From 71b59aad003da8680e20015a2886e70ff07ff34e Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Mon, 22 Sep 2008 02:06:44 +0000 Subject: [PATCH] Continue documenting. git-svn-id: https://svn.dealii.org/trunk@16892 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-31/step-31.cc | 320 +++++++++++++++------------- 1 file changed, 167 insertions(+), 153 deletions(-) diff --git a/deal.II/examples/step-31/step-31.cc b/deal.II/examples/step-31/step-31.cc index 2cb6d04411..8effc1877b 100644 --- a/deal.II/examples/step-31/step-31.cc +++ b/deal.II/examples/step-31/step-31.cc @@ -681,8 +681,8 @@ double BoussinesqFlowProblem::get_maximal_velocity () const // // The formula for the extrapolated // temperature is - // $\left(1+\frac{k_n}{\frac{k_{n-1}} - // \right)T^{n-1} + \frac{k_n}{\frac{k_{n-1}} + // $\left(1+\frac{k_n}{k_{n-1}} + // \right)T^{n-1} + \frac{k_n}{k_{n-1}} // T^{n-2}$. The way to compute it is to loop // over all quadrature points and updated the // maximum and minimum value if the current @@ -690,27 +690,27 @@ double BoussinesqFlowProblem::get_maximal_velocity () const // one. We initialize the variables that // store the max and min before the loop over // all quadrature points by bounding - // $\left(1+\frac{k_n}{\frac{k_{n-1}} + // $\left(1+\frac{k_n}{k_{n-1}} // \right)T^{n-1}({\mathbf x}_s) + - // \frac{k_n}{\frac{k_{n-1}} T^{n-2}({\mathbf - // x}_s) \le \max_{{\mathbf - // x}_s}\left(1+\frac{k_n}{\frac{k_{n-1}} - // \right)T^{n-1}({\mathbf x}_s) + - // \frac{k_n}{\frac{k_{n-1}} T^{n-2}({\mathbf - // x}_s)$, where ${\mathbf x}_s$ is the set - // of the support points (i.e. nodal points, - // but note that the maximum of a finite - // element function can be attained at a - // point that's not a support point unless - // one is using $Q_1$ elements). So if we - // initialize the minimal value by this upper - // bound, and the maximum value by the - // negative of this upper bound, then we know - // for a fact that it is larger/smaller than - // the minimum/maximum and that the loop over - // all quadrature points is ultimately going - // to update the initial value with the - // correct one. + // \frac{k_n}{k_{n-1}} T^{n-2}({\mathbf x}_s) + // \le \max_{{\mathbf + // x}'_s}\left(1+\frac{k_n}{k_{n-1}} + // \right)T^{n-1}({\mathbf x}'_s) + + // \max_{{\mathbf x}'_s} \frac{k_n}{k_{n-1}} + // T^{n-2}({\mathbf x}'_s)$, where ${\mathbf + // x}_s$ is the set of the support points + // (i.e. nodal points, but note that the + // maximum of a finite element function can + // be attained at a point that's not a + // support point unless one is using $Q_1$ + // elements). So if we initialize the minimal + // value by this upper bound, and the maximum + // value by the negative of this upper bound, + // then we know for a fact that it is + // larger/smaller than the minimum/maximum + // and that the loop over all quadrature + // points is ultimately going to update the + // initial value with the correct one. // // The only other complication worth // mentioning here is that in the first time @@ -792,22 +792,56 @@ BoussinesqFlowProblem::get_extrapolated_temperature_range () const + // @sect4{BoussinesqFlowProblem::compute_viscosity} + + // The last of the tool functions computes + // the artificial viscosity parameter + // $\nu|_K$ on a cell $K$ as a function of + // the extrapolated temperature, its + // gradient, the velocity, the right hand + // side $\gamma$ all on the quadrature points + // of the current cell, and various other + // parameters as described in detail in the + // introduction. + // + // There are some universal constants worth + // mentioning here. First, we need to fix + // $\beta$; we choose $\beta=0.015\cdot dim$, + // a choice discussed in detail in the + // results section of this tutorial + // program. The second is the exponent + // $\alpha$; $\alpha=1$ appears to work fine + // for the current program. Finally, there is + // one thing that requires special casing: In + // the first time step, the velocity equals + // zero, and the formula for $\nu|_K$ is not + // defined. In that case, we return + // $\nu|_K=5\cdot 10^3 \cdot h_K$, a choice + // admittedly more motivated by heuristics + // than anything else (it is in the same + // order of magnitude, however, as the value + // returned for most cells on the second time + // step). + // + // The rest of the function should be mostly + // obvious based on the material discussed in + // the introduction: template double BoussinesqFlowProblem:: -compute_viscosity(const std::vector &old_temperature, - const std::vector &old_old_temperature, - const std::vector > &old_temperature_grads, - const std::vector > &old_old_temperature_grads, - const std::vector > &old_temperature_hessians, - const std::vector > &old_old_temperature_hessians, - const std::vector > &present_stokes_values, - const std::vector &gamma_values, - const double global_u_infty, - const double global_T_variation, - const double global_Omega_diameter, - const double cell_diameter, - const double old_time_step) +compute_viscosity (const std::vector &old_temperature, + const std::vector &old_old_temperature, + const std::vector > &old_temperature_grads, + const std::vector > &old_old_temperature_grads, + const std::vector > &old_temperature_hessians, + const std::vector > &old_old_temperature_hessians, + const std::vector > &present_stokes_values, + const std::vector &gamma_values, + const double global_u_infty, + const double global_T_variation, + const double global_Omega_diameter, + const double cell_diameter, + const double old_time_step) { const double beta = 0.015 * dim; const double alpha = 1; @@ -817,7 +851,6 @@ compute_viscosity(const std::vector &old_temperature, const unsigned int n_q_points = old_temperature.size(); - // Stage 1: calculate residual double max_residual = 0; double max_velocity = 0; @@ -851,62 +884,64 @@ compute_viscosity(const std::vector &old_temperature, return (beta * max_velocity * std::min (cell_diameter, - std::pow(cell_diameter,alpha) * max_residual / global_scaling)); + std::pow(cell_diameter,alpha) * + max_residual / global_scaling)); } // @sect4{BoussinesqFlowProblem::setup_dofs} // - // This function does the same as - // in most other tutorial programs. - // As a slight difference, the - // program is called with a - // parameter setup_matrices - // that decides whether to - // recreate the sparsity pattern - // and the associated stiffness - // matrix. - // - // The body starts by assigning dofs on - // basis of the chosen finite element, - // and then renumbers the dofs - // first using the Cuthill_McKee - // algorithm (to generate a good - // quality ILU during the linear - // solution process) and then group - // components of velocity, pressure - // and temperature together. This - // happens in complete analogy to + // This is the function that sets up the + // DoFHandler objects we have here (one for + // the Stokes part and one for the + // temperature part) as well set to the right + // sizes the various objects required for the + // linear algebra in this program. Its basic + // operations are similar to what we do in // step-22. // - // We then proceed with the generation - // of the hanging node constraints - // that arise from adaptive grid - // refinement. Next we impose - // the no-flux boundary conditions - // $\vec{u}\cdot \vec{n}=0$ by adding - // a respective constraint to the - // hanging node constraints - // matrix. The second parameter in - // the function describes the first - // of the velocity components - // in the total dof vector, which is - // zero here. The parameter + // The body of the function first enumerates + // all degrees of freedom for the Stokes and + // temperature systems. In either case, it + // then renumbers them according to the + // Cuthill-McKee algorithm to improve the + // behavior of preconditioners; for the + // Stokes part, degrees of freedom are then + // also renumbered to ensure that velocities + // precede pressure DoFs so that we can + // partition the Stokes matrix into a + // $2\times 2$ matrix. + // + // We then proceed with the generation of the + // hanging node constraints that arise from + // adaptive grid refinement for both + // DoFHandler objects. For the velocity, we + // impose no-flux boundary conditions + // $\mathbf{u}\cdot \mathbf{n}=0$ by adding + // constraints to the object that already + // stores the hanging node constraints + // matrix. The second parameter in the + // function describes the first of the + // velocity components in the total dof + // vector, which is zero here. The parameter // no_normal_flux_boundaries - // sets the no flux b.c. to those - // boundaries with boundary indicator - // zero. + // sets the no flux b.c. to those boundaries + // with boundary indicator zero. + // + // After having done so, we count the number + // of degrees of freedom in the various + // blocks: template void BoussinesqFlowProblem::setup_dofs () { - std::vector stokes_block_component (dim+1,0); - stokes_block_component[dim] = 1; + std::vector stokes_sub_blocks (dim+1,0); + stokes_sub_blocks[dim] = 1; { stokes_dof_handler.distribute_dofs (stokes_fe); DoFRenumbering::Cuthill_McKee (stokes_dof_handler); - DoFRenumbering::component_wise (stokes_dof_handler, stokes_block_component); + DoFRenumbering::component_wise (stokes_dof_handler, stokes_sub_blocks); stokes_constraints.clear (); DoFTools::make_hanging_node_constraints (stokes_dof_handler, @@ -930,7 +965,7 @@ void BoussinesqFlowProblem::setup_dofs () std::vector stokes_dofs_per_block (2); DoFTools::count_dofs_per_block (stokes_dof_handler, stokes_dofs_per_block, - stokes_block_component); + stokes_sub_blocks); const unsigned int n_u = stokes_dofs_per_block[0], n_p = stokes_dofs_per_block[1], @@ -947,68 +982,55 @@ void BoussinesqFlowProblem::setup_dofs () << " (" << n_u << '+' << n_p << '+'<< n_T <<')' << std::endl << std::endl; - - - - // The next step is to - // create the sparsity - // pattern for the system matrix - // based on the Boussinesq - // system. As in step-22, - // we choose to create the - // pattern not as in the - // first tutorial programs, - // but by using the blocked - // version of - // CompressedSetSparsityPattern. - // The reason for doing this - // is mainly a memory issue, - // that is, the basic procedures - // consume too much memory - // when used in three spatial - // dimensions as we intend - // to do for this program. - // - // So, in case we need - // to recreate the matrices, - // we first release the - // stiffness matrix from the - // sparsity pattern and then - // set up an object of the - // BlockCompressedSetSparsityPattern - // consisting of three blocks. - // Each of these blocks is - // initialized with the - // respective number of - // degrees of freedom. - // Once the blocks are - // created, the overall size - // of the sparsity pattern - // is initiated by invoking - // the collect_sizes() - // command, and then the - // sparsity pattern can be - // filled with information. - // Then, the hanging - // node constraints are applied - // to the temporary sparsity - // pattern, which is finally - // then completed and copied - // into the general sparsity - // pattern structure. - // Observe that we use a - // coupling argument for - // telling the function - // make_stokes_sparsity_pattern - // which components actually - // will hold data and which - // we're going to neglect. - // - // After these actions, we - // need to reassign the - // system matrix structure to - // the sparsity pattern. + // The next step is to create the sparsity + // pattern for the Stokes and temperature + // system matrices as well as the + // preconditioner matrix from which we + // build the Stokes preconditioner. As in + // step-22, we choose to create the pattern + // not as in the first few tutorial + // programs, but by using the blocked + // version of CompressedSetSparsityPattern. + // The reason for doing this is mainly a + // memory issue, that is, the basic + // procedures consume too much memory when + // used in three spatial dimensions as we + // intend to do for this program. + // + // So, we first release the memory stored + // in the matrices, then set up an object + // of type + // BlockCompressedSetSparsityPattern + // consisting of $2\times 2$ blocks (for + // the Stokes system matrix and + // preconditioner) or + // CompressedSparsityPattern (for the + // temperature part). We then fill these + // sparsity patterns with the nonzero + // pattern, taking into account that for + // the Stokes system matrix, there are no + // entries in the pressure-pressure block + // (but all velocity vector components + // couple with each other and with the + // pressure), and that in the Stokes + // preconditioner matrix, only the diagonal + // blocks are nonzero (we use the vector + // Laplacian as discussed in the + // introduction, which only couples each + // vector component of the Laplacian with + // itself, but not with the other vector + // components; this, however, is subject to + // the application of constraints which + // couple vector components at the boundary + // again). + // + // Then, constraints are applied to the + // temporary sparsity patterns, which are + // finally copied into an object of type + // SparsityPattern and used to initialize + // the nonzero pattern of the Trilinos + // matrix objects we use. stokes_block_sizes.resize (2); stokes_block_sizes[0] = n_u; stokes_block_sizes[1] = n_p; @@ -1026,12 +1048,6 @@ void BoussinesqFlowProblem::setup_dofs () Table<2,DoFTools::Coupling> coupling (dim+1, dim+1); - // build the sparsity - // pattern. note that all dim - // velocities couple with each - // other and with the pressures, - // but that there is no - // pressure-pressure coupling: for (unsigned int c=0; c::setup_dofs () temperature_stiffness_matrix.reinit (temperature_sparsity_pattern); } - // As last action in this function, - // we need to set the vectors - // for the solution, the old - // solution (required for - // time stepping) and the system - // right hand side to the - // three-block structure given - // by velocity, pressure and - // temperature. + // As last action in this function, we need + // to set the vectors for the solution + // $\mathbf u$ and $T^k$, the old solutions + // $T^{k-1}$ and $T^{k-2}$ (required for + // time stepping) and the system right hand + // sides to their correct sizes and block + // structure: stokes_solution.reinit (stokes_block_sizes); stokes_rhs.reinit (stokes_block_sizes); -- 2.39.5