From 5be6c9c52792d8145fa4ecabf44f2a4c21af0dde Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Thu, 28 Feb 2002 12:46:07 +0000 Subject: [PATCH] Add a little bit documentation. git-svn-id: https://svn.dealii.org/trunk@5542 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/base/include/base/tensor_product_polynomials.h | 5 ++++- deal.II/deal.II/include/fe/fe.h | 7 ++++++- 2 files changed, 10 insertions(+), 2 deletions(-) diff --git a/deal.II/base/include/base/tensor_product_polynomials.h b/deal.II/base/include/base/tensor_product_polynomials.h index 24a5786992..e56e1a2c1c 100644 --- a/deal.II/base/include/base/tensor_product_polynomials.h +++ b/deal.II/base/include/base/tensor_product_polynomials.h @@ -29,7 +29,10 @@ * * Given a vector of @{n} one-dimensional polynomials @{P1} to @{Pn}, * this class generates @p{n} to the power of @p{dim} polynomials of - * the form @p{ Qijk(x,y,z) = Pi(x)Pj(y)Pk(z)}. + * the form @p{ Qijk(x,y,z) = Pi(x)Pj(y)Pk(z)}. If the base + * polynomials are mutually orthogonal on the interval $[-1,1]$ or + * $[0,d], then the tensor product polynomials are orthogonal on + * $[-1,1]^d$ or $[0,1]^d$, respectively. * * @author Ralf Hartmann, 2000, documentation Guido Kanschat */ diff --git a/deal.II/deal.II/include/fe/fe.h b/deal.II/deal.II/include/fe/fe.h index 97b7ed8294..5957eae581 100644 --- a/deal.II/deal.II/include/fe/fe.h +++ b/deal.II/deal.II/include/fe/fe.h @@ -43,7 +43,12 @@ template class FESystem; * support points. This is then fed into an object of class * @ref{FEValues}. Even for evaluation on the unit cell, you will need * a triangulation containing that single cell. - * + * + * Basically, this class just declares the shape function and their + * derivatives on the unit cell $[0,1]^d$, and the means to transform + * them onto a given cell in physical space if provided by the + * @ref{FEValues} class with a @ref{Mapping} object. + * * @author Wolfgang Bangerth, Guido Kanschat, Ralf Hartmann, 1998, 2000, 2001 */ template -- 2.39.5