From 4a95b3c61c175b3eff3fb5b532a1fa3d9f6adb42 Mon Sep 17 00:00:00 2001 From: Martin Kronbichler Date: Mon, 5 Oct 2009 08:45:35 +0000 Subject: [PATCH] Link in step-37. git-svn-id: https://svn.dealii.org/trunk@19705 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/doc/doxygen/tutorial/navbar.html | 3 ++- deal.II/doc/doxygen/tutorial/toc.html | 14 +++++++++++--- deal.II/examples/step-37/doc/intro.dox | 5 +++-- 3 files changed, 16 insertions(+), 6 deletions(-) diff --git a/deal.II/doc/doxygen/tutorial/navbar.html b/deal.II/doc/doxygen/tutorial/navbar.html index ebcfed7f46..85d2ee89ef 100644 --- a/deal.II/doc/doxygen/tutorial/navbar.html +++ b/deal.II/doc/doxygen/tutorial/navbar.html @@ -63,7 +63,8 @@ 33  34  35
- 36 + 36  + 37


diff --git a/deal.II/doc/doxygen/tutorial/toc.html b/deal.II/doc/doxygen/tutorial/toc.html index e866ab4311..5a2d3a6319 100644 --- a/deal.II/doc/doxygen/tutorial/toc.html +++ b/deal.II/doc/doxygen/tutorial/toc.html @@ -273,7 +273,7 @@ the geodynamics Step-35 - A projection solver for the Navier-Stokes equations. + A projection solver for the Navier–Stokes equations. @@ -281,6 +281,12 @@ the geodynamics Using SLEPc for linear algebra; solving an eigenspectrum problem. The Schrödinger wave equation. + + + Step-37 + Implementing matrix-vector products without explicitly + storing the matrix elements (a matrix-free method). + @@ -441,7 +447,8 @@ by topic: - Step-16 + Step-16, + Step-37 Multilevel preconditioners @@ -486,7 +493,8 @@ by topic: Step-16, - Step-31 + Step-31, + Step-37 Multilevel preconditioners diff --git a/deal.II/examples/step-37/doc/intro.dox b/deal.II/examples/step-37/doc/intro.dox index 381a779dca..b9f5aa6de6 100644 --- a/deal.II/examples/step-37/doc/intro.dox +++ b/deal.II/examples/step-37/doc/intro.dox @@ -122,9 +122,10 @@ assembly of matrices. If we are to perform a matrix-vector product, we can hence use that @f{eqnarray*} y &=& A\cdot x = \left(\sum_{\text{cell}=1}^{\mathrm{n\_cells}} P_\mathrm{cell,{loc-glob}}^T -A_\mathrm{cell} P_\mathrm{cell,{loc-glob}}\right) \cdot x\\ +A_\mathrm{cell} P_\mathrm{cell,{loc-glob}}\right) \cdot x +\\ &=& \sum_{\mathrm{cell}=1}^{\mathrm{n\_cells}} P_\mathrm{cell,{loc-glob}}^T -A_\mathrm{cell} x_\mathrm{cell}, +A_\mathrm{cell} x_\mathrm{cell} \\ &=& \sum_{\mathrm{cell}=1}^{\mathrm{n\_cells}} P_\mathrm{cell,{loc-glob}}^T y_\mathrm{cell}, -- 2.39.5