From 72140a41ddea86258acf8fa3398bedc0918cfc5a Mon Sep 17 00:00:00 2001 From: buerg Date: Wed, 3 Nov 2010 10:56:23 +0000 Subject: [PATCH] FE_Nedelec: Renumbering of dofs on faces 2 and 3 git-svn-id: https://svn.dealii.org/trunk@22593 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/source/fe/fe_nedelec.cc | 9728 +++++-------------------------- tests/fe/internals/cmp/generic | 346 +- tests/fe/nedelec_2/cmp/generic | 24 +- 3 files changed, 1556 insertions(+), 8542 deletions(-) diff --git a/deal.II/source/fe/fe_nedelec.cc b/deal.II/source/fe/fe_nedelec.cc index 693829b6be..0cacecaf35 100644 --- a/deal.II/source/fe/fe_nedelec.cc +++ b/deal.II/source/fe/fe_nedelec.cc @@ -60,7 +60,7 @@ deg (p) // refinement this->reinit_restriction_and_prolongation_matrices (); // Fill prolongation matrices with embedding operators - FETools::compute_embedding_matrices (*this, this->prolongation); + FETools::compute_embedding_matrices (*this, this->prolongation, true); initialize_restriction (); FullMatrix face_embeddings[GeometryInfo::max_children_per_face]; @@ -439,1288 +439,427 @@ FE_Nedelec::initialize_restriction () = edge_quadrature.get_points (); const unsigned int& n_edge_quadrature_points = edge_quadrature.size (); + const unsigned int + index = RefinementCase::isotropic_refinement - 1; switch (dim) { case 2: { - for (unsigned int ref = RefinementCase<2>::cut_x; - ref <= RefinementCase<2>::isotropic_refinement; ++ref) - { - const unsigned int index = ref - 1; - - switch (ref) - { - case RefinementCase<2>::cut_x: - { // First interpolate the shape // functions of the child cells // to the lowest order shape // functions of the parent cell. - for (unsigned int dof = 0; dof < this->dofs_per_cell; - ++dof) - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; ++q_point) - { - { - const double - weight = edge_quadrature.weight (q_point); - - for (unsigned int i = 0; i < 2; ++i) - { - const Point - quadrature_point - (i, edge_quadrature_points[q_point] (0)); - - this->restriction[index][i] - (i * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 1); - } - } - - const double weight - = 2.0 * edge_quadrature.weight (q_point); - - if (edge_quadrature_points[q_point] (0) < 0.5) - for (unsigned int i = 0; i < 2; ++i) - { - const Point - quadrature_point - (2.0 * edge_quadrature_points[q_point] (0), - i); - - this->restriction[index][0] - ((i + 2) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 0); - } - - else - for (unsigned int i = 0; i < 2; ++i) - { - const Point - quadrature_point - (2.0 * edge_quadrature_points[q_point] (0) - - 1.0, i); - - this->restriction[index][1] - ((i + 2) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 0); - } - } + for (unsigned int dof = 0; dof < this->dofs_per_cell; ++dof) + for (unsigned int q_point = 0; q_point < n_edge_quadrature_points; + ++q_point) + { + const double weight = 2.0 * edge_quadrature.weight (q_point); + + if (edge_quadrature_points[q_point] (0) < 0.5) + { + Point quadrature_point (0.0, + 2.0 * edge_quadrature_points[q_point] (0)); + + this->restriction[index][0] (0, dof) += weight + * this->shape_value_component + (dof, + quadrature_point, + 1); + quadrature_point (0) = 1.0; + this->restriction[index][1] (this->degree, dof) + += weight * this->shape_value_component (dof, + quadrature_point, + 1); + quadrature_point (0) = quadrature_point (1); + quadrature_point (1) = 0.0; + this->restriction[index][0] (2 * this->degree, dof) + += weight * this->shape_value_component (dof, + quadrature_point, + 0); + quadrature_point (1) = 1.0; + this->restriction[index][2] (3 * this->degree, dof) + += weight * this->shape_value_component (dof, + quadrature_point, + 0); + } + + else + { + Point quadrature_point (0.0, + 2.0 * edge_quadrature_points[q_point] (0) + - 1.0); + + this->restriction[index][2] (0, dof) += weight + * this->shape_value_component + (dof, + quadrature_point, + 1); + quadrature_point (0) = 1.0; + this->restriction[index][3] (this->degree, dof) + += weight * this->shape_value_component (dof, + quadrature_point, + 1); + quadrature_point (0) = quadrature_point (1); + quadrature_point (1) = 0.0; + this->restriction[index][1] (2 * this->degree, dof) + += weight * this->shape_value_component (dof, + quadrature_point, + 0); + quadrature_point (1) = 1.0; + this->restriction[index][3] (3 * this->degree, dof) + += weight * this->shape_value_component (dof, + quadrature_point, + 0); + } + } + // Then project the shape functions // of the child cells to the higher // order shape functions of the // parent cell. - if (deg > 0) - { - const std::vector >& - legendre_polynomials - = Polynomials::Legendre::generate_complete_basis - (deg); - FullMatrix system_matrix_inv (deg, deg); - + if (deg > 0) + { + const std::vector >& + legendre_polynomials + = Polynomials::Legendre::generate_complete_basis (deg); + FullMatrix system_matrix_inv (deg, deg); + + { + FullMatrix assembling_matrix (deg, + n_edge_quadrature_points); + + for (unsigned int q_point = 0; + q_point < n_edge_quadrature_points; ++q_point) + { + const double weight + = std::sqrt (edge_quadrature.weight (q_point)); + + for (unsigned int i = 0; i < deg; ++i) + assembling_matrix (i, q_point) = weight + * legendre_polynomials[i + 1].value + (edge_quadrature_points[q_point] (0)); + } + + FullMatrix system_matrix (deg, deg); + + assembling_matrix.mTmult (system_matrix, assembling_matrix); + system_matrix_inv.invert (system_matrix); + } + + FullMatrix solution (deg, 4); + FullMatrix system_rhs (deg, 4); + Vector tmp (4); + + for (unsigned int dof = 0; dof < this->dofs_per_cell; ++dof) + for (unsigned int i = 0; i < 2; ++i) + { + system_rhs = 0.0; + + for (unsigned int q_point = 0; + q_point < n_edge_quadrature_points; ++q_point) + { + const double weight + = edge_quadrature.weight (q_point); + const Point quadrature_point_0 (i, + edge_quadrature_points[q_point] (0)); + const Point quadrature_point_1 + (edge_quadrature_points[q_point] (0), + i); + + if (edge_quadrature_points[q_point] (0) < 0.5) { - FullMatrix assembling_matrix (deg, - n_edge_quadrature_points); + Point quadrature_point_2 (i, + 2.0 * edge_quadrature_points[q_point] (0)); - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = std::sqrt (edge_quadrature.weight - (q_point)); - - for (unsigned int i = 0; i < deg; ++i) - assembling_matrix (i, q_point) - = weight - * legendre_polynomials[i + 1].value - (edge_quadrature_points[q_point] (0)); - } - - FullMatrix system_matrix (deg, deg); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.invert (system_matrix); + tmp (0) = weight + * (2.0 * this->shape_value_component + (dof, quadrature_point_2, 1) + - this->restriction[index][i] + (i * this->degree, dof) + * this->shape_value_component + (i * this->degree, + quadrature_point_0, 1)); + tmp (1) = -1.0 * weight + * this->restriction[index][i + 2] + (i * this->degree, dof) + * this->shape_value_component + (i * this->degree, + quadrature_point_0, 1); + quadrature_point_2 + = Point (2.0 * edge_quadrature_points[q_point] (0), + i); + tmp (2) = weight + * (2.0 * this->shape_value_component + (dof, quadrature_point_2, 0) + - this->restriction[index][2 * i] + ((i + 2) * this->degree, dof) + * this->shape_value_component + ((i + 2) * this->degree, + quadrature_point_1, 0)); + tmp (3) = -1.0 * weight + * this->restriction[index][2 * i + 1] + ((i + 2) * this->degree, dof) + * this->shape_value_component + ((i + 2) * this->degree, + quadrature_point_1, 0); } - - FullMatrix solution (deg, 3); - FullMatrix system_rhs (deg, 3); - Vector tmp (3); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - for (unsigned int i = 0; i < 2; ++i) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = edge_quadrature.weight (q_point); - Point quadrature_point_0 (i, - edge_quadrature_points[q_point] - (0)); - - tmp (0) = weight - * (this->shape_value_component - (dof, quadrature_point_0, 1) - - this->restriction[index][i] - (i * this->degree, dof) - * this->shape_value_component - (i * this->degree, - quadrature_point_0, 1)); - quadrature_point_0 - = Point (edge_quadrature_points[q_point] (0), - i); - - if (edge_quadrature_points[q_point] (0) - < 0.5) - { - const Point - quadrature_point_1 (2.0 * edge_quadrature_points[q_point] (0), - i); - - tmp (1) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_1, - 0) - - this->restriction[index][0] - ((i + 2) * this->degree, - dof) - * this->shape_value_component - ((i + 2) * this->degree, - quadrature_point_0, - 0)); - tmp (2) = -1.0 * weight - * this->restriction[index][1] - ((i + 2) * this->degree, - dof) - * this->shape_value_component - ((i + 2) * this->degree, - quadrature_point_0, - 0); - } - - else - { - tmp (1) = -1.0 * weight - * this->restriction[index][0] - ((i + 2) * this->degree, - dof) - * this->shape_value_component - ((i + 2) * this->degree, - quadrature_point_0, - 0); - - const Point - quadrature_point_1 (2.0 * edge_quadrature_points[q_point] (0) - - 1.0, - i); - - tmp (2) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_1, - 0) - - this->restriction[index][1] - ((i + 2) * this->degree, - dof) - * this->shape_value_component - ((i + 2) * this->degree, - quadrature_point_0, - 0)); - } - - for (unsigned int j = 0; j < deg; ++j) - { - const double L_j - = legendre_polynomials[j + 1].value - (edge_quadrature_points[q_point] (0)); - - for (unsigned int k = 0; - k < tmp.size (); ++k) - system_rhs (j, k) += tmp (k) * L_j; - } - } - - system_matrix_inv.mmult (solution, - system_rhs); - - for (unsigned int j = 0; j < deg; ++j) - { - if (std::abs (solution (j, 0)) > 1e-14) - this->restriction[index][i] - (i * this->degree + j + 1, dof) - = solution (j, 0); - - for (unsigned int k = 0; k < 2; ++k) - if (std::abs (solution (j, k + 1)) - > 1e-14) - this->restriction[index][k] - ((i + 2) * this->degree + j + 1, - dof) = solution (j, k + 1); - } - } - - const QGauss quadrature (2 * this->degree); - const std::vector >& - quadrature_points = quadrature.get_points (); - const std::vector >& - lobatto_polynomials = Polynomials::Lobatto::generate_complete_basis - (this->degree); - const unsigned int n_boundary_dofs - = GeometryInfo::faces_per_cell * this->degree; - const unsigned int& n_quadrature_points - = quadrature.size (); - + + else { - FullMatrix - assembling_matrix (deg * this->degree, - n_quadrature_points); + tmp (0) = -1.0 * weight + * this->restriction[index][i] + (i * this->degree, dof) + * this->shape_value_component + (i * this->degree, + quadrature_point_0, 1); - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) - { - const double weight - = std::sqrt (quadrature.weight (q_point)); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i - = weight * legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - assembling_matrix (i * deg + j, - q_point) - = L_i * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - } - } + Point quadrature_point_2 (i, + 2.0 * edge_quadrature_points[q_point] (0) + - 1.0); - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); + tmp (1) = weight + * (2.0 * this->shape_value_component + (dof, quadrature_point_2, 1) + - this->restriction[index][i + 2] + (i * this->degree, dof) + * this->shape_value_component + (i * this->degree, + quadrature_point_0, 1)); + tmp (2) = -1.0 * weight + * this->restriction[index][2 * i] + ((i + 2) * this->degree, dof) + * this->shape_value_component + ((i + 2) * this->degree, + quadrature_point_1, 0); + quadrature_point_2 + = Point (2.0 * edge_quadrature_points[q_point] (0) + - 1.0, i); + tmp (3) = weight + * (2.0 * this->shape_value_component + (dof, quadrature_point_2, 0) + - this->restriction[index][2 * i + 1] + ((i + 2) * this->degree, dof) + * this->shape_value_component + ((i + 2) * this->degree, + quadrature_point_1, 0)); + } + + for (unsigned int j = 0; j < deg; ++j) + { + const double L_j + = legendre_polynomials[j + 1].value + (edge_quadrature_points[q_point] (0)); - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); + for (unsigned int k = 0; k < tmp.size (); ++k) + system_rhs (j, k) += tmp (k) * L_j; } + } + + system_matrix_inv.mmult (solution, system_rhs); + + for (unsigned int j = 0; j < deg; ++j) + for (unsigned int k = 0; k < 2; ++k) + { + if (std::abs (solution (j, k)) > 1e-14) + this->restriction[index][i + 2 * k] + (i * this->degree + j + 1, dof) + = solution (j, k); - solution.reinit (system_matrix_inv.m (), 4); - system_rhs.reinit (system_matrix_inv.m (), 4); - tmp.reinit (4); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) + if (std::abs (solution (j, k + 2)) > 1e-14) + this->restriction[index][2 * i + k] + ((i + 2) * this->degree + j + 1, dof) + = solution (j, k + 2); + } + } + + const QGauss quadrature (2 * this->degree); + const std::vector >& + quadrature_points = quadrature.get_points (); + const std::vector >& + lobatto_polynomials + = Polynomials::Lobatto::generate_complete_basis + (this->degree); + const unsigned int n_boundary_dofs + = GeometryInfo::faces_per_cell * this->degree; + const unsigned int& n_quadrature_points = quadrature.size (); + + { + FullMatrix assembling_matrix (deg * this->degree, + n_quadrature_points); + + for (unsigned int q_point = 0; q_point < n_quadrature_points; + ++q_point) + { + const double weight + = std::sqrt (quadrature.weight (q_point)); + + for (unsigned int i = 0; i <= deg; ++i) + { + const double L_i = weight + * legendre_polynomials[i].value + (quadrature_points[q_point] (0)); + + for (unsigned int j = 0; j < deg; ++j) + assembling_matrix (i * deg + j, q_point) + = L_i * lobatto_polynomials[j + 2].value + (quadrature_points[q_point] (1)); + } + } + + FullMatrix system_matrix (assembling_matrix.m (), + assembling_matrix.m ()); + + assembling_matrix.mTmult (system_matrix, assembling_matrix); + system_matrix_inv.reinit (system_matrix.m (), system_matrix.m ()); + system_matrix_inv.invert (system_matrix); + } + + solution.reinit (system_matrix_inv.m (), 8); + system_rhs.reinit (system_matrix_inv.m (), 8); + tmp.reinit (8); + + for (unsigned int dof = 0; dof < this->dofs_per_cell; ++dof) + { + system_rhs = 0.0; + + for (unsigned int q_point = 0; + q_point < n_quadrature_points; ++q_point) + { + tmp = 0.0; + + if (quadrature_points[q_point] (0) < 0.5) + { + if (quadrature_points[q_point] (1) < 0.5) { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) - { - tmp = 0.0; - - if (quadrature_points[q_point] (0) < 0.5) - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0), - quadrature_points[q_point] (1)); - - tmp (0) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 0); - tmp (1) += this->shape_value_component - (dof, quadrature_point, 1); - } - - else - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0) - - 1.0, - quadrature_points[q_point] (1)); - - tmp (2) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 0); - tmp (3) += this->shape_value_component - (dof, quadrature_point, 1); - } - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j <= deg; ++j) - { - for (unsigned int k = 2; k < 4; ++k) - tmp (2 * i) - -= this->restriction[index][i] - (j + k * this->degree, dof) - * this->shape_value_component - (j + k * this->degree, - quadrature_points[q_point], - 0); - - tmp (2 * i + 1) - -= this->restriction[index][i] - (i * this->degree + j, dof) - * this->shape_value_component - (i * this->degree + j, - quadrature_points[q_point], 1); - } - - tmp *= quadrature.weight (q_point); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i_0 - = legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - const double L_i_1 - = legendre_polynomials[i].value - (quadrature_points[q_point] (1)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j_0 - = L_i_0 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - const double l_j_1 - = L_i_1 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - - for (unsigned int k = 0; k < 2; - ++k) - { - system_rhs (i * deg + j, 2 * k) - += tmp (2 * k) * l_j_0; - system_rhs (i * deg + j, - 2 * k + 1) - += tmp (2 * k + 1) * l_j_1; - } - } - } - } + const Point quadrature_point + (2.0 * quadrature_points[q_point] (0), + 2.0 * quadrature_points[q_point] (1)); - system_matrix_inv.mmult (solution, system_rhs); + tmp (0) += 2.0 * this->shape_value_component + (dof, quadrature_point, 0); + tmp (1) += 2.0 * this->shape_value_component + (dof, quadrature_point, 1); + } + + else + { + const Point quadrature_point + (2.0 * quadrature_points[q_point] (0), + 2.0 * quadrature_points[q_point] (1) + - 1.0); - for (unsigned int i = 0; i <= deg; ++i) - for (unsigned int j = 0; j < deg; ++j) - for (unsigned int k = 0; k < 2; ++k) - { - if (std::abs (solution (i * deg + j, - 2 * k)) - > 1e-14) - this->restriction[index][k] - (i * deg + j + n_boundary_dofs, dof) - = solution (i * deg + j, 2 * k); - - if (std::abs (solution (i * deg + j, - 2 * k + 1)) - > 1e-14) - this->restriction[index][k] - (i + (deg + j) * this->degree - + n_boundary_dofs, dof) - = solution (i * deg + j, - 2 * k + 1); - } + tmp (4) += 2.0 * this->shape_value_component + (dof, quadrature_point, 0); + tmp (5) += 2.0 * this->shape_value_component + (dof, quadrature_point, 1); } } - break; - } - - case RefinementCase<2>::cut_y: - { - // First interpolate the shape - // functions of the child cells - // to the lowest order shape - // functions of the parent cell. - for (unsigned int dof = 0; dof < this->dofs_per_cell; - ++dof) - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; ++q_point) + else + if (quadrature_points[q_point] (1) < 0.5) { - { - const double weight - = 2.0 * edge_quadrature.weight (q_point); - - if (edge_quadrature_points[q_point] (0) < 0.5) - for (unsigned int i = 0; i < 2; ++i) - { - const Point quadrature_point (i, - 2.0 * edge_quadrature_points[q_point] (0)); - - this->restriction[index][0] - (i * this->degree, dof) += weight - * this->shape_value_component - (dof, - quadrature_point, - 1); - } - - else - for (unsigned int i = 0; i < 2; ++i) - { - const Point quadrature_point (i, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0); - - this->restriction[index][1] - (i * this->degree, dof) += weight - * this->shape_value_component - (dof, - quadrature_point, - 1); - } - } + const Point quadrature_point + (2.0 * quadrature_points[q_point] (0) + - 1.0, + 2.0 * quadrature_points[q_point] (1)); - const double weight - = edge_quadrature.weight (q_point); + tmp (2) += 2.0 * this->shape_value_component + (dof, quadrature_point, 0); + tmp (3) += 2.0 * this->shape_value_component + (dof, quadrature_point, 1); + } + + else + { + const Point quadrature_point + (2.0 * quadrature_points[q_point] (0) + - 1.0, + 2.0 * quadrature_points[q_point] (1) + - 1.0); - for (unsigned int i = 0; i < 2; ++i) - { - const Point - quadrature_point (edge_quadrature_points[q_point] (0), - i); - - this->restriction[index][i] - ((i + 2) * this->degree, dof) += weight - * this->shape_value_component - (dof, - quadrature_point, - 0); - } + tmp (6) += 2.0 * this->shape_value_component + (dof, quadrature_point, 0); + tmp (7) += 2.0 * this->shape_value_component + (dof, quadrature_point, 1); } - // Then project the shape functions - // of the child cells to the higher - // order shape functions of the - // parent cell. - if (deg > 0) - { - const std::vector >& - legendre_polynomials = Polynomials::Legendre::generate_complete_basis - (deg); - FullMatrix system_matrix_inv (deg, deg); - - { - FullMatrix assembling_matrix (deg, - n_edge_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = std::sqrt (edge_quadrature.weight - (q_point)); - - for (unsigned int i = 0; i < deg; ++i) - assembling_matrix (i, q_point) - = weight * legendre_polynomials[i + 1].value - (edge_quadrature_points[q_point] (0)); - } - - FullMatrix system_matrix (deg, deg); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.invert (system_matrix); - } - - FullMatrix solution (deg, 3); - FullMatrix system_rhs (deg, 3); - Vector tmp (3); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - for (unsigned int i = 0; i < 2; ++i) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = edge_quadrature.weight (q_point); - Point quadrature_point_0 (i, - edge_quadrature_points[q_point] (0)); - - if (edge_quadrature_points[q_point] (0) - < 0.5) - { - const Point - quadrature_point_1 (i, - 2.0 * edge_quadrature_points[q_point] (0)); - - tmp (0) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_1, - 1) - - this->restriction[index][0] - (i * this->degree, - dof) - * this->shape_value_component - (i * this->degree, - quadrature_point_0, - 1)); - tmp (1) = -1.0 * weight - * this->restriction[index][1] - (i * this->degree, - dof) - * this->shape_value_component - (i * this->degree, - quadrature_point_0, - 1); - } - - else - { - tmp (0) = -1.0 * weight - * this->restriction[index][0] - (i * this->degree, - dof) - * this->shape_value_component - (i * this->degree, - quadrature_point_0, - 1); - - const Point - quadrature_point_1 (i, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0); - - tmp (1) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_1, - 1) - - this->restriction[index][1] - (i * this->degree, - dof) - * this->shape_value_component - (i * this->degree, - quadrature_point_0, - 1)); - } - - quadrature_point_0 - = Point (edge_quadrature_points[q_point] (0), - i); - tmp (2) = weight - * (this->shape_value_component - (dof, quadrature_point_0, 0) - - this->restriction[index][i] - ((i + 2) * this->degree, - dof) - * this->shape_value_component - ((i + 2) * this->degree, - quadrature_point_0, 0)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double L_j - = legendre_polynomials[j + 1].value - (edge_quadrature_points[q_point] (0)); - - for (unsigned int k = 0; - k < tmp.size (); ++k) - system_rhs (j, k) += tmp (k) * L_j; - } - } - - system_matrix_inv.mmult (solution, - system_rhs); - - for (unsigned int j = 0; j < deg; ++j) - { - for (unsigned int k = 0; k < 2; ++k) - if (std::abs (solution (j, k)) > 1e-14) - this->restriction[index][k] - (i * this->degree + j + 1, dof) - = solution (j, k); - - if (std::abs (solution (j, 2)) > 1e-14) - this->restriction[index][i] - ((i + 2) * this->degree + j + 1, dof) - = solution (j, 2); - } - } - - const QGauss quadrature (2 * this->degree); - const std::vector >& - quadrature_points = quadrature.get_points (); - const std::vector >& - lobatto_polynomials = Polynomials::Lobatto::generate_complete_basis - (this->degree); - const unsigned int n_boundary_dofs - = GeometryInfo::faces_per_cell * this->degree; - const unsigned int& n_quadrature_points - = quadrature.size (); - + for (unsigned int i = 0; i < 2; ++i) + for (unsigned int j = 0; j <= deg; ++j) { - FullMatrix - assembling_matrix (deg * this->degree, - n_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) - { - const double weight - = std::sqrt (quadrature.weight (q_point)); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i - = weight * legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - assembling_matrix (i * deg + j, q_point) - = L_i * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - } - } - - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); - } - - solution.reinit (system_matrix_inv.m (), 4); - system_rhs.reinit (system_matrix_inv.m (), 4); - tmp.reinit (4); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) - { - tmp = 0.0; - - if (quadrature_points[q_point] (1) < 0.5) - { - const Point - quadrature_point - (quadrature_points[q_point] (0), - 2.0 * quadrature_points[q_point] (1)); - - tmp (0) += this->shape_value_component - (dof, quadrature_point, 0); - tmp (1) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 1); - } - - else - { - const Point - quadrature_point - (quadrature_points[q_point] (0), - 2.0 * quadrature_points[q_point] (1) - - 1.0); - - tmp (2) += this->shape_value_component - (dof, quadrature_point, 0); - tmp (3) += 2.0 + tmp (2 * i) -= this->restriction[index][i] + (j + 2 * this->degree, dof) + * this->shape_value_component + (j + 2 * this->degree, + quadrature_points[q_point], 0); + tmp (2 * i + 1) -= this->restriction[index][i] + (i * this->degree + j, dof) + * this->shape_value_component + (i * this->degree + j, + quadrature_points[q_point], 1); + tmp (2 * (i + 2)) -= this->restriction[index][i + 2] + (j + 3 * this->degree, dof) * this->shape_value_component - (dof, quadrature_point, 1); - } - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j <= deg; ++j) - { - tmp (2 * i) - -= this->restriction[index][i] - ((i + 2) * this->degree + j, - dof) - * this->shape_value_component - ((i + 2) * this->degree + j, - quadrature_points[q_point], 0); - - for (unsigned int k = 0; k < 2; ++k) - tmp (2 * i + 1) - -= this->restriction[index][i] - (j + k * this->degree, dof) + (j + 3 * this->degree, + quadrature_points[q_point], + 0); + tmp (2 * i + 5) -= this->restriction[index][i + 2] + (i * this->degree + j, dof) * this->shape_value_component - (j + k * this->degree, - quadrature_points[q_point], - 1); - } - - tmp *= quadrature.weight (q_point); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i_0 - = legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - const double L_i_1 - = legendre_polynomials[i].value - (quadrature_points[q_point] (1)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j_0 - = L_i_0 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - const double l_j_1 - = L_i_1 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - - for (unsigned int k = 0; k < 2; - ++k) - { - system_rhs (i * deg + j, 2 * k) - += tmp (2 * k) * l_j_0; - system_rhs (i * deg + j, - 2 * k + 1) - += tmp (2 * k + 1) * l_j_1; - } - } - } - } - - system_matrix_inv.mmult (solution, system_rhs); - - for (unsigned int i = 0; i <= deg; ++i) - for (unsigned int j = 0; j < deg; ++j) - for (unsigned int k = 0; k < 2; ++k) - { - if (std::abs (solution (i * deg + j, - 2 * k)) - > 1e-14) - this->restriction[index][k] - (i * deg + j + n_boundary_dofs, dof) - = solution (i * deg + j, 2 * k); - - if (std::abs (solution (i * deg + j, - 2 * k + 1)) - > 1e-14) - this->restriction[index][k] - (i + (deg + j) * this->degree - + n_boundary_dofs, dof) - = solution (i * deg + j, - 2 * k + 1); - } - } - } - - break; - } - - case RefinementCase<2>::isotropic_refinement: - { - // First interpolate the shape - // functions of the child cells - // to the lowest order shape - // functions of the parent cell. - for (unsigned int dof = 0; dof < this->dofs_per_cell; - ++dof) - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; ++q_point) - { - const double weight - = 2.0 * edge_quadrature.weight (q_point); - - if (edge_quadrature_points[q_point] (0) < 0.5) - { - Point quadrature_point (0.0, - 2.0 * edge_quadrature_points[q_point] (0)); - - this->restriction[index][0] (0, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 1); - quadrature_point (0) = 1.0; - this->restriction[index][1] (this->degree, - dof) - += weight * this->shape_value_component - (dof, quadrature_point, 1); - quadrature_point (0) = quadrature_point (1); - quadrature_point (1) = 0.0; - this->restriction[index][0] (2 * this->degree, - dof) - += weight * this->shape_value_component - (dof, quadrature_point, 0); - quadrature_point (1) = 1.0; - this->restriction[index][2] (3 * this->degree, - dof) - += weight * this->shape_value_component - (dof, quadrature_point, 0); - } - - else - { - Point quadrature_point (0.0, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0); - - this->restriction[index][2] (0, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 1); - quadrature_point (0) = 1.0; - this->restriction[index][3] (this->degree, - dof) - += weight * this->shape_value_component - (dof, quadrature_point, 1); - quadrature_point (0) = quadrature_point (1); - quadrature_point (1) = 0.0; - this->restriction[index][1] (2 * this->degree, - dof) - += weight * this->shape_value_component - (dof, quadrature_point, 0); - quadrature_point (1) = 1.0; - this->restriction[index][3] (3 * this->degree, - dof) - += weight * this->shape_value_component - (dof, quadrature_point, 0); - } + (i * this->degree + j, + quadrature_points[q_point], 1); } - // Then project the shape functions - // of the child cells to the higher - // order shape functions of the - // parent cell. - if (deg > 0) + tmp *= quadrature.weight (q_point); + + for (unsigned int i = 0; i <= deg; ++i) { - const std::vector >& - legendre_polynomials - = Polynomials::Legendre::generate_complete_basis - (deg); - FullMatrix system_matrix_inv (deg, deg); - - { - FullMatrix assembling_matrix (deg, - n_edge_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = std::sqrt (edge_quadrature.weight - (q_point)); - - for (unsigned int i = 0; i < deg; ++i) - assembling_matrix (i, q_point) - = weight * legendre_polynomials[i + 1].value - (edge_quadrature_points[q_point] (0)); - } - - FullMatrix system_matrix (deg, deg); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.invert (system_matrix); - } - - FullMatrix solution (deg, 4); - FullMatrix system_rhs (deg, 4); - Vector tmp (4); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - for (unsigned int i = 0; i < 2; ++i) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = edge_quadrature.weight (q_point); - const Point quadrature_point_0 (i, - edge_quadrature_points[q_point] (0)); - const Point - quadrature_point_1 - (edge_quadrature_points[q_point] (0), - i); - - if (edge_quadrature_points[q_point] (0) - < 0.5) - { - Point quadrature_point_2 (i, - 2.0 * edge_quadrature_points[q_point] (0)); - - tmp (0) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 1) - - this->restriction[index][i] - (i * this->degree, - dof) - * this->shape_value_component - (i * this->degree, - quadrature_point_0, - 1)); - tmp (1) = -1.0 * weight - * this->restriction[index][i + 2] - (i * this->degree, - dof) - * this->shape_value_component - (i * this->degree, - quadrature_point_0, - 1); - quadrature_point_2 - = Point (2.0 * edge_quadrature_points[q_point] (0), - i); - tmp (2) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 0) - - this->restriction[index][2 * i] - ((i + 2) * this->degree, - dof) - * this->shape_value_component - ((i + 2) * this->degree, - quadrature_point_1, - 0)); - tmp (3) = -1.0 * weight - * this->restriction[index][2 * i + 1] - ((i + 2) * this->degree, - dof) - * this->shape_value_component - ((i + 2) * this->degree, - quadrature_point_1, - 0); - } - - else - { - tmp (0) = -1.0 * weight - * this->restriction[index][i] - (i * this->degree, - dof) - * this->shape_value_component - (i * this->degree, - quadrature_point_0, - 1); - - Point quadrature_point_2 (i, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0); - - tmp (1) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 1) - - this->restriction[index][i + 2] - (i * this->degree, - dof) - * this->shape_value_component - (i * this->degree, - quadrature_point_0, - 1)); - tmp (2) = -1.0 * weight - * this->restriction[index][2 * i] - ((i + 2) * this->degree, - dof) - * this->shape_value_component - ((i + 2) * this->degree, - quadrature_point_1, - 0); - quadrature_point_2 - = Point (2.0 * edge_quadrature_points[q_point] (0) - - 1.0, i); - tmp (3) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 0) - - this->restriction[index][2 * i + 1] - ((i + 2) * this->degree, - dof) - * this->shape_value_component - ((i + 2) * this->degree, - quadrature_point_1, - 0)); - } - - for (unsigned int j = 0; j < deg; ++j) - { - const double L_j - = legendre_polynomials[j + 1].value - (edge_quadrature_points[q_point] (0)); - - for (unsigned int k = 0; - k < tmp.size (); ++k) - system_rhs (j, k) += tmp (k) * L_j; - } - } - - system_matrix_inv.mmult (solution, - system_rhs); - - for (unsigned int j = 0; j < deg; ++j) - for (unsigned int k = 0; k < 2; ++k) - { - if (std::abs (solution (j, k)) > 1e-14) - this->restriction[index][i + 2 * k] - (i * this->degree + j + 1, dof) - = solution (j, k); - - if (std::abs (solution (j, k + 2)) - > 1e-14) - this->restriction[index][2 * i + k] - ((i + 2) * this->degree + j + 1, dof) - = solution (j, k + 2); - } - } - - const QGauss quadrature (2 * this->degree); - const std::vector >& - quadrature_points = quadrature.get_points (); - const std::vector >& - lobatto_polynomials - = Polynomials::Lobatto::generate_complete_basis - (this->degree); - const unsigned int n_boundary_dofs - = GeometryInfo::faces_per_cell * this->degree; - const unsigned int& n_quadrature_points - = quadrature.size (); - - { - FullMatrix - assembling_matrix (deg * this->degree, - n_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) - { - const double weight - = std::sqrt (quadrature.weight (q_point)); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i - = weight * legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - assembling_matrix (i * deg + j, - q_point) - = L_i * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - } - } - - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); - } - - solution.reinit (system_matrix_inv.m (), 8); - system_rhs.reinit (system_matrix_inv.m (), 8); - tmp.reinit (8); + const double L_i_0 + = legendre_polynomials[i].value + (quadrature_points[q_point] (0)); + const double L_i_1 + = legendre_polynomials[i].value + (quadrature_points[q_point] (1)); - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) + for (unsigned int j = 0; j < deg; ++j) { - system_rhs = 0.0; + const double l_j_0 + = L_i_0 * lobatto_polynomials[j + 2].value + (quadrature_points[q_point] (1)); + const double l_j_1 + = L_i_1 * lobatto_polynomials[j + 2].value + (quadrature_points[q_point] (0)); - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) + for (unsigned int k = 0; k < 4; ++k) { - tmp = 0.0; - - if (quadrature_points[q_point] (0) < 0.5) - { - if (quadrature_points[q_point] (1) - < 0.5) - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0), - 2.0 * quadrature_points[q_point] (1)); - - tmp (0) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 0); - tmp (1) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 1); - } - - else - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0), - 2.0 * quadrature_points[q_point] (1) - - 1.0); - - tmp (4) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 0); - tmp (5) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 1); - } - } - - else - if (quadrature_points[q_point] (1) < 0.5) - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0) - - 1.0, - 2.0 * quadrature_points[q_point] (1)); - - tmp (2) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 0); - tmp (3) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 1); - } - - else - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0) - - 1.0, - 2.0 * quadrature_points[q_point] (1) - - 1.0); - - tmp (6) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 0); - tmp (7) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 1); - } - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j <= deg; ++j) - { - tmp (2 * i) - -= this->restriction[index][i] - (j + 2 * this->degree, dof) - * this->shape_value_component - (j + 2 * this->degree, - quadrature_points[q_point], 0); - tmp (2 * i + 1) - -= this->restriction[index][i] - (i * this->degree + j, dof) - * this->shape_value_component - (i * this->degree + j, - quadrature_points[q_point], 1); - tmp (2 * (i + 2)) - -= this->restriction[index][i + 2] - (j + 3 * this->degree, dof) - * this->shape_value_component - (j + 3 * this->degree, - quadrature_points[q_point], 0); - tmp (2 * i + 5) - -= this->restriction[index][i + 2] - (i * this->degree + j, dof) - * this->shape_value_component - (i * this->degree + j, - quadrature_points[q_point], 1); - } - - tmp *= quadrature.weight (q_point); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i_0 - = legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - const double L_i_1 - = legendre_polynomials[i].value - (quadrature_points[q_point] (1)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j_0 - = L_i_0 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - const double l_j_1 - = L_i_1 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - - for (unsigned int k = 0; k < 4; - ++k) - { - system_rhs (i * deg + j, 2 * k) - += tmp (2 * k) * l_j_0; - system_rhs (i * deg + j, - 2 * k + 1) - += tmp (2 * k + 1) * l_j_1; - } - } - } + system_rhs (i * deg + j, 2 * k) + += tmp (2 * k) * l_j_0; + system_rhs (i * deg + j, 2 * k + 1) + += tmp (2 * k + 1) * l_j_1; } - - system_matrix_inv.mmult (solution, system_rhs); - - for (unsigned int i = 0; i <= deg; ++i) - for (unsigned int j = 0; j < deg; ++j) - for (unsigned int k = 0; k < 4; ++k) - { - if (std::abs (solution (i * deg + j, - 2 * k)) - > 1e-14) - this->restriction[index][k] - (i * deg + j + n_boundary_dofs, dof) - = solution (i * deg + j, 2 * k); - - if (std::abs (solution (i * deg + j, - 2 * k + 1)) - > 1e-14) - this->restriction[index][k] - (i + (deg + j) * this->degree - + n_boundary_dofs, dof) - = solution (i * deg + j, - 2 * k + 1); - } } } - - break; } - - default: - Assert (false, ExcNotImplemented ()); + + system_matrix_inv.mmult (solution, system_rhs); + + for (unsigned int i = 0; i <= deg; ++i) + for (unsigned int j = 0; j < deg; ++j) + for (unsigned int k = 0; k < 4; ++k) + { + if (std::abs (solution (i * deg + j, 2 * k)) + > 1e-14) + this->restriction[index][k] + (i * deg + j + n_boundary_dofs, dof) + = solution (i * deg + j, 2 * k); + + if (std::abs (solution (i * deg + j, 2 * k + 1)) + > 1e-14) + this->restriction[index][k] + (i + (deg + j) * this->degree + n_boundary_dofs, + dof) + = solution (i * deg + j, 2 * k + 1); + } } } @@ -1729,7142 +868,1018 @@ FE_Nedelec::initialize_restriction () case 3: { - for (unsigned int ref = RefinementCase<3>::cut_x; - ref <= RefinementCase<3>::isotropic_refinement; ++ref) - { - const unsigned int index = ref - 1; - - switch (ref) - { - case RefinementCase<3>::cut_x: - { // First interpolate the shape // functions of the child cells // to the lowest order shape // functions of the parent cell. - for (unsigned int dof = 0; dof < this->dofs_per_cell; - ++dof) - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; ++q_point) + for (unsigned int dof = 0; dof < this->dofs_per_cell; ++dof) + for (unsigned int q_point = 0; q_point < n_edge_quadrature_points; + ++q_point) + { + const double weight = 2.0 * edge_quadrature.weight (q_point); + + if (edge_quadrature_points[q_point] (0) < 0.5) + for (unsigned int i = 0; i < 2; ++i) + for (unsigned int j = 0; j < 2; ++j) + { + Point quadrature_point (i, + 2.0 * edge_quadrature_points[q_point] (0), + j); + + this->restriction[index][i + 4 * j] + ((i + 4 * j) * this->degree, dof) + += weight * this->shape_value_component (dof, + quadrature_point, + 1); + quadrature_point + = Point (2.0 * edge_quadrature_points[q_point] (0), + i, j); + this->restriction[index][2 * (i + 2 * j)] + ((i + 4 * j + 2) * this->degree, dof) + += weight * this->shape_value_component (dof, + quadrature_point, + 0); + quadrature_point = Point (i, j, + 2.0 * edge_quadrature_points[q_point] (0)); + this->restriction[index][i + 2 * j] + ((i + 2 * (j + 4)) * this->degree, dof) + += weight * this->shape_value_component (dof, + quadrature_point, + 2); + } + + else + for (unsigned int i = 0; i < 2; ++i) + for (unsigned int j = 0; j < 2; ++j) { - { - const double - weight = edge_quadrature.weight (q_point); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - Point quadrature_point (i, - edge_quadrature_points[q_point] (0), - j); - - this->restriction[index][i] - ((i + 4 * j) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 1); - quadrature_point = Point (i, j, - edge_quadrature_points[q_point] (0)); - this->restriction[index][i] - ((i + 2 * (j + 4)) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 2); - } - } - - const double weight - = 2.0 * edge_quadrature.weight (q_point); - - if (edge_quadrature_points[q_point] (0) < 0.5) - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - const Point - quadrature_point - (2.0 * edge_quadrature_points[q_point] (0), - i, j); - - this->restriction[index][0] - ((i + 4 * j + 2) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 0); - } + Point quadrature_point (i, + 2.0 * edge_quadrature_points[q_point] (0) + - 1.0, j); - else - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - const Point - quadrature_point - (2.0 * edge_quadrature_points[q_point] (0) - - 1.0, i, j); - - this->restriction[index][1] - ((i + 4 * j + 2) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 0); - } + this->restriction[index][i + 4 * j + 2] + ((i + 4 * j) * this->degree, dof) + += weight * this->shape_value_component (dof, + quadrature_point, + 1); + quadrature_point + = Point (2.0 * edge_quadrature_points[q_point] (0) + - 1.0, i, j); + this->restriction[index][2 * (i + 2 * j) + 1] + ((i + 4 * j + 2) * this->degree, dof) + += weight * this->shape_value_component (dof, + quadrature_point, + 0); + quadrature_point = Point (i, j, + 2.0 * edge_quadrature_points[q_point] (0) + - 1.0); + this->restriction[index][i + 2 * (j + 2)] + ((i + 2 * (j + 4)) * this->degree, dof) + += weight * this->shape_value_component (dof, + quadrature_point, + 2); } + } // Then project the shape functions // of the child cells to the higher // order shape functions of the // parent cell. - if (deg > 0) - { - const std::vector >& - legendre_polynomials - = Polynomials::Legendre::generate_complete_basis - (deg); - FullMatrix system_matrix_inv (deg, deg); - - { - FullMatrix assembling_matrix (deg, - n_edge_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = std::sqrt (edge_quadrature.weight - (q_point)); - - for (unsigned int i = 0; i < deg; ++i) - assembling_matrix (i, q_point) - = weight * legendre_polynomials[i + 1].value - (edge_quadrature_points[q_point] (0)); - } - - FullMatrix system_matrix (deg, deg); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.invert (system_matrix); - } - - FullMatrix solution (deg, 4); - FullMatrix system_rhs (deg, 4); - Vector tmp (4); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = edge_quadrature.weight (q_point); - Point quadrature_point_0 (i, - edge_quadrature_points[q_point] (0), j); - - tmp (0) - = weight * (this->shape_value_component - (dof, quadrature_point_0, - 1) - - this->restriction[index][i] - ((i + 4 * j) * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) * this->degree, - quadrature_point_0, - 1)); - - quadrature_point_0 - = Point (edge_quadrature_points[q_point] (0), - i, j); - - if (edge_quadrature_points[q_point] (0) - < 0.5) - { - const Point - quadrature_point_1 - (2.0 * edge_quadrature_points[q_point] (0), - i, j); - - tmp (1) - = weight * (2.0 * this->shape_value_component - (dof, - quadrature_point_1, - 0) - - this->restriction[index][0] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_0, - 0)); - tmp (2) = -1.0 * weight - * this->restriction[index][1] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_0, - 0); - } - - else - { - tmp (1) = -1.0 * weight - * this->restriction[index][0] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_0, - 0); - - const Point - quadrature_point_1 - (2.0 * edge_quadrature_points[q_point] (0) - - 1.0, i, j); - - tmp (2) - = weight * (2.0 * this->shape_value_component - (dof, - quadrature_point_1, - 0) - - this->restriction[index][1] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_0, - 0)); - } - - quadrature_point_0 = Point (i, j, - edge_quadrature_points[q_point] (0)); - tmp (3) - = weight * (this->shape_value_component - (dof, quadrature_point_0, - 2) - - this->restriction[index][i] - ((i + 2 * (j + 4)) - * this->degree, dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_0, - 2)); - - for (unsigned int k = 0; k < deg; ++k) - { - const double L_k - = legendre_polynomials[k + 1].value - (edge_quadrature_points[q_point] (0)); - - for (unsigned int l = 0; - l < tmp.size (); ++l) - system_rhs (k, l) += tmp (l) - * L_k; - } - } - - system_matrix_inv.mmult (solution, - system_rhs); - - for (unsigned int k = 0; k < deg; ++k) - { - if (std::abs (solution (k, 0)) > 1e-14) - this->restriction[index][i] - ((i + 4 * j) * this->degree + k + 1, - dof) = solution (k, 0); - - for (unsigned int l = 0; l < 2; ++l) - if (std::abs (solution (k, 1)) - > 1e-14) - this->restriction[index][l] - ((i + 4 * j + 2) * this->degree + k - + 1, dof) - = solution (k, l + 1); - - if (std::abs (solution (k, 3)) > 1e-14) - this->restriction[index][i] - ((i + 2 * (j + 4)) * this->degree + k - + 1, dof) - = solution (k, 3); - } - } - - const QGauss<2> face_quadrature (2 * this->degree); - const std::vector >& - face_quadrature_points - = face_quadrature.get_points (); - const std::vector >& - lobatto_polynomials - = Polynomials::Lobatto::generate_complete_basis - (this->degree); - const unsigned int n_edge_dofs - = GeometryInfo::lines_per_cell * this->degree; - const unsigned int& n_face_quadrature_points - = face_quadrature.size (); - - { - FullMatrix - assembling_matrix (deg * this->degree, - n_face_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_face_quadrature_points; - ++q_point) - { - const double weight - = std::sqrt (face_quadrature.weight - (q_point)); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i - = weight * legendre_polynomials[i].value - (face_quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - assembling_matrix (i * deg + j, q_point) - = L_i * lobatto_polynomials[j + 2].value - (face_quadrature_points[q_point] (1)); - } - } - - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); - } - - solution.reinit (system_matrix_inv.m (), 10); - system_rhs.reinit (system_matrix_inv.m (), 10); - tmp.reinit (10); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_face_quadrature_points; - ++q_point) - { - tmp = 0.0; - - const Point quadrature_point_0 (i, - face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1)); - - tmp (0) += this->shape_value_component - (dof, quadrature_point_0, 1); - tmp (1) += this->shape_value_component - (dof, quadrature_point_0, 2); - - if (face_quadrature_points[q_point] (0) - < 0.5) - { - Point - quadrature_point_1 - (2.0 * face_quadrature_points[q_point] (0), - i, - face_quadrature_points[q_point] (1)); - - tmp (2) += 2.0 - * this->shape_value_component - (dof, quadrature_point_1, - 0); - tmp (3) += this->shape_value_component - (dof, quadrature_point_1, - 2); - quadrature_point_1 - = Point (2.0 * face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1), - i); - tmp (6) += 2.0 - * this->shape_value_component - (dof, quadrature_point_1, - 0); - tmp (7) += this->shape_value_component - (dof, quadrature_point_1, - 1); - } - - else - { - Point - quadrature_point_1 - (2.0 * face_quadrature_points[q_point] (0) - - 1.0, i, - face_quadrature_points[q_point] (1)); - - tmp (4) += 2.0 - * this->shape_value_component - (dof, quadrature_point_1, - 0); - tmp (5) += this->shape_value_component - (dof, quadrature_point_1, - 2); - quadrature_point_1 - = Point (2.0 * face_quadrature_points[q_point] (0) - - 1.0, - face_quadrature_points[q_point] (1), - i); - tmp (8) += 2.0 - * this->shape_value_component - (dof, quadrature_point_1, - 0); - tmp (9) += this->shape_value_component - (dof, quadrature_point_1, - 1); - } - - const Point - quadrature_point_2 - (face_quadrature_points[q_point] (0), i, - face_quadrature_points[q_point] (1)); - const Point - quadrature_point_3 - (face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1), - i); - - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k <= deg; ++k) - { - tmp (0) -= this->restriction[index][i] - ((i + 4 * j) - * this->degree + k, - dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, 1); - tmp (1) -= this->restriction[index][i] - ((i + 2 * (j + 4)) - * this->degree + k, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_0, 2); - tmp (2 * j + 3) -= this->restriction[index][j] - ((2 * (i + 4) - + j) - * this->degree - + k, dof) - * this->shape_value_component - ((2 * (i + 4) - + j) - * this->degree - + k, - quadrature_point_2, - 2); - tmp (2 * j + 7) - -= this->restriction[index][j] - ((4 * i + j) * this->degree - + k, dof) - * this->shape_value_component - ((4 * i + j) * this->degree + k, - quadrature_point_3, 1); - - for (unsigned int l = 0; l < 2; ++l) - { - tmp (2 * (l + 1)) - -= this->restriction[index][l] - ((i + 4 * j + 2) - * this->degree + k, dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_2, 0); - tmp (2 * (l + 3)) - -= this->restriction[index][l] - ((4 * i + j + 2) - * this->degree + k, dof) - * this->shape_value_component - ((4 * i + j + 2) - * this->degree + k, - quadrature_point_3, 0); - } - } - - tmp *= face_quadrature.weight (q_point); - - for (unsigned int j = 0; j <= deg; ++j) - { - const double L_j_0 - = legendre_polynomials[j].value - (face_quadrature_points[q_point] (0)); - const double L_j_1 - = legendre_polynomials[j].value - (face_quadrature_points[q_point] (1)); - - for (unsigned int k = 0; k < deg; ++k) - { - const double l_k_0 - = L_j_0 * lobatto_polynomials[k + 2].value - (face_quadrature_points[q_point] (1)); - const double l_k_1 - = L_j_1 * lobatto_polynomials[k + 2].value - (face_quadrature_points[q_point] (0)); - - for (unsigned int l = 0; l < 5; - ++l) - { - system_rhs (j * deg + k, - 2 * l) - += tmp (2 * l) * l_k_0; - system_rhs (j * deg + k, - 2 * l + 1) - += tmp (2 * l + 1) * l_k_1; - } - } - } - } - - system_matrix_inv.mmult (solution, system_rhs); - - for (unsigned int j = 0; j <= deg; ++j) - for (unsigned int k = 0; k < deg; ++k) - { - if (std::abs (solution (j * deg + k, 0)) - > 1e-14) - this->restriction[index][i] - ((2 * i * this->degree + j) * deg + k - + n_edge_dofs, - dof) = solution (j * deg + k, 0); - - if (std::abs (solution (j * deg + k, 1)) - > 1e-14) - this->restriction[index][i] - (((2 * i + 1) * deg + k) * this->degree - + j - + n_edge_dofs, - dof) = solution (j * deg + k, 1); - - for (unsigned int l = 0; l < 2; ++l) - for (unsigned int m = 0; m < 2; ++m) - { - if (std::abs (solution (j * deg + k, - 2 * (l + 2 * m + 1))) - > 1e-14) - this->restriction[index][l] - ((2 * (i + 2 * (m + 1)) - * this->degree + j) * deg + k - + n_edge_dofs, dof) - = solution (j * deg + k, - 2 * (l + 2 * m - + 1)); - - if (std::abs (solution (j * deg + k, - 2 * (l + 2 * m) - + 3)) - > 1e-14) - this->restriction[index][l] - (((2 * (i + 2 * m) + 5) * deg + k) - * this->degree + j + n_edge_dofs, - dof) = solution (j * deg + k, - 2 * (l + 2 * m) - + 3); - } - } - } - - const QGauss quadrature (2 * this->degree); - const std::vector >& - quadrature_points = quadrature.get_points (); - const unsigned int n_boundary_dofs - = 2 * GeometryInfo::faces_per_cell * deg - * this->degree + n_edge_dofs; - const unsigned int& - n_quadrature_points = quadrature.size (); - - { - FullMatrix assembling_matrix (deg * deg - * this->degree, - n_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) - { - const double weight - = std::sqrt (quadrature.weight (q_point)); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i - = weight * legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j - = L_i * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - - for (unsigned int k = 0; k < deg; ++k) - assembling_matrix ((i * deg + j) - * deg + k, - q_point) - = l_j * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - } - } - } - - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); - } - - solution.reinit (system_matrix_inv.m (), 6); - system_rhs.reinit (system_matrix_inv.m (), 6); - tmp.reinit (6); + if (deg > 0) + { + const std::vector >& + legendre_polynomials + = Polynomials::Legendre::generate_complete_basis (deg); + FullMatrix system_matrix_inv (deg, deg); + + { + FullMatrix assembling_matrix (deg, + n_edge_quadrature_points); + + for (unsigned int q_point = 0; + q_point < n_edge_quadrature_points; ++q_point) + { + const double weight = std::sqrt (edge_quadrature.weight + (q_point)); + + for (unsigned int i = 0; i < deg; ++i) + assembling_matrix (i, q_point) = weight + * legendre_polynomials[i + 1].value + (edge_quadrature_points[q_point] (0)); + } + + FullMatrix system_matrix (deg, deg); + + assembling_matrix.mTmult (system_matrix, assembling_matrix); + system_matrix_inv.invert (system_matrix); + } + + FullMatrix solution (deg, 6); + FullMatrix system_rhs (deg, 6); + Vector tmp (6); + + for (unsigned int i = 0; i < 2; ++i) + for (unsigned int j = 0; j < 2; ++j) + for (unsigned int dof = 0; dof < this->dofs_per_cell; ++dof) + { + system_rhs = 0.0; + + for (unsigned int q_point = 0; + q_point < n_edge_quadrature_points; ++q_point) + { + const double weight = edge_quadrature.weight + (q_point); + const Point quadrature_point_0 (i, + edge_quadrature_points[q_point] (0), + j); + const Point + quadrature_point_1 + (edge_quadrature_points[q_point] (0), i, j); + const Point quadrature_point_2 (i, j, + edge_quadrature_points[q_point] (0)); - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) + if (edge_quadrature_points[q_point] (0) < 0.5) { - system_rhs = 0.0; + Point quadrature_point_3 (i, + 2.0 * edge_quadrature_points[q_point] (0), + j); - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) - { - tmp = 0.0; - - if (quadrature_points[q_point] (0) < 0.5) - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0), - quadrature_points[q_point] (1), - quadrature_points[q_point] (2)); - - tmp (0) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 0); - tmp (1) += this->shape_value_component - (dof, quadrature_point, 1); - tmp (2) += this->shape_value_component - (dof, quadrature_point, 2); - } - - else - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0) - - 1.0, - quadrature_points[q_point] (1), - quadrature_points[q_point] (2)); - - tmp (3) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 0); - tmp (4) += this->shape_value_component - (dof, quadrature_point, 1); - tmp (5) += this->shape_value_component - (dof, quadrature_point, 2); - } - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j <= deg; ++j) - { - for (unsigned int k = 0; k < 2; ++k) - { - for (unsigned int l = 0; l < 2; - ++l) - { - tmp (3 * i) - -= this->restriction[index][i] - (j + (k + 4 * l + 2) - * this->degree, dof) - * this->shape_value_component - (j + (k + 4 * l + 2) - * this->degree, - quadrature_points[q_point], - 0); - - for (unsigned int m = 0; - m < deg; ++m) - { - tmp (3 * i) - -= this->restriction[index][i] - ((j + 2 * (k + 2 * (l + 1)) - * this->degree) - * deg + m - + n_edge_dofs, dof) - * this->shape_value_component - ((j + 2 * (k + 2 * (l + 1)) - * this->degree) - * deg + m - + n_edge_dofs, - quadrature_points[q_point], - 0); - } - } - - for (unsigned int l = 0; l < deg; - ++l) - { - tmp (3 * i + 1) - -= this->restriction[index][i] - (j + ((2 * k + 9) * deg - + l) - * this->degree - + n_edge_dofs, dof) - * this->shape_value_component - (j + ((2 * k + 9) * deg - + l) - * this->degree - + n_edge_dofs, - quadrature_points[q_point], - 1); - tmp (3 * i + 2) - -= this->restriction[index][i] - (j + ((2 * k + 5) * deg - + l) - * this->degree - + n_edge_dofs, dof) - * this->shape_value_component - (j * ((2 * k + 5) * deg - + l) - * this->degree - + n_edge_dofs, - quadrature_points[q_point], - 2); - } - - tmp (3 * i + 1) - -= this->restriction[index][i] - ((i + 4 * k) * this->degree - + j, dof) - * this->shape_value_component - ((i + 4 * k) * this->degree - + j, - quadrature_points[q_point], - 1); - tmp (3 * i + 2) - -= this->restriction[index][i] - ((i + 2 * (k + 4)) - * this->degree + j, dof) - * this->shape_value_component - ((i + 2 * (k + 4)) - * this->degree + j, - quadrature_points[q_point], - 2); - } - - for (unsigned int k = 0; k < deg; - ++k) - { - tmp (3 * i + 1) - -= this->restriction[index][i] - ((2 * i * this->degree + j) - * deg + k + n_edge_dofs, + tmp (0) = weight + * (2.0 * this->shape_value_component + (dof, quadrature_point_3, 1) + - this->restriction[index][i + 4 * j] + ((i + 4 * j) * this->degree, dof) - * this->shape_value_component - ((2 * i * this->degree + j) - * deg + k + n_edge_dofs, - quadrature_points[q_point], - 1); - tmp (3 * i + 2) - -= this->restriction[index][i] - (j + (k + (2 * i + 1) * deg) - * this->degree - + n_edge_dofs, dof) - * this->shape_value_component - (j + (k + (2 * i + 1) * deg) - * this->degree - + n_edge_dofs, - quadrature_points[q_point], - 2); - } - } - - tmp *= quadrature.weight (q_point); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i_0 - = legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - const double L_i_1 - = legendre_polynomials[i].value - (quadrature_points[q_point] (1)); - const double L_i_2 - = legendre_polynomials[i].value - (quadrature_points[q_point] (2)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j_0 - = L_i_0 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - const double l_j_1 - = L_i_1 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - const double l_j_2 - = L_i_2 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - - for (unsigned int k = 0; k < deg; ++k) - { - const double l_k_0 - = l_j_0 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - const double l_k_1 - = l_j_1 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - const double l_k_2 - = l_j_2 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (1)); - - for (unsigned int l = 0; l < 2; - ++l) - { - system_rhs ((i * deg + j) - * deg + k, - 3 * l) - += tmp (3 * l) * l_k_0; - system_rhs ((i * deg + j) - * deg + k, - 3 * l + 1) - += tmp (3 * l + 1) - * l_k_1; - system_rhs ((i * deg + j) - * deg + k, - 3 * l + 2) - += tmp (3 * l + 2) - * l_k_2; - } - } - } - } - } - - system_matrix_inv.mmult (solution, system_rhs); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j <= deg; ++j) - for (unsigned int k = 0; k < deg; ++k) - for (unsigned int l = 0; l < deg; ++l) - { - if (std::abs (solution ((j * deg + k) - * deg + l, - 3 * i)) - > 1e-14) - this->restriction[index][i] - ((j * deg + k) * deg + l - + n_boundary_dofs, - dof) = solution ((j * deg + k) - * deg + l, - 3 * i); - - if (std::abs (solution ((j * deg + k) - * deg + l, - 3 * i + 1)) - > 1e-14) - this->restriction[index][i] - ((j + (k + deg) * this->degree) - * deg + l + n_boundary_dofs, dof) - = solution ((j * deg + k) * deg - + l, - 3 * i + 1); - - if (std::abs (solution ((j * deg + k) - * deg + l, - 3 * i + 2)) - > 1e-14) - this->restriction[index][i] - (j + ((k + 2 * deg) * deg + l) - * this->degree + n_boundary_dofs, - dof) = solution ((j * deg + k) - * deg + l, - 3 * i + 2); - } + * this->shape_value_component + ((i + 4 * j) * this->degree, + quadrature_point_0, 1)); + tmp (1) = -1.0 * weight + * this->restriction[index][i + 4 * j + 2] + ((i + 4 * j) * this->degree, + dof) + * this->shape_value_component + ((i + 4 * j) * this->degree, + quadrature_point_0, 1); + quadrature_point_3 + = Point (2.0 * edge_quadrature_points[q_point] (0), + i, j); + tmp (2) = weight + * (2.0 * this->shape_value_component + (dof, quadrature_point_3, 0) + - this->restriction[index][2 * (i + 2 * j)] + ((i + 4 * j + 2) * this->degree, + dof) + * this->shape_value_component + ((i + 4 * j + 2) * this->degree, + quadrature_point_1, 0)); + tmp (3) = -1.0 * weight + * this->restriction[index][2 * (i + 2 * j) + 1] + ((i + 4 * j + 2) * this->degree, + dof) + * this->shape_value_component + ((i + 4 * j + 2) * this->degree, + quadrature_point_1, 0); + quadrature_point_3 = Point (i, j, + 2.0 * edge_quadrature_points[q_point] (0)); + tmp (4) = weight + * (2.0 * this->shape_value_component + (dof, quadrature_point_3, 2) + - this->restriction[index][i + 2 * j] + ((i + 2 * (j + 4)) * this->degree, + dof) + * this->shape_value_component + ((i + 2 * (j + 4)) * this->degree, + quadrature_point_2, 2)); + tmp (5) = -1.0 * weight + * this->restriction[index][i + 2 * (j + 2)] + ((i + 2 * (j + 4)) * this->degree, + dof) + * this->shape_value_component + ((i + 2 * (j + 4)) * this->degree, + quadrature_point_2, 2); } - } - - break; - } - - case RefinementCase<3>::cut_y: - { - // First interpolate the shape - // functions of the child cells - // to the lowest order shape - // functions of the parent cell. - for (unsigned int dof = 0; dof < this->dofs_per_cell; - ++dof) - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; ++q_point) - { + + else { - const double weight - = 2.0 * edge_quadrature.weight (q_point); + tmp (0) = -1.0 * weight + * this->restriction[index][i + 4 * j] + ((i + 4 * j) * this->degree, + dof) + * this->shape_value_component + ((i + 4 * j) * this->degree, + quadrature_point_0, 1); - if (edge_quadrature_points[q_point] (0) < 0.5) - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - const Point quadrature_point (i, - 2.0 * edge_quadrature_points[q_point] (0), - j); - - this->restriction[index][0] - ((i + 4 * j) * this->degree, dof) - += weight - * this->shape_value_component (dof, - quadrature_point, - 1); - } + Point quadrature_point_3 (i, + 2.0 * edge_quadrature_points[q_point] (0) + - 1.0, j); - else - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - const Point quadrature_point (i, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0, - j); - - this->restriction[index][1] - ((i + 4 * j) * this->degree, dof) - += weight - * this->shape_value_component (dof, - quadrature_point, - 1); - } + tmp (1) = weight + * (2.0 * this->shape_value_component + (dof, quadrature_point_3, 1) + - this->restriction[index][i + 4 * j + 2] + ((i + 4 * j) * this->degree, + dof) + * this->shape_value_component + ((i + 4 * j) * this->degree, + quadrature_point_0, 1)); + tmp (2) = -1.0 * weight + * this->restriction[index][2 * (i + 2 * j)] + ((i + 4 * j + 2) * this->degree, + dof) + * this->shape_value_component + ((i + 4 * j + 2) * this->degree, + quadrature_point_1, 0); + quadrature_point_3 + = Point (2.0 * edge_quadrature_points[q_point] (0) + - 1.0, i, j); + tmp (3) = weight + * (2.0 * this->shape_value_component + (dof, quadrature_point_3, 0) + - this->restriction[index][2 * (i + 2 * j) + 1] + ((i + 4 * j + 2) * this->degree, + dof) + * this->shape_value_component + ((i + 4 * j + 2) * this->degree, + quadrature_point_1, 0)); + tmp (4) = -1.0 * weight + * this->restriction[index][i + 2 * j] + ((i + 2 * (j + 4)) * this->degree, + dof) + * this->shape_value_component + ((i + 2 * (j + 4)) * this->degree, + quadrature_point_2, 2); + quadrature_point_3 = Point (i, j, + 2.0 * edge_quadrature_points[q_point] (0) + - 1.0); + tmp (5) = weight + * (2.0 * this->shape_value_component + (dof, quadrature_point_3, 2) + - this->restriction[index][i + 2 * (j + 2)] + ((i + 2 * (j + 4)) * this->degree, + dof) + * this->shape_value_component + ((i + 2 * (j + 4)) * this->degree, + quadrature_point_2, 2)); } - - const double weight - = edge_quadrature.weight (q_point); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - Point - quadrature_point - (edge_quadrature_points[q_point] (0), i, - j); - - this->restriction[index][i] - ((i + 4 * j + 2) * this->degree, dof) - += weight - * this->shape_value_component (dof, - quadrature_point, - 1); - quadrature_point = Point (i, j, - edge_quadrature_points[q_point] (0)); - this->restriction[index][j] - ((i + 2 * (j + 4)) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 2); - } - } - - // Then project the shape functions - // of the child cells to the higher - // order shape functions of the - // parent cell. - if (deg > 0) - { - const std::vector >& - legendre_polynomials - = Polynomials::Legendre::generate_complete_basis - (deg); - FullMatrix system_matrix_inv (deg, deg); - - { - FullMatrix assembling_matrix (deg, - n_edge_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = std::sqrt (edge_quadrature.weight - (q_point)); - - for (unsigned int i = 0; i < deg; ++i) - assembling_matrix (i, q_point) - = weight * legendre_polynomials[i + 1].value - (edge_quadrature_points[q_point] (0)); - } - - FullMatrix system_matrix (deg, deg); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.invert (system_matrix); - } - - FullMatrix solution (deg, 4); - FullMatrix system_rhs (deg, 4); - Vector tmp (4); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = edge_quadrature.weight (q_point); - Point quadrature_point_0 (i, - edge_quadrature_points[q_point] (0), - j); - - if (edge_quadrature_points[q_point] (0) - < 0.5) - { - const Point - quadrature_point_1 (i, - 2.0 * edge_quadrature_points[q_point] (0), - j); - - tmp (0) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_1, - 1) - - this->restriction[index][0] - ((i + 4 * j) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1)); - tmp (1) = -1.0 * this->restriction[index][1] - ((i + 4 * j) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1); - } - - else - { - tmp (0) = -1.0 * this->restriction[index][0] - ((i + 4 * j) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1); - - const Point - quadrature_point_1 (i, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0, - j); - - tmp (1) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_1, - 1) - - this->restriction[index][1] - ((i + 4 * j) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1)); - } - - quadrature_point_0 - = Point (edge_quadrature_points[q_point] (0), - i, j); - tmp (2) = weight - * (this->shape_value_component - (dof, quadrature_point_0, - 0) - - this->restriction[index][i] - ((i + 4 * j + 2) - * this->degree, dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_0, - 0)); - quadrature_point_0 = Point (i, j, - edge_quadrature_points[q_point] (0)); - tmp (3) = weight - * (this->shape_value_component - (dof, quadrature_point_0, - 2) - - this->restriction[index][j] - ((i + 2 * (j + 4)) - * this->degree, dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_0, 0)); - - for (unsigned int k = 0; k < deg; ++k) - { - const double L_k - = legendre_polynomials[k + 1].value - (edge_quadrature_points[q_point] (0)); - - for (unsigned int l = 0; - l < tmp.size (); ++l) - system_rhs (k, l) += tmp (l) - * L_k; - } - } - - system_matrix_inv.mmult (solution, - system_rhs); - - for (unsigned int k = 0; k < deg; ++k) - { - for (unsigned int l = 0; l < 2; ++l) - if (std::abs (solution (k, l)) - > 1e-14) - this->restriction[index][l] - ((i + 4 * j) * this->degree + k - + 1, dof) - = solution (k, l); - - if (std::abs (solution (k, 2)) > 1e-14) - this->restriction[index][i] - ((i + 4 * j + 2) * this->degree + k - + 1, dof) - = solution (k, 2); - - if (std::abs (solution (k, 3)) > 1e-14) - this->restriction[index][j] - ((i + 2 * (j + 4)) * this->degree + k - + 1, dof) - = solution (k, 3); - } - } - - const QGauss<2> face_quadrature (2 * this->degree); - const std::vector >& - face_quadrature_points - = face_quadrature.get_points (); - const std::vector >& - lobatto_polynomials - = Polynomials::Lobatto::generate_complete_basis - (this->degree); - const unsigned int n_edge_dofs - = GeometryInfo::lines_per_cell * this->degree; - const unsigned int& n_face_quadrature_points - = face_quadrature.size (); - { - FullMatrix - assembling_matrix (deg * this->degree, - n_face_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_face_quadrature_points; - ++q_point) - { - const double weight - = std::sqrt (face_quadrature.weight - (q_point)); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i - = weight - * legendre_polynomials[i].value - (face_quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - assembling_matrix (i * deg + j, - q_point) - = L_i * lobatto_polynomials[j + 2].value - (face_quadrature_points[q_point] (1)); - } - } - - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); - } - - solution.reinit (system_matrix_inv.m (), 10); - system_rhs.reinit (system_matrix_inv.m (), 10); - tmp.reinit (10); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_face_quadrature_points; - ++q_point) - { - tmp = 0.0; - - if (face_quadrature_points[q_point] (0) - < 0.5) - { - Point quadrature_point_0 (i, - 2.0 * face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1)); - - tmp (0) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 1); - tmp (1) += this->shape_value_component - (dof, quadrature_point_0, - 2); - quadrature_point_0 - = Point (face_quadrature_points[q_point] (1), - 2.0 * face_quadrature_points[q_point] (0), - i); - tmp (6) += this->shape_value_component - (dof, quadrature_point_0, - 0); - tmp (7) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 1); - } - - else - { - Point quadrature_point_0 (i, - 2.0 * face_quadrature_points[q_point] (0) - - 1.0, - face_quadrature_points[q_point] (1)); - - tmp (2) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 1); - tmp (3) += this->shape_value_component - (dof, quadrature_point_0, - 2); - quadrature_point_0 - = Point (face_quadrature_points[q_point] (1), - 2.0 * face_quadrature_points[q_point] (0) - - 1.0, i); - tmp (8) += this->shape_value_component - (dof, quadrature_point_0, - 0); - tmp (9) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 1); - } - - const Point quadrature_point_1 (i, - face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1)); - const Point - quadrature_point_2 - (face_quadrature_points[q_point] (0), i, - face_quadrature_points[q_point] (1)); - - tmp (4) += this->shape_value_component - (dof, quadrature_point_2, 0); - tmp (5) += this->shape_value_component - (dof, quadrature_point_2, 2); - - const Point - quadrature_point_3 - (face_quadrature_points[q_point] (1), - face_quadrature_points[q_point] (0), - i); - - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k <= deg; ++k) - { - for (unsigned int l = 0; l < 2; - ++l) - { - tmp (2 * l) - -= this->restriction[index][l] - ((i + 4 * j) - * this->degree + k, dof) - * this->shape_value_component - ((i + 4 * j) * this->degree - + k, - quadrature_point_1, 1); - tmp (2 * l + 7) - -= this->restriction[index][l] - ((4 * i + j) - * this->degree + k, dof) - * this->shape_value_component - ((4 * i + j) * this->degree - + k, - quadrature_point_3, 1); - } - - tmp (2 * j + 1) - -= this->restriction[index][j] - ((i + 2 * (j + 4)) - * this->degree + k, dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree + k, - quadrature_point_1, 2); - tmp (4) -= this->restriction[index][i] - ((i + 4 * j + 2) - * this->degree + k, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree + k, - quadrature_point_2, 0); - tmp (5) -= this->restriction[index][i] - ((2 * (i + 4) + j) - * this->degree + k, - dof) - * this->shape_value_component - ((2 * (i + 4) + j) - * this->degree + k, - quadrature_point_2, 2); - tmp (2 * (j + 3)) - -= this->restriction[index][j] - ((4 * i + j + 2) - * this->degree + k, dof) - * this->shape_value_component - ((4 * i + j + 2) * this->degree - + k, - quadrature_point_3, 0); - } - - tmp *= face_quadrature.weight (q_point); - - for (unsigned int j = 0; j <= deg; ++j) - { - const double L_j_0 - = legendre_polynomials[j].value - (face_quadrature_points[q_point] (0)); - const double L_j_1 - = legendre_polynomials[j].value - (face_quadrature_points[q_point] (1)); - - for (unsigned int k = 0; k < deg; - ++k) - { - const double l_k_0 - = L_j_0 * lobatto_polynomials[k + 2].value - (face_quadrature_points[q_point] (1)); - const double l_k_1 - = L_j_1 * lobatto_polynomials[k + 2].value - (face_quadrature_points[q_point] (0)); - - for (unsigned int l = 0; l < 3; - ++l) - { - system_rhs (j * deg + k, - 2 * l) - += tmp (2 * l) * l_k_0; - system_rhs (j * deg + k, - 2 * l + 1) - += tmp (2 * l + 1) * l_k_1; - } - - for (unsigned int l = 3; l < 5; - ++l) - { - system_rhs (j * deg + k, - 2 * l) - += tmp (2 * l) * l_k_1; - system_rhs (j * deg + k, - 2 * l + 1) - += tmp (2 * l + 1) * l_k_0; - } - } - } - } - - system_matrix_inv.mmult (solution, - system_rhs); - - for (unsigned int j = 0; j <= deg; ++j) - for (unsigned int k = 0; k < deg; ++k) - { - for (unsigned int l = 0; l < 2; ++l) - { - if (std::abs (solution (j * deg + k, - 2 * l)) - > 1e-14) - this->restriction[index][l] - (2 * i * this->degree + j * deg - + k + n_edge_dofs, dof) - = solution (j * deg + k, 2 * l); - - if (std::abs (solution (j * deg + k, - 2 * l + 1)) - > 1e-14) - this->restriction[index][l] - (((2 * i + 1) * deg + k) - * this->degree + j + n_edge_dofs, - dof) - = solution (j * deg + k, - 2 * l + 1); - - if (std::abs (solution (j * deg + k, - 2 * (l + 3))) - > 1e-14) - this->restriction[index][l] - (2 * (i + 4) * this->degree - + j * deg + k + n_edge_dofs, - dof) - = solution (j * deg + k, - 2 * (l + 3)); - - if (std::abs (solution (j * deg + k, - 2 * l + 7)) - > 1e-14) - this->restriction[index][l] - (((2 * i + 9) * deg + k) - * this->degree + j + n_edge_dofs, - dof) = solution (j * deg + k, - 2 * l + 7); - } - - if (std::abs (solution (j * deg + k, - 4)) > 1e-14) - this->restriction[index][i] - (2 * (i + 2) * this->degree + j * deg - + k + n_edge_dofs, dof) - = solution (j * deg + k, 4); - - if (std::abs (solution (j * deg + k, - 5)) > 1e-14) - this->restriction[index][i] - (((2 * i + 5) * deg + k) - * this->degree + j + n_edge_dofs, - dof) = solution (j * deg + k, 5); - } - } - - const QGauss quadrature (2 * this->degree); - const std::vector >& - quadrature_points = quadrature.get_points (); - const unsigned int n_boundary_dofs - = 2 * GeometryInfo::faces_per_cell * deg - * this->degree + n_edge_dofs; - const unsigned int& - n_quadrature_points = quadrature.size (); - - { - FullMatrix - assembling_matrix (deg * deg * this->degree, - n_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) - { - const double weight - = std::sqrt (quadrature.weight (q_point)); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i - = weight - * legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j - = L_i * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - - for (unsigned int k = 0; k < deg; ++k) - assembling_matrix ((i * deg + j) - * deg + k, - q_point) - = l_j * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - } - } - } - - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); - } - - solution.reinit (system_matrix_inv.m (), 6); - system_rhs.reinit (system_matrix_inv.m (), 6); - tmp.reinit (6); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_quadrature_points; - ++q_point) - { - tmp = 0.0; - - if (quadrature_points[q_point] (1) < 0.5) - { - const Point - quadrature_point - (quadrature_points[q_point] (0), - 2.0 * quadrature_points[q_point] (1), - quadrature_points[q_point] (2)); - - tmp (0) += this->shape_value_component - (dof, quadrature_point, 0); - tmp (1) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 1); - tmp (2) += this->shape_value_component - (dof, quadrature_point, 2); - } - - else - { - const Point - quadrature_point - (quadrature_points[q_point] (0), - 2.0 * quadrature_points[q_point] (1) - - 1.0, - quadrature_points[q_point] (2)); - - tmp (3) += this->shape_value_component - (dof, quadrature_point, 0); - tmp (4) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 1); - tmp (5) += this->shape_value_component - (dof, quadrature_point, 2); - } - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j <= deg; ++j) - { - for (unsigned int k = 0; k < 2; ++k) - { - tmp (3 * i) - -= this->restriction[index][i] - ((i + 4 * k + 2) - * this->degree + j, dof) - * this->shape_value_component - ((i + 4 * k + 2) - * this->degree + j, - quadrature_points[q_point], - 0); - tmp (3 * i + 2) - -= this->restriction[index][i] - ((2 * (i + 4) + k) - * this->degree + j, dof) - * this->shape_value_component - ((2 * (i + 4) + k) - * this->degree + j, - quadrature_points[q_point], - 2); - - for (unsigned int l = 0; l < deg; - ++l) - { - tmp (3 * i) - -= this->restriction[index][i] - ((j + 2 * (k + 4) - * this->degree) - * deg + l + n_edge_dofs, - dof) - * this->shape_value_component - ((j + 2 * (k + 4) - * this->degree) * deg - + l + n_edge_dofs, - quadrature_points[q_point], - 0); - tmp (3 * i + 1) - -= this->restriction[index][i] - ((j + 2 * k - * this->degree) - * deg + l + n_edge_dofs, - dof) - * this->shape_value_component - ((j + 2 * k - * this->degree) - * deg + l + n_edge_dofs, - quadrature_points[q_point], - 1); - tmp (3 * i + 1) - -= this->restriction[index][i] - (j + ((2 * k + 9) * deg - + l) - * this->degree - + n_edge_dofs, dof) - * this->shape_value_component - (j + ((2 * k + 9) * deg - + l) - * this->degree - + n_edge_dofs, - quadrature_points[q_point], - 1); - tmp (3 * i + 2) - -= this->restriction[index][i] - (j + ((2 * k + 1) * deg - + l) - * this->degree - + n_edge_dofs, dof) - * this->shape_value_component - (j + ((2 * k + 1) * deg - + l) * this->degree - + n_edge_dofs, - quadrature_points[q_point], - 2); - } - - for (unsigned int l = 0; l < 2; - ++l) - { - tmp (3 * i + 1) - -= this->restriction[index][i] - (j + (k + 4 * l) - * this->degree, dof) - * this->shape_value_component - (j + (k + 4 * l) - * this->degree, - quadrature_points[q_point], - 1); - } - } - - for (unsigned int k = 0; k < deg; ++k) - { - tmp (3 * i) - -= this->restriction[index][i] - ((2 * (i + 2) * this->degree - + j) * deg + k - + n_edge_dofs, dof) - * this->shape_value_component - ((2 * (i + 2) * this->degree - + j) * deg + k - + n_edge_dofs, - quadrature_points[q_point], - 0); - tmp (3 * i + 2) - -= this->restriction[index][i] - (((2 * i + 5) * deg + k) - * this->degree + j - + n_edge_dofs, - dof) - * this->shape_value_component - (((2 * i + 5) * deg + k) - * this->degree + j - + n_edge_dofs, - quadrature_points[q_point], - 2); - } - } - - tmp *= quadrature.weight (q_point); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i_0 - = legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - const double L_i_1 - = legendre_polynomials[i].value - (quadrature_points[q_point] (1)); - const double L_i_2 - = legendre_polynomials[i].value - (quadrature_points[q_point] (2)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j_0 - = L_i_0 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - const double l_j_1 - = L_i_1 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - const double l_j_2 - = L_i_2 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - - for (unsigned int k = 0; k < deg; - ++k) - { - const double l_k_0 - = l_j_0 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - const double l_k_1 - = l_j_1 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - const double l_k_2 - = l_j_2 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (1)); - - for (unsigned int l = 0; l < 2; - ++l) - { - system_rhs ((i * deg + j) - * deg + k, - 3 * l) - += tmp (3 * l) * l_k_0; - system_rhs ((i * deg + j) - * deg + k, - 3 * l + 1) - += tmp (3 * l + 1) - * l_k_1; - system_rhs ((i * deg + j) - * deg + k, - 3 * l + 2) - += tmp (3 * l + 2) - * l_k_2; - } - } - } - } - } - - system_matrix_inv.mmult (solution, system_rhs); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j <= deg; ++j) - for (unsigned int k = 0; k < deg; ++k) - for (unsigned int l = 0; l < deg; ++l) - { - if (std::abs (solution ((j * deg + k) - * deg + l, - 3 * i)) - > 1e-14) - this->restriction[index][i] - ((j * deg + k) * deg + l - + n_boundary_dofs, dof) - = solution ((j * deg + k) * deg - + l, - 3 * i); - - if (std::abs (solution ((j * deg + k) - * deg + l, - 3 * i + 1)) - > 1e-14) - this->restriction[index][i] - ((j + (k + deg) * this->degree) - * deg + l + n_boundary_dofs, dof) - = solution ((j * deg + k) * deg - + l, - 3 * i + 1); - - if (std::abs (solution ((j * deg + k) - * deg + l, - 3 * i + 2)) - > 1e-14) - this->restriction[index][i] - (j + ((k + 2 * deg) * deg + l) - * this->degree + n_boundary_dofs, - dof) = solution ((j * deg + k) - * deg + l, - 3 * i + 2); - } - } - } - - break; - } - - case RefinementCase<3>::cut_xy: - { - // First interpolate the shape - // functions of the child cells - // to the lowest order shape - // functions of the parent cell. - for (unsigned int dof = 0; dof < this->dofs_per_cell; - ++dof) - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; ++q_point) - { - { - const double weight - = 2.0 * edge_quadrature.weight (q_point); - - if (edge_quadrature_points[q_point] (0) < 0.5) - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - Point quadrature_point (i, - 2.0 * edge_quadrature_points[q_point] (0), - j); - - this->restriction[index][i] - ((i + 4 * j) * this->degree, dof) - += weight - * this->shape_value_component (dof, - quadrature_point, - 1); - quadrature_point - = Point (2.0 * edge_quadrature_points[q_point] (0), - i, j); - this->restriction[index][2 * i] - ((i + 4 * j + 2) * this->degree, dof) - += weight - * this->shape_value_component (dof, - quadrature_point, - 0); - } - - else - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - Point quadrature_point (i, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0, - j); - - this->restriction[index][i + 2] - ((i + 4 * j) * this->degree, dof) - += weight - * this->shape_value_component - (dof, quadrature_point, 1); - quadrature_point - = Point (2.0 * edge_quadrature_points[q_point] (0) - - 1.0, i, j); - this->restriction[index][2 * i + 1] - ((i + 4 * j + 2) * this->degree, dof) - += weight - * this->shape_value_component (dof, - quadrature_point, - 0); - } - } - - const double weight - = edge_quadrature.weight (q_point); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - const Point quadrature_point (i, j, - edge_quadrature_points[q_point] (0)); - - this->restriction[index][i + 2 * j] - ((i + 2 * (j + 4)) * this->degree, dof) - += weight - * this->shape_value_component (dof, - quadrature_point, - 2); - } - } - - // Then project the shape functions - // of the child cells to the higher - // order shape functions of the - // parent cell. - if (deg > 0) - { - const std::vector >& - legendre_polynomials - = Polynomials::Legendre::generate_complete_basis - (deg); - FullMatrix system_matrix_inv (deg, deg); - - { - FullMatrix assembling_matrix (deg, - n_edge_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = std::sqrt (edge_quadrature.weight - (q_point)); - - for (unsigned int i = 0; i < deg; ++i) - assembling_matrix (i, q_point) - = weight - * legendre_polynomials[i + 1].value - (edge_quadrature_points[q_point] (0)); - } - - FullMatrix system_matrix (deg, deg); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.invert (system_matrix); - } - - FullMatrix solution (deg, 5); - FullMatrix system_rhs (deg, 5); - Vector tmp (5); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = edge_quadrature.weight (q_point); - const Point quadrature_point_0 (i, - edge_quadrature_points[q_point] (0), - j); - Point - quadrature_point_1 - (edge_quadrature_points[q_point] (0), - i, j); - - if (edge_quadrature_points[q_point] (0) - < 0.5) - { - Point quadrature_point_2 (i, - 2.0 * edge_quadrature_points[q_point] (0), - j); - - tmp (0) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 1) - - this->restriction[index][i] - ((i + 4 * j) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1)); - tmp (1) - = -1.0 * weight - * this->restriction[index][i + 2] - ((i + 4 * j) - * this->degree, dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1); - quadrature_point_2 - = Point (2.0 * edge_quadrature_points[q_point] (0), - i, j); - tmp (2) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 0) - - this->restriction[index][2 * i] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_1, - 0)); - tmp (3) = -1.0 * weight - * this->restriction[index][2 * i + 1] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_1, - 0); - } - - else - { - tmp (0) = -1.0 * weight - * this->restriction[index][i] - ((i + 4 * j) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1); - - Point quadrature_point_2 (i, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0, - j); - - tmp (1) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 1) - - this->restriction[index][i + 2] - ((i + 4 * j) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1)); - tmp (2) = -1.0 * weight - * this->restriction[index][2 * i] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_1, - 0); - quadrature_point_2 - = Point (2.0 * edge_quadrature_points[q_point] (0) - - 1.0, i, j); - tmp (3) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 0) - - this->restriction[index][2 * i + 1] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_1, - 0)); - } - - quadrature_point_1 = Point (i, j, - edge_quadrature_points[q_point] (0)); - tmp (4) = weight - * (this->shape_value_component - (dof, quadrature_point_1, - 2) - - this->restriction[index][i + 2 * j] - ((i + 2 * (j + 4)) - * this->degree, dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_1, 2)); - - for (unsigned int k = 0; k < deg; ++k) - { - const double L_k - = legendre_polynomials[k + 1].value - (edge_quadrature_points[q_point] (0)); - - for (unsigned int l = 0; - l < tmp.size (); ++l) - system_rhs (k, l) += tmp (l) - * L_k; - } - } - - system_matrix_inv.mmult (solution, - system_rhs); - - for (unsigned int k = 0; k < deg; ++k) - { - for (unsigned int l = 0; l < 2; ++l) - { - if (std::abs (solution (k, l)) - > 1e-14) - this->restriction[index][i + 2 * l] - ((i + 4 * j) * this->degree + k - + 1, dof) - = solution (k, l); - - if (std::abs (solution (k, l + 2)) - > 1e-14) - this->restriction[index][2 * i + l] - ((i + 4 * j + 2) * this->degree - + k + 1, dof) - = solution (k, l + 2); - } - - if (std::abs (solution (k, 4)) > 1e-14) - this->restriction[index][i + 2 * j] - ((i + 2 * (j + 4)) * this->degree + k - + 1, dof) - = solution (k, 4); - } - } - - const QGauss<2> face_quadrature (2 * this->degree); - const std::vector >& - face_quadrature_points - = face_quadrature.get_points (); - const std::vector >& - lobatto_polynomials - = Polynomials::Lobatto::generate_complete_basis - (this->degree); - const unsigned int n_edge_dofs - = GeometryInfo::lines_per_cell - * this->degree; - const unsigned int& n_face_quadrature_points - = face_quadrature.size (); - - { - FullMatrix - assembling_matrix (deg * this->degree, - n_face_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_face_quadrature_points; - ++q_point) - { - const double weight - = std::sqrt (face_quadrature.weight - (q_point)); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i = weight - * legendre_polynomials[i].value - (face_quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - assembling_matrix (i * deg + j, - q_point) - = L_i * lobatto_polynomials[j + 2].value - (face_quadrature_points[q_point] (1)); - } - } - - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); - } - - solution.reinit (system_matrix_inv.m (), 16); - system_rhs.reinit (system_matrix_inv.m (), 16); - tmp.reinit (16); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_face_quadrature_points; - ++q_point) - { - tmp = 0.0; - - if (face_quadrature_points[q_point] (0) - < 0.5) - { - Point quadrature_point_0 (i, - 2.0 * face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1)); - - tmp (0) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 1); - tmp (1) += this->shape_value_component - (dof, quadrature_point_0, - 2); - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0), - i, - face_quadrature_points[q_point] (1)); - tmp (4) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 0); - tmp (5) += this->shape_value_component - (dof, quadrature_point_0, - 2); - - if (face_quadrature_points[q_point] (1) - < 0.5) - { - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0), - 2.0 * face_quadrature_points[q_point] (1), - i); - tmp (8) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 0); - tmp (9) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 1); - } - - else - { - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0), - 2.0 * face_quadrature_points[q_point] (1) - - 1.0, i); - tmp (12) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 0); - tmp (13) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 1); - } - } - - else - { - Point quadrature_point_0 (i, - 2.0 * face_quadrature_points[q_point] (0) - - 1.0, - face_quadrature_points[q_point] (1)); - - tmp (2) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 1); - tmp (3) += this->shape_value_component - (dof, quadrature_point_0, - 2); - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0) - - 1.0, i, - face_quadrature_points[q_point] (1)); - tmp (6) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 0); - tmp (7) += this->shape_value_component - (dof, quadrature_point_0, - 2); - - if (face_quadrature_points[q_point] (1) - < 0.5) - { - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0) - - 1.0, - 2.0 * face_quadrature_points[q_point] (1), - i); - tmp (10) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 0); - tmp (11) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 1); - } - - else - { - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0) - - 1.0, - 2.0 * face_quadrature_points[q_point] (1) - - 1.0, i); - tmp (14) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 0); - tmp (15) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 1); - } - } - - const Point quadrature_point_1 (i, - face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1)); - const Point - quadrature_point_2 - (face_quadrature_points[q_point] (0), i, - face_quadrature_points[q_point] (1)); - const Point - quadrature_point_3 - (face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1), - i); - - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k <= deg; ++k) - { - for (unsigned int l = 0; l < 2; - ++l) - { - tmp (2 * l) - -= this->restriction[index][i + 2 * l] - ((i + 4 * j) - * this->degree + k, dof) - * this->shape_value_component - ((i + 4 * j) * this->degree - + k, - quadrature_point_1, 1); - tmp (2 * (l + 2)) - -= this->restriction[index][2 * i + l] - ((i + 4 * j + 2) - * this->degree + k, dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree + k, - quadrature_point_2, 0); - tmp (2 * (2 * j + l + 2)) - -= this->restriction[index][2 * j + l] - ((4 * i + j + 2) - * this->degree + k, dof) - * this->shape_value_component - ((4 * i + j + 2) - * this->degree + k, - quadrature_point_3, 0); - tmp (2 * (2 * j + l) + 9) - -= this->restriction[index][2 * j + l] - ((4 * i + l) - * this->degree + k, dof) - * this->shape_value_component - ((4 * i + l) - * this->degree + k, - quadrature_point_3, 1); - } - - tmp (2 * j + 1) - -= this->restriction[index][i + 2 * j] - ((i + 2 * (j + 4)) - * this->degree + k, dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree + k, - quadrature_point_1, 2); - tmp (2 * j + 5) - -= this->restriction[index][2 * i + j] - ((2 * (i + 4) + j) - * this->degree + k, dof) - * this->shape_value_component - ((2 * (i + 4) + j) - * this->degree + k, - quadrature_point_2, 2); - } - - tmp *= face_quadrature.weight (q_point); - - for (unsigned int j = 0; j <= deg; ++j) - { - const double L_j_0 - = legendre_polynomials[j].value - (face_quadrature_points[q_point] (0)); - const double L_j_1 - = legendre_polynomials[j].value - (face_quadrature_points[q_point] (1)); - - for (unsigned int k = 0; k < deg; - ++k) - { - const double l_k_0 = L_j_0 - * lobatto_polynomials[k + 2].value - (face_quadrature_points[q_point] (1)); - const double l_k_1 = L_j_1 - * lobatto_polynomials[k + 2].value - (face_quadrature_points[q_point] (0)); - - for (unsigned int l = 0; l < 8; - ++l) - { - system_rhs (j * deg + k, - 2 * l) - += tmp (2 * l) * l_k_0; - system_rhs (j * deg + k, - 2 * l + 1) - += tmp (2 * l + 1) * l_k_1; - } - } - } - } - - system_matrix_inv.mmult (solution, - system_rhs); - - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k <= deg; ++k) - for (unsigned int l = 0; l < deg; ++l) - { - if (std::abs (solution (k * deg + l, - 2 * j)) - > 1e-14) - this->restriction[index][i + 2 * j] - ((2 * i * this->degree + k) * deg - + l - + n_edge_dofs, - dof) = solution (k * deg + l, - 2 * j); - - if (std::abs (solution (k * deg + l, - 2 * j + 1)) - > 1e-14) - this->restriction[index][i + 2 * j] - (((2 * i + 1) * deg + l) - * this->degree + k + n_edge_dofs, - dof) = solution (k * deg + l, - 2 * j + 1); - - if (std::abs (solution (k * deg + l, - 2 * (j + 2))) - > 1e-14) - this->restriction[index][2 * i + j] - ((2 * (i + 2) * this->degree + k) - * deg + l + n_edge_dofs, dof) - = solution (k * deg + l, - 2 * (j + 2)); - - if (std::abs (solution (k * deg + l, - 2 * j + 5)) - > 1e-14) - this->restriction[index][2 * i + j] - (((2 * i + 5) * deg + l) - * this->degree + k + n_edge_dofs, - dof) = solution (k * deg + l, - 2 * j + 5); - - for (unsigned int m = 0; m < 2; ++m) - { - if (std::abs (solution (k * deg - + l, - 2 * (2 * j + m + 2))) - > 1e-14) - this->restriction[index][2 * j + m] - ((2 * (i + 4) * this->degree - + k) * deg + l - + n_edge_dofs, dof) - = solution (k * deg + l, - 2 * (2 * j + m - + 2)); - - if (std::abs (solution (k * deg - + l, - 2 * (2 * j + m) + 9)) - > 1e-14) - this->restriction[index][2 * j + m] - (((2 * i + 9) * deg + l) - * this->degree + k - + n_edge_dofs, dof) - = solution (k * deg + l, - 2 * (2 * j + m) - + 9); - } - } - } - - const QGauss quadrature (2 * this->degree); - const std::vector >& - quadrature_points = quadrature.get_points (); - const unsigned int n_boundary_dofs - = 2 * GeometryInfo::faces_per_cell * deg - * this->degree + n_edge_dofs; - const unsigned int& - n_quadrature_points = quadrature.size (); - - { - FullMatrix assembling_matrix (deg * deg - * this->degree, - n_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) - { - const double weight - = std::sqrt (quadrature.weight (q_point)); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i = weight - * legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j - = L_i * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - - for (unsigned int k = 0; k < deg; ++k) - assembling_matrix ((i * deg + j) - * deg + k, - q_point) - = l_j * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - } - } - } - - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); - } - - solution.reinit (system_matrix_inv.m (), 12); - system_rhs.reinit (system_matrix_inv.m (), 12); - tmp.reinit (12); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) - { - tmp = 0.0; - - if (quadrature_points[q_point] (0) < 0.5) - { - if (quadrature_points[q_point] (1) - < 0.5) - { - const Point - quadrature_point (2.0 * quadrature_points[q_point] (0), - 2.0 * quadrature_points[q_point] (1), - quadrature_points[q_point] (2)); - - tmp (0) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 0); - tmp (1) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 1); - tmp (2) - += this->shape_value_component - (dof, quadrature_point, 2); - } - - else - { - const Point - quadrature_point (2.0 * quadrature_points[q_point] (0), - 2.0 * quadrature_points[q_point] (1) - - 1.0, - quadrature_points[q_point] (2)); - - tmp (3) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 0); - tmp (4) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 1); - tmp (5) - += this->shape_value_component - (dof, quadrature_point, 2); - } - } - - else - if (quadrature_points[q_point] (1) < 0.5) - { - const Point - quadrature_point (2.0 * quadrature_points[q_point] (0) - - 1.0, - 2.0 * quadrature_points[q_point] (1), - quadrature_points[q_point] (2)); - - tmp (6) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 0); - tmp (7) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 1); - tmp (8) - += this->shape_value_component (dof, - quadrature_point, - 2); - } - - else - { - const Point - quadrature_point (2.0 * quadrature_points[q_point] (0) - - 1.0, - 2.0 * quadrature_points[q_point] (1) - - 1.0, - quadrature_points[q_point] (2)); - - tmp (9) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 0); - tmp (10) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 1); - tmp (11) - += this->shape_value_component (dof, - quadrature_point, - 2); - } - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k <= deg; ++k) - { - for (unsigned int l = 0; l < 2; ++l) - { - tmp (3 * (i + 2 * j)) - -= this->restriction[index][2 * i + j] - ((i + 4 * l + 2) - * this->degree + k, dof) - * this->shape_value_component - ((i + 4 * l + 2) - * this->degree + k, - quadrature_points[q_point], - 0); - tmp (3 * (i + 2 * j) + 1) - -= this->restriction[index][2 * i + j] - (k + (j + 4 * l) - * this->degree, dof) - * this->shape_value_component - (k + (j + 4 * l) - * this->degree, - quadrature_points[q_point], - 1); - - for (unsigned int m = 0; - m < deg; ++m) - { - tmp (3 * (i + 2 * j)) - -= this->restriction[index][2 * i + j] - ((k + 2 * (l + 4) - * this->degree) - * deg + m - + n_edge_dofs, dof) - * this->shape_value_component - ((k + 2 * (l + 4) - * this->degree) - * deg + m - + n_edge_dofs, - quadrature_points[q_point], - 0); - tmp (3 * (i + 2 * j) + 1) - -= this->restriction[index][2 * i + j] - (k + ((2 * l + 9) * deg - + m) - * this->degree - + n_edge_dofs, dof) - * this->shape_value_component - (k + ((2 * l + 9) * deg - + m) - * this->degree - + n_edge_dofs, - quadrature_points[q_point], - 1); - } - } - - for (unsigned int l = 0; l < deg; - ++l) - { - tmp (3 * (i + 2 * j)) - -= this->restriction[index][2 * i + j] - ((2 * (i + 2) - * this->degree + k) - * deg + l + n_edge_dofs, - dof) - * this->shape_value_component - ((2 * (i + 2) - * this->degree + k) - * deg + l + n_edge_dofs, - quadrature_points[q_point], - 0); - tmp (3 * (i + 2 * j) + 1) - -= this->restriction[index][2 * i + j] - ((2 * j * this->degree + k) - * deg + l + n_edge_dofs, - dof) - * this->shape_value_component - ((2 * j * this->degree + k) - * deg + l + n_edge_dofs, - quadrature_points[q_point], - 1); - tmp (3 * (i + 2 * j) + 2) - -= this->restriction[index][2 * i + j] - (((2 * j + 1) * deg + l) - * this->degree + k - + n_edge_dofs, dof) - * this->shape_value_component - (((2 * j + 1) * deg + l) - * this->degree + k - + n_edge_dofs, - quadrature_points[q_point], - 2); - tmp (3 * (i + 2 * j) + 2) - -= this->restriction[index][2 * i + j] - (((2 * i + 5) * deg + l) - * this->degree + k - + n_edge_dofs, dof) - * this->shape_value_component - (((2 * i + 5) * deg + l) - * this->degree + k - + n_edge_dofs, - quadrature_points[q_point], - 2); - } - - tmp (3 * (i + 2 * j) + 2) - -= this->restriction[index][2 * i + j] - ((2 * (i + 4) + j) - * this->degree + k, dof) - * this->shape_value_component - ((2 * (i + 4) + j) - * this->degree + k, - quadrature_points[q_point], - 2); - } - - tmp *= quadrature.weight (q_point); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i_0 - = legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - const double L_i_1 - = legendre_polynomials[i].value - (quadrature_points[q_point] (1)); - const double L_i_2 - = legendre_polynomials[i].value - (quadrature_points[q_point] (2)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j_0 - = L_i_0 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - const double l_j_1 - = L_i_1 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - const double l_j_2 - = L_i_2 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - - for (unsigned int k = 0; k < deg; - ++k) - { - const double l_k_0 - = l_j_0 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - const double l_k_1 - = l_j_1 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - const double l_k_2 - = l_j_2 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (1)); - - for (unsigned int l = 0; l < 4; - ++l) - { - system_rhs ((i * deg + j) - * deg + k, - 3 * l) - += tmp (3 * l) * l_k_0; - system_rhs ((i * deg + j) - * deg + k, - 3 * l + 1) - += tmp (3 * l + 1) - * l_k_1; - system_rhs ((i * deg + j) - * deg + k, - 3 * l + 2) - += tmp (3 * l + 2) - * l_k_2; - } - } - } - } - } - - system_matrix_inv.mmult (solution, system_rhs); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k <= deg; ++k) - for (unsigned int l = 0; l < deg; ++l) - for (unsigned int m = 0; m < deg; ++m) - { - if (std::abs (solution - ((k * deg + l) * deg - + m, - 3 * (i + 2 * j))) - > 1e-14) - this->restriction[index][2 * i + j] - ((k * deg + l) * deg + m - + n_boundary_dofs, - dof) - = solution ((k * deg + l) * deg - + m, - 3 * (i + 2 * j)); - - if (std::abs (solution - ((k * deg + l) * deg - + m, - 3 * (i + 2 * j) + 1)) - > 1e-14) - this->restriction[index][2 * i + j] - ((k + (l + deg) * this->degree) - * deg + m + n_boundary_dofs, dof) - = solution ((k * deg + l) * deg - + m, - 3 * (i + 2 * j) - + 1); - - if (std::abs (solution - ((k * deg + l) * deg - + m, - 3 * (i + 2 * j) + 2)) - > 1e-14) - this->restriction[index][2 * i + j] - (k + ((l + 2 * deg) * deg + m) - * this->degree - + n_boundary_dofs, dof) - = solution ((k * deg + l) * deg - + m, - 3 * (i + 2 * j) - + 2); - } - } - } - - break; - } - - case RefinementCase<3>::cut_z: - { - // First interpolate the shape - // functions of the child cells - // to the lowest order shape - // functions of the parent cell. - for (unsigned int dof = 0; dof < this->dofs_per_cell; - ++dof) - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; ++q_point) - { - { - const double weight - = edge_quadrature.weight (q_point); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - Point quadrature_point (i, - edge_quadrature_points[q_point] (0), - j); - - this->restriction[index][j] - ((i + 4 * j) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 1); - quadrature_point - = Point (edge_quadrature_points[q_point] (0), - i, j); - this->restriction[index][j] - ((i + 4 * j + 2) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 0); - } - } - - const double weight - = 2.0 * edge_quadrature.weight (q_point); - - if (edge_quadrature_points[q_point] (0) < 0.5) - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - const Point quadrature_point (i, j, - 2.0 * edge_quadrature_points[q_point] (0)); - - this->restriction[index][0] - ((i + 2 * (j + 4)) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 2); - } - - else - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - const Point quadrature_point (i, j, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0); - - this->restriction[index][1] - ((i + 2 * (j + 4)) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 2); - } - } - - // Then project the shape functions - // of the child cells to the higher - // order shape functions of the - // parent cell. - if (deg > 0) - { - const std::vector >& - legendre_polynomials - = Polynomials::Legendre::generate_complete_basis - (deg); - FullMatrix system_matrix_inv (deg, deg); - - { - FullMatrix assembling_matrix (deg, - n_edge_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = std::sqrt (edge_quadrature.weight - (q_point)); - - for (unsigned int i = 0; i < deg; ++i) - assembling_matrix (i, q_point) - = weight - * legendre_polynomials[i + 1].value - (edge_quadrature_points[q_point] (0)); - } - - FullMatrix system_matrix (deg, deg); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.invert (system_matrix); - } - - FullMatrix solution (deg, 4); - FullMatrix system_rhs (deg, 4); - Vector tmp (4); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = edge_quadrature.weight (q_point); - Point quadrature_point_0 (i, - edge_quadrature_points[q_point] (0), - j); - - tmp (0) = weight - * (this->shape_value_component - (dof, quadrature_point_0, - 1) - - this->restriction[index][j] - ((i + 4 * j) * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) * this->degree, - quadrature_point_0, 1)); - quadrature_point_0 - = Point (edge_quadrature_points[q_point] (0), - i, j); - tmp (1) = weight - * (this->shape_value_component - (dof, quadrature_point_0, - 0) - - this->restriction[index][j] - ((i + 4 * j + 2) * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) * this->degree, - quadrature_point_0, 0)); - quadrature_point_0 - = Point (i, j, - edge_quadrature_points[q_point] (0)); - - if (edge_quadrature_points[q_point] (0) - < 0.5) - { - const Point quadrature_point_1 - (i, j, - 2.0 * edge_quadrature_points[q_point] (0)); - - tmp (2) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_1, - 2) - - this->restriction[index][0] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_0, - 2)); - tmp (3) = -1.0 * weight - * this->restriction[index][1] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_0, - 2); - } - - else - { - tmp (2) = -1.0 * weight - * this->restriction[index][0] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_0, - 2); - - const Point - quadrature_point_1 (i, j, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0); - - tmp (3) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_1, - 2) - - this->restriction[index][1] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_0, - 2)); - } - - for (unsigned int k = 0; k < deg; ++k) - { - const double L_k - = legendre_polynomials[k + 1].value - (edge_quadrature_points[q_point] (0)); - - for (unsigned int l = 0; - l < tmp.size (); ++l) - system_rhs (k, l) += tmp (l) - * L_k; - } - } - - system_matrix_inv.mmult (solution, - system_rhs); - - for (unsigned int k = 0; k < 2; ++k) - for (unsigned int l = 0; l < deg; ++l) - { - if (std::abs (solution (l, k)) - > 1e-14) - this->restriction[index][j] - ((i + 2 * (2 * j + k)) - * this->degree + l + 1, dof) - = solution (l, k); - - if (std::abs (solution (l, k + 2)) - > 1e-14) - this->restriction[index][k] - ((i + 2 * (j + 4)) * this->degree - + l + 1, dof) - = solution (l, k + 2); - } - } - - const QGauss<2> face_quadrature (2 * this->degree); - const std::vector >& - face_quadrature_points - = face_quadrature.get_points (); - const std::vector >& - lobatto_polynomials - = Polynomials::Lobatto::generate_complete_basis - (this->degree); - const unsigned int n_edge_dofs - = GeometryInfo::lines_per_cell - * this->degree; - const unsigned int& n_face_quadrature_points - = face_quadrature.size (); - - { - FullMatrix - assembling_matrix (deg * this->degree, - n_face_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_face_quadrature_points; - ++q_point) - { - const double weight - = std::sqrt (face_quadrature.weight - (q_point)); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i = weight - * legendre_polynomials[i].value - (face_quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - assembling_matrix (i * deg + j, q_point) - = L_i * lobatto_polynomials[j + 2].value - (face_quadrature_points[q_point] (1)); - } - } - - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); - } - - solution.reinit (system_matrix_inv.m (), 10); - system_rhs.reinit (system_matrix_inv.m (), 10); - tmp.reinit (10); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_face_quadrature_points; - ++q_point) - { - tmp = 0.0; - - if (face_quadrature_points[q_point] (1) - < 0.5) - { - Point quadrature_point_0 (i, - face_quadrature_points[q_point] (0), - 2.0 * face_quadrature_points[q_point] (1)); - - tmp (0) += this->shape_value_component - (dof, quadrature_point_0, - 1); - tmp (1) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 2); - quadrature_point_0 - = Point (face_quadrature_points[q_point] (0), - i, - 2.0 * face_quadrature_points[q_point] (1)); - tmp (4) += this->shape_value_component - (dof, quadrature_point_0, - 0); - tmp (5) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 2); - } - - else - { - Point quadrature_point_0 (i, - face_quadrature_points[q_point] (0), - 2.0 * face_quadrature_points[q_point] (1) - - 1.0); - - tmp (2) += this->shape_value_component - (dof, quadrature_point_0, - 1); - tmp (3) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 2); - quadrature_point_0 - = Point (face_quadrature_points[q_point] (0), - i, - 2.0 * face_quadrature_points[q_point] (1) - - 1.0); - tmp (6) += this->shape_value_component - (dof, quadrature_point_0, - 0); - tmp (7) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 2); - } - - const Point quadrature_point_1 (i, - face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1)); - const Point - quadrature_point_2 - (face_quadrature_points[q_point] (0), i, - face_quadrature_points[q_point] (1)); - const Point - quadrature_point_3 - (face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1), - i); - - tmp (8) += this->shape_value_component - (dof, quadrature_point_3, 0); - tmp (9) += this->shape_value_component - (dof, quadrature_point_3, 1); - - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k <= deg; ++k) - { - tmp (2 * j) - -= this->restriction[index][j] - ((i + 4 * j) * this->degree - + k, dof) - * this->shape_value_component - ((i + 4 * j) * this->degree - + k, - quadrature_point_1, 1); - tmp (2 * (j + 2)) - -= this->restriction[index][j] - ((i + 4 * j + 2) - * this->degree + k, dof) - * this->shape_value_component - ((i + 4 * j + 2) * this->degree - + k, - quadrature_point_2, 0); - tmp (8) - -= this->restriction[index][i] - ((4 * i + j + 2) - * this->degree + k, dof) - * this->shape_value_component - ((4 * i + j + 2) * this->degree - + k, - quadrature_point_3, 0); - tmp (9) - -= this->restriction[index][i] - ((4 * i + j) * this->degree - + k, dof) - * this->shape_value_component - ((4 * i + j) * this->degree - + k, - quadrature_point_3, 1); - - for (unsigned int l = 0; l < 2; - ++l) - { - tmp (2 * l + 1) - -= this->restriction[index][l] - ((2 * (j + 4) + i) - * this->degree + k, dof) - * this->shape_value_component - ((2 * (j + 4) + i) - * this->degree + k, - quadrature_point_1, 2); - tmp (2 * l + 5) - -= this->restriction[index][l] - ((j + 2 * (i + 4)) - * this->degree + k, dof) - * this->shape_value_component - ((j + 2 * (i + 4)) - * this->degree + k, - quadrature_point_2, 2); - } - } - - tmp *= face_quadrature.weight (q_point); - - for (unsigned int j = 0; j <= deg; ++j) - { - const double L_j_0 - = legendre_polynomials[j].value - (face_quadrature_points[q_point] (0)); - const double L_j_1 - = legendre_polynomials[j].value - (face_quadrature_points[q_point] (1)); - - for (unsigned int k = 0; k < deg; ++k) - { - const double l_k_0 - = L_j_0 * lobatto_polynomials[k + 2].value - (face_quadrature_points[q_point] (1)); - const double l_k_1 - = L_j_1 * lobatto_polynomials[k + 2].value - (face_quadrature_points[q_point] (0)); - - for (unsigned int l = 0; l < 5; - ++l) - { - system_rhs (j * deg + k, - 2 * l) - += tmp (2 * l) * l_k_0; - system_rhs (j * deg + k, - 2 * l + 1) - += tmp (2 * l + 1) * l_k_1; - } - } - } - } - - system_matrix_inv.mmult (solution, - system_rhs); - - for (unsigned int j = 0; j <= deg; ++j) - for (unsigned int k = 0; k < deg; ++k) - { - for (unsigned int l = 0; l < 2; ++l) - { - if (std::abs (solution (j * deg + k, - 2 * l)) - < 1e-14) - this->restriction[index][l] - ((2 * i * this->degree + j) * deg - + k - + n_edge_dofs, - dof) = solution (j * deg + k, - 2 * l); - - if (std::abs (solution (j * deg + k, - 2 * l + 1)) - < 1e-14) - this->restriction[index][l] - (((2 * i + 1) * deg + k) - * this->degree + j + n_edge_dofs, - dof) = solution (j * deg + k, - 2 * l + 1); - - if (std::abs (solution (j * deg + k, - 2 * (l + 2))) - < 1e-14) - this->restriction[index][l] - ((2 * (i + 2) * this->degree + j) - * deg + k + n_edge_dofs, dof) - = solution (j * deg + k, - 2 * (l + 2)); - - if (std::abs (solution (j * deg + k, - 2 * l + 5)) - < 1e-14) - this->restriction[index][l] - (((2 * i + 5) * deg + k) - * this->degree + j + n_edge_dofs, - dof) = solution (j * deg + k, - 2 * l + 5); - } - - if (std::abs (solution (j * deg + k, 8)) - < 1e-14) - this->restriction[index][i] - ((2 * (i + 4) * this->degree + j) - * deg + k + n_edge_dofs, dof) - = solution (j * deg + k, 8); - - if (std::abs (solution (j * deg + k, 9)) - < 1e-14) - this->restriction[index][i] - (((2 * i + 9) * deg + k) - * this->degree + j + n_edge_dofs, - dof) = solution (j * deg + k, 9); - } - } - - const QGauss quadrature (2 * this->degree); - const std::vector >& - quadrature_points = quadrature.get_points (); - const unsigned int n_boundary_dofs - = 2 * GeometryInfo::faces_per_cell * deg - * this->degree + n_edge_dofs; - const unsigned int& - n_quadrature_points = quadrature.size (); - - { - FullMatrix - assembling_matrix (deg * deg * this->degree, - n_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) - { - const double weight - = std::sqrt (quadrature.weight (q_point)); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i = weight - * legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j - = L_i * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - - for (unsigned int k = 0; k < deg; ++k) - assembling_matrix ((i * deg + j) - * deg + k, - q_point) - = l_j * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - } - } - } - - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); - } - - solution.reinit (system_matrix_inv.m (), 6); - system_rhs.reinit (system_matrix_inv.m (), 6); - tmp.reinit (6); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) - { - tmp = 0.0; - - if (quadrature_points[q_point] (2) < 0.5) - { - const Point - quadrature_point - (quadrature_points[q_point] (0), - quadrature_points[q_point] (1), - 2.0 * quadrature_points[q_point] (2)); - - tmp (0) += this->shape_value_component - (dof, quadrature_point, 0); - tmp (1) += this->shape_value_component - (dof, quadrature_point, 1); - tmp (2) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 2); - } - - else - { - const Point - quadrature_point - (quadrature_points[q_point] (0), - quadrature_points[q_point] (1), - 2.0 * quadrature_points[q_point] (2) - - 1.0); - - tmp (3) += this->shape_value_component - (dof, quadrature_point, 0); - tmp (4) += this->shape_value_component - (dof, quadrature_point, 1); - tmp (5) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 2); - } - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j <= deg; ++j) - { - for (unsigned int k = 0; k < 2; ++k) - { - tmp (3 * i) - -= this->restriction[index][i] - ((4 * i + k + 2) - * this->degree + j, dof) - * this->shape_value_component - ((4 * i + k + 2) - * this->degree + j, - quadrature_points[q_point], - 0); - tmp (3 * i + 1) - -= this->restriction[index][i] - ((4 * i + k) * this->degree - + j, dof) - * this->shape_value_component - ((4 * i + k) * this->degree - + j, - quadrature_points[q_point], - 1); - - for (unsigned int l = 0; l < deg; - ++l) - { - tmp (3 * i) - -= this->restriction[index][i] - ((j + 2 * (k + 2) - * this->degree) * deg - + l - + n_edge_dofs, - dof) - * this->shape_value_component - ((j + 2 * (k + 2) - * this->degree) - * deg + l + n_edge_dofs, - quadrature_points[q_point], - 0); - tmp (3 * i + 1) - -= this->restriction[index][i] - ((j + 2 * k - * this->degree) - * deg + l + n_edge_dofs, - dof) - * this->shape_value_component - ((j + 2 * k * this->degree) - * deg + l - + n_edge_dofs, - quadrature_points[q_point], - 1); - } - - for (unsigned int l = 0; l < 2; - ++l) - { - tmp (3 * i + 2) - -= this->restriction[index][i] - (j + (k + 2 * (l + 4)) - * this->degree, dof) - * this->shape_value_component - (j + (k + 2 * (l + 4)) - * this->degree, - quadrature_points[q_point], - 2); - - for (unsigned int m = 0; - m < deg; ++m) - tmp (3 * i + 2) - -= this->restriction[index][i] - (j + ((2 * (k + 2 * m) - + 1) * deg - + l) - * this->degree - + n_edge_dofs, dof) - * this->shape_value_component - (j + ((2 * (k + 2 * m) - + 1) * deg + l) - * this->degree - + n_edge_dofs, - quadrature_points[q_point], - 2); - } - } - - for (unsigned int k = 0; k < deg; ++k) - { - tmp (3 * i) - -= this->restriction[index][i] - ((2 * (i + 4) * this->degree - + j) * deg + k - + n_edge_dofs, dof) - * this->shape_value_component - ((2 * (i + 4) * this->degree - + j) * deg + k - + n_edge_dofs, - quadrature_points[q_point], - 0); - tmp (3 * i + 1) - -= this->restriction[index][i] - (((2 * i + 9) * deg + k) - * this->degree + j - + n_edge_dofs, dof) - * this->shape_value_component - (((2 * i + 9) * deg + k) - * this->degree + j - + n_edge_dofs, - quadrature_points[q_point], - 1); - } - } - - tmp *= quadrature.weight (q_point); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i_0 - = legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - const double L_i_1 - = legendre_polynomials[i].value - (quadrature_points[q_point] (1)); - const double L_i_2 - = legendre_polynomials[i].value - (quadrature_points[q_point] (2)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j_0 - = L_i_0 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - const double l_j_1 - = L_i_1 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - const double l_j_2 - = L_i_2 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - - for (unsigned int k = 0; k < deg; - ++k) - { - const double l_k_0 - = l_j_0 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - const double l_k_1 - = l_j_1 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - const double l_k_2 - = l_j_2 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (1)); - - for (unsigned int l = 0; l < 2; - ++l) - { - system_rhs ((i * deg + j) - * deg + k, - 3 * l) - += tmp (3 * l) * l_k_0; - system_rhs ((i * deg + j) - * deg + k, - 3 * l + 1) - += tmp (3 * l + 1) - * l_k_1; - system_rhs ((i * deg + j) - * deg + k, - 3 * l + 2) - += tmp (3 * l + 2) - * l_k_2; - } - } - } - } - } - - system_matrix_inv.mmult (solution, system_rhs); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j <= deg; ++j) - for (unsigned int k = 0; k < deg; ++k) - for (unsigned int l = 0; l < deg; ++l) - { - if (std::abs (solution ((j * deg + k) - * deg + l, - 3 * i)) - > 1e-14) - this->restriction[index][i] - ((j * deg + k) * deg + l - + n_boundary_dofs, - dof) = solution ((j * deg + k) - * deg + l, - 3 * i); - - if (std::abs (solution ((j * deg + k) - * deg + l, - 3 * i + 1)) - > 1e-14) - this->restriction[index][i] - ((j + (k + deg) * this->degree) - * deg + l + n_boundary_dofs, dof) - = solution ((j * deg + k) * deg - + l, - 3 * i + 1); - - if (std::abs (solution ((j * deg + k) - * deg + l, - 3 * i + 2)) - > 1e-14) - this->restriction[index][i] - (j + ((k + 2 * deg) * deg + l) - * this->degree + n_boundary_dofs, - dof) = solution ((j * deg + k) - * deg + l, - 3 * i + 2); - } - } - } - - break; - } - - case RefinementCase<3>::cut_xz: - { - // First interpolate the shape - // functions of the child cells - // to the lowest order shape - // functions of the parent cell. - for (unsigned int dof = 0; dof < this->dofs_per_cell; - ++dof) - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; ++q_point) - { - { - const double weight - = edge_quadrature.weight (q_point); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - const Point quadrature_point (i, - edge_quadrature_points[q_point] (0), - j); - - this->restriction[index][2 * i + j] - ((i + 4 * j) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 1); - } - } - - const double weight - = 2.0 * edge_quadrature.weight (q_point); - - if (edge_quadrature_points[q_point] (0) < 0.5) - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - Point - quadrature_point - (2.0 * edge_quadrature_points[q_point] (0), - i, j); - - this->restriction[index][j] - ((i + 4 * j + 2) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 0); - quadrature_point = Point (i, j, - edge_quadrature_points[q_point] (0)); - this->restriction[index][2 * i] - ((i + 2 * (j + 4)) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 2); - } - - else - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - Point - quadrature_point - (2.0 * edge_quadrature_points[q_point] (0) - - 1.0, i, j); - - this->restriction[index][j + 2] - ((i + 4 * j + 2) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 0); - quadrature_point = Point (i, j, - edge_quadrature_points[q_point] (0)); - this->restriction[index][2 * i + 1] - ((i + 2 * (j + 4)) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 2); - } - } - - // Then project the shape functions - // of the child cells to the higher - // order shape functions of the - // parent cell. - if (deg > 0) - { - const std::vector >& - legendre_polynomials - = Polynomials::Legendre::generate_complete_basis - (deg); - FullMatrix system_matrix_inv (deg, deg); - - { - FullMatrix assembling_matrix (deg, - n_edge_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = std::sqrt (edge_quadrature.weight - (q_point)); - - for (unsigned int i = 0; i < deg; ++i) - assembling_matrix (i, q_point) = weight - * legendre_polynomials[i + 1].value - (edge_quadrature_points[q_point] (0)); - } - - FullMatrix system_matrix (deg, deg); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.invert (system_matrix); - } - - FullMatrix solution (deg, 5); - FullMatrix system_rhs (deg, 5); - Vector tmp (5); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = edge_quadrature.weight (q_point); - Point quadrature_point_0 (i, - edge_quadrature_points[q_point] (0), - j); - tmp (0) = weight - * (this->shape_value_component - (dof, quadrature_point_0, - 1) - - this->restriction[index][2 * i + j] - ((i + 4 * j) - * this->degree, dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1)); - quadrature_point_0 - = Point (edge_quadrature_points[q_point] (0), - i, j); - - const Point quadrature_point_1 (i, - j, - edge_quadrature_points[q_point] (0)); - - if (edge_quadrature_points[q_point] (0) - < 0.5) - { - Point - quadrature_point_2 (2.0 * edge_quadrature_points[q_point] (0), - i, j); - - tmp (1) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 0) - - this->restriction[index][j] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_0, - 0)); - tmp (2) = -1.0 * weight - * this->restriction[index][j + 2] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_0, - 0); - quadrature_point_2 = Point (i, - j, - 2.0 * edge_quadrature_points[q_point] (0)); - tmp (3) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 2) - - this->restriction[index][2 * i] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_1, - 2)); - tmp (4) = -1.0 * weight - * this->restriction[index][2 * i + 1] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_1, - 2); - } - - else - { - tmp (1) = -1.0 * weight - * this->restriction[index][j] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_0, - 0); - - Point - quadrature_point_2 - (2.0 * edge_quadrature_points[q_point] (0) - - 1.0, i, j); - - tmp (2) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 0) - - this->restriction[index][j + 2] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_0, - 0)); - tmp (3) = -1.0 * weight - * this->restriction[index][2 * i] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_1, - 2); - quadrature_point_2 = Point (i, - j, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0); - tmp (4) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 2) - - this->restriction[index][2 * i + 1] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_1, - 2)); - } - - for (unsigned int k = 0; k < deg; ++k) - { - const double L_k - = legendre_polynomials[k + 1].value - (edge_quadrature_points[q_point] (0)); - - for (unsigned int l = 0; - l < tmp.size (); ++l) - system_rhs (k, l) += tmp (l) - * L_k; - } - } - - system_matrix_inv.mmult (solution, - system_rhs); - - for (unsigned int k = 0; k < deg; ++k) - { - if (std::abs (solution (k, 0)) - > 1e-14) - this->restriction[index][2 * i + j] - ((i + 4 * j) * this->degree + k + 1, - dof) = solution (k, 0); - - for (unsigned int l = 0; l < 2; ++l) - { - if (std::abs (solution (k, l + 1)) - > 1e-14) - this->restriction[index][j + 2 * l] - ((i + 4 * j + 2) * this->degree - + k + 1, dof) - = solution (k, l + 1); - - if (std::abs (solution (k, l + 3)) - > 1e-14) - this->restriction[index][2 * i + l] - ((i + 2 * (j + 4)) * this->degree - + k + 1, dof) - = solution (k, l + 3); - } - } - } - - const QGauss<2> face_quadrature (2 * this->degree); - const std::vector >& face_quadrature_points - = face_quadrature.get_points (); - const std::vector >& - lobatto_polynomials - = Polynomials::Lobatto::generate_complete_basis - (this->degree); - const unsigned int n_edge_dofs - = GeometryInfo::lines_per_cell - * this->degree; - const unsigned int& n_face_quadrature_points - = face_quadrature.size (); - - { - FullMatrix - assembling_matrix (deg * this->degree, - n_face_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_face_quadrature_points; - ++q_point) - { - const double weight - = std::sqrt (face_quadrature.weight - (q_point)); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i = weight - * legendre_polynomials[i].value - (face_quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - assembling_matrix (i * deg + j, q_point) - = L_i * lobatto_polynomials[j + 2].value - (face_quadrature_points[q_point] (1)); - } - } - - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); - } - - solution.reinit (system_matrix_inv.m (), 16); - system_rhs.reinit (system_matrix_inv.m (), 16); - tmp.reinit (16); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_face_quadrature_points; - ++q_point) - { - tmp = 0.0; - - if (face_quadrature_points[q_point] (0) - < 0.5) - { - Point quadrature_point_0 (i, - 2.0 * face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1)); - - tmp (0) += this->shape_value_component - (dof, quadrature_point_0, - 1); - tmp (1) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 2); - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1), - i); - tmp (12) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 0); - tmp (13) - += this->shape_value_component (dof, - quadrature_point_0, - 1); - - if (face_quadrature_points[q_point] (1) - < 0.5) - { - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0), - i, - 2.0 * face_quadrature_points[q_point] (1)); - tmp (4) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 0); - tmp (5) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 2); - } - - else - { - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0), - i, - 2.0 * face_quadrature_points[q_point] (1) - - 1.0); - tmp (6) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 0); - tmp (7) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 2); - } - } - - else - { - Point quadrature_point_0 (i, - 2.0 * face_quadrature_points[q_point] (0) - - 1.0, - face_quadrature_points[q_point] (1)); - - tmp (2) += this->shape_value_component - (dof, quadrature_point_0, - 1); - tmp (3) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 2); - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0) - - 1.0, - face_quadrature_points[q_point] (1), - i); - tmp (14) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 0); - tmp (15) - += this->shape_value_component (dof, - quadrature_point_0, - 1); - - if (face_quadrature_points[q_point] (1) - < 0.5) - { - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0) - - 1.0, i, - 2.0 * face_quadrature_points[q_point] (1)); - tmp (8) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 0); - tmp (9) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 2); - } - - else - { - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0) - - 1.0, i, - 2.0 * face_quadrature_points[q_point] (1) - - 1.0); - tmp (10) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 0); - tmp (11) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 2); - } - } - - const Point quadrature_point_1 (i, - face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1)); - const Point - quadrature_point_2 - (face_quadrature_points[q_point] (0), i, - face_quadrature_points[q_point] (1)); - const Point - quadrature_point_3 - (face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1), - i); - - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k <= deg; ++k) - { - tmp (2 * j) - -= this->restriction[index][2 * i + j] - ((i + 4 * j) * this->degree - + k, dof) - * this->shape_value_component - ((i + 4 * j) * this->degree + k, - quadrature_point_1, 1); - tmp (2 * j + 13) - -= this->restriction[index][i + 2 * j] - ((4 * i + j) * this->degree - + k, dof) - * this->shape_value_component - ((4 * i + j) * this->degree + k, - quadrature_point_3, 1); - - for (unsigned int l = 0; l < 2; ++l) - { - tmp (2 * l + 1) - -= this->restriction[index][2 * i + l] - ((i + 2 * (j + 4)) - * this->degree + k, dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree + k, - quadrature_point_1, 2); - tmp (2 * (j + 2 * (l + 1))) - -= this->restriction[index][j + 2 * l] - ((i + 4 * j + 2) - * this->degree + k, dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_2, 0); - tmp (2 * (j + 2 * l) + 5) - -= this->restriction[index][j + 2 * l] - ((2 * (i + 4) + l) - * this->degree + k, dof) - * this->shape_value_component - ((2 * (i + 4) + l) - * this->degree, - quadrature_point_2, 2); - tmp (2 * (l + 6)) - -= this->restriction[index][i + 2 * l] - ((4 * i + j + 2) - * this->degree + k, dof) - * this->shape_value_component - ((4 * i + j + 2) - * this->degree + k, - quadrature_point_3, 0); - } - } - - tmp *= face_quadrature.weight (q_point); - - for (unsigned int j = 0; j <= deg; ++j) - { - const double L_j_0 - = legendre_polynomials[j].value - (face_quadrature_points[q_point] (0)); - const double L_j_1 - = legendre_polynomials[j].value - (face_quadrature_points[q_point] (1)); - - for (unsigned int k = 0; k < deg; ++k) - { - const double l_k_0 - = L_j_0 * lobatto_polynomials[k + 2].value - (face_quadrature_points[q_point] (1)); - const double l_k_1 - = L_j_1 * lobatto_polynomials[k + 2].value - (face_quadrature_points[q_point] (0)); - - for (unsigned int l = 0; l < 8; - ++l) - { - system_rhs (j * deg + k, - 2 * l) - += tmp (2 * l) * l_k_0; - system_rhs (j * deg + k, - 2 * l + 1) - += tmp (2 * l + 1) * l_k_1; - } - } - } - } - - system_matrix_inv.mmult (solution, - system_rhs); - - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k <= deg; ++k) - for (unsigned int l = 0; l < deg; ++l) - { - if (std::abs (solution (k * deg + l, - 2 * j)) - > 1e-14) - this->restriction[index][2 * i + j] - ((2 * i * this->degree + k) * deg - + l - + n_edge_dofs, - dof) = solution (k * deg + l, - 2 * j); - - if (std::abs (solution (k * deg + l, - 2 * j + 1)) - > 1e-14) - this->restriction[index][2 * i + j] - (((2 * i + 1) * deg + l) - * this->degree + k + n_edge_dofs, - dof) = solution (k * deg + l, - 2 * j + 1); - - if (std::abs (solution (k * deg + l, - 2 * (j + 6))) - > 1e-14) - this->restriction[index][i + 2 * j] - ((2 * (i + 4) * this->degree + k) - * deg + l + n_edge_dofs, dof) - = solution (k * deg + l, - 2 * (j + 6)); - - if (std::abs (solution (k * deg + l, - 2 * j + 13)) - > 1e-14) - this->restriction[index][i + 2 * j] - (((2 * i + 9) * deg + l) - * this->degree + k + n_edge_dofs, - dof) = solution (k * deg + l, - 2 * j + 13); - - for (unsigned int m = 0; m < 2; ++m) - { - if (std::abs (solution - (k * deg + l, - 2 * (j + 2 * (m + 1)))) - > 1e-14) - this->restriction[index][j + 2 * m] - ((2 * (i + 2) * this->degree - + k) * deg + l - + n_edge_dofs, dof) - = solution (k * deg + l, - 2 * (j + 2 * (m + 1))); - - if (std::abs (solution - (k * deg + l, - 2 * (j + 2 * m) + 5)) - > 1e-14) - this->restriction[index][j + 2 * m] - (((2 * i + 5) * deg + l) - * this->degree + k - + n_edge_dofs, dof) - = solution (k * deg + l, - 2 * (j + 2 * m) + 5); - } - } - } - - const QGauss quadrature (2 * this->degree); - const std::vector >& - quadrature_points = quadrature.get_points (); - const unsigned int n_boundary_dofs - = 2 * GeometryInfo::faces_per_cell * deg - * this->degree + n_edge_dofs; - const unsigned int& - n_quadrature_points = quadrature.size (); - - { - FullMatrix - assembling_matrix (deg * deg * this->degree, - n_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) - { - const double weight - = std::sqrt (quadrature.weight (q_point)); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i = weight - * legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j - = L_i * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - - for (unsigned int k = 0; k < deg; ++k) - assembling_matrix ((i * deg + j) - * deg + k, - q_point) - = l_j * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - } - } - } - - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); - } - - solution.reinit (system_matrix_inv.m (), 12); - system_rhs.reinit (system_matrix_inv.m (), 12); - tmp.reinit (12); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) - { - tmp = 0.0; - - if (quadrature_points[q_point] (0) < 0.5) - { - if (quadrature_points[q_point] (2) - < 0.5) - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0), - quadrature_points[q_point] (1), - 2.0 * quadrature_points[q_point] (2)); - - tmp (0) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 0); - tmp (1) - += this->shape_value_component - (dof, quadrature_point, 1); - tmp (2) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 2); - } - - else - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0), - quadrature_points[q_point] (1), - 2.0 * quadrature_points[q_point] (2) - - 1.0); - - tmp (3) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 0); - tmp (4) - += this->shape_value_component - (dof, quadrature_point, 1); - tmp (5) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 2); - } - } - - else - if (quadrature_points[q_point] (2) < 0.5) - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0) - - 1.0, - quadrature_points[q_point] (1), - 2.0 * quadrature_points[q_point] (2)); - - tmp (6) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 0); - tmp (7) - += this->shape_value_component (dof, - quadrature_point, - 1); - tmp (8) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 2); - } - - else - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0) - - 1.0, - quadrature_points[q_point] (1), - 2.0 * quadrature_points[q_point] (2) - - 1.0); - - tmp (9) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 0); - tmp (10) - += this->shape_value_component (dof, - quadrature_point, - 1); - tmp (11) += 2.0 - * this->shape_value_component - (dof, quadrature_point, 2); - } - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k <= deg; ++k) - { - for (unsigned int l = 0; l < 2; ++l) - { - tmp (3 * (i + 2 * j)) - -= this->restriction[index][i + 2 * j] - ((l + 4 * i + 2) - * this->degree + k, dof) - * this->shape_value_component - ((l + 4 * i + 2) - * this->degree + k, - quadrature_points[q_point], - 0); - tmp (3 * (i + 2 * j) + 2) - -= this->restriction[index][i + 2 * j] - ((j + 2 * (l + 4)) - * this->degree + k, dof) - * this->shape_value_component - ((j + 2 * (l + 4)) - * this->degree + k, - quadrature_points[q_point], - 2); - - for (unsigned int m = 0; - m < deg; ++m) - { - tmp (3 * (i + 2 * j)) - -= this->restriction[index][i + 2 * j] - ((k + 2 * (l + 2) - * this->degree) - * deg + m - + n_edge_dofs, dof) - * this->shape_value_component - ((k + 2 * (l + 2) - * this->degree) - * deg + m - + n_edge_dofs, - quadrature_points[q_point], - 0); - tmp (3 * (i + 2 * j) + 2) - -= this->restriction[index][i + 2 * j] - (((2 * l + 5) * deg - + m) - * this->degree + k - + n_edge_dofs, dof) - * this->shape_value_component - (((2 * l + 5) * deg + m) - * this->degree + k - + n_edge_dofs, - quadrature_points[q_point], - 2); - } - } - - for (unsigned int l = 0; l < deg; - ++l) - { - tmp (3 * (i + 2 * j)) - -= this->restriction[index][i + 2 * j] - ((2 * (i + 4) - * this->degree + k) - * deg + l + n_edge_dofs, - dof) - * this->shape_value_component - ((2 * (i + 4) * this->degree - + k) * deg + l - + n_edge_dofs, - quadrature_points[q_point], - 0); - tmp (3 * (i + 2 * j) + 1) - -= this->restriction[index][i + 2 * j] - ((2 * j * this->degree + k) - * deg + l + n_edge_dofs, - dof) - * this->shape_value_component - ((2 * j * this->degree + k) - * deg + l + n_edge_dofs, - quadrature_points[q_point], - 1); - tmp (3 * (i + 2 * j) + 1) - -= this->restriction[index][i + 2 * j] - (((2 * i + 9) * deg + l) - * this->degree + k - + n_edge_dofs, dof) - * this->shape_value_component - (((2 * i + 9) * deg + l) - * this->degree + k - + n_edge_dofs, - quadrature_points[q_point], - 1); - tmp (3 * (i + 2 * j) + 2) - -= this->restriction[index][i + 2 * j] - (((2 * j + 1) * deg + l) - * this->degree + k - + n_edge_dofs, dof) - * this->shape_value_component - (((2 * j + 1) * deg + l) - * this->degree + k - + n_edge_dofs, - quadrature_points[q_point], - 2); - } - - tmp (3 * (i + 2 * j) + 1) - -= this->restriction[index][i + 2 * j] - ((4 * i + j) * this->degree - + k, dof) - * this->shape_value_component - ((4 * i + j) * this->degree + k, - quadrature_points[q_point], 1); - } - - tmp *= quadrature.weight (q_point); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i_0 - = legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - const double L_i_1 - = legendre_polynomials[i].value - (quadrature_points[q_point] (1)); - const double L_i_2 - = legendre_polynomials[i].value - (quadrature_points[q_point] (2)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j_0 - = L_i_0 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - const double l_j_1 - = L_i_1 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - const double l_j_2 - = L_i_2 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - - for (unsigned int k = 0; k < deg; - ++k) - { - const double l_k_0 - = l_j_0 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - const double l_k_1 - = l_j_1 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - const double l_k_2 - = l_j_2 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (1)); - - for (unsigned int l = 0; l < 4; - ++l) - { - system_rhs ((i * deg + j) - * deg + k, - 3 * l) - += tmp (3 * l) * l_k_0; - system_rhs ((i * deg + j) - * deg + k, - 3 * l + 1) - += tmp (3 * l + 1) - * l_k_1; - system_rhs ((i * deg + j) - * deg + k, - 3 * l + 2) - += tmp (3 * l + 2) - * l_k_2; - } - } - } - } - } - - system_matrix_inv.mmult (solution, system_rhs); + for (unsigned int k = 0; k < deg; ++k) + { + const double L_k + = legendre_polynomials[k + 1].value + (edge_quadrature_points[q_point] (0)); - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k <= deg; ++k) - for (unsigned int l = 0; l < deg; ++l) - for (unsigned int m = 0; m < deg; ++m) - { - if (std::abs (solution - ((k * deg + l) * deg - + m, - 3 * (i + 2 * j))) - > 1e-14) - this->restriction[index][i + 2 * j] - ((k * deg + l) * deg + m - + n_boundary_dofs, - dof) = solution ((k * deg + l) - * deg + m, - 3 * (i + 2 * j)); - - if (std::abs (solution - ((k * deg + l) * deg - + m, - 3 * (i + 2 * j) - + 1)) > 1e-14) - this->restriction[index][i + 2 * j] - ((k + (l + deg) * this->degree) - * deg + m + n_boundary_dofs, - dof) = solution ((k * deg + l) - * deg + m, - 3 * (i + 2 * j) - + 1); - - if (std::abs (solution - ((k * deg + l) * deg - + m, - 3 * (i + 2 * j) + 2)) - > 1e-14) - this->restriction[index][i + 2 * j] - (k + ((l + 2 * deg) * deg + m) - * this->degree - + n_boundary_dofs, dof) - = solution ((k * deg + l) * deg - + m, - 3 * (i + 2 * j) - + 2); - } + for (unsigned int l = 0; l < tmp.size (); ++l) + system_rhs (k, l) += tmp (l) * L_k; } } - break; - } - - case RefinementCase<3>::cut_yz: - { - // First interpolate the shape - // functions of the child cells - // to the lowest order shape - // functions of the parent cell. - for (unsigned int dof = 0; dof < this->dofs_per_cell; - ++dof) - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; ++q_point) + system_matrix_inv.mmult (solution, system_rhs); + + for (unsigned int k = 0; k < 2; ++k) + for (unsigned int l = 0; l < deg; ++l) { - { - const double weight - = 2.0 * edge_quadrature.weight (q_point); - - if (edge_quadrature_points[q_point] (0) < 0.5) - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - Point quadrature_point (i, - 2.0 * edge_quadrature_points[q_point] (0), - j); - - this->restriction[index][2 * j] - ((i + 4 * j) * this->degree, dof) - += weight - * this->shape_value_component (dof, - quadrature_point, - 1); - quadrature_point = Point (i, j, - 2.0 * edge_quadrature_points[q_point] (0)); - this->restriction[index][j] - ((i + 2 * (j + 4)) * this->degree, dof) - += weight - * this->shape_value_component (dof, - quadrature_point, - 2); - } - - else - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - Point quadrature_point (i, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0, - j); - - this->restriction[index][2 * j + 1] - ((i + 4 * j) * this->degree, dof) - += weight - * this->shape_value_component (dof, - quadrature_point, - 1); - quadrature_point = Point (i, j, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0); - this->restriction[index][j + 2] - ((i + 2 * (j + 4)) * this->degree, dof) - += weight - * this->shape_value_component (dof, - quadrature_point, - 2); - } - } + if (std::abs (solution (l, k)) > 1e-14) + this->restriction[index][i + 2 * (2 * j + k)] + ((i + 4 * j) * this->degree + l + 1, dof) + = solution (l, k); - const double weight - = edge_quadrature.weight (q_point); + if (std::abs (solution (l, k + 2)) > 1e-14) + this->restriction[index][2 * (i + 2 * j) + k] + ((i + 4 * j + 2) * this->degree + l + 1, dof) + = solution (l, k + 2); - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - const Point - quadrature_point - (edge_quadrature_points[q_point] (0), i, - j); - - this->restriction[index][i + 2 * j] - ((i + 4 * j + 2) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 0); - } + if (std::abs (solution (l, k + 4)) > 1e-14) + this->restriction[index][i + 2 * (j + 2 * k)] + ((i + 2 * (j + 4)) * this->degree + l + 1, + dof) + = solution (l, k + 4); } - - // Then project the shape functions - // of the child cells to the higher - // order shape functions of the - // parent cell. - if (deg > 0) - { - const std::vector >& - legendre_polynomials - = Polynomials::Legendre::generate_complete_basis - (deg); - FullMatrix system_matrix_inv (deg, deg); - + } + + const QGauss<2> face_quadrature (2 * this->degree); + const std::vector >& face_quadrature_points + = face_quadrature.get_points (); + const std::vector >& + lobatto_polynomials + = Polynomials::Lobatto::generate_complete_basis + (this->degree); + const unsigned int n_edge_dofs + = GeometryInfo::lines_per_cell * this->degree; + const unsigned int& n_face_quadrature_points + = face_quadrature.size (); + + { + FullMatrix assembling_matrix + (deg * this->degree, + n_face_quadrature_points); + + for (unsigned int q_point = 0; + q_point < n_face_quadrature_points; ++q_point) + { + const double weight + = std::sqrt (face_quadrature.weight (q_point)); + + for (unsigned int i = 0; i <= deg; ++i) + { + const double L_i = weight + * legendre_polynomials[i].value + (face_quadrature_points[q_point] (0)); + + for (unsigned int j = 0; j < deg; ++j) + assembling_matrix (i * deg + j, q_point) + = L_i * lobatto_polynomials[j + 2].value + (face_quadrature_points[q_point] (1)); + } + } + + FullMatrix system_matrix (assembling_matrix.m (), + assembling_matrix.m ()); + + assembling_matrix.mTmult (system_matrix, + assembling_matrix); + system_matrix_inv.reinit (system_matrix.m (), + system_matrix.m ()); + system_matrix_inv.invert (system_matrix); + } + + solution.reinit (system_matrix_inv.m (), 24); + system_rhs.reinit (system_matrix_inv.m (), 24); + tmp.reinit (24); + + for (unsigned int i = 0; i < 2; ++i) + for (unsigned int dof = 0; dof < this->dofs_per_cell; ++dof) + { + system_rhs = 0.0; + + for (unsigned int q_point = 0; + q_point < n_face_quadrature_points; ++q_point) + { + tmp = 0.0; + + if (face_quadrature_points[q_point] (0) < 0.5) { - FullMatrix assembling_matrix (deg, - n_edge_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) + if (face_quadrature_points[q_point] (1) < 0.5) { - const double weight - = std::sqrt (edge_quadrature.weight - (q_point)); + Point quadrature_point_0 (i, + 2.0 * face_quadrature_points[q_point] (0), + 2.0 * face_quadrature_points[q_point] (1)); - for (unsigned int i = 0; i < deg; ++i) - assembling_matrix (i, q_point) = weight - * legendre_polynomials[i + 1].value - (edge_quadrature_points[q_point] (0)); + tmp (0) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 1); + tmp (1) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 2); + quadrature_point_0 + = Point (2.0 * face_quadrature_points[q_point] (0), + i, + 2.0 * face_quadrature_points[q_point] (1)); + tmp (8) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 2); + tmp (9) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 0); + quadrature_point_0 + = Point (2.0 * face_quadrature_points[q_point] (0), + 2.0 * face_quadrature_points[q_point] (1), + i); + tmp (16) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 0); + tmp (17) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 1); } - FullMatrix system_matrix (deg, deg); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.invert (system_matrix); - } - - FullMatrix solution (deg, 5); - FullMatrix system_rhs (deg, 5); - Vector tmp (5); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = edge_quadrature.weight (q_point); - const Point quadrature_point_0 (i, - edge_quadrature_points[q_point] (0), - j); - Point quadrature_point_1 (i, j, - edge_quadrature_points[q_point] (0)); - - if (edge_quadrature_points[q_point] (0) - < 0.5) - { - Point quadrature_point_2 (i, - 2.0 * edge_quadrature_points[q_point] (0), - j); - - tmp (0) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 1) - - this->restriction[index][2 * j] - ((i + 4 * j) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1)); - tmp (1) = -1.0 * weight - * this->restriction[index][2 * j + 1] - ((i + 4 * j) - * this->degree, dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1); - quadrature_point_2 = Point (i, - j, - 2.0 * edge_quadrature_points[q_point] (0)); - tmp (3) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 2) - - this->restriction[index][j] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_1, - 2)); - tmp (4) = -1.0 * weight - * this->restriction[index][j + 2] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_1, - 2); - } - - else - { - tmp (0) = -1.0 * weight - * this->restriction[index][2 * j] - ((i + 4 * j) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1); - - Point quadrature_point_2 (i, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0, - j); - - tmp (1) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 1) - - this->restriction[index][2 * j + 1] - ((i + 4 * j) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1)); - tmp (3) = -1.0 * weight - * this->restriction[index][j] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_1, - 2); - quadrature_point_2 = Point (i, - j, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0); - tmp (4) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_2, - 2) - - this->restriction[index][j + 2] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_1, - 2)); - } - - quadrature_point_1 - = Point (edge_quadrature_points[q_point] (0), - i, j); - tmp (2) = weight - * (this->shape_value_component - (dof, quadrature_point_1, - 0) - - this->restriction[index][i + 2 * j] - ((i + 4 * j + 2) - * this->degree, dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_1, 0)); - - for (unsigned int k = 0; k < deg; ++k) - { - const double L_k - = legendre_polynomials[k + 1].value - (edge_quadrature_points[q_point] (0)); - - for (unsigned int l = 0; - l < tmp.size (); ++l) - system_rhs (k, l) += tmp (l) - * L_k; - } - } - - system_matrix_inv.mmult (solution, - system_rhs); - - for (unsigned int k = 0; k < deg; ++k) - { - for (unsigned int l = 0; l < 2; ++l) - { - if (std::abs (solution (k, l)) - > 1e-14) - this->restriction[index][2 * j + l] - ((i + 4 * j) * this->degree + k - + 1, dof) - = solution (k, l); - - if (std::abs (solution (k, l + 2)) - > 1e-14) - this->restriction[index][j + 2 * l] - ((i + 2 * (j + 4)) * this->degree - + k + 1, dof) - = solution (k, l + 2); - } - - if (std::abs (solution (k, 2)) > 1e-14) - this->restriction[index][i + 2 * j] - ((i + 4 * j + 2) * this->degree + k - + 1, dof) - = solution (k, 2); - } - } - - const QGauss<2> face_quadrature (2 * this->degree); - const std::vector >& - face_quadrature_points - = face_quadrature.get_points (); - const std::vector >& - lobatto_polynomials - = Polynomials::Lobatto::generate_complete_basis - (this->degree); - const unsigned int n_edge_dofs - = GeometryInfo::lines_per_cell - * this->degree; - const unsigned int& n_face_quadrature_points - = face_quadrature.size (); - - { - FullMatrix - assembling_matrix (deg * this->degree, - n_face_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_face_quadrature_points; - ++q_point) + else { - const double weight - = std::sqrt (face_quadrature.weight - (q_point)); + Point quadrature_point_0 (i, + 2.0 * face_quadrature_points[q_point] (0), + 2.0 * face_quadrature_points[q_point] (1) + - 1.0); - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i = weight - * legendre_polynomials[i].value - (face_quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - assembling_matrix (i * deg + j, q_point) - = L_i * lobatto_polynomials[j + 2].value - (face_quadrature_points[q_point] (1)); - } + tmp (2) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 1); + tmp (3) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 2); + quadrature_point_0 + = Point (2.0 * face_quadrature_points[q_point] (0), + i, + 2.0 * face_quadrature_points[q_point] (1) + - 1.0); + tmp (10) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 2); + tmp (11) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 0); + quadrature_point_0 + = Point (2.0 * face_quadrature_points[q_point] (0), + 2.0 * face_quadrature_points[q_point] (1) + - 1.0, i); + tmp (18) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 0); + tmp (19) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 1); } - - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); } + + else + if (face_quadrature_points[q_point] (1) < 0.5) + { + Point quadrature_point_0 (i, + 2.0 * face_quadrature_points[q_point] (0) + - 1.0, + 2.0 * face_quadrature_points[q_point] (1)); + + tmp (4) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 1); + tmp (5) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 2); + quadrature_point_0 + = Point (2.0 * face_quadrature_points[q_point] (0) + - 1.0, i, + 2.0 * face_quadrature_points[q_point] (1)); + tmp (12) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 2); + tmp (13) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 0); + quadrature_point_0 + = Point (2.0 * face_quadrature_points[q_point] (0) + - 1.0, + 2.0 * face_quadrature_points[q_point] (1), + i); + tmp (20) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 0); + tmp (21) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 1); + } - solution.reinit (system_matrix_inv.m (), 16); - system_rhs.reinit (system_matrix_inv.m (), 16); - tmp.reinit (16); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) + else + { + Point quadrature_point_0 (i, + 2.0 * face_quadrature_points[q_point] (0) + - 1.0, + 2.0 * face_quadrature_points[q_point] (1) + - 1.0); + + tmp (6) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 1); + tmp (7) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 2); + quadrature_point_0 + = Point (2.0 * face_quadrature_points[q_point] (0) + - 1.0, i, + 2.0 * face_quadrature_points[q_point] (1) + - 1.0); + tmp (14) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 2); + tmp (15) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 0); + quadrature_point_0 + = Point (2.0 * face_quadrature_points[q_point] (0) + - 1.0, + 2.0 * face_quadrature_points[q_point] (1) + - 1.0, i); + tmp (22) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 0); + tmp (23) += 2.0 * this->shape_value_component + (dof, quadrature_point_0, 1); + } + + const Point quadrature_point_0 (i, + face_quadrature_points[q_point] (0), + face_quadrature_points[q_point] (1)); + const Point quadrature_point_1 + (face_quadrature_points[q_point] (0), + i, + face_quadrature_points[q_point] (1)); + const Point quadrature_point_2 + (face_quadrature_points[q_point] (0), + face_quadrature_points[q_point] (1), + i); + + for (unsigned int j = 0; j < 2; ++j) + for (unsigned int k = 0; k < 2; ++k) + for (unsigned int l = 0; l <= deg; ++l) { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_face_quadrature_points; - ++q_point) - { - tmp = 0.0; - - if (face_quadrature_points[q_point] (1) - < 0.5) - { - if (face_quadrature_points[q_point] (0) - < 0.5) - { - const Point - quadrature_point_0 (i, - 2.0 * face_quadrature_points[q_point] (0), - 2.0 * face_quadrature_points[q_point] (1)); - - tmp (0) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 1); - tmp (1) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 2); - } - - else - { - const Point - quadrature_point_0 (i, - 2.0 * face_quadrature_points[q_point] (0) - - 1.0, - 2.0 * face_quadrature_points[q_point] (1)); - - tmp (2) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 1); - tmp (3) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 2); - } - - Point - quadrature_point_0 - (face_quadrature_points[q_point] (0), - i, - 2.0 * face_quadrature_points[q_point] (1)); - - tmp (8) += this->shape_value_component - (dof, quadrature_point_0, - 0); - tmp (9) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 2); - quadrature_point_0 - = Point (face_quadrature_points[q_point] (0), - 2.0 * face_quadrature_points[q_point] (1), - i); - tmp (12) - += this->shape_value_component (dof, - quadrature_point_0, - 0); - tmp (13) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 1); - } - - else - { - if (face_quadrature_points[q_point] (0) - < 0.5) - { - const Point - quadrature_point_0 (i, - 2.0 * face_quadrature_points[q_point] (0), - 2.0 * face_quadrature_points[q_point] (1) - - 1.0); - - tmp (4) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 1); - tmp (5) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 2); - } - - else - { - const Point - quadrature_point_0 (i, - 2.0 * face_quadrature_points[q_point] (0) - - 1.0, - 2.0 * face_quadrature_points[q_point] (1) - - 1.0); - - tmp (6) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 1); - tmp (7) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 2); - } - - Point - quadrature_point_0 - (face_quadrature_points[q_point] (0), - i, - 2.0 * face_quadrature_points[q_point] (1) - - 1.0); - - tmp (10) - += this->shape_value_component (dof, - quadrature_point_0, - 0); - tmp (11) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 2); - quadrature_point_0 - = Point (face_quadrature_points[q_point] (0), - 2.0 * face_quadrature_points[q_point] (1) - - 1.0, - i); - tmp (14) - += this->shape_value_component (dof, - quadrature_point_0, - 0); - tmp (15) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 1); - } - - const Point quadrature_point_1 (i, - face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1)); - const Point - quadrature_point_2 - (face_quadrature_points[q_point] (0), i, - face_quadrature_points[q_point] (1)); - const Point - quadrature_point_3 - (face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1), - i); - - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k <= deg; ++k) - { - for (unsigned int l = 0; l < 2; ++l) - { - tmp (2 * (2 * j + l)) - -= this->restriction[index][2 * j + l] - ((i + 4 * j) * this->degree - + k, dof) - * this->shape_value_component - ((i + 4 * j) * this->degree - + k, - quadrature_point_1, 1); - tmp (2 * (2 * j + l) + 1) - -= this->restriction[index][2 * j + l] - ((i + 2 * (l + 4)) - * this->degree + k, dof) - * this->shape_value_component - ((i + 2 * (l + 4)) - * this->degree + k, - quadrature_point_1, 1); - tmp (2 * l + 9) - -= this->restriction[index][i + 2 * l] - ((2 * (i + 4) + j) - * this->degree + k, dof) - * this->shape_value_component - ((2 * (i + 4) + j) - * this->degree + k, - quadrature_point_2, 2); - tmp (2 * l + 13) - -= this->restriction[index][2 * i + l] - ((4 * i + j) - * this->degree + k, dof) - * this->shape_value_component - ((4 * i + j) * this->degree - + k, - quadrature_point_3, 1); - } - - tmp (2 * (j + 4)) - -= this->restriction[index][i + 2 * j] - ((i + 4 * j + 2) - * this->degree + k, dof) - * this->shape_value_component - ((i + 4 * j + 2) * this->degree - + k, - quadrature_point_2, 0); - tmp (2 * (j + 6)) - -= this->restriction[index][2 * i + j] - ((4 * i + j + 2) * this->degree - + k, dof) - * this->shape_value_component - ((4 * i + j + 2) * this->degree - + k, - quadrature_point_3, 0); - } - - tmp *= face_quadrature.weight (q_point); - - for (unsigned int j = 0; j <= deg; ++j) - { - const double L_j_0 - = legendre_polynomials[j].value - (face_quadrature_points[q_point] (0)); - const double L_j_1 - = legendre_polynomials[j].value - (face_quadrature_points[q_point] (1)); - - for (unsigned int k = 0; k < deg; - ++k) - { - const double l_k_0 - = L_j_0 * lobatto_polynomials[k + 2].value - (face_quadrature_points[q_point] (1)); - const double l_k_1 - = L_j_1 * lobatto_polynomials[k + 2].value - (face_quadrature_points[q_point] (0)); - - for (unsigned int l = 0; l < 8; - ++l) - { - system_rhs (j * deg + k, - 2 * l) - += tmp (2 * l) * l_k_0; - system_rhs (j * deg + k, - 2 * l + 1) - += tmp (2 * l + 1) * l_k_1; - } - } - } - } - - system_matrix_inv.mmult (solution, - system_rhs); - - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k <= deg; ++k) - for (unsigned int l = 0; l < deg; ++l) - { - for (unsigned int m = 0; m < 2; ++m) - { - if (std::abs (solution - (k * deg + l, - 2 * (2 * j + m))) - > 1e-14) - this->restriction[index][2 * j + m] - ((2 * i * this->degree + k) - * deg + l + n_edge_dofs, dof) - = solution (k * deg + l, - 2 * (2 * j + m)); - - if (std::abs (solution - (k * deg + l, - 2 * (2 * j + m) + 1)) - > 1e-14) - this->restriction[index][2 * j + m] - (((2 * i + 1) * deg + l) - * this->degree + k - + n_edge_dofs, dof) - = solution (k * deg + l, - 2 * (2 * j + m) + 1); - } - - if (std::abs (solution (k * deg + l, - 2 * (j + 4))) - > 1e-14) - this->restriction[index][i + 2 * j] - ((2 * (i + 2) * this->degree + k) - * deg + l + n_edge_dofs, dof) - = solution (k * deg + l, - 2 * (j + 4)); - - if (std::abs (solution (k * deg + l, - 2 * j + 9)) - > 1e-14) - this->restriction[index][i + 2 * j] - (((2 * i + 5) * deg + l) - * this->degree + k + n_edge_dofs, - dof) = solution (k * deg + l, - 2 * j + 9); - - if (std::abs (solution (k * deg + l, - 2 * (j + 6))) - > 1e-14) - this->restriction[index][2 * i + j] - ((2 * (i + 4) * this->degree + k) - * deg + l + n_edge_dofs, dof) - = solution (k * deg + l, - 2 * (j + 6)); - - if (std::abs (solution (k * deg + l, - 2 * j + 13)) - > 1e-14) - this->restriction[index][2 * i + j] - (((2 * i + 9) * deg + l) - * this->degree + k + n_edge_dofs, - dof) = solution (k * deg + l, - 2 * j + 13); - } + tmp (2 * (j + 2 * k)) + -= this->restriction[index][i + 2 * (2 * j + k)] + ((i + 4 * j) * this->degree + l, dof) + * this->shape_value_component + ((i + 4 * j) * this->degree + l, + quadrature_point_0, 1); + tmp (2 * (j + 2 * k) + 1) + -= this->restriction[index][i + 2 * (2 * j + k)] + ((i + 2 * (k + 4)) * this->degree + l, + dof) + * this->shape_value_component + ((i + 2 * (k + 4)) * this->degree + l, + quadrature_point_0, 2); + tmp (2 * (j + 2 * (k + 2))) + -= this->restriction[index][2 * (i + 2 * j) + k] + ((2 * (i + 4) + k) * this->degree + l, + dof) + * this->shape_value_component + ((2 * (i + 4) + k) * this->degree + l, + quadrature_point_1, 2); + tmp (2 * (j + 2 * k) + 9) + -= this->restriction[index][2 * (i + 2 * j) + k] + ((i + 4 * j + 2) * this->degree + l, + dof) + * this->shape_value_component + ((i + 4 * j + 2) * this->degree + l, + quadrature_point_1, 0); + tmp (2 * (j + 2 * (k + 4))) + -= this->restriction[index][2 * (2 * i + j) + k] + ((4 * i + j + 2) * this->degree + l, + dof) + * this->shape_value_component + ((4 * i + j + 2) * this->degree + l, + quadrature_point_2, 0); + tmp (2 * (j + 2 * k) + 17) + -= this->restriction[index][2 * (2 * i + j) + k] + ((4 * i + k) * this->degree + l, dof) + * this->shape_value_component + ((4 * i + k) * this->degree + l, + quadrature_point_2, 1); } - - const QGauss quadrature (2 * this->degree); - const std::vector >& - quadrature_points = quadrature.get_points (); - const unsigned int n_boundary_dofs - = 2 * GeometryInfo::faces_per_cell * deg - * this->degree + n_edge_dofs; - const unsigned int& - n_quadrature_points = quadrature.size (); - + + tmp *= face_quadrature.weight (q_point); + + for (unsigned int j = 0; j <= deg; ++j) { - FullMatrix - assembling_matrix (deg * deg * this->degree, - n_quadrature_points); + const double L_j_0 + = legendre_polynomials[j].value + (face_quadrature_points[q_point] (0)); + const double L_j_1 + = legendre_polynomials[j].value + (face_quadrature_points[q_point] (1)); - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) + for (unsigned int k = 0; k < deg; ++k) { - const double weight - = std::sqrt (quadrature.weight (q_point)); + const double l_k_0 + = L_j_0 * lobatto_polynomials[k + 2].value + (face_quadrature_points[q_point] (1)); + const double l_k_1 + = L_j_1 * lobatto_polynomials[k + 2].value + (face_quadrature_points[q_point] (0)); - for (unsigned int i = 0; i <= deg; ++i) + for (unsigned int l = 0; l < 4; ++l) { - const double L_i = weight - * legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j - = L_i * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - - for (unsigned int k = 0; k < deg; ++k) - assembling_matrix ((i * deg + j) - * deg + k, - q_point) - = l_j * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - } + system_rhs (j * deg + k, 2 * l) + += tmp (2 * l) * l_k_0; + system_rhs (j * deg + k, 2 * l + 1) + += tmp (2 * l + 1) * l_k_1; + system_rhs (j * deg + k, 2 * (l + 4)) + += tmp (2 * (l + 4)) * l_k_1; + system_rhs (j * deg + k, 2 * l + 9) + += tmp (2 * l + 9) * l_k_0; + system_rhs (j * deg + k, 2 * (l + 8)) + += tmp (2 * (l + 8)) * l_k_0; + system_rhs (j * deg + k, 2 * l + 17) + += tmp (2 * l + 17) * l_k_1; } } - - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); } - - solution.reinit (system_matrix_inv.m (), 12); - system_rhs.reinit (system_matrix_inv.m (), 12); - tmp.reinit (12); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) + } + + system_matrix_inv.mmult (solution, system_rhs); + + for (unsigned int j = 0; j < 2; ++j) + for (unsigned int k = 0; k < 2; ++k) + for (unsigned int l = 0; l <= deg; ++l) + for (unsigned int m = 0; m < deg; ++m) { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) - { - tmp = 0.0; - - if (quadrature_points[q_point] (1) < 0.5) - { - if (quadrature_points[q_point] (2) - < 0.5) - { - const Point - quadrature_point - (quadrature_points[q_point] (0), - 2.0 * quadrature_points[q_point] (1), - 2.0 * quadrature_points[q_point] (2)); - - tmp (0) - += this->shape_value_component - (dof, quadrature_point, 0); - tmp (1) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 1); - tmp (2) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 2); - } - - else - { - const Point - quadrature_point - (quadrature_points[q_point] (0), - 2.0 * quadrature_points[q_point] (1), - 2.0 * quadrature_points[q_point] (2) - - 1.0); - - tmp (3) - += this->shape_value_component - (dof, quadrature_point, 0); - tmp (4) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 1); - tmp (5) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 2); - } - } - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k <= deg; ++k) - { - tmp (3 * (i + 2 * j)) - -= this->restriction[index][2 * i + j] - ((4 * i + j + 2) - * this->degree + k, dof) - * this->shape_value_component - ((4 * i + j + 2) * this->degree - + k, - quadrature_points[q_point], 0); - - for (unsigned int l = 0; l < deg; - ++l) - { - tmp (3 * (i + 2 * j)) - -= this->restriction[index][2 * i + j] - ((2 * (j + 2) - * this->degree + k) - * deg + l + n_edge_dofs, - dof) - * this->shape_value_component - ((2 * (j + 2) - * this->degree + k) - * deg + l + n_edge_dofs, - quadrature_points[q_point], - 0); - tmp (3 * (i + 2 * j)) - -= this->restriction[index][2 * i + j] - ((2 * (i + 4) - * this->degree + k) - * deg + l + n_edge_dofs, - dof) - * this->shape_value_component - ((2 * (i + 4) * this->degree - + k) * deg + l - + n_edge_dofs, - quadrature_points[q_point], - 0); - tmp (3 * (i + 2 * j) + 1) - -= this->restriction[index][2 * i + j] - (((2 * i + 9) * deg + l) - * this->degree + k - + n_edge_dofs, dof) - * this->shape_value_component - (((2 * i + 9) * deg + l) - * this->degree + k - + n_edge_dofs, - quadrature_points[q_point], - 1); - tmp (3 * (i + 2 * j) + 2) - -= this->restriction[index][2 * i + j] - (((2 * j + 5) * deg + l) - * this->degree + k - + n_edge_dofs, dof) - * this->shape_value_component - (((2 * j + 5) * deg + l) - * this->degree + k - + n_edge_dofs, - quadrature_points[q_point], - 2); - } - - for (unsigned int l = 0; l < 2; ++l) - { - tmp (3 * (i + 2 * j) + 1) - -= this->restriction[index][2 * i + j] - ((4 * i + l) * this->degree - + k, dof) - * this->shape_value_component - ((4 * i + l) * this->degree - + k, - quadrature_points[q_point], - 1); - tmp (3 * (i + 2 * j) + 2) - -= this->restriction[index][2 * i + j] - ((2 * (j + 4) + l) - * this->degree + k, dof) - * this->shape_value_component - ((2 * (j + 4) + l) - * this->degree + k, - quadrature_points[q_point], - 2); - - for (unsigned int m = 0; - m < deg; ++m) - { - tmp (3 * (i + 2 * j) + 1) - -= this->restriction[index][2 * i + j] - ((2 * l * this->degree - + k) * deg + m - + n_edge_dofs, dof) - * this->shape_value_component - ((2 * l * this->degree - + k) * deg + m - + n_edge_dofs, - quadrature_points[q_point], - 1); - tmp (3 * (i + 2 * j) + 2) - -= this->restriction[index][2 * i + j] - (((2 * l + 1) * deg - + m) - * this->degree + k - + n_edge_dofs, dof) - * this->shape_value_component - (((2 * l + 1) * deg + m) - * this->degree + k - + n_edge_dofs, - quadrature_points[q_point], - 2); - } - } - } - - tmp *= quadrature.weight (q_point); - - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i_0 - = legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - const double L_i_1 - = legendre_polynomials[i].value - (quadrature_points[q_point] (1)); - const double L_i_2 - = legendre_polynomials[i].value - (quadrature_points[q_point] (2)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j_0 - = L_i_0 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - const double l_j_1 - = L_i_1 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - const double l_j_2 - = L_i_2 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - - for (unsigned int k = 0; k < deg; - ++k) - { - const double l_k_0 - = l_j_0 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - const double l_k_1 - = l_j_1 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - const double l_k_2 - = l_j_2 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (1)); - - for (unsigned int l = 0; l < 4; - ++l) - { - system_rhs ((i * deg + j) - * deg + k, - 3 * l) - += tmp (3 * l) * l_k_0; - system_rhs ((i * deg + j) - * deg + k, - 3 * l + 1) - += tmp (3 * l + 1) - * l_k_1; - system_rhs ((i * deg + j) - * deg + k, - 3 * l + 2) - += tmp (3 * l + 2) - * l_k_2; - } - } - } - } - } - - system_matrix_inv.mmult (solution, system_rhs); + if (std::abs (solution (l * deg + m, + 2 * (j + 2 * k))) + > 1e-14) + this->restriction[index][i + 2 * (2 * j + k)] + ((2 * i * this->degree + l) * deg + m + + n_edge_dofs, + dof) = solution (l * deg + m, + 2 * (j + 2 * k)); - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k <= deg; ++k) - for (unsigned int l = 0; l < deg; ++l) - for (unsigned int m = 0; m < deg; ++m) - { - if (std::abs (solution - ((k * deg + l) * deg - + m, - 3 * (i + 2 * j))) - > 1e-14) - this->restriction[index][2 * i + j] - ((k * deg + l) * deg + m - + n_boundary_dofs, - dof) - = solution ((k * deg + l) * deg - + m, - 3 * (i + 2 * j)); - - if (std::abs (solution - ((k * deg + l) * deg - + m, - 3 * (i + 2 * j) + 1)) - > 1e-14) - this->restriction[index][2 * i + j] - ((k + (l + deg) * this->degree) - * deg + m + n_boundary_dofs, dof) - = solution ((k * deg + l) * deg - + m, - 3 * (i + 2 * j) - + 1); - - if (std::abs (solution - ((k * deg + l) * deg - + m, - 3 * (i + 2 * j) + 2)) - > 1e-14) - this->restriction[index][2 * i + j] - (k + ((l + 2 * deg) * deg + m) - * this->degree - + n_boundary_dofs, dof) - = solution ((k * deg + l) * deg - + m, - 3 * (i + 2 * j) - + 2); - } - } - } - - break; - } - - case RefinementCase<3>::isotropic_refinement: - { - // First interpolate the shape - // functions of the child cells - // to the lowest order shape - // functions of the parent cell. - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; ++q_point) + if (std::abs (solution (l * deg + m, + 2 * (j + 2 * k) + 1)) + > 1e-14) + this->restriction[index][i + 2 * (2 * j + k)] + (((2 * i + 1) * deg + m) * this->degree + l + + n_edge_dofs, dof) + = solution (l * deg + m, + 2 * (j + 2 * k) + 1); + + if (std::abs (solution (l * deg + m, + 2 * (j + 2 * (k + 2)))) + > 1e-14) + this->restriction[index][2 * (i + 2 * j) + k] + ((2 * (i + 2) * this->degree + l) * deg + m + + n_edge_dofs, + dof) = solution (l * deg + m, + 2 * (j + 2 * (k + 2))); + + if (std::abs (solution (l * deg + m, + 2 * (j + 2 * k) + 9)) + > 1e-14) + this->restriction[index][2 * (i + 2 * j) + k] + (((2 * i + 5) * deg + m) * this->degree + l + + n_edge_dofs, dof) + = solution (l * deg + m, + 2 * (j + 2 * k) + 9); + + if (std::abs (solution (l * deg + m, + 2 * (j + 2 * (k + 4)))) + > 1e-14) + this->restriction[index][2 * (2 * i + j) + k] + ((2 * (i + 4) * this->degree + l) * deg + m + + n_edge_dofs, + dof) = solution (l * deg + m, + 2 * (j + 2 * (k + 4))); + + if (std::abs (solution (l * deg + m, + 2 * (j + 2 * k) + 17)) + > 1e-14) + this->restriction[index][2 * (2 * i + j) + k] + (((2 * i + 9) * deg + m) * this->degree + l + + n_edge_dofs, dof) + = solution (l * deg + m, + 2 * (j + 2 * k) + 17); + } + } + + const QGauss quadrature (2 * this->degree); + const std::vector >& + quadrature_points = quadrature.get_points (); + const unsigned int n_boundary_dofs + = 2 * GeometryInfo::faces_per_cell * deg * this->degree + + n_edge_dofs; + const unsigned int& n_quadrature_points = quadrature.size (); + + { + FullMatrix + assembling_matrix (deg * deg * this->degree, + n_quadrature_points); + + for (unsigned int q_point = 0; q_point < n_quadrature_points; + ++q_point) + { + const double weight = std::sqrt (quadrature.weight + (q_point)); + + for (unsigned int i = 0; i <= deg; ++i) + { + const double L_i = weight + * legendre_polynomials[i].value + (quadrature_points[q_point] (0)); + + for (unsigned int j = 0; j < deg; ++j) { - const double weight - = 2.0 * edge_quadrature.weight (q_point); - - if (edge_quadrature_points[q_point] (0) < 0.5) - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - Point quadrature_point (i, - 2.0 * edge_quadrature_points[q_point] (0), - j); - - this->restriction[index][i + 4 * j] - ((i + 4 * j) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 1); - quadrature_point - = Point (2.0 * edge_quadrature_points[q_point] (0), - i, j); - this->restriction[index][2 * (i + 2 * j)] - ((i + 4 * j + 2) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 0); - quadrature_point = Point (i, j, - 2.0 * edge_quadrature_points[q_point] (0)); - this->restriction[index][i + 2 * j] - ((i + 2 * (j + 4)) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 2); - } + const double l_j + = L_i * lobatto_polynomials[j + 2].value + (quadrature_points[q_point] (1)); - else - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - { - Point quadrature_point (i, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0, - j); - - this->restriction[index][i + 4 * j + 2] - ((i + 4 * j) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 1); - quadrature_point - = Point (2.0 * edge_quadrature_points[q_point] (0) - - 1.0, i, j); - this->restriction[index][2 * (i + 2 * j) + 1] - ((i + 4 * j + 2) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 0); - quadrature_point = Point (i, j, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0); - this->restriction[index][i + 2 * (j + 2)] - ((i + 2 * (j + 4)) * this->degree, dof) - += weight * this->shape_value_component - (dof, quadrature_point, 2); - } + for (unsigned int k = 0; k < deg; ++k) + assembling_matrix ((i * deg + j) * deg + k, + q_point) + = l_j * lobatto_polynomials[k + 2].value + (quadrature_points[q_point] (2)); } + } + } + + FullMatrix system_matrix (assembling_matrix.m (), + assembling_matrix.m ()); + + assembling_matrix.mTmult (system_matrix, assembling_matrix); + system_matrix_inv.reinit (system_matrix.m (), + system_matrix.m ()); + system_matrix_inv.invert (system_matrix); + } + + solution.reinit (system_matrix_inv.m (), 24); + system_rhs.reinit (system_matrix_inv.m (), 24); + tmp.reinit (24); + + for (unsigned int dof = 0; dof < this->dofs_per_cell; ++dof) + { + system_rhs = 0.0; + + for (unsigned int q_point = 0; + q_point < n_quadrature_points; ++q_point) + { + tmp = 0.0; - // Then project the shape functions - // of the child cells to the higher - // order shape functions of the - // parent cell. - if (deg > 0) + if (quadrature_points[q_point] (0) < 0.5) { - const std::vector >& - legendre_polynomials - = Polynomials::Legendre::generate_complete_basis - (deg); - FullMatrix system_matrix_inv (deg, deg); - - { - FullMatrix assembling_matrix (deg, - n_edge_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = std::sqrt (edge_quadrature.weight - (q_point)); - - for (unsigned int i = 0; i < deg; ++i) - assembling_matrix (i, q_point) = weight - * legendre_polynomials[i + 1].value - (edge_quadrature_points[q_point] (0)); - } - - FullMatrix system_matrix (deg, deg); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.invert (system_matrix); - } - - FullMatrix solution (deg, 6); - FullMatrix system_rhs (deg, 6); - Vector tmp (6); - - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) + if (quadrature_points[q_point] (1) < 0.5) + { + if (quadrature_points[q_point] (2) < 0.5) { - system_rhs = 0.0; - - for (unsigned int q_point = 0; - q_point < n_edge_quadrature_points; - ++q_point) - { - const double weight - = edge_quadrature.weight (q_point); - const Point quadrature_point_0 (i, - edge_quadrature_points[q_point] (0), - j); - const Point - quadrature_point_1 - (edge_quadrature_points[q_point] (0), - i, j); - const Point quadrature_point_2 (i, - j, - edge_quadrature_points[q_point] (0)); - - if (edge_quadrature_points[q_point] (0) - < 0.5) - { - Point quadrature_point_3 (i, - 2.0 * edge_quadrature_points[q_point] (0), - j); - - tmp (0) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_3, - 1) - - this->restriction[index][i + 4 * j] - ((i + 4 * j) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1)); - tmp (1) = -1.0 * weight - * this->restriction[index][i + 4 * j + 2] - ((i + 4 * j) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1); - quadrature_point_3 - = Point (2.0 * edge_quadrature_points[q_point] (0), - i, j); - tmp (2) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_3, - 0) - - this->restriction[index][2 * (i + 2 * j)] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_1, - 0)); - tmp (3) = -1.0 * weight - * this->restriction[index][2 * (i + 2 * j) + 1] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_1, - 0); - quadrature_point_3 = Point (i, - j, - 2.0 * edge_quadrature_points[q_point] (0)); - tmp (4) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_3, - 2) - - this->restriction[index][i + 2 * j] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_2, - 2)); - tmp (5) = -1.0 * weight - * this->restriction[index][i + 2 * (j + 2)] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_2, - 2); - } - - else - { - tmp (0) = -1.0 * weight - * this->restriction[index][i + 4 * j] - ((i + 4 * j) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1); - - Point quadrature_point_3 (i, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0, - j); - - tmp (1) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_3, - 1) - - this->restriction[index][i + 4 * j + 2] - ((i + 4 * j) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j) - * this->degree, - quadrature_point_0, - 1)); - tmp (2) = -1.0 * weight - * this->restriction[index][2 * (i + 2 * j)] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_1, - 0); - quadrature_point_3 - = Point (2.0 * edge_quadrature_points[q_point] (0) - - 1.0, i, j); - tmp (3) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_3, - 0) - - this->restriction[index][2 * (i + 2 * j) + 1] - ((i + 4 * j + 2) - * this->degree, - dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree, - quadrature_point_1, - 0)); - tmp (4) = -1.0 * weight - * this->restriction[index][i + 2 * j] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_2, - 2); - quadrature_point_3 = Point (i, - j, - 2.0 * edge_quadrature_points[q_point] (0) - - 1.0); - tmp (5) = weight - * (2.0 * this->shape_value_component - (dof, - quadrature_point_3, - 2) - - this->restriction[index][i + 2 * (j + 2)] - ((i + 2 * (j + 4)) - * this->degree, - dof) - * this->shape_value_component - ((i + 2 * (j + 4)) - * this->degree, - quadrature_point_2, - 2)); - } - - for (unsigned int k = 0; k < deg; ++k) - { - const double L_k - = legendre_polynomials[k + 1].value - (edge_quadrature_points[q_point] (0)); - - for (unsigned int l = 0; - l < tmp.size (); ++l) - system_rhs (k, l) += tmp (l) - * L_k; - } - } + const Point quadrature_point + (2.0 * quadrature_points[q_point] (0), + 2.0 * quadrature_points[q_point] (1), + 2.0 * quadrature_points[q_point] (2)); - system_matrix_inv.mmult (solution, - system_rhs); + tmp (0) += 2.0 * this->shape_value_component + (dof, quadrature_point, 0); + tmp (1) += 2.0 * this->shape_value_component + (dof, quadrature_point, 1); + tmp (2) += 2.0 * this->shape_value_component + (dof, quadrature_point, 2); + } + + else + { + const Point quadrature_point + (2.0 * quadrature_points[q_point] (0), + 2.0 * quadrature_points[q_point] (1), + 2.0 * quadrature_points[q_point] (2) + - 1.0); - for (unsigned int k = 0; k < 2; ++k) - for (unsigned int l = 0; l < deg; ++l) - { - if (std::abs (solution (l, k)) - > 1e-14) - this->restriction[index][i + 2 * (2 * j + k)] - ((i + 4 * j) * this->degree + l + 1, - dof) = solution (l, k); - - if (std::abs (solution (l, k + 2)) - > 1e-14) - this->restriction[index][2 * (i + 2 * j) + k] - ((i + 4 * j + 2) * this->degree + l - + 1, dof) - = solution (l, k + 2); - - if (std::abs (solution (l, k + 4)) - > 1e-14) - this->restriction[index][i + 2 * (j + 2 * k)] - ((i + 2 * (j + 4)) * this->degree - + l + 1, dof) - = solution (l, k + 4); - } + tmp (3) += 2.0 * this->shape_value_component + (dof, quadrature_point, 0); + tmp (4) += 2.0 * this->shape_value_component + (dof, quadrature_point, 1); + tmp (5) += 2.0 * this->shape_value_component + (dof, quadrature_point, 2); } + } - const QGauss<2> face_quadrature (2 * this->degree); - const std::vector >& face_quadrature_points - = face_quadrature.get_points (); - const std::vector >& - lobatto_polynomials - = Polynomials::Lobatto::generate_complete_basis - (this->degree); - const unsigned int n_edge_dofs - = GeometryInfo::lines_per_cell - * this->degree; - const unsigned int& n_face_quadrature_points - = face_quadrature.size (); - - { - FullMatrix - assembling_matrix (deg * this->degree, - n_face_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_face_quadrature_points; - ++q_point) + else + if (quadrature_points[q_point] (2) < 0.5) { - const double weight - = std::sqrt (face_quadrature.weight - (q_point)); + const Point quadrature_point + (2.0 * quadrature_points[q_point] (0), + 2.0 * quadrature_points[q_point] (1) + - 1.0, + 2.0 * quadrature_points[q_point] (2)); - for (unsigned int i = 0; i <= deg; ++i) - { - const double L_i = weight - * legendre_polynomials[i].value - (face_quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - assembling_matrix (i * deg + j, q_point) - = L_i * lobatto_polynomials[j + 2].value - (face_quadrature_points[q_point] (1)); - } + tmp (6) += 2.0 * this->shape_value_component + (dof, quadrature_point, 0); + tmp (7) += 2.0 * this->shape_value_component + (dof, quadrature_point, 1); + tmp (8) += 2.0 * this->shape_value_component + (dof, quadrature_point, 2); } - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); - } - - solution.reinit (system_matrix_inv.m (), 24); - system_rhs.reinit (system_matrix_inv.m (), 24); - tmp.reinit (24); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) + else { - system_rhs = 0.0; + const Point quadrature_point + (2.0 * quadrature_points[q_point] (0), + 2.0 * quadrature_points[q_point] (1) + - 1.0, + 2.0 * quadrature_points[q_point] (2) + - 1.0); - for (unsigned int q_point = 0; - q_point < n_face_quadrature_points; - ++q_point) - { - tmp = 0.0; - - if (face_quadrature_points[q_point] (0) - < 0.5) - { - if (face_quadrature_points[q_point] (1) - < 0.5) - { - Point quadrature_point_0 (i, - 2.0 * face_quadrature_points[q_point] (0), - 2.0 * face_quadrature_points[q_point] (1)); - - tmp (0) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 1); - tmp (1) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 2); - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0), - i, - 2.0 * face_quadrature_points[q_point] (1)); - tmp (8) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 0); - tmp (9) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 2); - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0), - 2.0 * face_quadrature_points[q_point] (1), - i); - tmp (16) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 0); - tmp (17) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 1); - } - - else - { - Point quadrature_point_0 (i, - 2.0 * face_quadrature_points[q_point] (0), - 2.0 * face_quadrature_points[q_point] (1) - - 1.0); - - tmp (2) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 1); - tmp (3) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, 2); - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0), - i, - 2.0 * face_quadrature_points[q_point] (1) - - 1.0); - tmp (10) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 0); - tmp (11) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 2); - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0), - 2.0 * face_quadrature_points[q_point] (1) - - 1.0, i); - tmp (18) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 0); - tmp (19) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 1); - } - } - - else - if (face_quadrature_points[q_point] (1) - < 0.5) - { - Point quadrature_point_0 (i, - 2.0 * face_quadrature_points[q_point] (0) - - 1.0, - 2.0 * face_quadrature_points[q_point] (1)); - - tmp (4) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 1); - tmp (5) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 2); - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0) - - 1.0, i, - 2.0 * face_quadrature_points[q_point] (1)); - tmp (12) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 0); - tmp (13) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 2); - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0) - - 1.0, - 2.0 * face_quadrature_points[q_point] (1), - i); - tmp (20) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 0); - tmp (21) += 2.0 - * this->shape_value_component - (dof, - quadrature_point_0, - 1); - } - - else - { - Point quadrature_point_0 (i, - 2.0 * face_quadrature_points[q_point] (0) - - 1.0, - 2.0 * face_quadrature_points[q_point] (1) - - 1.0); - - tmp (6) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 1); - tmp (7) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 2); - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0) - - 1.0, i, - 2.0 * face_quadrature_points[q_point] (1) - 1.0); - tmp (14) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 0); - tmp (15) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 2); - quadrature_point_0 - = Point (2.0 * face_quadrature_points[q_point] (0) - - 1.0, - 2.0 * face_quadrature_points[q_point] (1) - - 1.0, i); - tmp (22) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 0); - tmp (23) += 2.0 - * this->shape_value_component - (dof, quadrature_point_0, - 1); - } - - const Point quadrature_point_0 (i, - face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1)); - const Point - quadrature_point_1 - (face_quadrature_points[q_point] (0), i, - face_quadrature_points[q_point] (1)); - const Point - quadrature_point_2 - (face_quadrature_points[q_point] (0), - face_quadrature_points[q_point] (1), - i); - - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k < 2; ++k) - for (unsigned int l = 0; l <= deg; - ++l) - { - tmp (2 * (j + 2 * k)) - -= this->restriction[index][i + 2 * (2 * j + k)] - ((i + 4 * j) * this->degree - + l, dof) - * this->shape_value_component - ((i + 4 * j) * this->degree - + l, - quadrature_point_0, 1); - tmp (2 * (j + 2 * k) + 1) - -= this->restriction[index][i + 2 * (2 * j + k)] - ((i + 2 * (k + 4)) - * this->degree + l, dof) - * this->shape_value_component - ((i + 2 * (k + 4)) - * this->degree + l, - quadrature_point_0, 2); - tmp (2 * (j + 2 * (k + 2))) - -= this->restriction[index][2 * (i + 2 * j) + k] - ((i + 4 * j + 2) - * this->degree + l, dof) - * this->shape_value_component - ((i + 4 * j + 2) - * this->degree + l, - quadrature_point_1, 0); - tmp (2 * (j + 2 * k) + 9) - -= this->restriction[index][2 * (i + 2 * j) + k] - ((2 * (i + 4) + k) - * this->degree + l, dof) - * this->shape_value_component - ((2 * (i + 4) + k) - * this->degree + l, - quadrature_point_1, 2); - tmp (2 * (j + 2 * (k + 4))) - -= this->restriction[index][2 * (2 * i + j) + k] - ((4 * i + j + 2) - * this->degree + l, dof) - * this->shape_value_component - ((4 * i + j + 2) - * this->degree + l, - quadrature_point_2, 0); - tmp (2 * (j + 2 * k) + 17) - -= this->restriction[index][2 * (2 * i + j) + k] - ((4 * i + k) * this->degree - + l, dof) - * this->shape_value_component - ((4 * i + k) * this->degree - + l, - quadrature_point_2, 1); - } - - tmp *= face_quadrature.weight (q_point); - - for (unsigned int j = 0; j <= deg; ++j) - { - const double L_j_0 - = legendre_polynomials[j].value - (face_quadrature_points[q_point] (0)); - const double L_j_1 - = legendre_polynomials[j].value - (face_quadrature_points[q_point] (1)); - - for (unsigned int k = 0; k < deg; ++k) - { - const double l_k_0 - = L_j_0 * lobatto_polynomials[k + 2].value - (face_quadrature_points[q_point] (1)); - const double l_k_1 - = L_j_1 * lobatto_polynomials[k + 2].value - (face_quadrature_points[q_point] (0)); - - for (unsigned int l = 0; l < 12; - ++l) - { - system_rhs (j * deg + k, - 2 * l) - += tmp (2 * l) * l_k_0; - system_rhs (j * deg + k, - 2 * l + 1) - += tmp (2 * l + 1) * l_k_1; - } - } - } - } + tmp (9) += 2.0 * this->shape_value_component + (dof, quadrature_point, 0); + tmp (10) += 2.0 * this->shape_value_component + (dof, quadrature_point, 1); + tmp (11) += 2.0 * this->shape_value_component + (dof, quadrature_point, 2); + } + } + + else + if (quadrature_points[q_point] (1) < 0.5) + { + if (quadrature_points[q_point] (2) < 0.5) + { + const Point quadrature_point + (2.0 * quadrature_points[q_point] (0) + - 1.0, + 2.0 * quadrature_points[q_point] (1), + 2.0 * quadrature_points[q_point] (2)); - system_matrix_inv.mmult (solution, - system_rhs); + tmp (12) += 2.0 * this->shape_value_component + (dof, quadrature_point, 0); + tmp (13) += 2.0 * this->shape_value_component + (dof, quadrature_point, 1); + tmp (14) += 2.0 * this->shape_value_component + (dof, quadrature_point, 2); + } + + else + { + const Point quadrature_point + (2.0 * quadrature_points[q_point] (0) + - 1.0, + 2.0 * quadrature_points[q_point] (1), + 2.0 * quadrature_points[q_point] (2) + - 1.0); - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k < 2; ++k) - for (unsigned int l = 0; l <= deg; ++l) - for (unsigned int m = 0; m < deg; ++m) - { - if (std::abs (solution (l * deg + m, - 2 * (j + 2 * k))) - > 1e-14) - this->restriction[index][i + 2 * (2 * j + k)] - ((2 * i * this->degree + l) * deg - + m - + n_edge_dofs, - dof) = solution (l * deg + m, - 2 * (j + 2 * k)); - - if (std::abs (solution (l * deg + m, - 2 * (j + 2 * k) + 1)) - > 1e-14) - this->restriction[index][i + 2 * (2 * j + k)] - (((2 * i + 1) * deg + m) - * this->degree + l + n_edge_dofs, - dof) = solution (l * deg + m, - 2 * (j + 2 * k) + 1); - - if (std::abs (solution (l * deg + m, - 2 * (j + 2 * (k + 2)))) - > 1e-14) - this->restriction[index][2 * (i + 2 * j) + k] - ((2 * (i + 2) * this->degree + l) - * deg + m + n_edge_dofs, dof) - = solution (l * deg + m, - 2 * (j + 2 * (k + 2))); - - if (std::abs (solution (l * deg + m, - 2 * (j + 2 * k) + 9)) - > 1e-14) - this->restriction[index][2 * (i + 2 * j) + k] - (((2 * i + 5) * deg + m) - * this->degree + l + n_edge_dofs, - dof) = solution (l * deg + m, - 2 * (j + 2 * k) + 9); - - if (std::abs (solution (l * deg + m, - 2 * (j + 2 * (k + 4)))) - > 1e-14) - this->restriction[index][2 * (2 * i + j) + k] - ((2 * (i + 4) * this->degree + l) - * deg + m + n_edge_dofs, dof) - = solution (l * deg + m, - 2 * (j + 2 * (k + 4))); - - if (std::abs (solution (l * deg + m, - 2 * (j + 2 * k) + 17)) - > 1e-14) - this->restriction[index][2 * (2 * i + j) + k] - (((2 * i + 9) * deg + m) - * this->degree + l + n_edge_dofs, - dof) = solution (l * deg + m, - 2 * (j + 2 * k) + 17); - } + tmp (15) += 2.0 * this->shape_value_component + (dof, quadrature_point, 0); + tmp (16) += 2.0 * this->shape_value_component + (dof, quadrature_point, 1); + tmp (17) += 2.0 * this->shape_value_component + (dof, quadrature_point, 2); } + } + + else + if (quadrature_points[q_point] (2) < 0.5) + { + const Point quadrature_point + (2.0 * quadrature_points[q_point] (0) + - 1.0, + 2.0 * quadrature_points[q_point] (1) + - 1.0, + 2.0 * quadrature_points[q_point] (2)); + + tmp (18) += 2.0 * this->shape_value_component + (dof, quadrature_point, 0); + tmp (19) += 2.0 * this->shape_value_component + (dof, quadrature_point, 1); + tmp (20) += 2.0 * this->shape_value_component + (dof, quadrature_point, 2); + } - const QGauss quadrature (2 * this->degree); - const std::vector >& - quadrature_points = quadrature.get_points (); - const unsigned int n_boundary_dofs - = 2 * GeometryInfo::faces_per_cell * deg - * this->degree + n_edge_dofs; - const unsigned int& - n_quadrature_points = quadrature.size (); - - { - FullMatrix - assembling_matrix (deg * deg * this->degree, - n_quadrature_points); - - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) + else + { + const Point quadrature_point + (2.0 * quadrature_points[q_point] (0) + - 1.0, + 2.0 * quadrature_points[q_point] (1) + - 1.0, + 2.0 * quadrature_points[q_point] (2) + - 1.0); + + tmp (21) += 2.0 * this->shape_value_component + (dof, quadrature_point, 0); + tmp (22) += 2.0 * this->shape_value_component + (dof, quadrature_point, 1); + tmp (23) += 2.0 * this->shape_value_component + (dof, quadrature_point, 2); + } + + for (unsigned int i = 0; i < 2; ++i) + for (unsigned int j = 0; j < 2; ++j) + for (unsigned int k = 0; k < 2; ++k) + for (unsigned int l = 0; l <= deg; ++l) { - const double weight - = std::sqrt (quadrature.weight (q_point)); + tmp (3 * (i + 2 * (j + 2 * k))) + -= this->restriction[index][2 * (2 * i + j) + k] + ((4 * i + j + 2) * this->degree + l, dof) + * this->shape_value_component + ((4 * i + j + 2) * this->degree + l, + quadrature_points[q_point], 0); + tmp (3 * (i + 2 * (j + 2 * k)) + 1) + -= this->restriction[index][2 * (2 * i + j) + k] + ((4 * i + k) * this->degree + l, dof) + * this->shape_value_component + ((4 * i + k) * this->degree + l, + quadrature_points[q_point], 1); + tmp (3 * (i + 2 * (j + 2 * k)) + 2) + -= this->restriction[index][2 * (2 * i + j) + k] + ((2 * (j + 4) + k) * this->degree + l, + dof) + * this->shape_value_component + ((2 * (j + 4) + k) * this->degree + l, + quadrature_points[q_point], 2); - for (unsigned int i = 0; i <= deg; ++i) + for (unsigned int m = 0; m < deg; ++m) { - const double L_i = weight - * legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j - = L_i * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - - for (unsigned int k = 0; k < deg; ++k) - assembling_matrix ((i * deg + j) - * deg + k, - q_point) - = l_j * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - } + tmp (3 * (i + 2 * (j + 2 * k))) + -= this->restriction[index][2 * (2 * i + j) + k] + (((2 * j + 5) * deg + m) + * this->degree + l + n_edge_dofs, + dof) + * this->shape_value_component + (((2 * j + 5) * deg + m) + * this->degree + l + n_edge_dofs, + quadrature_points[q_point], 0); + tmp (3 * (i + 2 * (j + 2 * k))) + -= this->restriction[index][2 * (2 * i + j) + k] + ((2 * (i + 4) * this->degree + l) + * deg + m + n_edge_dofs, dof) + * this->shape_value_component + ((2 * (i + 4) * this->degree + l) + * deg + m + n_edge_dofs, + quadrature_points[q_point], 0); + tmp (3 * (i + 2 * (j + 2 * k)) + 1) + -= this->restriction[index][2 * (2 * i + j) + k] + ((2 * k * this->degree + l) * deg + m + + n_edge_dofs, + dof) + * this->shape_value_component + ((2 * k * this->degree + l) * deg + m + + n_edge_dofs, + quadrature_points[q_point], 1); + tmp (3 * (i + 2 * (j + 2 * k)) + 1) + -= this->restriction[index][2 * (2 * i + j) + k] + (((2 * i + 9) * deg + m) + * this->degree + l + n_edge_dofs, + dof) + * this->shape_value_component + (((2 * i + 9) * deg + m) + * this->degree + l + n_edge_dofs, + quadrature_points[q_point], 1); + tmp (3 * (i + 2 * (j + 2 * k)) + 2) + -= this->restriction[index][2 * (2 * i + j) + k] + (((2 * k + 1) * deg + m) + * this->degree + l + n_edge_dofs, + dof) + * this->shape_value_component + (((2 * k + 1) * deg + m) + * this->degree + l + n_edge_dofs, + quadrature_points[q_point], 2); + tmp (3 * (i + 2 * (j + 2 * k)) + 2) + -= this->restriction[index][2 * (2 * i + j) + k] + ((2 * (j + 2) * this->degree + l) + * deg + m + n_edge_dofs, dof) + * this->shape_value_component + ((2 * (j + 2) * this->degree + l) + * deg + m + n_edge_dofs, + quadrature_points[q_point], 2); } } - - FullMatrix - system_matrix (assembling_matrix.m (), - assembling_matrix.m ()); - - assembling_matrix.mTmult (system_matrix, - assembling_matrix); - system_matrix_inv.reinit (system_matrix.m (), - system_matrix.m ()); - system_matrix_inv.invert (system_matrix); - } - - solution.reinit (system_matrix_inv.m (), 24); - system_rhs.reinit (system_matrix_inv.m (), 24); - tmp.reinit (24); + + tmp *= quadrature.weight (q_point); + + for (unsigned int i = 0; i <= deg; ++i) + { + const double L_i_0 + = legendre_polynomials[i].value + (quadrature_points[q_point] (0)); + const double L_i_1 + = legendre_polynomials[i].value + (quadrature_points[q_point] (1)); + const double L_i_2 + = legendre_polynomials[i].value + (quadrature_points[q_point] (2)); - for (unsigned int dof = 0; - dof < this->dofs_per_cell; ++dof) + for (unsigned int j = 0; j < deg; ++j) { - system_rhs = 0.0; + const double l_j_0 + = L_i_0 * lobatto_polynomials[j + 2].value + (quadrature_points[q_point] (1)); + const double l_j_1 + = L_i_1 * lobatto_polynomials[j + 2].value + (quadrature_points[q_point] (0)); + const double l_j_2 + = L_i_2 * lobatto_polynomials[j + 2].value + (quadrature_points[q_point] (0)); - for (unsigned int q_point = 0; - q_point < n_quadrature_points; ++q_point) + for (unsigned int k = 0; k < deg; ++k) { - tmp = 0.0; - - if (quadrature_points[q_point] (0) < 0.5) - { - if (quadrature_points[q_point] (1) - < 0.5) - { - if (quadrature_points[q_point] (2) - < 0.5) - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0), - 2.0 * quadrature_points[q_point] (1), - 2.0 * quadrature_points[q_point] (2)); - - tmp (0) += 2.0 - * this->shape_value_component - (dof, - quadrature_point, 0); - tmp (1) += 2.0 - * this->shape_value_component - (dof, - quadrature_point, 1); - tmp (2) += 2.0 - * this->shape_value_component - (dof, - quadrature_point, 2); - } - - else - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0), - 2.0 * quadrature_points[q_point] (1), - 2.0 * quadrature_points[q_point] (2) - - 1.0); - - tmp (3) += 2.0 - * this->shape_value_component - (dof, - quadrature_point, 0); - tmp (4) += 2.0 - * this->shape_value_component - (dof, - quadrature_point, 1); - tmp (5) += 2.0 - * this->shape_value_component - (dof, - quadrature_point, 2); - } - } - - else - if (quadrature_points[q_point] (2) - < 0.5) - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0), - 2.0 * quadrature_points[q_point] (1) - - 1.0, - 2.0 * quadrature_points[q_point] (2)); - - tmp (6) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 0); - tmp (7) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 1); - tmp (8) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 2); - } - - else - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0), - 2.0 * quadrature_points[q_point] (1) - - 1.0, - 2.0 * quadrature_points[q_point] (2) - - 1.0); - - tmp (9) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 0); - tmp (10) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 1); - tmp (11) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 2); - } - } - - else - if (quadrature_points[q_point] (1) < 0.5) - { - if (quadrature_points[q_point] (2) - < 0.5) - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0) - - 1.0, - 2.0 * quadrature_points[q_point] (1), - 2.0 * quadrature_points[q_point] (2)); - - tmp (12) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 0); - tmp (13) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 1); - tmp (14) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 2); - } - - else - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0) - - 1.0, - 2.0 * quadrature_points[q_point] (1), - 2.0 * quadrature_points[q_point] (2) - - 1.0); - - tmp (15) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 0); - tmp (16) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 1); - tmp (17) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 2); - } - } - - else - if (quadrature_points[q_point] (2) - < 0.5) - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0) - - 1.0, - 2.0 * quadrature_points[q_point] (1) - - 1.0, - 2.0 * quadrature_points[q_point] (2)); - - tmp (18) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 0); - tmp (19) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 1); - tmp (20) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 2); - } - - else - { - const Point - quadrature_point - (2.0 * quadrature_points[q_point] (0) - - 1.0, - 2.0 * quadrature_points[q_point] (1) - - 1.0, - 2.0 * quadrature_points[q_point] (2) - - 1.0); - - tmp (21) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 0); - tmp (22) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 1); - tmp (23) += 2.0 - * this->shape_value_component - (dof, quadrature_point, - 2); - } - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k < 2; ++k) - for (unsigned int l = 0; l <= deg; - ++l) - { - tmp (3 * (i + 2 * (j + 2 * k))) - -= this->restriction[index][2 * (2 * i + j) + k] - ((4 * i + j + 2) - * this->degree + l, dof) - * this->shape_value_component - ((4 * i + j + 2) - * this->degree + l, - quadrature_points[q_point], - 0); - tmp (3 * (i + 2 * (j + 2 * k)) - + 1) - -= this->restriction[index][2 * (2 * i + j) + k] - ((4 * i + k) * this->degree - + l, dof) - * this->shape_value_component - ((4 * i + k) * this->degree - + l, - quadrature_points[q_point], - 1); - tmp (3 * (i + 2 * (j + 2 * k)) - + 2) - -= this->restriction[index][2 * (2 * i + j) + k] - ((2 * (j + 4) + k) - * this->degree + l, dof) - * this->shape_value_component - ((2 * (j + 4) + k) - * this->degree + l, - quadrature_points[q_point], - 2); - - for (unsigned int m = 0; m < deg; - ++m) - { - tmp (3 * (i + 2 * (j + 2 * k))) - -= this->restriction[index][2 * (2 * i + j) + k] - ((2 * (j + 2) - * this->degree + l) - * deg + m + n_edge_dofs, - dof) - * this->shape_value_component - ((2 * (j + 2) - * this->degree + l) - * deg + m + n_edge_dofs, - quadrature_points[q_point], - 0); - tmp (3 * (i + 2 * (j + 2 * k))) - -= this->restriction[index][2 * (2 * i + j) + k] - ((2 * (i + 4) - * this->degree + l) - * deg + m + n_edge_dofs, - dof) - * this->shape_value_component - ((2 * (i + 4) - * this->degree + l) - * deg + m + n_edge_dofs, - quadrature_points[q_point], - 0); - tmp (3 * (i + 2 * (j + 2 * k)) - + 1) - -= this->restriction[index][2 * (2 * i + j) + k] - ((2 * k * this->degree - + l) * deg + m - + n_edge_dofs, dof) - * this->shape_value_component - ((2 * k * this->degree - + l) * deg + m - + n_edge_dofs, - quadrature_points[q_point], - 1); - tmp (3 * (i + 2 * (j + 2 * k)) - + 1) - -= this->restriction[index][2 * (2 * i + j) + k] - (((2 * i + 9) * deg + m) - * this->degree + l - + n_edge_dofs, dof) - * this->shape_value_component - (((2 * i + 9) * deg + m) - * this->degree + l - + n_edge_dofs, - quadrature_points[q_point], - 1); - tmp (3 * (i + 2 * (j + 2 * k)) - + 2) - -= this->restriction[index][2 * (2 * i + j) + k] - (((2 * k + 1) * deg + m) - * this->degree + l - + n_edge_dofs, dof) - * this->shape_value_component - (((2 * k + 1) * deg + m) - * this->degree + l - + n_edge_dofs, - quadrature_points[q_point], - 2); - tmp (3 * (i + 2 * (j + 2 * k)) - + 2) - -= this->restriction[index][2 * (2 * i + j) + k] - (((2 * j + 5) * deg + m) - * this->degree + l - + n_edge_dofs, dof) - * this->shape_value_component - (((2 * j + 5) * deg + m) - * this->degree + l - + n_edge_dofs, - quadrature_points[q_point], - 2); - } - } + const double l_k_0 + = l_j_0 * lobatto_polynomials[k + 2].value + (quadrature_points[q_point] (2)); + const double l_k_1 + = l_j_1 * lobatto_polynomials[k + 2].value + (quadrature_points[q_point] (2)); + const double l_k_2 + = l_j_2 * lobatto_polynomials[k + 2].value + (quadrature_points[q_point] (1)); - tmp *= quadrature.weight (q_point); - - for (unsigned int i = 0; i <= deg; ++i) + for (unsigned int l = 0; l < 8; ++l) { - const double L_i_0 - = legendre_polynomials[i].value - (quadrature_points[q_point] (0)); - const double L_i_1 - = legendre_polynomials[i].value - (quadrature_points[q_point] (1)); - const double L_i_2 - = legendre_polynomials[i].value - (quadrature_points[q_point] (2)); - - for (unsigned int j = 0; j < deg; ++j) - { - const double l_j_0 - = L_i_0 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (1)); - const double l_j_1 - = L_i_1 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - const double l_j_2 - = L_i_2 * lobatto_polynomials[j + 2].value - (quadrature_points[q_point] (0)); - - for (unsigned int k = 0; k < deg; - ++k) - { - const double l_k_0 - = l_j_0 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - const double l_k_1 - = l_j_1 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (2)); - const double l_k_2 - = l_j_2 * lobatto_polynomials[k + 2].value - (quadrature_points[q_point] (1)); - - for (unsigned int l = 0; l < 8; - ++l) - { - system_rhs ((i * deg + j) - * deg + k, - 3 * l) - += tmp (3 * l) * l_k_0; - system_rhs ((i * deg + j) - * deg + k, - 3 * l + 1) - += tmp (3 * l + 1) - * l_k_1; - system_rhs ((i * deg + j) - * deg + k, - 3 * l + 2) - += tmp (3 * l + 2) - * l_k_2; - } - } - } + system_rhs ((i * deg + j) * deg + k, + 3 * l) + += tmp (3 * l) * l_k_0; + system_rhs ((i * deg + j) * deg + k, + 3 * l + 1) + += tmp (3 * l + 1) * l_k_1; + system_rhs ((i * deg + j) * deg + k, + 3 * l + 2) + += tmp (3 * l + 2) * l_k_2; } } - - system_matrix_inv.mmult (solution, system_rhs); - - for (unsigned int i = 0; i < 2; ++i) - for (unsigned int j = 0; j < 2; ++j) - for (unsigned int k = 0; k < 2; ++k) - for (unsigned int l = 0; l <= deg; ++l) - for (unsigned int m = 0; m < deg; ++m) - for (unsigned int n = 0; n < deg; ++n) - { - if (std::abs (solution - ((l * deg + m) * deg - + n, - 3 * (i + 2 * (j + 2 * k)))) - > 1e-14) - this->restriction[index][2 * (2 * i + j) + k] - ((l * deg + m) * deg + n - + n_boundary_dofs, - dof) = solution ((l * deg + m) - * deg + n, - 3 * (i + 2 * (j + 2 * k))); - - if (std::abs (solution - ((l * deg + m) * deg - + n, - 3 * (i + 2 * (j + 2 * k)) - + 1)) > 1e-14) - this->restriction[index][2 * (2 * i + j) + k] - ((l + (m + deg) * this->degree) - * deg + n + n_boundary_dofs, - dof) = solution ((l * deg + m) - * deg + n, - 3 * (i + 2 * (j + 2 * k)) - + 1); - - if (std::abs (solution - ((l * deg + m) * deg - + n, - 3 * (i + 2 * (j + 2 * k)) - + 2)) > 1e-14) - this->restriction[index][2 * (2 * i + j) + k] - (l + ((m + 2 * deg) * deg + n) - * this->degree - + n_boundary_dofs, dof) - = solution ((l * deg + m) - * deg + n, - 3 * (i + 2 * (j + 2 * k)) - + 2); - } } } - - break; } - - default: - Assert (false, ExcNotImplemented ()); + + system_matrix_inv.mmult (solution, system_rhs); + + for (unsigned int i = 0; i < 2; ++i) + for (unsigned int j = 0; j < 2; ++j) + for (unsigned int k = 0; k < 2; ++k) + for (unsigned int l = 0; l <= deg; ++l) + for (unsigned int m = 0; m < deg; ++m) + for (unsigned int n = 0; n < deg; ++n) + { + if (std::abs (solution + ((l * deg + m) * deg + n, + 3 * (i + 2 * (j + 2 * k)))) + > 1e-14) + this->restriction[index][2 * (2 * i + j) + k] + ((l * deg + m) * deg + n + n_boundary_dofs, + dof) = solution ((l * deg + m) * deg + n, + 3 * (i + 2 * (j + 2 * k))); + + if (std::abs (solution + ((l * deg + m) * deg + n, + 3 * (i + 2 * (j + 2 * k)) + 1)) + > 1e-14) + this->restriction[index][2 * (2 * i + j) + k] + ((l + (m + deg) * this->degree) * deg + n + + n_boundary_dofs, + dof) = solution ((l * deg + m) * deg + n, + 3 * (i + 2 * (j + 2 * k)) + 1); + + if (std::abs (solution + ((l * deg + m) * deg + n, + 3 * (i + 2 * (j + 2 * k)) + 2)) + > 1e-14) + this->restriction[index][2 * (2 * i + j) + k] + (l + ((m + 2 * deg) * deg + n) * this->degree + + n_boundary_dofs, dof) + = solution ((l * deg + m) * deg + n, + 3 * (i + 2 * (j + 2 * k)) + 2); + } } } @@ -10635,35 +3650,33 @@ FE_Nedelec::interpolate (std::vector& local_dofs, system_rhs = 0; for (unsigned int q_point = 0; - q_point < n_face_points; - ++q_point) + q_point < n_face_points; ++q_point) { double tmp = values[q_point + GeometryInfo::lines_per_cell - * n_edge_points - + 2 * n_face_points] (0); + * n_edge_points + 2 * n_face_points] + (2); for (unsigned int i = 0; i < 2; ++i) for (unsigned int j = 0; j <= deg; ++j) - tmp -= local_dofs[(4 * i + 2) - * this->degree + j] - * this->shape_value_component - ((4 * i + 2) * this->degree - + j, - this->generalized_support_points[q_point - + GeometryInfo::lines_per_cell - * n_edge_points - + 2 - * n_face_points], - 0); + tmp -= local_dofs[(i + 8) * this->degree + + j] + * this->shape_value_component + ((i + 8) * this->degree + j, + this->generalized_support_points[q_point + + GeometryInfo::lines_per_cell + * n_edge_points + + 2 + * n_face_points], + 2); - for (unsigned int i = 0; i <= deg; ++i) - for (unsigned int j = 0; j < deg; ++j) - system_rhs (i * deg + j) - += boundary_weights - (q_point + n_edge_points, - 2 * (i * deg + j) + 1) * tmp; + for (unsigned i = 0; i <= deg; ++i) + for (unsigned int j = 0; j < deg; ++j) + system_rhs (i * deg + j) + += boundary_weights + (q_point + n_edge_points, + 2 * (i * deg + j)) * tmp; } system_matrix_inv.vmult (solution, system_rhs); @@ -10694,28 +3707,29 @@ FE_Nedelec::interpolate (std::vector& local_dofs, double tmp = values[q_point + GeometryInfo::lines_per_cell - * n_edge_points + 2 * n_face_points] - (2); + * n_edge_points + + 2 * n_face_points] (0); for (unsigned int i = 0; i < 2; ++i) for (unsigned int j = 0; j <= deg; ++j) - tmp -= local_dofs[(i + 8) * this->degree - + j] - * this->shape_value_component - ((i + 8) * this->degree + j, - this->generalized_support_points[q_point - + GeometryInfo::lines_per_cell - * n_edge_points - + 2 - * n_face_points], - 2); + tmp -= local_dofs[(4 * i + 2) + * this->degree + j] + * this->shape_value_component + ((4 * i + 2) * this->degree + + j, + this->generalized_support_points[q_point + + GeometryInfo::lines_per_cell + * n_edge_points + + 2 + * n_face_points], + 0); - for (unsigned i = 0; i <= deg; ++i) + for (unsigned int i = 0; i <= deg; ++i) for (unsigned int j = 0; j < deg; ++j) system_rhs (i * deg + j) += boundary_weights (q_point + n_edge_points, - 2 * (i * deg + j)) * tmp; + 2 * (i * deg + j) + 1) * tmp; } system_matrix_inv.vmult (solution, system_rhs); @@ -10742,36 +3756,35 @@ FE_Nedelec::interpolate (std::vector& local_dofs, // for the horizontal shape // functions. system_rhs = 0; - + for (unsigned int q_point = 0; q_point < n_face_points; ++q_point) { double tmp = values[q_point + GeometryInfo::lines_per_cell - * n_edge_points + 3 - * n_face_points] (0); + * n_edge_points + 3 * n_face_points] + (2); for (unsigned int i = 0; i < 2; ++i) for (unsigned int j = 0; j <= deg; ++j) - tmp -= local_dofs[(4 * i + 3) - * this->degree + j] - * this->shape_value_component - ((4 * i + 3) * this->degree - + j, - this->generalized_support_points[q_point - + GeometryInfo::lines_per_cell - * n_edge_points - + 3 - * n_face_points], - 0); + tmp -= local_dofs[(i + 10) * this->degree + + j] + * this->shape_value_component + ((i + 10) * this->degree + j, + this->generalized_support_points[q_point + + GeometryInfo::lines_per_cell + * n_edge_points + + 3 + * n_face_points], + 2); - for (unsigned int i = 0; i <= deg; ++i) + for (unsigned i = 0; i <= deg; ++i) for (unsigned int j = 0; j < deg; ++j) system_rhs (i * deg + j) += boundary_weights (q_point + n_edge_points, - 2 * (i * deg + j) + 1) * tmp; + 2 * (i * deg + j)) * tmp; } system_matrix_inv.vmult (solution, system_rhs); @@ -10801,28 +3814,29 @@ FE_Nedelec::interpolate (std::vector& local_dofs, double tmp = values[q_point + GeometryInfo::lines_per_cell - * n_edge_points + 3 * n_face_points] - (2); + * n_edge_points + 3 + * n_face_points] (0); for (unsigned int i = 0; i < 2; ++i) for (unsigned int j = 0; j <= deg; ++j) - tmp -= local_dofs[(i + 10) * this->degree - + j] - * this->shape_value_component - ((i + 10) * this->degree + j, - this->generalized_support_points[q_point - + GeometryInfo::lines_per_cell - * n_edge_points - + 3 - * n_face_points], - 2); - - for (unsigned i = 0; i <= deg; ++i) - for (unsigned int j = 0; j < deg; ++j) - system_rhs (i * deg + j) - += boundary_weights - (q_point + n_edge_points, - 2 * (i * deg + j)) * tmp; + tmp -= local_dofs[(4 * i + 3) + * this->degree + j] + * this->shape_value_component + ((4 * i + 3) * this->degree + + j, + this->generalized_support_points[q_point + + GeometryInfo::lines_per_cell + * n_edge_points + + 3 + * n_face_points], + 0); + + for (unsigned int i = 0; i <= deg; ++i) + for (unsigned int j = 0; j < deg; ++j) + system_rhs (i * deg + j) + += boundary_weights + (q_point + n_edge_points, + 2 * (i * deg + j) + 1) * tmp; } system_matrix_inv.vmult (solution, system_rhs); @@ -11908,11 +4922,11 @@ const const unsigned int face_coordinates[GeometryInfo<3>::faces_per_cell][2] - = {{1, 2}, {1, 2}, {0, 2}, {0, 2}, {0, 1}, {0, 1}}; + = {{1, 2}, {1, 2}, {2, 0}, {2, 0}, {0, 1}, {0, 1}}; const unsigned int edge_indices[GeometryInfo<3>::faces_per_cell][GeometryInfo<3>::lines_per_face] - = {{0, 4, 8, 10}, {1, 5, 9, 11}, {2, 6, 8, 9}, - {3, 7, 10, 11}, {2, 3, 0, 1}, {6, 7, 4, 5}}; + = {{0, 4, 8, 10}, {1, 5, 9, 11}, {8, 9, 2, 6}, + {10, 11, 3, 7}, {2, 3, 0, 1}, {6, 7, 4, 5}}; for (unsigned int face = 0; face < GeometryInfo::faces_per_cell; ++face) diff --git a/tests/fe/internals/cmp/generic b/tests/fe/internals/cmp/generic index ada98aa005..3cdf43676b 100644 --- a/tests/fe/internals/cmp/generic +++ b/tests/fe/internals/cmp/generic @@ -4400,10 +4400,10 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.851 -0.0627 ~ ~ ~ ~ ~ ~ -0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ -0.769 0.371 ~ ~ ~ ~ ~ ~ 0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.851 -0.0627 -0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.769 0.371 0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.851 -0.0627 -0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.769 0.371 0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.851 -0.0627 ~ ~ ~ ~ ~ ~ -0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ -0.769 0.371 ~ ~ ~ ~ ~ ~ 0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4416,12 +4416,12 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.725 -0.0534 -0.725 0.0534 ~ ~ ~ ~ -0.725 0.0534 0.725 -0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ 0.276 -0.0204 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ -0.654 0.316 0.654 -0.316 ~ ~ ~ ~ 0.654 -0.316 -0.654 0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ -0.249 0.121 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.725 -0.0534 -0.725 0.0534 ~ ~ ~ ~ -0.725 0.0534 0.725 -0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ 0.276 -0.0204 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ -0.654 0.316 0.654 -0.316 ~ ~ ~ ~ 0.654 -0.316 -0.654 0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ -0.249 0.121 ~ ~ ~ ~ DEAL::0.725 -0.0534 -0.725 0.0534 ~ ~ ~ ~ -0.725 0.0534 0.725 -0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ 0.276 -0.0204 ~ ~ DEAL::-0.654 0.316 0.654 -0.316 ~ ~ ~ ~ 0.654 -0.316 -0.654 0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ -0.249 0.121 ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.725 -0.0534 -0.725 0.0534 -0.725 0.0534 0.725 -0.0534 ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 -0.0204 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.654 0.316 0.654 -0.316 0.654 -0.316 -0.654 0.316 ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.249 0.121 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.725 -0.0534 -0.725 0.0534 -0.725 0.0534 0.725 -0.0534 ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 -0.0204 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.654 0.316 0.654 -0.316 0.654 -0.316 -0.654 0.316 ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.249 0.121 DEAL::Nedelec1<3> embedding 0 DEAL::0.500 -0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ 0.250 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4433,20 +4433,20 @@ DEAL::~ ~ ~ ~ 0.250 -0.217 0.250 -0.217 ~ ~ ~ DEAL::~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::0.250 -0.217 ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0938 ~ ~ -0.108 0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0938 ~ ~ -0.108 0.0938 ~ ~ 0.0938 -0.0812 ~ ~ +DEAL::0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0938 ~ ~ -0.108 0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0938 ~ ~ -0.108 0.0937 ~ ~ 0.0938 -0.0812 ~ ~ DEAL::~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ -DEAL::~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0938 ~ ~ 0.0937 -0.0812 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 -0.108 0.0938 ~ ~ -0.108 0.0938 ~ ~ 0.0937 -0.0812 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.500 -0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ 0.250 -0.217 ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ 0.125 ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 0.125 -0.108 0.125 -0.108 ~ ~ -0.108 0.0938 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0938 ~ ~ -0.108 0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0938 -0.0812 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 0.125 -0.108 0.125 -0.108 ~ ~ -0.108 0.0938 ~ ~ -0.108 0.0937 -0.108 0.0938 ~ ~ -0.108 0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0938 -0.0812 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4459,10 +4459,10 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4510,10 +4510,10 @@ DEAL::~ ~ 0.851 -0.0627 ~ ~ ~ ~ ~ ~ -0. DEAL::~ ~ -0.769 0.371 ~ ~ ~ ~ ~ ~ 0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.851 -0.0627 ~ ~ -0.851 0.0627 ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.769 0.371 ~ ~ 0.769 -0.371 ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.851 0.0627 ~ ~ ~ ~ ~ ~ -0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.769 0.371 ~ ~ ~ ~ ~ ~ -0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.851 0.0627 0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.769 -0.371 -0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.851 0.0627 0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.769 -0.371 -0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.851 0.0627 ~ ~ ~ ~ ~ ~ -0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.769 0.371 ~ ~ ~ ~ ~ ~ -0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4526,12 +4526,12 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.725 0.0534 -0.725 -0.0534 ~ ~ ~ ~ -0.725 -0.0534 0.725 0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ 0.276 0.0204 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.654 0.316 -0.654 -0.316 ~ ~ ~ ~ -0.654 -0.316 0.654 0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ 0.249 0.121 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.725 0.0534 -0.725 -0.0534 ~ ~ ~ ~ -0.725 -0.0534 0.725 0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ 0.276 0.0204 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.654 0.316 -0.654 -0.316 ~ ~ ~ ~ -0.654 -0.316 0.654 0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ 0.249 0.121 ~ ~ ~ ~ DEAL::-0.725 0.0534 0.725 -0.0534 ~ ~ ~ ~ 0.725 -0.0534 -0.725 0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ 0.276 -0.0204 ~ ~ DEAL::0.654 -0.316 -0.654 0.316 ~ ~ ~ ~ -0.654 0.316 0.654 -0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ -0.249 0.121 ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.725 0.0534 0.725 -0.0534 0.725 -0.0534 -0.725 0.0534 ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 -0.0204 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.654 -0.316 -0.654 0.316 -0.654 0.316 0.654 -0.316 ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.249 0.121 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.725 0.0534 0.725 -0.0534 0.725 -0.0534 -0.725 0.0534 ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 -0.0204 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.654 -0.316 -0.654 0.316 -0.654 0.316 0.654 -0.316 ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.249 0.121 DEAL::Nedelec1<3> embedding 1 DEAL::0.250 -0.217 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4545,16 +4545,16 @@ DEAL::0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ 0.125 -0.108 0.12 DEAL::~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ DEAL::~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0938 ~ ~ 0.0937 0.0812 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0938 -0.108 -0.0937 ~ ~ -0.108 -0.0938 ~ ~ 0.0937 0.0812 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.500 -0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 0.125 -0.108 0.125 -0.108 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0938 -0.0812 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 0.125 -0.108 0.125 -0.108 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 -0.108 0.0937 ~ ~ -0.108 0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0938 -0.0812 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ -0.217 0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 ~ ~ @@ -4565,14 +4565,14 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4624,10 +4624,10 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ 0.851 -0.0627 ~ ~ ~ ~ ~ ~ -0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ -0.769 0.371 ~ ~ ~ ~ ~ ~ 0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.851 -0.0627 -0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.769 0.371 0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.851 -0.0627 -0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.769 0.371 0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ 0.851 -0.0627 ~ ~ ~ ~ ~ ~ -0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ -0.769 0.371 ~ ~ ~ ~ ~ ~ 0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ -0.851 0.0627 0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ 0.769 -0.371 -0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::0.851 0.0627 -0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4636,12 +4636,12 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ -0.725 0.0534 0.725 -0.0534 ~ ~ ~ ~ 0.725 -0.0534 -0.725 0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ 0.276 -0.0204 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.654 -0.316 -0.654 0.316 ~ ~ ~ ~ -0.654 0.316 0.654 -0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ -0.249 0.121 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ -0.725 0.0534 0.725 -0.0534 ~ ~ ~ ~ 0.725 -0.0534 -0.725 0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ 0.276 -0.0204 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.654 -0.316 -0.654 0.316 ~ ~ ~ ~ -0.654 0.316 0.654 -0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ -0.249 0.121 ~ ~ ~ ~ DEAL::0.725 0.0534 -0.725 -0.0534 ~ ~ ~ ~ -0.725 -0.0534 0.725 0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ 0.276 0.0204 ~ ~ DEAL::0.654 0.316 -0.654 -0.316 ~ ~ ~ ~ -0.654 -0.316 0.654 0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ 0.249 0.121 ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.725 0.0534 0.725 -0.0534 0.725 -0.0534 -0.725 0.0534 ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 -0.0204 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.654 -0.316 -0.654 0.316 -0.654 0.316 0.654 -0.316 ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.249 0.121 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.725 0.0534 0.725 -0.0534 0.725 -0.0534 -0.725 0.0534 ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 -0.0204 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.654 -0.316 -0.654 0.316 -0.654 0.316 0.654 -0.316 ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.249 0.121 DEAL::Nedelec1<3> embedding 2 DEAL::0.500 0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ 0.250 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4655,18 +4655,18 @@ DEAL::0.250 0.217 ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ DEAL::~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::0.125 0.108 0.125 0.108 ~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0938 ~ ~ 0.0938 0.0812 ~ ~ DEAL::~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ -DEAL::~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ 0.0937 -0.0812 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ 0.0937 -0.0812 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ 0.250 -0.217 ~ ~ ~ ~ -0.217 0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ 0.125 ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 0.125 -0.108 0.125 -0.108 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0937 -0.0812 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 0.125 -0.108 0.125 -0.108 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 -0.108 0.0937 ~ ~ -0.108 0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0937 -0.0812 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.500 -0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4675,10 +4675,10 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4734,10 +4734,10 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ 0.851 0.0627 ~ ~ ~ ~ ~ ~ -0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ 0.769 0.371 ~ ~ ~ ~ ~ ~ -0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.851 0.0627 0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.769 -0.371 -0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.851 0.0627 0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.769 -0.371 -0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ 0.851 0.0627 ~ ~ ~ ~ ~ ~ -0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ 0.769 0.371 ~ ~ ~ ~ ~ ~ -0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ -0.851 -0.0627 0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ -0.769 -0.371 0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::-0.851 -0.0627 0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4746,12 +4746,12 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ -0.725 -0.0534 0.725 0.0534 ~ ~ ~ ~ 0.725 0.0534 -0.725 -0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ 0.276 0.0204 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ -0.654 -0.316 0.654 0.316 ~ ~ ~ ~ 0.654 0.316 -0.654 -0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ 0.249 0.121 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ -0.725 -0.0534 0.725 0.0534 ~ ~ ~ ~ 0.725 0.0534 -0.725 -0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ 0.276 0.0204 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ -0.654 -0.316 0.654 0.316 ~ ~ ~ ~ 0.654 0.316 -0.654 -0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ 0.249 0.121 ~ ~ ~ ~ DEAL::-0.725 -0.0534 0.725 0.0534 ~ ~ ~ ~ 0.725 0.0534 -0.725 -0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ 0.276 0.0204 ~ ~ DEAL::-0.654 -0.316 0.654 0.316 ~ ~ ~ ~ 0.654 0.316 -0.654 -0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ 0.249 0.121 ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.725 -0.0534 -0.725 0.0534 -0.725 0.0534 0.725 -0.0534 ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 -0.0204 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.654 0.316 0.654 -0.316 0.654 -0.316 -0.654 0.316 ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.249 0.121 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.725 -0.0534 -0.725 0.0534 -0.725 0.0534 0.725 -0.0534 ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 -0.0204 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.654 0.316 0.654 -0.316 0.654 -0.316 -0.654 0.316 ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.249 0.121 DEAL::Nedelec1<3> embedding 3 DEAL::0.250 0.217 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4765,16 +4765,16 @@ DEAL::0.125 0.108 0.125 0.108 ~ ~ ~ ~ 0.125 0.108 0.12 DEAL::~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ DEAL::~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ 0.0937 0.0812 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 0.125 -0.108 0.125 -0.108 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0938 ~ ~ -0.108 0.0938 ~ ~ -0.108 0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0938 -0.0812 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 +DEAL::~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ 0.0937 0.0812 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 0.125 -0.108 0.125 -0.108 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0938 -0.108 0.0938 ~ ~ -0.108 0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0938 -0.0812 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.500 -0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 ~ ~ @@ -4785,13 +4785,13 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4800,7 +4800,7 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ -0.0541 -0.0469 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ -0.0271 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ -0.0541 -0.0469 ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0313 ~ ~ ~ -0.0271 ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0313 ~ ~ ~ -0.0271 ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 0.0271 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0156 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 0.0271 ~ ~ @@ -4840,10 +4840,10 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ -0.851 0.0627 ~ ~ ~ ~ ~ ~ 0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.769 -0.371 ~ ~ ~ ~ ~ ~ -0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.851 0.0627 -0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.769 0.371 -0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.851 0.0627 -0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.769 0.371 -0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ -0.851 0.0627 ~ ~ ~ ~ ~ ~ 0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.769 -0.371 ~ ~ ~ ~ ~ ~ -0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4856,21 +4856,21 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.769 0.371 0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ 0.851 -0.0627 -0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ -0.769 0.371 0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ -0.725 0.0534 0.725 -0.0534 ~ ~ ~ ~ 0.725 -0.0534 -0.725 0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ 0.276 -0.0204 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.654 -0.316 -0.654 0.316 ~ ~ ~ ~ -0.654 0.316 0.654 -0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ -0.249 0.121 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ -0.725 0.0534 0.725 -0.0534 ~ ~ ~ ~ 0.725 -0.0534 -0.725 0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ 0.276 -0.0204 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.654 -0.316 -0.654 0.316 ~ ~ ~ ~ -0.654 0.316 0.654 -0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ -0.249 0.121 ~ ~ ~ ~ DEAL::-0.725 0.0534 0.725 -0.0534 ~ ~ ~ ~ 0.725 -0.0534 -0.725 0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ 0.276 -0.0204 ~ ~ DEAL::0.654 -0.316 -0.654 0.316 ~ ~ ~ ~ -0.654 0.316 0.654 -0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ -0.249 0.121 ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.725 0.0534 -0.725 -0.0534 -0.725 -0.0534 0.725 0.0534 ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 0.0204 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.654 0.316 -0.654 -0.316 -0.654 -0.316 0.654 0.316 ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.249 0.121 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.725 0.0534 -0.725 -0.0534 -0.725 -0.0534 0.725 0.0534 ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 0.0204 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.654 0.316 -0.654 -0.316 -0.654 -0.316 0.654 0.316 ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.249 0.121 DEAL::Nedelec1<3> embedding 4 DEAL::0.250 -0.217 ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ 0.0937 -0.0812 ~ ~ DEAL::~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ -DEAL::~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ 0.0937 -0.0812 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ 0.0938 -0.0812 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ 0.500 -0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ @@ -4881,12 +4881,12 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.500 0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 0.217 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 0.217 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ 0.250 0.217 ~ ~ ~ ~ -0.217 -0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ 0.125 ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 0.125 0.108 0.125 0.108 0.125 0.108 ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0938 0.0812 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 0.125 0.108 0.125 0.108 0.125 0.108 ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0938 -0.108 -0.0938 ~ ~ -0.108 -0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0938 0.0812 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4895,14 +4895,14 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ -0.0541 0.0469 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0313 ~ ~ ~ -0.0271 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ -0.0541 0.0469 ~ ~ @@ -4950,10 +4950,10 @@ DEAL::~ ~ -0.851 0.0627 ~ ~ ~ ~ ~ ~ 0.85 DEAL::~ ~ 0.769 -0.371 ~ ~ ~ ~ ~ ~ -0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.851 0.0627 ~ ~ -0.851 -0.0627 ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.769 0.371 ~ ~ -0.769 -0.371 ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ -0.851 -0.0627 ~ ~ ~ ~ ~ ~ 0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ -0.769 -0.371 ~ ~ ~ ~ ~ ~ 0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.851 -0.0627 0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.769 -0.371 0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.851 -0.0627 0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.769 -0.371 0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ -0.851 -0.0627 ~ ~ ~ ~ ~ ~ 0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ -0.769 -0.371 ~ ~ ~ ~ ~ ~ 0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4966,21 +4966,21 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.769 0.371 -0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ -0.851 0.0627 0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ 0.769 -0.371 -0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ -0.725 -0.0534 0.725 0.0534 ~ ~ ~ ~ 0.725 0.0534 -0.725 -0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ 0.276 0.0204 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ -0.654 -0.316 0.654 0.316 ~ ~ ~ ~ 0.654 0.316 -0.654 -0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ 0.249 0.121 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ -0.725 -0.0534 0.725 0.0534 ~ ~ ~ ~ 0.725 0.0534 -0.725 -0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ 0.276 0.0204 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ -0.654 -0.316 0.654 0.316 ~ ~ ~ ~ 0.654 0.316 -0.654 -0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ 0.249 0.121 ~ ~ ~ ~ DEAL::0.725 -0.0534 -0.725 0.0534 ~ ~ ~ ~ -0.725 0.0534 0.725 -0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ 0.276 -0.0204 ~ ~ DEAL::-0.654 0.316 0.654 -0.316 ~ ~ ~ ~ 0.654 -0.316 -0.654 0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ -0.249 0.121 ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.725 -0.0534 0.725 0.0534 0.725 0.0534 -0.725 -0.0534 ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 0.0204 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.654 -0.316 0.654 0.316 0.654 0.316 -0.654 -0.316 ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.249 0.121 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.725 -0.0534 0.725 0.0534 0.725 0.0534 -0.725 -0.0534 ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 0.0204 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.654 -0.316 0.654 0.316 0.654 0.316 -0.654 -0.316 ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.249 0.121 DEAL::Nedelec1<3> embedding 5 DEAL::0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ 0.0937 -0.0812 ~ ~ DEAL::~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ DEAL::~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ 0.0937 0.0812 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ 0.0938 0.0812 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.188 ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.500 -0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -4989,12 +4989,12 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 0.217 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.188 ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 0.217 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 0.217 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.500 0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 0.125 0.108 0.125 0.108 0.125 0.108 ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0938 0.0812 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 0.125 0.108 0.125 0.108 0.125 0.108 ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0938 -0.108 -0.0938 ~ ~ -0.108 -0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0938 0.0812 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ -0.217 -0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 ~ ~ @@ -5009,10 +5009,10 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ -0.0541 -0.0469 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0313 ~ ~ ~ -0.0271 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ -0.0541 0.0469 ~ ~ @@ -5064,10 +5064,10 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ -0.851 0.0627 ~ ~ ~ ~ ~ ~ 0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ 0.769 -0.371 ~ ~ ~ ~ ~ ~ -0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.851 0.0627 -0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.769 0.371 -0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.851 0.0627 -0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.769 0.371 -0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ -0.851 0.0627 ~ ~ ~ ~ ~ ~ 0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 -0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ 0.769 -0.371 ~ ~ ~ ~ ~ ~ -0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -5076,37 +5076,37 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.769 -0.371 -0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ 0.851 0.0627 -0.851 -0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ 0.769 0.371 -0.769 -0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.725 -0.0534 -0.725 0.0534 ~ ~ ~ ~ -0.725 0.0534 0.725 -0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ 0.276 -0.0204 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ -0.654 0.316 0.654 -0.316 ~ ~ ~ ~ 0.654 -0.316 -0.654 0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ -0.249 0.121 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.725 -0.0534 -0.725 0.0534 ~ ~ ~ ~ -0.725 0.0534 0.725 -0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 0.0330 ~ ~ 0.447 -0.0330 -0.447 0.0330 ~ ~ 0.447 -0.0330 ~ ~ 0.276 -0.0204 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ -0.654 0.316 0.654 -0.316 ~ ~ ~ ~ 0.654 -0.316 -0.654 0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 -0.195 ~ ~ -0.404 0.195 0.404 -0.195 ~ ~ -0.404 0.195 ~ ~ -0.249 0.121 ~ ~ ~ ~ DEAL::-0.725 -0.0534 0.725 0.0534 ~ ~ ~ ~ 0.725 0.0534 -0.725 -0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ 0.276 0.0204 ~ ~ DEAL::-0.654 -0.316 0.654 0.316 ~ ~ ~ ~ 0.654 0.316 -0.654 -0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ 0.249 0.121 ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.725 -0.0534 0.725 0.0534 0.725 0.0534 -0.725 -0.0534 ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 0.0204 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.654 -0.316 0.654 0.316 0.654 0.316 -0.654 -0.316 ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.249 0.121 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.725 -0.0534 0.725 0.0534 0.725 0.0534 -0.725 -0.0534 ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 0.0204 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.654 -0.316 0.654 0.316 0.654 0.316 -0.654 -0.316 ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.249 0.121 DEAL::Nedelec1<3> embedding 6 DEAL::0.250 0.217 ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::0.125 0.108 0.125 0.108 ~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0937 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ 0.0937 0.0812 ~ ~ +DEAL::0.125 0.108 0.125 0.108 ~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0937 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0937 ~ ~ 0.0937 0.0812 ~ ~ DEAL::~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ -DEAL::~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0938 ~ ~ -0.108 0.0937 ~ ~ 0.0938 -0.0812 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ 0.125 -0.108 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 0.0937 ~ ~ -0.108 0.0938 -0.108 0.0938 ~ ~ -0.108 0.0937 ~ ~ 0.0938 -0.0812 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ 0.500 0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ 0.250 0.217 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.188 ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.187 ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 -0.217 0.250 -0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 0.188 ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.500 -0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ 0.250 0.217 ~ ~ ~ ~ -0.217 -0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ 0.125 ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 0.125 0.108 0.125 0.108 0.125 0.108 ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0937 0.0812 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 0.125 0.108 0.125 0.108 0.125 0.108 ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0937 -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0937 0.0812 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.500 0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 0.217 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 0.217 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -5115,16 +5115,16 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 -0.0541 ~ ~ 0.0625 -0.0541 ~ ~ -0.0541 0.0469 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0312 ~ ~ ~ -0.0271 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0313 ~ ~ ~ -0.0271 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ -0.0541 -0.0469 ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0313 ~ ~ ~ -0.0271 ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 -0.108 ~ ~ ~ ~ ~ ~ ~ ~ @@ -5174,10 +5174,10 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ -0.851 -0.0627 ~ ~ ~ ~ ~ ~ 0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ -0.769 -0.371 ~ ~ ~ ~ ~ ~ 0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.851 -0.0627 0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.769 -0.371 0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.851 -0.0627 0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.769 -0.371 0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ -0.851 -0.0627 ~ ~ ~ ~ ~ ~ 0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ -0.769 -0.371 ~ ~ ~ ~ ~ ~ 0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -5186,21 +5186,21 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.769 -0.371 0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ -0.851 -0.0627 0.851 0.0627 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.526 0.0387 ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ -0.769 -0.371 0.769 0.371 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.475 0.229 ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.725 0.0534 -0.725 -0.0534 ~ ~ ~ ~ -0.725 -0.0534 0.725 0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ 0.276 0.0204 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.654 0.316 -0.654 -0.316 ~ ~ ~ ~ -0.654 -0.316 0.654 0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ 0.249 0.121 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.725 0.0534 -0.725 -0.0534 ~ ~ ~ ~ -0.725 -0.0534 0.725 0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ 0.276 0.0204 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.654 0.316 -0.654 -0.316 ~ ~ ~ ~ -0.654 -0.316 0.654 0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ 0.249 0.121 ~ ~ ~ ~ DEAL::0.725 0.0534 -0.725 -0.0534 ~ ~ ~ ~ -0.725 -0.0534 0.725 0.0534 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ 0.276 0.0204 ~ ~ DEAL::0.654 0.316 -0.654 -0.316 ~ ~ ~ ~ -0.654 -0.316 0.654 0.316 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ 0.249 0.121 ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.725 0.0534 -0.725 -0.0534 -0.725 -0.0534 0.725 0.0534 ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 0.0204 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.654 0.316 -0.654 -0.316 -0.654 -0.316 0.654 0.316 ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.249 0.121 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.725 0.0534 -0.725 -0.0534 -0.725 -0.0534 0.725 0.0534 ~ ~ -0.447 -0.0330 ~ ~ 0.447 0.0330 -0.447 -0.0330 ~ ~ 0.447 0.0330 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.276 0.0204 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.654 0.316 -0.654 -0.316 -0.654 -0.316 0.654 0.316 ~ ~ -0.404 -0.195 ~ ~ 0.404 0.195 -0.404 -0.195 ~ ~ 0.404 0.195 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.249 0.121 DEAL::Nedelec1<3> embedding 7 DEAL::0.125 0.108 0.125 0.108 ~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ 0.0937 0.0812 ~ ~ DEAL::~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ DEAL::~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ 0.0937 0.0812 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ 0.125 0.108 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0937 -0.108 -0.0937 ~ ~ -0.108 -0.0937 ~ ~ 0.0937 0.0812 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ 0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.187 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ 0.250 0.217 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.188 ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.500 0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ @@ -5209,12 +5209,12 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.500 0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 0.125 0.108 0.125 0.108 0.125 0.108 ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0937 ~ ~ -0.108 -0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0938 0.0812 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 0.125 0.108 0.125 0.108 0.125 0.108 ~ ~ -0.108 -0.0938 ~ ~ -0.108 -0.0938 -0.108 -0.0937 ~ ~ -0.108 -0.0938 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0938 0.0812 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ 0.0625 ~ ~ ~ -0.0541 ~ ~ ~ -0.0541 ~ -0.0541 ~ ~ ~ -0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0469 DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 0.217 ~ ~ 0.250 0.217 ~ ~ ~ ~ ~ ~ -0.217 -0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ ~ ~ 0.125 ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 0.217 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 0.217 0.250 0.217 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.217 -0.188 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 ~ 0.125 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.500 0.433 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.250 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 ~ ~ @@ -5225,10 +5225,10 @@ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 -DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0312 ~ ~ ~ 0.0312 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 0.0541 ~ ~ 0.0625 0.0541 ~ ~ ~ ~ ~ ~ ~ ~ -0.0541 -0.0469 ~ ~ ~ ~ +DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0313 ~ ~ ~ 0.0313 ~ ~ ~ ~ ~ ~ ~ ~ ~ -0.0271 ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.0625 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DEAL::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.125 0.108 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ diff --git a/tests/fe/nedelec_2/cmp/generic b/tests/fe/nedelec_2/cmp/generic index 759e0fd303..b89319def1 100644 --- a/tests/fe/nedelec_2/cmp/generic +++ b/tests/fe/nedelec_2/cmp/generic @@ -598,9 +598,9 @@ DEAL::0.25 0.25 0.00 tangential diff 0.00 0.00 0.00 (-879.53 0.00 -3088.68--879 DEAL::0.25 0.25 0.25 tangential diff 0.00 0.00 0.00 (3263.53 0.00 -3176.11-3263.53 0.00 -3176.11) DEAL::cell 2.2 face 3 neighbor 1.2 DEAL::0.00 0.50 0.00 tangential diff 0.00 0.00 0.00 (105.95 0.00 -88.38-105.95 0.00 -88.38) -DEAL::0.00 0.50 0.25 tangential diff 0.00 0.00 1.27 (-140.00 0.00 -38.22--140.00 0.00 -39.48) -DEAL::0.25 0.50 0.00 tangential diff 1.27 0.00 0.00 (14.59 0.00 116.00-13.33 0.00 116.00) -DEAL::0.25 0.50 0.25 tangential diff -1.73 0.00 -1.73 (-17.25 0.00 49.52--15.52 0.00 51.25) +DEAL::0.00 0.50 0.25 tangential diff 0.00 0.00 0.00 (-140.00 0.00 -38.22--140.00 0.00 -38.22) +DEAL::0.25 0.50 0.00 tangential diff 0.00 0.00 0.00 (14.59 0.00 116.00-14.59 0.00 116.00) +DEAL::0.25 0.50 0.25 tangential diff 0.00 0.00 0.00 (-17.25 0.00 49.52--17.25 0.00 49.52) DEAL::cell 2.2 face 4 boundary DEAL::cell 2.2 face 5 neighbor 2.6 DEAL::0.00 0.25 0.25 tangential diff 0.00 0.00 0.00 (-1113.79 856.11 0.00--1113.79 856.11 0.00) @@ -623,10 +623,10 @@ DEAL::0.25 0.25 0.25 tangential diff 0.00 0.00 0.00 (3263.53 0.00 1002.52-3263. DEAL::0.50 0.25 0.00 tangential diff 0.00 0.00 0.00 (-11.83 0.00 -3656.95--11.83 0.00 -3656.95) DEAL::0.50 0.25 0.25 tangential diff 0.00 0.00 0.00 (13.48 0.00 -3722.52-13.48 0.00 -3722.52) DEAL::cell 2.3 face 3 neighbor 1.2 -DEAL::0.25 0.50 0.00 tangential diff 1.27 0.00 0.00 (14.59 0.00 116.00-13.33 0.00 116.00) -DEAL::0.25 0.50 0.25 tangential diff -1.73 0.00 -1.73 (-17.25 0.00 49.52--15.52 0.00 51.25) +DEAL::0.25 0.50 0.00 tangential diff 0.00 0.00 0.00 (14.59 0.00 116.00-14.59 0.00 116.00) +DEAL::0.25 0.50 0.25 tangential diff 0.00 0.00 0.00 (-17.25 0.00 49.52--17.25 0.00 49.52) DEAL::0.50 0.50 0.00 tangential diff 0.00 0.00 0.00 (32.75 0.00 320.38-32.75 0.00 320.38) -DEAL::0.50 0.50 0.25 tangential diff 0.00 0.00 -4.73 (-40.00 0.00 137.26--40.00 0.00 141.99) +DEAL::0.50 0.50 0.25 tangential diff 0.00 0.00 0.00 (-40.00 0.00 137.26--40.00 0.00 137.26) DEAL::cell 2.3 face 4 boundary DEAL::cell 2.3 face 5 neighbor 2.7 DEAL::0.25 0.25 0.25 tangential diff 0.00 0.00 0.00 (-1119.65 1002.52 0.00--1119.65 1002.52 0.00) @@ -693,10 +693,10 @@ DEAL::0.00 0.25 0.50 tangential diff 0.00 0.00 0.00 (5012.05 0.00 42.45-5012.05 DEAL::0.25 0.25 0.25 tangential diff 0.00 0.00 0.00 (-1353.90 0.00 -3176.11--1353.90 0.00 -3176.11) DEAL::0.25 0.25 0.50 tangential diff 0.00 0.00 0.00 (5033.90 0.00 -55.31-5033.90 0.00 -55.31) DEAL::cell 2.6 face 3 neighbor 1.2 -DEAL::0.00 0.50 0.25 tangential diff 0.00 0.00 1.27 (-140.00 0.00 -38.22--140.00 0.00 -39.48) +DEAL::0.00 0.50 0.25 tangential diff 0.00 0.00 0.00 (-140.00 0.00 -38.22--140.00 0.00 -38.22) DEAL::0.00 0.50 0.50 tangential diff 0.00 0.00 0.00 (-385.95 0.00 -100.09--385.95 0.00 -100.09) -DEAL::0.25 0.50 0.25 tangential diff -1.73 0.00 -1.73 (-17.25 0.00 49.52--15.52 0.00 51.25) -DEAL::0.25 0.50 0.50 tangential diff -4.73 0.00 0.00 (-49.10 0.00 132.00--44.37 0.00 132.00) +DEAL::0.25 0.50 0.25 tangential diff 0.00 0.00 0.00 (-17.25 0.00 49.52--17.25 0.00 49.52) +DEAL::0.25 0.50 0.50 tangential diff 0.00 0.00 0.00 (-49.10 0.00 132.00--49.10 0.00 132.00) DEAL::cell 2.6 face 4 neighbor 2.2 DEAL::0.00 0.25 0.25 tangential diff 0.00 0.00 0.00 (1113.79 -856.11 0.00-1113.79 -856.11 0.00) DEAL::0.25 0.25 0.25 tangential diff 0.00 0.00 0.00 (1119.65 3176.11 0.00-1119.65 3176.11 0.00) @@ -723,9 +723,9 @@ DEAL::0.25 0.25 0.50 tangential diff 0.00 0.00 0.00 (5033.90 0.00 -55.31-5033.9 DEAL::0.50 0.25 0.25 tangential diff 0.00 0.00 0.00 (13.48 0.00 -3722.52-13.48 0.00 -3722.52) DEAL::0.50 0.25 0.50 tangential diff 0.00 0.00 0.00 (38.80 0.00 -153.08-38.80 0.00 -153.08) DEAL::cell 2.7 face 3 neighbor 1.2 -DEAL::0.25 0.50 0.25 tangential diff -1.73 0.00 -1.73 (-17.25 0.00 49.52--15.52 0.00 51.25) -DEAL::0.25 0.50 0.50 tangential diff -4.73 0.00 0.00 (-49.10 0.00 132.00--44.37 0.00 132.00) -DEAL::0.50 0.50 0.25 tangential diff 0.00 0.00 -4.73 (-40.00 0.00 137.26--40.00 0.00 141.99) +DEAL::0.25 0.50 0.25 tangential diff 0.00 0.00 0.00 (-17.25 0.00 49.52--17.25 0.00 49.52) +DEAL::0.25 0.50 0.50 tangential diff 0.00 0.00 0.00 (-49.10 0.00 132.00--49.10 0.00 132.00) +DEAL::0.50 0.50 0.25 tangential diff 0.00 0.00 0.00 (-40.00 0.00 137.26--40.00 0.00 137.26) DEAL::0.50 0.50 0.50 tangential diff 0.00 0.00 0.00 (-112.75 0.00 364.09--112.75 0.00 364.09) DEAL::cell 2.7 face 4 neighbor 2.3 DEAL::0.25 0.25 0.25 tangential diff 0.00 0.00 0.00 (1119.65 -1002.52 0.00-1119.65 -1002.52 0.00) -- 2.39.5