From 6836468408ed5ecfdc2c4ffd0336cce70a9dde55 Mon Sep 17 00:00:00 2001 From: Matthias Maier Date: Fri, 8 Feb 2019 14:36:08 -0600 Subject: [PATCH] remove unnecessary whitespace --- examples/step-20/step-20.cc | 5 ----- 1 file changed, 5 deletions(-) diff --git a/examples/step-20/step-20.cc b/examples/step-20/step-20.cc index 20ddcb621d..7c6d13494e 100644 --- a/examples/step-20/step-20.cc +++ b/examples/step-20/step-20.cc @@ -596,7 +596,6 @@ namespace Step20 // Then, we will create corresponding LinearOperator objects and create // the op_M_inv operator: - const auto op_M = linear_operator(M); const auto op_B = linear_operator(B); @@ -611,7 +610,6 @@ namespace Step20 // This puts us in the position to be able to declare the Schur // complement op_S and the approximate Schur complement // op_aS: - const auto op_S = transpose_operator(op_B) * op_M_inv * op_B; const auto op_aS = transpose_operator(op_B) * linear_operator(preconditioner_M) * op_B; @@ -619,7 +617,6 @@ namespace Step20 // We now create a preconditioner out of op_aS that // applies a few number of CG iterations (until a very modest relative // reduction of $10^{-16}$ is reached): - ReductionControl reduction_control_aS(2000, 1.e-18, 1.0e-6); SolverCG<> solver_aS(reduction_control_aS); PreconditionIdentity preconditioner_aS; @@ -631,7 +628,6 @@ namespace Step20 // $B^TM^{-1}F-G$, which is what we compute in the first few lines. We // then solve the first equation with a CG solver and the // preconditioner we just declared. - const auto schur_rhs = transpose_operator(op_B) * op_M_inv * F - G; SolverControl solver_control_S(2000, 1.e-12); @@ -649,7 +645,6 @@ namespace Step20 // reads $MU=-BP+F$, and we solve it by first computing the right hand // side, and then multiplying it with the object that represents the // inverse of the mass matrix: - U = op_M_inv * (F - op_B * P); } -- 2.39.5