 0 + 773 = 0 + 778 = 0 + 779 = 0 + 787 = 0 + 788 = 0 + 796 = 0 + 797 = 0 + 856 = 0 + 857 = 0 + 862 = 0 + 863 = 0 + 871 = 0 + 872 = 0 + 916 = 0 + 917 = 0 + 922 = 0 + 923 = 0 + 931 = 0 + 932 = 0 + 1012 = 0 + 1013 = 0 + 1015 = 0 + 1016 = 0 + 1018 = 0 + 1019 = 0 + 1024 = 0 + 1025 = 0 + 1030 = 0 + 1031 = 0 + 1084 = 0 + 1085 = 0 + 1087 = 0 + 1088 = 0 + 1090 = 0 + 1091 = 0 + 1096 = 0 + 1097 = 0 + 1102 = 0 + 1103 = 0 + 1144 = 0 + 1145 = 0 + 1147 = 0 + 1148 = 0 + 1153 = 0 + 1154 = 0 + 1192 = 0 + 1193 = 0 + 1195 = 0 + 1196 = 0 + 1201 = 0 + 1202 = 0 + 1215 = 0 + 1216 = 0 + 1217 = 0 + 1218 = 0 + 1220 = 0 + 1222 = 0 + 1223 = 0 + 1228 = 0 + 1229 = 0 + 1233 = 0 + 1235 = 0 + 1239 = 0 + 1240 = 0 + 1241 = 0 + 1242 = 0 + 1244 = 0 + 1246 = 0 + 1247 = 0 + 1269 = 0 + 1271 = 0 + 1278 = 0 + 1280 = 0 + 1284 = 0 + 1286 = 0 + 1306 = 0 + 1307 = 0 + 1312 = 0 + 1313 = 0 + 1321 = 0 + 1322 = 0 + 1365 = 0 + 1366 = 0 + 1367 = 0 + 1368 = 0 + 1370 = 0 + 1372 = 0 + 1373 = 0 + 1378 = 0 + 1379 = 0 + 1383 = 0 + 1385 = 0 + 1389 = 0 + 1390 = 0 + 1391 = 0 + 1392 = 0 + 1394 = 0 + 1396 = 0 + 1397 = 0 + 1419 = 0 + 1421 = 0 + 1428 = 0 + 1430 = 0 + 1434 = 0 + 1436 = 0 + 1456 = 0 + 1457 = 0 + 1462 = 0 + 1463 = 0 + 1471 = 0 + 1472 = 0 + 1515 = 0 + 1517 = 0 + 1524 = 0 + 1526 = 0 + 1530 = 0 + 1532 = 0 + 1551 = 0 + 1552 = 0 + 1553 = 0 + 1555 = 0 + 1556 = 0 + 1558 = 0 + 1559 = 0 + 1560 = 0 + 1562 = 0 + 1566 = 0 + 1567 = 0 + 1568 = 0 + 1570 = 0 + 1571 = 0 + 1612 = 0 + 1613 = 0 + 1615 = 0 + 1616 = 0 + 1621 = 0 + 1622 = 0 + 1635 = 0 + 1637 = 0 + 1644 = 0 + 1646 = 0 + 1650 = 0 + 1652 = 0 + 1671 = 0 + 1672 = 0 + 1673 = 0 + 1675 = 0 + 1676 = 0 + 1678 = 0 + 1679 = 0 + 1680 = 0 + 1682 = 0 + 1686 = 0 + 1687 = 0 + 1688 = 0 + 1690 = 0 + 1691 = 0 + 1732 = 0 + 1733 = 0 + 1735 = 0 + 1736 = 0 + 1741 = 0 + 1742 = 0 + 1756 = 0 + 1757 = 0 + 1762 = 0 + 1763 = 0 + 1771 = 0 + 1772 = 0 + 1816 = 0 + 1817 = 0 + 1822 = 0 + 1823 = 0 + 1831 = 0 + 1832 = 0 + 1876 = 0 + 1877 = 0 + 1882 = 0 + 1883 = 0 + 1891 = 0 + 1892 = 0 + 1936 = 0 + 1937 = 0 + 1942 = 0 + 1943 = 0 + 1951 = 0 + 1952 = 0 + 2020 = 0 + 2021 = 0 + 2023 = 0 + 2024 = 0 + 2029 = 0 + 2030 = 0 + 2068 = 0 + 2069 = 0 + 2071 = 0 + 2072 = 0 + 2077 = 0 + 2078 = 0 + 2116 = 0 + 2117 = 0 + 2119 = 0 + 2120 = 0 + 2125 = 0 + 2126 = 0 + 2164 = 0 + 2165 = 0 + 2167 = 0 + 2168 = 0 + 2173 = 0 + 2174 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(2)^3], case=3 + 0 = 0 + 1 = 0 + 2 = 0 + 3 = 0 + 5 = 0 + 7 = 0 + 8 = 0 + 12 = 0 + 13 = 0 + 14 = 0 + 15 = 0 + 17 = 0 + 19 = 0 + 20 = 0 + 25 = 0 + 26 = 0 + 30 = 0 + 32 = 0 + 37 = 0 + 38 = 0 + 42 = 0 + 44 = 0 + 48 = 0 + 49 = 0 + 50 = 0 + 51 = 0 + 53 = 0 + 55 = 0 + 56 = 0 + 81 = 0 + 83 = 0 + 87 = 0 + 89 = 0 + 96 = 0 + 98 = 0 + 105 = 0 + 107 = 0 + 111 = 0 + 113 = 0 + 136 = 0 + 137 = 0 + 142 = 0 + 143 = 0 + 148 = 0 + 149 = 0 + 157 = 0 + 158 = 0 + 166 = 0 + 167 = 0 + 225 = 0 + 226 = 0 + 227 = 0 + 228 = 0 + 230 = 0 + 232 = 0 + 233 = 0 + 238 = 0 + 239 = 0 + 243 = 0 + 245 = 0 + 249 = 0 + 250 = 0 + 251 = 0 + 252 = 0 + 254 = 0 + 256 = 0 + 257 = 0 + 279 = 0 + 281 = 0 + 288 = 0 + 290 = 0 + 294 = 0 + 296 = 0 + 316 = 0 + 317 = 0 + 322 = 0 + 323 = 0 + 331 = 0 + 332 = 0 + 375 = 0 + 377 = 0 + 381 = 0 + 383 = 0 + 390 = 0 + 392 = 0 + 399 = 0 + 401 = 0 + 405 = 0 + 407 = 0 + 429 = 0 + 430 = 0 + 431 = 0 + 433 = 0 + 434 = 0 + 435 = 0 + 436 = 0 + 437 = 0 + 439 = 0 + 440 = 0 + 442 = 0 + 443 = 0 + 444 = 0 + 446 = 0 + 451 = 0 + 452 = 0 + 453 = 0 + 455 = 0 + 459 = 0 + 460 = 0 + 461 = 0 + 463 = 0 + 464 = 0 + 520 = 0 + 521 = 0 + 523 = 0 + 524 = 0 + 526 = 0 + 527 = 0 + 532 = 0 + 533 = 0 + 538 = 0 + 539 = 0 + 555 = 0 + 557 = 0 + 564 = 0 + 566 = 0 + 570 = 0 + 572 = 0 + 591 = 0 + 592 = 0 + 593 = 0 + 595 = 0 + 596 = 0 + 598 = 0 + 599 = 0 + 600 = 0 + 602 = 0 + 606 = 0 + 607 = 0 + 608 = 0 + 610 = 0 + 611 = 0 + 652 = 0 + 653 = 0 + 655 = 0 + 656 = 0 + 661 = 0 + 662 = 0 + 676 = 0 + 677 = 0 + 682 = 0 + 683 = 0 + 688 = 0 + 689 = 0 + 697 = 0 + 698 = 0 + 706 = 0 + 707 = 0 + 765 = 0 + 766 = 0 + 767 = 0 + 768 = 0 + 770 = 0 + 771 = 0 + 772 = 0 + 773 = 0 + 774 = 0 + 776 = 0 + 778 = 0 + 779 = 0 + 783 = 0 + 785 = 0 + 787 = 0 + 788 = 0 + 792 = 0 + 794 = 0 + 795 = 0 + 796 = 0 + 797 = 0 + 798 = 0 + 800 = 0 + 819 = 0 + 821 = 0 + 822 = 0 + 824 = 0 + 828 = 0 + 830 = 0 + 834 = 0 + 836 = 0 + 837 = 0 + 839 = 0 + 856 = 0 + 857 = 0 + 862 = 0 + 863 = 0 + 871 = 0 + 872 = 0 + 915 = 0 + 916 = 0 + 917 = 0 + 918 = 0 + 920 = 0 + 922 = 0 + 923 = 0 + 927 = 0 + 929 = 0 + 930 = 0 + 931 = 0 + 932 = 0 + 933 = 0 + 935 = 0 + 951 = 0 + 953 = 0 + 957 = 0 + 959 = 0 + 960 = 0 + 962 = 0 + 1012 = 0 + 1013 = 0 + 1015 = 0 + 1016 = 0 + 1018 = 0 + 1019 = 0 + 1024 = 0 + 1025 = 0 + 1030 = 0 + 1031 = 0 + 1047 = 0 + 1049 = 0 + 1050 = 0 + 1052 = 0 + 1056 = 0 + 1058 = 0 + 1062 = 0 + 1064 = 0 + 1065 = 0 + 1067 = 0 + 1083 = 0 + 1084 = 0 + 1085 = 0 + 1086 = 0 + 1087 = 0 + 1088 = 0 + 1090 = 0 + 1091 = 0 + 1092 = 0 + 1094 = 0 + 1096 = 0 + 1097 = 0 + 1098 = 0 + 1100 = 0 + 1101 = 0 + 1102 = 0 + 1103 = 0 + 1144 = 0 + 1145 = 0 + 1147 = 0 + 1148 = 0 + 1153 = 0 + 1154 = 0 + 1167 = 0 + 1169 = 0 + 1173 = 0 + 1175 = 0 + 1176 = 0 + 1178 = 0 + 1191 = 0 + 1192 = 0 + 1193 = 0 + 1195 = 0 + 1196 = 0 + 1197 = 0 + 1199 = 0 + 1200 = 0 + 1201 = 0 + 1202 = 0 + 1215 = 0 + 1216 = 0 + 1217 = 0 + 1218 = 0 + 1220 = 0 + 1222 = 0 + 1223 = 0 + 1228 = 0 + 1229 = 0 + 1233 = 0 + 1235 = 0 + 1239 = 0 + 1240 = 0 + 1241 = 0 + 1242 = 0 + 1244 = 0 + 1246 = 0 + 1247 = 0 + 1269 = 0 + 1271 = 0 + 1278 = 0 + 1280 = 0 + 1284 = 0 + 1286 = 0 + 1306 = 0 + 1307 = 0 + 1312 = 0 + 1313 = 0 + 1321 = 0 + 1322 = 0 + 1365 = 0 + 1366 = 0 + 1367 = 0 + 1368 = 0 + 1370 = 0 + 1372 = 0 + 1373 = 0 + 1378 = 0 + 1379 = 0 + 1383 = 0 + 1385 = 0 + 1389 = 0 + 1390 = 0 + 1391 = 0 + 1392 = 0 + 1394 = 0 + 1396 = 0 + 1397 = 0 + 1419 = 0 + 1421 = 0 + 1428 = 0 + 1430 = 0 + 1434 = 0 + 1436 = 0 + 1456 = 0 + 1457 = 0 + 1462 = 0 + 1463 = 0 + 1471 = 0 + 1472 = 0 + 1515 = 0 + 1517 = 0 + 1524 = 0 + 1526 = 0 + 1530 = 0 + 1532 = 0 + 1551 = 0 + 1552 = 0 + 1553 = 0 + 1555 = 0 + 1556 = 0 + 1558 = 0 + 1559 = 0 + 1560 = 0 + 1562 = 0 + 1566 = 0 + 1567 = 0 + 1568 = 0 + 1570 = 0 + 1571 = 0 + 1612 = 0 + 1613 = 0 + 1615 = 0 + 1616 = 0 + 1621 = 0 + 1622 = 0 + 1635 = 0 + 1637 = 0 + 1644 = 0 + 1646 = 0 + 1650 = 0 + 1652 = 0 + 1671 = 0 + 1672 = 0 + 1673 = 0 + 1675 = 0 + 1676 = 0 + 1678 = 0 + 1679 = 0 + 1680 = 0 + 1682 = 0 + 1686 = 0 + 1687 = 0 + 1688 = 0 + 1690 = 0 + 1691 = 0 + 1732 = 0 + 1733 = 0 + 1735 = 0 + 1736 = 0 + 1741 = 0 + 1742 = 0 + 1756 = 0 + 1757 = 0 + 1762 = 0 + 1763 = 0 + 1771 = 0 + 1772 = 0 + 1815 = 0 + 1816 = 0 + 1817 = 0 + 1818 = 0 + 1820 = 0 + 1822 = 0 + 1823 = 0 + 1827 = 0 + 1829 = 0 + 1830 = 0 + 1831 = 0 + 1832 = 0 + 1833 = 0 + 1835 = 0 + 1851 = 0 + 1853 = 0 + 1857 = 0 + 1859 = 0 + 1860 = 0 + 1862 = 0 + 1876 = 0 + 1877 = 0 + 1882 = 0 + 1883 = 0 + 1891 = 0 + 1892 = 0 + 1935 = 0 + 1936 = 0 + 1937 = 0 + 1938 = 0 + 1940 = 0 + 1942 = 0 + 1943 = 0 + 1947 = 0 + 1949 = 0 + 1950 = 0 + 1951 = 0 + 1952 = 0 + 1953 = 0 + 1955 = 0 + 1971 = 0 + 1973 = 0 + 1977 = 0 + 1979 = 0 + 1980 = 0 + 1982 = 0 + 2020 = 0 + 2021 = 0 + 2023 = 0 + 2024 = 0 + 2029 = 0 + 2030 = 0 + 2043 = 0 + 2045 = 0 + 2049 = 0 + 2051 = 0 + 2052 = 0 + 2054 = 0 + 2067 = 0 + 2068 = 0 + 2069 = 0 + 2071 = 0 + 2072 = 0 + 2073 = 0 + 2075 = 0 + 2076 = 0 + 2077 = 0 + 2078 = 0 + 2116 = 0 + 2117 = 0 + 2119 = 0 + 2120 = 0 + 2125 = 0 + 2126 = 0 + 2139 = 0 + 2141 = 0 + 2145 = 0 + 2147 = 0 + 2148 = 0 + 2150 = 0 + 2163 = 0 + 2164 = 0 + 2165 = 0 + 2167 = 0 + 2168 = 0 + 2169 = 0 + 2171 = 0 + 2172 = 0 + 2173 = 0 + 2174 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(2)^3], case=4 + 3 = 0 + 4 = 0 + 5 = 0 + 6 = 0 + 7 = 0 + 8 = 0 + 9 = 0 + 10 = 0 + 12 = 0 + 13 = 0 + 14 = 0 + 15 = 0 + 17 = 0 + 19 = 0 + 20 = 0 + 24 = 0 + 25 = 0 + 26 = 0 + 27 = 0 + 28 = 0 + 30 = 0 + 31 = 0 + 32 = 0 + 33 = 0 + 34 = 0 + 37 = 0 + 38 = 0 + 42 = 0 + 44 = 0 + 48 = 0 + 49 = 0 + 50 = 0 + 51 = 0 + 53 = 0 + 55 = 0 + 56 = 0 + 81 = 0 + 82 = 0 + 83 = 0 + 84 = 0 + 85 = 0 + 87 = 0 + 89 = 0 + 93 = 0 + 94 = 0 + 96 = 0 + 97 = 0 + 98 = 0 + 99 = 0 + 100 = 0 + 105 = 0 + 107 = 0 + 111 = 0 + 113 = 0 + 135 = 0 + 136 = 0 + 137 = 0 + 138 = 0 + 139 = 0 + 142 = 0 + 143 = 0 + 147 = 0 + 148 = 0 + 149 = 0 + 150 = 0 + 151 = 0 + 153 = 0 + 154 = 0 + 157 = 0 + 158 = 0 + 166 = 0 + 167 = 0 + 189 = 0 + 190 = 0 + 195 = 0 + 196 = 0 + 198 = 0 + 199 = 0 + 225 = 0 + 226 = 0 + 227 = 0 + 228 = 0 + 230 = 0 + 232 = 0 + 233 = 0 + 238 = 0 + 239 = 0 + 243 = 0 + 245 = 0 + 249 = 0 + 250 = 0 + 251 = 0 + 252 = 0 + 254 = 0 + 256 = 0 + 257 = 0 + 279 = 0 + 281 = 0 + 288 = 0 + 290 = 0 + 294 = 0 + 296 = 0 + 316 = 0 + 317 = 0 + 322 = 0 + 323 = 0 + 331 = 0 + 332 = 0 + 375 = 0 + 376 = 0 + 377 = 0 + 378 = 0 + 379 = 0 + 381 = 0 + 383 = 0 + 387 = 0 + 388 = 0 + 390 = 0 + 391 = 0 + 392 = 0 + 393 = 0 + 394 = 0 + 399 = 0 + 401 = 0 + 405 = 0 + 407 = 0 + 432 = 0 + 433 = 0 + 434 = 0 + 435 = 0 + 436 = 0 + 437 = 0 + 439 = 0 + 440 = 0 + 441 = 0 + 442 = 0 + 443 = 0 + 444 = 0 + 445 = 0 + 446 = 0 + 447 = 0 + 448 = 0 + 451 = 0 + 452 = 0 + 453 = 0 + 455 = 0 + 459 = 0 + 460 = 0 + 461 = 0 + 463 = 0 + 464 = 0 + 483 = 0 + 484 = 0 + 489 = 0 + 490 = 0 + 492 = 0 + 493 = 0 + 519 = 0 + 520 = 0 + 521 = 0 + 523 = 0 + 524 = 0 + 525 = 0 + 526 = 0 + 527 = 0 + 528 = 0 + 529 = 0 + 532 = 0 + 533 = 0 + 538 = 0 + 539 = 0 + 555 = 0 + 557 = 0 + 564 = 0 + 566 = 0 + 570 = 0 + 572 = 0 + 591 = 0 + 592 = 0 + 593 = 0 + 595 = 0 + 596 = 0 + 598 = 0 + 599 = 0 + 600 = 0 + 602 = 0 + 606 = 0 + 607 = 0 + 608 = 0 + 610 = 0 + 611 = 0 + 652 = 0 + 653 = 0 + 655 = 0 + 656 = 0 + 661 = 0 + 662 = 0 + 675 = 0 + 676 = 0 + 677 = 0 + 678 = 0 + 679 = 0 + 682 = 0 + 683 = 0 + 687 = 0 + 688 = 0 + 689 = 0 + 690 = 0 + 691 = 0 + 693 = 0 + 694 = 0 + 697 = 0 + 698 = 0 + 706 = 0 + 707 = 0 + 729 = 0 + 730 = 0 + 735 = 0 + 736 = 0 + 738 = 0 + 739 = 0 + 768 = 0 + 769 = 0 + 770 = 0 + 771 = 0 + 772 = 0 + 773 = 0 + 774 = 0 + 776 = 0 + 777 = 0 + 778 = 0 + 779 = 0 + 780 = 0 + 781 = 0 + 783 = 0 + 784 = 0 + 785 = 0 + 787 = 0 + 788 = 0 + 792 = 0 + 794 = 0 + 795 = 0 + 796 = 0 + 797 = 0 + 798 = 0 + 800 = 0 + 819 = 0 + 820 = 0 + 821 = 0 + 822 = 0 + 824 = 0 + 825 = 0 + 826 = 0 + 828 = 0 + 829 = 0 + 830 = 0 + 834 = 0 + 836 = 0 + 837 = 0 + 839 = 0 + 856 = 0 + 857 = 0 + 862 = 0 + 863 = 0 + 871 = 0 + 872 = 0 + 915 = 0 + 916 = 0 + 917 = 0 + 918 = 0 + 920 = 0 + 922 = 0 + 923 = 0 + 927 = 0 + 929 = 0 + 930 = 0 + 931 = 0 + 932 = 0 + 933 = 0 + 935 = 0 + 951 = 0 + 953 = 0 + 957 = 0 + 959 = 0 + 960 = 0 + 962 = 0 + 975 = 0 + 976 = 0 + 981 = 0 + 982 = 0 + 984 = 0 + 985 = 0 + 1011 = 0 + 1012 = 0 + 1013 = 0 + 1015 = 0 + 1016 = 0 + 1017 = 0 + 1018 = 0 + 1019 = 0 + 1020 = 0 + 1021 = 0 + 1024 = 0 + 1025 = 0 + 1030 = 0 + 1031 = 0 + 1047 = 0 + 1048 = 0 + 1049 = 0 + 1050 = 0 + 1052 = 0 + 1053 = 0 + 1054 = 0 + 1056 = 0 + 1057 = 0 + 1058 = 0 + 1062 = 0 + 1064 = 0 + 1065 = 0 + 1067 = 0 + 1086 = 0 + 1087 = 0 + 1088 = 0 + 1089 = 0 + 1090 = 0 + 1091 = 0 + 1092 = 0 + 1093 = 0 + 1094 = 0 + 1096 = 0 + 1097 = 0 + 1098 = 0 + 1100 = 0 + 1101 = 0 + 1102 = 0 + 1103 = 0 + 1144 = 0 + 1145 = 0 + 1147 = 0 + 1148 = 0 + 1153 = 0 + 1154 = 0 + 1167 = 0 + 1169 = 0 + 1173 = 0 + 1175 = 0 + 1176 = 0 + 1178 = 0 + 1191 = 0 + 1192 = 0 + 1193 = 0 + 1195 = 0 + 1196 = 0 + 1197 = 0 + 1199 = 0 + 1200 = 0 + 1201 = 0 + 1202 = 0 + 1215 = 0 + 1216 = 0 + 1217 = 0 + 1218 = 0 + 1220 = 0 + 1222 = 0 + 1223 = 0 + 1228 = 0 + 1229 = 0 + 1233 = 0 + 1235 = 0 + 1239 = 0 + 1240 = 0 + 1241 = 0 + 1242 = 0 + 1244 = 0 + 1246 = 0 + 1247 = 0 + 1269 = 0 + 1271 = 0 + 1278 = 0 + 1280 = 0 + 1284 = 0 + 1286 = 0 + 1306 = 0 + 1307 = 0 + 1312 = 0 + 1313 = 0 + 1321 = 0 + 1322 = 0 + 1365 = 0 + 1366 = 0 + 1367 = 0 + 1368 = 0 + 1370 = 0 + 1372 = 0 + 1373 = 0 + 1378 = 0 + 1379 = 0 + 1383 = 0 + 1385 = 0 + 1389 = 0 + 1390 = 0 + 1391 = 0 + 1392 = 0 + 1394 = 0 + 1396 = 0 + 1397 = 0 + 1419 = 0 + 1421 = 0 + 1428 = 0 + 1430 = 0 + 1434 = 0 + 1436 = 0 + 1456 = 0 + 1457 = 0 + 1462 = 0 + 1463 = 0 + 1471 = 0 + 1472 = 0 + 1515 = 0 + 1517 = 0 + 1524 = 0 + 1526 = 0 + 1530 = 0 + 1532 = 0 + 1551 = 0 + 1552 = 0 + 1553 = 0 + 1555 = 0 + 1556 = 0 + 1558 = 0 + 1559 = 0 + 1560 = 0 + 1562 = 0 + 1566 = 0 + 1567 = 0 + 1568 = 0 + 1570 = 0 + 1571 = 0 + 1612 = 0 + 1613 = 0 + 1615 = 0 + 1616 = 0 + 1621 = 0 + 1622 = 0 + 1635 = 0 + 1637 = 0 + 1644 = 0 + 1646 = 0 + 1650 = 0 + 1652 = 0 + 1671 = 0 + 1672 = 0 + 1673 = 0 + 1675 = 0 + 1676 = 0 + 1678 = 0 + 1679 = 0 + 1680 = 0 + 1682 = 0 + 1686 = 0 + 1687 = 0 + 1688 = 0 + 1690 = 0 + 1691 = 0 + 1732 = 0 + 1733 = 0 + 1735 = 0 + 1736 = 0 + 1741 = 0 + 1742 = 0 + 1756 = 0 + 1757 = 0 + 1762 = 0 + 1763 = 0 + 1771 = 0 + 1772 = 0 + 1815 = 0 + 1816 = 0 + 1817 = 0 + 1818 = 0 + 1820 = 0 + 1822 = 0 + 1823 = 0 + 1827 = 0 + 1829 = 0 + 1830 = 0 + 1831 = 0 + 1832 = 0 + 1833 = 0 + 1835 = 0 + 1851 = 0 + 1853 = 0 + 1857 = 0 + 1859 = 0 + 1860 = 0 + 1862 = 0 + 1876 = 0 + 1877 = 0 + 1882 = 0 + 1883 = 0 + 1891 = 0 + 1892 = 0 + 1935 = 0 + 1936 = 0 + 1937 = 0 + 1938 = 0 + 1940 = 0 + 1942 = 0 + 1943 = 0 + 1947 = 0 + 1949 = 0 + 1950 = 0 + 1951 = 0 + 1952 = 0 + 1953 = 0 + 1955 = 0 + 1971 = 0 + 1973 = 0 + 1977 = 0 + 1979 = 0 + 1980 = 0 + 1982 = 0 + 2020 = 0 + 2021 = 0 + 2023 = 0 + 2024 = 0 + 2029 = 0 + 2030 = 0 + 2043 = 0 + 2045 = 0 + 2049 = 0 + 2051 = 0 + 2052 = 0 + 2054 = 0 + 2067 = 0 + 2068 = 0 + 2069 = 0 + 2071 = 0 + 2072 = 0 + 2073 = 0 + 2075 = 0 + 2076 = 0 + 2077 = 0 + 2078 = 0 + 2116 = 0 + 2117 = 0 + 2119 = 0 + 2120 = 0 + 2125 = 0 + 2126 = 0 + 2139 = 0 + 2141 = 0 + 2145 = 0 + 2147 = 0 + 2148 = 0 + 2150 = 0 + 2163 = 0 + 2164 = 0 + 2165 = 0 + 2167 = 0 + 2168 = 0 + 2169 = 0 + 2171 = 0 + 2172 = 0 + 2173 = 0 + 2174 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(2)^3], case=5 + 3 = 0 + 4 = 0 + 5 = 0 + 6 = 0 + 7 = 0 + 8 = 0 + 9 = 0 + 10 = 0 + 12 = 0 + 13 = 0 + 14 = 0 + 15 = 0 + 17 = 0 + 19 = 0 + 20 = 0 + 24 = 0 + 25 = 0 + 26 = 0 + 27 = 0 + 28 = 0 + 30 = 0 + 31 = 0 + 32 = 0 + 33 = 0 + 34 = 0 + 37 = 0 + 38 = 0 + 42 = 0 + 44 = 0 + 48 = 0 + 49 = 0 + 50 = 0 + 51 = 0 + 53 = 0 + 55 = 0 + 56 = 0 + 81 = 0 + 82 = 0 + 83 = 0 + 84 = 0 + 85 = 0 + 87 = 0 + 89 = 0 + 93 = 0 + 94 = 0 + 96 = 0 + 97 = 0 + 98 = 0 + 99 = 0 + 100 = 0 + 105 = 0 + 107 = 0 + 111 = 0 + 113 = 0 + 135 = 0 + 136 = 0 + 137 = 0 + 138 = 0 + 139 = 0 + 142 = 0 + 143 = 0 + 147 = 0 + 148 = 0 + 149 = 0 + 150 = 0 + 151 = 0 + 153 = 0 + 154 = 0 + 157 = 0 + 158 = 0 + 166 = 0 + 167 = 0 + 189 = 0 + 190 = 0 + 195 = 0 + 196 = 0 + 198 = 0 + 199 = 0 + 225 = 0 + 226 = 0 + 227 = 0 + 228 = 0 + 230 = 0 + 232 = 0 + 233 = 0 + 238 = 0 + 239 = 0 + 243 = 0 + 245 = 0 + 249 = 0 + 250 = 0 + 251 = 0 + 252 = 0 + 254 = 0 + 256 = 0 + 257 = 0 + 279 = 0 + 281 = 0 + 288 = 0 + 290 = 0 + 294 = 0 + 296 = 0 + 316 = 0 + 317 = 0 + 322 = 0 + 323 = 0 + 331 = 0 + 332 = 0 + 375 = 0 + 376 = 0 + 377 = 0 + 378 = 0 + 379 = 0 + 381 = 0 + 383 = 0 + 387 = 0 + 388 = 0 + 390 = 0 + 391 = 0 + 392 = 0 + 393 = 0 + 394 = 0 + 399 = 0 + 401 = 0 + 405 = 0 + 407 = 0 + 432 = 0 + 433 = 0 + 434 = 0 + 435 = 0 + 436 = 0 + 437 = 0 + 439 = 0 + 440 = 0 + 441 = 0 + 442 = 0 + 443 = 0 + 444 = 0 + 445 = 0 + 446 = 0 + 447 = 0 + 448 = 0 + 451 = 0 + 452 = 0 + 453 = 0 + 455 = 0 + 459 = 0 + 460 = 0 + 461 = 0 + 463 = 0 + 464 = 0 + 483 = 0 + 484 = 0 + 489 = 0 + 490 = 0 + 492 = 0 + 493 = 0 + 519 = 0 + 520 = 0 + 521 = 0 + 523 = 0 + 524 = 0 + 525 = 0 + 526 = 0 + 527 = 0 + 528 = 0 + 529 = 0 + 532 = 0 + 533 = 0 + 538 = 0 + 539 = 0 + 555 = 0 + 557 = 0 + 564 = 0 + 566 = 0 + 570 = 0 + 572 = 0 + 591 = 0 + 592 = 0 + 593 = 0 + 595 = 0 + 596 = 0 + 598 = 0 + 599 = 0 + 600 = 0 + 602 = 0 + 606 = 0 + 607 = 0 + 608 = 0 + 610 = 0 + 611 = 0 + 652 = 0 + 653 = 0 + 655 = 0 + 656 = 0 + 661 = 0 + 662 = 0 + 675 = 0 + 676 = 0 + 677 = 0 + 678 = 0 + 679 = 0 + 682 = 0 + 683 = 0 + 687 = 0 + 688 = 0 + 689 = 0 + 690 = 0 + 691 = 0 + 693 = 0 + 694 = 0 + 697 = 0 + 698 = 0 + 706 = 0 + 707 = 0 + 729 = 0 + 730 = 0 + 735 = 0 + 736 = 0 + 738 = 0 + 739 = 0 + 768 = 0 + 769 = 0 + 770 = 0 + 771 = 0 + 772 = 0 + 773 = 0 + 774 = 0 + 776 = 0 + 777 = 0 + 778 = 0 + 779 = 0 + 780 = 0 + 781 = 0 + 783 = 0 + 784 = 0 + 785 = 0 + 787 = 0 + 788 = 0 + 792 = 0 + 794 = 0 + 795 = 0 + 796 = 0 + 797 = 0 + 798 = 0 + 800 = 0 + 819 = 0 + 820 = 0 + 821 = 0 + 822 = 0 + 824 = 0 + 825 = 0 + 826 = 0 + 828 = 0 + 829 = 0 + 830 = 0 + 834 = 0 + 836 = 0 + 837 = 0 + 839 = 0 + 856 = 0 + 857 = 0 + 862 = 0 + 863 = 0 + 871 = 0 + 872 = 0 + 915 = 0 + 916 = 0 + 917 = 0 + 918 = 0 + 920 = 0 + 922 = 0 + 923 = 0 + 927 = 0 + 929 = 0 + 930 = 0 + 931 = 0 + 932 = 0 + 933 = 0 + 935 = 0 + 951 = 0 + 953 = 0 + 957 = 0 + 959 = 0 + 960 = 0 + 962 = 0 + 975 = 0 + 976 = 0 + 981 = 0 + 982 = 0 + 984 = 0 + 985 = 0 + 1011 = 0 + 1012 = 0 + 1013 = 0 + 1015 = 0 + 1016 = 0 + 1017 = 0 + 1018 = 0 + 1019 = 0 + 1020 = 0 + 1021 = 0 + 1024 = 0 + 1025 = 0 + 1030 = 0 + 1031 = 0 + 1047 = 0 + 1048 = 0 + 1049 = 0 + 1050 = 0 + 1052 = 0 + 1053 = 0 + 1054 = 0 + 1056 = 0 + 1057 = 0 + 1058 = 0 + 1062 = 0 + 1064 = 0 + 1065 = 0 + 1067 = 0 + 1086 = 0 + 1087 = 0 + 1088 = 0 + 1089 = 0 + 1090 = 0 + 1091 = 0 + 1092 = 0 + 1093 = 0 + 1094 = 0 + 1096 = 0 + 1097 = 0 + 1098 = 0 + 1100 = 0 + 1101 = 0 + 1102 = 0 + 1103 = 0 + 1144 = 0 + 1145 = 0 + 1147 = 0 + 1148 = 0 + 1153 = 0 + 1154 = 0 + 1167 = 0 + 1169 = 0 + 1173 = 0 + 1175 = 0 + 1176 = 0 + 1178 = 0 + 1191 = 0 + 1192 = 0 + 1193 = 0 + 1195 = 0 + 1196 = 0 + 1197 = 0 + 1199 = 0 + 1200 = 0 + 1201 = 0 + 1202 = 0 + 1215 = 0 + 1216 = 0 + 1217 = 0 + 1218 = 0 + 1220 = 0 + 1222 = 0 + 1223 = 0 + 1228 = 0 + 1229 = 0 + 1233 = 0 + 1235 = 0 + 1239 = 0 + 1240 = 0 + 1241 = 0 + 1242 = 0 + 1244 = 0 + 1246 = 0 + 1247 = 0 + 1269 = 0 + 1271 = 0 + 1278 = 0 + 1280 = 0 + 1284 = 0 + 1286 = 0 + 1306 = 0 + 1307 = 0 + 1312 = 0 + 1313 = 0 + 1321 = 0 + 1322 = 0 + 1368 = 0 + 1369 = 0 + 1370 = 0 + 1371 = 0 + 1372 = 0 + 1373 = 0 + 1374 = 0 + 1375 = 0 + 1377 = 0 + 1378 = 0 + 1379 = 0 + 1380 = 0 + 1381 = 0 + 1383 = 0 + 1384 = 0 + 1385 = 0 + 1386 = 0 + 1387 = 0 + 1389 = 0 + 1390 = 0 + 1391 = 0 + 1392 = 0 + 1394 = 0 + 1396 = 0 + 1397 = 0 + 1419 = 0 + 1420 = 0 + 1421 = 0 + 1422 = 0 + 1423 = 0 + 1425 = 0 + 1426 = 0 + 1428 = 0 + 1429 = 0 + 1430 = 0 + 1431 = 0 + 1432 = 0 + 1434 = 0 + 1436 = 0 + 1455 = 0 + 1456 = 0 + 1457 = 0 + 1458 = 0 + 1459 = 0 + 1461 = 0 + 1462 = 0 + 1463 = 0 + 1464 = 0 + 1465 = 0 + 1467 = 0 + 1468 = 0 + 1471 = 0 + 1472 = 0 + 1491 = 0 + 1492 = 0 + 1494 = 0 + 1495 = 0 + 1497 = 0 + 1498 = 0 + 1515 = 0 + 1517 = 0 + 1524 = 0 + 1526 = 0 + 1530 = 0 + 1532 = 0 + 1551 = 0 + 1552 = 0 + 1553 = 0 + 1555 = 0 + 1556 = 0 + 1558 = 0 + 1559 = 0 + 1560 = 0 + 1562 = 0 + 1566 = 0 + 1567 = 0 + 1568 = 0 + 1570 = 0 + 1571 = 0 + 1612 = 0 + 1613 = 0 + 1615 = 0 + 1616 = 0 + 1621 = 0 + 1622 = 0 + 1635 = 0 + 1636 = 0 + 1637 = 0 + 1638 = 0 + 1639 = 0 + 1641 = 0 + 1642 = 0 + 1644 = 0 + 1645 = 0 + 1646 = 0 + 1647 = 0 + 1648 = 0 + 1650 = 0 + 1652 = 0 + 1674 = 0 + 1675 = 0 + 1676 = 0 + 1677 = 0 + 1678 = 0 + 1679 = 0 + 1680 = 0 + 1681 = 0 + 1682 = 0 + 1683 = 0 + 1684 = 0 + 1686 = 0 + 1687 = 0 + 1688 = 0 + 1690 = 0 + 1691 = 0 + 1707 = 0 + 1708 = 0 + 1710 = 0 + 1711 = 0 + 1713 = 0 + 1714 = 0 + 1731 = 0 + 1732 = 0 + 1733 = 0 + 1734 = 0 + 1735 = 0 + 1736 = 0 + 1737 = 0 + 1738 = 0 + 1741 = 0 + 1742 = 0 + 1756 = 0 + 1757 = 0 + 1762 = 0 + 1763 = 0 + 1771 = 0 + 1772 = 0 + 1815 = 0 + 1816 = 0 + 1817 = 0 + 1818 = 0 + 1820 = 0 + 1822 = 0 + 1823 = 0 + 1827 = 0 + 1829 = 0 + 1830 = 0 + 1831 = 0 + 1832 = 0 + 1833 = 0 + 1835 = 0 + 1851 = 0 + 1853 = 0 + 1857 = 0 + 1859 = 0 + 1860 = 0 + 1862 = 0 + 1875 = 0 + 1876 = 0 + 1877 = 0 + 1878 = 0 + 1879 = 0 + 1881 = 0 + 1882 = 0 + 1883 = 0 + 1884 = 0 + 1885 = 0 + 1887 = 0 + 1888 = 0 + 1891 = 0 + 1892 = 0 + 1911 = 0 + 1912 = 0 + 1914 = 0 + 1915 = 0 + 1917 = 0 + 1918 = 0 + 1938 = 0 + 1939 = 0 + 1940 = 0 + 1941 = 0 + 1942 = 0 + 1943 = 0 + 1944 = 0 + 1945 = 0 + 1947 = 0 + 1948 = 0 + 1949 = 0 + 1950 = 0 + 1951 = 0 + 1952 = 0 + 1953 = 0 + 1955 = 0 + 1971 = 0 + 1972 = 0 + 1973 = 0 + 1974 = 0 + 1975 = 0 + 1977 = 0 + 1978 = 0 + 1979 = 0 + 1980 = 0 + 1982 = 0 + 2020 = 0 + 2021 = 0 + 2023 = 0 + 2024 = 0 + 2029 = 0 + 2030 = 0 + 2043 = 0 + 2045 = 0 + 2049 = 0 + 2051 = 0 + 2052 = 0 + 2054 = 0 + 2067 = 0 + 2068 = 0 + 2069 = 0 + 2071 = 0 + 2072 = 0 + 2073 = 0 + 2075 = 0 + 2076 = 0 + 2077 = 0 + 2078 = 0 + 2091 = 0 + 2092 = 0 + 2094 = 0 + 2095 = 0 + 2097 = 0 + 2098 = 0 + 2115 = 0 + 2116 = 0 + 2117 = 0 + 2118 = 0 + 2119 = 0 + 2120 = 0 + 2121 = 0 + 2122 = 0 + 2125 = 0 + 2126 = 0 + 2139 = 0 + 2140 = 0 + 2141 = 0 + 2142 = 0 + 2143 = 0 + 2145 = 0 + 2146 = 0 + 2147 = 0 + 2148 = 0 + 2150 = 0 + 2166 = 0 + 2167 = 0 + 2168 = 0 + 2169 = 0 + 2170 = 0 + 2171 = 0 + 2172 = 0 + 2173 = 0 + 2174 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(3)^3], case=0 + 1 = 0 + 2 = 0 + 7 = 0 + 8 = 0 + 13 = 0 + 14 = 0 + 19 = 0 + 20 = 0 + 26 = 0 + 28 = 0 + 27 = 0 + 29 = 0 + 50 = 0 + 52 = 0 + 51 = 0 + 53 = 0 + 74 = 0 + 76 = 0 + 75 = 0 + 77 = 0 + 86 = 0 + 88 = 0 + 87 = 0 + 89 = 0 + 100 = 0 + 104 = 0 + 101 = 0 + 105 = 0 + 102 = 0 + 106 = 0 + 337 = 0 + 338 = 0 + 343 = 0 + 344 = 0 + 350 = 0 + 352 = 0 + 351 = 0 + 353 = 0 + 368 = 0 + 370 = 0 + 369 = 0 + 371 = 0 + 386 = 0 + 388 = 0 + 387 = 0 + 389 = 0 + 400 = 0 + 404 = 0 + 401 = 0 + 405 = 0 + 402 = 0 + 406 = 0 + 589 = 0 + 590 = 0 + 595 = 0 + 596 = 0 + 602 = 0 + 604 = 0 + 603 = 0 + 605 = 0 + 626 = 0 + 628 = 0 + 627 = 0 + 629 = 0 + 638 = 0 + 640 = 0 + 639 = 0 + 641 = 0 + 652 = 0 + 656 = 0 + 653 = 0 + 657 = 0 + 654 = 0 + 658 = 0 + 841 = 0 + 842 = 0 + 848 = 0 + 850 = 0 + 849 = 0 + 851 = 0 + 866 = 0 + 868 = 0 + 867 = 0 + 869 = 0 + 880 = 0 + 884 = 0 + 881 = 0 + 885 = 0 + 882 = 0 + 886 = 0 + 1912 = 0 + 1913 = 0 + 1918 = 0 + 1919 = 0 + 1925 = 0 + 1927 = 0 + 1926 = 0 + 1928 = 0 + 1943 = 0 + 1945 = 0 + 1944 = 0 + 1946 = 0 + 1961 = 0 + 1963 = 0 + 1962 = 0 + 1964 = 0 + 1975 = 0 + 1979 = 0 + 1976 = 0 + 1980 = 0 + 1977 = 0 + 1981 = 0 + 2164 = 0 + 2165 = 0 + 2170 = 0 + 2171 = 0 + 2177 = 0 + 2179 = 0 + 2178 = 0 + 2180 = 0 + 2195 = 0 + 2197 = 0 + 2196 = 0 + 2198 = 0 + 2213 = 0 + 2215 = 0 + 2214 = 0 + 2216 = 0 + 2227 = 0 + 2231 = 0 + 2228 = 0 + 2232 = 0 + 2229 = 0 + 2233 = 0 + 2416 = 0 + 2417 = 0 + 2423 = 0 + 2425 = 0 + 2424 = 0 + 2426 = 0 + 2441 = 0 + 2443 = 0 + 2442 = 0 + 2444 = 0 + 2455 = 0 + 2459 = 0 + 2456 = 0 + 2460 = 0 + 2457 = 0 + 2461 = 0 + 2605 = 0 + 2606 = 0 + 2612 = 0 + 2614 = 0 + 2613 = 0 + 2615 = 0 + 2630 = 0 + 2632 = 0 + 2631 = 0 + 2633 = 0 + 2644 = 0 + 2648 = 0 + 2645 = 0 + 2649 = 0 + 2646 = 0 + 2650 = 0 + 3550 = 0 + 3551 = 0 + 3556 = 0 + 3557 = 0 + 3563 = 0 + 3565 = 0 + 3564 = 0 + 3566 = 0 + 3587 = 0 + 3589 = 0 + 3588 = 0 + 3590 = 0 + 3599 = 0 + 3601 = 0 + 3600 = 0 + 3602 = 0 + 3613 = 0 + 3617 = 0 + 3614 = 0 + 3618 = 0 + 3615 = 0 + 3619 = 0 + 3802 = 0 + 3803 = 0 + 3809 = 0 + 3811 = 0 + 3810 = 0 + 3812 = 0 + 3827 = 0 + 3829 = 0 + 3828 = 0 + 3830 = 0 + 3841 = 0 + 3845 = 0 + 3842 = 0 + 3846 = 0 + 3843 = 0 + 3847 = 0 + 3991 = 0 + 3992 = 0 + 3997 = 0 + 3998 = 0 + 4004 = 0 + 4006 = 0 + 4005 = 0 + 4007 = 0 + 4028 = 0 + 4030 = 0 + 4029 = 0 + 4031 = 0 + 4040 = 0 + 4042 = 0 + 4041 = 0 + 4043 = 0 + 4054 = 0 + 4058 = 0 + 4055 = 0 + 4059 = 0 + 4056 = 0 + 4060 = 0 + 4243 = 0 + 4244 = 0 + 4250 = 0 + 4252 = 0 + 4251 = 0 + 4253 = 0 + 4268 = 0 + 4270 = 0 + 4269 = 0 + 4271 = 0 + 4282 = 0 + 4286 = 0 + 4283 = 0 + 4287 = 0 + 4284 = 0 + 4288 = 0 + 5188 = 0 + 5189 = 0 + 5195 = 0 + 5197 = 0 + 5196 = 0 + 5198 = 0 + 5213 = 0 + 5215 = 0 + 5214 = 0 + 5216 = 0 + 5227 = 0 + 5231 = 0 + 5228 = 0 + 5232 = 0 + 5229 = 0 + 5233 = 0 + 5377 = 0 + 5378 = 0 + 5384 = 0 + 5386 = 0 + 5385 = 0 + 5387 = 0 + 5402 = 0 + 5404 = 0 + 5403 = 0 + 5405 = 0 + 5416 = 0 + 5420 = 0 + 5417 = 0 + 5421 = 0 + 5418 = 0 + 5422 = 0 + 5566 = 0 + 5567 = 0 + 5573 = 0 + 5575 = 0 + 5574 = 0 + 5576 = 0 + 5591 = 0 + 5593 = 0 + 5592 = 0 + 5594 = 0 + 5605 = 0 + 5609 = 0 + 5606 = 0 + 5610 = 0 + 5607 = 0 + 5611 = 0 + 5755 = 0 + 5756 = 0 + 5762 = 0 + 5764 = 0 + 5763 = 0 + 5765 = 0 + 5780 = 0 + 5782 = 0 + 5781 = 0 + 5783 = 0 + 5794 = 0 + 5798 = 0 + 5795 = 0 + 5799 = 0 + 5796 = 0 + 5800 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(3)^3], case=1 + 1 = 0 + 2 = 0 + 7 = 0 + 8 = 0 + 13 = 0 + 14 = 0 + 19 = 0 + 20 = 0 + 26 = 0 + 28 = 0 + 27 = 0 + 29 = 0 + 50 = 0 + 52 = 0 + 51 = 0 + 53 = 0 + 74 = 0 + 76 = 0 + 75 = 0 + 77 = 0 + 86 = 0 + 88 = 0 + 87 = 0 + 89 = 0 + 100 = 0 + 104 = 0 + 101 = 0 + 105 = 0 + 102 = 0 + 106 = 0 + 337 = 0 + 338 = 0 + 343 = 0 + 344 = 0 + 350 = 0 + 352 = 0 + 351 = 0 + 353 = 0 + 368 = 0 + 370 = 0 + 369 = 0 + 371 = 0 + 386 = 0 + 388 = 0 + 387 = 0 + 389 = 0 + 400 = 0 + 404 = 0 + 401 = 0 + 405 = 0 + 402 = 0 + 406 = 0 + 589 = 0 + 590 = 0 + 595 = 0 + 596 = 0 + 602 = 0 + 604 = 0 + 603 = 0 + 605 = 0 + 626 = 0 + 628 = 0 + 627 = 0 + 629 = 0 + 638 = 0 + 640 = 0 + 639 = 0 + 641 = 0 + 652 = 0 + 656 = 0 + 653 = 0 + 657 = 0 + 654 = 0 + 658 = 0 + 841 = 0 + 842 = 0 + 848 = 0 + 850 = 0 + 849 = 0 + 851 = 0 + 866 = 0 + 868 = 0 + 867 = 0 + 869 = 0 + 880 = 0 + 884 = 0 + 881 = 0 + 885 = 0 + 882 = 0 + 886 = 0 + 1174 = 0 + 1175 = 0 + 1177 = 0 + 1178 = 0 + 1180 = 0 + 1181 = 0 + 1183 = 0 + 1184 = 0 + 1187 = 0 + 1189 = 0 + 1188 = 0 + 1190 = 0 + 1205 = 0 + 1207 = 0 + 1206 = 0 + 1208 = 0 + 1223 = 0 + 1225 = 0 + 1224 = 0 + 1226 = 0 + 1229 = 0 + 1231 = 0 + 1230 = 0 + 1232 = 0 + 1237 = 0 + 1241 = 0 + 1238 = 0 + 1242 = 0 + 1239 = 0 + 1243 = 0 + 1426 = 0 + 1427 = 0 + 1429 = 0 + 1430 = 0 + 1433 = 0 + 1435 = 0 + 1434 = 0 + 1436 = 0 + 1445 = 0 + 1447 = 0 + 1446 = 0 + 1448 = 0 + 1457 = 0 + 1459 = 0 + 1458 = 0 + 1460 = 0 + 1465 = 0 + 1469 = 0 + 1466 = 0 + 1470 = 0 + 1467 = 0 + 1471 = 0 + 1642 = 0 + 1643 = 0 + 1645 = 0 + 1646 = 0 + 1649 = 0 + 1651 = 0 + 1650 = 0 + 1652 = 0 + 1667 = 0 + 1669 = 0 + 1668 = 0 + 1670 = 0 + 1673 = 0 + 1675 = 0 + 1674 = 0 + 1676 = 0 + 1681 = 0 + 1685 = 0 + 1682 = 0 + 1686 = 0 + 1683 = 0 + 1687 = 0 + 1831 = 0 + 1832 = 0 + 1835 = 0 + 1837 = 0 + 1836 = 0 + 1838 = 0 + 1847 = 0 + 1849 = 0 + 1848 = 0 + 1850 = 0 + 1855 = 0 + 1859 = 0 + 1856 = 0 + 1860 = 0 + 1857 = 0 + 1861 = 0 + 1912 = 0 + 1913 = 0 + 1918 = 0 + 1919 = 0 + 1925 = 0 + 1927 = 0 + 1926 = 0 + 1928 = 0 + 1943 = 0 + 1945 = 0 + 1944 = 0 + 1946 = 0 + 1961 = 0 + 1963 = 0 + 1962 = 0 + 1964 = 0 + 1975 = 0 + 1979 = 0 + 1976 = 0 + 1980 = 0 + 1977 = 0 + 1981 = 0 + 2164 = 0 + 2165 = 0 + 2170 = 0 + 2171 = 0 + 2177 = 0 + 2179 = 0 + 2178 = 0 + 2180 = 0 + 2195 = 0 + 2197 = 0 + 2196 = 0 + 2198 = 0 + 2213 = 0 + 2215 = 0 + 2214 = 0 + 2216 = 0 + 2227 = 0 + 2231 = 0 + 2228 = 0 + 2232 = 0 + 2229 = 0 + 2233 = 0 + 2416 = 0 + 2417 = 0 + 2423 = 0 + 2425 = 0 + 2424 = 0 + 2426 = 0 + 2441 = 0 + 2443 = 0 + 2442 = 0 + 2444 = 0 + 2455 = 0 + 2459 = 0 + 2456 = 0 + 2460 = 0 + 2457 = 0 + 2461 = 0 + 2605 = 0 + 2606 = 0 + 2612 = 0 + 2614 = 0 + 2613 = 0 + 2615 = 0 + 2630 = 0 + 2632 = 0 + 2631 = 0 + 2633 = 0 + 2644 = 0 + 2648 = 0 + 2645 = 0 + 2649 = 0 + 2646 = 0 + 2650 = 0 + 2902 = 0 + 2903 = 0 + 2905 = 0 + 2906 = 0 + 2909 = 0 + 2911 = 0 + 2910 = 0 + 2912 = 0 + 2921 = 0 + 2923 = 0 + 2922 = 0 + 2924 = 0 + 2933 = 0 + 2935 = 0 + 2934 = 0 + 2936 = 0 + 2941 = 0 + 2945 = 0 + 2942 = 0 + 2946 = 0 + 2943 = 0 + 2947 = 0 + 3118 = 0 + 3119 = 0 + 3121 = 0 + 3122 = 0 + 3125 = 0 + 3127 = 0 + 3126 = 0 + 3128 = 0 + 3137 = 0 + 3139 = 0 + 3138 = 0 + 3140 = 0 + 3149 = 0 + 3151 = 0 + 3150 = 0 + 3152 = 0 + 3157 = 0 + 3161 = 0 + 3158 = 0 + 3162 = 0 + 3159 = 0 + 3163 = 0 + 3307 = 0 + 3308 = 0 + 3311 = 0 + 3313 = 0 + 3312 = 0 + 3314 = 0 + 3323 = 0 + 3325 = 0 + 3324 = 0 + 3326 = 0 + 3331 = 0 + 3335 = 0 + 3332 = 0 + 3336 = 0 + 3333 = 0 + 3337 = 0 + 3469 = 0 + 3470 = 0 + 3473 = 0 + 3475 = 0 + 3474 = 0 + 3476 = 0 + 3485 = 0 + 3487 = 0 + 3486 = 0 + 3488 = 0 + 3493 = 0 + 3497 = 0 + 3494 = 0 + 3498 = 0 + 3495 = 0 + 3499 = 0 + 3550 = 0 + 3551 = 0 + 3556 = 0 + 3557 = 0 + 3563 = 0 + 3565 = 0 + 3564 = 0 + 3566 = 0 + 3587 = 0 + 3589 = 0 + 3588 = 0 + 3590 = 0 + 3599 = 0 + 3601 = 0 + 3600 = 0 + 3602 = 0 + 3613 = 0 + 3617 = 0 + 3614 = 0 + 3618 = 0 + 3615 = 0 + 3619 = 0 + 3802 = 0 + 3803 = 0 + 3809 = 0 + 3811 = 0 + 3810 = 0 + 3812 = 0 + 3827 = 0 + 3829 = 0 + 3828 = 0 + 3830 = 0 + 3841 = 0 + 3845 = 0 + 3842 = 0 + 3846 = 0 + 3843 = 0 + 3847 = 0 + 3991 = 0 + 3992 = 0 + 3997 = 0 + 3998 = 0 + 4004 = 0 + 4006 = 0 + 4005 = 0 + 4007 = 0 + 4028 = 0 + 4030 = 0 + 4029 = 0 + 4031 = 0 + 4040 = 0 + 4042 = 0 + 4041 = 0 + 4043 = 0 + 4054 = 0 + 4058 = 0 + 4055 = 0 + 4059 = 0 + 4056 = 0 + 4060 = 0 + 4243 = 0 + 4244 = 0 + 4250 = 0 + 4252 = 0 + 4251 = 0 + 4253 = 0 + 4268 = 0 + 4270 = 0 + 4269 = 0 + 4271 = 0 + 4282 = 0 + 4286 = 0 + 4283 = 0 + 4287 = 0 + 4284 = 0 + 4288 = 0 + 4540 = 0 + 4541 = 0 + 4543 = 0 + 4544 = 0 + 4547 = 0 + 4549 = 0 + 4548 = 0 + 4550 = 0 + 4565 = 0 + 4567 = 0 + 4566 = 0 + 4568 = 0 + 4571 = 0 + 4573 = 0 + 4572 = 0 + 4574 = 0 + 4579 = 0 + 4583 = 0 + 4580 = 0 + 4584 = 0 + 4581 = 0 + 4585 = 0 + 4729 = 0 + 4730 = 0 + 4733 = 0 + 4735 = 0 + 4734 = 0 + 4736 = 0 + 4745 = 0 + 4747 = 0 + 4746 = 0 + 4748 = 0 + 4753 = 0 + 4757 = 0 + 4754 = 0 + 4758 = 0 + 4755 = 0 + 4759 = 0 + 4918 = 0 + 4919 = 0 + 4921 = 0 + 4922 = 0 + 4925 = 0 + 4927 = 0 + 4926 = 0 + 4928 = 0 + 4943 = 0 + 4945 = 0 + 4944 = 0 + 4946 = 0 + 4949 = 0 + 4951 = 0 + 4950 = 0 + 4952 = 0 + 4957 = 0 + 4961 = 0 + 4958 = 0 + 4962 = 0 + 4959 = 0 + 4963 = 0 + 5107 = 0 + 5108 = 0 + 5111 = 0 + 5113 = 0 + 5112 = 0 + 5114 = 0 + 5123 = 0 + 5125 = 0 + 5124 = 0 + 5126 = 0 + 5131 = 0 + 5135 = 0 + 5132 = 0 + 5136 = 0 + 5133 = 0 + 5137 = 0 + 5188 = 0 + 5189 = 0 + 5195 = 0 + 5197 = 0 + 5196 = 0 + 5198 = 0 + 5213 = 0 + 5215 = 0 + 5214 = 0 + 5216 = 0 + 5227 = 0 + 5231 = 0 + 5228 = 0 + 5232 = 0 + 5229 = 0 + 5233 = 0 + 5377 = 0 + 5378 = 0 + 5384 = 0 + 5386 = 0 + 5385 = 0 + 5387 = 0 + 5402 = 0 + 5404 = 0 + 5403 = 0 + 5405 = 0 + 5416 = 0 + 5420 = 0 + 5417 = 0 + 5421 = 0 + 5418 = 0 + 5422 = 0 + 5566 = 0 + 5567 = 0 + 5573 = 0 + 5575 = 0 + 5574 = 0 + 5576 = 0 + 5591 = 0 + 5593 = 0 + 5592 = 0 + 5594 = 0 + 5605 = 0 + 5609 = 0 + 5606 = 0 + 5610 = 0 + 5607 = 0 + 5611 = 0 + 5755 = 0 + 5756 = 0 + 5762 = 0 + 5764 = 0 + 5763 = 0 + 5765 = 0 + 5780 = 0 + 5782 = 0 + 5781 = 0 + 5783 = 0 + 5794 = 0 + 5798 = 0 + 5795 = 0 + 5799 = 0 + 5796 = 0 + 5800 = 0 + 6025 = 0 + 6026 = 0 + 6029 = 0 + 6031 = 0 + 6030 = 0 + 6032 = 0 + 6041 = 0 + 6043 = 0 + 6042 = 0 + 6044 = 0 + 6049 = 0 + 6053 = 0 + 6050 = 0 + 6054 = 0 + 6051 = 0 + 6055 = 0 + 6187 = 0 + 6188 = 0 + 6191 = 0 + 6193 = 0 + 6192 = 0 + 6194 = 0 + 6203 = 0 + 6205 = 0 + 6204 = 0 + 6206 = 0 + 6211 = 0 + 6215 = 0 + 6212 = 0 + 6216 = 0 + 6213 = 0 + 6217 = 0 + 6349 = 0 + 6350 = 0 + 6353 = 0 + 6355 = 0 + 6354 = 0 + 6356 = 0 + 6365 = 0 + 6367 = 0 + 6366 = 0 + 6368 = 0 + 6373 = 0 + 6377 = 0 + 6374 = 0 + 6378 = 0 + 6375 = 0 + 6379 = 0 + 6511 = 0 + 6512 = 0 + 6515 = 0 + 6517 = 0 + 6516 = 0 + 6518 = 0 + 6527 = 0 + 6529 = 0 + 6528 = 0 + 6530 = 0 + 6535 = 0 + 6539 = 0 + 6536 = 0 + 6540 = 0 + 6537 = 0 + 6541 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(3)^3], case=2 + 0 = 0 + 1 = 0 + 2 = 0 + 3 = 0 + 5 = 0 + 7 = 0 + 8 = 0 + 12 = 0 + 13 = 0 + 14 = 0 + 15 = 0 + 17 = 0 + 19 = 0 + 20 = 0 + 26 = 0 + 28 = 0 + 27 = 0 + 29 = 0 + 36 = 0 + 40 = 0 + 37 = 0 + 41 = 0 + 50 = 0 + 52 = 0 + 51 = 0 + 53 = 0 + 60 = 0 + 64 = 0 + 61 = 0 + 65 = 0 + 72 = 0 + 74 = 0 + 76 = 0 + 73 = 0 + 75 = 0 + 77 = 0 + 78 = 0 + 82 = 0 + 79 = 0 + 83 = 0 + 86 = 0 + 88 = 0 + 87 = 0 + 89 = 0 + 100 = 0 + 104 = 0 + 101 = 0 + 105 = 0 + 102 = 0 + 106 = 0 + 120 = 0 + 128 = 0 + 121 = 0 + 129 = 0 + 122 = 0 + 130 = 0 + 192 = 0 + 194 = 0 + 198 = 0 + 200 = 0 + 210 = 0 + 214 = 0 + 211 = 0 + 215 = 0 + 228 = 0 + 232 = 0 + 229 = 0 + 233 = 0 + 240 = 0 + 244 = 0 + 241 = 0 + 245 = 0 + 264 = 0 + 272 = 0 + 265 = 0 + 273 = 0 + 266 = 0 + 274 = 0 + 337 = 0 + 338 = 0 + 343 = 0 + 344 = 0 + 350 = 0 + 352 = 0 + 351 = 0 + 353 = 0 + 368 = 0 + 370 = 0 + 369 = 0 + 371 = 0 + 386 = 0 + 388 = 0 + 387 = 0 + 389 = 0 + 400 = 0 + 404 = 0 + 401 = 0 + 405 = 0 + 402 = 0 + 406 = 0 + 588 = 0 + 589 = 0 + 590 = 0 + 591 = 0 + 593 = 0 + 595 = 0 + 596 = 0 + 602 = 0 + 604 = 0 + 603 = 0 + 605 = 0 + 612 = 0 + 616 = 0 + 613 = 0 + 617 = 0 + 624 = 0 + 626 = 0 + 628 = 0 + 625 = 0 + 627 = 0 + 629 = 0 + 630 = 0 + 634 = 0 + 631 = 0 + 635 = 0 + 638 = 0 + 640 = 0 + 639 = 0 + 641 = 0 + 652 = 0 + 656 = 0 + 653 = 0 + 657 = 0 + 654 = 0 + 658 = 0 + 672 = 0 + 680 = 0 + 673 = 0 + 681 = 0 + 674 = 0 + 682 = 0 + 732 = 0 + 734 = 0 + 744 = 0 + 748 = 0 + 745 = 0 + 749 = 0 + 756 = 0 + 760 = 0 + 757 = 0 + 761 = 0 + 780 = 0 + 788 = 0 + 781 = 0 + 789 = 0 + 782 = 0 + 790 = 0 + 841 = 0 + 842 = 0 + 848 = 0 + 850 = 0 + 849 = 0 + 851 = 0 + 866 = 0 + 868 = 0 + 867 = 0 + 869 = 0 + 880 = 0 + 884 = 0 + 881 = 0 + 885 = 0 + 882 = 0 + 886 = 0 + 1029 = 0 + 1031 = 0 + 1035 = 0 + 1037 = 0 + 1047 = 0 + 1051 = 0 + 1048 = 0 + 1052 = 0 + 1065 = 0 + 1069 = 0 + 1066 = 0 + 1070 = 0 + 1077 = 0 + 1081 = 0 + 1078 = 0 + 1082 = 0 + 1101 = 0 + 1109 = 0 + 1102 = 0 + 1110 = 0 + 1103 = 0 + 1111 = 0 + 1173 = 0 + 1174 = 0 + 1175 = 0 + 1177 = 0 + 1178 = 0 + 1179 = 0 + 1180 = 0 + 1181 = 0 + 1183 = 0 + 1184 = 0 + 1187 = 0 + 1189 = 0 + 1188 = 0 + 1190 = 0 + 1191 = 0 + 1195 = 0 + 1192 = 0 + 1196 = 0 + 1205 = 0 + 1207 = 0 + 1206 = 0 + 1208 = 0 + 1209 = 0 + 1213 = 0 + 1210 = 0 + 1214 = 0 + 1221 = 0 + 1223 = 0 + 1225 = 0 + 1222 = 0 + 1224 = 0 + 1226 = 0 + 1229 = 0 + 1231 = 0 + 1230 = 0 + 1232 = 0 + 1237 = 0 + 1241 = 0 + 1238 = 0 + 1242 = 0 + 1239 = 0 + 1243 = 0 + 1245 = 0 + 1253 = 0 + 1246 = 0 + 1254 = 0 + 1247 = 0 + 1255 = 0 + 1426 = 0 + 1427 = 0 + 1429 = 0 + 1430 = 0 + 1433 = 0 + 1435 = 0 + 1434 = 0 + 1436 = 0 + 1445 = 0 + 1447 = 0 + 1446 = 0 + 1448 = 0 + 1457 = 0 + 1459 = 0 + 1458 = 0 + 1460 = 0 + 1465 = 0 + 1469 = 0 + 1466 = 0 + 1470 = 0 + 1467 = 0 + 1471 = 0 + 1533 = 0 + 1535 = 0 + 1545 = 0 + 1549 = 0 + 1546 = 0 + 1550 = 0 + 1557 = 0 + 1561 = 0 + 1558 = 0 + 1562 = 0 + 1581 = 0 + 1589 = 0 + 1582 = 0 + 1590 = 0 + 1583 = 0 + 1591 = 0 + 1641 = 0 + 1642 = 0 + 1643 = 0 + 1645 = 0 + 1646 = 0 + 1649 = 0 + 1651 = 0 + 1650 = 0 + 1652 = 0 + 1653 = 0 + 1657 = 0 + 1654 = 0 + 1658 = 0 + 1665 = 0 + 1667 = 0 + 1669 = 0 + 1666 = 0 + 1668 = 0 + 1670 = 0 + 1673 = 0 + 1675 = 0 + 1674 = 0 + 1676 = 0 + 1681 = 0 + 1685 = 0 + 1682 = 0 + 1686 = 0 + 1683 = 0 + 1687 = 0 + 1689 = 0 + 1697 = 0 + 1690 = 0 + 1698 = 0 + 1691 = 0 + 1699 = 0 + 1831 = 0 + 1832 = 0 + 1835 = 0 + 1837 = 0 + 1836 = 0 + 1838 = 0 + 1847 = 0 + 1849 = 0 + 1848 = 0 + 1850 = 0 + 1855 = 0 + 1859 = 0 + 1856 = 0 + 1860 = 0 + 1857 = 0 + 1861 = 0 + 1912 = 0 + 1913 = 0 + 1918 = 0 + 1919 = 0 + 1925 = 0 + 1927 = 0 + 1926 = 0 + 1928 = 0 + 1943 = 0 + 1945 = 0 + 1944 = 0 + 1946 = 0 + 1961 = 0 + 1963 = 0 + 1962 = 0 + 1964 = 0 + 1975 = 0 + 1979 = 0 + 1976 = 0 + 1980 = 0 + 1977 = 0 + 1981 = 0 + 2164 = 0 + 2165 = 0 + 2170 = 0 + 2171 = 0 + 2177 = 0 + 2179 = 0 + 2178 = 0 + 2180 = 0 + 2195 = 0 + 2197 = 0 + 2196 = 0 + 2198 = 0 + 2213 = 0 + 2215 = 0 + 2214 = 0 + 2216 = 0 + 2227 = 0 + 2231 = 0 + 2228 = 0 + 2232 = 0 + 2229 = 0 + 2233 = 0 + 2416 = 0 + 2417 = 0 + 2423 = 0 + 2425 = 0 + 2424 = 0 + 2426 = 0 + 2441 = 0 + 2443 = 0 + 2442 = 0 + 2444 = 0 + 2455 = 0 + 2459 = 0 + 2456 = 0 + 2460 = 0 + 2457 = 0 + 2461 = 0 + 2605 = 0 + 2606 = 0 + 2612 = 0 + 2614 = 0 + 2613 = 0 + 2615 = 0 + 2630 = 0 + 2632 = 0 + 2631 = 0 + 2633 = 0 + 2644 = 0 + 2648 = 0 + 2645 = 0 + 2649 = 0 + 2646 = 0 + 2650 = 0 + 2902 = 0 + 2903 = 0 + 2905 = 0 + 2906 = 0 + 2909 = 0 + 2911 = 0 + 2910 = 0 + 2912 = 0 + 2921 = 0 + 2923 = 0 + 2922 = 0 + 2924 = 0 + 2933 = 0 + 2935 = 0 + 2934 = 0 + 2936 = 0 + 2941 = 0 + 2945 = 0 + 2942 = 0 + 2946 = 0 + 2943 = 0 + 2947 = 0 + 3118 = 0 + 3119 = 0 + 3121 = 0 + 3122 = 0 + 3125 = 0 + 3127 = 0 + 3126 = 0 + 3128 = 0 + 3137 = 0 + 3139 = 0 + 3138 = 0 + 3140 = 0 + 3149 = 0 + 3151 = 0 + 3150 = 0 + 3152 = 0 + 3157 = 0 + 3161 = 0 + 3158 = 0 + 3162 = 0 + 3159 = 0 + 3163 = 0 + 3307 = 0 + 3308 = 0 + 3311 = 0 + 3313 = 0 + 3312 = 0 + 3314 = 0 + 3323 = 0 + 3325 = 0 + 3324 = 0 + 3326 = 0 + 3331 = 0 + 3335 = 0 + 3332 = 0 + 3336 = 0 + 3333 = 0 + 3337 = 0 + 3469 = 0 + 3470 = 0 + 3473 = 0 + 3475 = 0 + 3474 = 0 + 3476 = 0 + 3485 = 0 + 3487 = 0 + 3486 = 0 + 3488 = 0 + 3493 = 0 + 3497 = 0 + 3494 = 0 + 3498 = 0 + 3495 = 0 + 3499 = 0 + 3549 = 0 + 3550 = 0 + 3551 = 0 + 3552 = 0 + 3554 = 0 + 3556 = 0 + 3557 = 0 + 3563 = 0 + 3565 = 0 + 3564 = 0 + 3566 = 0 + 3573 = 0 + 3577 = 0 + 3574 = 0 + 3578 = 0 + 3585 = 0 + 3587 = 0 + 3589 = 0 + 3586 = 0 + 3588 = 0 + 3590 = 0 + 3591 = 0 + 3595 = 0 + 3592 = 0 + 3596 = 0 + 3599 = 0 + 3601 = 0 + 3600 = 0 + 3602 = 0 + 3613 = 0 + 3617 = 0 + 3614 = 0 + 3618 = 0 + 3615 = 0 + 3619 = 0 + 3633 = 0 + 3641 = 0 + 3634 = 0 + 3642 = 0 + 3635 = 0 + 3643 = 0 + 3693 = 0 + 3695 = 0 + 3705 = 0 + 3709 = 0 + 3706 = 0 + 3710 = 0 + 3717 = 0 + 3721 = 0 + 3718 = 0 + 3722 = 0 + 3741 = 0 + 3749 = 0 + 3742 = 0 + 3750 = 0 + 3743 = 0 + 3751 = 0 + 3802 = 0 + 3803 = 0 + 3809 = 0 + 3811 = 0 + 3810 = 0 + 3812 = 0 + 3827 = 0 + 3829 = 0 + 3828 = 0 + 3830 = 0 + 3841 = 0 + 3845 = 0 + 3842 = 0 + 3846 = 0 + 3843 = 0 + 3847 = 0 + 3990 = 0 + 3991 = 0 + 3992 = 0 + 3993 = 0 + 3995 = 0 + 3997 = 0 + 3998 = 0 + 4004 = 0 + 4006 = 0 + 4005 = 0 + 4007 = 0 + 4014 = 0 + 4018 = 0 + 4015 = 0 + 4019 = 0 + 4026 = 0 + 4028 = 0 + 4030 = 0 + 4027 = 0 + 4029 = 0 + 4031 = 0 + 4032 = 0 + 4036 = 0 + 4033 = 0 + 4037 = 0 + 4040 = 0 + 4042 = 0 + 4041 = 0 + 4043 = 0 + 4054 = 0 + 4058 = 0 + 4055 = 0 + 4059 = 0 + 4056 = 0 + 4060 = 0 + 4074 = 0 + 4082 = 0 + 4075 = 0 + 4083 = 0 + 4076 = 0 + 4084 = 0 + 4134 = 0 + 4136 = 0 + 4146 = 0 + 4150 = 0 + 4147 = 0 + 4151 = 0 + 4158 = 0 + 4162 = 0 + 4159 = 0 + 4163 = 0 + 4182 = 0 + 4190 = 0 + 4183 = 0 + 4191 = 0 + 4184 = 0 + 4192 = 0 + 4243 = 0 + 4244 = 0 + 4250 = 0 + 4252 = 0 + 4251 = 0 + 4253 = 0 + 4268 = 0 + 4270 = 0 + 4269 = 0 + 4271 = 0 + 4282 = 0 + 4286 = 0 + 4283 = 0 + 4287 = 0 + 4284 = 0 + 4288 = 0 + 4431 = 0 + 4433 = 0 + 4443 = 0 + 4447 = 0 + 4444 = 0 + 4448 = 0 + 4455 = 0 + 4459 = 0 + 4456 = 0 + 4460 = 0 + 4479 = 0 + 4487 = 0 + 4480 = 0 + 4488 = 0 + 4481 = 0 + 4489 = 0 + 4539 = 0 + 4540 = 0 + 4541 = 0 + 4543 = 0 + 4544 = 0 + 4547 = 0 + 4549 = 0 + 4548 = 0 + 4550 = 0 + 4551 = 0 + 4555 = 0 + 4552 = 0 + 4556 = 0 + 4563 = 0 + 4565 = 0 + 4567 = 0 + 4564 = 0 + 4566 = 0 + 4568 = 0 + 4571 = 0 + 4573 = 0 + 4572 = 0 + 4574 = 0 + 4579 = 0 + 4583 = 0 + 4580 = 0 + 4584 = 0 + 4581 = 0 + 4585 = 0 + 4587 = 0 + 4595 = 0 + 4588 = 0 + 4596 = 0 + 4589 = 0 + 4597 = 0 + 4729 = 0 + 4730 = 0 + 4733 = 0 + 4735 = 0 + 4734 = 0 + 4736 = 0 + 4745 = 0 + 4747 = 0 + 4746 = 0 + 4748 = 0 + 4753 = 0 + 4757 = 0 + 4754 = 0 + 4758 = 0 + 4755 = 0 + 4759 = 0 + 4809 = 0 + 4811 = 0 + 4821 = 0 + 4825 = 0 + 4822 = 0 + 4826 = 0 + 4833 = 0 + 4837 = 0 + 4834 = 0 + 4838 = 0 + 4857 = 0 + 4865 = 0 + 4858 = 0 + 4866 = 0 + 4859 = 0 + 4867 = 0 + 4917 = 0 + 4918 = 0 + 4919 = 0 + 4921 = 0 + 4922 = 0 + 4925 = 0 + 4927 = 0 + 4926 = 0 + 4928 = 0 + 4929 = 0 + 4933 = 0 + 4930 = 0 + 4934 = 0 + 4941 = 0 + 4943 = 0 + 4945 = 0 + 4942 = 0 + 4944 = 0 + 4946 = 0 + 4949 = 0 + 4951 = 0 + 4950 = 0 + 4952 = 0 + 4957 = 0 + 4961 = 0 + 4958 = 0 + 4962 = 0 + 4959 = 0 + 4963 = 0 + 4965 = 0 + 4973 = 0 + 4966 = 0 + 4974 = 0 + 4967 = 0 + 4975 = 0 + 5107 = 0 + 5108 = 0 + 5111 = 0 + 5113 = 0 + 5112 = 0 + 5114 = 0 + 5123 = 0 + 5125 = 0 + 5124 = 0 + 5126 = 0 + 5131 = 0 + 5135 = 0 + 5132 = 0 + 5136 = 0 + 5133 = 0 + 5137 = 0 + 5188 = 0 + 5189 = 0 + 5195 = 0 + 5197 = 0 + 5196 = 0 + 5198 = 0 + 5213 = 0 + 5215 = 0 + 5214 = 0 + 5216 = 0 + 5227 = 0 + 5231 = 0 + 5228 = 0 + 5232 = 0 + 5229 = 0 + 5233 = 0 + 5377 = 0 + 5378 = 0 + 5384 = 0 + 5386 = 0 + 5385 = 0 + 5387 = 0 + 5402 = 0 + 5404 = 0 + 5403 = 0 + 5405 = 0 + 5416 = 0 + 5420 = 0 + 5417 = 0 + 5421 = 0 + 5418 = 0 + 5422 = 0 + 5566 = 0 + 5567 = 0 + 5573 = 0 + 5575 = 0 + 5574 = 0 + 5576 = 0 + 5591 = 0 + 5593 = 0 + 5592 = 0 + 5594 = 0 + 5605 = 0 + 5609 = 0 + 5606 = 0 + 5610 = 0 + 5607 = 0 + 5611 = 0 + 5755 = 0 + 5756 = 0 + 5762 = 0 + 5764 = 0 + 5763 = 0 + 5765 = 0 + 5780 = 0 + 5782 = 0 + 5781 = 0 + 5783 = 0 + 5794 = 0 + 5798 = 0 + 5795 = 0 + 5799 = 0 + 5796 = 0 + 5800 = 0 + 6025 = 0 + 6026 = 0 + 6029 = 0 + 6031 = 0 + 6030 = 0 + 6032 = 0 + 6041 = 0 + 6043 = 0 + 6042 = 0 + 6044 = 0 + 6049 = 0 + 6053 = 0 + 6050 = 0 + 6054 = 0 + 6051 = 0 + 6055 = 0 + 6187 = 0 + 6188 = 0 + 6191 = 0 + 6193 = 0 + 6192 = 0 + 6194 = 0 + 6203 = 0 + 6205 = 0 + 6204 = 0 + 6206 = 0 + 6211 = 0 + 6215 = 0 + 6212 = 0 + 6216 = 0 + 6213 = 0 + 6217 = 0 + 6349 = 0 + 6350 = 0 + 6353 = 0 + 6355 = 0 + 6354 = 0 + 6356 = 0 + 6365 = 0 + 6367 = 0 + 6366 = 0 + 6368 = 0 + 6373 = 0 + 6377 = 0 + 6374 = 0 + 6378 = 0 + 6375 = 0 + 6379 = 0 + 6511 = 0 + 6512 = 0 + 6515 = 0 + 6517 = 0 + 6516 = 0 + 6518 = 0 + 6527 = 0 + 6529 = 0 + 6528 = 0 + 6530 = 0 + 6535 = 0 + 6539 = 0 + 6536 = 0 + 6540 = 0 + 6537 = 0 + 6541 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(3)^3], case=3 + 0 = 0 + 1 = 0 + 2 = 0 + 3 = 0 + 5 = 0 + 7 = 0 + 8 = 0 + 12 = 0 + 13 = 0 + 14 = 0 + 15 = 0 + 17 = 0 + 19 = 0 + 20 = 0 + 26 = 0 + 28 = 0 + 27 = 0 + 29 = 0 + 36 = 0 + 40 = 0 + 37 = 0 + 41 = 0 + 50 = 0 + 52 = 0 + 51 = 0 + 53 = 0 + 60 = 0 + 64 = 0 + 61 = 0 + 65 = 0 + 72 = 0 + 74 = 0 + 76 = 0 + 73 = 0 + 75 = 0 + 77 = 0 + 78 = 0 + 82 = 0 + 79 = 0 + 83 = 0 + 86 = 0 + 88 = 0 + 87 = 0 + 89 = 0 + 100 = 0 + 104 = 0 + 101 = 0 + 105 = 0 + 102 = 0 + 106 = 0 + 120 = 0 + 128 = 0 + 121 = 0 + 129 = 0 + 122 = 0 + 130 = 0 + 192 = 0 + 194 = 0 + 198 = 0 + 200 = 0 + 210 = 0 + 214 = 0 + 211 = 0 + 215 = 0 + 228 = 0 + 232 = 0 + 229 = 0 + 233 = 0 + 240 = 0 + 244 = 0 + 241 = 0 + 245 = 0 + 264 = 0 + 272 = 0 + 265 = 0 + 273 = 0 + 266 = 0 + 274 = 0 + 337 = 0 + 338 = 0 + 343 = 0 + 344 = 0 + 350 = 0 + 352 = 0 + 351 = 0 + 353 = 0 + 368 = 0 + 370 = 0 + 369 = 0 + 371 = 0 + 386 = 0 + 388 = 0 + 387 = 0 + 389 = 0 + 400 = 0 + 404 = 0 + 401 = 0 + 405 = 0 + 402 = 0 + 406 = 0 + 588 = 0 + 589 = 0 + 590 = 0 + 591 = 0 + 593 = 0 + 595 = 0 + 596 = 0 + 602 = 0 + 604 = 0 + 603 = 0 + 605 = 0 + 612 = 0 + 616 = 0 + 613 = 0 + 617 = 0 + 624 = 0 + 626 = 0 + 628 = 0 + 625 = 0 + 627 = 0 + 629 = 0 + 630 = 0 + 634 = 0 + 631 = 0 + 635 = 0 + 638 = 0 + 640 = 0 + 639 = 0 + 641 = 0 + 652 = 0 + 656 = 0 + 653 = 0 + 657 = 0 + 654 = 0 + 658 = 0 + 672 = 0 + 680 = 0 + 673 = 0 + 681 = 0 + 674 = 0 + 682 = 0 + 732 = 0 + 734 = 0 + 744 = 0 + 748 = 0 + 745 = 0 + 749 = 0 + 756 = 0 + 760 = 0 + 757 = 0 + 761 = 0 + 780 = 0 + 788 = 0 + 781 = 0 + 789 = 0 + 782 = 0 + 790 = 0 + 841 = 0 + 842 = 0 + 848 = 0 + 850 = 0 + 849 = 0 + 851 = 0 + 866 = 0 + 868 = 0 + 867 = 0 + 869 = 0 + 880 = 0 + 884 = 0 + 881 = 0 + 885 = 0 + 882 = 0 + 886 = 0 + 1029 = 0 + 1031 = 0 + 1035 = 0 + 1037 = 0 + 1047 = 0 + 1051 = 0 + 1048 = 0 + 1052 = 0 + 1065 = 0 + 1069 = 0 + 1066 = 0 + 1070 = 0 + 1077 = 0 + 1081 = 0 + 1078 = 0 + 1082 = 0 + 1101 = 0 + 1109 = 0 + 1102 = 0 + 1110 = 0 + 1103 = 0 + 1111 = 0 + 1173 = 0 + 1174 = 0 + 1175 = 0 + 1177 = 0 + 1178 = 0 + 1179 = 0 + 1180 = 0 + 1181 = 0 + 1183 = 0 + 1184 = 0 + 1187 = 0 + 1189 = 0 + 1188 = 0 + 1190 = 0 + 1191 = 0 + 1195 = 0 + 1192 = 0 + 1196 = 0 + 1205 = 0 + 1207 = 0 + 1206 = 0 + 1208 = 0 + 1209 = 0 + 1213 = 0 + 1210 = 0 + 1214 = 0 + 1221 = 0 + 1223 = 0 + 1225 = 0 + 1222 = 0 + 1224 = 0 + 1226 = 0 + 1229 = 0 + 1231 = 0 + 1230 = 0 + 1232 = 0 + 1237 = 0 + 1241 = 0 + 1238 = 0 + 1242 = 0 + 1239 = 0 + 1243 = 0 + 1245 = 0 + 1253 = 0 + 1246 = 0 + 1254 = 0 + 1247 = 0 + 1255 = 0 + 1426 = 0 + 1427 = 0 + 1429 = 0 + 1430 = 0 + 1433 = 0 + 1435 = 0 + 1434 = 0 + 1436 = 0 + 1445 = 0 + 1447 = 0 + 1446 = 0 + 1448 = 0 + 1457 = 0 + 1459 = 0 + 1458 = 0 + 1460 = 0 + 1465 = 0 + 1469 = 0 + 1466 = 0 + 1470 = 0 + 1467 = 0 + 1471 = 0 + 1533 = 0 + 1535 = 0 + 1545 = 0 + 1549 = 0 + 1546 = 0 + 1550 = 0 + 1557 = 0 + 1561 = 0 + 1558 = 0 + 1562 = 0 + 1581 = 0 + 1589 = 0 + 1582 = 0 + 1590 = 0 + 1583 = 0 + 1591 = 0 + 1641 = 0 + 1642 = 0 + 1643 = 0 + 1645 = 0 + 1646 = 0 + 1649 = 0 + 1651 = 0 + 1650 = 0 + 1652 = 0 + 1653 = 0 + 1657 = 0 + 1654 = 0 + 1658 = 0 + 1665 = 0 + 1667 = 0 + 1669 = 0 + 1666 = 0 + 1668 = 0 + 1670 = 0 + 1673 = 0 + 1675 = 0 + 1674 = 0 + 1676 = 0 + 1681 = 0 + 1685 = 0 + 1682 = 0 + 1686 = 0 + 1683 = 0 + 1687 = 0 + 1689 = 0 + 1697 = 0 + 1690 = 0 + 1698 = 0 + 1691 = 0 + 1699 = 0 + 1831 = 0 + 1832 = 0 + 1835 = 0 + 1837 = 0 + 1836 = 0 + 1838 = 0 + 1847 = 0 + 1849 = 0 + 1848 = 0 + 1850 = 0 + 1855 = 0 + 1859 = 0 + 1856 = 0 + 1860 = 0 + 1857 = 0 + 1861 = 0 + 1912 = 0 + 1913 = 0 + 1918 = 0 + 1919 = 0 + 1925 = 0 + 1927 = 0 + 1926 = 0 + 1928 = 0 + 1943 = 0 + 1945 = 0 + 1944 = 0 + 1946 = 0 + 1961 = 0 + 1963 = 0 + 1962 = 0 + 1964 = 0 + 1975 = 0 + 1979 = 0 + 1976 = 0 + 1980 = 0 + 1977 = 0 + 1981 = 0 + 2163 = 0 + 2164 = 0 + 2165 = 0 + 2166 = 0 + 2168 = 0 + 2169 = 0 + 2170 = 0 + 2171 = 0 + 2172 = 0 + 2174 = 0 + 2177 = 0 + 2179 = 0 + 2178 = 0 + 2180 = 0 + 2187 = 0 + 2191 = 0 + 2188 = 0 + 2192 = 0 + 2195 = 0 + 2197 = 0 + 2196 = 0 + 2198 = 0 + 2205 = 0 + 2209 = 0 + 2206 = 0 + 2210 = 0 + 2211 = 0 + 2213 = 0 + 2215 = 0 + 2212 = 0 + 2214 = 0 + 2216 = 0 + 2217 = 0 + 2221 = 0 + 2218 = 0 + 2222 = 0 + 2227 = 0 + 2231 = 0 + 2228 = 0 + 2232 = 0 + 2229 = 0 + 2233 = 0 + 2247 = 0 + 2255 = 0 + 2248 = 0 + 2256 = 0 + 2249 = 0 + 2257 = 0 + 2307 = 0 + 2309 = 0 + 2310 = 0 + 2312 = 0 + 2319 = 0 + 2323 = 0 + 2320 = 0 + 2324 = 0 + 2331 = 0 + 2335 = 0 + 2332 = 0 + 2336 = 0 + 2337 = 0 + 2341 = 0 + 2338 = 0 + 2342 = 0 + 2355 = 0 + 2363 = 0 + 2356 = 0 + 2364 = 0 + 2357 = 0 + 2365 = 0 + 2416 = 0 + 2417 = 0 + 2423 = 0 + 2425 = 0 + 2424 = 0 + 2426 = 0 + 2441 = 0 + 2443 = 0 + 2442 = 0 + 2444 = 0 + 2455 = 0 + 2459 = 0 + 2456 = 0 + 2460 = 0 + 2457 = 0 + 2461 = 0 + 2604 = 0 + 2605 = 0 + 2606 = 0 + 2607 = 0 + 2609 = 0 + 2612 = 0 + 2614 = 0 + 2613 = 0 + 2615 = 0 + 2622 = 0 + 2626 = 0 + 2623 = 0 + 2627 = 0 + 2628 = 0 + 2630 = 0 + 2632 = 0 + 2629 = 0 + 2631 = 0 + 2633 = 0 + 2634 = 0 + 2638 = 0 + 2635 = 0 + 2639 = 0 + 2644 = 0 + 2648 = 0 + 2645 = 0 + 2649 = 0 + 2646 = 0 + 2650 = 0 + 2664 = 0 + 2672 = 0 + 2665 = 0 + 2673 = 0 + 2666 = 0 + 2674 = 0 + 2712 = 0 + 2714 = 0 + 2721 = 0 + 2725 = 0 + 2722 = 0 + 2726 = 0 + 2727 = 0 + 2731 = 0 + 2728 = 0 + 2732 = 0 + 2745 = 0 + 2753 = 0 + 2746 = 0 + 2754 = 0 + 2747 = 0 + 2755 = 0 + 2902 = 0 + 2903 = 0 + 2905 = 0 + 2906 = 0 + 2909 = 0 + 2911 = 0 + 2910 = 0 + 2912 = 0 + 2921 = 0 + 2923 = 0 + 2922 = 0 + 2924 = 0 + 2933 = 0 + 2935 = 0 + 2934 = 0 + 2936 = 0 + 2941 = 0 + 2945 = 0 + 2942 = 0 + 2946 = 0 + 2943 = 0 + 2947 = 0 + 3009 = 0 + 3011 = 0 + 3012 = 0 + 3014 = 0 + 3021 = 0 + 3025 = 0 + 3022 = 0 + 3026 = 0 + 3033 = 0 + 3037 = 0 + 3034 = 0 + 3038 = 0 + 3039 = 0 + 3043 = 0 + 3040 = 0 + 3044 = 0 + 3057 = 0 + 3065 = 0 + 3058 = 0 + 3066 = 0 + 3059 = 0 + 3067 = 0 + 3117 = 0 + 3118 = 0 + 3119 = 0 + 3120 = 0 + 3121 = 0 + 3122 = 0 + 3125 = 0 + 3127 = 0 + 3126 = 0 + 3128 = 0 + 3129 = 0 + 3133 = 0 + 3130 = 0 + 3134 = 0 + 3137 = 0 + 3139 = 0 + 3138 = 0 + 3140 = 0 + 3141 = 0 + 3145 = 0 + 3142 = 0 + 3146 = 0 + 3147 = 0 + 3149 = 0 + 3151 = 0 + 3148 = 0 + 3150 = 0 + 3152 = 0 + 3157 = 0 + 3161 = 0 + 3158 = 0 + 3162 = 0 + 3159 = 0 + 3163 = 0 + 3165 = 0 + 3173 = 0 + 3166 = 0 + 3174 = 0 + 3167 = 0 + 3175 = 0 + 3307 = 0 + 3308 = 0 + 3311 = 0 + 3313 = 0 + 3312 = 0 + 3314 = 0 + 3323 = 0 + 3325 = 0 + 3324 = 0 + 3326 = 0 + 3331 = 0 + 3335 = 0 + 3332 = 0 + 3336 = 0 + 3333 = 0 + 3337 = 0 + 3387 = 0 + 3389 = 0 + 3396 = 0 + 3400 = 0 + 3397 = 0 + 3401 = 0 + 3402 = 0 + 3406 = 0 + 3403 = 0 + 3407 = 0 + 3420 = 0 + 3428 = 0 + 3421 = 0 + 3429 = 0 + 3422 = 0 + 3430 = 0 + 3468 = 0 + 3469 = 0 + 3470 = 0 + 3473 = 0 + 3475 = 0 + 3474 = 0 + 3476 = 0 + 3477 = 0 + 3481 = 0 + 3478 = 0 + 3482 = 0 + 3483 = 0 + 3485 = 0 + 3487 = 0 + 3484 = 0 + 3486 = 0 + 3488 = 0 + 3493 = 0 + 3497 = 0 + 3494 = 0 + 3498 = 0 + 3495 = 0 + 3499 = 0 + 3501 = 0 + 3509 = 0 + 3502 = 0 + 3510 = 0 + 3503 = 0 + 3511 = 0 + 3549 = 0 + 3550 = 0 + 3551 = 0 + 3552 = 0 + 3554 = 0 + 3556 = 0 + 3557 = 0 + 3563 = 0 + 3565 = 0 + 3564 = 0 + 3566 = 0 + 3573 = 0 + 3577 = 0 + 3574 = 0 + 3578 = 0 + 3585 = 0 + 3587 = 0 + 3589 = 0 + 3586 = 0 + 3588 = 0 + 3590 = 0 + 3591 = 0 + 3595 = 0 + 3592 = 0 + 3596 = 0 + 3599 = 0 + 3601 = 0 + 3600 = 0 + 3602 = 0 + 3613 = 0 + 3617 = 0 + 3614 = 0 + 3618 = 0 + 3615 = 0 + 3619 = 0 + 3633 = 0 + 3641 = 0 + 3634 = 0 + 3642 = 0 + 3635 = 0 + 3643 = 0 + 3693 = 0 + 3695 = 0 + 3705 = 0 + 3709 = 0 + 3706 = 0 + 3710 = 0 + 3717 = 0 + 3721 = 0 + 3718 = 0 + 3722 = 0 + 3741 = 0 + 3749 = 0 + 3742 = 0 + 3750 = 0 + 3743 = 0 + 3751 = 0 + 3802 = 0 + 3803 = 0 + 3809 = 0 + 3811 = 0 + 3810 = 0 + 3812 = 0 + 3827 = 0 + 3829 = 0 + 3828 = 0 + 3830 = 0 + 3841 = 0 + 3845 = 0 + 3842 = 0 + 3846 = 0 + 3843 = 0 + 3847 = 0 + 3990 = 0 + 3991 = 0 + 3992 = 0 + 3993 = 0 + 3995 = 0 + 3997 = 0 + 3998 = 0 + 4004 = 0 + 4006 = 0 + 4005 = 0 + 4007 = 0 + 4014 = 0 + 4018 = 0 + 4015 = 0 + 4019 = 0 + 4026 = 0 + 4028 = 0 + 4030 = 0 + 4027 = 0 + 4029 = 0 + 4031 = 0 + 4032 = 0 + 4036 = 0 + 4033 = 0 + 4037 = 0 + 4040 = 0 + 4042 = 0 + 4041 = 0 + 4043 = 0 + 4054 = 0 + 4058 = 0 + 4055 = 0 + 4059 = 0 + 4056 = 0 + 4060 = 0 + 4074 = 0 + 4082 = 0 + 4075 = 0 + 4083 = 0 + 4076 = 0 + 4084 = 0 + 4134 = 0 + 4136 = 0 + 4146 = 0 + 4150 = 0 + 4147 = 0 + 4151 = 0 + 4158 = 0 + 4162 = 0 + 4159 = 0 + 4163 = 0 + 4182 = 0 + 4190 = 0 + 4183 = 0 + 4191 = 0 + 4184 = 0 + 4192 = 0 + 4243 = 0 + 4244 = 0 + 4250 = 0 + 4252 = 0 + 4251 = 0 + 4253 = 0 + 4268 = 0 + 4270 = 0 + 4269 = 0 + 4271 = 0 + 4282 = 0 + 4286 = 0 + 4283 = 0 + 4287 = 0 + 4284 = 0 + 4288 = 0 + 4431 = 0 + 4433 = 0 + 4443 = 0 + 4447 = 0 + 4444 = 0 + 4448 = 0 + 4455 = 0 + 4459 = 0 + 4456 = 0 + 4460 = 0 + 4479 = 0 + 4487 = 0 + 4480 = 0 + 4488 = 0 + 4481 = 0 + 4489 = 0 + 4539 = 0 + 4540 = 0 + 4541 = 0 + 4543 = 0 + 4544 = 0 + 4547 = 0 + 4549 = 0 + 4548 = 0 + 4550 = 0 + 4551 = 0 + 4555 = 0 + 4552 = 0 + 4556 = 0 + 4563 = 0 + 4565 = 0 + 4567 = 0 + 4564 = 0 + 4566 = 0 + 4568 = 0 + 4571 = 0 + 4573 = 0 + 4572 = 0 + 4574 = 0 + 4579 = 0 + 4583 = 0 + 4580 = 0 + 4584 = 0 + 4581 = 0 + 4585 = 0 + 4587 = 0 + 4595 = 0 + 4588 = 0 + 4596 = 0 + 4589 = 0 + 4597 = 0 + 4729 = 0 + 4730 = 0 + 4733 = 0 + 4735 = 0 + 4734 = 0 + 4736 = 0 + 4745 = 0 + 4747 = 0 + 4746 = 0 + 4748 = 0 + 4753 = 0 + 4757 = 0 + 4754 = 0 + 4758 = 0 + 4755 = 0 + 4759 = 0 + 4809 = 0 + 4811 = 0 + 4821 = 0 + 4825 = 0 + 4822 = 0 + 4826 = 0 + 4833 = 0 + 4837 = 0 + 4834 = 0 + 4838 = 0 + 4857 = 0 + 4865 = 0 + 4858 = 0 + 4866 = 0 + 4859 = 0 + 4867 = 0 + 4917 = 0 + 4918 = 0 + 4919 = 0 + 4921 = 0 + 4922 = 0 + 4925 = 0 + 4927 = 0 + 4926 = 0 + 4928 = 0 + 4929 = 0 + 4933 = 0 + 4930 = 0 + 4934 = 0 + 4941 = 0 + 4943 = 0 + 4945 = 0 + 4942 = 0 + 4944 = 0 + 4946 = 0 + 4949 = 0 + 4951 = 0 + 4950 = 0 + 4952 = 0 + 4957 = 0 + 4961 = 0 + 4958 = 0 + 4962 = 0 + 4959 = 0 + 4963 = 0 + 4965 = 0 + 4973 = 0 + 4966 = 0 + 4974 = 0 + 4967 = 0 + 4975 = 0 + 5107 = 0 + 5108 = 0 + 5111 = 0 + 5113 = 0 + 5112 = 0 + 5114 = 0 + 5123 = 0 + 5125 = 0 + 5124 = 0 + 5126 = 0 + 5131 = 0 + 5135 = 0 + 5132 = 0 + 5136 = 0 + 5133 = 0 + 5137 = 0 + 5188 = 0 + 5189 = 0 + 5195 = 0 + 5197 = 0 + 5196 = 0 + 5198 = 0 + 5213 = 0 + 5215 = 0 + 5214 = 0 + 5216 = 0 + 5227 = 0 + 5231 = 0 + 5228 = 0 + 5232 = 0 + 5229 = 0 + 5233 = 0 + 5376 = 0 + 5377 = 0 + 5378 = 0 + 5379 = 0 + 5381 = 0 + 5384 = 0 + 5386 = 0 + 5385 = 0 + 5387 = 0 + 5394 = 0 + 5398 = 0 + 5395 = 0 + 5399 = 0 + 5400 = 0 + 5402 = 0 + 5404 = 0 + 5401 = 0 + 5403 = 0 + 5405 = 0 + 5406 = 0 + 5410 = 0 + 5407 = 0 + 5411 = 0 + 5416 = 0 + 5420 = 0 + 5417 = 0 + 5421 = 0 + 5418 = 0 + 5422 = 0 + 5436 = 0 + 5444 = 0 + 5437 = 0 + 5445 = 0 + 5438 = 0 + 5446 = 0 + 5484 = 0 + 5486 = 0 + 5493 = 0 + 5497 = 0 + 5494 = 0 + 5498 = 0 + 5499 = 0 + 5503 = 0 + 5500 = 0 + 5504 = 0 + 5517 = 0 + 5525 = 0 + 5518 = 0 + 5526 = 0 + 5519 = 0 + 5527 = 0 + 5566 = 0 + 5567 = 0 + 5573 = 0 + 5575 = 0 + 5574 = 0 + 5576 = 0 + 5591 = 0 + 5593 = 0 + 5592 = 0 + 5594 = 0 + 5605 = 0 + 5609 = 0 + 5606 = 0 + 5610 = 0 + 5607 = 0 + 5611 = 0 + 5754 = 0 + 5755 = 0 + 5756 = 0 + 5757 = 0 + 5759 = 0 + 5762 = 0 + 5764 = 0 + 5763 = 0 + 5765 = 0 + 5772 = 0 + 5776 = 0 + 5773 = 0 + 5777 = 0 + 5778 = 0 + 5780 = 0 + 5782 = 0 + 5779 = 0 + 5781 = 0 + 5783 = 0 + 5784 = 0 + 5788 = 0 + 5785 = 0 + 5789 = 0 + 5794 = 0 + 5798 = 0 + 5795 = 0 + 5799 = 0 + 5796 = 0 + 5800 = 0 + 5814 = 0 + 5822 = 0 + 5815 = 0 + 5823 = 0 + 5816 = 0 + 5824 = 0 + 5862 = 0 + 5864 = 0 + 5871 = 0 + 5875 = 0 + 5872 = 0 + 5876 = 0 + 5877 = 0 + 5881 = 0 + 5878 = 0 + 5882 = 0 + 5895 = 0 + 5903 = 0 + 5896 = 0 + 5904 = 0 + 5897 = 0 + 5905 = 0 + 6025 = 0 + 6026 = 0 + 6029 = 0 + 6031 = 0 + 6030 = 0 + 6032 = 0 + 6041 = 0 + 6043 = 0 + 6042 = 0 + 6044 = 0 + 6049 = 0 + 6053 = 0 + 6050 = 0 + 6054 = 0 + 6051 = 0 + 6055 = 0 + 6105 = 0 + 6107 = 0 + 6114 = 0 + 6118 = 0 + 6115 = 0 + 6119 = 0 + 6120 = 0 + 6124 = 0 + 6121 = 0 + 6125 = 0 + 6138 = 0 + 6146 = 0 + 6139 = 0 + 6147 = 0 + 6140 = 0 + 6148 = 0 + 6186 = 0 + 6187 = 0 + 6188 = 0 + 6191 = 0 + 6193 = 0 + 6192 = 0 + 6194 = 0 + 6195 = 0 + 6199 = 0 + 6196 = 0 + 6200 = 0 + 6201 = 0 + 6203 = 0 + 6205 = 0 + 6202 = 0 + 6204 = 0 + 6206 = 0 + 6211 = 0 + 6215 = 0 + 6212 = 0 + 6216 = 0 + 6213 = 0 + 6217 = 0 + 6219 = 0 + 6227 = 0 + 6220 = 0 + 6228 = 0 + 6221 = 0 + 6229 = 0 + 6349 = 0 + 6350 = 0 + 6353 = 0 + 6355 = 0 + 6354 = 0 + 6356 = 0 + 6365 = 0 + 6367 = 0 + 6366 = 0 + 6368 = 0 + 6373 = 0 + 6377 = 0 + 6374 = 0 + 6378 = 0 + 6375 = 0 + 6379 = 0 + 6429 = 0 + 6431 = 0 + 6438 = 0 + 6442 = 0 + 6439 = 0 + 6443 = 0 + 6444 = 0 + 6448 = 0 + 6445 = 0 + 6449 = 0 + 6462 = 0 + 6470 = 0 + 6463 = 0 + 6471 = 0 + 6464 = 0 + 6472 = 0 + 6510 = 0 + 6511 = 0 + 6512 = 0 + 6515 = 0 + 6517 = 0 + 6516 = 0 + 6518 = 0 + 6519 = 0 + 6523 = 0 + 6520 = 0 + 6524 = 0 + 6525 = 0 + 6527 = 0 + 6529 = 0 + 6526 = 0 + 6528 = 0 + 6530 = 0 + 6535 = 0 + 6539 = 0 + 6536 = 0 + 6540 = 0 + 6537 = 0 + 6541 = 0 + 6543 = 0 + 6551 = 0 + 6544 = 0 + 6552 = 0 + 6545 = 0 + 6553 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(3)^3], case=4 + 3 = 0 + 4 = 0 + 5 = 0 + 6 = 0 + 7 = 0 + 8 = 0 + 9 = 0 + 10 = 0 + 12 = 0 + 13 = 0 + 14 = 0 + 15 = 0 + 17 = 0 + 19 = 0 + 20 = 0 + 24 = 0 + 26 = 0 + 28 = 0 + 25 = 0 + 27 = 0 + 29 = 0 + 30 = 0 + 32 = 0 + 31 = 0 + 33 = 0 + 36 = 0 + 38 = 0 + 40 = 0 + 37 = 0 + 39 = 0 + 41 = 0 + 42 = 0 + 44 = 0 + 43 = 0 + 45 = 0 + 50 = 0 + 52 = 0 + 51 = 0 + 53 = 0 + 60 = 0 + 64 = 0 + 61 = 0 + 65 = 0 + 72 = 0 + 74 = 0 + 76 = 0 + 73 = 0 + 75 = 0 + 77 = 0 + 78 = 0 + 82 = 0 + 79 = 0 + 83 = 0 + 86 = 0 + 88 = 0 + 87 = 0 + 89 = 0 + 100 = 0 + 104 = 0 + 101 = 0 + 105 = 0 + 102 = 0 + 106 = 0 + 120 = 0 + 128 = 0 + 121 = 0 + 129 = 0 + 122 = 0 + 130 = 0 + 144 = 0 + 148 = 0 + 145 = 0 + 149 = 0 + 146 = 0 + 150 = 0 + 192 = 0 + 193 = 0 + 194 = 0 + 195 = 0 + 196 = 0 + 198 = 0 + 200 = 0 + 204 = 0 + 206 = 0 + 205 = 0 + 207 = 0 + 210 = 0 + 212 = 0 + 214 = 0 + 211 = 0 + 213 = 0 + 215 = 0 + 216 = 0 + 218 = 0 + 217 = 0 + 219 = 0 + 228 = 0 + 232 = 0 + 229 = 0 + 233 = 0 + 240 = 0 + 244 = 0 + 241 = 0 + 245 = 0 + 264 = 0 + 272 = 0 + 265 = 0 + 273 = 0 + 266 = 0 + 274 = 0 + 288 = 0 + 292 = 0 + 289 = 0 + 293 = 0 + 290 = 0 + 294 = 0 + 336 = 0 + 337 = 0 + 338 = 0 + 339 = 0 + 340 = 0 + 343 = 0 + 344 = 0 + 348 = 0 + 350 = 0 + 352 = 0 + 349 = 0 + 351 = 0 + 353 = 0 + 354 = 0 + 356 = 0 + 355 = 0 + 357 = 0 + 360 = 0 + 362 = 0 + 361 = 0 + 363 = 0 + 368 = 0 + 370 = 0 + 369 = 0 + 371 = 0 + 386 = 0 + 388 = 0 + 387 = 0 + 389 = 0 + 400 = 0 + 404 = 0 + 401 = 0 + 405 = 0 + 402 = 0 + 406 = 0 + 432 = 0 + 436 = 0 + 433 = 0 + 437 = 0 + 434 = 0 + 438 = 0 + 480 = 0 + 481 = 0 + 486 = 0 + 488 = 0 + 487 = 0 + 489 = 0 + 492 = 0 + 494 = 0 + 493 = 0 + 495 = 0 + 540 = 0 + 544 = 0 + 541 = 0 + 545 = 0 + 542 = 0 + 546 = 0 + 588 = 0 + 589 = 0 + 590 = 0 + 591 = 0 + 593 = 0 + 595 = 0 + 596 = 0 + 602 = 0 + 604 = 0 + 603 = 0 + 605 = 0 + 612 = 0 + 616 = 0 + 613 = 0 + 617 = 0 + 624 = 0 + 626 = 0 + 628 = 0 + 625 = 0 + 627 = 0 + 629 = 0 + 630 = 0 + 634 = 0 + 631 = 0 + 635 = 0 + 638 = 0 + 640 = 0 + 639 = 0 + 641 = 0 + 652 = 0 + 656 = 0 + 653 = 0 + 657 = 0 + 654 = 0 + 658 = 0 + 672 = 0 + 680 = 0 + 673 = 0 + 681 = 0 + 674 = 0 + 682 = 0 + 732 = 0 + 734 = 0 + 744 = 0 + 748 = 0 + 745 = 0 + 749 = 0 + 756 = 0 + 760 = 0 + 757 = 0 + 761 = 0 + 780 = 0 + 788 = 0 + 781 = 0 + 789 = 0 + 782 = 0 + 790 = 0 + 841 = 0 + 842 = 0 + 848 = 0 + 850 = 0 + 849 = 0 + 851 = 0 + 866 = 0 + 868 = 0 + 867 = 0 + 869 = 0 + 880 = 0 + 884 = 0 + 881 = 0 + 885 = 0 + 882 = 0 + 886 = 0 + 1029 = 0 + 1030 = 0 + 1031 = 0 + 1032 = 0 + 1033 = 0 + 1035 = 0 + 1037 = 0 + 1041 = 0 + 1043 = 0 + 1042 = 0 + 1044 = 0 + 1047 = 0 + 1049 = 0 + 1051 = 0 + 1048 = 0 + 1050 = 0 + 1052 = 0 + 1053 = 0 + 1055 = 0 + 1054 = 0 + 1056 = 0 + 1065 = 0 + 1069 = 0 + 1066 = 0 + 1070 = 0 + 1077 = 0 + 1081 = 0 + 1078 = 0 + 1082 = 0 + 1101 = 0 + 1109 = 0 + 1102 = 0 + 1110 = 0 + 1103 = 0 + 1111 = 0 + 1125 = 0 + 1129 = 0 + 1126 = 0 + 1130 = 0 + 1127 = 0 + 1131 = 0 + 1176 = 0 + 1177 = 0 + 1178 = 0 + 1179 = 0 + 1180 = 0 + 1181 = 0 + 1183 = 0 + 1184 = 0 + 1185 = 0 + 1187 = 0 + 1189 = 0 + 1186 = 0 + 1188 = 0 + 1190 = 0 + 1191 = 0 + 1193 = 0 + 1195 = 0 + 1192 = 0 + 1194 = 0 + 1196 = 0 + 1197 = 0 + 1199 = 0 + 1198 = 0 + 1200 = 0 + 1205 = 0 + 1207 = 0 + 1206 = 0 + 1208 = 0 + 1209 = 0 + 1213 = 0 + 1210 = 0 + 1214 = 0 + 1221 = 0 + 1223 = 0 + 1225 = 0 + 1222 = 0 + 1224 = 0 + 1226 = 0 + 1229 = 0 + 1231 = 0 + 1230 = 0 + 1232 = 0 + 1237 = 0 + 1241 = 0 + 1238 = 0 + 1242 = 0 + 1239 = 0 + 1243 = 0 + 1245 = 0 + 1253 = 0 + 1246 = 0 + 1254 = 0 + 1247 = 0 + 1255 = 0 + 1269 = 0 + 1273 = 0 + 1270 = 0 + 1274 = 0 + 1271 = 0 + 1275 = 0 + 1317 = 0 + 1318 = 0 + 1323 = 0 + 1325 = 0 + 1324 = 0 + 1326 = 0 + 1329 = 0 + 1331 = 0 + 1330 = 0 + 1332 = 0 + 1377 = 0 + 1381 = 0 + 1378 = 0 + 1382 = 0 + 1379 = 0 + 1383 = 0 + 1425 = 0 + 1426 = 0 + 1427 = 0 + 1429 = 0 + 1430 = 0 + 1431 = 0 + 1433 = 0 + 1435 = 0 + 1432 = 0 + 1434 = 0 + 1436 = 0 + 1437 = 0 + 1439 = 0 + 1438 = 0 + 1440 = 0 + 1445 = 0 + 1447 = 0 + 1446 = 0 + 1448 = 0 + 1457 = 0 + 1459 = 0 + 1458 = 0 + 1460 = 0 + 1465 = 0 + 1469 = 0 + 1466 = 0 + 1470 = 0 + 1467 = 0 + 1471 = 0 + 1485 = 0 + 1489 = 0 + 1486 = 0 + 1490 = 0 + 1487 = 0 + 1491 = 0 + 1533 = 0 + 1535 = 0 + 1545 = 0 + 1549 = 0 + 1546 = 0 + 1550 = 0 + 1557 = 0 + 1561 = 0 + 1558 = 0 + 1562 = 0 + 1581 = 0 + 1589 = 0 + 1582 = 0 + 1590 = 0 + 1583 = 0 + 1591 = 0 + 1641 = 0 + 1642 = 0 + 1643 = 0 + 1645 = 0 + 1646 = 0 + 1649 = 0 + 1651 = 0 + 1650 = 0 + 1652 = 0 + 1653 = 0 + 1657 = 0 + 1654 = 0 + 1658 = 0 + 1665 = 0 + 1667 = 0 + 1669 = 0 + 1666 = 0 + 1668 = 0 + 1670 = 0 + 1673 = 0 + 1675 = 0 + 1674 = 0 + 1676 = 0 + 1681 = 0 + 1685 = 0 + 1682 = 0 + 1686 = 0 + 1683 = 0 + 1687 = 0 + 1689 = 0 + 1697 = 0 + 1690 = 0 + 1698 = 0 + 1691 = 0 + 1699 = 0 + 1831 = 0 + 1832 = 0 + 1835 = 0 + 1837 = 0 + 1836 = 0 + 1838 = 0 + 1847 = 0 + 1849 = 0 + 1848 = 0 + 1850 = 0 + 1855 = 0 + 1859 = 0 + 1856 = 0 + 1860 = 0 + 1857 = 0 + 1861 = 0 + 1911 = 0 + 1912 = 0 + 1913 = 0 + 1914 = 0 + 1915 = 0 + 1918 = 0 + 1919 = 0 + 1923 = 0 + 1925 = 0 + 1927 = 0 + 1924 = 0 + 1926 = 0 + 1928 = 0 + 1929 = 0 + 1931 = 0 + 1930 = 0 + 1932 = 0 + 1935 = 0 + 1937 = 0 + 1936 = 0 + 1938 = 0 + 1943 = 0 + 1945 = 0 + 1944 = 0 + 1946 = 0 + 1961 = 0 + 1963 = 0 + 1962 = 0 + 1964 = 0 + 1975 = 0 + 1979 = 0 + 1976 = 0 + 1980 = 0 + 1977 = 0 + 1981 = 0 + 2007 = 0 + 2011 = 0 + 2008 = 0 + 2012 = 0 + 2009 = 0 + 2013 = 0 + 2055 = 0 + 2056 = 0 + 2061 = 0 + 2063 = 0 + 2062 = 0 + 2064 = 0 + 2067 = 0 + 2069 = 0 + 2068 = 0 + 2070 = 0 + 2115 = 0 + 2119 = 0 + 2116 = 0 + 2120 = 0 + 2117 = 0 + 2121 = 0 + 2166 = 0 + 2167 = 0 + 2168 = 0 + 2169 = 0 + 2170 = 0 + 2171 = 0 + 2172 = 0 + 2174 = 0 + 2175 = 0 + 2177 = 0 + 2179 = 0 + 2176 = 0 + 2178 = 0 + 2180 = 0 + 2181 = 0 + 2183 = 0 + 2182 = 0 + 2184 = 0 + 2187 = 0 + 2189 = 0 + 2191 = 0 + 2188 = 0 + 2190 = 0 + 2192 = 0 + 2195 = 0 + 2197 = 0 + 2196 = 0 + 2198 = 0 + 2205 = 0 + 2209 = 0 + 2206 = 0 + 2210 = 0 + 2211 = 0 + 2213 = 0 + 2215 = 0 + 2212 = 0 + 2214 = 0 + 2216 = 0 + 2217 = 0 + 2221 = 0 + 2218 = 0 + 2222 = 0 + 2227 = 0 + 2231 = 0 + 2228 = 0 + 2232 = 0 + 2229 = 0 + 2233 = 0 + 2247 = 0 + 2255 = 0 + 2248 = 0 + 2256 = 0 + 2249 = 0 + 2257 = 0 + 2259 = 0 + 2263 = 0 + 2260 = 0 + 2264 = 0 + 2261 = 0 + 2265 = 0 + 2307 = 0 + 2308 = 0 + 2309 = 0 + 2310 = 0 + 2312 = 0 + 2313 = 0 + 2315 = 0 + 2314 = 0 + 2316 = 0 + 2319 = 0 + 2321 = 0 + 2323 = 0 + 2320 = 0 + 2322 = 0 + 2324 = 0 + 2331 = 0 + 2335 = 0 + 2332 = 0 + 2336 = 0 + 2337 = 0 + 2341 = 0 + 2338 = 0 + 2342 = 0 + 2355 = 0 + 2363 = 0 + 2356 = 0 + 2364 = 0 + 2357 = 0 + 2365 = 0 + 2367 = 0 + 2371 = 0 + 2368 = 0 + 2372 = 0 + 2369 = 0 + 2373 = 0 + 2416 = 0 + 2417 = 0 + 2423 = 0 + 2425 = 0 + 2424 = 0 + 2426 = 0 + 2441 = 0 + 2443 = 0 + 2442 = 0 + 2444 = 0 + 2455 = 0 + 2459 = 0 + 2456 = 0 + 2460 = 0 + 2457 = 0 + 2461 = 0 + 2604 = 0 + 2605 = 0 + 2606 = 0 + 2607 = 0 + 2609 = 0 + 2612 = 0 + 2614 = 0 + 2613 = 0 + 2615 = 0 + 2622 = 0 + 2626 = 0 + 2623 = 0 + 2627 = 0 + 2628 = 0 + 2630 = 0 + 2632 = 0 + 2629 = 0 + 2631 = 0 + 2633 = 0 + 2634 = 0 + 2638 = 0 + 2635 = 0 + 2639 = 0 + 2644 = 0 + 2648 = 0 + 2645 = 0 + 2649 = 0 + 2646 = 0 + 2650 = 0 + 2664 = 0 + 2672 = 0 + 2665 = 0 + 2673 = 0 + 2666 = 0 + 2674 = 0 + 2712 = 0 + 2714 = 0 + 2721 = 0 + 2725 = 0 + 2722 = 0 + 2726 = 0 + 2727 = 0 + 2731 = 0 + 2728 = 0 + 2732 = 0 + 2745 = 0 + 2753 = 0 + 2746 = 0 + 2754 = 0 + 2747 = 0 + 2755 = 0 + 2793 = 0 + 2794 = 0 + 2799 = 0 + 2801 = 0 + 2800 = 0 + 2802 = 0 + 2805 = 0 + 2807 = 0 + 2806 = 0 + 2808 = 0 + 2853 = 0 + 2857 = 0 + 2854 = 0 + 2858 = 0 + 2855 = 0 + 2859 = 0 + 2901 = 0 + 2902 = 0 + 2903 = 0 + 2905 = 0 + 2906 = 0 + 2907 = 0 + 2909 = 0 + 2911 = 0 + 2908 = 0 + 2910 = 0 + 2912 = 0 + 2913 = 0 + 2915 = 0 + 2914 = 0 + 2916 = 0 + 2921 = 0 + 2923 = 0 + 2922 = 0 + 2924 = 0 + 2933 = 0 + 2935 = 0 + 2934 = 0 + 2936 = 0 + 2941 = 0 + 2945 = 0 + 2942 = 0 + 2946 = 0 + 2943 = 0 + 2947 = 0 + 2961 = 0 + 2965 = 0 + 2962 = 0 + 2966 = 0 + 2963 = 0 + 2967 = 0 + 3009 = 0 + 3010 = 0 + 3011 = 0 + 3012 = 0 + 3014 = 0 + 3015 = 0 + 3017 = 0 + 3016 = 0 + 3018 = 0 + 3021 = 0 + 3023 = 0 + 3025 = 0 + 3022 = 0 + 3024 = 0 + 3026 = 0 + 3033 = 0 + 3037 = 0 + 3034 = 0 + 3038 = 0 + 3039 = 0 + 3043 = 0 + 3040 = 0 + 3044 = 0 + 3057 = 0 + 3065 = 0 + 3058 = 0 + 3066 = 0 + 3059 = 0 + 3067 = 0 + 3069 = 0 + 3073 = 0 + 3070 = 0 + 3074 = 0 + 3071 = 0 + 3075 = 0 + 3120 = 0 + 3121 = 0 + 3122 = 0 + 3123 = 0 + 3125 = 0 + 3127 = 0 + 3124 = 0 + 3126 = 0 + 3128 = 0 + 3129 = 0 + 3131 = 0 + 3133 = 0 + 3130 = 0 + 3132 = 0 + 3134 = 0 + 3137 = 0 + 3139 = 0 + 3138 = 0 + 3140 = 0 + 3141 = 0 + 3145 = 0 + 3142 = 0 + 3146 = 0 + 3147 = 0 + 3149 = 0 + 3151 = 0 + 3148 = 0 + 3150 = 0 + 3152 = 0 + 3157 = 0 + 3161 = 0 + 3158 = 0 + 3162 = 0 + 3159 = 0 + 3163 = 0 + 3165 = 0 + 3173 = 0 + 3166 = 0 + 3174 = 0 + 3167 = 0 + 3175 = 0 + 3177 = 0 + 3181 = 0 + 3178 = 0 + 3182 = 0 + 3179 = 0 + 3183 = 0 + 3307 = 0 + 3308 = 0 + 3311 = 0 + 3313 = 0 + 3312 = 0 + 3314 = 0 + 3323 = 0 + 3325 = 0 + 3324 = 0 + 3326 = 0 + 3331 = 0 + 3335 = 0 + 3332 = 0 + 3336 = 0 + 3333 = 0 + 3337 = 0 + 3387 = 0 + 3389 = 0 + 3396 = 0 + 3400 = 0 + 3397 = 0 + 3401 = 0 + 3402 = 0 + 3406 = 0 + 3403 = 0 + 3407 = 0 + 3420 = 0 + 3428 = 0 + 3421 = 0 + 3429 = 0 + 3422 = 0 + 3430 = 0 + 3468 = 0 + 3469 = 0 + 3470 = 0 + 3473 = 0 + 3475 = 0 + 3474 = 0 + 3476 = 0 + 3477 = 0 + 3481 = 0 + 3478 = 0 + 3482 = 0 + 3483 = 0 + 3485 = 0 + 3487 = 0 + 3484 = 0 + 3486 = 0 + 3488 = 0 + 3493 = 0 + 3497 = 0 + 3494 = 0 + 3498 = 0 + 3495 = 0 + 3499 = 0 + 3501 = 0 + 3509 = 0 + 3502 = 0 + 3510 = 0 + 3503 = 0 + 3511 = 0 + 3549 = 0 + 3550 = 0 + 3551 = 0 + 3552 = 0 + 3554 = 0 + 3556 = 0 + 3557 = 0 + 3563 = 0 + 3565 = 0 + 3564 = 0 + 3566 = 0 + 3573 = 0 + 3577 = 0 + 3574 = 0 + 3578 = 0 + 3585 = 0 + 3587 = 0 + 3589 = 0 + 3586 = 0 + 3588 = 0 + 3590 = 0 + 3591 = 0 + 3595 = 0 + 3592 = 0 + 3596 = 0 + 3599 = 0 + 3601 = 0 + 3600 = 0 + 3602 = 0 + 3613 = 0 + 3617 = 0 + 3614 = 0 + 3618 = 0 + 3615 = 0 + 3619 = 0 + 3633 = 0 + 3641 = 0 + 3634 = 0 + 3642 = 0 + 3635 = 0 + 3643 = 0 + 3693 = 0 + 3695 = 0 + 3705 = 0 + 3709 = 0 + 3706 = 0 + 3710 = 0 + 3717 = 0 + 3721 = 0 + 3718 = 0 + 3722 = 0 + 3741 = 0 + 3749 = 0 + 3742 = 0 + 3750 = 0 + 3743 = 0 + 3751 = 0 + 3802 = 0 + 3803 = 0 + 3809 = 0 + 3811 = 0 + 3810 = 0 + 3812 = 0 + 3827 = 0 + 3829 = 0 + 3828 = 0 + 3830 = 0 + 3841 = 0 + 3845 = 0 + 3842 = 0 + 3846 = 0 + 3843 = 0 + 3847 = 0 + 3990 = 0 + 3991 = 0 + 3992 = 0 + 3993 = 0 + 3995 = 0 + 3997 = 0 + 3998 = 0 + 4004 = 0 + 4006 = 0 + 4005 = 0 + 4007 = 0 + 4014 = 0 + 4018 = 0 + 4015 = 0 + 4019 = 0 + 4026 = 0 + 4028 = 0 + 4030 = 0 + 4027 = 0 + 4029 = 0 + 4031 = 0 + 4032 = 0 + 4036 = 0 + 4033 = 0 + 4037 = 0 + 4040 = 0 + 4042 = 0 + 4041 = 0 + 4043 = 0 + 4054 = 0 + 4058 = 0 + 4055 = 0 + 4059 = 0 + 4056 = 0 + 4060 = 0 + 4074 = 0 + 4082 = 0 + 4075 = 0 + 4083 = 0 + 4076 = 0 + 4084 = 0 + 4134 = 0 + 4136 = 0 + 4146 = 0 + 4150 = 0 + 4147 = 0 + 4151 = 0 + 4158 = 0 + 4162 = 0 + 4159 = 0 + 4163 = 0 + 4182 = 0 + 4190 = 0 + 4183 = 0 + 4191 = 0 + 4184 = 0 + 4192 = 0 + 4243 = 0 + 4244 = 0 + 4250 = 0 + 4252 = 0 + 4251 = 0 + 4253 = 0 + 4268 = 0 + 4270 = 0 + 4269 = 0 + 4271 = 0 + 4282 = 0 + 4286 = 0 + 4283 = 0 + 4287 = 0 + 4284 = 0 + 4288 = 0 + 4431 = 0 + 4433 = 0 + 4443 = 0 + 4447 = 0 + 4444 = 0 + 4448 = 0 + 4455 = 0 + 4459 = 0 + 4456 = 0 + 4460 = 0 + 4479 = 0 + 4487 = 0 + 4480 = 0 + 4488 = 0 + 4481 = 0 + 4489 = 0 + 4539 = 0 + 4540 = 0 + 4541 = 0 + 4543 = 0 + 4544 = 0 + 4547 = 0 + 4549 = 0 + 4548 = 0 + 4550 = 0 + 4551 = 0 + 4555 = 0 + 4552 = 0 + 4556 = 0 + 4563 = 0 + 4565 = 0 + 4567 = 0 + 4564 = 0 + 4566 = 0 + 4568 = 0 + 4571 = 0 + 4573 = 0 + 4572 = 0 + 4574 = 0 + 4579 = 0 + 4583 = 0 + 4580 = 0 + 4584 = 0 + 4581 = 0 + 4585 = 0 + 4587 = 0 + 4595 = 0 + 4588 = 0 + 4596 = 0 + 4589 = 0 + 4597 = 0 + 4729 = 0 + 4730 = 0 + 4733 = 0 + 4735 = 0 + 4734 = 0 + 4736 = 0 + 4745 = 0 + 4747 = 0 + 4746 = 0 + 4748 = 0 + 4753 = 0 + 4757 = 0 + 4754 = 0 + 4758 = 0 + 4755 = 0 + 4759 = 0 + 4809 = 0 + 4811 = 0 + 4821 = 0 + 4825 = 0 + 4822 = 0 + 4826 = 0 + 4833 = 0 + 4837 = 0 + 4834 = 0 + 4838 = 0 + 4857 = 0 + 4865 = 0 + 4858 = 0 + 4866 = 0 + 4859 = 0 + 4867 = 0 + 4917 = 0 + 4918 = 0 + 4919 = 0 + 4921 = 0 + 4922 = 0 + 4925 = 0 + 4927 = 0 + 4926 = 0 + 4928 = 0 + 4929 = 0 + 4933 = 0 + 4930 = 0 + 4934 = 0 + 4941 = 0 + 4943 = 0 + 4945 = 0 + 4942 = 0 + 4944 = 0 + 4946 = 0 + 4949 = 0 + 4951 = 0 + 4950 = 0 + 4952 = 0 + 4957 = 0 + 4961 = 0 + 4958 = 0 + 4962 = 0 + 4959 = 0 + 4963 = 0 + 4965 = 0 + 4973 = 0 + 4966 = 0 + 4974 = 0 + 4967 = 0 + 4975 = 0 + 5107 = 0 + 5108 = 0 + 5111 = 0 + 5113 = 0 + 5112 = 0 + 5114 = 0 + 5123 = 0 + 5125 = 0 + 5124 = 0 + 5126 = 0 + 5131 = 0 + 5135 = 0 + 5132 = 0 + 5136 = 0 + 5133 = 0 + 5137 = 0 + 5188 = 0 + 5189 = 0 + 5195 = 0 + 5197 = 0 + 5196 = 0 + 5198 = 0 + 5213 = 0 + 5215 = 0 + 5214 = 0 + 5216 = 0 + 5227 = 0 + 5231 = 0 + 5228 = 0 + 5232 = 0 + 5229 = 0 + 5233 = 0 + 5376 = 0 + 5377 = 0 + 5378 = 0 + 5379 = 0 + 5381 = 0 + 5384 = 0 + 5386 = 0 + 5385 = 0 + 5387 = 0 + 5394 = 0 + 5398 = 0 + 5395 = 0 + 5399 = 0 + 5400 = 0 + 5402 = 0 + 5404 = 0 + 5401 = 0 + 5403 = 0 + 5405 = 0 + 5406 = 0 + 5410 = 0 + 5407 = 0 + 5411 = 0 + 5416 = 0 + 5420 = 0 + 5417 = 0 + 5421 = 0 + 5418 = 0 + 5422 = 0 + 5436 = 0 + 5444 = 0 + 5437 = 0 + 5445 = 0 + 5438 = 0 + 5446 = 0 + 5484 = 0 + 5486 = 0 + 5493 = 0 + 5497 = 0 + 5494 = 0 + 5498 = 0 + 5499 = 0 + 5503 = 0 + 5500 = 0 + 5504 = 0 + 5517 = 0 + 5525 = 0 + 5518 = 0 + 5526 = 0 + 5519 = 0 + 5527 = 0 + 5566 = 0 + 5567 = 0 + 5573 = 0 + 5575 = 0 + 5574 = 0 + 5576 = 0 + 5591 = 0 + 5593 = 0 + 5592 = 0 + 5594 = 0 + 5605 = 0 + 5609 = 0 + 5606 = 0 + 5610 = 0 + 5607 = 0 + 5611 = 0 + 5754 = 0 + 5755 = 0 + 5756 = 0 + 5757 = 0 + 5759 = 0 + 5762 = 0 + 5764 = 0 + 5763 = 0 + 5765 = 0 + 5772 = 0 + 5776 = 0 + 5773 = 0 + 5777 = 0 + 5778 = 0 + 5780 = 0 + 5782 = 0 + 5779 = 0 + 5781 = 0 + 5783 = 0 + 5784 = 0 + 5788 = 0 + 5785 = 0 + 5789 = 0 + 5794 = 0 + 5798 = 0 + 5795 = 0 + 5799 = 0 + 5796 = 0 + 5800 = 0 + 5814 = 0 + 5822 = 0 + 5815 = 0 + 5823 = 0 + 5816 = 0 + 5824 = 0 + 5862 = 0 + 5864 = 0 + 5871 = 0 + 5875 = 0 + 5872 = 0 + 5876 = 0 + 5877 = 0 + 5881 = 0 + 5878 = 0 + 5882 = 0 + 5895 = 0 + 5903 = 0 + 5896 = 0 + 5904 = 0 + 5897 = 0 + 5905 = 0 + 6025 = 0 + 6026 = 0 + 6029 = 0 + 6031 = 0 + 6030 = 0 + 6032 = 0 + 6041 = 0 + 6043 = 0 + 6042 = 0 + 6044 = 0 + 6049 = 0 + 6053 = 0 + 6050 = 0 + 6054 = 0 + 6051 = 0 + 6055 = 0 + 6105 = 0 + 6107 = 0 + 6114 = 0 + 6118 = 0 + 6115 = 0 + 6119 = 0 + 6120 = 0 + 6124 = 0 + 6121 = 0 + 6125 = 0 + 6138 = 0 + 6146 = 0 + 6139 = 0 + 6147 = 0 + 6140 = 0 + 6148 = 0 + 6186 = 0 + 6187 = 0 + 6188 = 0 + 6191 = 0 + 6193 = 0 + 6192 = 0 + 6194 = 0 + 6195 = 0 + 6199 = 0 + 6196 = 0 + 6200 = 0 + 6201 = 0 + 6203 = 0 + 6205 = 0 + 6202 = 0 + 6204 = 0 + 6206 = 0 + 6211 = 0 + 6215 = 0 + 6212 = 0 + 6216 = 0 + 6213 = 0 + 6217 = 0 + 6219 = 0 + 6227 = 0 + 6220 = 0 + 6228 = 0 + 6221 = 0 + 6229 = 0 + 6349 = 0 + 6350 = 0 + 6353 = 0 + 6355 = 0 + 6354 = 0 + 6356 = 0 + 6365 = 0 + 6367 = 0 + 6366 = 0 + 6368 = 0 + 6373 = 0 + 6377 = 0 + 6374 = 0 + 6378 = 0 + 6375 = 0 + 6379 = 0 + 6429 = 0 + 6431 = 0 + 6438 = 0 + 6442 = 0 + 6439 = 0 + 6443 = 0 + 6444 = 0 + 6448 = 0 + 6445 = 0 + 6449 = 0 + 6462 = 0 + 6470 = 0 + 6463 = 0 + 6471 = 0 + 6464 = 0 + 6472 = 0 + 6510 = 0 + 6511 = 0 + 6512 = 0 + 6515 = 0 + 6517 = 0 + 6516 = 0 + 6518 = 0 + 6519 = 0 + 6523 = 0 + 6520 = 0 + 6524 = 0 + 6525 = 0 + 6527 = 0 + 6529 = 0 + 6526 = 0 + 6528 = 0 + 6530 = 0 + 6535 = 0 + 6539 = 0 + 6536 = 0 + 6540 = 0 + 6537 = 0 + 6541 = 0 + 6543 = 0 + 6551 = 0 + 6544 = 0 + 6552 = 0 + 6545 = 0 + 6553 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(3)^3], case=5 + 3 = 0 + 4 = 0 + 5 = 0 + 6 = 0 + 7 = 0 + 8 = 0 + 9 = 0 + 10 = 0 + 12 = 0 + 13 = 0 + 14 = 0 + 15 = 0 + 17 = 0 + 19 = 0 + 20 = 0 + 24 = 0 + 26 = 0 + 28 = 0 + 25 = 0 + 27 = 0 + 29 = 0 + 30 = 0 + 32 = 0 + 31 = 0 + 33 = 0 + 36 = 0 + 38 = 0 + 40 = 0 + 37 = 0 + 39 = 0 + 41 = 0 + 42 = 0 + 44 = 0 + 43 = 0 + 45 = 0 + 50 = 0 + 52 = 0 + 51 = 0 + 53 = 0 + 60 = 0 + 64 = 0 + 61 = 0 + 65 = 0 + 72 = 0 + 74 = 0 + 76 = 0 + 73 = 0 + 75 = 0 + 77 = 0 + 78 = 0 + 82 = 0 + 79 = 0 + 83 = 0 + 86 = 0 + 88 = 0 + 87 = 0 + 89 = 0 + 100 = 0 + 104 = 0 + 101 = 0 + 105 = 0 + 102 = 0 + 106 = 0 + 120 = 0 + 128 = 0 + 121 = 0 + 129 = 0 + 122 = 0 + 130 = 0 + 144 = 0 + 148 = 0 + 145 = 0 + 149 = 0 + 146 = 0 + 150 = 0 + 192 = 0 + 193 = 0 + 194 = 0 + 195 = 0 + 196 = 0 + 198 = 0 + 200 = 0 + 204 = 0 + 206 = 0 + 205 = 0 + 207 = 0 + 210 = 0 + 212 = 0 + 214 = 0 + 211 = 0 + 213 = 0 + 215 = 0 + 216 = 0 + 218 = 0 + 217 = 0 + 219 = 0 + 228 = 0 + 232 = 0 + 229 = 0 + 233 = 0 + 240 = 0 + 244 = 0 + 241 = 0 + 245 = 0 + 264 = 0 + 272 = 0 + 265 = 0 + 273 = 0 + 266 = 0 + 274 = 0 + 288 = 0 + 292 = 0 + 289 = 0 + 293 = 0 + 290 = 0 + 294 = 0 + 336 = 0 + 337 = 0 + 338 = 0 + 339 = 0 + 340 = 0 + 343 = 0 + 344 = 0 + 348 = 0 + 350 = 0 + 352 = 0 + 349 = 0 + 351 = 0 + 353 = 0 + 354 = 0 + 356 = 0 + 355 = 0 + 357 = 0 + 360 = 0 + 362 = 0 + 361 = 0 + 363 = 0 + 368 = 0 + 370 = 0 + 369 = 0 + 371 = 0 + 386 = 0 + 388 = 0 + 387 = 0 + 389 = 0 + 400 = 0 + 404 = 0 + 401 = 0 + 405 = 0 + 402 = 0 + 406 = 0 + 432 = 0 + 436 = 0 + 433 = 0 + 437 = 0 + 434 = 0 + 438 = 0 + 480 = 0 + 481 = 0 + 486 = 0 + 488 = 0 + 487 = 0 + 489 = 0 + 492 = 0 + 494 = 0 + 493 = 0 + 495 = 0 + 540 = 0 + 544 = 0 + 541 = 0 + 545 = 0 + 542 = 0 + 546 = 0 + 588 = 0 + 589 = 0 + 590 = 0 + 591 = 0 + 593 = 0 + 595 = 0 + 596 = 0 + 602 = 0 + 604 = 0 + 603 = 0 + 605 = 0 + 612 = 0 + 616 = 0 + 613 = 0 + 617 = 0 + 624 = 0 + 626 = 0 + 628 = 0 + 625 = 0 + 627 = 0 + 629 = 0 + 630 = 0 + 634 = 0 + 631 = 0 + 635 = 0 + 638 = 0 + 640 = 0 + 639 = 0 + 641 = 0 + 652 = 0 + 656 = 0 + 653 = 0 + 657 = 0 + 654 = 0 + 658 = 0 + 672 = 0 + 680 = 0 + 673 = 0 + 681 = 0 + 674 = 0 + 682 = 0 + 732 = 0 + 734 = 0 + 744 = 0 + 748 = 0 + 745 = 0 + 749 = 0 + 756 = 0 + 760 = 0 + 757 = 0 + 761 = 0 + 780 = 0 + 788 = 0 + 781 = 0 + 789 = 0 + 782 = 0 + 790 = 0 + 841 = 0 + 842 = 0 + 848 = 0 + 850 = 0 + 849 = 0 + 851 = 0 + 866 = 0 + 868 = 0 + 867 = 0 + 869 = 0 + 880 = 0 + 884 = 0 + 881 = 0 + 885 = 0 + 882 = 0 + 886 = 0 + 1029 = 0 + 1030 = 0 + 1031 = 0 + 1032 = 0 + 1033 = 0 + 1035 = 0 + 1037 = 0 + 1041 = 0 + 1043 = 0 + 1042 = 0 + 1044 = 0 + 1047 = 0 + 1049 = 0 + 1051 = 0 + 1048 = 0 + 1050 = 0 + 1052 = 0 + 1053 = 0 + 1055 = 0 + 1054 = 0 + 1056 = 0 + 1065 = 0 + 1069 = 0 + 1066 = 0 + 1070 = 0 + 1077 = 0 + 1081 = 0 + 1078 = 0 + 1082 = 0 + 1101 = 0 + 1109 = 0 + 1102 = 0 + 1110 = 0 + 1103 = 0 + 1111 = 0 + 1125 = 0 + 1129 = 0 + 1126 = 0 + 1130 = 0 + 1127 = 0 + 1131 = 0 + 1176 = 0 + 1177 = 0 + 1178 = 0 + 1179 = 0 + 1180 = 0 + 1181 = 0 + 1183 = 0 + 1184 = 0 + 1185 = 0 + 1187 = 0 + 1189 = 0 + 1186 = 0 + 1188 = 0 + 1190 = 0 + 1191 = 0 + 1193 = 0 + 1195 = 0 + 1192 = 0 + 1194 = 0 + 1196 = 0 + 1197 = 0 + 1199 = 0 + 1198 = 0 + 1200 = 0 + 1205 = 0 + 1207 = 0 + 1206 = 0 + 1208 = 0 + 1209 = 0 + 1213 = 0 + 1210 = 0 + 1214 = 0 + 1221 = 0 + 1223 = 0 + 1225 = 0 + 1222 = 0 + 1224 = 0 + 1226 = 0 + 1229 = 0 + 1231 = 0 + 1230 = 0 + 1232 = 0 + 1237 = 0 + 1241 = 0 + 1238 = 0 + 1242 = 0 + 1239 = 0 + 1243 = 0 + 1245 = 0 + 1253 = 0 + 1246 = 0 + 1254 = 0 + 1247 = 0 + 1255 = 0 + 1269 = 0 + 1273 = 0 + 1270 = 0 + 1274 = 0 + 1271 = 0 + 1275 = 0 + 1317 = 0 + 1318 = 0 + 1323 = 0 + 1325 = 0 + 1324 = 0 + 1326 = 0 + 1329 = 0 + 1331 = 0 + 1330 = 0 + 1332 = 0 + 1377 = 0 + 1381 = 0 + 1378 = 0 + 1382 = 0 + 1379 = 0 + 1383 = 0 + 1425 = 0 + 1426 = 0 + 1427 = 0 + 1429 = 0 + 1430 = 0 + 1431 = 0 + 1433 = 0 + 1435 = 0 + 1432 = 0 + 1434 = 0 + 1436 = 0 + 1437 = 0 + 1439 = 0 + 1438 = 0 + 1440 = 0 + 1445 = 0 + 1447 = 0 + 1446 = 0 + 1448 = 0 + 1457 = 0 + 1459 = 0 + 1458 = 0 + 1460 = 0 + 1465 = 0 + 1469 = 0 + 1466 = 0 + 1470 = 0 + 1467 = 0 + 1471 = 0 + 1485 = 0 + 1489 = 0 + 1486 = 0 + 1490 = 0 + 1487 = 0 + 1491 = 0 + 1533 = 0 + 1535 = 0 + 1545 = 0 + 1549 = 0 + 1546 = 0 + 1550 = 0 + 1557 = 0 + 1561 = 0 + 1558 = 0 + 1562 = 0 + 1581 = 0 + 1589 = 0 + 1582 = 0 + 1590 = 0 + 1583 = 0 + 1591 = 0 + 1641 = 0 + 1642 = 0 + 1643 = 0 + 1645 = 0 + 1646 = 0 + 1649 = 0 + 1651 = 0 + 1650 = 0 + 1652 = 0 + 1653 = 0 + 1657 = 0 + 1654 = 0 + 1658 = 0 + 1665 = 0 + 1667 = 0 + 1669 = 0 + 1666 = 0 + 1668 = 0 + 1670 = 0 + 1673 = 0 + 1675 = 0 + 1674 = 0 + 1676 = 0 + 1681 = 0 + 1685 = 0 + 1682 = 0 + 1686 = 0 + 1683 = 0 + 1687 = 0 + 1689 = 0 + 1697 = 0 + 1690 = 0 + 1698 = 0 + 1691 = 0 + 1699 = 0 + 1831 = 0 + 1832 = 0 + 1835 = 0 + 1837 = 0 + 1836 = 0 + 1838 = 0 + 1847 = 0 + 1849 = 0 + 1848 = 0 + 1850 = 0 + 1855 = 0 + 1859 = 0 + 1856 = 0 + 1860 = 0 + 1857 = 0 + 1861 = 0 + 1911 = 0 + 1912 = 0 + 1913 = 0 + 1914 = 0 + 1915 = 0 + 1918 = 0 + 1919 = 0 + 1923 = 0 + 1925 = 0 + 1927 = 0 + 1924 = 0 + 1926 = 0 + 1928 = 0 + 1929 = 0 + 1931 = 0 + 1930 = 0 + 1932 = 0 + 1935 = 0 + 1937 = 0 + 1936 = 0 + 1938 = 0 + 1943 = 0 + 1945 = 0 + 1944 = 0 + 1946 = 0 + 1961 = 0 + 1963 = 0 + 1962 = 0 + 1964 = 0 + 1975 = 0 + 1979 = 0 + 1976 = 0 + 1980 = 0 + 1977 = 0 + 1981 = 0 + 2007 = 0 + 2011 = 0 + 2008 = 0 + 2012 = 0 + 2009 = 0 + 2013 = 0 + 2055 = 0 + 2056 = 0 + 2061 = 0 + 2063 = 0 + 2062 = 0 + 2064 = 0 + 2067 = 0 + 2069 = 0 + 2068 = 0 + 2070 = 0 + 2115 = 0 + 2119 = 0 + 2116 = 0 + 2120 = 0 + 2117 = 0 + 2121 = 0 + 2166 = 0 + 2167 = 0 + 2168 = 0 + 2169 = 0 + 2170 = 0 + 2171 = 0 + 2172 = 0 + 2174 = 0 + 2175 = 0 + 2177 = 0 + 2179 = 0 + 2176 = 0 + 2178 = 0 + 2180 = 0 + 2181 = 0 + 2183 = 0 + 2182 = 0 + 2184 = 0 + 2187 = 0 + 2189 = 0 + 2191 = 0 + 2188 = 0 + 2190 = 0 + 2192 = 0 + 2195 = 0 + 2197 = 0 + 2196 = 0 + 2198 = 0 + 2205 = 0 + 2209 = 0 + 2206 = 0 + 2210 = 0 + 2211 = 0 + 2213 = 0 + 2215 = 0 + 2212 = 0 + 2214 = 0 + 2216 = 0 + 2217 = 0 + 2221 = 0 + 2218 = 0 + 2222 = 0 + 2227 = 0 + 2231 = 0 + 2228 = 0 + 2232 = 0 + 2229 = 0 + 2233 = 0 + 2247 = 0 + 2255 = 0 + 2248 = 0 + 2256 = 0 + 2249 = 0 + 2257 = 0 + 2259 = 0 + 2263 = 0 + 2260 = 0 + 2264 = 0 + 2261 = 0 + 2265 = 0 + 2307 = 0 + 2308 = 0 + 2309 = 0 + 2310 = 0 + 2312 = 0 + 2313 = 0 + 2315 = 0 + 2314 = 0 + 2316 = 0 + 2319 = 0 + 2321 = 0 + 2323 = 0 + 2320 = 0 + 2322 = 0 + 2324 = 0 + 2331 = 0 + 2335 = 0 + 2332 = 0 + 2336 = 0 + 2337 = 0 + 2341 = 0 + 2338 = 0 + 2342 = 0 + 2355 = 0 + 2363 = 0 + 2356 = 0 + 2364 = 0 + 2357 = 0 + 2365 = 0 + 2367 = 0 + 2371 = 0 + 2368 = 0 + 2372 = 0 + 2369 = 0 + 2373 = 0 + 2416 = 0 + 2417 = 0 + 2423 = 0 + 2425 = 0 + 2424 = 0 + 2426 = 0 + 2441 = 0 + 2443 = 0 + 2442 = 0 + 2444 = 0 + 2455 = 0 + 2459 = 0 + 2456 = 0 + 2460 = 0 + 2457 = 0 + 2461 = 0 + 2604 = 0 + 2605 = 0 + 2606 = 0 + 2607 = 0 + 2609 = 0 + 2612 = 0 + 2614 = 0 + 2613 = 0 + 2615 = 0 + 2622 = 0 + 2626 = 0 + 2623 = 0 + 2627 = 0 + 2628 = 0 + 2630 = 0 + 2632 = 0 + 2629 = 0 + 2631 = 0 + 2633 = 0 + 2634 = 0 + 2638 = 0 + 2635 = 0 + 2639 = 0 + 2644 = 0 + 2648 = 0 + 2645 = 0 + 2649 = 0 + 2646 = 0 + 2650 = 0 + 2664 = 0 + 2672 = 0 + 2665 = 0 + 2673 = 0 + 2666 = 0 + 2674 = 0 + 2712 = 0 + 2714 = 0 + 2721 = 0 + 2725 = 0 + 2722 = 0 + 2726 = 0 + 2727 = 0 + 2731 = 0 + 2728 = 0 + 2732 = 0 + 2745 = 0 + 2753 = 0 + 2746 = 0 + 2754 = 0 + 2747 = 0 + 2755 = 0 + 2793 = 0 + 2794 = 0 + 2799 = 0 + 2801 = 0 + 2800 = 0 + 2802 = 0 + 2805 = 0 + 2807 = 0 + 2806 = 0 + 2808 = 0 + 2853 = 0 + 2857 = 0 + 2854 = 0 + 2858 = 0 + 2855 = 0 + 2859 = 0 + 2901 = 0 + 2902 = 0 + 2903 = 0 + 2905 = 0 + 2906 = 0 + 2907 = 0 + 2909 = 0 + 2911 = 0 + 2908 = 0 + 2910 = 0 + 2912 = 0 + 2913 = 0 + 2915 = 0 + 2914 = 0 + 2916 = 0 + 2921 = 0 + 2923 = 0 + 2922 = 0 + 2924 = 0 + 2933 = 0 + 2935 = 0 + 2934 = 0 + 2936 = 0 + 2941 = 0 + 2945 = 0 + 2942 = 0 + 2946 = 0 + 2943 = 0 + 2947 = 0 + 2961 = 0 + 2965 = 0 + 2962 = 0 + 2966 = 0 + 2963 = 0 + 2967 = 0 + 3009 = 0 + 3010 = 0 + 3011 = 0 + 3012 = 0 + 3014 = 0 + 3015 = 0 + 3017 = 0 + 3016 = 0 + 3018 = 0 + 3021 = 0 + 3023 = 0 + 3025 = 0 + 3022 = 0 + 3024 = 0 + 3026 = 0 + 3033 = 0 + 3037 = 0 + 3034 = 0 + 3038 = 0 + 3039 = 0 + 3043 = 0 + 3040 = 0 + 3044 = 0 + 3057 = 0 + 3065 = 0 + 3058 = 0 + 3066 = 0 + 3059 = 0 + 3067 = 0 + 3069 = 0 + 3073 = 0 + 3070 = 0 + 3074 = 0 + 3071 = 0 + 3075 = 0 + 3120 = 0 + 3121 = 0 + 3122 = 0 + 3123 = 0 + 3125 = 0 + 3127 = 0 + 3124 = 0 + 3126 = 0 + 3128 = 0 + 3129 = 0 + 3131 = 0 + 3133 = 0 + 3130 = 0 + 3132 = 0 + 3134 = 0 + 3137 = 0 + 3139 = 0 + 3138 = 0 + 3140 = 0 + 3141 = 0 + 3145 = 0 + 3142 = 0 + 3146 = 0 + 3147 = 0 + 3149 = 0 + 3151 = 0 + 3148 = 0 + 3150 = 0 + 3152 = 0 + 3157 = 0 + 3161 = 0 + 3158 = 0 + 3162 = 0 + 3159 = 0 + 3163 = 0 + 3165 = 0 + 3173 = 0 + 3166 = 0 + 3174 = 0 + 3167 = 0 + 3175 = 0 + 3177 = 0 + 3181 = 0 + 3178 = 0 + 3182 = 0 + 3179 = 0 + 3183 = 0 + 3307 = 0 + 3308 = 0 + 3311 = 0 + 3313 = 0 + 3312 = 0 + 3314 = 0 + 3323 = 0 + 3325 = 0 + 3324 = 0 + 3326 = 0 + 3331 = 0 + 3335 = 0 + 3332 = 0 + 3336 = 0 + 3333 = 0 + 3337 = 0 + 3387 = 0 + 3389 = 0 + 3396 = 0 + 3400 = 0 + 3397 = 0 + 3401 = 0 + 3402 = 0 + 3406 = 0 + 3403 = 0 + 3407 = 0 + 3420 = 0 + 3428 = 0 + 3421 = 0 + 3429 = 0 + 3422 = 0 + 3430 = 0 + 3468 = 0 + 3469 = 0 + 3470 = 0 + 3473 = 0 + 3475 = 0 + 3474 = 0 + 3476 = 0 + 3477 = 0 + 3481 = 0 + 3478 = 0 + 3482 = 0 + 3483 = 0 + 3485 = 0 + 3487 = 0 + 3484 = 0 + 3486 = 0 + 3488 = 0 + 3493 = 0 + 3497 = 0 + 3494 = 0 + 3498 = 0 + 3495 = 0 + 3499 = 0 + 3501 = 0 + 3509 = 0 + 3502 = 0 + 3510 = 0 + 3503 = 0 + 3511 = 0 + 3549 = 0 + 3550 = 0 + 3551 = 0 + 3552 = 0 + 3554 = 0 + 3556 = 0 + 3557 = 0 + 3563 = 0 + 3565 = 0 + 3564 = 0 + 3566 = 0 + 3573 = 0 + 3577 = 0 + 3574 = 0 + 3578 = 0 + 3585 = 0 + 3587 = 0 + 3589 = 0 + 3586 = 0 + 3588 = 0 + 3590 = 0 + 3591 = 0 + 3595 = 0 + 3592 = 0 + 3596 = 0 + 3599 = 0 + 3601 = 0 + 3600 = 0 + 3602 = 0 + 3613 = 0 + 3617 = 0 + 3614 = 0 + 3618 = 0 + 3615 = 0 + 3619 = 0 + 3633 = 0 + 3641 = 0 + 3634 = 0 + 3642 = 0 + 3635 = 0 + 3643 = 0 + 3693 = 0 + 3695 = 0 + 3705 = 0 + 3709 = 0 + 3706 = 0 + 3710 = 0 + 3717 = 0 + 3721 = 0 + 3718 = 0 + 3722 = 0 + 3741 = 0 + 3749 = 0 + 3742 = 0 + 3750 = 0 + 3743 = 0 + 3751 = 0 + 3802 = 0 + 3803 = 0 + 3809 = 0 + 3811 = 0 + 3810 = 0 + 3812 = 0 + 3827 = 0 + 3829 = 0 + 3828 = 0 + 3830 = 0 + 3841 = 0 + 3845 = 0 + 3842 = 0 + 3846 = 0 + 3843 = 0 + 3847 = 0 + 3993 = 0 + 3994 = 0 + 3995 = 0 + 3996 = 0 + 3997 = 0 + 3998 = 0 + 3999 = 0 + 4000 = 0 + 4002 = 0 + 4004 = 0 + 4006 = 0 + 4003 = 0 + 4005 = 0 + 4007 = 0 + 4008 = 0 + 4010 = 0 + 4009 = 0 + 4011 = 0 + 4014 = 0 + 4016 = 0 + 4018 = 0 + 4015 = 0 + 4017 = 0 + 4019 = 0 + 4020 = 0 + 4022 = 0 + 4021 = 0 + 4023 = 0 + 4026 = 0 + 4028 = 0 + 4030 = 0 + 4027 = 0 + 4029 = 0 + 4031 = 0 + 4032 = 0 + 4036 = 0 + 4033 = 0 + 4037 = 0 + 4040 = 0 + 4042 = 0 + 4041 = 0 + 4043 = 0 + 4054 = 0 + 4058 = 0 + 4055 = 0 + 4059 = 0 + 4056 = 0 + 4060 = 0 + 4074 = 0 + 4082 = 0 + 4075 = 0 + 4083 = 0 + 4076 = 0 + 4084 = 0 + 4098 = 0 + 4102 = 0 + 4099 = 0 + 4103 = 0 + 4100 = 0 + 4104 = 0 + 4134 = 0 + 4135 = 0 + 4136 = 0 + 4137 = 0 + 4138 = 0 + 4140 = 0 + 4142 = 0 + 4141 = 0 + 4143 = 0 + 4146 = 0 + 4148 = 0 + 4150 = 0 + 4147 = 0 + 4149 = 0 + 4151 = 0 + 4152 = 0 + 4154 = 0 + 4153 = 0 + 4155 = 0 + 4158 = 0 + 4162 = 0 + 4159 = 0 + 4163 = 0 + 4182 = 0 + 4190 = 0 + 4183 = 0 + 4191 = 0 + 4184 = 0 + 4192 = 0 + 4206 = 0 + 4210 = 0 + 4207 = 0 + 4211 = 0 + 4208 = 0 + 4212 = 0 + 4242 = 0 + 4243 = 0 + 4244 = 0 + 4245 = 0 + 4246 = 0 + 4248 = 0 + 4250 = 0 + 4252 = 0 + 4249 = 0 + 4251 = 0 + 4253 = 0 + 4254 = 0 + 4256 = 0 + 4255 = 0 + 4257 = 0 + 4260 = 0 + 4262 = 0 + 4261 = 0 + 4263 = 0 + 4268 = 0 + 4270 = 0 + 4269 = 0 + 4271 = 0 + 4282 = 0 + 4286 = 0 + 4283 = 0 + 4287 = 0 + 4284 = 0 + 4288 = 0 + 4314 = 0 + 4318 = 0 + 4315 = 0 + 4319 = 0 + 4316 = 0 + 4320 = 0 + 4350 = 0 + 4351 = 0 + 4353 = 0 + 4355 = 0 + 4354 = 0 + 4356 = 0 + 4359 = 0 + 4361 = 0 + 4360 = 0 + 4362 = 0 + 4395 = 0 + 4399 = 0 + 4396 = 0 + 4400 = 0 + 4397 = 0 + 4401 = 0 + 4431 = 0 + 4433 = 0 + 4443 = 0 + 4447 = 0 + 4444 = 0 + 4448 = 0 + 4455 = 0 + 4459 = 0 + 4456 = 0 + 4460 = 0 + 4479 = 0 + 4487 = 0 + 4480 = 0 + 4488 = 0 + 4481 = 0 + 4489 = 0 + 4539 = 0 + 4540 = 0 + 4541 = 0 + 4543 = 0 + 4544 = 0 + 4547 = 0 + 4549 = 0 + 4548 = 0 + 4550 = 0 + 4551 = 0 + 4555 = 0 + 4552 = 0 + 4556 = 0 + 4563 = 0 + 4565 = 0 + 4567 = 0 + 4564 = 0 + 4566 = 0 + 4568 = 0 + 4571 = 0 + 4573 = 0 + 4572 = 0 + 4574 = 0 + 4579 = 0 + 4583 = 0 + 4580 = 0 + 4584 = 0 + 4581 = 0 + 4585 = 0 + 4587 = 0 + 4595 = 0 + 4588 = 0 + 4596 = 0 + 4589 = 0 + 4597 = 0 + 4729 = 0 + 4730 = 0 + 4733 = 0 + 4735 = 0 + 4734 = 0 + 4736 = 0 + 4745 = 0 + 4747 = 0 + 4746 = 0 + 4748 = 0 + 4753 = 0 + 4757 = 0 + 4754 = 0 + 4758 = 0 + 4755 = 0 + 4759 = 0 + 4809 = 0 + 4810 = 0 + 4811 = 0 + 4812 = 0 + 4813 = 0 + 4815 = 0 + 4817 = 0 + 4816 = 0 + 4818 = 0 + 4821 = 0 + 4823 = 0 + 4825 = 0 + 4822 = 0 + 4824 = 0 + 4826 = 0 + 4827 = 0 + 4829 = 0 + 4828 = 0 + 4830 = 0 + 4833 = 0 + 4837 = 0 + 4834 = 0 + 4838 = 0 + 4857 = 0 + 4865 = 0 + 4858 = 0 + 4866 = 0 + 4859 = 0 + 4867 = 0 + 4881 = 0 + 4885 = 0 + 4882 = 0 + 4886 = 0 + 4883 = 0 + 4887 = 0 + 4920 = 0 + 4921 = 0 + 4922 = 0 + 4923 = 0 + 4925 = 0 + 4927 = 0 + 4924 = 0 + 4926 = 0 + 4928 = 0 + 4929 = 0 + 4931 = 0 + 4933 = 0 + 4930 = 0 + 4932 = 0 + 4934 = 0 + 4935 = 0 + 4937 = 0 + 4936 = 0 + 4938 = 0 + 4941 = 0 + 4943 = 0 + 4945 = 0 + 4942 = 0 + 4944 = 0 + 4946 = 0 + 4949 = 0 + 4951 = 0 + 4950 = 0 + 4952 = 0 + 4957 = 0 + 4961 = 0 + 4958 = 0 + 4962 = 0 + 4959 = 0 + 4963 = 0 + 4965 = 0 + 4973 = 0 + 4966 = 0 + 4974 = 0 + 4967 = 0 + 4975 = 0 + 4989 = 0 + 4993 = 0 + 4990 = 0 + 4994 = 0 + 4991 = 0 + 4995 = 0 + 5025 = 0 + 5026 = 0 + 5028 = 0 + 5030 = 0 + 5029 = 0 + 5031 = 0 + 5034 = 0 + 5036 = 0 + 5035 = 0 + 5037 = 0 + 5070 = 0 + 5074 = 0 + 5071 = 0 + 5075 = 0 + 5072 = 0 + 5076 = 0 + 5106 = 0 + 5107 = 0 + 5108 = 0 + 5109 = 0 + 5111 = 0 + 5113 = 0 + 5110 = 0 + 5112 = 0 + 5114 = 0 + 5115 = 0 + 5117 = 0 + 5116 = 0 + 5118 = 0 + 5123 = 0 + 5125 = 0 + 5124 = 0 + 5126 = 0 + 5131 = 0 + 5135 = 0 + 5132 = 0 + 5136 = 0 + 5133 = 0 + 5137 = 0 + 5151 = 0 + 5155 = 0 + 5152 = 0 + 5156 = 0 + 5153 = 0 + 5157 = 0 + 5188 = 0 + 5189 = 0 + 5195 = 0 + 5197 = 0 + 5196 = 0 + 5198 = 0 + 5213 = 0 + 5215 = 0 + 5214 = 0 + 5216 = 0 + 5227 = 0 + 5231 = 0 + 5228 = 0 + 5232 = 0 + 5229 = 0 + 5233 = 0 + 5376 = 0 + 5377 = 0 + 5378 = 0 + 5379 = 0 + 5381 = 0 + 5384 = 0 + 5386 = 0 + 5385 = 0 + 5387 = 0 + 5394 = 0 + 5398 = 0 + 5395 = 0 + 5399 = 0 + 5400 = 0 + 5402 = 0 + 5404 = 0 + 5401 = 0 + 5403 = 0 + 5405 = 0 + 5406 = 0 + 5410 = 0 + 5407 = 0 + 5411 = 0 + 5416 = 0 + 5420 = 0 + 5417 = 0 + 5421 = 0 + 5418 = 0 + 5422 = 0 + 5436 = 0 + 5444 = 0 + 5437 = 0 + 5445 = 0 + 5438 = 0 + 5446 = 0 + 5484 = 0 + 5486 = 0 + 5493 = 0 + 5497 = 0 + 5494 = 0 + 5498 = 0 + 5499 = 0 + 5503 = 0 + 5500 = 0 + 5504 = 0 + 5517 = 0 + 5525 = 0 + 5518 = 0 + 5526 = 0 + 5519 = 0 + 5527 = 0 + 5565 = 0 + 5566 = 0 + 5567 = 0 + 5568 = 0 + 5569 = 0 + 5571 = 0 + 5573 = 0 + 5575 = 0 + 5572 = 0 + 5574 = 0 + 5576 = 0 + 5577 = 0 + 5579 = 0 + 5578 = 0 + 5580 = 0 + 5583 = 0 + 5585 = 0 + 5584 = 0 + 5586 = 0 + 5591 = 0 + 5593 = 0 + 5592 = 0 + 5594 = 0 + 5605 = 0 + 5609 = 0 + 5606 = 0 + 5610 = 0 + 5607 = 0 + 5611 = 0 + 5637 = 0 + 5641 = 0 + 5638 = 0 + 5642 = 0 + 5639 = 0 + 5643 = 0 + 5673 = 0 + 5674 = 0 + 5676 = 0 + 5678 = 0 + 5677 = 0 + 5679 = 0 + 5682 = 0 + 5684 = 0 + 5683 = 0 + 5685 = 0 + 5718 = 0 + 5722 = 0 + 5719 = 0 + 5723 = 0 + 5720 = 0 + 5724 = 0 + 5757 = 0 + 5758 = 0 + 5759 = 0 + 5760 = 0 + 5762 = 0 + 5764 = 0 + 5761 = 0 + 5763 = 0 + 5765 = 0 + 5766 = 0 + 5768 = 0 + 5767 = 0 + 5769 = 0 + 5772 = 0 + 5774 = 0 + 5776 = 0 + 5773 = 0 + 5775 = 0 + 5777 = 0 + 5778 = 0 + 5780 = 0 + 5782 = 0 + 5779 = 0 + 5781 = 0 + 5783 = 0 + 5784 = 0 + 5788 = 0 + 5785 = 0 + 5789 = 0 + 5794 = 0 + 5798 = 0 + 5795 = 0 + 5799 = 0 + 5796 = 0 + 5800 = 0 + 5814 = 0 + 5822 = 0 + 5815 = 0 + 5823 = 0 + 5816 = 0 + 5824 = 0 + 5826 = 0 + 5830 = 0 + 5827 = 0 + 5831 = 0 + 5828 = 0 + 5832 = 0 + 5862 = 0 + 5863 = 0 + 5864 = 0 + 5865 = 0 + 5867 = 0 + 5866 = 0 + 5868 = 0 + 5871 = 0 + 5873 = 0 + 5875 = 0 + 5872 = 0 + 5874 = 0 + 5876 = 0 + 5877 = 0 + 5881 = 0 + 5878 = 0 + 5882 = 0 + 5895 = 0 + 5903 = 0 + 5896 = 0 + 5904 = 0 + 5897 = 0 + 5905 = 0 + 5907 = 0 + 5911 = 0 + 5908 = 0 + 5912 = 0 + 5909 = 0 + 5913 = 0 + 6025 = 0 + 6026 = 0 + 6029 = 0 + 6031 = 0 + 6030 = 0 + 6032 = 0 + 6041 = 0 + 6043 = 0 + 6042 = 0 + 6044 = 0 + 6049 = 0 + 6053 = 0 + 6050 = 0 + 6054 = 0 + 6051 = 0 + 6055 = 0 + 6105 = 0 + 6107 = 0 + 6114 = 0 + 6118 = 0 + 6115 = 0 + 6119 = 0 + 6120 = 0 + 6124 = 0 + 6121 = 0 + 6125 = 0 + 6138 = 0 + 6146 = 0 + 6139 = 0 + 6147 = 0 + 6140 = 0 + 6148 = 0 + 6186 = 0 + 6187 = 0 + 6188 = 0 + 6191 = 0 + 6193 = 0 + 6192 = 0 + 6194 = 0 + 6195 = 0 + 6199 = 0 + 6196 = 0 + 6200 = 0 + 6201 = 0 + 6203 = 0 + 6205 = 0 + 6202 = 0 + 6204 = 0 + 6206 = 0 + 6211 = 0 + 6215 = 0 + 6212 = 0 + 6216 = 0 + 6213 = 0 + 6217 = 0 + 6219 = 0 + 6227 = 0 + 6220 = 0 + 6228 = 0 + 6221 = 0 + 6229 = 0 + 6267 = 0 + 6268 = 0 + 6270 = 0 + 6272 = 0 + 6271 = 0 + 6273 = 0 + 6276 = 0 + 6278 = 0 + 6277 = 0 + 6279 = 0 + 6312 = 0 + 6316 = 0 + 6313 = 0 + 6317 = 0 + 6314 = 0 + 6318 = 0 + 6348 = 0 + 6349 = 0 + 6350 = 0 + 6351 = 0 + 6353 = 0 + 6355 = 0 + 6352 = 0 + 6354 = 0 + 6356 = 0 + 6357 = 0 + 6359 = 0 + 6358 = 0 + 6360 = 0 + 6365 = 0 + 6367 = 0 + 6366 = 0 + 6368 = 0 + 6373 = 0 + 6377 = 0 + 6374 = 0 + 6378 = 0 + 6375 = 0 + 6379 = 0 + 6393 = 0 + 6397 = 0 + 6394 = 0 + 6398 = 0 + 6395 = 0 + 6399 = 0 + 6429 = 0 + 6430 = 0 + 6431 = 0 + 6432 = 0 + 6434 = 0 + 6433 = 0 + 6435 = 0 + 6438 = 0 + 6440 = 0 + 6442 = 0 + 6439 = 0 + 6441 = 0 + 6443 = 0 + 6444 = 0 + 6448 = 0 + 6445 = 0 + 6449 = 0 + 6462 = 0 + 6470 = 0 + 6463 = 0 + 6471 = 0 + 6464 = 0 + 6472 = 0 + 6474 = 0 + 6478 = 0 + 6475 = 0 + 6479 = 0 + 6476 = 0 + 6480 = 0 + 6513 = 0 + 6515 = 0 + 6517 = 0 + 6514 = 0 + 6516 = 0 + 6518 = 0 + 6519 = 0 + 6521 = 0 + 6523 = 0 + 6520 = 0 + 6522 = 0 + 6524 = 0 + 6525 = 0 + 6527 = 0 + 6529 = 0 + 6526 = 0 + 6528 = 0 + 6530 = 0 + 6535 = 0 + 6539 = 0 + 6536 = 0 + 6540 = 0 + 6537 = 0 + 6541 = 0 + 6543 = 0 + 6551 = 0 + 6544 = 0 + 6552 = 0 + 6545 = 0 + 6553 = 0 + 6555 = 0 + 6559 = 0 + 6556 = 0 + 6560 = 0 + 6557 = 0 + 6561 = 0 diff --git a/tests/deal.II/normal_flux_02.cc b/tests/deal.II/normal_flux_02.cc new file mode 100644 index 0000000000..adb5611821 --- /dev/null +++ b/tests/deal.II/normal_flux_02.cc @@ -0,0 +1,98 @@ +// --------------------------------------------------------------------- +// $Id$ +// +// Copyright (C) 2007 - 2013 by the deal.II authors +// +// This file is part of the deal.II library. +// +// The deal.II library is free software; you can use it, redistribute +// it, and/or modify it under the terms of the GNU Lesser General +// Public License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. +// The full text of the license can be found in the file LICENSE at +// the top level of the deal.II distribution. +// +// --------------------------------------------------------------------- + + +// check the creation of normal flux boundary conditions for a finite +// element that consists of more than dim components and where +// therefore we have to pick the vector components from somewhere in +// the middle (opposite constraints as no_flux_02.cc does). + + +#include "../tests.h" +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include + + + +template +void test (const Triangulation &tr, + const FiniteElement &fe) +{ + DoFHandler dof(tr); + dof.distribute_dofs(fe); + + for (unsigned int i=0; i::faces_per_cell; ++i) + { + deallog << "FE=" << fe.get_name() + << ", case=" << i + << std::endl; + + std::set boundary_ids; + for (unsigned int j=0; j<=i; ++j) + boundary_ids.insert (j); + + ConstraintMatrix cm; + VectorTools::compute_normal_flux_constraints (dof, 1, boundary_ids, cm); + + cm.print (deallog.get_file_stream ()); + } +} + + +template +void test_hyper_cube() +{ + Triangulation tr; + GridGenerator::hyper_cube(tr); + + for (unsigned int i=0; i::faces_per_cell; ++i) + tr.begin_active()->face(i)->set_boundary_indicator (i); + + tr.refine_global(2); + + for (unsigned int degree=1; degree<4; ++degree) + { + FESystem fe (FE_Q(degree+1), 1, + FE_Q(degree), dim, + FE_Q(degree+1), 1); + test(tr, fe); + } +} + + +int main() +{ + std::ofstream logfile ("normal_flux_02/output"); + deallog << std::setprecision (2); + deallog << std::fixed; + deallog.attach(logfile); + deallog.depth_console (0); + deallog.threshold_double(1.e-12); + + test_hyper_cube<2>(); + test_hyper_cube<3>(); +} diff --git a/tests/deal.II/normal_flux_02/cmp/generic b/tests/deal.II/normal_flux_02/cmp/generic new file mode 100644 index 0000000000..ae1f7e5045 --- /dev/null +++ b/tests/deal.II/normal_flux_02/cmp/generic @@ -0,0 +1,9560 @@ + +DEAL::FE=FESystem<2>[FE_Q<2>(2)-FE_Q<2>(1)^2-FE_Q<2>(2)], case=0 + 2 = 0 + 10 = 0 + 44 = 0 + 122 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(2)-FE_Q<2>(1)^2-FE_Q<2>(2)], case=1 + 2 = 0 + 10 = 0 + 44 = 0 + 86 = 0 + 90 = 0 + 112 = 0 + 122 = 0 + 184 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(2)-FE_Q<2>(1)^2-FE_Q<2>(2)], case=2 + 5 = 0 + 10 = 0 + 27 = 0 + 44 = 0 + 69 = 0 + 90 = 0 + 112 = 0 + 122 = 0 + 184 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(2)-FE_Q<2>(1)^2-FE_Q<2>(2)], case=3 + 5 = 0 + 10 = 0 + 27 = 0 + 44 = 0 + 69 = 0 + 90 = 0 + 112 = 0 + 122 = 0 + 151 = 0 + 163 = 0 + 184 = 0 + 193 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(3)-FE_Q<2>(2)^2-FE_Q<2>(3)], case=0 + 2 = 0 + 10 = 0 + 88 = 0 + 274 = 0 + 336 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(3)-FE_Q<2>(2)^2-FE_Q<2>(3)], case=1 + 2 = 0 + 10 = 0 + 88 = 0 + 186 = 0 + 190 = 0 + 248 = 0 + 274 = 0 + 336 = 0 + 424 = 0 + 476 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(3)-FE_Q<2>(2)^2-FE_Q<2>(3)], case=2 + 5 = 0 + 10 = 0 + 51 = 0 + 88 = 0 + 149 = 0 + 190 = 0 + 248 = 0 + 274 = 0 + 336 = 0 + 424 = 0 + 476 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(3)-FE_Q<2>(2)^2-FE_Q<2>(3)], case=3 + 5 = 0 + 10 = 0 + 51 = 0 + 88 = 0 + 149 = 0 + 190 = 0 + 248 = 0 + 274 = 0 + 339 = 0 + 371 = 0 + 424 = 0 + 449 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(4)-FE_Q<2>(3)^2-FE_Q<2>(4)], case=0 + 2 = 0 + 10 = 0 + 21 = 0 + 148 = 0 + 159 = 0 + 490 = 0 + 501 = 0 + 604 = 0 + 615 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(4)-FE_Q<2>(3)^2-FE_Q<2>(4)], case=1 + 2 = 0 + 10 = 0 + 21 = 0 + 148 = 0 + 159 = 0 + 326 = 0 + 330 = 0 + 337 = 0 + 440 = 0 + 447 = 0 + 490 = 0 + 501 = 0 + 604 = 0 + 615 = 0 + 768 = 0 + 775 = 0 + 868 = 0 + 875 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(4)-FE_Q<2>(3)^2-FE_Q<2>(4)], case=2 + 5 = 0 + 10 = 0 + 21 = 0 + 39 = 0 + 83 = 0 + 103 = 0 + 148 = 0 + 159 = 0 + 261 = 0 + 281 = 0 + 330 = 0 + 337 = 0 + 345 = 0 + 440 = 0 + 447 = 0 + 490 = 0 + 501 = 0 + 604 = 0 + 615 = 0 + 768 = 0 + 775 = 0 + 868 = 0 + 875 = 0 +DEAL::FE=FESystem<2>[FE_Q<2>(4)-FE_Q<2>(3)^2-FE_Q<2>(4)], case=3 + 5 = 0 + 10 = 0 + 21 = 0 + 39 = 0 + 83 = 0 + 103 = 0 + 148 = 0 + 159 = 0 + 261 = 0 + 281 = 0 + 330 = 0 + 337 = 0 + 345 = 0 + 440 = 0 + 447 = 0 + 490 = 0 + 501 = 0 + 607 = 0 + 615 = 0 + 633 = 0 + 667 = 0 + 683 = 0 + 768 = 0 + 775 = 0 + 817 = 0 + 833 = 0 + 875 = 0 + 883 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(2)-FE_Q<3>(1)^3-FE_Q<3>(2)], case=0 + 2 = 0 + 3 = 0 + 12 = 0 + 13 = 0 + 22 = 0 + 23 = 0 + 32 = 0 + 33 = 0 + 128 = 0 + 129 = 0 + 138 = 0 + 139 = 0 + 206 = 0 + 207 = 0 + 216 = 0 + 217 = 0 + 284 = 0 + 285 = 0 + 587 = 0 + 588 = 0 + 597 = 0 + 598 = 0 + 665 = 0 + 666 = 0 + 675 = 0 + 676 = 0 + 743 = 0 + 744 = 0 + 792 = 0 + 793 = 0 + 1037 = 0 + 1038 = 0 + 1047 = 0 + 1048 = 0 + 1115 = 0 + 1116 = 0 + 1164 = 0 + 1165 = 0 + 1174 = 0 + 1175 = 0 + 1242 = 0 + 1243 = 0 + 1487 = 0 + 1488 = 0 + 1536 = 0 + 1537 = 0 + 1585 = 0 + 1586 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(2)-FE_Q<3>(1)^3-FE_Q<3>(2)], case=1 + 2 = 0 + 3 = 0 + 12 = 0 + 13 = 0 + 22 = 0 + 23 = 0 + 32 = 0 + 33 = 0 + 128 = 0 + 129 = 0 + 138 = 0 + 139 = 0 + 206 = 0 + 207 = 0 + 216 = 0 + 217 = 0 + 284 = 0 + 285 = 0 + 381 = 0 + 382 = 0 + 386 = 0 + 387 = 0 + 391 = 0 + 392 = 0 + 396 = 0 + 397 = 0 + 459 = 0 + 460 = 0 + 464 = 0 + 465 = 0 + 519 = 0 + 520 = 0 + 524 = 0 + 525 = 0 + 568 = 0 + 569 = 0 + 587 = 0 + 588 = 0 + 597 = 0 + 598 = 0 + 665 = 0 + 666 = 0 + 675 = 0 + 676 = 0 + 743 = 0 + 744 = 0 + 792 = 0 + 793 = 0 + 871 = 0 + 872 = 0 + 876 = 0 + 877 = 0 + 931 = 0 + 932 = 0 + 936 = 0 + 937 = 0 + 980 = 0 + 981 = 0 + 1018 = 0 + 1019 = 0 + 1037 = 0 + 1038 = 0 + 1047 = 0 + 1048 = 0 + 1115 = 0 + 1116 = 0 + 1164 = 0 + 1165 = 0 + 1174 = 0 + 1175 = 0 + 1242 = 0 + 1243 = 0 + 1321 = 0 + 1322 = 0 + 1326 = 0 + 1327 = 0 + 1370 = 0 + 1371 = 0 + 1419 = 0 + 1420 = 0 + 1424 = 0 + 1425 = 0 + 1468 = 0 + 1469 = 0 + 1487 = 0 + 1488 = 0 + 1536 = 0 + 1537 = 0 + 1585 = 0 + 1586 = 0 + 1702 = 0 + 1703 = 0 + 1740 = 0 + 1741 = 0 + 1778 = 0 + 1779 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(2)-FE_Q<3>(1)^3-FE_Q<3>(2)], case=2 + 1 = 0 + 2 = 0 + 3 = 0 + 6 = 0 + 8 = 0 + 12 = 0 + 13 = 0 + 21 = 0 + 22 = 0 + 23 = 0 + 26 = 0 + 28 = 0 + 32 = 0 + 33 = 0 + 79 = 0 + 81 = 0 + 89 = 0 + 91 = 0 + 128 = 0 + 129 = 0 + 138 = 0 + 139 = 0 + 205 = 0 + 206 = 0 + 207 = 0 + 210 = 0 + 212 = 0 + 216 = 0 + 217 = 0 + 253 = 0 + 255 = 0 + 284 = 0 + 285 = 0 + 332 = 0 + 334 = 0 + 342 = 0 + 344 = 0 + 380 = 0 + 381 = 0 + 382 = 0 + 386 = 0 + 387 = 0 + 390 = 0 + 391 = 0 + 392 = 0 + 396 = 0 + 397 = 0 + 459 = 0 + 460 = 0 + 464 = 0 + 465 = 0 + 488 = 0 + 490 = 0 + 518 = 0 + 519 = 0 + 520 = 0 + 524 = 0 + 525 = 0 + 568 = 0 + 569 = 0 + 587 = 0 + 588 = 0 + 597 = 0 + 598 = 0 + 665 = 0 + 666 = 0 + 675 = 0 + 676 = 0 + 743 = 0 + 744 = 0 + 792 = 0 + 793 = 0 + 871 = 0 + 872 = 0 + 876 = 0 + 877 = 0 + 931 = 0 + 932 = 0 + 936 = 0 + 937 = 0 + 980 = 0 + 981 = 0 + 1018 = 0 + 1019 = 0 + 1036 = 0 + 1037 = 0 + 1038 = 0 + 1041 = 0 + 1043 = 0 + 1047 = 0 + 1048 = 0 + 1084 = 0 + 1086 = 0 + 1115 = 0 + 1116 = 0 + 1163 = 0 + 1164 = 0 + 1165 = 0 + 1168 = 0 + 1170 = 0 + 1174 = 0 + 1175 = 0 + 1211 = 0 + 1213 = 0 + 1242 = 0 + 1243 = 0 + 1290 = 0 + 1292 = 0 + 1320 = 0 + 1321 = 0 + 1322 = 0 + 1326 = 0 + 1327 = 0 + 1370 = 0 + 1371 = 0 + 1388 = 0 + 1390 = 0 + 1418 = 0 + 1419 = 0 + 1420 = 0 + 1424 = 0 + 1425 = 0 + 1468 = 0 + 1469 = 0 + 1487 = 0 + 1488 = 0 + 1536 = 0 + 1537 = 0 + 1585 = 0 + 1586 = 0 + 1702 = 0 + 1703 = 0 + 1740 = 0 + 1741 = 0 + 1778 = 0 + 1779 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(2)-FE_Q<3>(1)^3-FE_Q<3>(2)], case=3 + 1 = 0 + 2 = 0 + 3 = 0 + 6 = 0 + 8 = 0 + 12 = 0 + 13 = 0 + 21 = 0 + 22 = 0 + 23 = 0 + 26 = 0 + 28 = 0 + 32 = 0 + 33 = 0 + 79 = 0 + 81 = 0 + 89 = 0 + 91 = 0 + 128 = 0 + 129 = 0 + 138 = 0 + 139 = 0 + 205 = 0 + 206 = 0 + 207 = 0 + 210 = 0 + 212 = 0 + 216 = 0 + 217 = 0 + 253 = 0 + 255 = 0 + 284 = 0 + 285 = 0 + 332 = 0 + 334 = 0 + 342 = 0 + 344 = 0 + 380 = 0 + 381 = 0 + 382 = 0 + 386 = 0 + 387 = 0 + 390 = 0 + 391 = 0 + 392 = 0 + 396 = 0 + 397 = 0 + 459 = 0 + 460 = 0 + 464 = 0 + 465 = 0 + 488 = 0 + 490 = 0 + 518 = 0 + 519 = 0 + 520 = 0 + 524 = 0 + 525 = 0 + 568 = 0 + 569 = 0 + 587 = 0 + 588 = 0 + 597 = 0 + 598 = 0 + 664 = 0 + 665 = 0 + 666 = 0 + 669 = 0 + 671 = 0 + 674 = 0 + 675 = 0 + 676 = 0 + 679 = 0 + 681 = 0 + 712 = 0 + 714 = 0 + 717 = 0 + 719 = 0 + 743 = 0 + 744 = 0 + 791 = 0 + 792 = 0 + 793 = 0 + 796 = 0 + 798 = 0 + 821 = 0 + 823 = 0 + 871 = 0 + 872 = 0 + 876 = 0 + 877 = 0 + 900 = 0 + 902 = 0 + 905 = 0 + 907 = 0 + 930 = 0 + 931 = 0 + 932 = 0 + 935 = 0 + 936 = 0 + 937 = 0 + 980 = 0 + 981 = 0 + 998 = 0 + 1000 = 0 + 1017 = 0 + 1018 = 0 + 1019 = 0 + 1036 = 0 + 1037 = 0 + 1038 = 0 + 1041 = 0 + 1043 = 0 + 1047 = 0 + 1048 = 0 + 1084 = 0 + 1086 = 0 + 1115 = 0 + 1116 = 0 + 1163 = 0 + 1164 = 0 + 1165 = 0 + 1168 = 0 + 1170 = 0 + 1174 = 0 + 1175 = 0 + 1211 = 0 + 1213 = 0 + 1242 = 0 + 1243 = 0 + 1290 = 0 + 1292 = 0 + 1320 = 0 + 1321 = 0 + 1322 = 0 + 1326 = 0 + 1327 = 0 + 1370 = 0 + 1371 = 0 + 1388 = 0 + 1390 = 0 + 1418 = 0 + 1419 = 0 + 1420 = 0 + 1424 = 0 + 1425 = 0 + 1468 = 0 + 1469 = 0 + 1487 = 0 + 1488 = 0 + 1535 = 0 + 1536 = 0 + 1537 = 0 + 1540 = 0 + 1542 = 0 + 1565 = 0 + 1567 = 0 + 1585 = 0 + 1586 = 0 + 1633 = 0 + 1634 = 0 + 1635 = 0 + 1638 = 0 + 1640 = 0 + 1663 = 0 + 1665 = 0 + 1702 = 0 + 1703 = 0 + 1720 = 0 + 1722 = 0 + 1739 = 0 + 1740 = 0 + 1741 = 0 + 1778 = 0 + 1779 = 0 + 1796 = 0 + 1798 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(2)-FE_Q<3>(1)^3-FE_Q<3>(2)], case=4 + 6 = 0 + 7 = 0 + 8 = 0 + 11 = 0 + 12 = 0 + 13 = 0 + 16 = 0 + 17 = 0 + 21 = 0 + 22 = 0 + 23 = 0 + 26 = 0 + 28 = 0 + 32 = 0 + 33 = 0 + 79 = 0 + 80 = 0 + 81 = 0 + 84 = 0 + 85 = 0 + 89 = 0 + 91 = 0 + 127 = 0 + 128 = 0 + 129 = 0 + 132 = 0 + 133 = 0 + 138 = 0 + 139 = 0 + 175 = 0 + 176 = 0 + 205 = 0 + 206 = 0 + 207 = 0 + 210 = 0 + 212 = 0 + 216 = 0 + 217 = 0 + 253 = 0 + 255 = 0 + 284 = 0 + 285 = 0 + 332 = 0 + 333 = 0 + 334 = 0 + 337 = 0 + 338 = 0 + 342 = 0 + 344 = 0 + 385 = 0 + 386 = 0 + 387 = 0 + 390 = 0 + 391 = 0 + 392 = 0 + 396 = 0 + 397 = 0 + 428 = 0 + 429 = 0 + 458 = 0 + 459 = 0 + 460 = 0 + 464 = 0 + 465 = 0 + 488 = 0 + 490 = 0 + 518 = 0 + 519 = 0 + 520 = 0 + 524 = 0 + 525 = 0 + 568 = 0 + 569 = 0 + 586 = 0 + 587 = 0 + 588 = 0 + 591 = 0 + 592 = 0 + 597 = 0 + 598 = 0 + 634 = 0 + 635 = 0 + 669 = 0 + 670 = 0 + 671 = 0 + 674 = 0 + 675 = 0 + 676 = 0 + 679 = 0 + 681 = 0 + 712 = 0 + 713 = 0 + 714 = 0 + 717 = 0 + 719 = 0 + 743 = 0 + 744 = 0 + 791 = 0 + 792 = 0 + 793 = 0 + 796 = 0 + 798 = 0 + 821 = 0 + 823 = 0 + 840 = 0 + 841 = 0 + 870 = 0 + 871 = 0 + 872 = 0 + 876 = 0 + 877 = 0 + 900 = 0 + 901 = 0 + 902 = 0 + 905 = 0 + 907 = 0 + 935 = 0 + 936 = 0 + 937 = 0 + 980 = 0 + 981 = 0 + 998 = 0 + 1000 = 0 + 1017 = 0 + 1018 = 0 + 1019 = 0 + 1036 = 0 + 1037 = 0 + 1038 = 0 + 1041 = 0 + 1043 = 0 + 1047 = 0 + 1048 = 0 + 1084 = 0 + 1086 = 0 + 1115 = 0 + 1116 = 0 + 1163 = 0 + 1164 = 0 + 1165 = 0 + 1168 = 0 + 1170 = 0 + 1174 = 0 + 1175 = 0 + 1211 = 0 + 1213 = 0 + 1242 = 0 + 1243 = 0 + 1290 = 0 + 1292 = 0 + 1320 = 0 + 1321 = 0 + 1322 = 0 + 1326 = 0 + 1327 = 0 + 1370 = 0 + 1371 = 0 + 1388 = 0 + 1390 = 0 + 1418 = 0 + 1419 = 0 + 1420 = 0 + 1424 = 0 + 1425 = 0 + 1468 = 0 + 1469 = 0 + 1487 = 0 + 1488 = 0 + 1535 = 0 + 1536 = 0 + 1537 = 0 + 1540 = 0 + 1542 = 0 + 1565 = 0 + 1567 = 0 + 1585 = 0 + 1586 = 0 + 1633 = 0 + 1634 = 0 + 1635 = 0 + 1638 = 0 + 1640 = 0 + 1663 = 0 + 1665 = 0 + 1702 = 0 + 1703 = 0 + 1720 = 0 + 1722 = 0 + 1739 = 0 + 1740 = 0 + 1741 = 0 + 1778 = 0 + 1779 = 0 + 1796 = 0 + 1798 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(2)-FE_Q<3>(1)^3-FE_Q<3>(2)], case=5 + 6 = 0 + 7 = 0 + 8 = 0 + 11 = 0 + 12 = 0 + 13 = 0 + 16 = 0 + 17 = 0 + 21 = 0 + 22 = 0 + 23 = 0 + 26 = 0 + 28 = 0 + 32 = 0 + 33 = 0 + 79 = 0 + 80 = 0 + 81 = 0 + 84 = 0 + 85 = 0 + 89 = 0 + 91 = 0 + 127 = 0 + 128 = 0 + 129 = 0 + 132 = 0 + 133 = 0 + 138 = 0 + 139 = 0 + 175 = 0 + 176 = 0 + 205 = 0 + 206 = 0 + 207 = 0 + 210 = 0 + 212 = 0 + 216 = 0 + 217 = 0 + 253 = 0 + 255 = 0 + 284 = 0 + 285 = 0 + 332 = 0 + 333 = 0 + 334 = 0 + 337 = 0 + 338 = 0 + 342 = 0 + 344 = 0 + 385 = 0 + 386 = 0 + 387 = 0 + 390 = 0 + 391 = 0 + 392 = 0 + 396 = 0 + 397 = 0 + 428 = 0 + 429 = 0 + 458 = 0 + 459 = 0 + 460 = 0 + 464 = 0 + 465 = 0 + 488 = 0 + 490 = 0 + 518 = 0 + 519 = 0 + 520 = 0 + 524 = 0 + 525 = 0 + 568 = 0 + 569 = 0 + 586 = 0 + 587 = 0 + 588 = 0 + 591 = 0 + 592 = 0 + 597 = 0 + 598 = 0 + 634 = 0 + 635 = 0 + 669 = 0 + 670 = 0 + 671 = 0 + 674 = 0 + 675 = 0 + 676 = 0 + 679 = 0 + 681 = 0 + 712 = 0 + 713 = 0 + 714 = 0 + 717 = 0 + 719 = 0 + 743 = 0 + 744 = 0 + 791 = 0 + 792 = 0 + 793 = 0 + 796 = 0 + 798 = 0 + 821 = 0 + 823 = 0 + 840 = 0 + 841 = 0 + 870 = 0 + 871 = 0 + 872 = 0 + 876 = 0 + 877 = 0 + 900 = 0 + 901 = 0 + 902 = 0 + 905 = 0 + 907 = 0 + 935 = 0 + 936 = 0 + 937 = 0 + 980 = 0 + 981 = 0 + 998 = 0 + 1000 = 0 + 1017 = 0 + 1018 = 0 + 1019 = 0 + 1036 = 0 + 1037 = 0 + 1038 = 0 + 1041 = 0 + 1043 = 0 + 1047 = 0 + 1048 = 0 + 1084 = 0 + 1086 = 0 + 1115 = 0 + 1116 = 0 + 1168 = 0 + 1169 = 0 + 1170 = 0 + 1173 = 0 + 1174 = 0 + 1175 = 0 + 1178 = 0 + 1179 = 0 + 1211 = 0 + 1212 = 0 + 1213 = 0 + 1216 = 0 + 1217 = 0 + 1241 = 0 + 1242 = 0 + 1243 = 0 + 1246 = 0 + 1247 = 0 + 1271 = 0 + 1272 = 0 + 1290 = 0 + 1292 = 0 + 1320 = 0 + 1321 = 0 + 1322 = 0 + 1326 = 0 + 1327 = 0 + 1370 = 0 + 1371 = 0 + 1388 = 0 + 1389 = 0 + 1390 = 0 + 1393 = 0 + 1394 = 0 + 1423 = 0 + 1424 = 0 + 1425 = 0 + 1448 = 0 + 1449 = 0 + 1467 = 0 + 1468 = 0 + 1469 = 0 + 1487 = 0 + 1488 = 0 + 1535 = 0 + 1536 = 0 + 1537 = 0 + 1540 = 0 + 1542 = 0 + 1565 = 0 + 1567 = 0 + 1584 = 0 + 1585 = 0 + 1586 = 0 + 1589 = 0 + 1590 = 0 + 1614 = 0 + 1615 = 0 + 1638 = 0 + 1639 = 0 + 1640 = 0 + 1663 = 0 + 1664 = 0 + 1665 = 0 + 1702 = 0 + 1703 = 0 + 1720 = 0 + 1722 = 0 + 1739 = 0 + 1740 = 0 + 1741 = 0 + 1758 = 0 + 1759 = 0 + 1777 = 0 + 1778 = 0 + 1779 = 0 + 1796 = 0 + 1797 = 0 + 1798 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(3)-FE_Q<3>(2)^3-FE_Q<3>(3)], case=0 + 2 = 0 + 3 = 0 + 12 = 0 + 13 = 0 + 22 = 0 + 23 = 0 + 32 = 0 + 33 = 0 + 43 = 0 + 44 = 0 + 71 = 0 + 72 = 0 + 99 = 0 + 100 = 0 + 113 = 0 + 114 = 0 + 361 = 0 + 362 = 0 + 371 = 0 + 372 = 0 + 382 = 0 + 383 = 0 + 403 = 0 + 404 = 0 + 424 = 0 + 425 = 0 + 619 = 0 + 620 = 0 + 629 = 0 + 630 = 0 + 640 = 0 + 641 = 0 + 668 = 0 + 669 = 0 + 682 = 0 + 683 = 0 + 877 = 0 + 878 = 0 + 888 = 0 + 889 = 0 + 909 = 0 + 910 = 0 + 1951 = 0 + 1952 = 0 + 1961 = 0 + 1962 = 0 + 1972 = 0 + 1973 = 0 + 1993 = 0 + 1994 = 0 + 2014 = 0 + 2015 = 0 + 2209 = 0 + 2210 = 0 + 2219 = 0 + 2220 = 0 + 2230 = 0 + 2231 = 0 + 2251 = 0 + 2252 = 0 + 2272 = 0 + 2273 = 0 + 2467 = 0 + 2468 = 0 + 2478 = 0 + 2479 = 0 + 2499 = 0 + 2500 = 0 + 2653 = 0 + 2654 = 0 + 2664 = 0 + 2665 = 0 + 2685 = 0 + 2686 = 0 + 3583 = 0 + 3584 = 0 + 3593 = 0 + 3594 = 0 + 3604 = 0 + 3605 = 0 + 3632 = 0 + 3633 = 0 + 3646 = 0 + 3647 = 0 + 3841 = 0 + 3842 = 0 + 3852 = 0 + 3853 = 0 + 3873 = 0 + 3874 = 0 + 4027 = 0 + 4028 = 0 + 4037 = 0 + 4038 = 0 + 4048 = 0 + 4049 = 0 + 4076 = 0 + 4077 = 0 + 4090 = 0 + 4091 = 0 + 4285 = 0 + 4286 = 0 + 4296 = 0 + 4297 = 0 + 4317 = 0 + 4318 = 0 + 5215 = 0 + 5216 = 0 + 5226 = 0 + 5227 = 0 + 5247 = 0 + 5248 = 0 + 5401 = 0 + 5402 = 0 + 5412 = 0 + 5413 = 0 + 5433 = 0 + 5434 = 0 + 5587 = 0 + 5588 = 0 + 5598 = 0 + 5599 = 0 + 5619 = 0 + 5620 = 0 + 5773 = 0 + 5774 = 0 + 5784 = 0 + 5785 = 0 + 5805 = 0 + 5806 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(3)-FE_Q<3>(2)^3-FE_Q<3>(3)], case=1 + 2 = 0 + 3 = 0 + 12 = 0 + 13 = 0 + 22 = 0 + 23 = 0 + 32 = 0 + 33 = 0 + 43 = 0 + 44 = 0 + 71 = 0 + 72 = 0 + 99 = 0 + 100 = 0 + 113 = 0 + 114 = 0 + 361 = 0 + 362 = 0 + 371 = 0 + 372 = 0 + 382 = 0 + 383 = 0 + 403 = 0 + 404 = 0 + 424 = 0 + 425 = 0 + 619 = 0 + 620 = 0 + 629 = 0 + 630 = 0 + 640 = 0 + 641 = 0 + 668 = 0 + 669 = 0 + 682 = 0 + 683 = 0 + 877 = 0 + 878 = 0 + 888 = 0 + 889 = 0 + 909 = 0 + 910 = 0 + 1213 = 0 + 1214 = 0 + 1218 = 0 + 1219 = 0 + 1223 = 0 + 1224 = 0 + 1228 = 0 + 1229 = 0 + 1234 = 0 + 1235 = 0 + 1255 = 0 + 1256 = 0 + 1276 = 0 + 1277 = 0 + 1283 = 0 + 1284 = 0 + 1471 = 0 + 1472 = 0 + 1476 = 0 + 1477 = 0 + 1482 = 0 + 1483 = 0 + 1496 = 0 + 1497 = 0 + 1510 = 0 + 1511 = 0 + 1687 = 0 + 1688 = 0 + 1692 = 0 + 1693 = 0 + 1698 = 0 + 1699 = 0 + 1719 = 0 + 1720 = 0 + 1726 = 0 + 1727 = 0 + 1873 = 0 + 1874 = 0 + 1879 = 0 + 1880 = 0 + 1893 = 0 + 1894 = 0 + 1951 = 0 + 1952 = 0 + 1961 = 0 + 1962 = 0 + 1972 = 0 + 1973 = 0 + 1993 = 0 + 1994 = 0 + 2014 = 0 + 2015 = 0 + 2209 = 0 + 2210 = 0 + 2219 = 0 + 2220 = 0 + 2230 = 0 + 2231 = 0 + 2251 = 0 + 2252 = 0 + 2272 = 0 + 2273 = 0 + 2467 = 0 + 2468 = 0 + 2478 = 0 + 2479 = 0 + 2499 = 0 + 2500 = 0 + 2653 = 0 + 2654 = 0 + 2664 = 0 + 2665 = 0 + 2685 = 0 + 2686 = 0 + 2947 = 0 + 2948 = 0 + 2952 = 0 + 2953 = 0 + 2958 = 0 + 2959 = 0 + 2972 = 0 + 2973 = 0 + 2986 = 0 + 2987 = 0 + 3163 = 0 + 3164 = 0 + 3168 = 0 + 3169 = 0 + 3174 = 0 + 3175 = 0 + 3188 = 0 + 3189 = 0 + 3202 = 0 + 3203 = 0 + 3349 = 0 + 3350 = 0 + 3355 = 0 + 3356 = 0 + 3369 = 0 + 3370 = 0 + 3505 = 0 + 3506 = 0 + 3511 = 0 + 3512 = 0 + 3525 = 0 + 3526 = 0 + 3583 = 0 + 3584 = 0 + 3593 = 0 + 3594 = 0 + 3604 = 0 + 3605 = 0 + 3632 = 0 + 3633 = 0 + 3646 = 0 + 3647 = 0 + 3841 = 0 + 3842 = 0 + 3852 = 0 + 3853 = 0 + 3873 = 0 + 3874 = 0 + 4027 = 0 + 4028 = 0 + 4037 = 0 + 4038 = 0 + 4048 = 0 + 4049 = 0 + 4076 = 0 + 4077 = 0 + 4090 = 0 + 4091 = 0 + 4285 = 0 + 4286 = 0 + 4296 = 0 + 4297 = 0 + 4317 = 0 + 4318 = 0 + 4579 = 0 + 4580 = 0 + 4584 = 0 + 4585 = 0 + 4590 = 0 + 4591 = 0 + 4611 = 0 + 4612 = 0 + 4618 = 0 + 4619 = 0 + 4765 = 0 + 4766 = 0 + 4771 = 0 + 4772 = 0 + 4785 = 0 + 4786 = 0 + 4951 = 0 + 4952 = 0 + 4956 = 0 + 4957 = 0 + 4962 = 0 + 4963 = 0 + 4983 = 0 + 4984 = 0 + 4990 = 0 + 4991 = 0 + 5137 = 0 + 5138 = 0 + 5143 = 0 + 5144 = 0 + 5157 = 0 + 5158 = 0 + 5215 = 0 + 5216 = 0 + 5226 = 0 + 5227 = 0 + 5247 = 0 + 5248 = 0 + 5401 = 0 + 5402 = 0 + 5412 = 0 + 5413 = 0 + 5433 = 0 + 5434 = 0 + 5587 = 0 + 5588 = 0 + 5598 = 0 + 5599 = 0 + 5619 = 0 + 5620 = 0 + 5773 = 0 + 5774 = 0 + 5784 = 0 + 5785 = 0 + 5805 = 0 + 5806 = 0 + 6037 = 0 + 6038 = 0 + 6043 = 0 + 6044 = 0 + 6057 = 0 + 6058 = 0 + 6193 = 0 + 6194 = 0 + 6199 = 0 + 6200 = 0 + 6213 = 0 + 6214 = 0 + 6349 = 0 + 6350 = 0 + 6355 = 0 + 6356 = 0 + 6369 = 0 + 6370 = 0 + 6505 = 0 + 6506 = 0 + 6511 = 0 + 6512 = 0 + 6525 = 0 + 6526 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(3)-FE_Q<3>(2)^3-FE_Q<3>(3)], case=2 + 1 = 0 + 2 = 0 + 3 = 0 + 6 = 0 + 8 = 0 + 12 = 0 + 13 = 0 + 21 = 0 + 22 = 0 + 23 = 0 + 26 = 0 + 28 = 0 + 32 = 0 + 33 = 0 + 43 = 0 + 44 = 0 + 56 = 0 + 58 = 0 + 71 = 0 + 72 = 0 + 84 = 0 + 86 = 0 + 98 = 0 + 99 = 0 + 100 = 0 + 105 = 0 + 107 = 0 + 113 = 0 + 114 = 0 + 210 = 0 + 212 = 0 + 220 = 0 + 222 = 0 + 238 = 0 + 240 = 0 + 259 = 0 + 261 = 0 + 273 = 0 + 275 = 0 + 361 = 0 + 362 = 0 + 371 = 0 + 372 = 0 + 382 = 0 + 383 = 0 + 403 = 0 + 404 = 0 + 424 = 0 + 425 = 0 + 618 = 0 + 619 = 0 + 620 = 0 + 623 = 0 + 625 = 0 + 629 = 0 + 630 = 0 + 640 = 0 + 641 = 0 + 653 = 0 + 655 = 0 + 667 = 0 + 668 = 0 + 669 = 0 + 674 = 0 + 676 = 0 + 682 = 0 + 683 = 0 + 768 = 0 + 770 = 0 + 786 = 0 + 788 = 0 + 800 = 0 + 802 = 0 + 877 = 0 + 878 = 0 + 888 = 0 + 889 = 0 + 909 = 0 + 910 = 0 + 1062 = 0 + 1064 = 0 + 1072 = 0 + 1074 = 0 + 1090 = 0 + 1092 = 0 + 1111 = 0 + 1113 = 0 + 1125 = 0 + 1127 = 0 + 1212 = 0 + 1213 = 0 + 1214 = 0 + 1218 = 0 + 1219 = 0 + 1222 = 0 + 1223 = 0 + 1224 = 0 + 1228 = 0 + 1229 = 0 + 1234 = 0 + 1235 = 0 + 1240 = 0 + 1242 = 0 + 1255 = 0 + 1256 = 0 + 1261 = 0 + 1263 = 0 + 1275 = 0 + 1276 = 0 + 1277 = 0 + 1283 = 0 + 1284 = 0 + 1471 = 0 + 1472 = 0 + 1476 = 0 + 1477 = 0 + 1482 = 0 + 1483 = 0 + 1496 = 0 + 1497 = 0 + 1510 = 0 + 1511 = 0 + 1578 = 0 + 1580 = 0 + 1596 = 0 + 1598 = 0 + 1610 = 0 + 1612 = 0 + 1686 = 0 + 1687 = 0 + 1688 = 0 + 1692 = 0 + 1693 = 0 + 1698 = 0 + 1699 = 0 + 1704 = 0 + 1706 = 0 + 1718 = 0 + 1719 = 0 + 1720 = 0 + 1726 = 0 + 1727 = 0 + 1873 = 0 + 1874 = 0 + 1879 = 0 + 1880 = 0 + 1893 = 0 + 1894 = 0 + 1951 = 0 + 1952 = 0 + 1961 = 0 + 1962 = 0 + 1972 = 0 + 1973 = 0 + 1993 = 0 + 1994 = 0 + 2014 = 0 + 2015 = 0 + 2209 = 0 + 2210 = 0 + 2219 = 0 + 2220 = 0 + 2230 = 0 + 2231 = 0 + 2251 = 0 + 2252 = 0 + 2272 = 0 + 2273 = 0 + 2467 = 0 + 2468 = 0 + 2478 = 0 + 2479 = 0 + 2499 = 0 + 2500 = 0 + 2653 = 0 + 2654 = 0 + 2664 = 0 + 2665 = 0 + 2685 = 0 + 2686 = 0 + 2947 = 0 + 2948 = 0 + 2952 = 0 + 2953 = 0 + 2958 = 0 + 2959 = 0 + 2972 = 0 + 2973 = 0 + 2986 = 0 + 2987 = 0 + 3163 = 0 + 3164 = 0 + 3168 = 0 + 3169 = 0 + 3174 = 0 + 3175 = 0 + 3188 = 0 + 3189 = 0 + 3202 = 0 + 3203 = 0 + 3349 = 0 + 3350 = 0 + 3355 = 0 + 3356 = 0 + 3369 = 0 + 3370 = 0 + 3505 = 0 + 3506 = 0 + 3511 = 0 + 3512 = 0 + 3525 = 0 + 3526 = 0 + 3582 = 0 + 3583 = 0 + 3584 = 0 + 3587 = 0 + 3589 = 0 + 3593 = 0 + 3594 = 0 + 3604 = 0 + 3605 = 0 + 3617 = 0 + 3619 = 0 + 3631 = 0 + 3632 = 0 + 3633 = 0 + 3638 = 0 + 3640 = 0 + 3646 = 0 + 3647 = 0 + 3732 = 0 + 3734 = 0 + 3750 = 0 + 3752 = 0 + 3764 = 0 + 3766 = 0 + 3841 = 0 + 3842 = 0 + 3852 = 0 + 3853 = 0 + 3873 = 0 + 3874 = 0 + 4026 = 0 + 4027 = 0 + 4028 = 0 + 4031 = 0 + 4033 = 0 + 4037 = 0 + 4038 = 0 + 4048 = 0 + 4049 = 0 + 4061 = 0 + 4063 = 0 + 4075 = 0 + 4076 = 0 + 4077 = 0 + 4082 = 0 + 4084 = 0 + 4090 = 0 + 4091 = 0 + 4176 = 0 + 4178 = 0 + 4194 = 0 + 4196 = 0 + 4208 = 0 + 4210 = 0 + 4285 = 0 + 4286 = 0 + 4296 = 0 + 4297 = 0 + 4317 = 0 + 4318 = 0 + 4470 = 0 + 4472 = 0 + 4488 = 0 + 4490 = 0 + 4502 = 0 + 4504 = 0 + 4578 = 0 + 4579 = 0 + 4580 = 0 + 4584 = 0 + 4585 = 0 + 4590 = 0 + 4591 = 0 + 4596 = 0 + 4598 = 0 + 4610 = 0 + 4611 = 0 + 4612 = 0 + 4618 = 0 + 4619 = 0 + 4765 = 0 + 4766 = 0 + 4771 = 0 + 4772 = 0 + 4785 = 0 + 4786 = 0 + 4842 = 0 + 4844 = 0 + 4860 = 0 + 4862 = 0 + 4874 = 0 + 4876 = 0 + 4950 = 0 + 4951 = 0 + 4952 = 0 + 4956 = 0 + 4957 = 0 + 4962 = 0 + 4963 = 0 + 4968 = 0 + 4970 = 0 + 4982 = 0 + 4983 = 0 + 4984 = 0 + 4990 = 0 + 4991 = 0 + 5137 = 0 + 5138 = 0 + 5143 = 0 + 5144 = 0 + 5157 = 0 + 5158 = 0 + 5215 = 0 + 5216 = 0 + 5226 = 0 + 5227 = 0 + 5247 = 0 + 5248 = 0 + 5401 = 0 + 5402 = 0 + 5412 = 0 + 5413 = 0 + 5433 = 0 + 5434 = 0 + 5587 = 0 + 5588 = 0 + 5598 = 0 + 5599 = 0 + 5619 = 0 + 5620 = 0 + 5773 = 0 + 5774 = 0 + 5784 = 0 + 5785 = 0 + 5805 = 0 + 5806 = 0 + 6037 = 0 + 6038 = 0 + 6043 = 0 + 6044 = 0 + 6057 = 0 + 6058 = 0 + 6193 = 0 + 6194 = 0 + 6199 = 0 + 6200 = 0 + 6213 = 0 + 6214 = 0 + 6349 = 0 + 6350 = 0 + 6355 = 0 + 6356 = 0 + 6369 = 0 + 6370 = 0 + 6505 = 0 + 6506 = 0 + 6511 = 0 + 6512 = 0 + 6525 = 0 + 6526 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(3)-FE_Q<3>(2)^3-FE_Q<3>(3)], case=3 + 1 = 0 + 2 = 0 + 3 = 0 + 6 = 0 + 8 = 0 + 12 = 0 + 13 = 0 + 21 = 0 + 22 = 0 + 23 = 0 + 26 = 0 + 28 = 0 + 32 = 0 + 33 = 0 + 43 = 0 + 44 = 0 + 56 = 0 + 58 = 0 + 71 = 0 + 72 = 0 + 84 = 0 + 86 = 0 + 98 = 0 + 99 = 0 + 100 = 0 + 105 = 0 + 107 = 0 + 113 = 0 + 114 = 0 + 210 = 0 + 212 = 0 + 220 = 0 + 222 = 0 + 238 = 0 + 240 = 0 + 259 = 0 + 261 = 0 + 273 = 0 + 275 = 0 + 361 = 0 + 362 = 0 + 371 = 0 + 372 = 0 + 382 = 0 + 383 = 0 + 403 = 0 + 404 = 0 + 424 = 0 + 425 = 0 + 618 = 0 + 619 = 0 + 620 = 0 + 623 = 0 + 625 = 0 + 629 = 0 + 630 = 0 + 640 = 0 + 641 = 0 + 653 = 0 + 655 = 0 + 667 = 0 + 668 = 0 + 669 = 0 + 674 = 0 + 676 = 0 + 682 = 0 + 683 = 0 + 768 = 0 + 770 = 0 + 786 = 0 + 788 = 0 + 800 = 0 + 802 = 0 + 877 = 0 + 878 = 0 + 888 = 0 + 889 = 0 + 909 = 0 + 910 = 0 + 1062 = 0 + 1064 = 0 + 1072 = 0 + 1074 = 0 + 1090 = 0 + 1092 = 0 + 1111 = 0 + 1113 = 0 + 1125 = 0 + 1127 = 0 + 1212 = 0 + 1213 = 0 + 1214 = 0 + 1218 = 0 + 1219 = 0 + 1222 = 0 + 1223 = 0 + 1224 = 0 + 1228 = 0 + 1229 = 0 + 1234 = 0 + 1235 = 0 + 1240 = 0 + 1242 = 0 + 1255 = 0 + 1256 = 0 + 1261 = 0 + 1263 = 0 + 1275 = 0 + 1276 = 0 + 1277 = 0 + 1283 = 0 + 1284 = 0 + 1471 = 0 + 1472 = 0 + 1476 = 0 + 1477 = 0 + 1482 = 0 + 1483 = 0 + 1496 = 0 + 1497 = 0 + 1510 = 0 + 1511 = 0 + 1578 = 0 + 1580 = 0 + 1596 = 0 + 1598 = 0 + 1610 = 0 + 1612 = 0 + 1686 = 0 + 1687 = 0 + 1688 = 0 + 1692 = 0 + 1693 = 0 + 1698 = 0 + 1699 = 0 + 1704 = 0 + 1706 = 0 + 1718 = 0 + 1719 = 0 + 1720 = 0 + 1726 = 0 + 1727 = 0 + 1873 = 0 + 1874 = 0 + 1879 = 0 + 1880 = 0 + 1893 = 0 + 1894 = 0 + 1951 = 0 + 1952 = 0 + 1961 = 0 + 1962 = 0 + 1972 = 0 + 1973 = 0 + 1993 = 0 + 1994 = 0 + 2014 = 0 + 2015 = 0 + 2208 = 0 + 2209 = 0 + 2210 = 0 + 2213 = 0 + 2215 = 0 + 2218 = 0 + 2219 = 0 + 2220 = 0 + 2223 = 0 + 2225 = 0 + 2230 = 0 + 2231 = 0 + 2243 = 0 + 2245 = 0 + 2251 = 0 + 2252 = 0 + 2264 = 0 + 2266 = 0 + 2271 = 0 + 2272 = 0 + 2273 = 0 + 2278 = 0 + 2280 = 0 + 2358 = 0 + 2360 = 0 + 2363 = 0 + 2365 = 0 + 2376 = 0 + 2378 = 0 + 2390 = 0 + 2392 = 0 + 2397 = 0 + 2399 = 0 + 2467 = 0 + 2468 = 0 + 2478 = 0 + 2479 = 0 + 2499 = 0 + 2500 = 0 + 2652 = 0 + 2653 = 0 + 2654 = 0 + 2657 = 0 + 2659 = 0 + 2664 = 0 + 2665 = 0 + 2677 = 0 + 2679 = 0 + 2684 = 0 + 2685 = 0 + 2686 = 0 + 2691 = 0 + 2693 = 0 + 2760 = 0 + 2762 = 0 + 2773 = 0 + 2775 = 0 + 2780 = 0 + 2782 = 0 + 2947 = 0 + 2948 = 0 + 2952 = 0 + 2953 = 0 + 2958 = 0 + 2959 = 0 + 2972 = 0 + 2973 = 0 + 2986 = 0 + 2987 = 0 + 3054 = 0 + 3056 = 0 + 3059 = 0 + 3061 = 0 + 3072 = 0 + 3074 = 0 + 3086 = 0 + 3088 = 0 + 3093 = 0 + 3095 = 0 + 3162 = 0 + 3163 = 0 + 3164 = 0 + 3167 = 0 + 3168 = 0 + 3169 = 0 + 3174 = 0 + 3175 = 0 + 3180 = 0 + 3182 = 0 + 3188 = 0 + 3189 = 0 + 3194 = 0 + 3196 = 0 + 3201 = 0 + 3202 = 0 + 3203 = 0 + 3349 = 0 + 3350 = 0 + 3355 = 0 + 3356 = 0 + 3369 = 0 + 3370 = 0 + 3426 = 0 + 3428 = 0 + 3439 = 0 + 3441 = 0 + 3446 = 0 + 3448 = 0 + 3504 = 0 + 3505 = 0 + 3506 = 0 + 3511 = 0 + 3512 = 0 + 3517 = 0 + 3519 = 0 + 3524 = 0 + 3525 = 0 + 3526 = 0 + 3582 = 0 + 3583 = 0 + 3584 = 0 + 3587 = 0 + 3589 = 0 + 3593 = 0 + 3594 = 0 + 3604 = 0 + 3605 = 0 + 3617 = 0 + 3619 = 0 + 3631 = 0 + 3632 = 0 + 3633 = 0 + 3638 = 0 + 3640 = 0 + 3646 = 0 + 3647 = 0 + 3732 = 0 + 3734 = 0 + 3750 = 0 + 3752 = 0 + 3764 = 0 + 3766 = 0 + 3841 = 0 + 3842 = 0 + 3852 = 0 + 3853 = 0 + 3873 = 0 + 3874 = 0 + 4026 = 0 + 4027 = 0 + 4028 = 0 + 4031 = 0 + 4033 = 0 + 4037 = 0 + 4038 = 0 + 4048 = 0 + 4049 = 0 + 4061 = 0 + 4063 = 0 + 4075 = 0 + 4076 = 0 + 4077 = 0 + 4082 = 0 + 4084 = 0 + 4090 = 0 + 4091 = 0 + 4176 = 0 + 4178 = 0 + 4194 = 0 + 4196 = 0 + 4208 = 0 + 4210 = 0 + 4285 = 0 + 4286 = 0 + 4296 = 0 + 4297 = 0 + 4317 = 0 + 4318 = 0 + 4470 = 0 + 4472 = 0 + 4488 = 0 + 4490 = 0 + 4502 = 0 + 4504 = 0 + 4578 = 0 + 4579 = 0 + 4580 = 0 + 4584 = 0 + 4585 = 0 + 4590 = 0 + 4591 = 0 + 4596 = 0 + 4598 = 0 + 4610 = 0 + 4611 = 0 + 4612 = 0 + 4618 = 0 + 4619 = 0 + 4765 = 0 + 4766 = 0 + 4771 = 0 + 4772 = 0 + 4785 = 0 + 4786 = 0 + 4842 = 0 + 4844 = 0 + 4860 = 0 + 4862 = 0 + 4874 = 0 + 4876 = 0 + 4950 = 0 + 4951 = 0 + 4952 = 0 + 4956 = 0 + 4957 = 0 + 4962 = 0 + 4963 = 0 + 4968 = 0 + 4970 = 0 + 4982 = 0 + 4983 = 0 + 4984 = 0 + 4990 = 0 + 4991 = 0 + 5137 = 0 + 5138 = 0 + 5143 = 0 + 5144 = 0 + 5157 = 0 + 5158 = 0 + 5215 = 0 + 5216 = 0 + 5226 = 0 + 5227 = 0 + 5247 = 0 + 5248 = 0 + 5400 = 0 + 5401 = 0 + 5402 = 0 + 5405 = 0 + 5407 = 0 + 5412 = 0 + 5413 = 0 + 5425 = 0 + 5427 = 0 + 5432 = 0 + 5433 = 0 + 5434 = 0 + 5439 = 0 + 5441 = 0 + 5508 = 0 + 5510 = 0 + 5521 = 0 + 5523 = 0 + 5528 = 0 + 5530 = 0 + 5587 = 0 + 5588 = 0 + 5598 = 0 + 5599 = 0 + 5619 = 0 + 5620 = 0 + 5772 = 0 + 5773 = 0 + 5774 = 0 + 5777 = 0 + 5779 = 0 + 5784 = 0 + 5785 = 0 + 5797 = 0 + 5799 = 0 + 5804 = 0 + 5805 = 0 + 5806 = 0 + 5811 = 0 + 5813 = 0 + 5880 = 0 + 5882 = 0 + 5893 = 0 + 5895 = 0 + 5900 = 0 + 5902 = 0 + 6037 = 0 + 6038 = 0 + 6043 = 0 + 6044 = 0 + 6057 = 0 + 6058 = 0 + 6114 = 0 + 6116 = 0 + 6127 = 0 + 6129 = 0 + 6134 = 0 + 6136 = 0 + 6192 = 0 + 6193 = 0 + 6194 = 0 + 6199 = 0 + 6200 = 0 + 6205 = 0 + 6207 = 0 + 6212 = 0 + 6213 = 0 + 6214 = 0 + 6349 = 0 + 6350 = 0 + 6355 = 0 + 6356 = 0 + 6369 = 0 + 6370 = 0 + 6426 = 0 + 6428 = 0 + 6439 = 0 + 6441 = 0 + 6446 = 0 + 6448 = 0 + 6504 = 0 + 6505 = 0 + 6506 = 0 + 6511 = 0 + 6512 = 0 + 6517 = 0 + 6519 = 0 + 6524 = 0 + 6525 = 0 + 6526 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(3)-FE_Q<3>(2)^3-FE_Q<3>(3)], case=4 + 6 = 0 + 7 = 0 + 8 = 0 + 11 = 0 + 12 = 0 + 13 = 0 + 16 = 0 + 17 = 0 + 21 = 0 + 22 = 0 + 23 = 0 + 26 = 0 + 28 = 0 + 32 = 0 + 33 = 0 + 42 = 0 + 43 = 0 + 44 = 0 + 49 = 0 + 50 = 0 + 56 = 0 + 57 = 0 + 58 = 0 + 63 = 0 + 64 = 0 + 71 = 0 + 72 = 0 + 84 = 0 + 86 = 0 + 98 = 0 + 99 = 0 + 100 = 0 + 105 = 0 + 107 = 0 + 113 = 0 + 114 = 0 + 210 = 0 + 211 = 0 + 212 = 0 + 215 = 0 + 216 = 0 + 220 = 0 + 222 = 0 + 231 = 0 + 232 = 0 + 238 = 0 + 239 = 0 + 240 = 0 + 245 = 0 + 246 = 0 + 259 = 0 + 261 = 0 + 273 = 0 + 275 = 0 + 360 = 0 + 361 = 0 + 362 = 0 + 365 = 0 + 366 = 0 + 371 = 0 + 372 = 0 + 381 = 0 + 382 = 0 + 383 = 0 + 388 = 0 + 389 = 0 + 395 = 0 + 396 = 0 + 403 = 0 + 404 = 0 + 424 = 0 + 425 = 0 + 510 = 0 + 511 = 0 + 521 = 0 + 522 = 0 + 528 = 0 + 529 = 0 + 618 = 0 + 619 = 0 + 620 = 0 + 623 = 0 + 625 = 0 + 629 = 0 + 630 = 0 + 640 = 0 + 641 = 0 + 653 = 0 + 655 = 0 + 667 = 0 + 668 = 0 + 669 = 0 + 674 = 0 + 676 = 0 + 682 = 0 + 683 = 0 + 768 = 0 + 770 = 0 + 786 = 0 + 788 = 0 + 800 = 0 + 802 = 0 + 877 = 0 + 878 = 0 + 888 = 0 + 889 = 0 + 909 = 0 + 910 = 0 + 1062 = 0 + 1063 = 0 + 1064 = 0 + 1067 = 0 + 1068 = 0 + 1072 = 0 + 1074 = 0 + 1083 = 0 + 1084 = 0 + 1090 = 0 + 1091 = 0 + 1092 = 0 + 1097 = 0 + 1098 = 0 + 1111 = 0 + 1113 = 0 + 1125 = 0 + 1127 = 0 + 1217 = 0 + 1218 = 0 + 1219 = 0 + 1222 = 0 + 1223 = 0 + 1224 = 0 + 1228 = 0 + 1229 = 0 + 1233 = 0 + 1234 = 0 + 1235 = 0 + 1240 = 0 + 1241 = 0 + 1242 = 0 + 1247 = 0 + 1248 = 0 + 1255 = 0 + 1256 = 0 + 1261 = 0 + 1263 = 0 + 1275 = 0 + 1276 = 0 + 1277 = 0 + 1283 = 0 + 1284 = 0 + 1362 = 0 + 1363 = 0 + 1373 = 0 + 1374 = 0 + 1380 = 0 + 1381 = 0 + 1470 = 0 + 1471 = 0 + 1472 = 0 + 1476 = 0 + 1477 = 0 + 1481 = 0 + 1482 = 0 + 1483 = 0 + 1488 = 0 + 1489 = 0 + 1496 = 0 + 1497 = 0 + 1510 = 0 + 1511 = 0 + 1578 = 0 + 1580 = 0 + 1596 = 0 + 1598 = 0 + 1610 = 0 + 1612 = 0 + 1686 = 0 + 1687 = 0 + 1688 = 0 + 1692 = 0 + 1693 = 0 + 1698 = 0 + 1699 = 0 + 1704 = 0 + 1706 = 0 + 1718 = 0 + 1719 = 0 + 1720 = 0 + 1726 = 0 + 1727 = 0 + 1873 = 0 + 1874 = 0 + 1879 = 0 + 1880 = 0 + 1893 = 0 + 1894 = 0 + 1950 = 0 + 1951 = 0 + 1952 = 0 + 1955 = 0 + 1956 = 0 + 1961 = 0 + 1962 = 0 + 1971 = 0 + 1972 = 0 + 1973 = 0 + 1978 = 0 + 1979 = 0 + 1985 = 0 + 1986 = 0 + 1993 = 0 + 1994 = 0 + 2014 = 0 + 2015 = 0 + 2100 = 0 + 2101 = 0 + 2111 = 0 + 2112 = 0 + 2118 = 0 + 2119 = 0 + 2213 = 0 + 2214 = 0 + 2215 = 0 + 2218 = 0 + 2219 = 0 + 2220 = 0 + 2223 = 0 + 2225 = 0 + 2229 = 0 + 2230 = 0 + 2231 = 0 + 2236 = 0 + 2237 = 0 + 2243 = 0 + 2244 = 0 + 2245 = 0 + 2251 = 0 + 2252 = 0 + 2264 = 0 + 2266 = 0 + 2271 = 0 + 2272 = 0 + 2273 = 0 + 2278 = 0 + 2280 = 0 + 2358 = 0 + 2359 = 0 + 2360 = 0 + 2363 = 0 + 2365 = 0 + 2369 = 0 + 2370 = 0 + 2376 = 0 + 2377 = 0 + 2378 = 0 + 2390 = 0 + 2392 = 0 + 2397 = 0 + 2399 = 0 + 2467 = 0 + 2468 = 0 + 2478 = 0 + 2479 = 0 + 2499 = 0 + 2500 = 0 + 2652 = 0 + 2653 = 0 + 2654 = 0 + 2657 = 0 + 2659 = 0 + 2664 = 0 + 2665 = 0 + 2677 = 0 + 2679 = 0 + 2684 = 0 + 2685 = 0 + 2686 = 0 + 2691 = 0 + 2693 = 0 + 2760 = 0 + 2762 = 0 + 2773 = 0 + 2775 = 0 + 2780 = 0 + 2782 = 0 + 2838 = 0 + 2839 = 0 + 2849 = 0 + 2850 = 0 + 2856 = 0 + 2857 = 0 + 2946 = 0 + 2947 = 0 + 2948 = 0 + 2952 = 0 + 2953 = 0 + 2957 = 0 + 2958 = 0 + 2959 = 0 + 2964 = 0 + 2965 = 0 + 2972 = 0 + 2973 = 0 + 2986 = 0 + 2987 = 0 + 3054 = 0 + 3055 = 0 + 3056 = 0 + 3059 = 0 + 3061 = 0 + 3065 = 0 + 3066 = 0 + 3072 = 0 + 3073 = 0 + 3074 = 0 + 3086 = 0 + 3088 = 0 + 3093 = 0 + 3095 = 0 + 3167 = 0 + 3168 = 0 + 3169 = 0 + 3173 = 0 + 3174 = 0 + 3175 = 0 + 3180 = 0 + 3181 = 0 + 3182 = 0 + 3188 = 0 + 3189 = 0 + 3194 = 0 + 3196 = 0 + 3201 = 0 + 3202 = 0 + 3203 = 0 + 3349 = 0 + 3350 = 0 + 3355 = 0 + 3356 = 0 + 3369 = 0 + 3370 = 0 + 3426 = 0 + 3428 = 0 + 3439 = 0 + 3441 = 0 + 3446 = 0 + 3448 = 0 + 3504 = 0 + 3505 = 0 + 3506 = 0 + 3511 = 0 + 3512 = 0 + 3517 = 0 + 3519 = 0 + 3524 = 0 + 3525 = 0 + 3526 = 0 + 3582 = 0 + 3583 = 0 + 3584 = 0 + 3587 = 0 + 3589 = 0 + 3593 = 0 + 3594 = 0 + 3604 = 0 + 3605 = 0 + 3617 = 0 + 3619 = 0 + 3631 = 0 + 3632 = 0 + 3633 = 0 + 3638 = 0 + 3640 = 0 + 3646 = 0 + 3647 = 0 + 3732 = 0 + 3734 = 0 + 3750 = 0 + 3752 = 0 + 3764 = 0 + 3766 = 0 + 3841 = 0 + 3842 = 0 + 3852 = 0 + 3853 = 0 + 3873 = 0 + 3874 = 0 + 4026 = 0 + 4027 = 0 + 4028 = 0 + 4031 = 0 + 4033 = 0 + 4037 = 0 + 4038 = 0 + 4048 = 0 + 4049 = 0 + 4061 = 0 + 4063 = 0 + 4075 = 0 + 4076 = 0 + 4077 = 0 + 4082 = 0 + 4084 = 0 + 4090 = 0 + 4091 = 0 + 4176 = 0 + 4178 = 0 + 4194 = 0 + 4196 = 0 + 4208 = 0 + 4210 = 0 + 4285 = 0 + 4286 = 0 + 4296 = 0 + 4297 = 0 + 4317 = 0 + 4318 = 0 + 4470 = 0 + 4472 = 0 + 4488 = 0 + 4490 = 0 + 4502 = 0 + 4504 = 0 + 4578 = 0 + 4579 = 0 + 4580 = 0 + 4584 = 0 + 4585 = 0 + 4590 = 0 + 4591 = 0 + 4596 = 0 + 4598 = 0 + 4610 = 0 + 4611 = 0 + 4612 = 0 + 4618 = 0 + 4619 = 0 + 4765 = 0 + 4766 = 0 + 4771 = 0 + 4772 = 0 + 4785 = 0 + 4786 = 0 + 4842 = 0 + 4844 = 0 + 4860 = 0 + 4862 = 0 + 4874 = 0 + 4876 = 0 + 4950 = 0 + 4951 = 0 + 4952 = 0 + 4956 = 0 + 4957 = 0 + 4962 = 0 + 4963 = 0 + 4968 = 0 + 4970 = 0 + 4982 = 0 + 4983 = 0 + 4984 = 0 + 4990 = 0 + 4991 = 0 + 5137 = 0 + 5138 = 0 + 5143 = 0 + 5144 = 0 + 5157 = 0 + 5158 = 0 + 5215 = 0 + 5216 = 0 + 5226 = 0 + 5227 = 0 + 5247 = 0 + 5248 = 0 + 5400 = 0 + 5401 = 0 + 5402 = 0 + 5405 = 0 + 5407 = 0 + 5412 = 0 + 5413 = 0 + 5425 = 0 + 5427 = 0 + 5432 = 0 + 5433 = 0 + 5434 = 0 + 5439 = 0 + 5441 = 0 + 5508 = 0 + 5510 = 0 + 5521 = 0 + 5523 = 0 + 5528 = 0 + 5530 = 0 + 5587 = 0 + 5588 = 0 + 5598 = 0 + 5599 = 0 + 5619 = 0 + 5620 = 0 + 5772 = 0 + 5773 = 0 + 5774 = 0 + 5777 = 0 + 5779 = 0 + 5784 = 0 + 5785 = 0 + 5797 = 0 + 5799 = 0 + 5804 = 0 + 5805 = 0 + 5806 = 0 + 5811 = 0 + 5813 = 0 + 5880 = 0 + 5882 = 0 + 5893 = 0 + 5895 = 0 + 5900 = 0 + 5902 = 0 + 6037 = 0 + 6038 = 0 + 6043 = 0 + 6044 = 0 + 6057 = 0 + 6058 = 0 + 6114 = 0 + 6116 = 0 + 6127 = 0 + 6129 = 0 + 6134 = 0 + 6136 = 0 + 6192 = 0 + 6193 = 0 + 6194 = 0 + 6199 = 0 + 6200 = 0 + 6205 = 0 + 6207 = 0 + 6212 = 0 + 6213 = 0 + 6214 = 0 + 6349 = 0 + 6350 = 0 + 6355 = 0 + 6356 = 0 + 6369 = 0 + 6370 = 0 + 6426 = 0 + 6428 = 0 + 6439 = 0 + 6441 = 0 + 6446 = 0 + 6448 = 0 + 6504 = 0 + 6505 = 0 + 6506 = 0 + 6511 = 0 + 6512 = 0 + 6517 = 0 + 6519 = 0 + 6524 = 0 + 6525 = 0 + 6526 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(3)-FE_Q<3>(2)^3-FE_Q<3>(3)], case=5 + 6 = 0 + 7 = 0 + 8 = 0 + 11 = 0 + 12 = 0 + 13 = 0 + 16 = 0 + 17 = 0 + 21 = 0 + 22 = 0 + 23 = 0 + 26 = 0 + 28 = 0 + 32 = 0 + 33 = 0 + 42 = 0 + 43 = 0 + 44 = 0 + 49 = 0 + 50 = 0 + 56 = 0 + 57 = 0 + 58 = 0 + 63 = 0 + 64 = 0 + 71 = 0 + 72 = 0 + 84 = 0 + 86 = 0 + 98 = 0 + 99 = 0 + 100 = 0 + 105 = 0 + 107 = 0 + 113 = 0 + 114 = 0 + 210 = 0 + 211 = 0 + 212 = 0 + 215 = 0 + 216 = 0 + 220 = 0 + 222 = 0 + 231 = 0 + 232 = 0 + 238 = 0 + 239 = 0 + 240 = 0 + 245 = 0 + 246 = 0 + 259 = 0 + 261 = 0 + 273 = 0 + 275 = 0 + 360 = 0 + 361 = 0 + 362 = 0 + 365 = 0 + 366 = 0 + 371 = 0 + 372 = 0 + 381 = 0 + 382 = 0 + 383 = 0 + 388 = 0 + 389 = 0 + 395 = 0 + 396 = 0 + 403 = 0 + 404 = 0 + 424 = 0 + 425 = 0 + 510 = 0 + 511 = 0 + 521 = 0 + 522 = 0 + 528 = 0 + 529 = 0 + 618 = 0 + 619 = 0 + 620 = 0 + 623 = 0 + 625 = 0 + 629 = 0 + 630 = 0 + 640 = 0 + 641 = 0 + 653 = 0 + 655 = 0 + 667 = 0 + 668 = 0 + 669 = 0 + 674 = 0 + 676 = 0 + 682 = 0 + 683 = 0 + 768 = 0 + 770 = 0 + 786 = 0 + 788 = 0 + 800 = 0 + 802 = 0 + 877 = 0 + 878 = 0 + 888 = 0 + 889 = 0 + 909 = 0 + 910 = 0 + 1062 = 0 + 1063 = 0 + 1064 = 0 + 1067 = 0 + 1068 = 0 + 1072 = 0 + 1074 = 0 + 1083 = 0 + 1084 = 0 + 1090 = 0 + 1091 = 0 + 1092 = 0 + 1097 = 0 + 1098 = 0 + 1111 = 0 + 1113 = 0 + 1125 = 0 + 1127 = 0 + 1217 = 0 + 1218 = 0 + 1219 = 0 + 1222 = 0 + 1223 = 0 + 1224 = 0 + 1228 = 0 + 1229 = 0 + 1233 = 0 + 1234 = 0 + 1235 = 0 + 1240 = 0 + 1241 = 0 + 1242 = 0 + 1247 = 0 + 1248 = 0 + 1255 = 0 + 1256 = 0 + 1261 = 0 + 1263 = 0 + 1275 = 0 + 1276 = 0 + 1277 = 0 + 1283 = 0 + 1284 = 0 + 1362 = 0 + 1363 = 0 + 1373 = 0 + 1374 = 0 + 1380 = 0 + 1381 = 0 + 1470 = 0 + 1471 = 0 + 1472 = 0 + 1476 = 0 + 1477 = 0 + 1481 = 0 + 1482 = 0 + 1483 = 0 + 1488 = 0 + 1489 = 0 + 1496 = 0 + 1497 = 0 + 1510 = 0 + 1511 = 0 + 1578 = 0 + 1580 = 0 + 1596 = 0 + 1598 = 0 + 1610 = 0 + 1612 = 0 + 1686 = 0 + 1687 = 0 + 1688 = 0 + 1692 = 0 + 1693 = 0 + 1698 = 0 + 1699 = 0 + 1704 = 0 + 1706 = 0 + 1718 = 0 + 1719 = 0 + 1720 = 0 + 1726 = 0 + 1727 = 0 + 1873 = 0 + 1874 = 0 + 1879 = 0 + 1880 = 0 + 1893 = 0 + 1894 = 0 + 1950 = 0 + 1951 = 0 + 1952 = 0 + 1955 = 0 + 1956 = 0 + 1961 = 0 + 1962 = 0 + 1971 = 0 + 1972 = 0 + 1973 = 0 + 1978 = 0 + 1979 = 0 + 1985 = 0 + 1986 = 0 + 1993 = 0 + 1994 = 0 + 2014 = 0 + 2015 = 0 + 2100 = 0 + 2101 = 0 + 2111 = 0 + 2112 = 0 + 2118 = 0 + 2119 = 0 + 2213 = 0 + 2214 = 0 + 2215 = 0 + 2218 = 0 + 2219 = 0 + 2220 = 0 + 2223 = 0 + 2225 = 0 + 2229 = 0 + 2230 = 0 + 2231 = 0 + 2236 = 0 + 2237 = 0 + 2243 = 0 + 2244 = 0 + 2245 = 0 + 2251 = 0 + 2252 = 0 + 2264 = 0 + 2266 = 0 + 2271 = 0 + 2272 = 0 + 2273 = 0 + 2278 = 0 + 2280 = 0 + 2358 = 0 + 2359 = 0 + 2360 = 0 + 2363 = 0 + 2365 = 0 + 2369 = 0 + 2370 = 0 + 2376 = 0 + 2377 = 0 + 2378 = 0 + 2390 = 0 + 2392 = 0 + 2397 = 0 + 2399 = 0 + 2467 = 0 + 2468 = 0 + 2478 = 0 + 2479 = 0 + 2499 = 0 + 2500 = 0 + 2652 = 0 + 2653 = 0 + 2654 = 0 + 2657 = 0 + 2659 = 0 + 2664 = 0 + 2665 = 0 + 2677 = 0 + 2679 = 0 + 2684 = 0 + 2685 = 0 + 2686 = 0 + 2691 = 0 + 2693 = 0 + 2760 = 0 + 2762 = 0 + 2773 = 0 + 2775 = 0 + 2780 = 0 + 2782 = 0 + 2838 = 0 + 2839 = 0 + 2849 = 0 + 2850 = 0 + 2856 = 0 + 2857 = 0 + 2946 = 0 + 2947 = 0 + 2948 = 0 + 2952 = 0 + 2953 = 0 + 2957 = 0 + 2958 = 0 + 2959 = 0 + 2964 = 0 + 2965 = 0 + 2972 = 0 + 2973 = 0 + 2986 = 0 + 2987 = 0 + 3054 = 0 + 3055 = 0 + 3056 = 0 + 3059 = 0 + 3061 = 0 + 3065 = 0 + 3066 = 0 + 3072 = 0 + 3073 = 0 + 3074 = 0 + 3086 = 0 + 3088 = 0 + 3093 = 0 + 3095 = 0 + 3167 = 0 + 3168 = 0 + 3169 = 0 + 3173 = 0 + 3174 = 0 + 3175 = 0 + 3180 = 0 + 3181 = 0 + 3182 = 0 + 3188 = 0 + 3189 = 0 + 3194 = 0 + 3196 = 0 + 3201 = 0 + 3202 = 0 + 3203 = 0 + 3349 = 0 + 3350 = 0 + 3355 = 0 + 3356 = 0 + 3369 = 0 + 3370 = 0 + 3426 = 0 + 3428 = 0 + 3439 = 0 + 3441 = 0 + 3446 = 0 + 3448 = 0 + 3504 = 0 + 3505 = 0 + 3506 = 0 + 3511 = 0 + 3512 = 0 + 3517 = 0 + 3519 = 0 + 3524 = 0 + 3525 = 0 + 3526 = 0 + 3582 = 0 + 3583 = 0 + 3584 = 0 + 3587 = 0 + 3589 = 0 + 3593 = 0 + 3594 = 0 + 3604 = 0 + 3605 = 0 + 3617 = 0 + 3619 = 0 + 3631 = 0 + 3632 = 0 + 3633 = 0 + 3638 = 0 + 3640 = 0 + 3646 = 0 + 3647 = 0 + 3732 = 0 + 3734 = 0 + 3750 = 0 + 3752 = 0 + 3764 = 0 + 3766 = 0 + 3841 = 0 + 3842 = 0 + 3852 = 0 + 3853 = 0 + 3873 = 0 + 3874 = 0 + 4031 = 0 + 4032 = 0 + 4033 = 0 + 4036 = 0 + 4037 = 0 + 4038 = 0 + 4041 = 0 + 4042 = 0 + 4047 = 0 + 4048 = 0 + 4049 = 0 + 4054 = 0 + 4055 = 0 + 4061 = 0 + 4062 = 0 + 4063 = 0 + 4068 = 0 + 4069 = 0 + 4075 = 0 + 4076 = 0 + 4077 = 0 + 4082 = 0 + 4084 = 0 + 4090 = 0 + 4091 = 0 + 4176 = 0 + 4177 = 0 + 4178 = 0 + 4181 = 0 + 4182 = 0 + 4187 = 0 + 4188 = 0 + 4194 = 0 + 4195 = 0 + 4196 = 0 + 4201 = 0 + 4202 = 0 + 4208 = 0 + 4210 = 0 + 4284 = 0 + 4285 = 0 + 4286 = 0 + 4289 = 0 + 4290 = 0 + 4295 = 0 + 4296 = 0 + 4297 = 0 + 4302 = 0 + 4303 = 0 + 4309 = 0 + 4310 = 0 + 4317 = 0 + 4318 = 0 + 4392 = 0 + 4393 = 0 + 4398 = 0 + 4399 = 0 + 4405 = 0 + 4406 = 0 + 4470 = 0 + 4472 = 0 + 4488 = 0 + 4490 = 0 + 4502 = 0 + 4504 = 0 + 4578 = 0 + 4579 = 0 + 4580 = 0 + 4584 = 0 + 4585 = 0 + 4590 = 0 + 4591 = 0 + 4596 = 0 + 4598 = 0 + 4610 = 0 + 4611 = 0 + 4612 = 0 + 4618 = 0 + 4619 = 0 + 4765 = 0 + 4766 = 0 + 4771 = 0 + 4772 = 0 + 4785 = 0 + 4786 = 0 + 4842 = 0 + 4843 = 0 + 4844 = 0 + 4847 = 0 + 4848 = 0 + 4853 = 0 + 4854 = 0 + 4860 = 0 + 4861 = 0 + 4862 = 0 + 4867 = 0 + 4868 = 0 + 4874 = 0 + 4876 = 0 + 4955 = 0 + 4956 = 0 + 4957 = 0 + 4961 = 0 + 4962 = 0 + 4963 = 0 + 4968 = 0 + 4969 = 0 + 4970 = 0 + 4975 = 0 + 4976 = 0 + 4982 = 0 + 4983 = 0 + 4984 = 0 + 4990 = 0 + 4991 = 0 + 5058 = 0 + 5059 = 0 + 5064 = 0 + 5065 = 0 + 5071 = 0 + 5072 = 0 + 5136 = 0 + 5137 = 0 + 5138 = 0 + 5142 = 0 + 5143 = 0 + 5144 = 0 + 5149 = 0 + 5150 = 0 + 5157 = 0 + 5158 = 0 + 5215 = 0 + 5216 = 0 + 5226 = 0 + 5227 = 0 + 5247 = 0 + 5248 = 0 + 5400 = 0 + 5401 = 0 + 5402 = 0 + 5405 = 0 + 5407 = 0 + 5412 = 0 + 5413 = 0 + 5425 = 0 + 5427 = 0 + 5432 = 0 + 5433 = 0 + 5434 = 0 + 5439 = 0 + 5441 = 0 + 5508 = 0 + 5510 = 0 + 5521 = 0 + 5523 = 0 + 5528 = 0 + 5530 = 0 + 5586 = 0 + 5587 = 0 + 5588 = 0 + 5591 = 0 + 5592 = 0 + 5597 = 0 + 5598 = 0 + 5599 = 0 + 5604 = 0 + 5605 = 0 + 5611 = 0 + 5612 = 0 + 5619 = 0 + 5620 = 0 + 5694 = 0 + 5695 = 0 + 5700 = 0 + 5701 = 0 + 5707 = 0 + 5708 = 0 + 5777 = 0 + 5778 = 0 + 5779 = 0 + 5783 = 0 + 5784 = 0 + 5785 = 0 + 5790 = 0 + 5791 = 0 + 5797 = 0 + 5798 = 0 + 5799 = 0 + 5804 = 0 + 5805 = 0 + 5806 = 0 + 5811 = 0 + 5813 = 0 + 5880 = 0 + 5881 = 0 + 5882 = 0 + 5886 = 0 + 5887 = 0 + 5893 = 0 + 5894 = 0 + 5895 = 0 + 5900 = 0 + 5902 = 0 + 6037 = 0 + 6038 = 0 + 6043 = 0 + 6044 = 0 + 6057 = 0 + 6058 = 0 + 6114 = 0 + 6116 = 0 + 6127 = 0 + 6129 = 0 + 6134 = 0 + 6136 = 0 + 6192 = 0 + 6193 = 0 + 6194 = 0 + 6199 = 0 + 6200 = 0 + 6205 = 0 + 6207 = 0 + 6212 = 0 + 6213 = 0 + 6214 = 0 + 6270 = 0 + 6271 = 0 + 6276 = 0 + 6277 = 0 + 6283 = 0 + 6284 = 0 + 6348 = 0 + 6349 = 0 + 6350 = 0 + 6354 = 0 + 6355 = 0 + 6356 = 0 + 6361 = 0 + 6362 = 0 + 6369 = 0 + 6370 = 0 + 6426 = 0 + 6427 = 0 + 6428 = 0 + 6432 = 0 + 6433 = 0 + 6439 = 0 + 6440 = 0 + 6441 = 0 + 6446 = 0 + 6448 = 0 + 6510 = 0 + 6511 = 0 + 6512 = 0 + 6517 = 0 + 6518 = 0 + 6519 = 0 + 6524 = 0 + 6525 = 0 + 6526 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(4)-FE_Q<3>(3)^3-FE_Q<3>(4)], case=0 + 2 = 0 + 3 = 0 + 12 = 0 + 13 = 0 + 22 = 0 + 23 = 0 + 32 = 0 + 33 = 0 + 45 = 0 + 47 = 0 + 46 = 0 + 48 = 0 + 93 = 0 + 95 = 0 + 94 = 0 + 96 = 0 + 141 = 0 + 143 = 0 + 142 = 0 + 144 = 0 + 165 = 0 + 167 = 0 + 166 = 0 + 168 = 0 + 197 = 0 + 201 = 0 + 198 = 0 + 202 = 0 + 199 = 0 + 203 = 0 + 788 = 0 + 789 = 0 + 798 = 0 + 799 = 0 + 811 = 0 + 813 = 0 + 812 = 0 + 814 = 0 + 847 = 0 + 849 = 0 + 848 = 0 + 850 = 0 + 883 = 0 + 885 = 0 + 884 = 0 + 886 = 0 + 915 = 0 + 919 = 0 + 916 = 0 + 920 = 0 + 917 = 0 + 921 = 0 + 1400 = 0 + 1401 = 0 + 1410 = 0 + 1411 = 0 + 1423 = 0 + 1425 = 0 + 1424 = 0 + 1426 = 0 + 1471 = 0 + 1473 = 0 + 1472 = 0 + 1474 = 0 + 1495 = 0 + 1497 = 0 + 1496 = 0 + 1498 = 0 + 1527 = 0 + 1531 = 0 + 1528 = 0 + 1532 = 0 + 1529 = 0 + 1533 = 0 + 2012 = 0 + 2013 = 0 + 2025 = 0 + 2027 = 0 + 2026 = 0 + 2028 = 0 + 2061 = 0 + 2063 = 0 + 2062 = 0 + 2064 = 0 + 2093 = 0 + 2097 = 0 + 2094 = 0 + 2098 = 0 + 2095 = 0 + 2099 = 0 + 4667 = 0 + 4668 = 0 + 4677 = 0 + 4678 = 0 + 4690 = 0 + 4692 = 0 + 4691 = 0 + 4693 = 0 + 4726 = 0 + 4728 = 0 + 4727 = 0 + 4729 = 0 + 4762 = 0 + 4764 = 0 + 4763 = 0 + 4765 = 0 + 4794 = 0 + 4798 = 0 + 4795 = 0 + 4799 = 0 + 4796 = 0 + 4800 = 0 + 5279 = 0 + 5280 = 0 + 5289 = 0 + 5290 = 0 + 5302 = 0 + 5304 = 0 + 5303 = 0 + 5305 = 0 + 5338 = 0 + 5340 = 0 + 5339 = 0 + 5341 = 0 + 5374 = 0 + 5376 = 0 + 5375 = 0 + 5377 = 0 + 5406 = 0 + 5410 = 0 + 5407 = 0 + 5411 = 0 + 5408 = 0 + 5412 = 0 + 5891 = 0 + 5892 = 0 + 5904 = 0 + 5906 = 0 + 5905 = 0 + 5907 = 0 + 5940 = 0 + 5942 = 0 + 5941 = 0 + 5943 = 0 + 5972 = 0 + 5976 = 0 + 5973 = 0 + 5977 = 0 + 5974 = 0 + 5978 = 0 + 6368 = 0 + 6369 = 0 + 6381 = 0 + 6383 = 0 + 6382 = 0 + 6384 = 0 + 6417 = 0 + 6419 = 0 + 6418 = 0 + 6420 = 0 + 6449 = 0 + 6453 = 0 + 6450 = 0 + 6454 = 0 + 6451 = 0 + 6455 = 0 + 8753 = 0 + 8754 = 0 + 8763 = 0 + 8764 = 0 + 8776 = 0 + 8778 = 0 + 8777 = 0 + 8779 = 0 + 8824 = 0 + 8826 = 0 + 8825 = 0 + 8827 = 0 + 8848 = 0 + 8850 = 0 + 8849 = 0 + 8851 = 0 + 8880 = 0 + 8884 = 0 + 8881 = 0 + 8885 = 0 + 8882 = 0 + 8886 = 0 + 9365 = 0 + 9366 = 0 + 9378 = 0 + 9380 = 0 + 9379 = 0 + 9381 = 0 + 9414 = 0 + 9416 = 0 + 9415 = 0 + 9417 = 0 + 9446 = 0 + 9450 = 0 + 9447 = 0 + 9451 = 0 + 9448 = 0 + 9452 = 0 + 9842 = 0 + 9843 = 0 + 9852 = 0 + 9853 = 0 + 9865 = 0 + 9867 = 0 + 9866 = 0 + 9868 = 0 + 9913 = 0 + 9915 = 0 + 9914 = 0 + 9916 = 0 + 9937 = 0 + 9939 = 0 + 9938 = 0 + 9940 = 0 + 9969 = 0 + 9973 = 0 + 9970 = 0 + 9974 = 0 + 9971 = 0 + 9975 = 0 + 10454 = 0 + 10455 = 0 + 10467 = 0 + 10469 = 0 + 10468 = 0 + 10470 = 0 + 10503 = 0 + 10505 = 0 + 10504 = 0 + 10506 = 0 + 10535 = 0 + 10539 = 0 + 10536 = 0 + 10540 = 0 + 10537 = 0 + 10541 = 0 + 12839 = 0 + 12840 = 0 + 12852 = 0 + 12854 = 0 + 12853 = 0 + 12855 = 0 + 12888 = 0 + 12890 = 0 + 12889 = 0 + 12891 = 0 + 12920 = 0 + 12924 = 0 + 12921 = 0 + 12925 = 0 + 12922 = 0 + 12926 = 0 + 13316 = 0 + 13317 = 0 + 13329 = 0 + 13331 = 0 + 13330 = 0 + 13332 = 0 + 13365 = 0 + 13367 = 0 + 13366 = 0 + 13368 = 0 + 13397 = 0 + 13401 = 0 + 13398 = 0 + 13402 = 0 + 13399 = 0 + 13403 = 0 + 13793 = 0 + 13794 = 0 + 13806 = 0 + 13808 = 0 + 13807 = 0 + 13809 = 0 + 13842 = 0 + 13844 = 0 + 13843 = 0 + 13845 = 0 + 13874 = 0 + 13878 = 0 + 13875 = 0 + 13879 = 0 + 13876 = 0 + 13880 = 0 + 14270 = 0 + 14271 = 0 + 14283 = 0 + 14285 = 0 + 14284 = 0 + 14286 = 0 + 14319 = 0 + 14321 = 0 + 14320 = 0 + 14322 = 0 + 14351 = 0 + 14355 = 0 + 14352 = 0 + 14356 = 0 + 14353 = 0 + 14357 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(4)-FE_Q<3>(3)^3-FE_Q<3>(4)], case=1 + 2 = 0 + 3 = 0 + 12 = 0 + 13 = 0 + 22 = 0 + 23 = 0 + 32 = 0 + 33 = 0 + 45 = 0 + 47 = 0 + 46 = 0 + 48 = 0 + 93 = 0 + 95 = 0 + 94 = 0 + 96 = 0 + 141 = 0 + 143 = 0 + 142 = 0 + 144 = 0 + 165 = 0 + 167 = 0 + 166 = 0 + 168 = 0 + 197 = 0 + 201 = 0 + 198 = 0 + 202 = 0 + 199 = 0 + 203 = 0 + 788 = 0 + 789 = 0 + 798 = 0 + 799 = 0 + 811 = 0 + 813 = 0 + 812 = 0 + 814 = 0 + 847 = 0 + 849 = 0 + 848 = 0 + 850 = 0 + 883 = 0 + 885 = 0 + 884 = 0 + 886 = 0 + 915 = 0 + 919 = 0 + 916 = 0 + 920 = 0 + 917 = 0 + 921 = 0 + 1400 = 0 + 1401 = 0 + 1410 = 0 + 1411 = 0 + 1423 = 0 + 1425 = 0 + 1424 = 0 + 1426 = 0 + 1471 = 0 + 1473 = 0 + 1472 = 0 + 1474 = 0 + 1495 = 0 + 1497 = 0 + 1496 = 0 + 1498 = 0 + 1527 = 0 + 1531 = 0 + 1528 = 0 + 1532 = 0 + 1529 = 0 + 1533 = 0 + 2012 = 0 + 2013 = 0 + 2025 = 0 + 2027 = 0 + 2026 = 0 + 2028 = 0 + 2061 = 0 + 2063 = 0 + 2062 = 0 + 2064 = 0 + 2093 = 0 + 2097 = 0 + 2094 = 0 + 2098 = 0 + 2095 = 0 + 2099 = 0 + 2833 = 0 + 2834 = 0 + 2838 = 0 + 2839 = 0 + 2843 = 0 + 2844 = 0 + 2848 = 0 + 2849 = 0 + 2856 = 0 + 2858 = 0 + 2857 = 0 + 2859 = 0 + 2892 = 0 + 2894 = 0 + 2893 = 0 + 2895 = 0 + 2928 = 0 + 2930 = 0 + 2929 = 0 + 2931 = 0 + 2940 = 0 + 2942 = 0 + 2941 = 0 + 2943 = 0 + 2960 = 0 + 2964 = 0 + 2961 = 0 + 2965 = 0 + 2962 = 0 + 2966 = 0 + 3445 = 0 + 3446 = 0 + 3450 = 0 + 3451 = 0 + 3458 = 0 + 3460 = 0 + 3459 = 0 + 3461 = 0 + 3482 = 0 + 3484 = 0 + 3483 = 0 + 3485 = 0 + 3506 = 0 + 3508 = 0 + 3507 = 0 + 3509 = 0 + 3526 = 0 + 3530 = 0 + 3527 = 0 + 3531 = 0 + 3528 = 0 + 3532 = 0 + 3981 = 0 + 3982 = 0 + 3986 = 0 + 3987 = 0 + 3994 = 0 + 3996 = 0 + 3995 = 0 + 3997 = 0 + 4030 = 0 + 4032 = 0 + 4031 = 0 + 4033 = 0 + 4042 = 0 + 4044 = 0 + 4043 = 0 + 4045 = 0 + 4062 = 0 + 4066 = 0 + 4063 = 0 + 4067 = 0 + 4064 = 0 + 4068 = 0 + 4458 = 0 + 4459 = 0 + 4466 = 0 + 4468 = 0 + 4467 = 0 + 4469 = 0 + 4490 = 0 + 4492 = 0 + 4491 = 0 + 4493 = 0 + 4510 = 0 + 4514 = 0 + 4511 = 0 + 4515 = 0 + 4512 = 0 + 4516 = 0 + 4667 = 0 + 4668 = 0 + 4677 = 0 + 4678 = 0 + 4690 = 0 + 4692 = 0 + 4691 = 0 + 4693 = 0 + 4726 = 0 + 4728 = 0 + 4727 = 0 + 4729 = 0 + 4762 = 0 + 4764 = 0 + 4763 = 0 + 4765 = 0 + 4794 = 0 + 4798 = 0 + 4795 = 0 + 4799 = 0 + 4796 = 0 + 4800 = 0 + 5279 = 0 + 5280 = 0 + 5289 = 0 + 5290 = 0 + 5302 = 0 + 5304 = 0 + 5303 = 0 + 5305 = 0 + 5338 = 0 + 5340 = 0 + 5339 = 0 + 5341 = 0 + 5374 = 0 + 5376 = 0 + 5375 = 0 + 5377 = 0 + 5406 = 0 + 5410 = 0 + 5407 = 0 + 5411 = 0 + 5408 = 0 + 5412 = 0 + 5891 = 0 + 5892 = 0 + 5904 = 0 + 5906 = 0 + 5905 = 0 + 5907 = 0 + 5940 = 0 + 5942 = 0 + 5941 = 0 + 5943 = 0 + 5972 = 0 + 5976 = 0 + 5973 = 0 + 5977 = 0 + 5974 = 0 + 5978 = 0 + 6368 = 0 + 6369 = 0 + 6381 = 0 + 6383 = 0 + 6382 = 0 + 6384 = 0 + 6417 = 0 + 6419 = 0 + 6418 = 0 + 6420 = 0 + 6449 = 0 + 6453 = 0 + 6450 = 0 + 6454 = 0 + 6451 = 0 + 6455 = 0 + 7113 = 0 + 7114 = 0 + 7118 = 0 + 7119 = 0 + 7126 = 0 + 7128 = 0 + 7127 = 0 + 7129 = 0 + 7150 = 0 + 7152 = 0 + 7151 = 0 + 7153 = 0 + 7174 = 0 + 7176 = 0 + 7175 = 0 + 7177 = 0 + 7194 = 0 + 7198 = 0 + 7195 = 0 + 7199 = 0 + 7196 = 0 + 7200 = 0 + 7649 = 0 + 7650 = 0 + 7654 = 0 + 7655 = 0 + 7662 = 0 + 7664 = 0 + 7663 = 0 + 7665 = 0 + 7686 = 0 + 7688 = 0 + 7687 = 0 + 7689 = 0 + 7710 = 0 + 7712 = 0 + 7711 = 0 + 7713 = 0 + 7730 = 0 + 7734 = 0 + 7731 = 0 + 7735 = 0 + 7732 = 0 + 7736 = 0 + 8126 = 0 + 8127 = 0 + 8134 = 0 + 8136 = 0 + 8135 = 0 + 8137 = 0 + 8158 = 0 + 8160 = 0 + 8159 = 0 + 8161 = 0 + 8178 = 0 + 8182 = 0 + 8179 = 0 + 8183 = 0 + 8180 = 0 + 8184 = 0 + 8544 = 0 + 8545 = 0 + 8552 = 0 + 8554 = 0 + 8553 = 0 + 8555 = 0 + 8576 = 0 + 8578 = 0 + 8577 = 0 + 8579 = 0 + 8596 = 0 + 8600 = 0 + 8597 = 0 + 8601 = 0 + 8598 = 0 + 8602 = 0 + 8753 = 0 + 8754 = 0 + 8763 = 0 + 8764 = 0 + 8776 = 0 + 8778 = 0 + 8777 = 0 + 8779 = 0 + 8824 = 0 + 8826 = 0 + 8825 = 0 + 8827 = 0 + 8848 = 0 + 8850 = 0 + 8849 = 0 + 8851 = 0 + 8880 = 0 + 8884 = 0 + 8881 = 0 + 8885 = 0 + 8882 = 0 + 8886 = 0 + 9365 = 0 + 9366 = 0 + 9378 = 0 + 9380 = 0 + 9379 = 0 + 9381 = 0 + 9414 = 0 + 9416 = 0 + 9415 = 0 + 9417 = 0 + 9446 = 0 + 9450 = 0 + 9447 = 0 + 9451 = 0 + 9448 = 0 + 9452 = 0 + 9842 = 0 + 9843 = 0 + 9852 = 0 + 9853 = 0 + 9865 = 0 + 9867 = 0 + 9866 = 0 + 9868 = 0 + 9913 = 0 + 9915 = 0 + 9914 = 0 + 9916 = 0 + 9937 = 0 + 9939 = 0 + 9938 = 0 + 9940 = 0 + 9969 = 0 + 9973 = 0 + 9970 = 0 + 9974 = 0 + 9971 = 0 + 9975 = 0 + 10454 = 0 + 10455 = 0 + 10467 = 0 + 10469 = 0 + 10468 = 0 + 10470 = 0 + 10503 = 0 + 10505 = 0 + 10504 = 0 + 10506 = 0 + 10535 = 0 + 10539 = 0 + 10536 = 0 + 10540 = 0 + 10537 = 0 + 10541 = 0 + 11199 = 0 + 11200 = 0 + 11204 = 0 + 11205 = 0 + 11212 = 0 + 11214 = 0 + 11213 = 0 + 11215 = 0 + 11248 = 0 + 11250 = 0 + 11249 = 0 + 11251 = 0 + 11260 = 0 + 11262 = 0 + 11261 = 0 + 11263 = 0 + 11280 = 0 + 11284 = 0 + 11281 = 0 + 11285 = 0 + 11282 = 0 + 11286 = 0 + 11676 = 0 + 11677 = 0 + 11684 = 0 + 11686 = 0 + 11685 = 0 + 11687 = 0 + 11708 = 0 + 11710 = 0 + 11709 = 0 + 11711 = 0 + 11728 = 0 + 11732 = 0 + 11729 = 0 + 11733 = 0 + 11730 = 0 + 11734 = 0 + 12153 = 0 + 12154 = 0 + 12158 = 0 + 12159 = 0 + 12166 = 0 + 12168 = 0 + 12167 = 0 + 12169 = 0 + 12202 = 0 + 12204 = 0 + 12203 = 0 + 12205 = 0 + 12214 = 0 + 12216 = 0 + 12215 = 0 + 12217 = 0 + 12234 = 0 + 12238 = 0 + 12235 = 0 + 12239 = 0 + 12236 = 0 + 12240 = 0 + 12630 = 0 + 12631 = 0 + 12638 = 0 + 12640 = 0 + 12639 = 0 + 12641 = 0 + 12662 = 0 + 12664 = 0 + 12663 = 0 + 12665 = 0 + 12682 = 0 + 12686 = 0 + 12683 = 0 + 12687 = 0 + 12684 = 0 + 12688 = 0 + 12839 = 0 + 12840 = 0 + 12852 = 0 + 12854 = 0 + 12853 = 0 + 12855 = 0 + 12888 = 0 + 12890 = 0 + 12889 = 0 + 12891 = 0 + 12920 = 0 + 12924 = 0 + 12921 = 0 + 12925 = 0 + 12922 = 0 + 12926 = 0 + 13316 = 0 + 13317 = 0 + 13329 = 0 + 13331 = 0 + 13330 = 0 + 13332 = 0 + 13365 = 0 + 13367 = 0 + 13366 = 0 + 13368 = 0 + 13397 = 0 + 13401 = 0 + 13398 = 0 + 13402 = 0 + 13399 = 0 + 13403 = 0 + 13793 = 0 + 13794 = 0 + 13806 = 0 + 13808 = 0 + 13807 = 0 + 13809 = 0 + 13842 = 0 + 13844 = 0 + 13843 = 0 + 13845 = 0 + 13874 = 0 + 13878 = 0 + 13875 = 0 + 13879 = 0 + 13876 = 0 + 13880 = 0 + 14270 = 0 + 14271 = 0 + 14283 = 0 + 14285 = 0 + 14284 = 0 + 14286 = 0 + 14319 = 0 + 14321 = 0 + 14320 = 0 + 14322 = 0 + 14351 = 0 + 14355 = 0 + 14352 = 0 + 14356 = 0 + 14353 = 0 + 14357 = 0 + 14956 = 0 + 14957 = 0 + 14964 = 0 + 14966 = 0 + 14965 = 0 + 14967 = 0 + 14988 = 0 + 14990 = 0 + 14989 = 0 + 14991 = 0 + 15008 = 0 + 15012 = 0 + 15009 = 0 + 15013 = 0 + 15010 = 0 + 15014 = 0 + 15374 = 0 + 15375 = 0 + 15382 = 0 + 15384 = 0 + 15383 = 0 + 15385 = 0 + 15406 = 0 + 15408 = 0 + 15407 = 0 + 15409 = 0 + 15426 = 0 + 15430 = 0 + 15427 = 0 + 15431 = 0 + 15428 = 0 + 15432 = 0 + 15792 = 0 + 15793 = 0 + 15800 = 0 + 15802 = 0 + 15801 = 0 + 15803 = 0 + 15824 = 0 + 15826 = 0 + 15825 = 0 + 15827 = 0 + 15844 = 0 + 15848 = 0 + 15845 = 0 + 15849 = 0 + 15846 = 0 + 15850 = 0 + 16210 = 0 + 16211 = 0 + 16218 = 0 + 16220 = 0 + 16219 = 0 + 16221 = 0 + 16242 = 0 + 16244 = 0 + 16243 = 0 + 16245 = 0 + 16262 = 0 + 16266 = 0 + 16263 = 0 + 16267 = 0 + 16264 = 0 + 16268 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(4)-FE_Q<3>(3)^3-FE_Q<3>(4)], case=2 + 1 = 0 + 2 = 0 + 3 = 0 + 6 = 0 + 8 = 0 + 12 = 0 + 13 = 0 + 21 = 0 + 22 = 0 + 23 = 0 + 26 = 0 + 28 = 0 + 32 = 0 + 33 = 0 + 45 = 0 + 47 = 0 + 46 = 0 + 48 = 0 + 67 = 0 + 71 = 0 + 68 = 0 + 72 = 0 + 93 = 0 + 95 = 0 + 94 = 0 + 96 = 0 + 115 = 0 + 119 = 0 + 116 = 0 + 120 = 0 + 139 = 0 + 141 = 0 + 143 = 0 + 140 = 0 + 142 = 0 + 144 = 0 + 151 = 0 + 155 = 0 + 152 = 0 + 156 = 0 + 165 = 0 + 167 = 0 + 166 = 0 + 168 = 0 + 197 = 0 + 201 = 0 + 198 = 0 + 202 = 0 + 199 = 0 + 203 = 0 + 253 = 0 + 261 = 0 + 254 = 0 + 262 = 0 + 255 = 0 + 263 = 0 + 443 = 0 + 445 = 0 + 453 = 0 + 455 = 0 + 477 = 0 + 481 = 0 + 478 = 0 + 482 = 0 + 513 = 0 + 517 = 0 + 514 = 0 + 518 = 0 + 537 = 0 + 541 = 0 + 538 = 0 + 542 = 0 + 597 = 0 + 605 = 0 + 598 = 0 + 606 = 0 + 599 = 0 + 607 = 0 + 788 = 0 + 789 = 0 + 798 = 0 + 799 = 0 + 811 = 0 + 813 = 0 + 812 = 0 + 814 = 0 + 847 = 0 + 849 = 0 + 848 = 0 + 850 = 0 + 883 = 0 + 885 = 0 + 884 = 0 + 886 = 0 + 915 = 0 + 919 = 0 + 916 = 0 + 920 = 0 + 917 = 0 + 921 = 0 + 1399 = 0 + 1400 = 0 + 1401 = 0 + 1404 = 0 + 1406 = 0 + 1410 = 0 + 1411 = 0 + 1423 = 0 + 1425 = 0 + 1424 = 0 + 1426 = 0 + 1445 = 0 + 1449 = 0 + 1446 = 0 + 1450 = 0 + 1469 = 0 + 1471 = 0 + 1473 = 0 + 1470 = 0 + 1472 = 0 + 1474 = 0 + 1481 = 0 + 1485 = 0 + 1482 = 0 + 1486 = 0 + 1495 = 0 + 1497 = 0 + 1496 = 0 + 1498 = 0 + 1527 = 0 + 1531 = 0 + 1528 = 0 + 1532 = 0 + 1529 = 0 + 1533 = 0 + 1583 = 0 + 1591 = 0 + 1584 = 0 + 1592 = 0 + 1585 = 0 + 1593 = 0 + 1743 = 0 + 1745 = 0 + 1767 = 0 + 1771 = 0 + 1768 = 0 + 1772 = 0 + 1791 = 0 + 1795 = 0 + 1792 = 0 + 1796 = 0 + 1851 = 0 + 1859 = 0 + 1852 = 0 + 1860 = 0 + 1853 = 0 + 1861 = 0 + 2012 = 0 + 2013 = 0 + 2025 = 0 + 2027 = 0 + 2026 = 0 + 2028 = 0 + 2061 = 0 + 2063 = 0 + 2062 = 0 + 2064 = 0 + 2093 = 0 + 2097 = 0 + 2094 = 0 + 2098 = 0 + 2095 = 0 + 2099 = 0 + 2488 = 0 + 2490 = 0 + 2498 = 0 + 2500 = 0 + 2522 = 0 + 2526 = 0 + 2523 = 0 + 2527 = 0 + 2558 = 0 + 2562 = 0 + 2559 = 0 + 2563 = 0 + 2582 = 0 + 2586 = 0 + 2583 = 0 + 2587 = 0 + 2642 = 0 + 2650 = 0 + 2643 = 0 + 2651 = 0 + 2644 = 0 + 2652 = 0 + 2832 = 0 + 2833 = 0 + 2834 = 0 + 2838 = 0 + 2839 = 0 + 2842 = 0 + 2843 = 0 + 2844 = 0 + 2848 = 0 + 2849 = 0 + 2856 = 0 + 2858 = 0 + 2857 = 0 + 2859 = 0 + 2866 = 0 + 2870 = 0 + 2867 = 0 + 2871 = 0 + 2892 = 0 + 2894 = 0 + 2893 = 0 + 2895 = 0 + 2902 = 0 + 2906 = 0 + 2903 = 0 + 2907 = 0 + 2926 = 0 + 2928 = 0 + 2930 = 0 + 2927 = 0 + 2929 = 0 + 2931 = 0 + 2940 = 0 + 2942 = 0 + 2941 = 0 + 2943 = 0 + 2960 = 0 + 2964 = 0 + 2961 = 0 + 2965 = 0 + 2962 = 0 + 2966 = 0 + 2986 = 0 + 2994 = 0 + 2987 = 0 + 2995 = 0 + 2988 = 0 + 2996 = 0 + 3445 = 0 + 3446 = 0 + 3450 = 0 + 3451 = 0 + 3458 = 0 + 3460 = 0 + 3459 = 0 + 3461 = 0 + 3482 = 0 + 3484 = 0 + 3483 = 0 + 3485 = 0 + 3506 = 0 + 3508 = 0 + 3507 = 0 + 3509 = 0 + 3526 = 0 + 3530 = 0 + 3527 = 0 + 3531 = 0 + 3528 = 0 + 3532 = 0 + 3712 = 0 + 3714 = 0 + 3736 = 0 + 3740 = 0 + 3737 = 0 + 3741 = 0 + 3760 = 0 + 3764 = 0 + 3761 = 0 + 3765 = 0 + 3820 = 0 + 3828 = 0 + 3821 = 0 + 3829 = 0 + 3822 = 0 + 3830 = 0 + 3980 = 0 + 3981 = 0 + 3982 = 0 + 3986 = 0 + 3987 = 0 + 3994 = 0 + 3996 = 0 + 3995 = 0 + 3997 = 0 + 4004 = 0 + 4008 = 0 + 4005 = 0 + 4009 = 0 + 4028 = 0 + 4030 = 0 + 4032 = 0 + 4029 = 0 + 4031 = 0 + 4033 = 0 + 4042 = 0 + 4044 = 0 + 4043 = 0 + 4045 = 0 + 4062 = 0 + 4066 = 0 + 4063 = 0 + 4067 = 0 + 4064 = 0 + 4068 = 0 + 4088 = 0 + 4096 = 0 + 4089 = 0 + 4097 = 0 + 4090 = 0 + 4098 = 0 + 4458 = 0 + 4459 = 0 + 4466 = 0 + 4468 = 0 + 4467 = 0 + 4469 = 0 + 4490 = 0 + 4492 = 0 + 4491 = 0 + 4493 = 0 + 4510 = 0 + 4514 = 0 + 4511 = 0 + 4515 = 0 + 4512 = 0 + 4516 = 0 + 4667 = 0 + 4668 = 0 + 4677 = 0 + 4678 = 0 + 4690 = 0 + 4692 = 0 + 4691 = 0 + 4693 = 0 + 4726 = 0 + 4728 = 0 + 4727 = 0 + 4729 = 0 + 4762 = 0 + 4764 = 0 + 4763 = 0 + 4765 = 0 + 4794 = 0 + 4798 = 0 + 4795 = 0 + 4799 = 0 + 4796 = 0 + 4800 = 0 + 5279 = 0 + 5280 = 0 + 5289 = 0 + 5290 = 0 + 5302 = 0 + 5304 = 0 + 5303 = 0 + 5305 = 0 + 5338 = 0 + 5340 = 0 + 5339 = 0 + 5341 = 0 + 5374 = 0 + 5376 = 0 + 5375 = 0 + 5377 = 0 + 5406 = 0 + 5410 = 0 + 5407 = 0 + 5411 = 0 + 5408 = 0 + 5412 = 0 + 5891 = 0 + 5892 = 0 + 5904 = 0 + 5906 = 0 + 5905 = 0 + 5907 = 0 + 5940 = 0 + 5942 = 0 + 5941 = 0 + 5943 = 0 + 5972 = 0 + 5976 = 0 + 5973 = 0 + 5977 = 0 + 5974 = 0 + 5978 = 0 + 6368 = 0 + 6369 = 0 + 6381 = 0 + 6383 = 0 + 6382 = 0 + 6384 = 0 + 6417 = 0 + 6419 = 0 + 6418 = 0 + 6420 = 0 + 6449 = 0 + 6453 = 0 + 6450 = 0 + 6454 = 0 + 6451 = 0 + 6455 = 0 + 7113 = 0 + 7114 = 0 + 7118 = 0 + 7119 = 0 + 7126 = 0 + 7128 = 0 + 7127 = 0 + 7129 = 0 + 7150 = 0 + 7152 = 0 + 7151 = 0 + 7153 = 0 + 7174 = 0 + 7176 = 0 + 7175 = 0 + 7177 = 0 + 7194 = 0 + 7198 = 0 + 7195 = 0 + 7199 = 0 + 7196 = 0 + 7200 = 0 + 7649 = 0 + 7650 = 0 + 7654 = 0 + 7655 = 0 + 7662 = 0 + 7664 = 0 + 7663 = 0 + 7665 = 0 + 7686 = 0 + 7688 = 0 + 7687 = 0 + 7689 = 0 + 7710 = 0 + 7712 = 0 + 7711 = 0 + 7713 = 0 + 7730 = 0 + 7734 = 0 + 7731 = 0 + 7735 = 0 + 7732 = 0 + 7736 = 0 + 8126 = 0 + 8127 = 0 + 8134 = 0 + 8136 = 0 + 8135 = 0 + 8137 = 0 + 8158 = 0 + 8160 = 0 + 8159 = 0 + 8161 = 0 + 8178 = 0 + 8182 = 0 + 8179 = 0 + 8183 = 0 + 8180 = 0 + 8184 = 0 + 8544 = 0 + 8545 = 0 + 8552 = 0 + 8554 = 0 + 8553 = 0 + 8555 = 0 + 8576 = 0 + 8578 = 0 + 8577 = 0 + 8579 = 0 + 8596 = 0 + 8600 = 0 + 8597 = 0 + 8601 = 0 + 8598 = 0 + 8602 = 0 + 8752 = 0 + 8753 = 0 + 8754 = 0 + 8757 = 0 + 8759 = 0 + 8763 = 0 + 8764 = 0 + 8776 = 0 + 8778 = 0 + 8777 = 0 + 8779 = 0 + 8798 = 0 + 8802 = 0 + 8799 = 0 + 8803 = 0 + 8822 = 0 + 8824 = 0 + 8826 = 0 + 8823 = 0 + 8825 = 0 + 8827 = 0 + 8834 = 0 + 8838 = 0 + 8835 = 0 + 8839 = 0 + 8848 = 0 + 8850 = 0 + 8849 = 0 + 8851 = 0 + 8880 = 0 + 8884 = 0 + 8881 = 0 + 8885 = 0 + 8882 = 0 + 8886 = 0 + 8936 = 0 + 8944 = 0 + 8937 = 0 + 8945 = 0 + 8938 = 0 + 8946 = 0 + 9096 = 0 + 9098 = 0 + 9120 = 0 + 9124 = 0 + 9121 = 0 + 9125 = 0 + 9144 = 0 + 9148 = 0 + 9145 = 0 + 9149 = 0 + 9204 = 0 + 9212 = 0 + 9205 = 0 + 9213 = 0 + 9206 = 0 + 9214 = 0 + 9365 = 0 + 9366 = 0 + 9378 = 0 + 9380 = 0 + 9379 = 0 + 9381 = 0 + 9414 = 0 + 9416 = 0 + 9415 = 0 + 9417 = 0 + 9446 = 0 + 9450 = 0 + 9447 = 0 + 9451 = 0 + 9448 = 0 + 9452 = 0 + 9841 = 0 + 9842 = 0 + 9843 = 0 + 9846 = 0 + 9848 = 0 + 9852 = 0 + 9853 = 0 + 9865 = 0 + 9867 = 0 + 9866 = 0 + 9868 = 0 + 9887 = 0 + 9891 = 0 + 9888 = 0 + 9892 = 0 + 9911 = 0 + 9913 = 0 + 9915 = 0 + 9912 = 0 + 9914 = 0 + 9916 = 0 + 9923 = 0 + 9927 = 0 + 9924 = 0 + 9928 = 0 + 9937 = 0 + 9939 = 0 + 9938 = 0 + 9940 = 0 + 9969 = 0 + 9973 = 0 + 9970 = 0 + 9974 = 0 + 9971 = 0 + 9975 = 0 + 10025 = 0 + 10033 = 0 + 10026 = 0 + 10034 = 0 + 10027 = 0 + 10035 = 0 + 10185 = 0 + 10187 = 0 + 10209 = 0 + 10213 = 0 + 10210 = 0 + 10214 = 0 + 10233 = 0 + 10237 = 0 + 10234 = 0 + 10238 = 0 + 10293 = 0 + 10301 = 0 + 10294 = 0 + 10302 = 0 + 10295 = 0 + 10303 = 0 + 10454 = 0 + 10455 = 0 + 10467 = 0 + 10469 = 0 + 10468 = 0 + 10470 = 0 + 10503 = 0 + 10505 = 0 + 10504 = 0 + 10506 = 0 + 10535 = 0 + 10539 = 0 + 10536 = 0 + 10540 = 0 + 10537 = 0 + 10541 = 0 + 10930 = 0 + 10932 = 0 + 10954 = 0 + 10958 = 0 + 10955 = 0 + 10959 = 0 + 10978 = 0 + 10982 = 0 + 10979 = 0 + 10983 = 0 + 11038 = 0 + 11046 = 0 + 11039 = 0 + 11047 = 0 + 11040 = 0 + 11048 = 0 + 11198 = 0 + 11199 = 0 + 11200 = 0 + 11204 = 0 + 11205 = 0 + 11212 = 0 + 11214 = 0 + 11213 = 0 + 11215 = 0 + 11222 = 0 + 11226 = 0 + 11223 = 0 + 11227 = 0 + 11246 = 0 + 11248 = 0 + 11250 = 0 + 11247 = 0 + 11249 = 0 + 11251 = 0 + 11260 = 0 + 11262 = 0 + 11261 = 0 + 11263 = 0 + 11280 = 0 + 11284 = 0 + 11281 = 0 + 11285 = 0 + 11282 = 0 + 11286 = 0 + 11306 = 0 + 11314 = 0 + 11307 = 0 + 11315 = 0 + 11308 = 0 + 11316 = 0 + 11676 = 0 + 11677 = 0 + 11684 = 0 + 11686 = 0 + 11685 = 0 + 11687 = 0 + 11708 = 0 + 11710 = 0 + 11709 = 0 + 11711 = 0 + 11728 = 0 + 11732 = 0 + 11729 = 0 + 11733 = 0 + 11730 = 0 + 11734 = 0 + 11884 = 0 + 11886 = 0 + 11908 = 0 + 11912 = 0 + 11909 = 0 + 11913 = 0 + 11932 = 0 + 11936 = 0 + 11933 = 0 + 11937 = 0 + 11992 = 0 + 12000 = 0 + 11993 = 0 + 12001 = 0 + 11994 = 0 + 12002 = 0 + 12152 = 0 + 12153 = 0 + 12154 = 0 + 12158 = 0 + 12159 = 0 + 12166 = 0 + 12168 = 0 + 12167 = 0 + 12169 = 0 + 12176 = 0 + 12180 = 0 + 12177 = 0 + 12181 = 0 + 12200 = 0 + 12202 = 0 + 12204 = 0 + 12201 = 0 + 12203 = 0 + 12205 = 0 + 12214 = 0 + 12216 = 0 + 12215 = 0 + 12217 = 0 + 12234 = 0 + 12238 = 0 + 12235 = 0 + 12239 = 0 + 12236 = 0 + 12240 = 0 + 12260 = 0 + 12268 = 0 + 12261 = 0 + 12269 = 0 + 12262 = 0 + 12270 = 0 + 12630 = 0 + 12631 = 0 + 12638 = 0 + 12640 = 0 + 12639 = 0 + 12641 = 0 + 12662 = 0 + 12664 = 0 + 12663 = 0 + 12665 = 0 + 12682 = 0 + 12686 = 0 + 12683 = 0 + 12687 = 0 + 12684 = 0 + 12688 = 0 + 12839 = 0 + 12840 = 0 + 12852 = 0 + 12854 = 0 + 12853 = 0 + 12855 = 0 + 12888 = 0 + 12890 = 0 + 12889 = 0 + 12891 = 0 + 12920 = 0 + 12924 = 0 + 12921 = 0 + 12925 = 0 + 12922 = 0 + 12926 = 0 + 13316 = 0 + 13317 = 0 + 13329 = 0 + 13331 = 0 + 13330 = 0 + 13332 = 0 + 13365 = 0 + 13367 = 0 + 13366 = 0 + 13368 = 0 + 13397 = 0 + 13401 = 0 + 13398 = 0 + 13402 = 0 + 13399 = 0 + 13403 = 0 + 13793 = 0 + 13794 = 0 + 13806 = 0 + 13808 = 0 + 13807 = 0 + 13809 = 0 + 13842 = 0 + 13844 = 0 + 13843 = 0 + 13845 = 0 + 13874 = 0 + 13878 = 0 + 13875 = 0 + 13879 = 0 + 13876 = 0 + 13880 = 0 + 14270 = 0 + 14271 = 0 + 14283 = 0 + 14285 = 0 + 14284 = 0 + 14286 = 0 + 14319 = 0 + 14321 = 0 + 14320 = 0 + 14322 = 0 + 14351 = 0 + 14355 = 0 + 14352 = 0 + 14356 = 0 + 14353 = 0 + 14357 = 0 + 14956 = 0 + 14957 = 0 + 14964 = 0 + 14966 = 0 + 14965 = 0 + 14967 = 0 + 14988 = 0 + 14990 = 0 + 14989 = 0 + 14991 = 0 + 15008 = 0 + 15012 = 0 + 15009 = 0 + 15013 = 0 + 15010 = 0 + 15014 = 0 + 15374 = 0 + 15375 = 0 + 15382 = 0 + 15384 = 0 + 15383 = 0 + 15385 = 0 + 15406 = 0 + 15408 = 0 + 15407 = 0 + 15409 = 0 + 15426 = 0 + 15430 = 0 + 15427 = 0 + 15431 = 0 + 15428 = 0 + 15432 = 0 + 15792 = 0 + 15793 = 0 + 15800 = 0 + 15802 = 0 + 15801 = 0 + 15803 = 0 + 15824 = 0 + 15826 = 0 + 15825 = 0 + 15827 = 0 + 15844 = 0 + 15848 = 0 + 15845 = 0 + 15849 = 0 + 15846 = 0 + 15850 = 0 + 16210 = 0 + 16211 = 0 + 16218 = 0 + 16220 = 0 + 16219 = 0 + 16221 = 0 + 16242 = 0 + 16244 = 0 + 16243 = 0 + 16245 = 0 + 16262 = 0 + 16266 = 0 + 16263 = 0 + 16267 = 0 + 16264 = 0 + 16268 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(4)-FE_Q<3>(3)^3-FE_Q<3>(4)], case=3 + 1 = 0 + 2 = 0 + 3 = 0 + 6 = 0 + 8 = 0 + 12 = 0 + 13 = 0 + 21 = 0 + 22 = 0 + 23 = 0 + 26 = 0 + 28 = 0 + 32 = 0 + 33 = 0 + 45 = 0 + 47 = 0 + 46 = 0 + 48 = 0 + 67 = 0 + 71 = 0 + 68 = 0 + 72 = 0 + 93 = 0 + 95 = 0 + 94 = 0 + 96 = 0 + 115 = 0 + 119 = 0 + 116 = 0 + 120 = 0 + 139 = 0 + 141 = 0 + 143 = 0 + 140 = 0 + 142 = 0 + 144 = 0 + 151 = 0 + 155 = 0 + 152 = 0 + 156 = 0 + 165 = 0 + 167 = 0 + 166 = 0 + 168 = 0 + 197 = 0 + 201 = 0 + 198 = 0 + 202 = 0 + 199 = 0 + 203 = 0 + 253 = 0 + 261 = 0 + 254 = 0 + 262 = 0 + 255 = 0 + 263 = 0 + 443 = 0 + 445 = 0 + 453 = 0 + 455 = 0 + 477 = 0 + 481 = 0 + 478 = 0 + 482 = 0 + 513 = 0 + 517 = 0 + 514 = 0 + 518 = 0 + 537 = 0 + 541 = 0 + 538 = 0 + 542 = 0 + 597 = 0 + 605 = 0 + 598 = 0 + 606 = 0 + 599 = 0 + 607 = 0 + 788 = 0 + 789 = 0 + 798 = 0 + 799 = 0 + 811 = 0 + 813 = 0 + 812 = 0 + 814 = 0 + 847 = 0 + 849 = 0 + 848 = 0 + 850 = 0 + 883 = 0 + 885 = 0 + 884 = 0 + 886 = 0 + 915 = 0 + 919 = 0 + 916 = 0 + 920 = 0 + 917 = 0 + 921 = 0 + 1399 = 0 + 1400 = 0 + 1401 = 0 + 1404 = 0 + 1406 = 0 + 1410 = 0 + 1411 = 0 + 1423 = 0 + 1425 = 0 + 1424 = 0 + 1426 = 0 + 1445 = 0 + 1449 = 0 + 1446 = 0 + 1450 = 0 + 1469 = 0 + 1471 = 0 + 1473 = 0 + 1470 = 0 + 1472 = 0 + 1474 = 0 + 1481 = 0 + 1485 = 0 + 1482 = 0 + 1486 = 0 + 1495 = 0 + 1497 = 0 + 1496 = 0 + 1498 = 0 + 1527 = 0 + 1531 = 0 + 1528 = 0 + 1532 = 0 + 1529 = 0 + 1533 = 0 + 1583 = 0 + 1591 = 0 + 1584 = 0 + 1592 = 0 + 1585 = 0 + 1593 = 0 + 1743 = 0 + 1745 = 0 + 1767 = 0 + 1771 = 0 + 1768 = 0 + 1772 = 0 + 1791 = 0 + 1795 = 0 + 1792 = 0 + 1796 = 0 + 1851 = 0 + 1859 = 0 + 1852 = 0 + 1860 = 0 + 1853 = 0 + 1861 = 0 + 2012 = 0 + 2013 = 0 + 2025 = 0 + 2027 = 0 + 2026 = 0 + 2028 = 0 + 2061 = 0 + 2063 = 0 + 2062 = 0 + 2064 = 0 + 2093 = 0 + 2097 = 0 + 2094 = 0 + 2098 = 0 + 2095 = 0 + 2099 = 0 + 2488 = 0 + 2490 = 0 + 2498 = 0 + 2500 = 0 + 2522 = 0 + 2526 = 0 + 2523 = 0 + 2527 = 0 + 2558 = 0 + 2562 = 0 + 2559 = 0 + 2563 = 0 + 2582 = 0 + 2586 = 0 + 2583 = 0 + 2587 = 0 + 2642 = 0 + 2650 = 0 + 2643 = 0 + 2651 = 0 + 2644 = 0 + 2652 = 0 + 2832 = 0 + 2833 = 0 + 2834 = 0 + 2838 = 0 + 2839 = 0 + 2842 = 0 + 2843 = 0 + 2844 = 0 + 2848 = 0 + 2849 = 0 + 2856 = 0 + 2858 = 0 + 2857 = 0 + 2859 = 0 + 2866 = 0 + 2870 = 0 + 2867 = 0 + 2871 = 0 + 2892 = 0 + 2894 = 0 + 2893 = 0 + 2895 = 0 + 2902 = 0 + 2906 = 0 + 2903 = 0 + 2907 = 0 + 2926 = 0 + 2928 = 0 + 2930 = 0 + 2927 = 0 + 2929 = 0 + 2931 = 0 + 2940 = 0 + 2942 = 0 + 2941 = 0 + 2943 = 0 + 2960 = 0 + 2964 = 0 + 2961 = 0 + 2965 = 0 + 2962 = 0 + 2966 = 0 + 2986 = 0 + 2994 = 0 + 2987 = 0 + 2995 = 0 + 2988 = 0 + 2996 = 0 + 3445 = 0 + 3446 = 0 + 3450 = 0 + 3451 = 0 + 3458 = 0 + 3460 = 0 + 3459 = 0 + 3461 = 0 + 3482 = 0 + 3484 = 0 + 3483 = 0 + 3485 = 0 + 3506 = 0 + 3508 = 0 + 3507 = 0 + 3509 = 0 + 3526 = 0 + 3530 = 0 + 3527 = 0 + 3531 = 0 + 3528 = 0 + 3532 = 0 + 3712 = 0 + 3714 = 0 + 3736 = 0 + 3740 = 0 + 3737 = 0 + 3741 = 0 + 3760 = 0 + 3764 = 0 + 3761 = 0 + 3765 = 0 + 3820 = 0 + 3828 = 0 + 3821 = 0 + 3829 = 0 + 3822 = 0 + 3830 = 0 + 3980 = 0 + 3981 = 0 + 3982 = 0 + 3986 = 0 + 3987 = 0 + 3994 = 0 + 3996 = 0 + 3995 = 0 + 3997 = 0 + 4004 = 0 + 4008 = 0 + 4005 = 0 + 4009 = 0 + 4028 = 0 + 4030 = 0 + 4032 = 0 + 4029 = 0 + 4031 = 0 + 4033 = 0 + 4042 = 0 + 4044 = 0 + 4043 = 0 + 4045 = 0 + 4062 = 0 + 4066 = 0 + 4063 = 0 + 4067 = 0 + 4064 = 0 + 4068 = 0 + 4088 = 0 + 4096 = 0 + 4089 = 0 + 4097 = 0 + 4090 = 0 + 4098 = 0 + 4458 = 0 + 4459 = 0 + 4466 = 0 + 4468 = 0 + 4467 = 0 + 4469 = 0 + 4490 = 0 + 4492 = 0 + 4491 = 0 + 4493 = 0 + 4510 = 0 + 4514 = 0 + 4511 = 0 + 4515 = 0 + 4512 = 0 + 4516 = 0 + 4667 = 0 + 4668 = 0 + 4677 = 0 + 4678 = 0 + 4690 = 0 + 4692 = 0 + 4691 = 0 + 4693 = 0 + 4726 = 0 + 4728 = 0 + 4727 = 0 + 4729 = 0 + 4762 = 0 + 4764 = 0 + 4763 = 0 + 4765 = 0 + 4794 = 0 + 4798 = 0 + 4795 = 0 + 4799 = 0 + 4796 = 0 + 4800 = 0 + 5278 = 0 + 5279 = 0 + 5280 = 0 + 5283 = 0 + 5285 = 0 + 5288 = 0 + 5289 = 0 + 5290 = 0 + 5293 = 0 + 5295 = 0 + 5302 = 0 + 5304 = 0 + 5303 = 0 + 5305 = 0 + 5324 = 0 + 5328 = 0 + 5325 = 0 + 5329 = 0 + 5338 = 0 + 5340 = 0 + 5339 = 0 + 5341 = 0 + 5360 = 0 + 5364 = 0 + 5361 = 0 + 5365 = 0 + 5372 = 0 + 5374 = 0 + 5376 = 0 + 5373 = 0 + 5375 = 0 + 5377 = 0 + 5384 = 0 + 5388 = 0 + 5385 = 0 + 5389 = 0 + 5406 = 0 + 5410 = 0 + 5407 = 0 + 5411 = 0 + 5408 = 0 + 5412 = 0 + 5462 = 0 + 5470 = 0 + 5463 = 0 + 5471 = 0 + 5464 = 0 + 5472 = 0 + 5622 = 0 + 5624 = 0 + 5627 = 0 + 5629 = 0 + 5646 = 0 + 5650 = 0 + 5647 = 0 + 5651 = 0 + 5670 = 0 + 5674 = 0 + 5671 = 0 + 5675 = 0 + 5682 = 0 + 5686 = 0 + 5683 = 0 + 5687 = 0 + 5730 = 0 + 5738 = 0 + 5731 = 0 + 5739 = 0 + 5732 = 0 + 5740 = 0 + 5891 = 0 + 5892 = 0 + 5904 = 0 + 5906 = 0 + 5905 = 0 + 5907 = 0 + 5940 = 0 + 5942 = 0 + 5941 = 0 + 5943 = 0 + 5972 = 0 + 5976 = 0 + 5973 = 0 + 5977 = 0 + 5974 = 0 + 5978 = 0 + 6367 = 0 + 6368 = 0 + 6369 = 0 + 6372 = 0 + 6374 = 0 + 6381 = 0 + 6383 = 0 + 6382 = 0 + 6384 = 0 + 6403 = 0 + 6407 = 0 + 6404 = 0 + 6408 = 0 + 6415 = 0 + 6417 = 0 + 6419 = 0 + 6416 = 0 + 6418 = 0 + 6420 = 0 + 6427 = 0 + 6431 = 0 + 6428 = 0 + 6432 = 0 + 6449 = 0 + 6453 = 0 + 6450 = 0 + 6454 = 0 + 6451 = 0 + 6455 = 0 + 6505 = 0 + 6513 = 0 + 6506 = 0 + 6514 = 0 + 6507 = 0 + 6515 = 0 + 6635 = 0 + 6637 = 0 + 6654 = 0 + 6658 = 0 + 6655 = 0 + 6659 = 0 + 6666 = 0 + 6670 = 0 + 6667 = 0 + 6671 = 0 + 6714 = 0 + 6722 = 0 + 6715 = 0 + 6723 = 0 + 6716 = 0 + 6724 = 0 + 7113 = 0 + 7114 = 0 + 7118 = 0 + 7119 = 0 + 7126 = 0 + 7128 = 0 + 7127 = 0 + 7129 = 0 + 7150 = 0 + 7152 = 0 + 7151 = 0 + 7153 = 0 + 7174 = 0 + 7176 = 0 + 7175 = 0 + 7177 = 0 + 7194 = 0 + 7198 = 0 + 7195 = 0 + 7199 = 0 + 7196 = 0 + 7200 = 0 + 7380 = 0 + 7382 = 0 + 7385 = 0 + 7387 = 0 + 7404 = 0 + 7408 = 0 + 7405 = 0 + 7409 = 0 + 7428 = 0 + 7432 = 0 + 7429 = 0 + 7433 = 0 + 7440 = 0 + 7444 = 0 + 7441 = 0 + 7445 = 0 + 7488 = 0 + 7496 = 0 + 7489 = 0 + 7497 = 0 + 7490 = 0 + 7498 = 0 + 7648 = 0 + 7649 = 0 + 7650 = 0 + 7653 = 0 + 7654 = 0 + 7655 = 0 + 7662 = 0 + 7664 = 0 + 7663 = 0 + 7665 = 0 + 7672 = 0 + 7676 = 0 + 7673 = 0 + 7677 = 0 + 7686 = 0 + 7688 = 0 + 7687 = 0 + 7689 = 0 + 7696 = 0 + 7700 = 0 + 7697 = 0 + 7701 = 0 + 7708 = 0 + 7710 = 0 + 7712 = 0 + 7709 = 0 + 7711 = 0 + 7713 = 0 + 7730 = 0 + 7734 = 0 + 7731 = 0 + 7735 = 0 + 7732 = 0 + 7736 = 0 + 7756 = 0 + 7764 = 0 + 7757 = 0 + 7765 = 0 + 7758 = 0 + 7766 = 0 + 8126 = 0 + 8127 = 0 + 8134 = 0 + 8136 = 0 + 8135 = 0 + 8137 = 0 + 8158 = 0 + 8160 = 0 + 8159 = 0 + 8161 = 0 + 8178 = 0 + 8182 = 0 + 8179 = 0 + 8183 = 0 + 8180 = 0 + 8184 = 0 + 8334 = 0 + 8336 = 0 + 8353 = 0 + 8357 = 0 + 8354 = 0 + 8358 = 0 + 8365 = 0 + 8369 = 0 + 8366 = 0 + 8370 = 0 + 8413 = 0 + 8421 = 0 + 8414 = 0 + 8422 = 0 + 8415 = 0 + 8423 = 0 + 8543 = 0 + 8544 = 0 + 8545 = 0 + 8552 = 0 + 8554 = 0 + 8553 = 0 + 8555 = 0 + 8562 = 0 + 8566 = 0 + 8563 = 0 + 8567 = 0 + 8574 = 0 + 8576 = 0 + 8578 = 0 + 8575 = 0 + 8577 = 0 + 8579 = 0 + 8596 = 0 + 8600 = 0 + 8597 = 0 + 8601 = 0 + 8598 = 0 + 8602 = 0 + 8622 = 0 + 8630 = 0 + 8623 = 0 + 8631 = 0 + 8624 = 0 + 8632 = 0 + 8752 = 0 + 8753 = 0 + 8754 = 0 + 8757 = 0 + 8759 = 0 + 8763 = 0 + 8764 = 0 + 8776 = 0 + 8778 = 0 + 8777 = 0 + 8779 = 0 + 8798 = 0 + 8802 = 0 + 8799 = 0 + 8803 = 0 + 8822 = 0 + 8824 = 0 + 8826 = 0 + 8823 = 0 + 8825 = 0 + 8827 = 0 + 8834 = 0 + 8838 = 0 + 8835 = 0 + 8839 = 0 + 8848 = 0 + 8850 = 0 + 8849 = 0 + 8851 = 0 + 8880 = 0 + 8884 = 0 + 8881 = 0 + 8885 = 0 + 8882 = 0 + 8886 = 0 + 8936 = 0 + 8944 = 0 + 8937 = 0 + 8945 = 0 + 8938 = 0 + 8946 = 0 + 9096 = 0 + 9098 = 0 + 9120 = 0 + 9124 = 0 + 9121 = 0 + 9125 = 0 + 9144 = 0 + 9148 = 0 + 9145 = 0 + 9149 = 0 + 9204 = 0 + 9212 = 0 + 9205 = 0 + 9213 = 0 + 9206 = 0 + 9214 = 0 + 9365 = 0 + 9366 = 0 + 9378 = 0 + 9380 = 0 + 9379 = 0 + 9381 = 0 + 9414 = 0 + 9416 = 0 + 9415 = 0 + 9417 = 0 + 9446 = 0 + 9450 = 0 + 9447 = 0 + 9451 = 0 + 9448 = 0 + 9452 = 0 + 9841 = 0 + 9842 = 0 + 9843 = 0 + 9846 = 0 + 9848 = 0 + 9852 = 0 + 9853 = 0 + 9865 = 0 + 9867 = 0 + 9866 = 0 + 9868 = 0 + 9887 = 0 + 9891 = 0 + 9888 = 0 + 9892 = 0 + 9911 = 0 + 9913 = 0 + 9915 = 0 + 9912 = 0 + 9914 = 0 + 9916 = 0 + 9923 = 0 + 9927 = 0 + 9924 = 0 + 9928 = 0 + 9937 = 0 + 9939 = 0 + 9938 = 0 + 9940 = 0 + 9969 = 0 + 9973 = 0 + 9970 = 0 + 9974 = 0 + 9971 = 0 + 9975 = 0 + 10025 = 0 + 10033 = 0 + 10026 = 0 + 10034 = 0 + 10027 = 0 + 10035 = 0 + 10185 = 0 + 10187 = 0 + 10209 = 0 + 10213 = 0 + 10210 = 0 + 10214 = 0 + 10233 = 0 + 10237 = 0 + 10234 = 0 + 10238 = 0 + 10293 = 0 + 10301 = 0 + 10294 = 0 + 10302 = 0 + 10295 = 0 + 10303 = 0 + 10454 = 0 + 10455 = 0 + 10467 = 0 + 10469 = 0 + 10468 = 0 + 10470 = 0 + 10503 = 0 + 10505 = 0 + 10504 = 0 + 10506 = 0 + 10535 = 0 + 10539 = 0 + 10536 = 0 + 10540 = 0 + 10537 = 0 + 10541 = 0 + 10930 = 0 + 10932 = 0 + 10954 = 0 + 10958 = 0 + 10955 = 0 + 10959 = 0 + 10978 = 0 + 10982 = 0 + 10979 = 0 + 10983 = 0 + 11038 = 0 + 11046 = 0 + 11039 = 0 + 11047 = 0 + 11040 = 0 + 11048 = 0 + 11198 = 0 + 11199 = 0 + 11200 = 0 + 11204 = 0 + 11205 = 0 + 11212 = 0 + 11214 = 0 + 11213 = 0 + 11215 = 0 + 11222 = 0 + 11226 = 0 + 11223 = 0 + 11227 = 0 + 11246 = 0 + 11248 = 0 + 11250 = 0 + 11247 = 0 + 11249 = 0 + 11251 = 0 + 11260 = 0 + 11262 = 0 + 11261 = 0 + 11263 = 0 + 11280 = 0 + 11284 = 0 + 11281 = 0 + 11285 = 0 + 11282 = 0 + 11286 = 0 + 11306 = 0 + 11314 = 0 + 11307 = 0 + 11315 = 0 + 11308 = 0 + 11316 = 0 + 11676 = 0 + 11677 = 0 + 11684 = 0 + 11686 = 0 + 11685 = 0 + 11687 = 0 + 11708 = 0 + 11710 = 0 + 11709 = 0 + 11711 = 0 + 11728 = 0 + 11732 = 0 + 11729 = 0 + 11733 = 0 + 11730 = 0 + 11734 = 0 + 11884 = 0 + 11886 = 0 + 11908 = 0 + 11912 = 0 + 11909 = 0 + 11913 = 0 + 11932 = 0 + 11936 = 0 + 11933 = 0 + 11937 = 0 + 11992 = 0 + 12000 = 0 + 11993 = 0 + 12001 = 0 + 11994 = 0 + 12002 = 0 + 12152 = 0 + 12153 = 0 + 12154 = 0 + 12158 = 0 + 12159 = 0 + 12166 = 0 + 12168 = 0 + 12167 = 0 + 12169 = 0 + 12176 = 0 + 12180 = 0 + 12177 = 0 + 12181 = 0 + 12200 = 0 + 12202 = 0 + 12204 = 0 + 12201 = 0 + 12203 = 0 + 12205 = 0 + 12214 = 0 + 12216 = 0 + 12215 = 0 + 12217 = 0 + 12234 = 0 + 12238 = 0 + 12235 = 0 + 12239 = 0 + 12236 = 0 + 12240 = 0 + 12260 = 0 + 12268 = 0 + 12261 = 0 + 12269 = 0 + 12262 = 0 + 12270 = 0 + 12630 = 0 + 12631 = 0 + 12638 = 0 + 12640 = 0 + 12639 = 0 + 12641 = 0 + 12662 = 0 + 12664 = 0 + 12663 = 0 + 12665 = 0 + 12682 = 0 + 12686 = 0 + 12683 = 0 + 12687 = 0 + 12684 = 0 + 12688 = 0 + 12839 = 0 + 12840 = 0 + 12852 = 0 + 12854 = 0 + 12853 = 0 + 12855 = 0 + 12888 = 0 + 12890 = 0 + 12889 = 0 + 12891 = 0 + 12920 = 0 + 12924 = 0 + 12921 = 0 + 12925 = 0 + 12922 = 0 + 12926 = 0 + 13315 = 0 + 13316 = 0 + 13317 = 0 + 13320 = 0 + 13322 = 0 + 13329 = 0 + 13331 = 0 + 13330 = 0 + 13332 = 0 + 13351 = 0 + 13355 = 0 + 13352 = 0 + 13356 = 0 + 13363 = 0 + 13365 = 0 + 13367 = 0 + 13364 = 0 + 13366 = 0 + 13368 = 0 + 13375 = 0 + 13379 = 0 + 13376 = 0 + 13380 = 0 + 13397 = 0 + 13401 = 0 + 13398 = 0 + 13402 = 0 + 13399 = 0 + 13403 = 0 + 13453 = 0 + 13461 = 0 + 13454 = 0 + 13462 = 0 + 13455 = 0 + 13463 = 0 + 13583 = 0 + 13585 = 0 + 13602 = 0 + 13606 = 0 + 13603 = 0 + 13607 = 0 + 13614 = 0 + 13618 = 0 + 13615 = 0 + 13619 = 0 + 13662 = 0 + 13670 = 0 + 13663 = 0 + 13671 = 0 + 13664 = 0 + 13672 = 0 + 13793 = 0 + 13794 = 0 + 13806 = 0 + 13808 = 0 + 13807 = 0 + 13809 = 0 + 13842 = 0 + 13844 = 0 + 13843 = 0 + 13845 = 0 + 13874 = 0 + 13878 = 0 + 13875 = 0 + 13879 = 0 + 13876 = 0 + 13880 = 0 + 14269 = 0 + 14270 = 0 + 14271 = 0 + 14274 = 0 + 14276 = 0 + 14283 = 0 + 14285 = 0 + 14284 = 0 + 14286 = 0 + 14305 = 0 + 14309 = 0 + 14306 = 0 + 14310 = 0 + 14317 = 0 + 14319 = 0 + 14321 = 0 + 14318 = 0 + 14320 = 0 + 14322 = 0 + 14329 = 0 + 14333 = 0 + 14330 = 0 + 14334 = 0 + 14351 = 0 + 14355 = 0 + 14352 = 0 + 14356 = 0 + 14353 = 0 + 14357 = 0 + 14407 = 0 + 14415 = 0 + 14408 = 0 + 14416 = 0 + 14409 = 0 + 14417 = 0 + 14537 = 0 + 14539 = 0 + 14556 = 0 + 14560 = 0 + 14557 = 0 + 14561 = 0 + 14568 = 0 + 14572 = 0 + 14569 = 0 + 14573 = 0 + 14616 = 0 + 14624 = 0 + 14617 = 0 + 14625 = 0 + 14618 = 0 + 14626 = 0 + 14956 = 0 + 14957 = 0 + 14964 = 0 + 14966 = 0 + 14965 = 0 + 14967 = 0 + 14988 = 0 + 14990 = 0 + 14989 = 0 + 14991 = 0 + 15008 = 0 + 15012 = 0 + 15009 = 0 + 15013 = 0 + 15010 = 0 + 15014 = 0 + 15164 = 0 + 15166 = 0 + 15183 = 0 + 15187 = 0 + 15184 = 0 + 15188 = 0 + 15195 = 0 + 15199 = 0 + 15196 = 0 + 15200 = 0 + 15243 = 0 + 15251 = 0 + 15244 = 0 + 15252 = 0 + 15245 = 0 + 15253 = 0 + 15373 = 0 + 15374 = 0 + 15375 = 0 + 15382 = 0 + 15384 = 0 + 15383 = 0 + 15385 = 0 + 15392 = 0 + 15396 = 0 + 15393 = 0 + 15397 = 0 + 15404 = 0 + 15406 = 0 + 15408 = 0 + 15405 = 0 + 15407 = 0 + 15409 = 0 + 15426 = 0 + 15430 = 0 + 15427 = 0 + 15431 = 0 + 15428 = 0 + 15432 = 0 + 15452 = 0 + 15460 = 0 + 15453 = 0 + 15461 = 0 + 15454 = 0 + 15462 = 0 + 15792 = 0 + 15793 = 0 + 15800 = 0 + 15802 = 0 + 15801 = 0 + 15803 = 0 + 15824 = 0 + 15826 = 0 + 15825 = 0 + 15827 = 0 + 15844 = 0 + 15848 = 0 + 15845 = 0 + 15849 = 0 + 15846 = 0 + 15850 = 0 + 16000 = 0 + 16002 = 0 + 16019 = 0 + 16023 = 0 + 16020 = 0 + 16024 = 0 + 16031 = 0 + 16035 = 0 + 16032 = 0 + 16036 = 0 + 16079 = 0 + 16087 = 0 + 16080 = 0 + 16088 = 0 + 16081 = 0 + 16089 = 0 + 16209 = 0 + 16210 = 0 + 16211 = 0 + 16218 = 0 + 16220 = 0 + 16219 = 0 + 16221 = 0 + 16228 = 0 + 16232 = 0 + 16229 = 0 + 16233 = 0 + 16240 = 0 + 16242 = 0 + 16244 = 0 + 16241 = 0 + 16243 = 0 + 16245 = 0 + 16262 = 0 + 16266 = 0 + 16263 = 0 + 16267 = 0 + 16264 = 0 + 16268 = 0 + 16288 = 0 + 16296 = 0 + 16289 = 0 + 16297 = 0 + 16290 = 0 + 16298 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(4)-FE_Q<3>(3)^3-FE_Q<3>(4)], case=4 + 6 = 0 + 7 = 0 + 8 = 0 + 11 = 0 + 12 = 0 + 13 = 0 + 16 = 0 + 17 = 0 + 21 = 0 + 22 = 0 + 23 = 0 + 26 = 0 + 28 = 0 + 32 = 0 + 33 = 0 + 43 = 0 + 45 = 0 + 47 = 0 + 44 = 0 + 46 = 0 + 48 = 0 + 55 = 0 + 57 = 0 + 56 = 0 + 58 = 0 + 67 = 0 + 69 = 0 + 71 = 0 + 68 = 0 + 70 = 0 + 72 = 0 + 79 = 0 + 81 = 0 + 80 = 0 + 82 = 0 + 93 = 0 + 95 = 0 + 94 = 0 + 96 = 0 + 115 = 0 + 119 = 0 + 116 = 0 + 120 = 0 + 139 = 0 + 141 = 0 + 143 = 0 + 140 = 0 + 142 = 0 + 144 = 0 + 151 = 0 + 155 = 0 + 152 = 0 + 156 = 0 + 165 = 0 + 167 = 0 + 166 = 0 + 168 = 0 + 197 = 0 + 201 = 0 + 198 = 0 + 202 = 0 + 199 = 0 + 203 = 0 + 253 = 0 + 261 = 0 + 254 = 0 + 262 = 0 + 255 = 0 + 263 = 0 + 313 = 0 + 317 = 0 + 314 = 0 + 318 = 0 + 315 = 0 + 319 = 0 + 443 = 0 + 444 = 0 + 445 = 0 + 448 = 0 + 449 = 0 + 453 = 0 + 455 = 0 + 465 = 0 + 467 = 0 + 466 = 0 + 468 = 0 + 477 = 0 + 479 = 0 + 481 = 0 + 478 = 0 + 480 = 0 + 482 = 0 + 489 = 0 + 491 = 0 + 490 = 0 + 492 = 0 + 513 = 0 + 517 = 0 + 514 = 0 + 518 = 0 + 537 = 0 + 541 = 0 + 538 = 0 + 542 = 0 + 597 = 0 + 605 = 0 + 598 = 0 + 606 = 0 + 599 = 0 + 607 = 0 + 657 = 0 + 661 = 0 + 658 = 0 + 662 = 0 + 659 = 0 + 663 = 0 + 787 = 0 + 788 = 0 + 789 = 0 + 792 = 0 + 793 = 0 + 798 = 0 + 799 = 0 + 809 = 0 + 811 = 0 + 813 = 0 + 810 = 0 + 812 = 0 + 814 = 0 + 821 = 0 + 823 = 0 + 822 = 0 + 824 = 0 + 833 = 0 + 835 = 0 + 834 = 0 + 836 = 0 + 847 = 0 + 849 = 0 + 848 = 0 + 850 = 0 + 883 = 0 + 885 = 0 + 884 = 0 + 886 = 0 + 915 = 0 + 919 = 0 + 916 = 0 + 920 = 0 + 917 = 0 + 921 = 0 + 1001 = 0 + 1005 = 0 + 1002 = 0 + 1006 = 0 + 1003 = 0 + 1007 = 0 + 1131 = 0 + 1132 = 0 + 1143 = 0 + 1145 = 0 + 1144 = 0 + 1146 = 0 + 1155 = 0 + 1157 = 0 + 1156 = 0 + 1158 = 0 + 1269 = 0 + 1273 = 0 + 1270 = 0 + 1274 = 0 + 1271 = 0 + 1275 = 0 + 1399 = 0 + 1400 = 0 + 1401 = 0 + 1404 = 0 + 1406 = 0 + 1410 = 0 + 1411 = 0 + 1423 = 0 + 1425 = 0 + 1424 = 0 + 1426 = 0 + 1445 = 0 + 1449 = 0 + 1446 = 0 + 1450 = 0 + 1469 = 0 + 1471 = 0 + 1473 = 0 + 1470 = 0 + 1472 = 0 + 1474 = 0 + 1481 = 0 + 1485 = 0 + 1482 = 0 + 1486 = 0 + 1495 = 0 + 1497 = 0 + 1496 = 0 + 1498 = 0 + 1527 = 0 + 1531 = 0 + 1528 = 0 + 1532 = 0 + 1529 = 0 + 1533 = 0 + 1583 = 0 + 1591 = 0 + 1584 = 0 + 1592 = 0 + 1585 = 0 + 1593 = 0 + 1743 = 0 + 1745 = 0 + 1767 = 0 + 1771 = 0 + 1768 = 0 + 1772 = 0 + 1791 = 0 + 1795 = 0 + 1792 = 0 + 1796 = 0 + 1851 = 0 + 1859 = 0 + 1852 = 0 + 1860 = 0 + 1853 = 0 + 1861 = 0 + 2012 = 0 + 2013 = 0 + 2025 = 0 + 2027 = 0 + 2026 = 0 + 2028 = 0 + 2061 = 0 + 2063 = 0 + 2062 = 0 + 2064 = 0 + 2093 = 0 + 2097 = 0 + 2094 = 0 + 2098 = 0 + 2095 = 0 + 2099 = 0 + 2488 = 0 + 2489 = 0 + 2490 = 0 + 2493 = 0 + 2494 = 0 + 2498 = 0 + 2500 = 0 + 2510 = 0 + 2512 = 0 + 2511 = 0 + 2513 = 0 + 2522 = 0 + 2524 = 0 + 2526 = 0 + 2523 = 0 + 2525 = 0 + 2527 = 0 + 2534 = 0 + 2536 = 0 + 2535 = 0 + 2537 = 0 + 2558 = 0 + 2562 = 0 + 2559 = 0 + 2563 = 0 + 2582 = 0 + 2586 = 0 + 2583 = 0 + 2587 = 0 + 2642 = 0 + 2650 = 0 + 2643 = 0 + 2651 = 0 + 2644 = 0 + 2652 = 0 + 2702 = 0 + 2706 = 0 + 2703 = 0 + 2707 = 0 + 2704 = 0 + 2708 = 0 + 2837 = 0 + 2838 = 0 + 2839 = 0 + 2842 = 0 + 2843 = 0 + 2844 = 0 + 2848 = 0 + 2849 = 0 + 2854 = 0 + 2856 = 0 + 2858 = 0 + 2855 = 0 + 2857 = 0 + 2859 = 0 + 2866 = 0 + 2868 = 0 + 2870 = 0 + 2867 = 0 + 2869 = 0 + 2871 = 0 + 2878 = 0 + 2880 = 0 + 2879 = 0 + 2881 = 0 + 2892 = 0 + 2894 = 0 + 2893 = 0 + 2895 = 0 + 2902 = 0 + 2906 = 0 + 2903 = 0 + 2907 = 0 + 2926 = 0 + 2928 = 0 + 2930 = 0 + 2927 = 0 + 2929 = 0 + 2931 = 0 + 2940 = 0 + 2942 = 0 + 2941 = 0 + 2943 = 0 + 2960 = 0 + 2964 = 0 + 2961 = 0 + 2965 = 0 + 2962 = 0 + 2966 = 0 + 2986 = 0 + 2994 = 0 + 2987 = 0 + 2995 = 0 + 2988 = 0 + 2996 = 0 + 3046 = 0 + 3050 = 0 + 3047 = 0 + 3051 = 0 + 3048 = 0 + 3052 = 0 + 3176 = 0 + 3177 = 0 + 3188 = 0 + 3190 = 0 + 3189 = 0 + 3191 = 0 + 3200 = 0 + 3202 = 0 + 3201 = 0 + 3203 = 0 + 3314 = 0 + 3318 = 0 + 3315 = 0 + 3319 = 0 + 3316 = 0 + 3320 = 0 + 3444 = 0 + 3445 = 0 + 3446 = 0 + 3450 = 0 + 3451 = 0 + 3456 = 0 + 3458 = 0 + 3460 = 0 + 3457 = 0 + 3459 = 0 + 3461 = 0 + 3468 = 0 + 3470 = 0 + 3469 = 0 + 3471 = 0 + 3482 = 0 + 3484 = 0 + 3483 = 0 + 3485 = 0 + 3506 = 0 + 3508 = 0 + 3507 = 0 + 3509 = 0 + 3526 = 0 + 3530 = 0 + 3527 = 0 + 3531 = 0 + 3528 = 0 + 3532 = 0 + 3582 = 0 + 3586 = 0 + 3583 = 0 + 3587 = 0 + 3584 = 0 + 3588 = 0 + 3712 = 0 + 3714 = 0 + 3736 = 0 + 3740 = 0 + 3737 = 0 + 3741 = 0 + 3760 = 0 + 3764 = 0 + 3761 = 0 + 3765 = 0 + 3820 = 0 + 3828 = 0 + 3821 = 0 + 3829 = 0 + 3822 = 0 + 3830 = 0 + 3980 = 0 + 3981 = 0 + 3982 = 0 + 3986 = 0 + 3987 = 0 + 3994 = 0 + 3996 = 0 + 3995 = 0 + 3997 = 0 + 4004 = 0 + 4008 = 0 + 4005 = 0 + 4009 = 0 + 4028 = 0 + 4030 = 0 + 4032 = 0 + 4029 = 0 + 4031 = 0 + 4033 = 0 + 4042 = 0 + 4044 = 0 + 4043 = 0 + 4045 = 0 + 4062 = 0 + 4066 = 0 + 4063 = 0 + 4067 = 0 + 4064 = 0 + 4068 = 0 + 4088 = 0 + 4096 = 0 + 4089 = 0 + 4097 = 0 + 4090 = 0 + 4098 = 0 + 4458 = 0 + 4459 = 0 + 4466 = 0 + 4468 = 0 + 4467 = 0 + 4469 = 0 + 4490 = 0 + 4492 = 0 + 4491 = 0 + 4493 = 0 + 4510 = 0 + 4514 = 0 + 4511 = 0 + 4515 = 0 + 4512 = 0 + 4516 = 0 + 4666 = 0 + 4667 = 0 + 4668 = 0 + 4671 = 0 + 4672 = 0 + 4677 = 0 + 4678 = 0 + 4688 = 0 + 4690 = 0 + 4692 = 0 + 4689 = 0 + 4691 = 0 + 4693 = 0 + 4700 = 0 + 4702 = 0 + 4701 = 0 + 4703 = 0 + 4712 = 0 + 4714 = 0 + 4713 = 0 + 4715 = 0 + 4726 = 0 + 4728 = 0 + 4727 = 0 + 4729 = 0 + 4762 = 0 + 4764 = 0 + 4763 = 0 + 4765 = 0 + 4794 = 0 + 4798 = 0 + 4795 = 0 + 4799 = 0 + 4796 = 0 + 4800 = 0 + 4880 = 0 + 4884 = 0 + 4881 = 0 + 4885 = 0 + 4882 = 0 + 4886 = 0 + 5010 = 0 + 5011 = 0 + 5022 = 0 + 5024 = 0 + 5023 = 0 + 5025 = 0 + 5034 = 0 + 5036 = 0 + 5035 = 0 + 5037 = 0 + 5148 = 0 + 5152 = 0 + 5149 = 0 + 5153 = 0 + 5150 = 0 + 5154 = 0 + 5283 = 0 + 5284 = 0 + 5285 = 0 + 5288 = 0 + 5289 = 0 + 5290 = 0 + 5293 = 0 + 5295 = 0 + 5300 = 0 + 5302 = 0 + 5304 = 0 + 5301 = 0 + 5303 = 0 + 5305 = 0 + 5312 = 0 + 5314 = 0 + 5313 = 0 + 5315 = 0 + 5324 = 0 + 5326 = 0 + 5328 = 0 + 5325 = 0 + 5327 = 0 + 5329 = 0 + 5338 = 0 + 5340 = 0 + 5339 = 0 + 5341 = 0 + 5360 = 0 + 5364 = 0 + 5361 = 0 + 5365 = 0 + 5372 = 0 + 5374 = 0 + 5376 = 0 + 5373 = 0 + 5375 = 0 + 5377 = 0 + 5384 = 0 + 5388 = 0 + 5385 = 0 + 5389 = 0 + 5406 = 0 + 5410 = 0 + 5407 = 0 + 5411 = 0 + 5408 = 0 + 5412 = 0 + 5462 = 0 + 5470 = 0 + 5463 = 0 + 5471 = 0 + 5464 = 0 + 5472 = 0 + 5492 = 0 + 5496 = 0 + 5493 = 0 + 5497 = 0 + 5494 = 0 + 5498 = 0 + 5622 = 0 + 5623 = 0 + 5624 = 0 + 5627 = 0 + 5629 = 0 + 5634 = 0 + 5636 = 0 + 5635 = 0 + 5637 = 0 + 5646 = 0 + 5648 = 0 + 5650 = 0 + 5647 = 0 + 5649 = 0 + 5651 = 0 + 5670 = 0 + 5674 = 0 + 5671 = 0 + 5675 = 0 + 5682 = 0 + 5686 = 0 + 5683 = 0 + 5687 = 0 + 5730 = 0 + 5738 = 0 + 5731 = 0 + 5739 = 0 + 5732 = 0 + 5740 = 0 + 5760 = 0 + 5764 = 0 + 5761 = 0 + 5765 = 0 + 5762 = 0 + 5766 = 0 + 5891 = 0 + 5892 = 0 + 5904 = 0 + 5906 = 0 + 5905 = 0 + 5907 = 0 + 5940 = 0 + 5942 = 0 + 5941 = 0 + 5943 = 0 + 5972 = 0 + 5976 = 0 + 5973 = 0 + 5977 = 0 + 5974 = 0 + 5978 = 0 + 6367 = 0 + 6368 = 0 + 6369 = 0 + 6372 = 0 + 6374 = 0 + 6381 = 0 + 6383 = 0 + 6382 = 0 + 6384 = 0 + 6403 = 0 + 6407 = 0 + 6404 = 0 + 6408 = 0 + 6415 = 0 + 6417 = 0 + 6419 = 0 + 6416 = 0 + 6418 = 0 + 6420 = 0 + 6427 = 0 + 6431 = 0 + 6428 = 0 + 6432 = 0 + 6449 = 0 + 6453 = 0 + 6450 = 0 + 6454 = 0 + 6451 = 0 + 6455 = 0 + 6505 = 0 + 6513 = 0 + 6506 = 0 + 6514 = 0 + 6507 = 0 + 6515 = 0 + 6635 = 0 + 6637 = 0 + 6654 = 0 + 6658 = 0 + 6655 = 0 + 6659 = 0 + 6666 = 0 + 6670 = 0 + 6667 = 0 + 6671 = 0 + 6714 = 0 + 6722 = 0 + 6715 = 0 + 6723 = 0 + 6716 = 0 + 6724 = 0 + 6844 = 0 + 6845 = 0 + 6856 = 0 + 6858 = 0 + 6857 = 0 + 6859 = 0 + 6868 = 0 + 6870 = 0 + 6869 = 0 + 6871 = 0 + 6982 = 0 + 6986 = 0 + 6983 = 0 + 6987 = 0 + 6984 = 0 + 6988 = 0 + 7112 = 0 + 7113 = 0 + 7114 = 0 + 7118 = 0 + 7119 = 0 + 7124 = 0 + 7126 = 0 + 7128 = 0 + 7125 = 0 + 7127 = 0 + 7129 = 0 + 7136 = 0 + 7138 = 0 + 7137 = 0 + 7139 = 0 + 7150 = 0 + 7152 = 0 + 7151 = 0 + 7153 = 0 + 7174 = 0 + 7176 = 0 + 7175 = 0 + 7177 = 0 + 7194 = 0 + 7198 = 0 + 7195 = 0 + 7199 = 0 + 7196 = 0 + 7200 = 0 + 7250 = 0 + 7254 = 0 + 7251 = 0 + 7255 = 0 + 7252 = 0 + 7256 = 0 + 7380 = 0 + 7381 = 0 + 7382 = 0 + 7385 = 0 + 7387 = 0 + 7392 = 0 + 7394 = 0 + 7393 = 0 + 7395 = 0 + 7404 = 0 + 7406 = 0 + 7408 = 0 + 7405 = 0 + 7407 = 0 + 7409 = 0 + 7428 = 0 + 7432 = 0 + 7429 = 0 + 7433 = 0 + 7440 = 0 + 7444 = 0 + 7441 = 0 + 7445 = 0 + 7488 = 0 + 7496 = 0 + 7489 = 0 + 7497 = 0 + 7490 = 0 + 7498 = 0 + 7518 = 0 + 7522 = 0 + 7519 = 0 + 7523 = 0 + 7520 = 0 + 7524 = 0 + 7653 = 0 + 7654 = 0 + 7655 = 0 + 7660 = 0 + 7662 = 0 + 7664 = 0 + 7661 = 0 + 7663 = 0 + 7665 = 0 + 7672 = 0 + 7674 = 0 + 7676 = 0 + 7673 = 0 + 7675 = 0 + 7677 = 0 + 7686 = 0 + 7688 = 0 + 7687 = 0 + 7689 = 0 + 7696 = 0 + 7700 = 0 + 7697 = 0 + 7701 = 0 + 7708 = 0 + 7710 = 0 + 7712 = 0 + 7709 = 0 + 7711 = 0 + 7713 = 0 + 7730 = 0 + 7734 = 0 + 7731 = 0 + 7735 = 0 + 7732 = 0 + 7736 = 0 + 7756 = 0 + 7764 = 0 + 7757 = 0 + 7765 = 0 + 7758 = 0 + 7766 = 0 + 7786 = 0 + 7790 = 0 + 7787 = 0 + 7791 = 0 + 7788 = 0 + 7792 = 0 + 8126 = 0 + 8127 = 0 + 8134 = 0 + 8136 = 0 + 8135 = 0 + 8137 = 0 + 8158 = 0 + 8160 = 0 + 8159 = 0 + 8161 = 0 + 8178 = 0 + 8182 = 0 + 8179 = 0 + 8183 = 0 + 8180 = 0 + 8184 = 0 + 8334 = 0 + 8336 = 0 + 8353 = 0 + 8357 = 0 + 8354 = 0 + 8358 = 0 + 8365 = 0 + 8369 = 0 + 8366 = 0 + 8370 = 0 + 8413 = 0 + 8421 = 0 + 8414 = 0 + 8422 = 0 + 8415 = 0 + 8423 = 0 + 8543 = 0 + 8544 = 0 + 8545 = 0 + 8552 = 0 + 8554 = 0 + 8553 = 0 + 8555 = 0 + 8562 = 0 + 8566 = 0 + 8563 = 0 + 8567 = 0 + 8574 = 0 + 8576 = 0 + 8578 = 0 + 8575 = 0 + 8577 = 0 + 8579 = 0 + 8596 = 0 + 8600 = 0 + 8597 = 0 + 8601 = 0 + 8598 = 0 + 8602 = 0 + 8622 = 0 + 8630 = 0 + 8623 = 0 + 8631 = 0 + 8624 = 0 + 8632 = 0 + 8752 = 0 + 8753 = 0 + 8754 = 0 + 8757 = 0 + 8759 = 0 + 8763 = 0 + 8764 = 0 + 8776 = 0 + 8778 = 0 + 8777 = 0 + 8779 = 0 + 8798 = 0 + 8802 = 0 + 8799 = 0 + 8803 = 0 + 8822 = 0 + 8824 = 0 + 8826 = 0 + 8823 = 0 + 8825 = 0 + 8827 = 0 + 8834 = 0 + 8838 = 0 + 8835 = 0 + 8839 = 0 + 8848 = 0 + 8850 = 0 + 8849 = 0 + 8851 = 0 + 8880 = 0 + 8884 = 0 + 8881 = 0 + 8885 = 0 + 8882 = 0 + 8886 = 0 + 8936 = 0 + 8944 = 0 + 8937 = 0 + 8945 = 0 + 8938 = 0 + 8946 = 0 + 9096 = 0 + 9098 = 0 + 9120 = 0 + 9124 = 0 + 9121 = 0 + 9125 = 0 + 9144 = 0 + 9148 = 0 + 9145 = 0 + 9149 = 0 + 9204 = 0 + 9212 = 0 + 9205 = 0 + 9213 = 0 + 9206 = 0 + 9214 = 0 + 9365 = 0 + 9366 = 0 + 9378 = 0 + 9380 = 0 + 9379 = 0 + 9381 = 0 + 9414 = 0 + 9416 = 0 + 9415 = 0 + 9417 = 0 + 9446 = 0 + 9450 = 0 + 9447 = 0 + 9451 = 0 + 9448 = 0 + 9452 = 0 + 9841 = 0 + 9842 = 0 + 9843 = 0 + 9846 = 0 + 9848 = 0 + 9852 = 0 + 9853 = 0 + 9865 = 0 + 9867 = 0 + 9866 = 0 + 9868 = 0 + 9887 = 0 + 9891 = 0 + 9888 = 0 + 9892 = 0 + 9911 = 0 + 9913 = 0 + 9915 = 0 + 9912 = 0 + 9914 = 0 + 9916 = 0 + 9923 = 0 + 9927 = 0 + 9924 = 0 + 9928 = 0 + 9937 = 0 + 9939 = 0 + 9938 = 0 + 9940 = 0 + 9969 = 0 + 9973 = 0 + 9970 = 0 + 9974 = 0 + 9971 = 0 + 9975 = 0 + 10025 = 0 + 10033 = 0 + 10026 = 0 + 10034 = 0 + 10027 = 0 + 10035 = 0 + 10185 = 0 + 10187 = 0 + 10209 = 0 + 10213 = 0 + 10210 = 0 + 10214 = 0 + 10233 = 0 + 10237 = 0 + 10234 = 0 + 10238 = 0 + 10293 = 0 + 10301 = 0 + 10294 = 0 + 10302 = 0 + 10295 = 0 + 10303 = 0 + 10454 = 0 + 10455 = 0 + 10467 = 0 + 10469 = 0 + 10468 = 0 + 10470 = 0 + 10503 = 0 + 10505 = 0 + 10504 = 0 + 10506 = 0 + 10535 = 0 + 10539 = 0 + 10536 = 0 + 10540 = 0 + 10537 = 0 + 10541 = 0 + 10930 = 0 + 10932 = 0 + 10954 = 0 + 10958 = 0 + 10955 = 0 + 10959 = 0 + 10978 = 0 + 10982 = 0 + 10979 = 0 + 10983 = 0 + 11038 = 0 + 11046 = 0 + 11039 = 0 + 11047 = 0 + 11040 = 0 + 11048 = 0 + 11198 = 0 + 11199 = 0 + 11200 = 0 + 11204 = 0 + 11205 = 0 + 11212 = 0 + 11214 = 0 + 11213 = 0 + 11215 = 0 + 11222 = 0 + 11226 = 0 + 11223 = 0 + 11227 = 0 + 11246 = 0 + 11248 = 0 + 11250 = 0 + 11247 = 0 + 11249 = 0 + 11251 = 0 + 11260 = 0 + 11262 = 0 + 11261 = 0 + 11263 = 0 + 11280 = 0 + 11284 = 0 + 11281 = 0 + 11285 = 0 + 11282 = 0 + 11286 = 0 + 11306 = 0 + 11314 = 0 + 11307 = 0 + 11315 = 0 + 11308 = 0 + 11316 = 0 + 11676 = 0 + 11677 = 0 + 11684 = 0 + 11686 = 0 + 11685 = 0 + 11687 = 0 + 11708 = 0 + 11710 = 0 + 11709 = 0 + 11711 = 0 + 11728 = 0 + 11732 = 0 + 11729 = 0 + 11733 = 0 + 11730 = 0 + 11734 = 0 + 11884 = 0 + 11886 = 0 + 11908 = 0 + 11912 = 0 + 11909 = 0 + 11913 = 0 + 11932 = 0 + 11936 = 0 + 11933 = 0 + 11937 = 0 + 11992 = 0 + 12000 = 0 + 11993 = 0 + 12001 = 0 + 11994 = 0 + 12002 = 0 + 12152 = 0 + 12153 = 0 + 12154 = 0 + 12158 = 0 + 12159 = 0 + 12166 = 0 + 12168 = 0 + 12167 = 0 + 12169 = 0 + 12176 = 0 + 12180 = 0 + 12177 = 0 + 12181 = 0 + 12200 = 0 + 12202 = 0 + 12204 = 0 + 12201 = 0 + 12203 = 0 + 12205 = 0 + 12214 = 0 + 12216 = 0 + 12215 = 0 + 12217 = 0 + 12234 = 0 + 12238 = 0 + 12235 = 0 + 12239 = 0 + 12236 = 0 + 12240 = 0 + 12260 = 0 + 12268 = 0 + 12261 = 0 + 12269 = 0 + 12262 = 0 + 12270 = 0 + 12630 = 0 + 12631 = 0 + 12638 = 0 + 12640 = 0 + 12639 = 0 + 12641 = 0 + 12662 = 0 + 12664 = 0 + 12663 = 0 + 12665 = 0 + 12682 = 0 + 12686 = 0 + 12683 = 0 + 12687 = 0 + 12684 = 0 + 12688 = 0 + 12839 = 0 + 12840 = 0 + 12852 = 0 + 12854 = 0 + 12853 = 0 + 12855 = 0 + 12888 = 0 + 12890 = 0 + 12889 = 0 + 12891 = 0 + 12920 = 0 + 12924 = 0 + 12921 = 0 + 12925 = 0 + 12922 = 0 + 12926 = 0 + 13315 = 0 + 13316 = 0 + 13317 = 0 + 13320 = 0 + 13322 = 0 + 13329 = 0 + 13331 = 0 + 13330 = 0 + 13332 = 0 + 13351 = 0 + 13355 = 0 + 13352 = 0 + 13356 = 0 + 13363 = 0 + 13365 = 0 + 13367 = 0 + 13364 = 0 + 13366 = 0 + 13368 = 0 + 13375 = 0 + 13379 = 0 + 13376 = 0 + 13380 = 0 + 13397 = 0 + 13401 = 0 + 13398 = 0 + 13402 = 0 + 13399 = 0 + 13403 = 0 + 13453 = 0 + 13461 = 0 + 13454 = 0 + 13462 = 0 + 13455 = 0 + 13463 = 0 + 13583 = 0 + 13585 = 0 + 13602 = 0 + 13606 = 0 + 13603 = 0 + 13607 = 0 + 13614 = 0 + 13618 = 0 + 13615 = 0 + 13619 = 0 + 13662 = 0 + 13670 = 0 + 13663 = 0 + 13671 = 0 + 13664 = 0 + 13672 = 0 + 13793 = 0 + 13794 = 0 + 13806 = 0 + 13808 = 0 + 13807 = 0 + 13809 = 0 + 13842 = 0 + 13844 = 0 + 13843 = 0 + 13845 = 0 + 13874 = 0 + 13878 = 0 + 13875 = 0 + 13879 = 0 + 13876 = 0 + 13880 = 0 + 14269 = 0 + 14270 = 0 + 14271 = 0 + 14274 = 0 + 14276 = 0 + 14283 = 0 + 14285 = 0 + 14284 = 0 + 14286 = 0 + 14305 = 0 + 14309 = 0 + 14306 = 0 + 14310 = 0 + 14317 = 0 + 14319 = 0 + 14321 = 0 + 14318 = 0 + 14320 = 0 + 14322 = 0 + 14329 = 0 + 14333 = 0 + 14330 = 0 + 14334 = 0 + 14351 = 0 + 14355 = 0 + 14352 = 0 + 14356 = 0 + 14353 = 0 + 14357 = 0 + 14407 = 0 + 14415 = 0 + 14408 = 0 + 14416 = 0 + 14409 = 0 + 14417 = 0 + 14537 = 0 + 14539 = 0 + 14556 = 0 + 14560 = 0 + 14557 = 0 + 14561 = 0 + 14568 = 0 + 14572 = 0 + 14569 = 0 + 14573 = 0 + 14616 = 0 + 14624 = 0 + 14617 = 0 + 14625 = 0 + 14618 = 0 + 14626 = 0 + 14956 = 0 + 14957 = 0 + 14964 = 0 + 14966 = 0 + 14965 = 0 + 14967 = 0 + 14988 = 0 + 14990 = 0 + 14989 = 0 + 14991 = 0 + 15008 = 0 + 15012 = 0 + 15009 = 0 + 15013 = 0 + 15010 = 0 + 15014 = 0 + 15164 = 0 + 15166 = 0 + 15183 = 0 + 15187 = 0 + 15184 = 0 + 15188 = 0 + 15195 = 0 + 15199 = 0 + 15196 = 0 + 15200 = 0 + 15243 = 0 + 15251 = 0 + 15244 = 0 + 15252 = 0 + 15245 = 0 + 15253 = 0 + 15373 = 0 + 15374 = 0 + 15375 = 0 + 15382 = 0 + 15384 = 0 + 15383 = 0 + 15385 = 0 + 15392 = 0 + 15396 = 0 + 15393 = 0 + 15397 = 0 + 15404 = 0 + 15406 = 0 + 15408 = 0 + 15405 = 0 + 15407 = 0 + 15409 = 0 + 15426 = 0 + 15430 = 0 + 15427 = 0 + 15431 = 0 + 15428 = 0 + 15432 = 0 + 15452 = 0 + 15460 = 0 + 15453 = 0 + 15461 = 0 + 15454 = 0 + 15462 = 0 + 15792 = 0 + 15793 = 0 + 15800 = 0 + 15802 = 0 + 15801 = 0 + 15803 = 0 + 15824 = 0 + 15826 = 0 + 15825 = 0 + 15827 = 0 + 15844 = 0 + 15848 = 0 + 15845 = 0 + 15849 = 0 + 15846 = 0 + 15850 = 0 + 16000 = 0 + 16002 = 0 + 16019 = 0 + 16023 = 0 + 16020 = 0 + 16024 = 0 + 16031 = 0 + 16035 = 0 + 16032 = 0 + 16036 = 0 + 16079 = 0 + 16087 = 0 + 16080 = 0 + 16088 = 0 + 16081 = 0 + 16089 = 0 + 16209 = 0 + 16210 = 0 + 16211 = 0 + 16218 = 0 + 16220 = 0 + 16219 = 0 + 16221 = 0 + 16228 = 0 + 16232 = 0 + 16229 = 0 + 16233 = 0 + 16240 = 0 + 16242 = 0 + 16244 = 0 + 16241 = 0 + 16243 = 0 + 16245 = 0 + 16262 = 0 + 16266 = 0 + 16263 = 0 + 16267 = 0 + 16264 = 0 + 16268 = 0 + 16288 = 0 + 16296 = 0 + 16289 = 0 + 16297 = 0 + 16290 = 0 + 16298 = 0 +DEAL::FE=FESystem<3>[FE_Q<3>(4)-FE_Q<3>(3)^3-FE_Q<3>(4)], case=5 + 6 = 0 + 7 = 0 + 8 = 0 + 11 = 0 + 12 = 0 + 13 = 0 + 16 = 0 + 17 = 0 + 21 = 0 + 22 = 0 + 23 = 0 + 26 = 0 + 28 = 0 + 32 = 0 + 33 = 0 + 43 = 0 + 45 = 0 + 47 = 0 + 44 = 0 + 46 = 0 + 48 = 0 + 55 = 0 + 57 = 0 + 56 = 0 + 58 = 0 + 67 = 0 + 69 = 0 + 71 = 0 + 68 = 0 + 70 = 0 + 72 = 0 + 79 = 0 + 81 = 0 + 80 = 0 + 82 = 0 + 93 = 0 + 95 = 0 + 94 = 0 + 96 = 0 + 115 = 0 + 119 = 0 + 116 = 0 + 120 = 0 + 139 = 0 + 141 = 0 + 143 = 0 + 140 = 0 + 142 = 0 + 144 = 0 + 151 = 0 + 155 = 0 + 152 = 0 + 156 = 0 + 165 = 0 + 167 = 0 + 166 = 0 + 168 = 0 + 197 = 0 + 201 = 0 + 198 = 0 + 202 = 0 + 199 = 0 + 203 = 0 + 253 = 0 + 261 = 0 + 254 = 0 + 262 = 0 + 255 = 0 + 263 = 0 + 313 = 0 + 317 = 0 + 314 = 0 + 318 = 0 + 315 = 0 + 319 = 0 + 443 = 0 + 444 = 0 + 445 = 0 + 448 = 0 + 449 = 0 + 453 = 0 + 455 = 0 + 465 = 0 + 467 = 0 + 466 = 0 + 468 = 0 + 477 = 0 + 479 = 0 + 481 = 0 + 478 = 0 + 480 = 0 + 482 = 0 + 489 = 0 + 491 = 0 + 490 = 0 + 492 = 0 + 513 = 0 + 517 = 0 + 514 = 0 + 518 = 0 + 537 = 0 + 541 = 0 + 538 = 0 + 542 = 0 + 597 = 0 + 605 = 0 + 598 = 0 + 606 = 0 + 599 = 0 + 607 = 0 + 657 = 0 + 661 = 0 + 658 = 0 + 662 = 0 + 659 = 0 + 663 = 0 + 787 = 0 + 788 = 0 + 789 = 0 + 792 = 0 + 793 = 0 + 798 = 0 + 799 = 0 + 809 = 0 + 811 = 0 + 813 = 0 + 810 = 0 + 812 = 0 + 814 = 0 + 821 = 0 + 823 = 0 + 822 = 0 + 824 = 0 + 833 = 0 + 835 = 0 + 834 = 0 + 836 = 0 + 847 = 0 + 849 = 0 + 848 = 0 + 850 = 0 + 883 = 0 + 885 = 0 + 884 = 0 + 886 = 0 + 915 = 0 + 919 = 0 + 916 = 0 + 920 = 0 + 917 = 0 + 921 = 0 + 1001 = 0 + 1005 = 0 + 1002 = 0 + 1006 = 0 + 1003 = 0 + 1007 = 0 + 1131 = 0 + 1132 = 0 + 1143 = 0 + 1145 = 0 + 1144 = 0 + 1146 = 0 + 1155 = 0 + 1157 = 0 + 1156 = 0 + 1158 = 0 + 1269 = 0 + 1273 = 0 + 1270 = 0 + 1274 = 0 + 1271 = 0 + 1275 = 0 + 1399 = 0 + 1400 = 0 + 1401 = 0 + 1404 = 0 + 1406 = 0 + 1410 = 0 + 1411 = 0 + 1423 = 0 + 1425 = 0 + 1424 = 0 + 1426 = 0 + 1445 = 0 + 1449 = 0 + 1446 = 0 + 1450 = 0 + 1469 = 0 + 1471 = 0 + 1473 = 0 + 1470 = 0 + 1472 = 0 + 1474 = 0 + 1481 = 0 + 1485 = 0 + 1482 = 0 + 1486 = 0 + 1495 = 0 + 1497 = 0 + 1496 = 0 + 1498 = 0 + 1527 = 0 + 1531 = 0 + 1528 = 0 + 1532 = 0 + 1529 = 0 + 1533 = 0 + 1583 = 0 + 1591 = 0 + 1584 = 0 + 1592 = 0 + 1585 = 0 + 1593 = 0 + 1743 = 0 + 1745 = 0 + 1767 = 0 + 1771 = 0 + 1768 = 0 + 1772 = 0 + 1791 = 0 + 1795 = 0 + 1792 = 0 + 1796 = 0 + 1851 = 0 + 1859 = 0 + 1852 = 0 + 1860 = 0 + 1853 = 0 + 1861 = 0 + 2012 = 0 + 2013 = 0 + 2025 = 0 + 2027 = 0 + 2026 = 0 + 2028 = 0 + 2061 = 0 + 2063 = 0 + 2062 = 0 + 2064 = 0 + 2093 = 0 + 2097 = 0 + 2094 = 0 + 2098 = 0 + 2095 = 0 + 2099 = 0 + 2488 = 0 + 2489 = 0 + 2490 = 0 + 2493 = 0 + 2494 = 0 + 2498 = 0 + 2500 = 0 + 2510 = 0 + 2512 = 0 + 2511 = 0 + 2513 = 0 + 2522 = 0 + 2524 = 0 + 2526 = 0 + 2523 = 0 + 2525 = 0 + 2527 = 0 + 2534 = 0 + 2536 = 0 + 2535 = 0 + 2537 = 0 + 2558 = 0 + 2562 = 0 + 2559 = 0 + 2563 = 0 + 2582 = 0 + 2586 = 0 + 2583 = 0 + 2587 = 0 + 2642 = 0 + 2650 = 0 + 2643 = 0 + 2651 = 0 + 2644 = 0 + 2652 = 0 + 2702 = 0 + 2706 = 0 + 2703 = 0 + 2707 = 0 + 2704 = 0 + 2708 = 0 + 2837 = 0 + 2838 = 0 + 2839 = 0 + 2842 = 0 + 2843 = 0 + 2844 = 0 + 2848 = 0 + 2849 = 0 + 2854 = 0 + 2856 = 0 + 2858 = 0 + 2855 = 0 + 2857 = 0 + 2859 = 0 + 2866 = 0 + 2868 = 0 + 2870 = 0 + 2867 = 0 + 2869 = 0 + 2871 = 0 + 2878 = 0 + 2880 = 0 + 2879 = 0 + 2881 = 0 + 2892 = 0 + 2894 = 0 + 2893 = 0 + 2895 = 0 + 2902 = 0 + 2906 = 0 + 2903 = 0 + 2907 = 0 + 2926 = 0 + 2928 = 0 + 2930 = 0 + 2927 = 0 + 2929 = 0 + 2931 = 0 + 2940 = 0 + 2942 = 0 + 2941 = 0 + 2943 = 0 + 2960 = 0 + 2964 = 0 + 2961 = 0 + 2965 = 0 + 2962 = 0 + 2966 = 0 + 2986 = 0 + 2994 = 0 + 2987 = 0 + 2995 = 0 + 2988 = 0 + 2996 = 0 + 3046 = 0 + 3050 = 0 + 3047 = 0 + 3051 = 0 + 3048 = 0 + 3052 = 0 + 3176 = 0 + 3177 = 0 + 3188 = 0 + 3190 = 0 + 3189 = 0 + 3191 = 0 + 3200 = 0 + 3202 = 0 + 3201 = 0 + 3203 = 0 + 3314 = 0 + 3318 = 0 + 3315 = 0 + 3319 = 0 + 3316 = 0 + 3320 = 0 + 3444 = 0 + 3445 = 0 + 3446 = 0 + 3450 = 0 + 3451 = 0 + 3456 = 0 + 3458 = 0 + 3460 = 0 + 3457 = 0 + 3459 = 0 + 3461 = 0 + 3468 = 0 + 3470 = 0 + 3469 = 0 + 3471 = 0 + 3482 = 0 + 3484 = 0 + 3483 = 0 + 3485 = 0 + 3506 = 0 + 3508 = 0 + 3507 = 0 + 3509 = 0 + 3526 = 0 + 3530 = 0 + 3527 = 0 + 3531 = 0 + 3528 = 0 + 3532 = 0 + 3582 = 0 + 3586 = 0 + 3583 = 0 + 3587 = 0 + 3584 = 0 + 3588 = 0 + 3712 = 0 + 3714 = 0 + 3736 = 0 + 3740 = 0 + 3737 = 0 + 3741 = 0 + 3760 = 0 + 3764 = 0 + 3761 = 0 + 3765 = 0 + 3820 = 0 + 3828 = 0 + 3821 = 0 + 3829 = 0 + 3822 = 0 + 3830 = 0 + 3980 = 0 + 3981 = 0 + 3982 = 0 + 3986 = 0 + 3987 = 0 + 3994 = 0 + 3996 = 0 + 3995 = 0 + 3997 = 0 + 4004 = 0 + 4008 = 0 + 4005 = 0 + 4009 = 0 + 4028 = 0 + 4030 = 0 + 4032 = 0 + 4029 = 0 + 4031 = 0 + 4033 = 0 + 4042 = 0 + 4044 = 0 + 4043 = 0 + 4045 = 0 + 4062 = 0 + 4066 = 0 + 4063 = 0 + 4067 = 0 + 4064 = 0 + 4068 = 0 + 4088 = 0 + 4096 = 0 + 4089 = 0 + 4097 = 0 + 4090 = 0 + 4098 = 0 + 4458 = 0 + 4459 = 0 + 4466 = 0 + 4468 = 0 + 4467 = 0 + 4469 = 0 + 4490 = 0 + 4492 = 0 + 4491 = 0 + 4493 = 0 + 4510 = 0 + 4514 = 0 + 4511 = 0 + 4515 = 0 + 4512 = 0 + 4516 = 0 + 4666 = 0 + 4667 = 0 + 4668 = 0 + 4671 = 0 + 4672 = 0 + 4677 = 0 + 4678 = 0 + 4688 = 0 + 4690 = 0 + 4692 = 0 + 4689 = 0 + 4691 = 0 + 4693 = 0 + 4700 = 0 + 4702 = 0 + 4701 = 0 + 4703 = 0 + 4712 = 0 + 4714 = 0 + 4713 = 0 + 4715 = 0 + 4726 = 0 + 4728 = 0 + 4727 = 0 + 4729 = 0 + 4762 = 0 + 4764 = 0 + 4763 = 0 + 4765 = 0 + 4794 = 0 + 4798 = 0 + 4795 = 0 + 4799 = 0 + 4796 = 0 + 4800 = 0 + 4880 = 0 + 4884 = 0 + 4881 = 0 + 4885 = 0 + 4882 = 0 + 4886 = 0 + 5010 = 0 + 5011 = 0 + 5022 = 0 + 5024 = 0 + 5023 = 0 + 5025 = 0 + 5034 = 0 + 5036 = 0 + 5035 = 0 + 5037 = 0 + 5148 = 0 + 5152 = 0 + 5149 = 0 + 5153 = 0 + 5150 = 0 + 5154 = 0 + 5283 = 0 + 5284 = 0 + 5285 = 0 + 5288 = 0 + 5289 = 0 + 5290 = 0 + 5293 = 0 + 5295 = 0 + 5300 = 0 + 5302 = 0 + 5304 = 0 + 5301 = 0 + 5303 = 0 + 5305 = 0 + 5312 = 0 + 5314 = 0 + 5313 = 0 + 5315 = 0 + 5324 = 0 + 5326 = 0 + 5328 = 0 + 5325 = 0 + 5327 = 0 + 5329 = 0 + 5338 = 0 + 5340 = 0 + 5339 = 0 + 5341 = 0 + 5360 = 0 + 5364 = 0 + 5361 = 0 + 5365 = 0 + 5372 = 0 + 5374 = 0 + 5376 = 0 + 5373 = 0 + 5375 = 0 + 5377 = 0 + 5384 = 0 + 5388 = 0 + 5385 = 0 + 5389 = 0 + 5406 = 0 + 5410 = 0 + 5407 = 0 + 5411 = 0 + 5408 = 0 + 5412 = 0 + 5462 = 0 + 5470 = 0 + 5463 = 0 + 5471 = 0 + 5464 = 0 + 5472 = 0 + 5492 = 0 + 5496 = 0 + 5493 = 0 + 5497 = 0 + 5494 = 0 + 5498 = 0 + 5622 = 0 + 5623 = 0 + 5624 = 0 + 5627 = 0 + 5629 = 0 + 5634 = 0 + 5636 = 0 + 5635 = 0 + 5637 = 0 + 5646 = 0 + 5648 = 0 + 5650 = 0 + 5647 = 0 + 5649 = 0 + 5651 = 0 + 5670 = 0 + 5674 = 0 + 5671 = 0 + 5675 = 0 + 5682 = 0 + 5686 = 0 + 5683 = 0 + 5687 = 0 + 5730 = 0 + 5738 = 0 + 5731 = 0 + 5739 = 0 + 5732 = 0 + 5740 = 0 + 5760 = 0 + 5764 = 0 + 5761 = 0 + 5765 = 0 + 5762 = 0 + 5766 = 0 + 5891 = 0 + 5892 = 0 + 5904 = 0 + 5906 = 0 + 5905 = 0 + 5907 = 0 + 5940 = 0 + 5942 = 0 + 5941 = 0 + 5943 = 0 + 5972 = 0 + 5976 = 0 + 5973 = 0 + 5977 = 0 + 5974 = 0 + 5978 = 0 + 6367 = 0 + 6368 = 0 + 6369 = 0 + 6372 = 0 + 6374 = 0 + 6381 = 0 + 6383 = 0 + 6382 = 0 + 6384 = 0 + 6403 = 0 + 6407 = 0 + 6404 = 0 + 6408 = 0 + 6415 = 0 + 6417 = 0 + 6419 = 0 + 6416 = 0 + 6418 = 0 + 6420 = 0 + 6427 = 0 + 6431 = 0 + 6428 = 0 + 6432 = 0 + 6449 = 0 + 6453 = 0 + 6450 = 0 + 6454 = 0 + 6451 = 0 + 6455 = 0 + 6505 = 0 + 6513 = 0 + 6506 = 0 + 6514 = 0 + 6507 = 0 + 6515 = 0 + 6635 = 0 + 6637 = 0 + 6654 = 0 + 6658 = 0 + 6655 = 0 + 6659 = 0 + 6666 = 0 + 6670 = 0 + 6667 = 0 + 6671 = 0 + 6714 = 0 + 6722 = 0 + 6715 = 0 + 6723 = 0 + 6716 = 0 + 6724 = 0 + 6844 = 0 + 6845 = 0 + 6856 = 0 + 6858 = 0 + 6857 = 0 + 6859 = 0 + 6868 = 0 + 6870 = 0 + 6869 = 0 + 6871 = 0 + 6982 = 0 + 6986 = 0 + 6983 = 0 + 6987 = 0 + 6984 = 0 + 6988 = 0 + 7112 = 0 + 7113 = 0 + 7114 = 0 + 7118 = 0 + 7119 = 0 + 7124 = 0 + 7126 = 0 + 7128 = 0 + 7125 = 0 + 7127 = 0 + 7129 = 0 + 7136 = 0 + 7138 = 0 + 7137 = 0 + 7139 = 0 + 7150 = 0 + 7152 = 0 + 7151 = 0 + 7153 = 0 + 7174 = 0 + 7176 = 0 + 7175 = 0 + 7177 = 0 + 7194 = 0 + 7198 = 0 + 7195 = 0 + 7199 = 0 + 7196 = 0 + 7200 = 0 + 7250 = 0 + 7254 = 0 + 7251 = 0 + 7255 = 0 + 7252 = 0 + 7256 = 0 + 7380 = 0 + 7381 = 0 + 7382 = 0 + 7385 = 0 + 7387 = 0 + 7392 = 0 + 7394 = 0 + 7393 = 0 + 7395 = 0 + 7404 = 0 + 7406 = 0 + 7408 = 0 + 7405 = 0 + 7407 = 0 + 7409 = 0 + 7428 = 0 + 7432 = 0 + 7429 = 0 + 7433 = 0 + 7440 = 0 + 7444 = 0 + 7441 = 0 + 7445 = 0 + 7488 = 0 + 7496 = 0 + 7489 = 0 + 7497 = 0 + 7490 = 0 + 7498 = 0 + 7518 = 0 + 7522 = 0 + 7519 = 0 + 7523 = 0 + 7520 = 0 + 7524 = 0 + 7653 = 0 + 7654 = 0 + 7655 = 0 + 7660 = 0 + 7662 = 0 + 7664 = 0 + 7661 = 0 + 7663 = 0 + 7665 = 0 + 7672 = 0 + 7674 = 0 + 7676 = 0 + 7673 = 0 + 7675 = 0 + 7677 = 0 + 7686 = 0 + 7688 = 0 + 7687 = 0 + 7689 = 0 + 7696 = 0 + 7700 = 0 + 7697 = 0 + 7701 = 0 + 7708 = 0 + 7710 = 0 + 7712 = 0 + 7709 = 0 + 7711 = 0 + 7713 = 0 + 7730 = 0 + 7734 = 0 + 7731 = 0 + 7735 = 0 + 7732 = 0 + 7736 = 0 + 7756 = 0 + 7764 = 0 + 7757 = 0 + 7765 = 0 + 7758 = 0 + 7766 = 0 + 7786 = 0 + 7790 = 0 + 7787 = 0 + 7791 = 0 + 7788 = 0 + 7792 = 0 + 8126 = 0 + 8127 = 0 + 8134 = 0 + 8136 = 0 + 8135 = 0 + 8137 = 0 + 8158 = 0 + 8160 = 0 + 8159 = 0 + 8161 = 0 + 8178 = 0 + 8182 = 0 + 8179 = 0 + 8183 = 0 + 8180 = 0 + 8184 = 0 + 8334 = 0 + 8336 = 0 + 8353 = 0 + 8357 = 0 + 8354 = 0 + 8358 = 0 + 8365 = 0 + 8369 = 0 + 8366 = 0 + 8370 = 0 + 8413 = 0 + 8421 = 0 + 8414 = 0 + 8422 = 0 + 8415 = 0 + 8423 = 0 + 8543 = 0 + 8544 = 0 + 8545 = 0 + 8552 = 0 + 8554 = 0 + 8553 = 0 + 8555 = 0 + 8562 = 0 + 8566 = 0 + 8563 = 0 + 8567 = 0 + 8574 = 0 + 8576 = 0 + 8578 = 0 + 8575 = 0 + 8577 = 0 + 8579 = 0 + 8596 = 0 + 8600 = 0 + 8597 = 0 + 8601 = 0 + 8598 = 0 + 8602 = 0 + 8622 = 0 + 8630 = 0 + 8623 = 0 + 8631 = 0 + 8624 = 0 + 8632 = 0 + 8752 = 0 + 8753 = 0 + 8754 = 0 + 8757 = 0 + 8759 = 0 + 8763 = 0 + 8764 = 0 + 8776 = 0 + 8778 = 0 + 8777 = 0 + 8779 = 0 + 8798 = 0 + 8802 = 0 + 8799 = 0 + 8803 = 0 + 8822 = 0 + 8824 = 0 + 8826 = 0 + 8823 = 0 + 8825 = 0 + 8827 = 0 + 8834 = 0 + 8838 = 0 + 8835 = 0 + 8839 = 0 + 8848 = 0 + 8850 = 0 + 8849 = 0 + 8851 = 0 + 8880 = 0 + 8884 = 0 + 8881 = 0 + 8885 = 0 + 8882 = 0 + 8886 = 0 + 8936 = 0 + 8944 = 0 + 8937 = 0 + 8945 = 0 + 8938 = 0 + 8946 = 0 + 9096 = 0 + 9098 = 0 + 9120 = 0 + 9124 = 0 + 9121 = 0 + 9125 = 0 + 9144 = 0 + 9148 = 0 + 9145 = 0 + 9149 = 0 + 9204 = 0 + 9212 = 0 + 9205 = 0 + 9213 = 0 + 9206 = 0 + 9214 = 0 + 9365 = 0 + 9366 = 0 + 9378 = 0 + 9380 = 0 + 9379 = 0 + 9381 = 0 + 9414 = 0 + 9416 = 0 + 9415 = 0 + 9417 = 0 + 9446 = 0 + 9450 = 0 + 9447 = 0 + 9451 = 0 + 9448 = 0 + 9452 = 0 + 9846 = 0 + 9847 = 0 + 9848 = 0 + 9851 = 0 + 9852 = 0 + 9853 = 0 + 9856 = 0 + 9857 = 0 + 9863 = 0 + 9865 = 0 + 9867 = 0 + 9864 = 0 + 9866 = 0 + 9868 = 0 + 9875 = 0 + 9877 = 0 + 9876 = 0 + 9878 = 0 + 9887 = 0 + 9889 = 0 + 9891 = 0 + 9888 = 0 + 9890 = 0 + 9892 = 0 + 9899 = 0 + 9901 = 0 + 9900 = 0 + 9902 = 0 + 9911 = 0 + 9913 = 0 + 9915 = 0 + 9912 = 0 + 9914 = 0 + 9916 = 0 + 9923 = 0 + 9927 = 0 + 9924 = 0 + 9928 = 0 + 9937 = 0 + 9939 = 0 + 9938 = 0 + 9940 = 0 + 9969 = 0 + 9973 = 0 + 9970 = 0 + 9974 = 0 + 9971 = 0 + 9975 = 0 + 10025 = 0 + 10033 = 0 + 10026 = 0 + 10034 = 0 + 10027 = 0 + 10035 = 0 + 10085 = 0 + 10089 = 0 + 10086 = 0 + 10090 = 0 + 10087 = 0 + 10091 = 0 + 10185 = 0 + 10186 = 0 + 10187 = 0 + 10190 = 0 + 10191 = 0 + 10197 = 0 + 10199 = 0 + 10198 = 0 + 10200 = 0 + 10209 = 0 + 10211 = 0 + 10213 = 0 + 10210 = 0 + 10212 = 0 + 10214 = 0 + 10221 = 0 + 10223 = 0 + 10222 = 0 + 10224 = 0 + 10233 = 0 + 10237 = 0 + 10234 = 0 + 10238 = 0 + 10293 = 0 + 10301 = 0 + 10294 = 0 + 10302 = 0 + 10295 = 0 + 10303 = 0 + 10353 = 0 + 10357 = 0 + 10354 = 0 + 10358 = 0 + 10355 = 0 + 10359 = 0 + 10453 = 0 + 10454 = 0 + 10455 = 0 + 10458 = 0 + 10459 = 0 + 10465 = 0 + 10467 = 0 + 10469 = 0 + 10466 = 0 + 10468 = 0 + 10470 = 0 + 10477 = 0 + 10479 = 0 + 10478 = 0 + 10480 = 0 + 10489 = 0 + 10491 = 0 + 10490 = 0 + 10492 = 0 + 10503 = 0 + 10505 = 0 + 10504 = 0 + 10506 = 0 + 10535 = 0 + 10539 = 0 + 10536 = 0 + 10540 = 0 + 10537 = 0 + 10541 = 0 + 10621 = 0 + 10625 = 0 + 10622 = 0 + 10626 = 0 + 10623 = 0 + 10627 = 0 + 10721 = 0 + 10722 = 0 + 10728 = 0 + 10730 = 0 + 10729 = 0 + 10731 = 0 + 10740 = 0 + 10742 = 0 + 10741 = 0 + 10743 = 0 + 10830 = 0 + 10834 = 0 + 10831 = 0 + 10835 = 0 + 10832 = 0 + 10836 = 0 + 10930 = 0 + 10932 = 0 + 10954 = 0 + 10958 = 0 + 10955 = 0 + 10959 = 0 + 10978 = 0 + 10982 = 0 + 10979 = 0 + 10983 = 0 + 11038 = 0 + 11046 = 0 + 11039 = 0 + 11047 = 0 + 11040 = 0 + 11048 = 0 + 11198 = 0 + 11199 = 0 + 11200 = 0 + 11204 = 0 + 11205 = 0 + 11212 = 0 + 11214 = 0 + 11213 = 0 + 11215 = 0 + 11222 = 0 + 11226 = 0 + 11223 = 0 + 11227 = 0 + 11246 = 0 + 11248 = 0 + 11250 = 0 + 11247 = 0 + 11249 = 0 + 11251 = 0 + 11260 = 0 + 11262 = 0 + 11261 = 0 + 11263 = 0 + 11280 = 0 + 11284 = 0 + 11281 = 0 + 11285 = 0 + 11282 = 0 + 11286 = 0 + 11306 = 0 + 11314 = 0 + 11307 = 0 + 11315 = 0 + 11308 = 0 + 11316 = 0 + 11676 = 0 + 11677 = 0 + 11684 = 0 + 11686 = 0 + 11685 = 0 + 11687 = 0 + 11708 = 0 + 11710 = 0 + 11709 = 0 + 11711 = 0 + 11728 = 0 + 11732 = 0 + 11729 = 0 + 11733 = 0 + 11730 = 0 + 11734 = 0 + 11884 = 0 + 11885 = 0 + 11886 = 0 + 11889 = 0 + 11890 = 0 + 11896 = 0 + 11898 = 0 + 11897 = 0 + 11899 = 0 + 11908 = 0 + 11910 = 0 + 11912 = 0 + 11909 = 0 + 11911 = 0 + 11913 = 0 + 11920 = 0 + 11922 = 0 + 11921 = 0 + 11923 = 0 + 11932 = 0 + 11936 = 0 + 11933 = 0 + 11937 = 0 + 11992 = 0 + 12000 = 0 + 11993 = 0 + 12001 = 0 + 11994 = 0 + 12002 = 0 + 12052 = 0 + 12056 = 0 + 12053 = 0 + 12057 = 0 + 12054 = 0 + 12058 = 0 + 12157 = 0 + 12158 = 0 + 12159 = 0 + 12164 = 0 + 12166 = 0 + 12168 = 0 + 12165 = 0 + 12167 = 0 + 12169 = 0 + 12176 = 0 + 12178 = 0 + 12180 = 0 + 12177 = 0 + 12179 = 0 + 12181 = 0 + 12188 = 0 + 12190 = 0 + 12189 = 0 + 12191 = 0 + 12200 = 0 + 12202 = 0 + 12204 = 0 + 12201 = 0 + 12203 = 0 + 12205 = 0 + 12214 = 0 + 12216 = 0 + 12215 = 0 + 12217 = 0 + 12234 = 0 + 12238 = 0 + 12235 = 0 + 12239 = 0 + 12236 = 0 + 12240 = 0 + 12260 = 0 + 12268 = 0 + 12261 = 0 + 12269 = 0 + 12262 = 0 + 12270 = 0 + 12320 = 0 + 12324 = 0 + 12321 = 0 + 12325 = 0 + 12322 = 0 + 12326 = 0 + 12420 = 0 + 12421 = 0 + 12427 = 0 + 12429 = 0 + 12428 = 0 + 12430 = 0 + 12439 = 0 + 12441 = 0 + 12440 = 0 + 12442 = 0 + 12529 = 0 + 12533 = 0 + 12530 = 0 + 12534 = 0 + 12531 = 0 + 12535 = 0 + 12629 = 0 + 12630 = 0 + 12631 = 0 + 12636 = 0 + 12638 = 0 + 12640 = 0 + 12637 = 0 + 12639 = 0 + 12641 = 0 + 12648 = 0 + 12650 = 0 + 12649 = 0 + 12651 = 0 + 12662 = 0 + 12664 = 0 + 12663 = 0 + 12665 = 0 + 12682 = 0 + 12686 = 0 + 12683 = 0 + 12687 = 0 + 12684 = 0 + 12688 = 0 + 12738 = 0 + 12742 = 0 + 12739 = 0 + 12743 = 0 + 12740 = 0 + 12744 = 0 + 12839 = 0 + 12840 = 0 + 12852 = 0 + 12854 = 0 + 12853 = 0 + 12855 = 0 + 12888 = 0 + 12890 = 0 + 12889 = 0 + 12891 = 0 + 12920 = 0 + 12924 = 0 + 12921 = 0 + 12925 = 0 + 12922 = 0 + 12926 = 0 + 13315 = 0 + 13316 = 0 + 13317 = 0 + 13320 = 0 + 13322 = 0 + 13329 = 0 + 13331 = 0 + 13330 = 0 + 13332 = 0 + 13351 = 0 + 13355 = 0 + 13352 = 0 + 13356 = 0 + 13363 = 0 + 13365 = 0 + 13367 = 0 + 13364 = 0 + 13366 = 0 + 13368 = 0 + 13375 = 0 + 13379 = 0 + 13376 = 0 + 13380 = 0 + 13397 = 0 + 13401 = 0 + 13398 = 0 + 13402 = 0 + 13399 = 0 + 13403 = 0 + 13453 = 0 + 13461 = 0 + 13454 = 0 + 13462 = 0 + 13455 = 0 + 13463 = 0 + 13583 = 0 + 13585 = 0 + 13602 = 0 + 13606 = 0 + 13603 = 0 + 13607 = 0 + 13614 = 0 + 13618 = 0 + 13615 = 0 + 13619 = 0 + 13662 = 0 + 13670 = 0 + 13663 = 0 + 13671 = 0 + 13664 = 0 + 13672 = 0 + 13792 = 0 + 13793 = 0 + 13794 = 0 + 13797 = 0 + 13798 = 0 + 13804 = 0 + 13806 = 0 + 13808 = 0 + 13805 = 0 + 13807 = 0 + 13809 = 0 + 13816 = 0 + 13818 = 0 + 13817 = 0 + 13819 = 0 + 13828 = 0 + 13830 = 0 + 13829 = 0 + 13831 = 0 + 13842 = 0 + 13844 = 0 + 13843 = 0 + 13845 = 0 + 13874 = 0 + 13878 = 0 + 13875 = 0 + 13879 = 0 + 13876 = 0 + 13880 = 0 + 13960 = 0 + 13964 = 0 + 13961 = 0 + 13965 = 0 + 13962 = 0 + 13966 = 0 + 14060 = 0 + 14061 = 0 + 14067 = 0 + 14069 = 0 + 14068 = 0 + 14070 = 0 + 14079 = 0 + 14081 = 0 + 14080 = 0 + 14082 = 0 + 14169 = 0 + 14173 = 0 + 14170 = 0 + 14174 = 0 + 14171 = 0 + 14175 = 0 + 14274 = 0 + 14275 = 0 + 14276 = 0 + 14281 = 0 + 14283 = 0 + 14285 = 0 + 14282 = 0 + 14284 = 0 + 14286 = 0 + 14293 = 0 + 14295 = 0 + 14294 = 0 + 14296 = 0 + 14305 = 0 + 14307 = 0 + 14309 = 0 + 14306 = 0 + 14308 = 0 + 14310 = 0 + 14317 = 0 + 14319 = 0 + 14321 = 0 + 14318 = 0 + 14320 = 0 + 14322 = 0 + 14329 = 0 + 14333 = 0 + 14330 = 0 + 14334 = 0 + 14351 = 0 + 14355 = 0 + 14352 = 0 + 14356 = 0 + 14353 = 0 + 14357 = 0 + 14407 = 0 + 14415 = 0 + 14408 = 0 + 14416 = 0 + 14409 = 0 + 14417 = 0 + 14437 = 0 + 14441 = 0 + 14438 = 0 + 14442 = 0 + 14439 = 0 + 14443 = 0 + 14537 = 0 + 14538 = 0 + 14539 = 0 + 14544 = 0 + 14546 = 0 + 14545 = 0 + 14547 = 0 + 14556 = 0 + 14558 = 0 + 14560 = 0 + 14557 = 0 + 14559 = 0 + 14561 = 0 + 14568 = 0 + 14572 = 0 + 14569 = 0 + 14573 = 0 + 14616 = 0 + 14624 = 0 + 14617 = 0 + 14625 = 0 + 14618 = 0 + 14626 = 0 + 14646 = 0 + 14650 = 0 + 14647 = 0 + 14651 = 0 + 14648 = 0 + 14652 = 0 + 14956 = 0 + 14957 = 0 + 14964 = 0 + 14966 = 0 + 14965 = 0 + 14967 = 0 + 14988 = 0 + 14990 = 0 + 14989 = 0 + 14991 = 0 + 15008 = 0 + 15012 = 0 + 15009 = 0 + 15013 = 0 + 15010 = 0 + 15014 = 0 + 15164 = 0 + 15166 = 0 + 15183 = 0 + 15187 = 0 + 15184 = 0 + 15188 = 0 + 15195 = 0 + 15199 = 0 + 15196 = 0 + 15200 = 0 + 15243 = 0 + 15251 = 0 + 15244 = 0 + 15252 = 0 + 15245 = 0 + 15253 = 0 + 15373 = 0 + 15374 = 0 + 15375 = 0 + 15382 = 0 + 15384 = 0 + 15383 = 0 + 15385 = 0 + 15392 = 0 + 15396 = 0 + 15393 = 0 + 15397 = 0 + 15404 = 0 + 15406 = 0 + 15408 = 0 + 15405 = 0 + 15407 = 0 + 15409 = 0 + 15426 = 0 + 15430 = 0 + 15427 = 0 + 15431 = 0 + 15428 = 0 + 15432 = 0 + 15452 = 0 + 15460 = 0 + 15453 = 0 + 15461 = 0 + 15454 = 0 + 15462 = 0 + 15582 = 0 + 15583 = 0 + 15589 = 0 + 15591 = 0 + 15590 = 0 + 15592 = 0 + 15601 = 0 + 15603 = 0 + 15602 = 0 + 15604 = 0 + 15691 = 0 + 15695 = 0 + 15692 = 0 + 15696 = 0 + 15693 = 0 + 15697 = 0 + 15791 = 0 + 15792 = 0 + 15793 = 0 + 15798 = 0 + 15800 = 0 + 15802 = 0 + 15799 = 0 + 15801 = 0 + 15803 = 0 + 15810 = 0 + 15812 = 0 + 15811 = 0 + 15813 = 0 + 15824 = 0 + 15826 = 0 + 15825 = 0 + 15827 = 0 + 15844 = 0 + 15848 = 0 + 15845 = 0 + 15849 = 0 + 15846 = 0 + 15850 = 0 + 15900 = 0 + 15904 = 0 + 15901 = 0 + 15905 = 0 + 15902 = 0 + 15906 = 0 + 16000 = 0 + 16001 = 0 + 16002 = 0 + 16007 = 0 + 16009 = 0 + 16008 = 0 + 16010 = 0 + 16019 = 0 + 16021 = 0 + 16023 = 0 + 16020 = 0 + 16022 = 0 + 16024 = 0 + 16031 = 0 + 16035 = 0 + 16032 = 0 + 16036 = 0 + 16079 = 0 + 16087 = 0 + 16080 = 0 + 16088 = 0 + 16081 = 0 + 16089 = 0 + 16109 = 0 + 16113 = 0 + 16110 = 0 + 16114 = 0 + 16111 = 0 + 16115 = 0 + 16216 = 0 + 16218 = 0 + 16220 = 0 + 16217 = 0 + 16219 = 0 + 16221 = 0 + 16228 = 0 + 16230 = 0 + 16232 = 0 + 16229 = 0 + 16231 = 0 + 16233 = 0 + 16240 = 0 + 16242 = 0 + 16244 = 0 + 16241 = 0 + 16243 = 0 + 16245 = 0 + 16262 = 0 + 16266 = 0 + 16263 = 0 + 16267 = 0 + 16264 = 0 + 16268 = 0 + 16288 = 0 + 16296 = 0 + 16289 = 0 + 16297 = 0 + 16290 = 0 + 16298 = 0 + 16318 = 0 + 16322 = 0 + 16319 = 0 + 16323 = 0 + 16320 = 0 + 16324 = 0 diff --git a/tests/deal.II/normal_flux_03.cc b/tests/deal.II/normal_flux_03.cc new file mode 100644 index 0000000000..db6adaa995 --- /dev/null +++ b/tests/deal.II/normal_flux_03.cc @@ -0,0 +1,88 @@ +// --------------------------------------------------------------------- +// $Id$ +// +// Copyright (C) 2007 - 2013 by the deal.II authors +// +// This file is part of the deal.II library. +// +// The deal.II library is free software; you can use it, redistribute +// it, and/or modify it under the terms of the GNU Lesser General +// Public License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. +// The full text of the license can be found in the file LICENSE at +// the top level of the deal.II distribution. +// +// --------------------------------------------------------------------- + + +// like normal_flux_01 but check on a hyper_sphere geometry + +#include "../tests.h" +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include + + +template +void test (const Triangulation &tr, + const FiniteElement &fe) +{ + DoFHandler dof(tr); + dof.distribute_dofs(fe); + + deallog << "FE=" << fe.get_name() + << std::endl; + + std::set boundary_ids; + boundary_ids.insert (0); + + ConstraintMatrix cm; + VectorTools::compute_normal_flux_constraints (dof, 0, boundary_ids, cm); + + cm.print (deallog.get_file_stream ()); +} + + + +template +void test_hyper_sphere() +{ + Triangulation tr; + GridGenerator::hyper_ball(tr); + + static const HyperBallBoundary boundary; + tr.set_boundary (0, boundary); + + tr.refine_global(2); + + for (unsigned int degree=1; degree<4; ++degree) + { + FESystem fe (FE_Q(degree), dim); + test(tr, fe); + } +} + + +int main() +{ + std::ofstream logfile ("normal_flux_03/output"); + deallog << std::setprecision (2); + + deallog.attach(logfile); + deallog.depth_console (0); + deallog.threshold_double(1.e-12); + + test_hyper_sphere<2>(); + test_hyper_sphere<3>(); +} diff --git a/tests/deal.II/normal_flux_03/cmp/generic b/tests/deal.II/normal_flux_03/cmp/generic new file mode 100644 index 0000000000..355823b0e8 --- /dev/null +++ b/tests/deal.II/normal_flux_03/cmp/generic @@ -0,0 +1,2384 @@ + +DEAL::FE=FESystem<2>[FE_Q<2>(1)^2] + 0 1: 1.00000 + 2 3: 0.414214 + 8 = 0 + 18 19: -0.414214 + 22 23: -1.00000 + 51 50: 0.414214 + 57 = 0 + 71 70: -0.414214 + 76 77: -1.00000 + 123 122: -0.414214 + 127 = 0 + 135 134: 0.414214 + 154 155: -0.414214 + 160 = 0 + 170 171: 0.414214 +DEAL::FE=FESystem<2>[FE_Q<2>(2)^2] + 0 1: 1.00000 + 2 3: 0.414214 + 18 = 0 + 50 51: -0.414214 + 62 63: -1.00000 + 163 162: 0.414214 + 183 = 0 + 235 234: -0.414214 + 254 255: -1.00000 + 435 434: -0.414214 + 447 = 0 + 475 474: 0.414214 + 486 487: 1.00000 + 562 563: -0.414214 + 582 = 0 + 626 627: 0.414214 +DEAL::FE=FESystem<2>[FE_Q<2>(3)^2] + 0 1: 1.00000 + 2 3: 0.414214 + 16 18: 0.768531 + 32 = 0 + 40 42: 0.268761 + 98 99: -0.414214 + 106 108: -0.130882 + 122 123: -1.00000 + 130 132: -0.576341 + 339 338: 0.414214 + 344 342: 0.768531 + 381 = 0 + 386 384: 0.268761 + 495 494: -0.414214 + 500 498: -0.130882 + 536 537: -1.00000 + 542 540: -0.576341 + 939 938: -0.414214 + 948 946: -0.768531 + 963 = 0 + 972 970: -0.268761 + 1023 1022: 0.414214 + 1032 1030: 0.130882 + 1046 1047: 1.00000 + 1056 1054: 0.576341 + 1226 1227: -0.414214 + 1230 1232: -0.768531 + 1268 = 0 + 1272 1274: -0.268761 + 1370 1371: 0.414214 + 1374 1376: 0.130882 + 1412 1414: 0.576341 +DEAL::FE=FESystem<3>[FE_Q<3>(1)^3] + 375 377: 1.00000 + 376 377: 1.00000 + 378 380: 0.449490 + 379 380: 1.00000 + 381 383: 1.00000 + 382 383: 0.449490 + 384 386: 0.427330 + 385 386: 0.427330 + 399 = 0 + 400 401: 1.00000 + 402 = 0 + 403 404: 0.414214 + 411 413: 1.00000 + 412 = 0 + 414 416: 0.414214 + 415 = 0 + 423 = 0 + 424 = 0 + 456 458: -0.449490 + 457 458: 1.00000 + 459 461: -0.427330 + 460 461: 0.427330 + 468 470: -1.00000 + 469 470: 1.00000 + 471 473: -1.00000 + 472 473: 0.449490 + 480 482: -0.414214 + 481 = 0 + 486 488: -1.00000 + 487 = 0 + 510 512: 1.00000 + 511 512: -0.449490 + 513 515: 0.427330 + 514 515: -0.427330 + 522 = 0 + 523 524: -0.414214 + 528 530: 1.00000 + 529 530: -1.00000 + 531 533: 0.449490 + 532 533: -1.00000 + 540 = 0 + 541 542: -1.00000 + 564 566: -0.427330 + 565 566: -0.427330 + 570 572: -1.00000 + 571 572: -0.449490 + 576 578: -0.449490 + 577 578: -1.00000 + 582 584: -1.00000 + 583 584: -1.00000 + 675 676: -1.00000 + 677 676: 0.449490 + 679 678: -0.427330 + 680 678: -0.427330 + 688 = 0 + 689 687: -0.414214 + 702 703: -1.00000 + 704 = 0 + 706 705: -0.414214 + 707 = 0 + 715 = 0 + 716 = 0 + 730 729: 0.427330 + 731 729: -0.427330 + 735 736: 1.00000 + 737 736: -0.449490 + 748 747: 0.414214 + 749 = 0 + 753 754: 1.00000 + 755 = 0 + 795 796: -1.00000 + 797 796: -0.449490 + 799 798: -0.427330 + 800 798: 0.427330 + 808 = 0 + 809 807: 0.414214 + 822 824: 1.00000 + 823 824: -1.00000 + 825 827: 1.00000 + 826 827: -0.449490 + 834 836: 1.00000 + 835 = 0 + 850 849: 0.427330 + 851 849: 0.427330 + 855 856: 1.00000 + 857 856: 0.449490 + 867 869: 1.00000 + 868 869: 0.449490 + 915 917: -1.00000 + 916 917: -1.00000 + 918 920: -0.449490 + 919 920: -1.00000 + 927 929: -1.00000 + 928 929: -0.449490 + 930 932: -0.427330 + 931 932: -0.427330 + 939 = 0 + 940 941: -1.00000 + 945 = 0 + 946 947: -0.414214 + 969 971: -1.00000 + 970 = 0 + 972 974: -0.414214 + 973 = 0 + 981 = 0 + 982 = 0 + 996 998: 0.449490 + 997 998: -1.00000 + 1002 1004: 0.427330 + 1003 1004: -0.427330 + 1014 1016: 0.414214 + 1015 = 0 + 1059 1061: -1.00000 + 1060 1061: 0.449490 + 1062 1064: -0.427330 + 1063 1064: 0.427330 + 1071 = 0 + 1072 1073: 0.414214 + 1086 1088: -1.00000 + 1087 1088: 1.00000 + 1089 1091: -0.449490 + 1090 1091: 1.00000 + 1098 = 0 + 1099 1100: 1.00000 + 1113 1115: 0.427330 + 1114 1115: 0.427330 + 1122 1124: 0.449490 + 1123 1124: 1.00000 + 1155 1156: 1.00000 + 1157 1156: 0.449490 + 1162 1161: 0.427330 + 1163 1161: 0.427330 + 1174 = 0 + 1175 1173: 0.414214 + 1182 1183: 1.00000 + 1184 = 0 + 1189 1188: 0.414214 + 1190 = 0 + 1201 = 0 + 1202 = 0 + 1228 1227: -0.427330 + 1229 1227: 0.427330 + 1236 1237: -1.00000 + 1238 1237: -0.449490 + 1246 1245: -0.414214 + 1247 = 0 + 1254 1255: -1.00000 + 1256 = 0 + 1275 1276: 1.00000 + 1277 1276: -0.449490 + 1282 1281: 0.427330 + 1283 1281: -0.427330 + 1294 = 0 + 1295 1293: -0.414214 + 1312 1311: -0.427330 + 1313 1311: -0.427330 + 1320 1321: -1.00000 + 1322 1321: 0.449490 + 1335 1336: 0.427330 + 1337 1336: 0.427330 + 1341 = 0 + 1343 1342: 0.414214 + 1353 1354: 0.414214 + 1355 = 0 + 1359 = 0 + 1361 = 0 + 1371 1372: -0.427330 + 1373 1372: 0.427330 + 1380 1381: -0.414214 + 1382 = 0 + 1407 1408: 0.427330 + 1409 1408: -0.427330 + 1413 = 0 + 1415 1414: -0.414214 + 1425 1426: -0.427330 + 1427 1426: -0.427330 + 1443 1444: -0.427330 + 1445 1444: -0.427330 + 1452 = 0 + 1454 1453: -0.414214 + 1461 1462: -0.414214 + 1463 = 0 + 1470 = 0 + 1472 = 0 + 1491 1492: 0.427330 + 1493 1492: -0.427330 + 1500 1501: 0.414214 + 1502 = 0 + 1515 1516: -0.427330 + 1517 1516: 0.427330 + 1524 = 0 + 1526 1525: 0.414214 + 1539 1540: 0.427330 + 1541 1540: 0.427330 +DEAL::FE=FESystem<3>[FE_Q<3>(2)^3] + 2187 2189: 1.00000 + 2188 2189: 1.00000 + 2190 2192: 0.449490 + 2191 2192: 1.00000 + 2193 2195: 1.00000 + 2194 2195: 0.449490 + 2196 2198: 0.427330 + 2197 2198: 0.427330 + 2211 2213: 1.00000 + 2212 2213: 0.703508 + 2214 2216: 0.437092 + 2215 2216: 0.679605 + 2217 2219: 0.703508 + 2218 2219: 1.00000 + 2220 2222: 0.679605 + 2221 2222: 0.437092 + 2268 = 0 + 2269 2270: 1.00000 + 2271 = 0 + 2272 2273: 0.414214 + 2280 = 0 + 2281 2282: 0.668179 + 2283 2285: 0.219339 + 2284 2285: 1.00000 + 2286 2288: 0.205498 + 2287 2288: 0.420521 + 2322 2324: 1.00000 + 2323 = 0 + 2325 2327: 0.414214 + 2326 = 0 + 2334 2336: 1.00000 + 2335 2336: 0.219339 + 2337 2339: 0.420521 + 2338 2339: 0.205498 + 2340 2342: 0.668179 + 2341 = 0 + 2376 = 0 + 2377 = 0 + 2382 = 0 + 2383 2384: 0.198912 + 2385 2387: 0.198912 + 2386 = 0 + 2562 2564: -0.449490 + 2563 2564: 1.00000 + 2565 2567: -0.427330 + 2566 2567: 0.427330 + 2574 2576: -0.437092 + 2575 2576: 0.679605 + 2577 2579: -0.219339 + 2578 2579: 1.00000 + 2580 2582: -0.205498 + 2581 2582: 0.420521 + 2616 2618: -1.00000 + 2617 2618: 1.00000 + 2619 2621: -1.00000 + 2620 2621: 0.449490 + 2628 2630: -1.00000 + 2629 2630: 0.703508 + 2631 2633: -0.703508 + 2632 2633: 1.00000 + 2634 2636: -0.679605 + 2635 2636: 0.437092 + 2670 2672: -0.414214 + 2671 = 0 + 2676 2678: -0.420521 + 2677 2678: 0.205498 + 2679 2681: -0.198912 + 2680 = 0 + 2706 2708: -1.00000 + 2707 = 0 + 2712 2714: -1.00000 + 2713 2714: 0.219339 + 2715 2717: -0.668179 + 2716 = 0 + 2862 2864: 1.00000 + 2863 2864: -0.449490 + 2865 2867: 0.427330 + 2866 2867: -0.427330 + 2874 2876: 1.00000 + 2875 2876: -0.219339 + 2877 2879: 0.420521 + 2878 2879: -0.205498 + 2880 2882: 0.679605 + 2881 2882: -0.437092 + 2916 = 0 + 2917 2918: -0.414214 + 2922 = 0 + 2923 2924: -0.198912 + 2925 2927: 0.205498 + 2926 2927: -0.420521 + 2952 2954: 1.00000 + 2953 2954: -1.00000 + 2955 2957: 0.449490 + 2956 2957: -1.00000 + 2964 2966: 1.00000 + 2965 2966: -0.703508 + 2967 2969: 0.437092 + 2968 2969: -0.679605 + 2970 2972: 0.703508 + 2971 2972: -1.00000 + 3006 = 0 + 3007 3008: -1.00000 + 3012 = 0 + 3013 3014: -0.668179 + 3015 3017: 0.219339 + 3016 3017: -1.00000 + 3162 3164: -0.427330 + 3163 3164: -0.427330 + 3168 3170: -0.420521 + 3169 3170: -0.205498 + 3171 3173: -0.205498 + 3172 3173: -0.420521 + 3198 3200: -1.00000 + 3199 3200: -0.449490 + 3204 3206: -1.00000 + 3205 3206: -0.219339 + 3207 3209: -0.679605 + 3208 3209: -0.437092 + 3234 3236: -0.449490 + 3235 3236: -1.00000 + 3240 3242: -0.437092 + 3241 3242: -0.679605 + 3243 3245: -0.219339 + 3244 3245: -1.00000 + 3270 3272: -1.00000 + 3271 3272: -1.00000 + 3276 3278: -1.00000 + 3277 3278: -0.703508 + 3279 3281: -0.703508 + 3280 3281: -1.00000 + 4131 4132: -1.00000 + 4133 4132: 0.449490 + 4135 4134: -0.427330 + 4136 4134: -0.427330 + 4150 4149: -0.679605 + 4151 4149: -0.437092 + 4155 4156: -1.00000 + 4157 4156: 0.703508 + 4159 4158: -0.437092 + 4160 4158: -0.679605 + 4186 = 0 + 4187 4185: -0.414214 + 4195 4194: -0.205498 + 4196 4194: -0.420521 + 4201 = 0 + 4202 4200: -0.668179 + 4281 4282: -1.00000 + 4283 = 0 + 4285 4284: -0.414214 + 4286 = 0 + 4300 4299: -0.668179 + 4301 = 0 + 4305 4306: -1.00000 + 4307 4306: 0.219339 + 4309 4308: -0.420521 + 4310 4308: -0.205498 + 4336 = 0 + 4337 = 0 + 4345 4344: -0.198912 + 4346 = 0 + 4351 = 0 + 4352 4350: -0.198912 + 4432 4431: 0.427330 + 4433 4431: -0.427330 + 4441 4440: 0.205498 + 4442 4440: -0.420521 + 4447 4446: 0.437092 + 4448 4446: -0.679605 + 4467 4468: 1.00000 + 4469 4468: -0.449490 + 4477 4476: 0.679605 + 4478 4476: -0.437092 + 4482 4483: 1.00000 + 4484 4483: -0.703508 + 4552 4551: 0.414214 + 4553 = 0 + 4561 4560: 0.198912 + 4562 = 0 + 4567 4566: 0.420521 + 4568 4566: -0.205498 + 4587 4588: 1.00000 + 4589 = 0 + 4597 4596: 0.668179 + 4598 = 0 + 4602 4603: 1.00000 + 4604 4603: -0.219339 + 4995 4996: -1.00000 + 4997 4996: -0.449490 + 4999 4998: -0.427330 + 5000 4998: 0.427330 + 5014 5013: -0.679605 + 5015 5013: 0.437092 + 5019 5020: -1.00000 + 5021 5020: -0.219339 + 5023 5022: -0.420521 + 5024 5022: 0.205498 + 5050 = 0 + 5051 5049: 0.414214 + 5059 5058: -0.205498 + 5060 5058: 0.420521 + 5065 = 0 + 5066 5064: 0.198912 + 5145 5147: 1.00000 + 5146 5147: -1.00000 + 5148 5150: 1.00000 + 5149 5150: -0.449490 + 5163 5165: 1.00000 + 5164 5165: -0.703508 + 5169 5170: -1.00000 + 5171 5170: -0.703508 + 5173 5172: -0.437092 + 5174 5172: 0.679605 + 5199 5201: 1.00000 + 5200 = 0 + 5208 5210: 1.00000 + 5209 5210: -0.219339 + 5215 = 0 + 5216 5214: 0.668179 + 5296 5295: 0.427330 + 5297 5295: 0.427330 + 5305 5304: 0.205498 + 5306 5304: 0.420521 + 5311 5310: 0.420521 + 5312 5310: 0.205498 + 5331 5332: 1.00000 + 5333 5332: 0.449490 + 5341 5340: 0.679605 + 5342 5340: 0.437092 + 5346 5347: 1.00000 + 5348 5347: 0.219339 + 5415 5417: 1.00000 + 5416 5417: 0.449490 + 5424 5426: 1.00000 + 5425 5426: 0.219339 + 5431 5430: 0.437092 + 5432 5430: 0.679605 + 5451 5453: 1.00000 + 5452 5453: 1.00000 + 5460 5462: 1.00000 + 5461 5462: 0.703508 + 5466 5467: 1.00000 + 5468 5467: 0.703508 + 5859 5861: -1.00000 + 5860 5861: -1.00000 + 5862 5864: -0.449490 + 5863 5864: -1.00000 + 5871 5873: -1.00000 + 5872 5873: -0.449490 + 5874 5876: -0.427330 + 5875 5876: -0.427330 + 5889 5891: -0.703508 + 5890 5891: -1.00000 + 5901 5903: -0.679605 + 5902 5903: -0.437092 + 5907 5909: -1.00000 + 5908 5909: -0.703508 + 5910 5912: -0.437092 + 5911 5912: -0.679605 + 5940 = 0 + 5941 5942: -1.00000 + 5946 = 0 + 5947 5948: -0.414214 + 5955 5957: -0.219339 + 5956 5957: -1.00000 + 5964 5966: -0.205498 + 5965 5966: -0.420521 + 5970 = 0 + 5971 5972: -0.668179 + 6084 6086: -1.00000 + 6085 = 0 + 6087 6089: -0.414214 + 6088 = 0 + 6102 6104: -0.668179 + 6103 = 0 + 6108 6110: -1.00000 + 6109 6110: -0.219339 + 6111 6113: -0.420521 + 6112 6113: -0.205498 + 6138 = 0 + 6139 = 0 + 6147 6149: -0.198912 + 6148 = 0 + 6153 = 0 + 6154 6155: -0.198912 + 6234 6236: 0.449490 + 6235 6236: -1.00000 + 6240 6242: 0.427330 + 6241 6242: -0.427330 + 6249 6251: 0.219339 + 6250 6251: -1.00000 + 6258 6260: 0.205498 + 6259 6260: -0.420521 + 6264 6266: 0.437092 + 6265 6266: -0.679605 + 6288 6290: 0.703508 + 6289 6290: -1.00000 + 6294 6296: 0.679605 + 6295 6296: -0.437092 + 6369 6371: 0.414214 + 6370 = 0 + 6378 6380: 0.198912 + 6379 = 0 + 6384 6386: 0.420521 + 6385 6386: -0.205498 + 6405 6407: 0.668179 + 6406 = 0 + 6819 6821: -1.00000 + 6820 6821: 0.449490 + 6822 6824: -0.427330 + 6823 6824: 0.427330 + 6837 6839: -0.679605 + 6838 6839: 0.437092 + 6843 6845: -1.00000 + 6844 6845: 0.219339 + 6846 6848: -0.420521 + 6847 6848: 0.205498 + 6873 = 0 + 6874 6875: 0.414214 + 6882 6884: -0.205498 + 6883 6884: 0.420521 + 6888 = 0 + 6889 6890: 0.198912 + 6969 6971: -1.00000 + 6970 6971: 1.00000 + 6972 6974: -0.449490 + 6973 6974: 1.00000 + 6987 6989: -0.703508 + 6988 6989: 1.00000 + 6993 6995: -1.00000 + 6994 6995: 0.703508 + 6996 6998: -0.437092 + 6997 6998: 0.679605 + 7023 = 0 + 7024 7025: 1.00000 + 7032 7034: -0.219339 + 7033 7034: 1.00000 + 7038 = 0 + 7039 7040: 0.668179 + 7119 7121: 0.427330 + 7120 7121: 0.427330 + 7128 7130: 0.205498 + 7129 7130: 0.420521 + 7134 7136: 0.420521 + 7135 7136: 0.205498 + 7155 7157: 0.679605 + 7156 7157: 0.437092 + 7209 7211: 0.449490 + 7210 7211: 1.00000 + 7218 7220: 0.219339 + 7219 7220: 1.00000 + 7224 7226: 0.437092 + 7225 7226: 0.679605 + 7245 7247: 0.703508 + 7246 7247: 1.00000 + 7587 7588: 1.00000 + 7589 7588: 0.449490 + 7594 7593: 0.427330 + 7595 7593: 0.427330 + 7600 7599: 0.679605 + 7601 7599: 0.437092 + 7611 7612: 1.00000 + 7613 7612: 0.703508 + 7618 7617: 0.437092 + 7619 7617: 0.679605 + 7678 = 0 + 7679 7677: 0.414214 + 7684 7683: 0.205498 + 7685 7683: 0.420521 + 7693 = 0 + 7694 7692: 0.668179 + 7737 7738: 1.00000 + 7739 = 0 + 7744 7743: 0.414214 + 7745 = 0 + 7750 7749: 0.668179 + 7751 = 0 + 7761 7762: 1.00000 + 7763 7762: 0.219339 + 7768 7767: 0.420521 + 7769 7767: 0.205498 + 7828 = 0 + 7829 = 0 + 7834 7833: 0.198912 + 7835 = 0 + 7843 = 0 + 7844 7842: 0.198912 + 8068 8067: -0.427330 + 8069 8067: 0.427330 + 8074 8073: -0.205498 + 8075 8073: 0.420521 + 8083 8082: -0.437092 + 8084 8082: 0.679605 + 8127 8128: -1.00000 + 8129 8128: -0.449490 + 8134 8133: -0.679605 + 8135 8133: 0.437092 + 8142 8143: -1.00000 + 8144 8143: -0.703508 + 8188 8187: -0.414214 + 8189 = 0 + 8194 8193: -0.198912 + 8195 = 0 + 8203 8202: -0.420521 + 8204 8202: 0.205498 + 8247 8248: -1.00000 + 8249 = 0 + 8254 8253: -0.668179 + 8255 = 0 + 8262 8263: -1.00000 + 8264 8263: -0.219339 + 8451 8452: 1.00000 + 8453 8452: -0.449490 + 8458 8457: 0.427330 + 8459 8457: -0.427330 + 8464 8463: 0.679605 + 8465 8463: -0.437092 + 8475 8476: 1.00000 + 8477 8476: -0.219339 + 8482 8481: 0.420521 + 8483 8481: -0.205498 + 8542 = 0 + 8543 8541: -0.414214 + 8548 8547: 0.205498 + 8549 8547: -0.420521 + 8557 = 0 + 8558 8556: -0.198912 + 8601 8602: 1.00000 + 8603 8602: -0.703508 + 8608 8607: 0.437092 + 8609 8607: -0.679605 + 8647 = 0 + 8648 8646: -0.668179 + 8812 8811: -0.427330 + 8813 8811: -0.427330 + 8818 8817: -0.205498 + 8819 8817: -0.420521 + 8827 8826: -0.420521 + 8828 8826: -0.205498 + 8871 8872: -1.00000 + 8873 8872: 0.449490 + 8878 8877: -0.679605 + 8879 8877: -0.437092 + 8886 8887: -1.00000 + 8888 8887: 0.219339 + 8932 8931: -0.437092 + 8933 8931: -0.679605 + 8961 8962: -1.00000 + 8963 8962: 0.703508 + 9099 9100: 0.427330 + 9101 9100: 0.427330 + 9108 9109: 0.679605 + 9110 9109: 0.437092 + 9114 9115: 0.437092 + 9116 9115: 0.679605 + 9135 = 0 + 9137 9136: 0.414214 + 9144 9145: 0.205498 + 9146 9145: 0.420521 + 9150 = 0 + 9152 9151: 0.668179 + 9219 9220: 0.414214 + 9221 = 0 + 9228 9229: 0.668179 + 9230 = 0 + 9234 9235: 0.420521 + 9236 9235: 0.205498 + 9255 = 0 + 9257 = 0 + 9264 9265: 0.198912 + 9266 = 0 + 9270 = 0 + 9272 9271: 0.198912 + 9339 9340: -0.427330 + 9341 9340: 0.427330 + 9348 9349: -0.205498 + 9350 9349: 0.420521 + 9354 9355: -0.437092 + 9356 9355: 0.679605 + 9375 9376: -0.679605 + 9377 9376: 0.437092 + 9429 9430: -0.414214 + 9431 = 0 + 9438 9439: -0.198912 + 9440 = 0 + 9444 9445: -0.420521 + 9446 9445: 0.205498 + 9465 9466: -0.668179 + 9467 = 0 + 9771 9772: 0.427330 + 9773 9772: -0.427330 + 9780 9781: 0.679605 + 9782 9781: -0.437092 + 9786 9787: 0.420521 + 9788 9787: -0.205498 + 9807 = 0 + 9809 9808: -0.414214 + 9816 9817: 0.205498 + 9818 9817: -0.420521 + 9822 = 0 + 9824 9823: -0.198912 + 9891 9892: 0.437092 + 9893 9892: -0.679605 + 9909 = 0 + 9911 9910: -0.668179 + 9951 9952: -0.427330 + 9953 9952: -0.427330 + 9960 9961: -0.205498 + 9962 9961: -0.420521 + 9966 9967: -0.420521 + 9968 9967: -0.205498 + 9987 9988: -0.679605 + 9989 9988: -0.437092 + 10041 10042: -0.437092 + 10043 10042: -0.679605 + 10275 10276: -0.427330 + 10277 10276: -0.427330 + 10281 10282: -0.679605 + 10283 10282: -0.437092 + 10290 10291: -0.437092 + 10292 10291: -0.679605 + 10335 = 0 + 10337 10336: -0.414214 + 10341 10342: -0.205498 + 10343 10342: -0.420521 + 10350 = 0 + 10352 10351: -0.668179 + 10395 10396: -0.414214 + 10397 = 0 + 10401 10402: -0.668179 + 10403 = 0 + 10410 10411: -0.420521 + 10412 10411: -0.205498 + 10455 = 0 + 10457 = 0 + 10461 10462: -0.198912 + 10463 = 0 + 10470 = 0 + 10472 10471: -0.198912 + 10659 10660: 0.427330 + 10661 10660: -0.427330 + 10665 10666: 0.205498 + 10667 10666: -0.420521 + 10674 10675: 0.437092 + 10676 10675: -0.679605 + 10719 10720: 0.679605 + 10721 10720: -0.437092 + 10749 10750: 0.414214 + 10751 = 0 + 10755 10756: 0.198912 + 10757 = 0 + 10764 10765: 0.420521 + 10766 10765: -0.205498 + 10809 10810: 0.668179 + 10811 = 0 + 10947 10948: -0.427330 + 10949 10948: 0.427330 + 10953 10954: -0.679605 + 10955 10954: 0.437092 + 10962 10963: -0.420521 + 10964 10963: 0.205498 + 11007 = 0 + 11009 11008: 0.414214 + 11013 11014: -0.205498 + 11015 11014: 0.420521 + 11022 = 0 + 11024 11023: 0.198912 + 11067 11068: -0.437092 + 11069 11068: 0.679605 + 11097 = 0 + 11099 11098: 0.668179 + 11235 11236: 0.427330 + 11237 11236: 0.427330 + 11241 11242: 0.205498 + 11243 11242: 0.420521 + 11250 11251: 0.420521 + 11252 11251: 0.205498 + 11295 11296: 0.679605 + 11297 11296: 0.437092 + 11325 11326: 0.437092 + 11327 11326: 0.679605 +DEAL::FE=FESystem<3>[FE_Q<3>(3)^3] + 6591 6593: 1.00000 + 6592 6593: 1.00000 + 6594 6596: 0.449490 + 6595 6596: 1.00000 + 6597 6599: 1.00000 + 6598 6599: 0.449490 + 6600 6602: 0.427330 + 6601 6602: 0.427330 + 6615 6619: 1.00000 + 6617 6619: 0.797121 + 6616 6620: 1.00000 + 6618 6620: 0.614589 + 6621 6625: 0.440883 + 6623 6625: 0.777585 + 6622 6626: 0.433590 + 6624 6626: 0.589099 + 6627 6631: 0.797121 + 6629 6631: 1.00000 + 6628 6632: 0.614589 + 6630 6632: 1.00000 + 6633 6637: 0.777585 + 6635 6637: 0.440883 + 6634 6638: 0.589099 + 6636 6638: 0.433590 + 6735 6743: 0.789776 + 6739 6743: 0.789776 + 6736 6744: 0.604838 + 6740 6744: 0.783313 + 6737 6745: 0.783313 + 6741 6745: 0.604838 + 6783 = 0 + 6784 6785: 1.00000 + 6786 = 0 + 6787 6788: 0.414214 + 6795 = 0 + 6797 6799: 0.768531 + 6796 = 0 + 6798 6800: 0.576341 + 6801 6805: 0.294815 + 6803 6805: 1.00000 + 6802 6806: 0.145063 + 6804 6806: 1.00000 + 6807 6811: 0.277533 + 6809 6811: 0.422732 + 6808 6812: 0.135275 + 6810 6812: 0.418366 + 6879 6887: 0.288063 + 6883 6887: 0.774446 + 6880 6888: 0.141216 + 6884 6888: 0.771431 + 6881 6889: 0.282381 + 6885 6889: 0.584650 + 6927 6929: 1.00000 + 6928 = 0 + 6930 6932: 0.414214 + 6931 = 0 + 6939 6943: 1.00000 + 6941 6943: 0.294815 + 6940 6944: 1.00000 + 6942 6944: 0.145063 + 6945 6949: 0.422732 + 6947 6949: 0.277533 + 6946 6950: 0.418366 + 6948 6950: 0.135275 + 6951 6955: 0.768531 + 6953 = 0 + 6952 6956: 0.576341 + 6954 = 0 + 7023 7031: 0.774446 + 7027 7031: 0.288063 + 7024 7032: 0.584650 + 7028 7032: 0.282381 + 7025 7033: 0.771431 + 7029 7033: 0.141216 + 7071 = 0 + 7072 = 0 + 7077 = 0 + 7079 7081: 0.268761 + 7078 = 0 + 7080 7082: 0.130882 + 7083 7087: 0.268761 + 7085 = 0 + 7084 7088: 0.130882 + 7086 = 0 + 7131 7139: 0.274456 + 7135 7139: 0.274456 + 7132 7140: 0.133733 + 7136 7140: 0.271536 + 7133 7141: 0.271536 + 7137 7141: 0.133733 + 7620 7622: -0.449490 + 7621 7622: 1.00000 + 7623 7625: -0.427330 + 7624 7625: 0.427330 + 7632 7636: -0.440883 + 7634 7636: 0.777585 + 7633 7637: -0.433590 + 7635 7637: 0.589099 + 7638 7642: -0.145063 + 7640 7642: 1.00000 + 7639 7643: -0.294815 + 7641 7643: 1.00000 + 7644 7648: -0.135275 + 7646 7648: 0.418366 + 7645 7649: -0.277533 + 7647 7649: 0.422732 + 7716 7724: -0.141216 + 7720 7724: 0.771431 + 7717 7725: -0.288063 + 7721 7725: 0.774446 + 7718 7726: -0.138002 + 7722 7726: 0.580402 + 7764 7766: -1.00000 + 7765 7766: 1.00000 + 7767 7769: -1.00000 + 7768 7769: 0.449490 + 7776 7780: -1.00000 + 7778 7780: 0.797121 + 7777 7781: -1.00000 + 7779 7781: 0.614589 + 7782 7786: -0.614589 + 7784 7786: 1.00000 + 7783 7787: -0.797121 + 7785 7787: 1.00000 + 7788 7792: -0.589099 + 7790 7792: 0.433590 + 7789 7793: -0.777585 + 7791 7793: 0.440883 + 7860 7868: -0.604838 + 7864 7868: 0.783313 + 7861 7869: -0.789776 + 7865 7869: 0.789776 + 7862 7870: -0.596427 + 7866 7870: 0.596427 + 7908 7910: -0.414214 + 7909 = 0 + 7914 7918: -0.422732 + 7916 7918: 0.277533 + 7915 7919: -0.418366 + 7917 7919: 0.135275 + 7920 7924: -0.130882 + 7922 = 0 + 7921 7925: -0.268761 + 7923 = 0 + 7968 7976: -0.133733 + 7972 7976: 0.271536 + 7969 7977: -0.274456 + 7973 7977: 0.274456 + 7970 7978: -0.132271 + 7974 7978: 0.132271 + 8016 8018: -1.00000 + 8017 = 0 + 8022 8026: -1.00000 + 8024 8026: 0.294815 + 8023 8027: -1.00000 + 8025 8027: 0.145063 + 8028 8032: -0.576341 + 8030 = 0 + 8029 8033: -0.768531 + 8031 = 0 + 8076 8084: -0.584650 + 8080 8084: 0.282381 + 8077 8085: -0.774446 + 8081 8085: 0.288063 + 8078 8086: -0.580402 + 8082 8086: 0.138002 + 8502 8504: 1.00000 + 8503 8504: -0.449490 + 8505 8507: 0.427330 + 8506 8507: -0.427330 + 8514 8518: 1.00000 + 8516 8518: -0.145063 + 8515 8519: 1.00000 + 8517 8519: -0.294815 + 8520 8524: 0.418366 + 8522 8524: -0.135275 + 8521 8525: 0.422732 + 8523 8525: -0.277533 + 8526 8530: 0.777585 + 8528 8530: -0.440883 + 8527 8531: 0.589099 + 8529 8531: -0.433590 + 8598 8606: 0.771431 + 8602 8606: -0.141216 + 8599 8607: 0.580402 + 8603 8607: -0.138002 + 8600 8608: 0.774446 + 8604 8608: -0.288063 + 8646 = 0 + 8647 8648: -0.414214 + 8652 = 0 + 8654 8656: -0.130882 + 8653 = 0 + 8655 8657: -0.268761 + 8658 8662: 0.277533 + 8660 8662: -0.422732 + 8659 8663: 0.135275 + 8661 8663: -0.418366 + 8706 8714: 0.271536 + 8710 8714: -0.133733 + 8707 8715: 0.132271 + 8711 8715: -0.132271 + 8708 8716: 0.274456 + 8712 8716: -0.274456 + 8754 8756: 1.00000 + 8755 8756: -1.00000 + 8757 8759: 0.449490 + 8758 8759: -1.00000 + 8766 8770: 1.00000 + 8768 8770: -0.614589 + 8767 8771: 1.00000 + 8769 8771: -0.797121 + 8772 8776: 0.433590 + 8774 8776: -0.589099 + 8773 8777: 0.440883 + 8775 8777: -0.777585 + 8778 8782: 0.797121 + 8780 8782: -1.00000 + 8779 8783: 0.614589 + 8781 8783: -1.00000 + 8850 8858: 0.783313 + 8854 8858: -0.604838 + 8851 8859: 0.596427 + 8855 8859: -0.596427 + 8852 8860: 0.789776 + 8856 8860: -0.789776 + 8898 = 0 + 8899 8900: -1.00000 + 8904 = 0 + 8906 8908: -0.576341 + 8905 = 0 + 8907 8909: -0.768531 + 8910 8914: 0.294815 + 8912 8914: -1.00000 + 8911 8915: 0.145063 + 8913 8915: -1.00000 + 8958 8966: 0.282381 + 8962 8966: -0.584650 + 8959 8967: 0.138002 + 8963 8967: -0.580402 + 8960 8968: 0.288063 + 8964 8968: -0.774446 + 9384 9386: -0.427330 + 9385 9386: -0.427330 + 9390 9394: -0.418366 + 9392 9394: -0.135275 + 9391 9395: -0.422732 + 9393 9395: -0.277533 + 9396 9400: -0.135275 + 9398 9400: -0.418366 + 9397 9401: -0.277533 + 9399 9401: -0.422732 + 9444 9452: -0.132271 + 9448 9452: -0.132271 + 9445 9453: -0.271536 + 9449 9453: -0.133733 + 9446 9454: -0.133733 + 9450 9454: -0.271536 + 9492 9494: -1.00000 + 9493 9494: -0.449490 + 9498 9502: -1.00000 + 9500 9502: -0.145063 + 9499 9503: -1.00000 + 9501 9503: -0.294815 + 9504 9508: -0.589099 + 9506 9508: -0.433590 + 9505 9509: -0.777585 + 9507 9509: -0.440883 + 9552 9560: -0.580402 + 9556 9560: -0.138002 + 9553 9561: -0.771431 + 9557 9561: -0.141216 + 9554 9562: -0.584650 + 9558 9562: -0.282381 + 9600 9602: -0.449490 + 9601 9602: -1.00000 + 9606 9610: -0.433590 + 9608 9610: -0.589099 + 9607 9611: -0.440883 + 9609 9611: -0.777585 + 9612 9616: -0.145063 + 9614 9616: -1.00000 + 9613 9617: -0.294815 + 9615 9617: -1.00000 + 9660 9668: -0.138002 + 9664 9668: -0.580402 + 9661 9669: -0.282381 + 9665 9669: -0.584650 + 9662 9670: -0.141216 + 9666 9670: -0.771431 + 9708 9710: -1.00000 + 9709 9710: -1.00000 + 9714 9718: -1.00000 + 9716 9718: -0.614589 + 9715 9719: -1.00000 + 9717 9719: -0.797121 + 9720 9724: -0.614589 + 9722 9724: -1.00000 + 9721 9725: -0.797121 + 9723 9725: -1.00000 + 9768 9776: -0.596427 + 9772 9776: -0.596427 + 9769 9777: -0.783313 + 9773 9777: -0.604838 + 9770 9778: -0.604838 + 9774 9778: -0.783313 + 12675 12676: -1.00000 + 12677 12676: 0.449490 + 12679 12678: -0.427330 + 12680 12678: -0.427330 + 12701 12699: -0.777585 + 12703 12699: -0.440883 + 12702 12700: -0.589099 + 12704 12700: -0.433590 + 12711 12713: -1.00000 + 12715 12713: 0.797121 + 12712 12714: -1.00000 + 12716 12714: 0.614589 + 12719 12717: -0.440883 + 12721 12717: -0.777585 + 12720 12718: -0.433590 + 12722 12718: -0.589099 + 12763 12759: -0.789776 + 12767 12759: -0.789776 + 12764 12760: -0.783313 + 12768 12760: -0.604838 + 12765 12761: -0.604838 + 12769 12761: -0.783313 + 12820 = 0 + 12821 12819: -0.414214 + 12833 12831: -0.277533 + 12835 12831: -0.422732 + 12834 12832: -0.135275 + 12836 12832: -0.418366 + 12845 = 0 + 12847 12843: -0.768531 + 12846 = 0 + 12848 12844: -0.576341 + 12871 12867: -0.288063 + 12875 12867: -0.774446 + 12872 12868: -0.282381 + 12876 12868: -0.584650 + 12873 12869: -0.141216 + 12877 12869: -0.771431 + 13116 13117: -1.00000 + 13118 = 0 + 13120 13119: -0.414214 + 13121 = 0 + 13142 13140: -0.768531 + 13144 = 0 + 13143 13141: -0.576341 + 13145 = 0 + 13152 13154: -1.00000 + 13156 13154: 0.294815 + 13153 13155: -1.00000 + 13157 13155: 0.145063 + 13160 13158: -0.422732 + 13162 13158: -0.277533 + 13161 13159: -0.418366 + 13163 13159: -0.135275 + 13204 13200: -0.774446 + 13208 13200: -0.288063 + 13205 13201: -0.771431 + 13209 13201: -0.141216 + 13206 13202: -0.584650 + 13210 13202: -0.282381 + 13261 = 0 + 13262 = 0 + 13274 13272: -0.268761 + 13276 = 0 + 13275 13273: -0.130882 + 13277 = 0 + 13286 = 0 + 13288 13284: -0.268761 + 13287 = 0 + 13289 13285: -0.130882 + 13312 13308: -0.274456 + 13316 13308: -0.274456 + 13313 13309: -0.271536 + 13317 13309: -0.133733 + 13314 13310: -0.133733 + 13318 13310: -0.271536 + 13558 13557: 0.427330 + 13559 13557: -0.427330 + 13571 13569: 0.135275 + 13573 13569: -0.418366 + 13572 13570: 0.277533 + 13574 13570: -0.422732 + 13583 13581: 0.440883 + 13585 13581: -0.777585 + 13584 13582: 0.433590 + 13586 13582: -0.589099 + 13609 13605: 0.141216 + 13613 13605: -0.771431 + 13610 13606: 0.138002 + 13614 13606: -0.580402 + 13611 13607: 0.288063 + 13615 13607: -0.774446 + 13665 13666: 1.00000 + 13667 13666: -0.449490 + 13679 13677: 0.589099 + 13681 13677: -0.433590 + 13680 13678: 0.777585 + 13682 13678: -0.440883 + 13689 13691: 1.00000 + 13693 13691: -0.797121 + 13690 13692: 1.00000 + 13694 13692: -0.614589 + 13717 13713: 0.604838 + 13721 13713: -0.783313 + 13718 13714: 0.596427 + 13722 13714: -0.596427 + 13719 13715: 0.789776 + 13723 13715: -0.789776 + 13936 13935: 0.414214 + 13937 = 0 + 13949 13947: 0.130882 + 13951 = 0 + 13950 13948: 0.268761 + 13952 = 0 + 13961 13959: 0.422732 + 13963 13959: -0.277533 + 13962 13960: 0.418366 + 13964 13960: -0.135275 + 13987 13983: 0.133733 + 13991 13983: -0.271536 + 13988 13984: 0.132271 + 13992 13984: -0.132271 + 13989 13985: 0.274456 + 13993 13985: -0.274456 + 14043 14044: 1.00000 + 14045 = 0 + 14057 14055: 0.576341 + 14059 = 0 + 14058 14056: 0.768531 + 14060 = 0 + 14067 14069: 1.00000 + 14071 14069: -0.294815 + 14068 14070: 1.00000 + 14072 14070: -0.145063 + 14095 14091: 0.584650 + 14099 14091: -0.282381 + 14096 14092: 0.580402 + 14100 14092: -0.138002 + 14097 14093: 0.774446 + 14101 14093: -0.288063 + 15483 15484: -1.00000 + 15485 15484: -0.449490 + 15487 15486: -0.427330 + 15488 15486: 0.427330 + 15509 15507: -0.777585 + 15511 15507: 0.440883 + 15510 15508: -0.589099 + 15512 15508: 0.433590 + 15519 15521: -1.00000 + 15523 15521: -0.145063 + 15520 15522: -1.00000 + 15524 15522: -0.294815 + 15527 15525: -0.418366 + 15529 15525: 0.135275 + 15528 15526: -0.422732 + 15530 15526: 0.277533 + 15571 15567: -0.771431 + 15575 15567: 0.141216 + 15572 15568: -0.774446 + 15576 15568: 0.288063 + 15573 15569: -0.580402 + 15577 15569: 0.138002 + 15628 = 0 + 15629 15627: 0.414214 + 15641 15639: -0.277533 + 15643 15639: 0.422732 + 15642 15640: -0.135275 + 15644 15640: 0.418366 + 15653 = 0 + 15655 15651: 0.130882 + 15654 = 0 + 15656 15652: 0.268761 + 15679 15675: -0.271536 + 15683 15675: 0.133733 + 15680 15676: -0.274456 + 15684 15676: 0.274456 + 15681 15677: -0.132271 + 15685 15677: 0.132271 + 15924 15926: 1.00000 + 15925 15926: -1.00000 + 15927 15929: 1.00000 + 15928 15929: -0.449490 + 15948 15952: 1.00000 + 15950 15952: -0.797121 + 15949 15953: 1.00000 + 15951 15953: -0.614589 + 15960 15962: -1.00000 + 15964 15962: -0.614589 + 15961 15963: -1.00000 + 15965 15963: -0.797121 + 15968 15966: -0.433590 + 15970 15966: 0.589099 + 15969 15967: -0.440883 + 15971 15967: 0.777585 + 16012 16008: -0.783313 + 16016 16008: 0.604838 + 16013 16009: -0.789776 + 16017 16009: 0.789776 + 16014 16010: -0.596427 + 16018 16010: 0.596427 + 16068 16070: 1.00000 + 16069 = 0 + 16080 16084: 1.00000 + 16082 16084: -0.294815 + 16081 16085: 1.00000 + 16083 16085: -0.145063 + 16094 = 0 + 16096 16092: 0.576341 + 16095 = 0 + 16097 16093: 0.768531 + 16120 16116: -0.282381 + 16124 16116: 0.584650 + 16121 16117: -0.288063 + 16125 16117: 0.774446 + 16122 16118: -0.138002 + 16126 16118: 0.580402 + 16366 16365: 0.427330 + 16367 16365: 0.427330 + 16379 16377: 0.135275 + 16381 16377: 0.418366 + 16380 16378: 0.277533 + 16382 16378: 0.422732 + 16391 16389: 0.418366 + 16393 16389: 0.135275 + 16392 16390: 0.422732 + 16394 16390: 0.277533 + 16417 16413: 0.132271 + 16421 16413: 0.132271 + 16418 16414: 0.133733 + 16422 16414: 0.271536 + 16419 16415: 0.271536 + 16423 16415: 0.133733 + 16473 16474: 1.00000 + 16475 16474: 0.449490 + 16487 16485: 0.589099 + 16489 16485: 0.433590 + 16488 16486: 0.777585 + 16490 16486: 0.440883 + 16497 16499: 1.00000 + 16501 16499: 0.145063 + 16498 16500: 1.00000 + 16502 16500: 0.294815 + 16525 16521: 0.580402 + 16529 16521: 0.138002 + 16526 16522: 0.584650 + 16530 16522: 0.282381 + 16527 16523: 0.771431 + 16531 16523: 0.141216 + 16743 16745: 1.00000 + 16744 16745: 0.449490 + 16755 16759: 1.00000 + 16757 16759: 0.145063 + 16756 16760: 1.00000 + 16758 16760: 0.294815 + 16769 16767: 0.433590 + 16771 16767: 0.589099 + 16770 16768: 0.440883 + 16772 16768: 0.777585 + 16795 16791: 0.138002 + 16799 16791: 0.580402 + 16796 16792: 0.141216 + 16800 16792: 0.771431 + 16797 16793: 0.282381 + 16801 16793: 0.584650 + 16851 16853: 1.00000 + 16852 16853: 1.00000 + 16863 16867: 1.00000 + 16865 16867: 0.614589 + 16864 16868: 1.00000 + 16866 16868: 0.797121 + 16875 16877: 1.00000 + 16879 16877: 0.614589 + 16876 16878: 1.00000 + 16880 16878: 0.797121 + 16903 16899: 0.596427 + 16907 16899: 0.596427 + 16904 16900: 0.604838 + 16908 16900: 0.783313 + 16905 16901: 0.783313 + 16909 16901: 0.604838 + 18291 18293: -1.00000 + 18292 18293: -1.00000 + 18294 18296: -0.449490 + 18295 18296: -1.00000 + 18303 18305: -1.00000 + 18304 18305: -0.449490 + 18306 18308: -0.427330 + 18307 18308: -0.427330 + 18327 18331: -0.797121 + 18329 18331: -1.00000 + 18328 18332: -0.614589 + 18330 18332: -1.00000 + 18351 18355: -0.777585 + 18353 18355: -0.440883 + 18352 18356: -0.589099 + 18354 18356: -0.433590 + 18363 18367: -1.00000 + 18365 18367: -0.797121 + 18364 18368: -1.00000 + 18366 18368: -0.614589 + 18369 18373: -0.440883 + 18371 18373: -0.777585 + 18370 18374: -0.433590 + 18372 18374: -0.589099 + 18411 18419: -0.789776 + 18415 18419: -0.789776 + 18412 18420: -0.783313 + 18416 18420: -0.604838 + 18413 18421: -0.604838 + 18417 18421: -0.783313 + 18483 = 0 + 18484 18485: -1.00000 + 18489 = 0 + 18490 18491: -0.414214 + 18501 18505: -0.294815 + 18503 18505: -1.00000 + 18502 18506: -0.145063 + 18504 18506: -1.00000 + 18519 18523: -0.277533 + 18521 18523: -0.422732 + 18520 18524: -0.135275 + 18522 18524: -0.418366 + 18531 = 0 + 18533 18535: -0.768531 + 18532 = 0 + 18534 18536: -0.576341 + 18555 18563: -0.288063 + 18559 18563: -0.774446 + 18556 18564: -0.282381 + 18560 18564: -0.584650 + 18557 18565: -0.141216 + 18561 18565: -0.771431 + 18879 18881: -1.00000 + 18880 = 0 + 18882 18884: -0.414214 + 18883 = 0 + 18903 18907: -0.768531 + 18905 = 0 + 18904 18908: -0.576341 + 18906 = 0 + 18915 18919: -1.00000 + 18917 18919: -0.294815 + 18916 18920: -1.00000 + 18918 18920: -0.145063 + 18921 18925: -0.422732 + 18923 18925: -0.277533 + 18922 18926: -0.418366 + 18924 18926: -0.135275 + 18963 18971: -0.774446 + 18967 18971: -0.288063 + 18964 18972: -0.771431 + 18968 18972: -0.141216 + 18965 18973: -0.584650 + 18969 18973: -0.282381 + 19023 = 0 + 19024 = 0 + 19035 19039: -0.268761 + 19037 = 0 + 19036 19040: -0.130882 + 19038 = 0 + 19047 = 0 + 19049 19051: -0.268761 + 19048 = 0 + 19050 19052: -0.130882 + 19071 19079: -0.274456 + 19075 19079: -0.274456 + 19072 19080: -0.271536 + 19076 19080: -0.133733 + 19073 19081: -0.133733 + 19077 19081: -0.271536 + 19320 19322: 0.449490 + 19321 19322: -1.00000 + 19326 19328: 0.427330 + 19327 19328: -0.427330 + 19338 19342: 0.145063 + 19340 19342: -1.00000 + 19339 19343: 0.294815 + 19341 19343: -1.00000 + 19356 19360: 0.135275 + 19358 19360: -0.418366 + 19357 19361: 0.277533 + 19359 19361: -0.422732 + 19368 19372: 0.440883 + 19370 19372: -0.777585 + 19369 19373: 0.433590 + 19371 19373: -0.589099 + 19392 19400: 0.141216 + 19396 19400: -0.771431 + 19393 19401: 0.138002 + 19397 19401: -0.580402 + 19394 19402: 0.288063 + 19398 19402: -0.774446 + 19464 19468: 0.614589 + 19466 19468: -1.00000 + 19465 19469: 0.797121 + 19467 19469: -1.00000 + 19476 19480: 0.589099 + 19478 19480: -0.433590 + 19477 19481: 0.777585 + 19479 19481: -0.440883 + 19488 19496: 0.604838 + 19492 19496: -0.783313 + 19489 19497: 0.596427 + 19493 19497: -0.596427 + 19490 19498: 0.789776 + 19494 19498: -0.789776 + 19740 19742: 0.414214 + 19741 = 0 + 19752 19756: 0.130882 + 19754 = 0 + 19753 19757: 0.268761 + 19755 = 0 + 19764 19768: 0.422732 + 19766 19768: -0.277533 + 19765 19769: 0.418366 + 19767 19769: -0.135275 + 19788 19796: 0.133733 + 19792 19796: -0.271536 + 19789 19797: 0.132271 + 19793 19797: -0.132271 + 19790 19798: 0.274456 + 19794 19798: -0.274456 + 19848 19852: 0.576341 + 19850 = 0 + 19849 19853: 0.768531 + 19851 = 0 + 19860 19868: 0.584650 + 19864 19868: -0.282381 + 19861 19869: 0.580402 + 19865 19869: -0.138002 + 19862 19870: 0.774446 + 19866 19870: -0.288063 + 21315 21317: -1.00000 + 21316 21317: 0.449490 + 21318 21320: -0.427330 + 21319 21320: 0.427330 + 21339 21343: -0.777585 + 21341 21343: 0.440883 + 21340 21344: -0.589099 + 21342 21344: 0.433590 + 21351 21355: -1.00000 + 21353 21355: 0.145063 + 21352 21356: -1.00000 + 21354 21356: 0.294815 + 21357 21361: -0.418366 + 21359 21361: 0.135275 + 21358 21362: -0.422732 + 21360 21362: 0.277533 + 21399 21407: -0.771431 + 21403 21407: 0.141216 + 21400 21408: -0.774446 + 21404 21408: 0.288063 + 21401 21409: -0.580402 + 21405 21409: 0.138002 + 21459 = 0 + 21460 21461: 0.414214 + 21471 21475: -0.277533 + 21473 21475: 0.422732 + 21472 21476: -0.135275 + 21474 21476: 0.418366 + 21483 = 0 + 21485 21487: 0.130882 + 21484 = 0 + 21486 21488: 0.268761 + 21507 21515: -0.271536 + 21511 21515: 0.133733 + 21508 21516: -0.274456 + 21512 21516: 0.274456 + 21509 21517: -0.132271 + 21513 21517: 0.132271 + 21756 21758: -1.00000 + 21757 21758: 1.00000 + 21759 21761: -0.449490 + 21760 21761: 1.00000 + 21780 21784: -0.797121 + 21782 21784: 1.00000 + 21781 21785: -0.614589 + 21783 21785: 1.00000 + 21792 21796: -1.00000 + 21794 21796: 0.614589 + 21793 21797: -1.00000 + 21795 21797: 0.797121 + 21798 21802: -0.433590 + 21800 21802: 0.589099 + 21799 21803: -0.440883 + 21801 21803: 0.777585 + 21840 21848: -0.783313 + 21844 21848: 0.604838 + 21841 21849: -0.789776 + 21845 21849: 0.789776 + 21842 21850: -0.596427 + 21846 21850: 0.596427 + 21900 = 0 + 21901 21902: 1.00000 + 21912 21916: -0.294815 + 21914 21916: 1.00000 + 21913 21917: -0.145063 + 21915 21917: 1.00000 + 21924 = 0 + 21926 21928: 0.576341 + 21925 = 0 + 21927 21929: 0.768531 + 21948 21956: -0.282381 + 21952 21956: 0.584650 + 21949 21957: -0.288063 + 21953 21957: 0.774446 + 21950 21958: -0.138002 + 21954 21958: 0.580402 + 22197 22199: 0.427330 + 22198 22199: 0.427330 + 22209 22213: 0.135275 + 22211 22213: 0.418366 + 22210 22214: 0.277533 + 22212 22214: 0.422732 + 22221 22225: 0.418366 + 22223 22225: 0.135275 + 22222 22226: 0.422732 + 22224 22226: 0.277533 + 22245 22253: 0.132271 + 22249 22253: 0.132271 + 22246 22254: 0.133733 + 22250 22254: 0.271536 + 22247 22255: 0.271536 + 22251 22255: 0.133733 + 22305 22309: 0.589099 + 22307 22309: 0.433590 + 22306 22310: 0.777585 + 22308 22310: 0.440883 + 22317 22325: 0.580402 + 22321 22325: 0.138002 + 22318 22326: 0.584650 + 22322 22326: 0.282381 + 22319 22327: 0.771431 + 22323 22327: 0.141216 + 22512 22514: 0.449490 + 22513 22514: 1.00000 + 22524 22528: 0.145063 + 22526 22528: 1.00000 + 22525 22529: 0.294815 + 22527 22529: 1.00000 + 22536 22540: 0.433590 + 22538 22540: 0.589099 + 22537 22541: 0.440883 + 22539 22541: 0.777585 + 22560 22568: 0.138002 + 22564 22568: 0.580402 + 22561 22569: 0.141216 + 22565 22569: 0.771431 + 22562 22570: 0.282381 + 22566 22570: 0.584650 + 22620 22624: 0.614589 + 22622 22624: 1.00000 + 22621 22625: 0.797121 + 22623 22625: 1.00000 + 22632 22640: 0.596427 + 22636 22640: 0.596427 + 22633 22641: 0.604838 + 22637 22641: 0.783313 + 22634 22642: 0.783313 + 22638 22642: 0.604838 + 23907 23908: 1.00000 + 23909 23908: 0.449490 + 23914 23913: 0.427330 + 23915 23913: 0.427330 + 23921 23919: 0.777585 + 23923 23919: 0.440883 + 23922 23920: 0.589099 + 23924 23920: 0.433590 + 23943 23945: 1.00000 + 23947 23945: 0.797121 + 23944 23946: 1.00000 + 23948 23946: 0.614589 + 23957 23955: 0.440883 + 23959 23955: 0.777585 + 23958 23956: 0.433590 + 23960 23956: 0.589099 + 23971 23967: 0.789776 + 23975 23967: 0.789776 + 23972 23968: 0.604838 + 23976 23968: 0.783313 + 23973 23969: 0.783313 + 23977 23969: 0.604838 + 24160 = 0 + 24161 24159: 0.414214 + 24167 24165: 0.277533 + 24169 24165: 0.422732 + 24168 24166: 0.135275 + 24170 24166: 0.418366 + 24185 = 0 + 24187 24183: 0.768531 + 24186 = 0 + 24188 24184: 0.576341 + 24199 24195: 0.288063 + 24203 24195: 0.774446 + 24200 24196: 0.141216 + 24204 24196: 0.771431 + 24201 24197: 0.282381 + 24205 24197: 0.584650 + 24348 24349: 1.00000 + 24350 = 0 + 24355 24354: 0.414214 + 24356 = 0 + 24362 24360: 0.768531 + 24364 = 0 + 24363 24361: 0.576341 + 24365 = 0 + 24384 24386: 1.00000 + 24388 24386: 0.294815 + 24385 24387: 1.00000 + 24389 24387: 0.145063 + 24398 24396: 0.422732 + 24400 24396: 0.277533 + 24399 24397: 0.418366 + 24401 24397: 0.135275 + 24412 24408: 0.774446 + 24416 24408: 0.288063 + 24413 24409: 0.584650 + 24417 24409: 0.282381 + 24414 24410: 0.771431 + 24418 24410: 0.141216 + 24601 = 0 + 24602 = 0 + 24608 24606: 0.268761 + 24610 = 0 + 24609 24607: 0.130882 + 24611 = 0 + 24626 = 0 + 24628 24624: 0.268761 + 24627 = 0 + 24629 24625: 0.130882 + 24640 24636: 0.274456 + 24644 24636: 0.274456 + 24641 24637: 0.133733 + 24645 24637: 0.271536 + 24642 24638: 0.271536 + 24646 24638: 0.133733 + 25420 25419: -0.427330 + 25421 25419: 0.427330 + 25427 25425: -0.135275 + 25429 25425: 0.418366 + 25428 25426: -0.277533 + 25430 25426: 0.422732 + 25445 25443: -0.440883 + 25447 25443: 0.777585 + 25446 25444: -0.433590 + 25448 25444: 0.589099 + 25459 25455: -0.141216 + 25463 25455: 0.771431 + 25460 25456: -0.288063 + 25464 25456: 0.774446 + 25461 25457: -0.138002 + 25465 25457: 0.580402 + 25608 25609: -1.00000 + 25610 25609: -0.449490 + 25616 25614: -0.589099 + 25618 25614: 0.433590 + 25617 25615: -0.777585 + 25619 25615: 0.440883 + 25632 25634: -1.00000 + 25636 25634: -0.797121 + 25633 25635: -1.00000 + 25637 25635: -0.614589 + 25648 25644: -0.604838 + 25652 25644: 0.783313 + 25649 25645: -0.789776 + 25653 25645: 0.789776 + 25650 25646: -0.596427 + 25654 25646: 0.596427 + 25798 25797: -0.414214 + 25799 = 0 + 25805 25803: -0.130882 + 25807 = 0 + 25806 25804: -0.268761 + 25808 = 0 + 25823 25821: -0.422732 + 25825 25821: 0.277533 + 25824 25822: -0.418366 + 25826 25822: 0.135275 + 25837 25833: -0.133733 + 25841 25833: 0.271536 + 25838 25834: -0.274456 + 25842 25834: 0.274456 + 25839 25835: -0.132271 + 25843 25835: 0.132271 + 25986 25987: -1.00000 + 25988 = 0 + 25994 25992: -0.576341 + 25996 = 0 + 25995 25993: -0.768531 + 25997 = 0 + 26010 26012: -1.00000 + 26014 26012: -0.294815 + 26011 26013: -1.00000 + 26015 26013: -0.145063 + 26026 26022: -0.584650 + 26030 26022: 0.282381 + 26027 26023: -0.774446 + 26031 26023: 0.288063 + 26028 26024: -0.580402 + 26032 26024: 0.138002 + 26715 26716: 1.00000 + 26717 26716: -0.449490 + 26722 26721: 0.427330 + 26723 26721: -0.427330 + 26729 26727: 0.777585 + 26731 26727: -0.440883 + 26730 26728: 0.589099 + 26732 26728: -0.433590 + 26751 26753: 1.00000 + 26755 26753: -0.145063 + 26752 26754: 1.00000 + 26756 26754: -0.294815 + 26765 26763: 0.418366 + 26767 26763: -0.135275 + 26766 26764: 0.422732 + 26768 26764: -0.277533 + 26779 26775: 0.771431 + 26783 26775: -0.141216 + 26780 26776: 0.580402 + 26784 26776: -0.138002 + 26781 26777: 0.774446 + 26785 26777: -0.288063 + 26968 = 0 + 26969 26967: -0.414214 + 26975 26973: 0.277533 + 26977 26973: -0.422732 + 26976 26974: 0.135275 + 26978 26974: -0.418366 + 26993 = 0 + 26995 26991: -0.130882 + 26994 = 0 + 26996 26992: -0.268761 + 27007 27003: 0.271536 + 27011 27003: -0.133733 + 27008 27004: 0.132271 + 27012 27004: -0.132271 + 27009 27005: 0.274456 + 27013 27005: -0.274456 + 27156 27158: 1.00000 + 27160 27158: -0.614589 + 27157 27159: 1.00000 + 27161 27159: -0.797121 + 27170 27168: 0.433590 + 27172 27168: -0.589099 + 27171 27169: 0.440883 + 27173 27169: -0.777585 + 27184 27180: 0.783313 + 27188 27180: -0.604838 + 27185 27181: 0.596427 + 27189 27181: -0.596427 + 27186 27182: 0.789776 + 27190 27182: -0.789776 + 27326 = 0 + 27328 27324: -0.576341 + 27327 = 0 + 27329 27325: -0.768531 + 27340 27336: 0.282381 + 27344 27336: -0.584650 + 27341 27337: 0.138002 + 27345 27337: -0.580402 + 27342 27338: 0.288063 + 27346 27338: -0.774446 + 27976 27975: -0.427330 + 27977 27975: -0.427330 + 27983 27981: -0.135275 + 27985 27981: -0.418366 + 27984 27982: -0.277533 + 27986 27982: -0.422732 + 28001 27999: -0.418366 + 28003 27999: -0.135275 + 28002 28000: -0.422732 + 28004 28000: -0.277533 + 28015 28011: -0.132271 + 28019 28011: -0.132271 + 28016 28012: -0.271536 + 28020 28012: -0.133733 + 28017 28013: -0.133733 + 28021 28013: -0.271536 + 28164 28165: -1.00000 + 28166 28165: 0.449490 + 28172 28170: -0.589099 + 28174 28170: -0.433590 + 28173 28171: -0.777585 + 28175 28171: -0.440883 + 28188 28190: -1.00000 + 28192 28190: 0.145063 + 28189 28191: -1.00000 + 28193 28191: 0.294815 + 28204 28200: -0.580402 + 28208 28200: -0.138002 + 28205 28201: -0.771431 + 28209 28201: -0.141216 + 28206 28202: -0.584650 + 28210 28202: -0.282381 + 28355 28353: -0.433590 + 28357 28353: -0.589099 + 28356 28354: -0.440883 + 28358 28354: -0.777585 + 28369 28365: -0.138002 + 28373 28365: -0.580402 + 28370 28366: -0.282381 + 28374 28366: -0.584650 + 28371 28367: -0.141216 + 28375 28367: -0.771431 + 28479 28481: -1.00000 + 28483 28481: 0.614589 + 28480 28482: -1.00000 + 28484 28482: 0.797121 + 28495 28491: -0.596427 + 28499 28491: -0.596427 + 28496 28492: -0.783313 + 28500 28492: -0.604838 + 28497 28493: -0.604838 + 28501 28493: -0.783313 + 29055 29056: 0.427330 + 29057 29056: 0.427330 + 29067 29069: 0.777585 + 29071 29069: 0.440883 + 29068 29070: 0.589099 + 29072 29070: 0.433590 + 29079 29081: 0.440883 + 29083 29081: 0.777585 + 29080 29082: 0.433590 + 29084 29082: 0.589099 + 29103 29107: 0.789776 + 29111 29107: 0.789776 + 29104 29108: 0.783313 + 29112 29108: 0.604838 + 29105 29109: 0.604838 + 29113 29109: 0.783313 + 29163 = 0 + 29165 29164: 0.414214 + 29175 29177: 0.277533 + 29179 29177: 0.422732 + 29176 29178: 0.135275 + 29180 29178: 0.418366 + 29187 = 0 + 29191 29189: 0.768531 + 29188 = 0 + 29192 29190: 0.576341 + 29211 29215: 0.288063 + 29219 29215: 0.774446 + 29212 29216: 0.282381 + 29220 29216: 0.584650 + 29213 29217: 0.141216 + 29221 29217: 0.771431 + 29433 29434: 0.414214 + 29435 = 0 + 29445 29447: 0.768531 + 29449 = 0 + 29446 29448: 0.576341 + 29450 = 0 + 29457 29459: 0.422732 + 29461 29459: 0.277533 + 29458 29460: 0.418366 + 29462 29460: 0.135275 + 29481 29485: 0.774446 + 29489 29485: 0.288063 + 29482 29486: 0.771431 + 29490 29486: 0.141216 + 29483 29487: 0.584650 + 29491 29487: 0.282381 + 29541 = 0 + 29543 = 0 + 29553 29555: 0.268761 + 29557 = 0 + 29554 29556: 0.130882 + 29558 = 0 + 29565 = 0 + 29569 29567: 0.268761 + 29566 = 0 + 29570 29568: 0.130882 + 29589 29593: 0.274456 + 29597 29593: 0.274456 + 29590 29594: 0.271536 + 29598 29594: 0.133733 + 29591 29595: 0.133733 + 29599 29595: 0.271536 + 29811 29812: -0.427330 + 29813 29812: 0.427330 + 29823 29825: -0.135275 + 29827 29825: 0.418366 + 29824 29826: -0.277533 + 29828 29826: 0.422732 + 29835 29837: -0.440883 + 29839 29837: 0.777585 + 29836 29838: -0.433590 + 29840 29838: 0.589099 + 29859 29863: -0.141216 + 29867 29863: 0.771431 + 29860 29864: -0.138002 + 29868 29864: 0.580402 + 29861 29865: -0.288063 + 29869 29865: 0.774446 + 29919 29921: -0.589099 + 29923 29921: 0.433590 + 29920 29922: -0.777585 + 29924 29922: 0.440883 + 29931 29935: -0.604838 + 29939 29935: 0.783313 + 29932 29936: -0.596427 + 29940 29936: 0.596427 + 29933 29937: -0.789776 + 29941 29937: 0.789776 + 30126 30127: -0.414214 + 30128 = 0 + 30138 30140: -0.130882 + 30142 = 0 + 30139 30141: -0.268761 + 30143 = 0 + 30150 30152: -0.422732 + 30154 30152: 0.277533 + 30151 30153: -0.418366 + 30155 30153: 0.135275 + 30174 30178: -0.133733 + 30182 30178: 0.271536 + 30175 30179: -0.132271 + 30183 30179: 0.132271 + 30176 30180: -0.274456 + 30184 30180: 0.274456 + 30234 30236: -0.576341 + 30238 = 0 + 30235 30237: -0.768531 + 30239 = 0 + 30246 30250: -0.584650 + 30254 30250: 0.282381 + 30247 30251: -0.580402 + 30255 30251: 0.138002 + 30248 30252: -0.774446 + 30256 30252: 0.288063 + 31431 31432: 0.427330 + 31433 31432: -0.427330 + 31443 31445: 0.777585 + 31447 31445: -0.440883 + 31444 31446: 0.589099 + 31448 31446: -0.433590 + 31455 31457: 0.418366 + 31459 31457: -0.135275 + 31456 31458: 0.422732 + 31460 31458: -0.277533 + 31479 31483: 0.771431 + 31487 31483: -0.141216 + 31480 31484: 0.774446 + 31488 31484: -0.288063 + 31481 31485: 0.580402 + 31489 31485: -0.138002 + 31539 = 0 + 31541 31540: -0.414214 + 31551 31553: 0.277533 + 31555 31553: -0.422732 + 31552 31554: 0.135275 + 31556 31554: -0.418366 + 31563 = 0 + 31567 31565: -0.130882 + 31564 = 0 + 31568 31566: -0.268761 + 31587 31591: 0.271536 + 31595 31591: -0.133733 + 31588 31592: 0.274456 + 31596 31592: -0.274456 + 31589 31593: 0.132271 + 31597 31593: -0.132271 + 31809 31811: 0.433590 + 31813 31811: -0.589099 + 31810 31812: 0.440883 + 31814 31812: -0.777585 + 31833 31837: 0.783313 + 31841 31837: -0.604838 + 31834 31838: 0.789776 + 31842 31838: -0.789776 + 31835 31839: 0.596427 + 31843 31839: -0.596427 + 31881 = 0 + 31885 31883: -0.576341 + 31882 = 0 + 31886 31884: -0.768531 + 31905 31909: 0.282381 + 31913 31909: -0.584650 + 31906 31910: 0.288063 + 31914 31910: -0.774446 + 31907 31911: 0.138002 + 31915 31911: -0.580402 + 32061 32062: -0.427330 + 32063 32062: -0.427330 + 32073 32075: -0.135275 + 32077 32075: -0.418366 + 32074 32076: -0.277533 + 32078 32076: -0.422732 + 32085 32087: -0.418366 + 32089 32087: -0.135275 + 32086 32088: -0.422732 + 32090 32088: -0.277533 + 32109 32113: -0.132271 + 32117 32113: -0.132271 + 32110 32114: -0.133733 + 32118 32114: -0.271536 + 32111 32115: -0.271536 + 32119 32115: -0.133733 + 32169 32171: -0.589099 + 32173 32171: -0.433590 + 32170 32172: -0.777585 + 32174 32172: -0.440883 + 32181 32185: -0.580402 + 32189 32185: -0.138002 + 32182 32186: -0.584650 + 32190 32186: -0.282381 + 32183 32187: -0.771431 + 32191 32187: -0.141216 + 32376 32378: -0.433590 + 32380 32378: -0.589099 + 32377 32379: -0.440883 + 32381 32379: -0.777585 + 32400 32404: -0.138002 + 32408 32404: -0.580402 + 32401 32405: -0.141216 + 32409 32405: -0.771431 + 32402 32406: -0.282381 + 32410 32406: -0.584650 + 32448 32452: -0.596427 + 32456 32452: -0.596427 + 32449 32453: -0.604838 + 32457 32453: -0.783313 + 32450 32454: -0.783313 + 32458 32454: -0.604838 + 33411 33412: -0.427330 + 33413 33412: -0.427330 + 33417 33419: -0.777585 + 33421 33419: -0.440883 + 33418 33420: -0.589099 + 33422 33420: -0.433590 + 33435 33437: -0.440883 + 33439 33437: -0.777585 + 33436 33438: -0.433590 + 33440 33438: -0.589099 + 33447 33451: -0.789776 + 33455 33451: -0.789776 + 33448 33452: -0.604838 + 33456 33452: -0.783313 + 33449 33453: -0.783313 + 33457 33453: -0.604838 + 33600 = 0 + 33602 33601: -0.414214 + 33606 33608: -0.277533 + 33610 33608: -0.422732 + 33607 33609: -0.135275 + 33611 33609: -0.418366 + 33624 = 0 + 33628 33626: -0.768531 + 33625 = 0 + 33629 33627: -0.576341 + 33636 33640: -0.288063 + 33644 33640: -0.774446 + 33637 33641: -0.141216 + 33645 33641: -0.771431 + 33638 33642: -0.282381 + 33646 33642: -0.584650 + 33789 33790: -0.414214 + 33791 = 0 + 33795 33797: -0.768531 + 33799 = 0 + 33796 33798: -0.576341 + 33800 = 0 + 33813 33815: -0.422732 + 33817 33815: -0.277533 + 33814 33816: -0.418366 + 33818 33816: -0.135275 + 33825 33829: -0.774446 + 33833 33829: -0.288063 + 33826 33830: -0.584650 + 33834 33830: -0.282381 + 33827 33831: -0.771431 + 33835 33831: -0.141216 + 33978 = 0 + 33980 = 0 + 33984 33986: -0.268761 + 33988 = 0 + 33985 33987: -0.130882 + 33989 = 0 + 34002 = 0 + 34006 34004: -0.268761 + 34003 = 0 + 34007 34005: -0.130882 + 34014 34018: -0.274456 + 34022 34018: -0.274456 + 34015 34019: -0.133733 + 34023 34019: -0.271536 + 34016 34020: -0.271536 + 34024 34020: -0.133733 + 34707 34708: 0.427330 + 34709 34708: -0.427330 + 34713 34715: 0.135275 + 34717 34715: -0.418366 + 34714 34716: 0.277533 + 34718 34716: -0.422732 + 34731 34733: 0.440883 + 34735 34733: -0.777585 + 34732 34734: 0.433590 + 34736 34734: -0.589099 + 34743 34747: 0.141216 + 34751 34747: -0.771431 + 34744 34748: 0.288063 + 34752 34748: -0.774446 + 34745 34749: 0.138002 + 34753 34749: -0.580402 + 34896 34898: 0.589099 + 34900 34898: -0.433590 + 34897 34899: 0.777585 + 34901 34899: -0.440883 + 34908 34912: 0.604838 + 34916 34912: -0.783313 + 34909 34913: 0.789776 + 34917 34913: -0.789776 + 34910 34914: 0.596427 + 34918 34914: -0.596427 + 35022 35023: 0.414214 + 35024 = 0 + 35028 35030: 0.130882 + 35032 = 0 + 35029 35031: 0.268761 + 35033 = 0 + 35046 35048: 0.422732 + 35050 35048: -0.277533 + 35047 35049: 0.418366 + 35051 35049: -0.135275 + 35058 35062: 0.133733 + 35066 35062: -0.271536 + 35059 35063: 0.274456 + 35067 35063: -0.274456 + 35060 35064: 0.132271 + 35068 35064: -0.132271 + 35211 35213: 0.576341 + 35215 = 0 + 35212 35214: 0.768531 + 35216 = 0 + 35223 35227: 0.584650 + 35231 35227: -0.282381 + 35224 35228: 0.774446 + 35232 35228: -0.288063 + 35225 35229: 0.580402 + 35233 35229: -0.138002 + 35787 35788: -0.427330 + 35789 35788: 0.427330 + 35793 35795: -0.777585 + 35797 35795: 0.440883 + 35794 35796: -0.589099 + 35798 35796: 0.433590 + 35811 35813: -0.418366 + 35815 35813: 0.135275 + 35812 35814: -0.422732 + 35816 35814: 0.277533 + 35823 35827: -0.771431 + 35831 35827: 0.141216 + 35824 35828: -0.580402 + 35832 35828: 0.138002 + 35825 35829: -0.774446 + 35833 35829: 0.288063 + 35976 = 0 + 35978 35977: 0.414214 + 35982 35984: -0.277533 + 35986 35984: 0.422732 + 35983 35985: -0.135275 + 35987 35985: 0.418366 + 36000 = 0 + 36004 36002: 0.130882 + 36001 = 0 + 36005 36003: 0.268761 + 36012 36016: -0.271536 + 36020 36016: 0.133733 + 36013 36017: -0.132271 + 36021 36017: 0.132271 + 36014 36018: -0.274456 + 36022 36018: 0.274456 + 36165 36167: -0.433590 + 36169 36167: 0.589099 + 36166 36168: -0.440883 + 36170 36168: 0.777585 + 36177 36181: -0.783313 + 36185 36181: 0.604838 + 36178 36182: -0.596427 + 36186 36182: 0.596427 + 36179 36183: -0.789776 + 36187 36183: 0.789776 + 36291 = 0 + 36295 36293: 0.576341 + 36292 = 0 + 36296 36294: 0.768531 + 36303 36307: -0.282381 + 36311 36307: 0.584650 + 36304 36308: -0.138002 + 36312 36308: 0.580402 + 36305 36309: -0.288063 + 36313 36309: 0.774446 + 36867 36868: 0.427330 + 36869 36868: 0.427330 + 36873 36875: 0.135275 + 36877 36875: 0.418366 + 36874 36876: 0.277533 + 36878 36876: 0.422732 + 36891 36893: 0.418366 + 36895 36893: 0.135275 + 36892 36894: 0.422732 + 36896 36894: 0.277533 + 36903 36907: 0.132271 + 36911 36907: 0.132271 + 36904 36908: 0.271536 + 36912 36908: 0.133733 + 36905 36909: 0.133733 + 36913 36909: 0.271536 + 37056 37058: 0.589099 + 37060 37058: 0.433590 + 37057 37059: 0.777585 + 37061 37059: 0.440883 + 37068 37072: 0.580402 + 37076 37072: 0.138002 + 37069 37073: 0.771431 + 37077 37073: 0.141216 + 37070 37074: 0.584650 + 37078 37074: 0.282381 + 37182 37184: 0.433590 + 37186 37184: 0.589099 + 37183 37185: 0.440883 + 37187 37185: 0.777585 + 37194 37198: 0.138002 + 37202 37198: 0.580402 + 37195 37199: 0.282381 + 37203 37199: 0.584650 + 37196 37200: 0.141216 + 37204 37200: 0.771431 + 37308 37312: 0.596427 + 37316 37312: 0.596427 + 37309 37313: 0.783313 + 37317 37313: 0.604838 + 37310 37314: 0.604838 + 37318 37314: 0.783313 -- 2.39.5