From 75e33ebcc454e33dbd4b56480c1eb2ae329750e6 Mon Sep 17 00:00:00 2001 From: David Wells Date: Mon, 7 May 2018 18:32:07 -0400 Subject: [PATCH] Update step-38. --- examples/step-38/doc/intro.dox | 2 +- examples/step-38/doc/results.dox | 10 ++++------ examples/step-38/step-38.cc | 9 ++------- 3 files changed, 7 insertions(+), 14 deletions(-) diff --git a/examples/step-38/doc/intro.dox b/examples/step-38/doc/intro.dox index 8ff7796b1e..6794746c27 100644 --- a/examples/step-38/doc/intro.dox +++ b/examples/step-38/doc/intro.dox @@ -30,7 +30,7 @@ variable, while here we actually have to investigate what it means to take derivatives of a function only defined on a (possibly curved) surface. In order to define the above operator, we start by introducing some notations. -Let $\mathbf x_S:\hat S \rightarrow S$ be a parametrization of +Let $\mathbf x_S:\hat S \rightarrow S$ be a parameterization of a surface $S$ from a reference element $\hat S \subset \mathbb R^2$, i.e. each point $\hat{\mathbf x}\in\hat S$ induces a point ${\mathbf x}_S(\hat{\mathbf x}) \in S$. Then let diff --git a/examples/step-38/doc/results.dox b/examples/step-38/doc/results.dox index 51b3e2d3f6..b3cf133c69 100644 --- a/examples/step-38/doc/results.dox +++ b/examples/step-38/doc/results.dox @@ -111,15 +111,13 @@ above, this would look as follows: template void LaplaceBeltrami::make_grid_and_dofs () { - static SphericalManifold surface_description; - triangulation.set_manifold (0, surface_description); + triangulation.set_manifold (0, SphericalManifold()); { - SphericalManifold boundary_description; Triangulation volume_mesh; GridGenerator::half_hyper_ball(volume_mesh); - volume_mesh.set_manifold (0, boundary_description); + volume_mesh.set_manifold (0, SphericalManifold); volume_mesh.refine_global (4); std::set boundary_ids; @@ -136,8 +134,8 @@ void LaplaceBeltrami::make_grid_and_dofs () } std::cout << "Surface mesh has " << triangulation.n_active_cells() - << " cells." - << std::endl; + << " cells." + << std::endl; ... @endcode diff --git a/examples/step-38/step-38.cc b/examples/step-38/step-38.cc index a23d29090f..e8ed60460e 100644 --- a/examples/step-38/step-38.cc +++ b/examples/step-38/step-38.cc @@ -306,10 +306,7 @@ namespace Step38 // polygon) but not when, as here, the manifold has curvature. So for things // to work properly, we need to attach a manifold object to our (surface) // triangulation, in much the same way as we've already done in 1d for the - // boundary. We create such an object (with indefinite, static, - // lifetime) at the top of the function and attach it to the triangulation - // for all cells with boundary indicator zero that will be created - // henceforth. + // boundary. We create such an object and attach it to the triangulation. // // The final step in creating the mesh is to refine it a number of // times. The rest of the function is the same as in previous tutorial @@ -317,8 +314,6 @@ namespace Step38 template void LaplaceBeltramiProblem::make_grid_and_dofs () { - static SphericalManifold surface_description; - { Triangulation volume_mesh; GridGenerator::half_hyper_ball(volume_mesh); @@ -330,7 +325,7 @@ namespace Step38 boundary_ids); } triangulation.set_all_manifold_ids(0); - triangulation.set_manifold (0, surface_description); + triangulation.set_manifold (0, SphericalManifold()); triangulation.refine_global(4); -- 2.39.5