From 718a831ea7437bd0aac7a36825d7396a697f0ef7 Mon Sep 17 00:00:00 2001 From: wolf Date: Mon, 13 Feb 2006 02:01:31 +0000 Subject: [PATCH] Write up the rest. git-svn-id: https://svn.dealii.org/trunk@12349 0785d39b-7218-0410-832d-ea1e28bc413d --- .../step-20.data/results.html | 130 +++++++++++++++++- 1 file changed, 125 insertions(+), 5 deletions(-) diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-20.data/results.html b/deal.II/doc/tutorial/chapter-2.step-by-step/step-20.data/results.html index 992ee6c614..adadfc1961 100644 --- a/deal.II/doc/tutorial/chapter-2.step-by-step/step-20.data/results.html +++ b/deal.II/doc/tutorial/chapter-2.step-by-step/step-20.data/results.html @@ -109,7 +109,7 @@ in the pressure variable: - O(h) O(h2 O(h3) + O(h) O(h2) O(h3) @@ -162,15 +162,135 @@ in the velocity variables: - O(h) O(h2 O(h3) + O(h) O(h2) O(h3) The result concerning the convergence order is the same here.

-try out preconditioner + +

Possibilities for extensions

-try out different coefficient +

+Realistic flow computations for ground water or oil reservoir simulations will +not use a constant permeability. Here's a first, rather simple way to change +this situation: we use a permeability that decays very rapidly away from a +central flowline until it hits a background value of 0.001. This is to mimick +the behavior of fluids in sandstone: in most of the domain, the sandstone is +homogenous and, while permeably to fluids, not overly so; on the other stone, +the stone has cracked, or faulted, along one line, and the fluids flow much +easier along this large crask. Here is how we could implement something like +this: +


+template <int dim>
+void
+KInverse<dim>::value_list (const std::vector<Point<dim> > &points,
+                           std::vector<Tensor<2,dim> >    &values) const
+{
+  Assert (points.size() == values.size(),
+	  ExcDimensionMismatch (points.size(), values.size()));
+
+  for (unsigned int p=0; p<points.size(); ++p)
+    {
+      values[p].clear ();
+
+      const double distance_to_flowline
+        = std::fabs(points[p][1]-0.2*std::sin(10*points[p][0]));
+      
+      const double permeability = std::max(std::exp(-(distance_to_flowline*
+                                                      distance_to_flowline)
+                                                    / (0.1 * 0.1)),
+                                           0.001);
+      
+      for (unsigned int d=0; d<dim; ++d)
+	values[p][d][d] = 1./permeability;
+    }
+}
+
+Remember that the function returns the inverse of the permeability tensor. +

-different quadrature formula for errors +

+With a significantly higher mesh resolution, we can visualize this, here with +x- and y-velocity: +

+ +

+ + +

+ +It is obvious how fluids flow essentially only along the middle line, and not +anywhere else. +

+ +

+Another possibility would be to use a random permeability field. A simple way +to achieve this would be to scatter a number of centers around the domain and +then use a permeability field that is the sum of (negative) exponentials for +each of these centers. Flow would then try to hop from one center of high +permeability to the next one. This is an entirely unscientific attempt at +describing a random medium, but one possibility to implement this behavior +would look like this: +


+template <int dim>
+class KInverse : public TensorFunction<2,dim>
+{
+  public:
+    KInverse ();
+    
+    virtual void value_list (const std::vector<Point<dim> > &points,
+			     std::vector<Tensor<2,dim> >    &values) const;
+
+  private:
+    std::vector<Point<dim> > centers;
+};
+
+
+template <int dim>
+KInverse<dim>::KInverse () 
+{
+  const unsigned int N = 40;
+  centers.resize (N);
+  for (unsigned int i=0; i<N; ++i)
+    for (unsigned int d=0; d<dim; ++d)
+      centers[i][d] = 2.*rand()/RAND_MAX-1;
+}
+
+
+template <int dim>
+void
+KInverse<dim>::value_list (const std::vector<Point<dim> > &points,
+                           std::vector<Tensor<2,dim> >    &values) const
+{
+  Assert (points.size() == values.size(),
+	  ExcDimensionMismatch (points.size(), values.size()));
+
+  for (unsigned int p=0; p<points.size(); ++p)
+    {
+      values[p].clear ();
+
+      double permeability = 0;
+      for (unsigned int i=0; i<centers.size(); ++i)
+        permeability += std::exp(-(points[p]-centers[i]).square()
+                                 / (0.1 * 0.1));
+      
+      const double normalized_permeability
+        = std::max(permeability, 0.005);
+      
+      for (unsigned int d=0; d<dim; ++d)
+	values[p][d][d] = 1./normalized_permeability;
+    }
+}
+
+ +

+With a permeability field like this, we would get x-velocities and pressures as +follows: +

+ +

+ + +

-- 2.39.5