From 6b078c9eec0cb58326dee1f31052d4e2686ca7f2 Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Thu, 15 Apr 2004 22:11:41 +0000 Subject: [PATCH] More documentation. git-svn-id: https://svn.dealii.org/trunk@9019 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-15/step-15.cc | 325 ++++++++++++++++++++++------ 1 file changed, 258 insertions(+), 67 deletions(-) diff --git a/deal.II/examples/step-15/step-15.cc b/deal.II/examples/step-15/step-15.cc index fe12d4764c..b75e248d93 100644 --- a/deal.II/examples/step-15/step-15.cc +++ b/deal.II/examples/step-15/step-15.cc @@ -202,7 +202,7 @@ class MinimizationProblem void run (); private: - void initialize (); + void initialize_solution (); void setup_system_on_mesh (); void assemble_step (); double line_search (const Vector & update) const; @@ -243,15 +243,91 @@ MinimizationProblem::MinimizationProblem (const unsigned int run_number) {} - // And so is the function that prepares the - // member variables of this class for - // assembling the linear system in each - // nonlinear step. This has all been shown - // before in previous example programs. Note, - // however, that all this works in 1d just as - // in any other space dimension, and would - // not require any changes if we were to use - // the program in another space dimension. + // Then, here is the function that + // initializes the solution before the first + // non-linear iteration, by setting the + // initial values to the random function + // described above and making sure that the + // boundary values are set correctly. We will + // then only seek updates to this function + // with zero boundary values, so that the + // boundary values are always correct. +template <> +void MinimizationProblem<1>::initialize_solution () +{ + // The first part is to assign the correct + // size to the vector, and use library + // function that takes a function object, + // and interpolates the given vector living + // on a ``DoFHandler'' to this function + // object: + present_solution.reinit (dof_handler.n_dofs()); + VectorTools::interpolate (dof_handler, + InitializationValues(), + present_solution); + + // Then we still have to make sure that we + // get the boundary values right. This + // could have been done inside the + // ``InitializationValues'' class, but it + // is instructive to see how it can also be + // done, in particular since it is so + // simple in 1d. First, start out with an + // arbitrary cell on level 0, i.e. the + // coarse mesh: + DoFHandler<1>::cell_iterator cell; + cell = dof_handler.begin(0); + // Then move as far to the left as + // possible. Note that while in two or more + // space dimensions, there is is no + // guarantee as to the coordinate + // directions of a given face number of a + // cell, in 1d the zeroth face (and + // neighbor) is always the one to the left, + // and the first one the one to the + // right. Similarly, the zeroth child is + // the left one, the first child is the + // right one. + while (cell->at_boundary(0) == false) + cell = cell->neighbor(0); + // Now that we are at the leftmost coarse + // grid cell, go recursively through its + // left children until we find a terminal + // one: + while (cell->has_children() == true) + cell = cell->child(0); + // Then set the value of the solution + // corresponding to the zeroth degree of + // freedom and the zeroth vertex of the + // cell to zero. Note that the zeroth + // vertex is the left one, and that zero is + // the only valid second argument to the + // call to ``vertex_dof_index'', since we + // have a scalar finite element; thus, + // there is only a single component. + present_solution(cell->vertex_dof_index(0,0)) = 0; + + // Now do all the same with the right + // boundary value, and set it to one: + cell = dof_handler.begin(0); + while (cell->at_boundary(1) == false) + cell = cell->neighbor(1); + while (cell->has_children()) + cell = cell->child(1); + present_solution(cell->vertex_dof_index(1,0)) = 1; +} + + + // The function that prepares the member + // variables of this class for assembling the + // linear system in each nonlinear step is + // also not very interesting. This has all + // been shown before in previous example + // programs. Note, however, that all this + // works in 1d just as in any other space + // dimension, and would not require any + // changes if we were to use the program in + // another space dimension. // // Note that this function is only called // when the mesh has been changed (or before @@ -299,7 +375,7 @@ void MinimizationProblem::assemble_step () residual.reinit (dof_handler.n_dofs()); // Then we initialize a ``FEValues'' object - // with a 3-point Gauss quadrature + // with a 4-point Gauss quadrature // formula. This object will be used to // compute the values and gradients of the // shape functions at the quadrature @@ -319,75 +395,157 @@ void MinimizationProblem::assemble_step () // ``x-u^3'' terms; to get these from the // ``FEValues'' object, we need to pass it // the ``update_q_points'' flag. - QGauss3 quadrature_formula; + // + // It is a simple calculation to figure out + // that for linear elements, the integrals + // in the right hand side semilinear form + // is a polynomial of sixth order. Thus, + // the appropriate quadrature formula is + // the one we have chosen here. + QGauss4 quadrature_formula; FEValues fe_values (fe, quadrature_formula, UpdateFlags(update_values | update_gradients | update_q_points | update_JxW_values)); - const unsigned int dofs_per_cell = fe.dofs_per_cell; - const unsigned int n_q_points = quadrature_formula.n_quadrature_points; + // Next, here are the usual two convenience + // variables, followed by declarations for + // the local contributions to matrix and + // right hand side, as well as an array to + // hold the indices of the local degrees of + // freedom on each cell: + const unsigned int dofs_per_cell = fe.dofs_per_cell; + const unsigned int n_q_points = quadrature_formula.n_quadrature_points; FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); Vector cell_rhs (dofs_per_cell); std::vector local_dof_indices (dofs_per_cell); - + + // The next two variables are needed since + // the problem we consider is nonlinear, + // and thus the right hand side depends on + // the previous solution (in a Newton + // method, for example, the left hand side + // matrix would also depend on the previous + // solution, but as explained in the + // introduction, we only use a simple + // gradient-type method in which the matrix + // is a scaled Laplace-type matrix). In + // order to compute the values of the + // integrand for the right hand side, we + // therefore need to have the values and + // gradients of the previous solution at + // the quadrature points. We will get them + // from the ``FEValues'' object above, and + // will put them into the following two + // variables: std::vector local_solution_values (n_q_points); std::vector > local_solution_grads (n_q_points); - + + // Now, here comes the main loop over all + // the cells of the mesh: typename DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), endc = dof_handler.end(); for (; cell!=endc; ++cell) { + // First, clear the objects that hold + // the local matrix and right hand side + // contributions for this cell: cell_matrix.clear (); cell_rhs.clear (); + // Then initialize the values and + // gradients of the shape functions at + // the quadrature points of this cell: fe_values.reinit (cell); + // And get the values and gradients of + // the previous solution at the + // quadrature points. To get them, we + // don't actually have to do much, + // except for giving the ``FEValues'' + // object the global node vector from + // which to compute this data, and a + // reference to the objects into which + // to put them. After the calls, the + // ``local_solution_values'' and + // ``local_solution_values'' variables + // will contain values and gradients + // for each of the quadrature points on + // this cell. fe_values.get_function_values (present_solution, local_solution_values); fe_values.get_function_grads (present_solution, local_solution_grads); - + + // Then loop over all quadrature + // points: for (unsigned int q_point=0; q_point u_prime = local_solution_grads[q_point]; - + + // Then do the double loop over all + // shape functions to compute the + // local contribution to the + // matrix. The terms are simple + // equivalents of the formula + // stated in the introduction. Note + // how we extract the size of an + // element from the iterator to the + // present cell: + for (unsigned int i=0; idiameter() * + cell->diameter() + + + fe_values.shape_value(i,q_point) * + fe_values.shape_value(j,q_point)) * + fe_values.JxW(q_point); + + // And here comes the loop over all + // local degrees of freedom to form + // the right hand side. The formula + // looks a little convoluted, but + // is again a simple image of what + // was given in the introduction: for (unsigned int i=0; idiameter() * cell->diameter() + - fe_values.shape_value(i,q_point) * - fe_values.shape_value(j,q_point)) * - fe_values.JxW(q_point); - - cell_rhs(i) += -((6. * x_minus_u3 * - gradient_power (local_solution_grads[q_point], - 4) * - fe_values.shape_value(i,q_point) - * - (x_minus_u3 * - (u_prime * - fe_values.shape_grad(i,q_point)) - - - (u_prime*u_prime) * u * u * - fe_values.shape_value(i,q_point)) - ) - * - fe_values.JxW(q_point)); - } + cell_rhs(i) += -((6. * x_minus_u3 * + gradient_power (u_prime, 4) * + fe_values.shape_value(i,q_point) + * + (x_minus_u3 * + (u_prime * + fe_values.shape_grad(i,q_point)) + - + (u_prime*u_prime) * u * u * + fe_values.shape_value(i,q_point)) + ) + * + fe_values.JxW(q_point)); } - + // After summing up all the + // contributions, we have to transfer + // them to the global objects. This is + // done in the same way as always + // before: cell->get_dof_indices (local_dof_indices); for (unsigned int i=0; i::assemble_step () } } + // Now that we have all the local + // contributions summed up, we have to + // eliminate hanging node constraints and + // boundary values. Hanging nodes are + // simple: hanging_node_constraints.condense (matrix); hanging_node_constraints.condense (residual); + // Boundary values are, too, but with a + // twist this time: in all previous example + // programs, we have used that by default + // (i.e. unless something else is set), all + // boundaries have indicator zero. To + // figure out what boundary indicator a + // face of a cell had, the library + // functions would query an iterator + // designating this face, which would in + // turn pluck out this value from some of + // the data structures in the + // library. Unfortunately, in 1d cells have + // no faces: these would only be points, + // and we don't associated anything in the + // library with points except for their + // coordinates. Thus there are no face + // iterators, and no way to figure out + // which boundary indicator it may have. On + // the other hand, in 1d, there can only be + // two boundaries anyway for a connected + // domain: the left end point and the right + // end point. And in contrast to the case + // in higher dimensions, where the + // (changeable) default is zero for all + // boundary parts, in 1d the convention is + // that the left boundary point has + // indicator zero, while the right boundary + // point has indicator one. Since there are + // no face iterators, it is also not + // possible to change this, but you will + // hardly ever have to. So in order to + // assign zero boundary values on both + // sides, in 1d we not only need to + // evaluate boundary values for indicator + // zero, but also for indicator one. If + // this program is ever going to be run in + // higher dimensions, then we should only + // evaluate for indicator zero, which is + // why we have placed the ``if'' statement + // in front of the second function call. + // + // Note that we need zero boundary + // conditions on both ends, since the space + // in which search for the solution has + // fixed boundary conditions zero and one, + // and we have set the initial values to + // already satisfy them. Thus, the updates + // computed in each nonlinear step must + // have zero boundary values. std::map boundary_values; VectorTools::interpolate_boundary_values (dof_handler, 0, @@ -502,28 +714,6 @@ void MinimizationProblem::do_step () -template <> -void MinimizationProblem<1>::initialize () -{ - dof_handler.distribute_dofs (fe); - present_solution.reinit (dof_handler.n_dofs()); - VectorTools::interpolate (dof_handler, - InitializationValues(), - present_solution); - DoFHandler<1>::cell_iterator cell; - cell = dof_handler.begin(0); - while (cell->has_children()) - cell = cell->child(0); - present_solution(cell->vertex_dof_index(0,0)) = 0; - - cell = dof_handler.begin(0); - while (cell->has_children()) - cell = cell->child(1); - present_solution(cell->vertex_dof_index(1,0)) = 1; -} - - - template <> void MinimizationProblem<1>::refine_grid () { @@ -729,7 +919,8 @@ void MinimizationProblem::run () { GridGenerator::hyper_cube (triangulation, 0., 1.); triangulation.refine_global (4); - initialize (); + dof_handler.distribute_dofs (fe); + initialize_solution (); double last_energy = energy (dof_handler, present_solution); -- 2.39.5