From 65be2ffe4b026b464d8933176330bb0e369c42ec Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Wed, 22 Dec 1999 22:47:06 +0000 Subject: [PATCH] Small updates. git-svn-id: https://svn.dealii.org/trunk@2115 0785d39b-7218-0410-832d-ea1e28bc413d --- .../examples/step-by-step/step-4/step-4.cc | 63 ++++++++++++++++--- deal.II/examples/step-4/step-4.cc | 63 ++++++++++++++++--- 2 files changed, 106 insertions(+), 20 deletions(-) diff --git a/deal.II/deal.II/Attic/examples/step-by-step/step-4/step-4.cc b/deal.II/deal.II/Attic/examples/step-by-step/step-4/step-4.cc index 901bfa6e10..1e09267f8e 100644 --- a/deal.II/deal.II/Attic/examples/step-by-step/step-4/step-4.cc +++ b/deal.II/deal.II/Attic/examples/step-by-step/step-4/step-4.cc @@ -40,12 +40,23 @@ - - - - - - + // This is again the same + // LaplaceProblem class as in the + // previous example. The only + // difference is that we have now + // declared it as a class with a + // template parameter, and the + // template parameter is of course + // the spatial dimension in which we + // would like to solve the Laplace + // equation. Of course, several of + // the member variables depend on + // this dimension as well, in + // particular the Triangulation + // class, which has to represent + // quadrilaterals or hexahedra, + // respectively. Apart from this, + // everything is as before. template class LaplaceProblem { @@ -91,6 +102,27 @@ class LaplaceProblem // parameters and shall return the // value at that point as a `double' // variable. + // + // The `value' function takes a + // second argument, which we have + // here named `component': This is + // only meant for vector valued + // functions, where you may want to + // access a certain component of the + // vector at the point `p'. However, + // our functions are scalar, so we + // need not worry about this + // parameter and we will not use it + // in the implementation of the + // functions. Note that in the base + // class (Function), the declaration + // of the `value' function has a + // default value of zero for the + // component, so we will access the + // `value' function of the right hand + // side with only one parameter, + // namely the point where we want to + // evaluate the function. template class RightHandSide : public Function { @@ -131,8 +163,9 @@ class BoundaryValues : public Function // right away. // // Note that the different - // coordinates of the point are - // accessed using the () operator. + // coordinates (i.e. `x', `y', ...) + // of the point are accessed using + // the () operator. template double RightHandSide::value (const Point &p, const unsigned int) const @@ -468,8 +501,18 @@ void LaplaceProblem::output_results () // Only difference to the previous // example: write output in GMV - // format, rather than for gnuplot. - ofstream output ("solution.gmv"); + // format, rather than for + // gnuplot. We use the dimension in + // the filename to generate + // distinct filenames for each run + // (in a better program, one would + // check whether `dim' can have + // other values than 2 or 3, but we + // neglect this here for the sake + // of brevity). + ofstream output ((dim == 2 ? + "solution-2d.gmv" : + "solution-3d.gmv"); data_out.write_gmv (output); }; diff --git a/deal.II/examples/step-4/step-4.cc b/deal.II/examples/step-4/step-4.cc index 901bfa6e10..1e09267f8e 100644 --- a/deal.II/examples/step-4/step-4.cc +++ b/deal.II/examples/step-4/step-4.cc @@ -40,12 +40,23 @@ - - - - - - + // This is again the same + // LaplaceProblem class as in the + // previous example. The only + // difference is that we have now + // declared it as a class with a + // template parameter, and the + // template parameter is of course + // the spatial dimension in which we + // would like to solve the Laplace + // equation. Of course, several of + // the member variables depend on + // this dimension as well, in + // particular the Triangulation + // class, which has to represent + // quadrilaterals or hexahedra, + // respectively. Apart from this, + // everything is as before. template class LaplaceProblem { @@ -91,6 +102,27 @@ class LaplaceProblem // parameters and shall return the // value at that point as a `double' // variable. + // + // The `value' function takes a + // second argument, which we have + // here named `component': This is + // only meant for vector valued + // functions, where you may want to + // access a certain component of the + // vector at the point `p'. However, + // our functions are scalar, so we + // need not worry about this + // parameter and we will not use it + // in the implementation of the + // functions. Note that in the base + // class (Function), the declaration + // of the `value' function has a + // default value of zero for the + // component, so we will access the + // `value' function of the right hand + // side with only one parameter, + // namely the point where we want to + // evaluate the function. template class RightHandSide : public Function { @@ -131,8 +163,9 @@ class BoundaryValues : public Function // right away. // // Note that the different - // coordinates of the point are - // accessed using the () operator. + // coordinates (i.e. `x', `y', ...) + // of the point are accessed using + // the () operator. template double RightHandSide::value (const Point &p, const unsigned int) const @@ -468,8 +501,18 @@ void LaplaceProblem::output_results () // Only difference to the previous // example: write output in GMV - // format, rather than for gnuplot. - ofstream output ("solution.gmv"); + // format, rather than for + // gnuplot. We use the dimension in + // the filename to generate + // distinct filenames for each run + // (in a better program, one would + // check whether `dim' can have + // other values than 2 or 3, but we + // neglect this here for the sake + // of brevity). + ofstream output ((dim == 2 ? + "solution-2d.gmv" : + "solution-3d.gmv"); data_out.write_gmv (output); }; -- 2.39.5