From 50792995f30537ebbbe3298bc1bd42a00ab39f07 Mon Sep 17 00:00:00 2001 From: wolf Date: Thu, 2 Feb 2006 21:10:21 +0000 Subject: [PATCH] Rewrite more. git-svn-id: https://svn.dealii.org/trunk@12229 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-5/step-5.cc | 401 +++++++++++++++++------------- 1 file changed, 229 insertions(+), 172 deletions(-) diff --git a/deal.II/examples/step-5/step-5.cc b/deal.II/examples/step-5/step-5.cc index 993bb52739..8b0497a0fe 100644 --- a/deal.II/examples/step-5/step-5.cc +++ b/deal.II/examples/step-5/step-5.cc @@ -146,7 +146,7 @@ class LaplaceProblem }; - // @sect3{Nonconstant coefficients} + // @sect3{Nonconstant coefficients, using ``Assert''} // In step-4, we showed how to use // non-constant boundary values and @@ -242,7 +242,7 @@ double Coefficient::value (const Point &p, // should try to make sure that the // parameters are valid. For this, // the ``Assert'' macro is a good means, - // since it verifies that the + // since it makes sure that the // condition which is given as first // argument is valid, and if not // throws an exception (its second @@ -402,6 +402,8 @@ void Coefficient::value_list (const std::vector > &points, } + // @sect3{The ``LaplaceProblem'' class implementation} + // @sect4{LaplaceProblem::LaplaceProblem} // This function is as before. @@ -472,23 +474,18 @@ void LaplaceProblem::setup_system () // are not changed with respect to // the previous example are not // commented on. + // + // The first parts of the function + // are completely unchanged from + // before: template void LaplaceProblem::assemble_system () { - // This time, we will again use a - // constant right hand side - // function, but a variable - // coefficient. The following - // object will be used for this: - const Coefficient coefficient; - QGauss quadrature_formula(2); FEValues fe_values (fe, quadrature_formula, - UpdateFlags(update_values | - update_gradients | - update_q_points | - update_JxW_values)); + update_values | update_gradients | + update_q_points | update_JxW_values); const unsigned int dofs_per_cell = fe.dofs_per_cell; const unsigned int n_q_points = quadrature_formula.n_quadrature_points; @@ -498,86 +495,110 @@ void LaplaceProblem::assemble_system () std::vector local_dof_indices (dofs_per_cell); - // Below, we will ask the - // Coefficient class to compute the - // values of the coefficient at all - // quadrature points on one cell at - // once. For this, we need some - // space to store the values in, - // which we use the following - // variable for: - std::vector coefficient_values (n_q_points); - - typename DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), - endc = dof_handler.end(); + // Here is one difference: for this + // program, we will again use a + // constant right hand side + // function and zero boundary + // values, but a variable + // coefficient. We have already + // declared the class that + // represents this coefficient + // above, so we only have to + // declare a corresponding object + // here. + // + // Then, below, we will ask the + // ``coefficient'' function object + // to compute the values of the + // coefficient at all quadrature + // points on one cell at once. The + // reason for this is that, if you + // look back at how we did this in + // step-4, you will realize that we + // called the function computing + // the right hand side value inside + // nested loops over all degrees of + // freedom and over all quadrature + // points, + // i.e. dofs_per_cell*n_q_points + // times. For the coefficient that + // is used inside the matrix, this + // would actually be + // dofs_per_cell*dofs_per_cell*n_q_points. On + // the other hand, the function + // will of course return the same + // value everytime it is called + // with the same quadrature point, + // independently of what shape + // function we presently treat; + // secondly, these are virtual + // function calls, so are rather + // expensive. Obviously, there are + // only n_q_point different values, + // and we shouldn't call the + // function more often than + // that. Or, even better than this, + // compute all of these values at + // once, and get away with a single + // function call per cell. + // + // This is exactly what we are + // going to do. For this, we need + // some space to store the values + // in. We therefore also have to + // declare an array to hold these + // values: + const Coefficient coefficient; + std::vector coefficient_values (n_q_points); + + // Next is the typical loop over + // all cells to compute local + // contributions and then to + // transfer them into the global + // matrix and vector. + // + // The only two things in which + // this loop differs from step-4 is + // that we want to compute the + // value of the coefficient in all + // quadrature points on the present + // cell at the beginning, and then + // use it in the computation of the + // local contributions. This is + // what we do in the call to + // ``coefficient.value_list'' in + // the fourth line of the loop. + // + // The second change is how we make + // use of this coefficient in + // computing the cell matrix + // contributions. This is in the + // obvious way, and not worth more + // comments. For the right hand + // side, we use a constant value + // again. + typename DoFHandler::active_cell_iterator + cell = dof_handler.begin_active(), + endc = dof_handler.end(); for (; cell!=endc; ++cell) { cell_matrix = 0; cell_rhs = 0; - // As before, we want the - // FEValues object to compute - // the quantities which we told - // him to compute in the - // constructor using the update - // flags. fe_values.reinit (cell); - // There is one more thing: in - // this example, we want to use - // a non-constant - // coefficient. In the previous - // example, we have called the - // ``value'' function of the - // right hand side object for - // each quadrature - // point. Unfortunately, that - // is a virtual function, so - // calling it is relatively - // expensive. Therefore, we use - // a function of the ``Function'' - // class which returns the - // values at all quadrature - // points at once; that - // function is still virtual, - // but it needs to be computed - // once per cell only, not once - // in the inner loop: coefficient.value_list (fe_values.get_quadrature_points(), coefficient_values); - // It should be noted that the - // creation of the - // coefficient_values object is - // done outside the loop over - // all cells to avoid memory - // allocation each time we - // visit a new cell. - // With all this, the loops - // then look like this (the - // parentheses around the - // product of the two gradients - // are needed to indicate the - // dot product; we have to - // overrule associativity of - // the operator* here, since - // the compiler would otherwise - // complain about an undefined - // product of double*gradient - // since it parses - // left-to-right): for (unsigned int q_point=0; q_point::assemble_system () } } - // Again use zero boundary values: + // With the matrix so built, we use + // zero boundary values again: std::map boundary_values; VectorTools::interpolate_boundary_values (dof_handler, 0, @@ -609,57 +631,56 @@ void LaplaceProblem::assemble_system () } + // @sect4{LaplaceProblem::solve} // The solution process again looks // mostly like in the previous // examples. However, we will now use // a preconditioned conjugate // gradient algorithm. It is not very - // difficult to make this change: + // difficult to make this change. In + // fact, the only thing we have to + // alter is that we need an object + // which will act as a + // preconditioner. We will use SSOR + // (symmetric successive + // overrelaxation), with a relaxation + // factor of 1.2. For this purpose, + // the ``SparseMatrix'' class has a + // function which does one SSOR step, + // and we need to package the address + // of this function together with the + // matrix on which it should act + // (which is the matrix to be + // inverted) and the relaxation + // factor into one object. The + // ``PreconditionSSOR'' class does + // this for us. (``PreconditionSSOR'' + // class takes a template argument + // denoting the matrix type it is + // supposed to work on. The default + // value is ``SparseMatrix'', + // which is exactly what we need + // here, so we simply stick with the + // default and do not specify + // anything in the angle brackets.) + // + // With this, the rest of the + // function is trivial: instead of + // the ``PreconditionIdentity'' + // object we have created before, we + // now use the preconditioner we have + // declared, and the CG solver will + // do the rest for us: template void LaplaceProblem::solve () { SolverControl solver_control (1000, 1e-12); SolverCG<> cg (solver_control); - // The only thing we have to alter - // is that we need an object which - // will act as a preconditioner. We - // will use SSOR (symmetric - // successive overrelaxation), with - // a relaxation factor of 1.2. For - // this purpose, the SparseMatrix - // class has a function which does - // one SSOR step, and we need to - // package the address of this - // function together with the - // matrix on which it should act - // (which is the matrix to be - // inverted) and the relaxation - // factor into one object. This can - // be done like this: PreconditionSSOR<> preconditioner; preconditioner.initialize(system_matrix, 1.2); - // (Note that we did not have to - // explicitely pass the address of - // the SSOR function of the matrix - // to this objects, rather it is - // hardcoded into the object, thus - // the name.) - // - // The default template parameters - // of the ``PreconditionRelaxation'' - // class is the matrix type, which - // defaults to the types used in - // this program. - - // Calling the solver now looks - // mostly like in the example - // before, but where there was an - // object of type - // PreconditionIdentity before, - // there now is the newly generated - // preconditioner object. + cg.solve (system_matrix, solution, system_rhs, preconditioner); @@ -669,6 +690,7 @@ void LaplaceProblem::solve () } + // @sect4{LaplaceProblem::output_results and setting output flags} // Writing output to a file is mostly // the same as for the previous @@ -713,7 +735,9 @@ void LaplaceProblem::output_results (const unsigned int cycle) const // demonstrate how to change // them. For this, we first have to // generate an object describing - // the flags for EPS output: + // the flags for EPS output + // (similar flag classes exist for + // all supported output formats): DataOutBase::EpsFlags eps_flags; // They are initialized with the // default values, so we only have @@ -755,9 +779,13 @@ void LaplaceProblem::output_results (const unsigned int cycle) const // we would like to use different // flags. This is inconvenient, and // we will see more advanced ways - // in following examples where the - // output flags are determined at - // run time using an input file. + // in step-19 where the output + // flags are determined at run time + // using an input file (step-19 + // doesn't show many other things; + // you should feel free to read + // over it even if you haven't done + // step-6 to step-18 yet). // Finally, we need the filename to // which the results are to be @@ -777,7 +805,7 @@ void LaplaceProblem::output_results (const unsigned int cycle) const // string. This applies the usual // conversions from integer to // strings, and one could as well - // give stream modifiers such as + // use stream modifiers such as // ``setw'', ``setprecision'', and // so on. // @@ -839,19 +867,37 @@ void LaplaceProblem::output_results (const unsigned int cycle) const // function, otherwise the result // is a char* right away. Use that // as filename for the output - // stream: + // stream and then write the data + // to the file: #ifdef HAVE_STD_STRINGSTREAM std::ofstream output (filename.str().c_str()); #else std::ofstream output (filename.str()); #endif - // And then write the data to the - // file. + data_out.write_eps (output); } + // @sect4{LaplaceProblem::run} + + // The second to last thing in this + // program is the definition of the + // ``run()'' function. In contrast to + // the previous programs, we will + // compute on a sequence of meshes + // that after each iteration is + // globall refined. The function + // therefore consists of a loop over + // 6 cycles. In each cycle, we first + // print the cycle number, and then + // have to decide what to do with the + // mesh. If this is not the first + // cycle, we can simply refine the + // existing mesh once globally. If + // this is the first cycle, however, + // we first have to generate a mesh: template void LaplaceProblem::run () { @@ -859,34 +905,40 @@ void LaplaceProblem::run () { std::cout << "Cycle " << cycle << ':' << std::endl; - // If this is the first round, - // then we have no grid yet, - // and we will create it - // here. In previous examples, - // we have already used some of - // the functions from the - // GridGenerator class. Here we - // would like to read a grid - // from a file where the cells - // are stored and which may - // originate from someone else, - // or may be the product of a - // mesh generator tool. - // - // In order to read a grid from - // a file, we generate an - // object of data type GridIn - // and associate the - // triangulation to it (i.e. we - // tell it to fill our - // triangulation object when we - // ask it to read the - // file). Then we open the - // respective file and - // initialize the triangulation - // with the data in the file: - if (cycle == 0) + if (cycle != 0) + triangulation.refine_global (1); + else { + // If this is the first + // round, then we have no + // grid yet, and we will + // create it here. In + // previous examples, we + // have already used some + // of the functions from + // the ``GridGenerator'' + // class. Here we would + // like to read a grid from + // a file where the cells + // are stored and which may + // originate from someone + // else, or may be the + // product of a mesh + // generator tool. + // + // In order to read a grid + // from a file, we generate + // an object of data type + // GridIn and associate the + // triangulation to it + // (i.e. we tell it to fill + // our triangulation object + // when we ask it to read + // the file). Then we open + // the respective file and + // initialize the + // triangulation with the + // data in the file: GridIn grid_in; grid_in.attach_triangulation (triangulation); std::ifstream input_file("circle-grid.inp"); @@ -938,8 +990,11 @@ void LaplaceProblem::run () // what not to do, after // all. - // We can now actually read - // the grid. It is in UCD + // So if we got past the + // assertion, we know that + // dim==2, and we can now + // actually read the + // grid. It is in UCD // (unstructured cell data) // format (but the ending // of the ``UCD''-file is @@ -984,16 +1039,12 @@ void LaplaceProblem::run () static const HyperBallBoundary boundary; triangulation.set_boundary (0, boundary); } - // If this is not the first - // cycle, then simply refine - // the grid once globally. - else - triangulation.refine_global (1); - // Write some output and do all - // the things that we have - // already seen in the previous - // examples. + // Now that we have a mesh for + // sure, we write some output + // and do all the things that + // we have already seen in the + // previous examples. std::cout << " Number of active cells: " << triangulation.n_active_cells() << std::endl @@ -1008,12 +1059,13 @@ void LaplaceProblem::run () } } - + + // @sect4{The ``main'' function} // The main function looks mostly // like the one in the previous // example, so we won't comment on it - // further. + // further: int main () { deallog.depth_console (0); @@ -1023,21 +1075,26 @@ int main () // Finally, we have promised to // trigger an exception in the - // Coefficient class. For this, we + // ``Coefficient'' class through + // the ``Assert'' macro we have + // introduced there. For this, we // have to call its ``value_list'' // function with two arrays of // different size (the number in - // parentheses behind the name of - // the object). We have commented - // out these lines in order to - // allow the program to exit - // gracefully in normal situations - // (we use the program in - // day-to-day testing of changes to - // the library as well), so you + // parentheses behind the + // declaration of the object). We + // have commented out these lines + // in order to allow the program to + // exit gracefully in normal + // situations (we use the program + // in day-to-day testing of changes + // to the library as well), so you // will only get the exception by // un-commenting the following - // lines. + // lines. Take a look at the + // Results section of the program + // to see what happens when the + // code is actually run: /* Coefficient<2> coefficient; std::vector > points (2); -- 2.39.5