From 70d60506104760d0fd731933c1b1b8882f19c83a Mon Sep 17 00:00:00 2001 From: Luca Heltai Date: Tue, 26 Sep 2017 16:45:49 +0200 Subject: [PATCH] ARKode interface. --- include/deal.II/sundials/arkode.h | 869 ++++++++++++++++++++++++++++++ source/sundials/CMakeLists.txt | 1 + source/sundials/arkode.cc | 488 +++++++++++++++++ 3 files changed, 1358 insertions(+) create mode 100644 include/deal.II/sundials/arkode.h create mode 100644 source/sundials/arkode.cc diff --git a/include/deal.II/sundials/arkode.h b/include/deal.II/sundials/arkode.h new file mode 100644 index 0000000000..0ed5c85419 --- /dev/null +++ b/include/deal.II/sundials/arkode.h @@ -0,0 +1,869 @@ +//----------------------------------------------------------- +// +// Copyright (C) 2017 by the deal.II authors +// +// This file is part of the deal.II library. +// +// The deal.II library is free software; you can use it, redistribute +// it, and/or modify it under the terms of the GNU Lesser General +// Public License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. +// The full text of the license can be found in the file LICENSE at +// the top level of the deal.II distribution. +// +//--------------------------------------------------------------- + +#ifndef dealii_sundials_arkode_h +#define dealii_sundials_arkode_h + +#include +#ifdef DEAL_II_WITH_SUNDIALS + +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include + +#include +#include + + +DEAL_II_NAMESPACE_OPEN + +// Shorthand notation for ARKODE error codes. +#define AssertARKode(code) Assert(code >= 0, ExcARKodeError(code)) + +namespace SUNDIALS +{ + /** + * Interface to SUNDIALS additive Runge-Kutta methods (ARKode). + * + * The class ARKode is a wrapper to SUNDIALS variable-step, embedded, + * additive Runge-Kutta solver which is a general purpose solver for systems + * of ordinary differential equations characterized by the presence of both + * fast and slow dynamics. + * + * Fast dynamics are treated implicitly, and slow dynamics are treated + * explicitly, using nested families of implicit and explicit Runge-Kutta + * solvers. + * + * Citing directly from ARKode documentation: + * + * ARKode solves ODE initial value problems (IVPs) in $R^N$. These problems + * should be posed in explicit form as + * + * \f[ + * M\dot y = f_E(t, y) + f_I (t, y), \qquad y(t_0) = y_0. + * \f] + * + * Here, $t$ is the independent variable (e.g. time), and the dependent + * variables are given by $y \in R^N$, and we use notation $\dot y$ to denote + * $dy/dt$. $M$ is a user-supplied nonsingular operator from $R^N \to R^N$. + * This operator may depend on $t$ but not on $y$. + * + * For standard systems of ordinary differential equations and for problems + * arising from the spatial semi-discretization of partial differential + * equations using finite difference or finite volume methods, $M$ is + * typically the identity matrix, $I$. For PDEs using a finite-element + * spatial semi-discretization $M$ is typically a well-conditioned mass + * matrix. + * + * The two right-hand side functions may be described as: + * + * - $f_E(t, y)$: contains the "slow" time scale components of the system. + * This will be integrated using explicit methods. + * - $f_I(t, y)$: contains the "fast" time scale components of the system. + * This will be integrated using implicit methods. + * + * ARKode may be used to solve stiff, nonstiff and multi-rate problems. + * Roughly speaking, stiffness is characterized by the presence of at least + * one rapidly damped mode, whose time constant is small compared to the time + * scale of the solution itself. In the implicit/explicit (ImEx) splitting + * above, these stiff components should be included in the right-hand side + * function $f_I (t, y)$. + * + * For multi-rate problems, a user should provide both of the functions $f_E$ + * and $f_I$ that define the IVP system. + * + * For nonstiff problems, only $f_E$ should be provided, and $f_I$ is assumed + * to be zero, i.e. the system reduces to the non-split IVP: + * + * \f[ + * M\dot y = f_E(t, y), \qquad y(t_0) = y_0. + * \f] + * + * In this scenario, the ARK methods reduce to classical explicit Runge-Kutta + * methods (ERK). For these classes of methods, ARKode allows orders of + * accuracy $q = \{2, 3, 4, 5, 6, 8\}$, with embeddings of orders $p = \{1, + * 2, 3, 4, 5, 7\}$. These default to the Heun-Euler-2-1-2, + * Bogacki-Shampine-4-2-3, Zonneveld-5-3-4, Cash-Karp-6-4-5, Verner-8-5-6 and + * Fehlberg-13-7-8 methods, respectively. + * + * Finally, for stiff (linear or nonlinear) problems the user may provide only + * $f_I$, implying that $f_E = 0$, so that the system reduces to the non-split + * IVP + * + * \f[ + * M\dot y = f_I(t, y), \qquad y(t_0) = y_0. + * \f] + * + * Similarly to ERK methods, in this scenario the ARK methods reduce to + * classical diagonally-implicit Runge-Kutta methods (DIRK). For these + * classes of methods, ARKode allows orders of accuracy $q = \{2, 3, 4, 5\}$, + * with embeddings of orders $p = \{1, 2, 3, 4\}$. These default to the + * SDIRK-2-1-2, ARK-4-2-3 (implicit), SDIRK-5-3-4 and ARK-8-4-5 (implicit) + * methods, respectively. + * + * For both DIRK and ARK methods, an implicit system of the form + * \f[ + * G(z_i) := M z_i − h_n A^I_{i,i} f_I (t^I_{n,i}, z_i) − a_i = 0 + * \f] + * must be solved for each stage $z_i , i = 1, \ldot, s$, where + * we have the data + * \[ + * a_i := M y_{n−1} + h_n \sum_{j=1}^{i−1} [ A^E_{i,j} f_E(t^E_{n,j}, z_j) + * + A^I_{i,j} f_I (t^I_{n,j}, z_j)] + * \] + * for the ARK methods, or + * \[ + * a_i := M y_{n−1} + h_n \sum_{j=1}^{i−1} A^I_{i,j} f_I (t^I_{n,j}, z_j) + * \] + * for the DIRK methods. Here $A^I_{i,j}$ and $A^E_{i,j}$ are the Butcher's + * tables for the chosen solver. + * + * If $f_I(t,y)$ depends nonlinearly on $y$ then the systems above correspond + * to a nonlinear system of equations; if $f_I (t, y)$ depends linearly on + * $y$ then this is a linear system of equations. By specifying the flag + * `implicit_function_is_linear`, ARKode takes some shortcuts that allow a + * faster solution process. + * + * For systems of either type, ARKode allows a choice of solution strategy. + * The default solver choice is a variant of Newton’s method, + * \[ + * z_i^{m+1} = z_i^m +\delta^{m+1}, + * \] + * where $m$ is the Newton index, and the Newton update $\delta^{m+1}$ + * requires the solution of the linear Newton system + * \[ + * N(z_i^m) \delta^{m+1} = -G(z_i^m), + * \] + * where + * \[ + * N := M - \gamma J, \quad J := \frac{\partial f_I}{\partial y}, + * \qquad \gamma:= h_n A^I_{i,i}. + * \] + * + * As an alternate to Newton’s method, ARKode may solve for each stage $z_i ,i + * = 1, \ldots , s$ using an Anderson-accelerated fixed point iteration + * \[ + * z_i^{m+1} = g(z_i^{m}), m=0,1,\ldots. + * \] + * + * Unlike with Newton’s method, this option does not require the solution of + * a linear system at each iteration, instead opting for solution of a + * low-dimensional least-squares solution to construct the nonlinear update. + * + * Finally, if the user specifies `implicit_function_is_linear`, i.e., + * $f_I(t, y)$ depends linearly on $y$, and if the Newton-based nonlinear + * solver is chosen, then the system will be solved using only a single + * Newton iteration. Notice that in order for the Newton solver to be used, + * at least the solve_jacobian_system() function should be supplied. If this + * function is not supplied, then only the fixed-point iteration will be + * supported, and the `implicit_function_is_linear` setting is ignored. + * + * The optimal solver (Newton vs fixed-point) is highly problem-dependent. + * Since fixed-point solvers do not require the solution of any linear + * systems, each iteration may be significantly less costly than their Newton + * counterparts. However, this can come at the cost of slower convergence (or + * even divergence) in comparison with Newton-like methods. These fixed-point + * solvers do allow for user specification of the Anderson-accelerated + * subspace size, $m_k$. While the required amount of solver memory grows + * proportionately to $m_k N$, larger values of $m_k$ may result in faster + * convergence. + * + * This improvement may be significant even for "small" values, e.g. $1 \leq + * m_k \leq 5$, and convergence may not improve (or even deteriorate) for + * larger values of $m_k$. While ARKode uses a Newton-based iteration as its + * default solver due to its increased robustness on very stiff problems, it + * is highly recommended that users also consider the fixed-point solver for + * their cases when attempting a new problem. + * + * For either the Newton or fixed-point solvers, it is well-known that both + * the efficiency and robustness of the algorithm intimately depends on the + * choice of a good initial guess. In ARKode, the initial guess for either + * nonlinear solution method is a predicted value $z_i(0)$ that is computed + * explicitly from the previously-computed data (e.g. $y_{n−2}, y_{n−1}$, and + * $z_j$ where $j < i$). Additional information on the specific predictor + * algorithms implemented in ARKode is provided in ARKode documentation. + * + * The user has to provide the implementation of the following std::function: + * - reinit_vector; + * and either one or both of + * - implicit_function; + * - explicit_function; + * + * If the mass matrix is different from the identity, the user should supply + * - solve_mass_system; + * and, optionally, + * - setup_mass; + * + * If the use of a Newton method is desired, then the user should also supply + * - solve_jacobian_system; + * and optionally + * - setup_jacobian; + * + * Also the following functions could be rewritten. By default + * they do nothing, or are not required. + * - solver_should_restart; + * - get_local_tolerances; + * + * To produce output at fixed steps, overload the function + * - output_step; + * + * + * To provide a simple example, consider the harmonic oscillator problem: + * \f[ + * \begin{split} + * u'' & = -k^2 u \\ + * u (0) & = 0 \\ + * u'(0) & = k + * \end{split} + * \f] + * + * We write it in terms of a first order ode: + *\f[ + * \begin{matrix} + * y_0' & = y_1 \\ + * y_1' & = - k^2 y_0 + * \end{matrix} + * \f] + * + * That is $y' = A y$ + * where + * \f[ + * A:= + * \begin{matrix} + * 0 & 1 \\ + * -k^2 &0 + * \end{matrix} + * \f] + * and $y(0)=(0, k)$. + * + * The exact solution is $y_0(t) = \sin(k t)$, $y_1(t) = y_0'(t) = k \cos(k t)$, + * $y_1'(t) = -k^2 \sin(k t)$. + * + * A minimal implementation, using only explicit RK methods, is given by the + * following code snippet: + * + * @code + * typedef Vector VectorType; + * + * SUNDIALS::ARKode ode; + * + * ode.reinit_vector = [] (VectorType&v) + * { + * v.reinit(2); + * }; + * + * double kappa = 1.0; + * + * ode.explicit_function = [kappa] (double, + * const VectorType &y, + * VectorType &ydot) -> int + * { + * ydot[0] = y[1]; + * ydot[1] = -kappa*kappa*y[0]; + * return 0; + * }; + * + * Vector y(2); + * y[1] = kappa; + * + * ode.solve_ode(y); + * @endcode + * + * @author Luca Heltai, 2017. + */ + template > + class ARKode + { + public: + + /** + * Additional parameters that can be passed to the ARKode class. + */ + class AdditionalData + { + public: + /** + * Initialization parameters for ARKode. + * + * Global parameters: + * + * @param initial_time Initial time + * @param final_time Final time + * @param initial_step_size Initial step size + * @param output_period Time interval between each output + * + * Running parameters: + * + * @param minimum_step_size Minimum step size + * @param maximum_order Maximum ARK order + * @param maximum_non_linear_iterations Maximum number of nonlinear iterations + * @param implicit_function_is_linear Specifies that the implicit portion of the problem is linear + * @param implicit_function_is_time_independent Specifies that the implicit portion of the problem + * is linear and time independent + * + * Error parameters: + * + * @param absolute_tolerance Absolute error tolerance + * @param relative_tolerance Relative error tolerance + */ + AdditionalData( + // Initial parameters + const double &initial_time = 0.0, + const double &final_time = 1.0, + const double &initial_step_size = 1e-2, + const double &output_period = 1e-1, + // Running parameters + const double &minimum_step_size = 1e-6, + const unsigned int &maximum_order = 5, + const unsigned int &maximum_non_linear_iterations = 10, + const bool implicit_function_is_linear = false, + const bool implicit_function_is_time_independent = false, + // Error parameters + const double &absolute_tolerance = 1e-6, + const double &relative_tolerance = 1e-5) : + initial_time(initial_time), + final_time(final_time), + initial_step_size(initial_step_size), + minimum_step_size(minimum_step_size), + absolute_tolerance(absolute_tolerance), + relative_tolerance(relative_tolerance), + maximum_order(maximum_order), + output_period(output_period), + maximum_non_linear_iterations(maximum_non_linear_iterations), + implicit_function_is_linear(implicit_function_is_linear), + implicit_function_is_time_independent(implicit_function_is_time_independent) + {}; + + /** + * Add all AdditionalData() parameters to the given ParameterHandler + * object. When the parameters are parsed from a file, the internal + * parameters are automatically updated. + * + * The following parameters are declared: + * + * @code + * set Final time = 1.000000 + * set Initial time = 0.000000 + * set Time interval between each output = 0.2 + * subsection Error control + * set Absolute error tolerance = 0.000001 + * set Ignore algebraic terms for error computations = true + * set Relative error tolerance = 0.00001 + * set Use local tolerances = false + * end + * subsection Initial condition correction parameters + * set Correction type at initial time = none + * set Correction type after restart = none + * set Maximum number of nonlinear iterations = 5 + * end + * subsection Running parameters + * set Initial step size = 0.1 + * set Maximum number of nonlinear iterations = 10 + * set Maximum order of ARK = 5 + * set Minimum step size = 0.000001 + * end + * @endcode + * + * These are one-to-one with the options you can pass at construction time. + * + * The options you pass at construction time are set as default values in + * the ParameterHandler object `prm`. You can later modify them by parsing + * a parameter file using `prm`. The values of the parameter will be updated + * whenever the content of `prm` is updated. + * + * Make sure that this class lives longer than `prm`. Undefined behaviour + * will occurr if you destroy this class, and then parse a parameter file + * using `prm`. + */ + void add_parameters(ParameterHandler &prm) + { + prm.add_parameter("Initial time", initial_time); + prm.add_parameter("Final time", final_time); + prm.add_parameter("Time interval between each output", output_period); + + prm.enter_subsection("Running parameters"); + prm.add_parameter("Initial step size",initial_step_size); + prm.add_parameter("Minimum step size", minimum_step_size); + prm.add_parameter("Maximum order of ARK", maximum_order); + prm.add_parameter("Maximum number of nonlinear iterations", maximum_non_linear_iterations); + prm.add_parameter("Implicit function is linear", implicit_function_is_linear); + prm.add_parameter("Implicit function is time independent", implicit_function_is_time_independent); + prm.leave_subsection(); + + prm.enter_subsection("Error control"); + prm.add_parameter("Absolute error tolerance", absolute_tolerance); + prm.add_parameter("Relative error tolerance", relative_tolerance); + prm.leave_subsection(); + } + + /** + * Initial time for the DAE. + */ + double initial_time; + + /** + * Final time. + */ + double final_time; + + /** + * Initial step size. + */ + double initial_step_size; + + /** + * Minimum step size. + */ + double minimum_step_size; + + /** + * Absolute error tolerance for adaptive time stepping. + */ + double absolute_tolerance; + + /** + * Relative error tolerance for adaptive time stepping. + */ + double relative_tolerance; + + /** + * Maximum order of ARK. + */ + unsigned int maximum_order; + + /** + * Time period between each output. + */ + double output_period; + + /** + * Maximum number of iterations for Newton or fixed point method during + * time advancement. + */ + unsigned int maximum_non_linear_iterations; + + /** + * Specifies that the implicit portion of the problem is linear. + */ + bool implicit_function_is_linear; + + /** + * Specifies that the implicit portion of the problem is linear and time + * independent. + */ + bool implicit_function_is_time_independent; + }; + + /** + * Constructor. It is possible to fine tune the SUNDIALS ARKode solver by + * passing an AdditionalData() object that sets all of the solver + * parameters. + * + * @param mpi_comm MPI communicator + * @param data ARKode configuration data + */ + ARKode(const MPI_Comm mpi_comm = MPI_COMM_WORLD, + const AdditionalData &data=AdditionalData()); + + /** + * Destructor. + */ + ~ARKode(); + + /** + * Integrate the initial value problem. This function returns the final + * number of computed steps. + */ + unsigned int solve_ode(VectorType &solution); + + /** + * Clear internal memory and start with clean objects. This function is + * called when the simulation starts and when the user returns true to a + * call to solver_should_restart(). + * + * By default solver_should_restart() returns false. If the user needs to + * implement, for example, local adaptivity in space, he or she may assign + * a different function to solver_should_restart() that performs all mesh + * changes, transfers the solution to the new mesh, and returns true. + * + * @param[in] t The new starting time + * @param[in] h The new starting time step + * @param[in,out] y The new initial solution + */ + void reset(const double &t, + const double &h, + const VectorType &y); + + /** + * A function object that users need to supply and that is intended to + * reinit the given vector. + */ + std::function reinit_vector; + + /** + * A function object that users may supply and that is intended to compute + * the explicit part of the IVP right hand side. Sets $explicit_f = f_E(t, + * y)$. + * + * At least one of explicit_function() or implicit_function() must be + * provided. According to which one is provided, explicit, implicit, or + * mixed RK methods are used. + * + * This function should return: + * - 0: Success + * - >0: Recoverable error (ARKodeReinit will be called if this happens, and + * then last function will be attempted again + * - <0: Unrecoverable error the computation will be aborted and an assertion + * will be thrown. + */ + std::function explicit_function; + + /** + * A function object that users may supply and that is intended to compute + * the implicit part of the IVP right hand side. Sets $implicit_f = f_I(t, + * y)$. + * + * At least one of explicit_function() or implicit_function() must be + * provided. According to which one is provided, explicit, implicit, or + * mixed RK methods are used. + * + * This function should return: + * - 0: Success + * - >0: Recoverable error (ARKodeReinit will be called if this happens, and + * then last function will be attempted again + * - <0: Unrecoverable error the computation will be aborted and an assertion + * will be thrown. + */ + std::function implicit_function; + + /** + * A function object that users may supply and that is intended to + * prepare the linear solver for subsequent calls to + * solve_jacobian_system(). + * + * Make sure that after a call to this function, we know how to compute + * solutions of systems $A x = b$, where $A$ is some approximation to the + * Newton matrix, $M − \gamma \partial f_I/\partial y$. This function is + * optional. If the user does not provide it, then solve_jacobian_system() + * is assumed to also perform the setup internally. + * + * The setup_jacobian() function may call a user-supplied function to + * compute needed data related to the Jacobian matrix. Alterntively, it may + * choose to retrieve and use stored values of this data. In either case, + * setup_jacobian() may also preprocess that data as needed for + * solve_jacobian_system(), which may involve calling a generic function + * (such as for LU factorization). + * + * This data may be intended either for direct use (in a direct linear + * solver) or for use in a preconditioner (in a preconditioned iterative + * linear solver). The setup_jacobian() function is not called at every + * stage solve (or even every time step), but only as frequently as the + * solver determines that it is appropriate to perform the setup task. In + * this way, Jacobian-related data generated by setup_jacobian() is + * expected to be used over a number of time steps. + * + * If the user uses a matrix based computation of the Jacobian, then this + * is the right place where an assembly routine shoulde be called to + * assemble both a matrix and a preconditioner for the Jacobian system. + * Subsequent calls (possibly more than one) to solve_jacobian_system() can + * assume that this function has been called at least once. + * + * Notice that no assumption is made by this interface on what the user + * should do in this function. ARKode only assumes that after a call to + * setup_jacobian() it is possible to call solve_jacobian_system(), to + * obtain a solution $x$ to the system $J x = b$. If this function is not + * provided, then it is never called. + * + * Arguments to the function are + * + * @param[in] t the current time + * @param[in] gamma the current factor to use in the jacobian computation + * @param[in] ypred is the predicted $y$ vector for the current ARKode internal step + * @param[in] fpred is the value of the implicit right-hand side at ypred, + * $f_I (t_n, ypred)$. + * + * @param[in] convfail – an input flag used to indicate any problem that occurred + * during the solution of the nonlinear equation on the current time step + * for which the linear solver is being used. This flag can be used to help + * decide whether the Jacobian data kept by a linear solver needs to be + * updated or not. Its possible values are: + * + * - ARK_NO_FAILURES: this value is passed if either this is the first call + * for this step, or the local error test failed on the previous attempt at + * this step (but the Newton iteration converged). + * + * - ARK_FAIL_BAD_J: this value is passed if (a) the previous Newton + * corrector iteration did not converge and the linear solver's setup + * function indicated that its Jacobian-related data is not current, or (b) + * during the previous Newton corrector iteration, the linear solver's + * solve function failed in a recoverable manner and the linear solver's + * setup function indicated that its Jacobian-related data is not current. + * + * - ARK_FAIL_OTHER: this value is passed if during the current internal + * step try, the previous Newton iteration failed to converge even though + * the linear solver was using current Jacobian-related data. + * + * @param[out] j_is_current: a boolean to be filled in by setup_jacobian(). The value + * should be set to `true` if the Jacobian data is current after the call, + * and should be set set to `false` if its Jacobian data is not current. If + * setup_jacobian() calls for re-evaluation of Jacobian data (based on + * convfail and ARKode state data), then it should set `j_is_current` to + * `true` unconditionally, otherwise an infinite loop can result. + * + * This function should return: + * - 0: Success + * - >0: Recoverable error (ARKodeReinit will be called if this happens, and + * then last function will be attempted again + * - <0: Unrecoverable error the computation will be aborted and an assertion + * will be thrown. + */ + std::function setup_jacobian; + + /** + * A function object that users may supply and that is intended to solve + * the Jacobian linear system. This function will be called by ARKode + * (possibly several times) after setup_jacobian() has been called at least + * once. ARKode tries to do its best to call setup_jacobian() the minimum + * amount of times. If convergence can be achieved without updating the + * Jacobian, then ARKode does not call setup_jacobian() again. If, on the + * contrary, internal ARKode convergence tests fail, then ARKode calls + * again setup_jacobian() with updated vectors and coefficents so that + * successive calls to solve_jacobian_systems() lead to better convergence + * in the Newton process. + * + * If you do not specify a solve_jacobian_system() function, then a fixed + * point iteration is used instead of a Newton method. Notice that this may + * not converge, or may converge very slowly. + * + * The jacobian $J$ should be (an approximation of) the system Jacobian + * \f[ + * J = M - \gamma \frac{\partial f_I}{\partial y} + * \f] + * evaluated at `t`, `ycur`. `fcur` is $f_I(t,ycur)$. + * + * A call to this function should store in `dst` the result of $J^{-1}$ + * applied to `src`, i.e., `J*dst = src`. It is the users responsability to + * set up proper solvers and preconditioners inside this function. + * + * + * Arguments to the function are + * + * @param[in] t the current time + * @param[in] gamma the current factor to use in the jacobian computation + * @param[in] ycur is the current $y$ vector for the current ARKode internal step + * @param[in] fcur is the current value of the implicit right-hand side at ycur, + * $f_I (t_n, ypred)$. + * + * + * This function should return: + * - 0: Success + * - >0: Recoverable error (ARKodeReinit will be called if this happens, and + * then last function will be attempted again + * - <0: Unrecoverable error the computation will be aborted and an assertion + * will be thrown. + */ + std::function solve_jacobian_system; + + + /** + * A function object that users may supply and that is intended to setup + * the mass matrix. This function is called by ARKode any time a mass + * matrix update is required. The user should compute the mass matrix (or + * update all the variables that allow the application of the mass matrix). + * This function is called by ARKode once, before any call to + * solve_mass_system(). + * + * ARKode supports the case where the mass matrix may depend on time, but + * not the case where the mass matrix depends on the solution itself. + * + * If the user does not provide a solve_mass_matrix() function, then the + * identity is used. If the setup_mass() function is not provided, then + * solve_mass_system() should do all the work by itself. + * + * If the user uses a matrix based computation of the mass matrix, then + * this is the right place where an assembly routine shoulde be called to + * assemble both a matrix and a preconditioner. Subsequent calls (possibly + * more than one) to solve_mass_system() can assume that this function + * has been called at least once. + * + * Notice that no assumption is made by this interface on what the user + * should do in this function. ARKode only assumes that after a call to + * setup_mass() it is possible to call solve_mass_system(), to + * obtain a solution $x$ to the system $M x = b$. + * + * This function should return: + * - 0: Success + * - >0: Recoverable error (ARKodeReinit will be called if this happens, and + * then last function will be attempted again + * - <0: Unrecoverable error the computation will be aborted and an assertion + * will be thrown. + */ + std::function setup_mass; + + /** + * A function object that users may supply and that is intended to solve + * the mass matrix linear system. This function will be called by ARKode + * (possibly several times) after setup_mass() has been called at least + * once. ARKode tries to do its best to call setup_mass() the minimum + * amount of times. + * + * A call to this function should store in `dst` the result of $M^{-1}$ + * applied to `src`, i.e., `M*dst = src`. It is the users responsability to + * set up proper solvers and preconditioners inside this function. + * + * This function should return: + * - 0: Success + * - >0: Recoverable error (ARKodeReinit will be called if this happens, and + * then last function will be attempted again + * - <0: Unrecoverable error the computation will be aborted and an assertion + * will be thrown. + */ + std::function solve_mass_system; + + /** + * A function object that users may supply and that is intended to + * postprocess the solution. This function is called by ARKode at fixed + * time increments (every `output_period` seconds), and it is passed a + * polynomial interpolation of the solution, computed using the current ARK + * order and the (internally stored) previously computed solution steps. + * + * Notice that it is well possible that internally ARKode computes a time step + * which is much larger than the `output_period` step, and therefore calls + * this function consecutively several times by simply performing all + * intermediate interpolations. There is no relationship between how many + * times this function is called and how many time steps have actually been + * computed. + */ + std::function output_step; + + /** + * A function object that users may supply and that is intended to evaluate + * wether the solver should be restarted (for example because the number of + * degrees of freedom has changed). + * + * This function is supposed to perform all operations that are necessary + * in `sol` to make sure that the resulting vectors are consistent, and of + * the correct final size. + * + * For example, one may decide that a local refinement is necessary at time + * t. This function should then return true, and change the dimension of + * `sol` to reflect the new dimension. Since ARKode does not know about the + * new dimension, an internal reset is necessary. + * + * The default implementation simply returns `false`, i.e., no restart is + * performed during the evolution. + */ + std::function solver_should_restart; + + /** + * A function object that users may supply and that is intended to return a + * vector whose components are the weights used by ARKode to compute the + * vector norm. The implementation of this function is optional, and it is + * used only if implemented. + */ + std::function get_local_tolerances; + + /** + * Handle ARKode exceptions. + */ + DeclException1(ExcARKodeError, int, << "One of the SUNDIALS ARKode internal functions " + << " returned a negative error code: " + << arg1 << ". Please consult SUNDIALS manual."); + + + private: + + /** + * Throw an exception when a function with the given name is not implemented. + */ + DeclException1(ExcFunctionNotProvided, std::string, + << "Please provide an implementation for the function \"" << arg1 << "\""); + + /** + * This function is executed at construction time to set the + * std::function above to trigger an assert if they are not + * implemented. + */ + void set_functions_to_trigger_an_assert(); + + /** + * ARKode configuration data. + */ + AdditionalData data; + + /** + * ARKode memory object. + */ + void *arkode_mem; + + /** + * ARKode solution vector. + */ + N_Vector yy; + + /** + * ARKode absolute tolerances vector. + */ + N_Vector abs_tolls; + +#ifdef DEAL_II_WITH_MPI + /** + * MPI communicator. SUNDIALS solver runs happily in parallel. + */ + MPI_Comm communicator; +#endif + + /** + * Memory pool of vectors. + */ + GrowingVectorMemory mem; + }; + +} + + +DEAL_II_NAMESPACE_CLOSE +#endif + + +#endif diff --git a/source/sundials/CMakeLists.txt b/source/sundials/CMakeLists.txt index 437bf07466..238e7370d5 100644 --- a/source/sundials/CMakeLists.txt +++ b/source/sundials/CMakeLists.txt @@ -16,6 +16,7 @@ INCLUDE_DIRECTORIES(BEFORE ${CMAKE_CURRENT_BINARY_DIR}) SET(_src + arkode.cc ida.cc copy.cc ) diff --git a/source/sundials/arkode.cc b/source/sundials/arkode.cc new file mode 100644 index 0000000000..759bfe8cee --- /dev/null +++ b/source/sundials/arkode.cc @@ -0,0 +1,488 @@ +//----------------------------------------------------------- +// +// Copyright (C) 2017 by the deal.II authors +// +// This file is part of the deal.II library. +// +// The deal.II library is free software; you can use it, redistribute +// it, and/or modify it under the terms of the GNU Lesser General +// Public License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. +// The full text of the license can be found in the file LICENSE at +// the top level of the deal.II distribution. +// +//----------------------------------------------------------- + + +#include +#include + +#ifdef DEAL_II_WITH_SUNDIALS + +#include +#include +#ifdef DEAL_II_WITH_TRILINOS +#include +#include +#endif +#ifdef DEAL_II_WITH_PETSC +#include +#include +#endif +#include +#include + +#include +#include +#include + +// Make sure we know how to call sundials own ARKode() function +const auto &SundialsARKode = ARKode; + +DEAL_II_NAMESPACE_OPEN + +namespace SUNDIALS +{ + using namespace internal; + + namespace + { + + template + int t_arkode_explicit_function(realtype tt, + N_Vector yy, + N_Vector yp, + void *user_data) + { + ARKode &solver = *static_cast *>(user_data); + GrowingVectorMemory mem; + + typename VectorMemory::Pointer src_yy(mem); + solver.reinit_vector(*src_yy); + + typename VectorMemory::Pointer dst_yp(mem); + solver.reinit_vector(*dst_yp); + + copy(*src_yy, yy); + + int err = solver.explicit_function(tt, *src_yy, *dst_yp); + + copy(yp, *dst_yp); + + return err; + } + + + + template + int t_arkode_implicit_function(realtype tt, + N_Vector yy, + N_Vector yp, + void *user_data) + { + ARKode &solver = *static_cast *>(user_data); + GrowingVectorMemory mem; + + typename VectorMemory::Pointer src_yy(mem); + solver.reinit_vector(*src_yy); + + typename VectorMemory::Pointer dst_yp(mem); + solver.reinit_vector(*dst_yp); + + copy(*src_yy, yy); + + int err = solver.implicit_function(tt, *src_yy, *dst_yp); + + copy(yp, *dst_yp); + + return err; + } + + + + template + int t_arkode_setup_jacobian(ARKodeMem arkode_mem, + int convfail, + N_Vector ypred, + N_Vector fpred, + booleantype *jcurPtr, + N_Vector, + N_Vector, + N_Vector) + { + ARKode &solver = *static_cast *>(arkode_mem->ark_user_data); + GrowingVectorMemory mem; + + typename VectorMemory::Pointer src_ypred(mem); + solver.reinit_vector(*src_ypred); + + typename VectorMemory::Pointer src_fpred(mem); + solver.reinit_vector(*src_fpred); + + copy(*src_ypred, ypred); + copy(*src_fpred, fpred); + + int err = solver.setup_jacobian(convfail, + arkode_mem->ark_tn, + arkode_mem->ark_gamma, + *src_ypred, + *src_fpred, + (bool &)*jcurPtr); + + return err; + } + + + + template + int t_arkode_solve_jacobian(ARKodeMem arkode_mem, + N_Vector b, + N_Vector, + N_Vector ycur, + N_Vector fcur) + { + ARKode &solver = *static_cast *>(arkode_mem->ark_user_data); + GrowingVectorMemory mem; + + typename VectorMemory::Pointer src(mem); + solver.reinit_vector(*src); + + typename VectorMemory::Pointer src_ycur(mem); + solver.reinit_vector(*src_ycur); + + typename VectorMemory::Pointer src_fcur(mem); + solver.reinit_vector(*src_fcur); + + typename VectorMemory::Pointer dst(mem); + solver.reinit_vector(*dst); + + copy(*src, b); + copy(*src_ycur, ycur); + copy(*src_fcur, fcur); + + int err = solver.solve_jacobian_system(arkode_mem->ark_tn, + arkode_mem->ark_gamma, + *src_ycur, *src_fcur, + *src,*dst); + copy(b, *dst); + + return err; + } + + + + template + int t_arkode_setup_mass(ARKodeMem arkode_mem, + N_Vector, + N_Vector, + N_Vector) + { + ARKode &solver = *static_cast *>(arkode_mem->ark_user_data); + int err = solver.setup_mass(arkode_mem->ark_tn); + return err; + } + + + + template + int t_arkode_solve_mass(ARKodeMem arkode_mem, + N_Vector b, + N_Vector) + { + ARKode &solver = *static_cast *>(arkode_mem->ark_user_data); + GrowingVectorMemory mem; + + typename VectorMemory::Pointer src(mem); + solver.reinit_vector(*src); + + typename VectorMemory::Pointer dst(mem); + solver.reinit_vector(*dst); + + copy(*src, b); + + int err = solver.solve_mass_system(*src,*dst); + copy(b, *dst); + + return err; + } + } + + template + ARKode::ARKode(const MPI_Comm mpi_comm, const AdditionalData &data) : + data(data), + arkode_mem(nullptr), + communicator(Utilities::MPI::duplicate_communicator(mpi_comm)) + { + set_functions_to_trigger_an_assert(); + } + + template + ARKode::~ARKode() + { + if (arkode_mem) + ARKodeFree(&arkode_mem); + MPI_Comm_free(&communicator); + } + + + + template + unsigned int ARKode::solve_ode(VectorType &solution) + { + + unsigned int system_size = solution.size(); + unsigned int local_system_size = system_size; + + double t = data.initial_time; + double h = data.initial_step_size; + unsigned int step_number = 0; + + int status; + (void)status; + + // The solution is stored in + // solution. Here we take only a + // view of it. +#ifdef DEAL_II_WITH_MPI + if (is_serial_vector::value == false) + { + IndexSet is = solution.locally_owned_elements(); + local_system_size = is.n_elements(); + + yy = N_VNew_Parallel(communicator, + local_system_size, + system_size); + + abs_tolls = N_VNew_Parallel(communicator, + local_system_size, + system_size); + } + else +#endif + { + Assert(is_serial_vector::value, + ExcInternalError("Trying to use a serial code with a parallel vector.")); + yy = N_VNew_Serial(system_size); + abs_tolls = N_VNew_Serial(system_size); + } + reset(data.initial_time, + data.initial_step_size, + solution); + + double next_time = data.initial_time; + + output_step( 0, solution, 0); + + while (t::value == false) + { + N_VDestroy_Parallel(yy); + N_VDestroy_Parallel(abs_tolls); + } + else +#endif + { + N_VDestroy_Serial(yy); + N_VDestroy_Serial(abs_tolls); + } + + return step_number; + } + + template + void ARKode::reset(const double ¤t_time, + const double ¤t_time_step, + const VectorType &solution) + { + + unsigned int system_size; + unsigned int local_system_size; + + if (arkode_mem) + ARKodeFree(&arkode_mem); + + arkode_mem = ARKodeCreate(); + + // Free the vectors which are no longer used. + if (yy) + { +#ifdef DEAL_II_WITH_MPI + if (is_serial_vector::value == false) + { + N_VDestroy_Parallel(yy); + N_VDestroy_Parallel(abs_tolls); + } + else +#endif + { + N_VDestroy_Serial(yy); + N_VDestroy_Serial(abs_tolls); + } + } + + int status; + (void)status; + system_size = solution.size(); +#ifdef DEAL_II_WITH_MPI + if (is_serial_vector::value == false) + { + IndexSet is = solution.locally_owned_elements(); + local_system_size = is.n_elements(); + + yy = N_VNew_Parallel(communicator, + local_system_size, + system_size); + + abs_tolls = N_VNew_Parallel(communicator, + local_system_size, + system_size); + + } + else +#endif + { + yy = N_VNew_Serial(system_size); + abs_tolls = N_VNew_Serial(system_size); + } + + copy(yy, solution); + + Assert(explicit_function || implicit_function, + ExcFunctionNotProvided("explicit_function || implicit_function")); + + status = ARKodeInit(arkode_mem, + explicit_function ? t_arkode_explicit_function : nullptr, + implicit_function ? t_arkode_implicit_function : nullptr, + current_time, yy); + AssertARKode(status); + + if (get_local_tolerances) + { + copy(abs_tolls, get_local_tolerances()); + status = ARKodeSVtolerances(arkode_mem, data.relative_tolerance, abs_tolls); + AssertARKode(status); + } + else + { + status = ARKodeSStolerances(arkode_mem, data.relative_tolerance, data.absolute_tolerance); + AssertARKode(status); + } + + status = ARKodeSetInitStep(arkode_mem, current_time_step); + AssertARKode(status); + + status = ARKodeSetUserData(arkode_mem, (void *) this); + AssertARKode(status); + + status = ARKodeSetStopTime(arkode_mem, data.final_time); + AssertARKode(status); + + status = ARKodeSetMaxNonlinIters(arkode_mem, data.maximum_non_linear_iterations); + AssertARKode(status); + + // Initialize solver + ARKodeMem ARKode_mem = (ARKodeMem) arkode_mem; + + if (solve_jacobian_system) + { + status = ARKodeSetNewton(arkode_mem); + AssertARKode(status); + if (data.implicit_function_is_linear) + { + status = ARKodeSetLinear(arkode_mem, + data.implicit_function_is_time_independent ? 0 : 1); + AssertARKode(status); + } + + + ARKode_mem->ark_lsolve = t_arkode_solve_jacobian; + if (setup_jacobian) + { + ARKode_mem->ark_lsetup = t_arkode_setup_jacobian; + ARKode_mem->ark_setupNonNull = true; + } + } + else + { + status = ARKodeSetFixedPoint(arkode_mem, data.maximum_non_linear_iterations); + AssertARKode(status); + } + + + if (solve_mass_system) + { + ARKode_mem->ark_msolve = t_arkode_solve_mass; + + if (setup_mass) + { + ARKode_mem->ark_msetup = t_arkode_setup_mass; + ARKode_mem->ark_MassSetupNonNull = true; + } + } + + status = ARKodeSetOrder(arkode_mem, data.maximum_order); + AssertARKode(status); + } + + template + void ARKode::set_functions_to_trigger_an_assert() + { + + reinit_vector = [](VectorType &) + { + AssertThrow(false, ExcFunctionNotProvided("reinit_vector")); + }; + + solver_should_restart = [](const double, + VectorType &) ->bool + { + return false; + }; + } + + template class ARKode >; + template class ARKode >; + +#ifdef DEAL_II_WITH_MPI + +#ifdef DEAL_II_WITH_TRILINOS + template class ARKode; + template class ARKode; +#endif + +#ifdef DEAL_II_WITH_PETSC + template class ARKode; + template class ARKode; +#endif + +#endif + +} + +DEAL_II_NAMESPACE_CLOSE + +#endif -- 2.39.5