From 5eb649464047d9f310afb106e6ba451333e209ed Mon Sep 17 00:00:00 2001 From: mcbride Date: Thu, 9 Sep 2010 08:51:27 +0000 Subject: [PATCH] Add missing methods FEValuesViews::SymmetricTensor< 2, dim, spacedim >::value and FEValuesViews::SymmetricTensor< 2, dim, spacedim >::divergence git-svn-id: https://svn.dealii.org/trunk@21901 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/deal.II/include/fe/fe_values.h | 121 +++++++++++++++++++++++++ 1 file changed, 121 insertions(+) diff --git a/deal.II/deal.II/include/fe/fe_values.h b/deal.II/deal.II/include/fe/fe_values.h index 20af1d2969..8ec03b79e4 100644 --- a/deal.II/deal.II/include/fe/fe_values.h +++ b/deal.II/deal.II/include/fe/fe_values.h @@ -4110,6 +4110,127 @@ namespace FEValuesViews return symmetrize(return_value); } } + + + + template + inline + typename SymmetricTensor<2, dim, spacedim>::value_type + SymmetricTensor<2, dim, spacedim>::value (const unsigned int shape_function, + const unsigned int q_point) const + { + typedef FEValuesBase FVB; + Assert (shape_function < fe_values.fe->dofs_per_cell, + ExcIndexRange (shape_function, 0, fe_values.fe->dofs_per_cell)); + Assert (fe_values.update_flags & update_values, + typename FVB::ExcAccessToUninitializedField()); + + // similar to the vector case where + // we have more then one index and we need + // to convert between unrolled and component + // indexing for tensors + + const int snc = shape_function_data[shape_function].single_nonzero_component; + + if (snc == -2) + { + // shape function is zero for the + // selected components + return value_type(); + + } else if (snc != -1) + { + value_type return_value; + const unsigned int comp = + shape_function_data[shape_function].single_nonzero_component_index; + return_value[value_type::unrolled_to_component_indices(comp)] + = fe_values.shape_values(snc,q_point); + return return_value; + } + else + { + value_type return_value; + for (unsigned int d = 0; d < value_type::n_independent_components; ++d) + if (shape_function_data[shape_function].is_nonzero_shape_function_component[d]) + return_value[value_type::unrolled_to_component_indices(d)] + = fe_values.shape_values(shape_function_data[shape_function].row_index[d],q_point); + return return_value; + } + } + + template + inline + typename SymmetricTensor<2, dim, spacedim>::divergence_type + SymmetricTensor<2, dim, spacedim>::divergence(const unsigned int shape_function, + const unsigned int q_point) const + { + typedef FEValuesBase FVB; + Assert (shape_function < fe_values.fe->dofs_per_cell, + ExcIndexRange (shape_function, 0, fe_values.fe->dofs_per_cell)); + Assert (fe_values.update_flags & update_gradients, + typename FVB::ExcAccessToUninitializedField()); + + const int snc = shape_function_data[shape_function].single_nonzero_component; + + if (snc == -2) + { + // shape function is zero for the + // selected components + return divergence_type(); + } else if (snc != -1) { + // have a single non-zero component when the + // symmetric tensor is repsresented in unrolled form. + // this implies we potentially have two non-zero + // components when represented in component form! + // we will only have one non-zero entry if the non-zero + // component lies on the diagonal of the tensor. + // + // the divergence of a second-order tensor + // is a first order tensor. + // + // assume the second-order tensor is A with componets A_{ij}. + // then A_{ij} = A_{ji} and there is only one (if diagonal) + // or two non-zero entries in the tensorial representation. + // define the divergence as: + // b_i := \dfrac{\partial A_{ij}}{\partial x_j}. + // + // Now, knowing the row ii and collumn jj of the non-zero entry + // we compute the divergence as + // b_ii = \dfrac{\partial A_{ij}}{\partial x_jj} (no sum) + // and if ii =! jj (not on a diagonal) + // b_jj = \dfrac{\partial A_{ij}}{\partial x_ii} (no sum) + + divergence_type return_value; + + // non-zero index in unrolled format + const unsigned int comp = + shape_function_data[shape_function].single_nonzero_component_index; + + const unsigned int ii = value_type::unrolled_to_component_indices(comp)[0]; + const unsigned int jj = value_type::unrolled_to_component_indices(comp)[1]; + + // value of the non-zero tensor component + const double A_ij = fe_values.shape_values(snc,q_point); + + // the gradient of the non-zero shape function + const Tensor<1, spacedim> phi_grad = fe_values.shape_gradients[snc][q_point]; + + return_value[ii] = A_ij * phi_grad[jj]; + + // if we are not on a diagonal + if (ii != jj) + return_value[jj] = A_ij * phi_grad[ii]; + + return return_value; + + } else + { + Assert (false, ExcNotImplemented()); + divergence_type return_value; + return return_value; + } + } + } -- 2.39.5