From 7e2b7d35a0d65ccafc416780070dbe412de5d319 Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Mon, 22 Apr 2002 16:06:50 +0000 Subject: [PATCH] Add more doc. git-svn-id: https://svn.dealii.org/trunk@5710 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-14/step-14.cc | 256 +++++++++++++++++++--------- 1 file changed, 172 insertions(+), 84 deletions(-) diff --git a/deal.II/examples/step-14/step-14.cc b/deal.II/examples/step-14/step-14.cc index 67ee9296b0..1bfa56c925 100644 --- a/deal.II/examples/step-14/step-14.cc +++ b/deal.II/examples/step-14/step-14.cc @@ -136,7 +136,7 @@ namespace Evaluation ++vertex) if (cell->vertex(vertex) == evaluation_point) { - point_value = solution(cell->vertex_dof_index(vertex,0)); + point_value = 1.-solution(cell->vertex_dof_index(vertex,0)); evaluation_point_found = true; break; @@ -1279,6 +1279,18 @@ namespace LaplaceSolver }; + // @sect3{Estimating errors} + + // @sect4{Error estimation driver functions} + // + // As for the actual computation of + // error estimates, let's start + // with the function that drives + // all this, i.e. calls those + // functions that actually do the + // work, and finally collects the + // results. + template void WeightedResidual:: @@ -1312,24 +1324,36 @@ namespace LaplaceSolver *PrimalSolver::fe, dual_weights); - - // Map of integrals indexed by - // the corresponding face. In this map - // we store the integrated jump of the - // gradient for each face. - // At the end of the function, we again - // loop over the cells and collect the - // contributions of the different faces - // of the cell. - // - // The initial values for all faces - // are set to -1e20. It would cost - // a lot of time to synchronise the - // initialisation (i.e. the - // creation of new keys) of the map - // in multithreaded mode. Negative - // value indicates that the face - // has not yet been processed. + // Then we set up a map between + // face iterators and their jump + // term contributions of faces to + // the error estimator. The + // reason is that we compute the + // jump terms only once, from one + // side of the face, and want to + // collect them only afterwards + // when looping over all cells a + // second time. + // + // We initialize this map already + // with a value of -1e20 for all + // faces, since this value will + // strike in the results if + // something should go wrong and + // we fail to compute the value + // for a face for some + // reason. Secondly, we + // initialize the map once before + // we branch to different threads + // since this way the map's + // structure is no more modified + // by the individual threads, + // only existing entries are set + // to new values. This relieves + // us from the necessity to + // synchronise the threads + // through a mutex each time they + // write to this map. FaceIntegrals face_integrals; for (active_cell_iterator cell=DualSolver::dof_handler.begin_active(); cell!=DualSolver::dof_handler.end(); @@ -1339,25 +1363,20 @@ namespace LaplaceSolver ++face_no) face_integrals[cell->face(face_no)].first = -1e20; - // reserve one slot for each cell - // and set it to zero + // Then set up a vector with + // error indicators. Reserve one + // slot for each cell and set it + // to zero. error_indicators.reinit (DualSolver::dof_handler .get_tria().n_active_cells()); - - // all the data needed in the error - // estimator by each of the threads - // is gathered in the following - // stuctures - // - // note that if no component mask - // was given, then treat all - // components + // Now start a number of threads + // which compute the error + // formula on parts of all the + // cells, and once they are all + // started wait until they have + // all finished: const unsigned int n_threads = multithread_info.n_default_threads; - - // split all cells into threads if - // multithreading is used and run - // the whole thing Threads::ThreadManager thread_manager; for (unsigned int i=0; i::dof_handler.begin_active(); cell!=DualSolver::dof_handler.end(); ++cell, ++present_cell) - { - // loop over all faces of this cell - for (unsigned int face_no=0; face_no::faces_per_cell; - ++face_no) - { - Assert(face_integrals.find(cell->face(face_no)) != face_integrals.end(), - ExcInternalError()); - if (true || (face_integrals[cell->face(face_no)].second - == - cell)) - error_indicators(present_cell) - += -0.5*face_integrals[cell->face(face_no)].first; - else - error_indicators(present_cell) - -= -0.5*face_integrals[cell->face(face_no)].first; - }; - }; + for (unsigned int face_no=0; face_no::faces_per_cell; + ++face_no) + { + Assert(face_integrals.find(cell->face(face_no)) != face_integrals.end(), + ExcInternalError()); + if (true || (face_integrals[cell->face(face_no)].second + == + cell)) + error_indicators(present_cell) + += -0.5*face_integrals[cell->face(face_no)].first; + else + error_indicators(present_cell) + -= -0.5*face_integrals[cell->face(face_no)].first; + }; }; + // @sect4{Estimating on a subset of cells} + + // Next we have the function that + // is called to estimate the error + // on a subset of cells. The + // function may be called multiply + // if the library was configured to + // use multi-threading. Here it + // goes: template void WeightedResidual:: @@ -1409,48 +1441,69 @@ namespace LaplaceSolver Vector &error_indicators, FaceIntegrals &face_integrals) const { - FaceData face_data (*DualSolver::fe, - *DualSolver::face_quadrature); + // At the beginning, we + // initialize two variables for + // each thread which may be + // running this function. The + // reason for these functions was + // discussed above, when the + // respective classes were + // discussed, so we here only + // point out that since they are + // local to the function that is + // spawned when running more than + // one thread, the data of these + // objects exists actually once + // per thread, so we don't have + // to take care about + // synchronising access to them. CellData cell_data (*DualSolver::fe, *DualSolver::quadrature, *PrimalSolver::rhs_function); + FaceData face_data (*DualSolver::fe, + *DualSolver::face_quadrature); - // First calculate the start cell - // for this thread. We let the - // different threads run on - // interleaved cells, i.e. for - // example if we have 4 threads, - // then the first thread treates - // cells 0, 4, 8, etc, while the - // second threads works on cells 1, - // 5, 9, and so on. The reason is - // that it takes vastly more time - // to work on cells with hanging - // nodes than on regular cells, but - // such cells are not evenly - // distributed across the range of - // cell iterators, so in order to - // have the different threads do - // approximately the same amount of - // work, we have to let them work - // interleaved to the effect of a - // pseudorandom distribution of the - // `hard' cells to the different - // threads. + // Then calculate the start cell + // for this thread. We let the + // different threads run on + // interleaved cells, i.e. for + // example if we have 4 threads, + // then the first thread treates + // cells 0, 4, 8, etc, while the + // second threads works on cells 1, + // 5, 9, and so on. The reason is + // that it takes vastly more time + // to work on cells with hanging + // nodes than on regular cells, but + // such cells are not evenly + // distributed across the range of + // cell iterators, so in order to + // have the different threads do + // approximately the same amount of + // work, we have to let them work + // interleaved to the effect of a + // pseudorandom distribution of the + // `hard' cells to the different + // threads. active_cell_iterator cell=DualSolver::dof_handler.begin_active(); for (unsigned int t=0; (t::dof_handler.end()); ++t, ++cell); - - // Then loop over all cells. The + // Next loop over all cells. The // check for loop end is done at // the end of the loop, along // with incrementing the loop // index. for (unsigned int cell_index=this_thread; true; ) { - + // First task on each cell is + // to compute the cell + // residual contributions of + // this cell, and put them + // into the + // ``error_indicators'' + // variable: integrate_over_cell (cell, cell_index, primal_solution, dual_weights, @@ -1591,6 +1644,11 @@ namespace LaplaceSolver }; + // @sect4{Computing cell term error contributions} + + // As for the actual computation of + // the error contributions, first + // turn to the cell terms: template void WeightedResidual:: integrate_over_cell (const active_cell_iterator &cell, @@ -1600,14 +1658,27 @@ namespace LaplaceSolver CellData &cell_data, Vector &error_indicators) const { + // The tasks to be done are what + // appears natural from looking + // at the error estimation + // formula: first compute the the + // right hand side and the + // Laplacian of the numerical + // solution at the quadrature + // points for the cell residual, cell_data.fe_values.reinit (cell); cell_data.right_hand_side ->value_list (cell_data.fe_values.get_quadrature_points(), cell_data.rhs_values); cell_data.fe_values.get_function_2nd_derivatives (primal_solution, cell_data.cell_grad_grads); + + // ...then get the dual weights... cell_data.fe_values.get_function_values (dual_weights, cell_data.dual_weights); + + // ...and finally build the sum + // over all quadrature points: double sum = 0; for (unsigned int p=0; p void WeightedResidual:: integrate_over_regular_face (const active_cell_iterator &cell, @@ -1727,6 +1812,9 @@ namespace LaplaceSolver }; + // @sect4{Computing edgel term + // error contributions - 2} + // We are still missing the case of faces with hanging nodes. This is what is covered in this function: template void WeightedResidual:: @@ -1912,7 +2000,7 @@ run_simulation (LaplaceSolver::Base &solver, }; - if (solver.n_dofs() < 5000) + if (solver.n_dofs() < 2000) solver.refine_grid (); else break; -- 2.39.5