From 64cb57a03ce609e10767e7b256d157cfbe0f4bce Mon Sep 17 00:00:00 2001 From: Timo Heister Date: Tue, 14 May 2019 15:17:56 -0600 Subject: [PATCH] fix doxygen formula errors --- examples/step-32/doc/intro.dox | 2 +- examples/step-38/doc/intro.dox | 2 +- include/deal.II/grid/grid_generator.h | 2 +- include/deal.II/grid/manifold_lib.h | 4 ++-- include/deal.II/lac/qr.h | 2 +- include/deal.II/optimization/solver_bfgs.h | 4 ++-- 6 files changed, 8 insertions(+), 8 deletions(-) diff --git a/examples/step-32/doc/intro.dox b/examples/step-32/doc/intro.dox index 8071c67c0c..d2f56b7882 100644 --- a/examples/step-32/doc/intro.dox +++ b/examples/step-32/doc/intro.dox @@ -1144,7 +1144,7 @@ the following quantities: viscosity of the material that flows into the area vacated under the rebounding continental plates. - Using this technique, values around $\eta=10^{21} \text{Pa \thinmuskip s} + Using this technique, values around $\eta=10^{21} \text{Pa \; s} = 10^{21} \frac{\text{N\; s}}{\text{m}^2} = 10^{21} \frac{\text{kg}}{\text{m\; s}}$ have been found as the most likely, though the error bar on this is at least one order of magnitude. diff --git a/examples/step-38/doc/intro.dox b/examples/step-38/doc/intro.dox index f28962a508..f0dd4307cc 100644 --- a/examples/step-38/doc/intro.dox +++ b/examples/step-38/doc/intro.dox @@ -118,7 +118,7 @@ This surface description given, in the codimension one surface case, the two routines FEValues::shape_grad and FEValues::JxW return @f{align*} -\text{FEValues::shape_grad}(i,l)&=D \mathbf x_K(p_l) G^{-1}(p_l)D(\varphi_i \circ \mathbf x_K) +\text{FEValues::shape\_grad}(i,l)&=D \mathbf x_K(p_l) G^{-1}(p_l)D(\varphi_i \circ \mathbf x_K) (p_l) \\ \text{FEValues::JxW}(l) &= \sqrt{\det (G(p_l))} \ w_l. diff --git a/include/deal.II/grid/grid_generator.h b/include/deal.II/grid/grid_generator.h index febb246c8b..9c55cf002f 100644 --- a/include/deal.II/grid/grid_generator.h +++ b/include/deal.II/grid/grid_generator.h @@ -1120,7 +1120,7 @@ namespace GridGenerator * * @f[ * r = r_{\text{inner}} + (r_\text{outer} - r_\text{inner}) - * \frac{1 - \tanh(\text{skewness}(1 - k/\text{n_shells}))} + * \frac{1 - \tanh(\text{skewness}(1 - k/\text{n\_shells}))} * {\tanh(\text{skewness})} * @f] * diff --git a/include/deal.II/grid/manifold_lib.h b/include/deal.II/grid/manifold_lib.h index 5dfd3827f9..d9ac04ba2b 100644 --- a/include/deal.II/grid/manifold_lib.h +++ b/include/deal.II/grid/manifold_lib.h @@ -472,10 +472,10 @@ private: * * This is based on the definition of elliptic coordinates $(u,v)$ * @f[ - * \left\lbrace\begin{align*} + * \left\lbrace\begin{aligned} * x &= x_0 + c \cosh(u) \cos(v) \\ * y &= y_0 + c \sinh(u) \sin(v) - * \end{align*}\right. + * \end{aligned}\right. * @f] * in which $(x_0,y_0)$ are coordinates of the center of the cartesian system. * diff --git a/include/deal.II/lac/qr.h b/include/deal.II/lac/qr.h index 68a87246a4..b970312493 100644 --- a/include/deal.II/lac/qr.h +++ b/include/deal.II/lac/qr.h @@ -32,7 +32,7 @@ DEAL_II_NAMESPACE_OPEN * * This class and classes derived from it are meant to build $Q$ and $R$ * matrices one row/column at a time, i.e., by growing $R$ matrix from an empty - * $0\times0$ matrix to $N\timesN$, where $N$ is the number of added column + * $0\times 0$ matrix to $N\times N$, where $N$ is the number of added column * vectors. * * As a consequence, matrices which have the same number of rows as each vector diff --git a/include/deal.II/optimization/solver_bfgs.h b/include/deal.II/optimization/solver_bfgs.h index 6caa393e19..5d4ebe19f0 100644 --- a/include/deal.II/optimization/solver_bfgs.h +++ b/include/deal.II/optimization/solver_bfgs.h @@ -33,7 +33,7 @@ DEAL_II_NAMESPACE_OPEN * method for function minimization in which the Hessian matrix is only * approximated. In particular, the Hessian is updated using the formula of * Broyden, Fletcher, Goldfarb, and Shanno (BFGS): - * \f[ + * @f{align*}{ * H^{(k+1)} &= \left[ * I-\rho_{(k)} s^{(k)} \otimes y^{(k)} * \right] @@ -46,7 +46,7 @@ DEAL_II_NAMESPACE_OPEN * y^{(k)} &\dealcoloneq g^{(k+1)} - g^{(k)} \\ * s^{(k)} &\dealcoloneq x^{(k+1)} - x^{(k)} \\ * \rho^{(k)} &\dealcoloneq \frac{1}{y^{(k)} \cdot s^{(k)}} - * \f] + * @f} * for a symmetric positive definite $H$. Limited memory variant is * implemented via the two-loop recursion. * -- 2.39.5