From 88c8200bccd0277fb473891d30aaefaa42ee28f7 Mon Sep 17 00:00:00 2001 From: frohne Date: Thu, 23 Feb 2012 08:35:12 +0000 Subject: [PATCH] fixing inequality signs and formulations git-svn-id: https://svn.dealii.org/trunk@25156 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-41/doc/step-41-doc.tex | 94 +++++++++++++------- 1 file changed, 61 insertions(+), 33 deletions(-) diff --git a/deal.II/examples/step-41/doc/step-41-doc.tex b/deal.II/examples/step-41/doc/step-41-doc.tex index 6d5a8fcb99..5672f0ab28 100644 --- a/deal.II/examples/step-41/doc/step-41-doc.tex +++ b/deal.II/examples/step-41/doc/step-41-doc.tex @@ -126,24 +126,27 @@ $-(v-u)$ as above, and so we can no longer conclude that the two sides are in fact equal. Thus, this mimicks the way we have discussed the complementarity condition above. + + \section{Formulation as a saddle point problem} The variational inequality above is awkward to work with. We would therefore -like to reformulate it as an equivalent saddle point problem. We introduce a -Lagrange multiplier $\lambda$ and the convex cone $K\subset W:=V^*, K=\{\mu\in -W: \mu(\mathbf x)\le 0\}$ of +like to reformulate it as an equivalent saddle point problem. Set $V:=H^1_0(\Omega)$. +We introduce a Lagrange multiplier $\lambda$ and the convex cone $K\subset V'$, $V'$ +dual space of $V$, $K:=\{\mu\in V': \langle\mu,v\rangle\geq 0,\quad 0\geq v\in V\}$ of \marginpar{JF: Is this definition of $K$ correct?} -Lagrange multipliers. This yields: +Lagrange multipliers, where $\langle\cdot,\cdot\rangle$ denotes the duality +pairing between $V'$ and $V$. This yields: \textit{Find $u\in V$ and $\lambda\in K$ such that} \begin{align*} a(u,v) + b(v,\lambda) &= f(v),\quad &&v\in V\\ - b(u,\mu - \lambda) &\leq \langle g,(\mu - \lambda)\rangle,\quad&&\mu\in K, + b(u,\mu - \lambda) &\leq \langle g,\mu - \lambda\rangle,\quad&&\mu\in K, \end{align*} \textit{with} \begin{align*} a(u,v) &:= \left(\nabla u, \nabla v\right),\quad &&u,v\in V\\ - b(u,\mu) &:= (u,\mu),\quad &&u\in V,\quad\mu\in W. + b(u,\mu) &:= \langle g-u,\mu\rangle,\quad &&u\in V,\quad\mu\in V'. \end{align*} In other words, we can consider $\lambda$ as the negative of the additional, positive force that the obstacle exerts on the membrane. The inequality in the second line of the @@ -169,7 +172,7 @@ get the equations \marginpar{JF: Aren't the inequalities the wrong way around here (and below)?} \begin{eqnarray*} &A U + B\Lambda = F,&\\ - &[BU-G]_i \le 0, \quad \Lambda_i \geq 0,\quad \Lambda_i[BU-G]_i = 0 + &[BU-G]_i \geq 0, \quad \Lambda_i \leq 0,\quad \Lambda_i[BU-G]_i = 0 \qquad \forall i.& \end{eqnarray*} where $B$ is the mass matrix on the chosen finite element space and the @@ -186,24 +189,32 @@ at these locations, we get a diagonal mass matrix with \qquad B_{ij}=0 \ \text{for } i\neq j. \end{align*} - +To define $G$ we use the same technique as for $B$ where $g_h$ is a +suitable approximation of $g$ +\begin{align*} + G_{ii} = \int_\Omega g_h(x) \varphi_i(\mathbf x)\ \textrm{d}x, + \qquad + G_{ij}=0 \ \text{for } i\neq j. +\end{align*} With this, the equations above can be restated as \begin{eqnarray*} &A U + B\Lambda = F,&\\ - &U_i-B_{ii}^{-1}G_i \le 0, \quad \Lambda_i \geq 0,\quad \Lambda_i[U_i-B_{ii}^{-1}G_i] = 0 + &U_i-B_{ii}^{-1}G_i \ge 0, \quad \Lambda_i \leq 0,\quad \Lambda_i[U_i-B_{ii}^{-1}G_i] = 0 \qquad \forall i\in{\cal S}.& \end{eqnarray*} Now we define for each degree of freedom $i$ the function \begin{equation*} - C([BU]_i,\Lambda_i):=\Lambda_i - \max\lbrace 0, \Lambda_i + c([BU]_i - G_i) \rbrace, + C([BU]_i,\Lambda_i):=-\Lambda_i + \min\lbrace 0, \Lambda_i + c([BU]_i - G_i) \rbrace, \end{equation*} -with some $c>0$. +with some $c>0$. (In this program we choose $c = 100$. It is a kind of a penalty parameter which +depends on the problem itself. For example there is no convergence for $c = 1$ and 7 refinements.) \marginpar{JF: How do you choose $c$?} + After some headscratching one can then convince oneself that the inequalities above can equivalently be rewritten as \begin{equation*} - C([BU]_i,\Lambda_i) = 0, \qquad \forall i\in{\cal S} + C([BU]_i,\Lambda_i) = 0, \qquad \forall i\in{\cal S}. \end{equation*} The primal-dual active set strategy we will use here is an iterative scheme which is based on this condition to predict the next active and inactive sets $\mathcal{A}_k$ and @@ -230,8 +241,8 @@ The algorithm for the primal-dual active set method works as follows: \item [(2)] Define the new active and inactive sets by \begin{equation*} \begin{split} - \mathcal{A}_{k+1}:=\lbrace i\in\mathcal{S}:\Lambda^k_i + c([BU^k]_i - G_i)> 0\rbrace,\\ - \mathcal{F}_{k+1}:=\lbrace i\in\mathcal{S}:\Lambda^k_i + c([BU^k]_i - G_i)\leq 0\rbrace. + \mathcal{A}_{k+1}:=\lbrace i\in\mathcal{S}:\Lambda^k_i + c([BU^k]_i - G_i)< 0\rbrace,\\ + \mathcal{F}_{k+1}:=\lbrace i\in\mathcal{S}:\Lambda^k_i + c([BU^k]_i - G_i)\geq 0\rbrace. \end{split} \end{equation*} \item [(3)] If $\mathcal{A}_{k+1}=\mathcal{A}_k$ (and then, obviously, also $\mathcal{F}_{k+1}=\mathcal{F}_k$) then stop, else set $k=k+1$ and go to step (1). @@ -244,12 +255,12 @@ At the end of this section, let us add two observations. First, for any primal-dual pair $(U^k,\Lambda^k)$ that satisfies these condition, we can distinguish the following cases: \begin{itemize} - \item [1.] $\Lambda^k_i + c([BU^k]_i - G_i)> 0$ (p active): + \item [1.] $\Lambda^k_i + c([BU^k]_i - G_i) < 0$ (i active): - Then either $[BU^k]_i>G_i$ and $\Lambda^k_{n,p}=0$ (penetration) or $\Lambda^k_{n,p}>0$ and $[BU^k]_i=G_i$ (pressing load). - \item [2.] $\Lambda^k_i + c([BU^k]_i - G_i)\leq 0$ (p inactive): + Then either $[BU^k]_i 0\\ - 0\Lambda^k_i,& \text{if}\ \Lambda^k_i + c([BU^k]_i - G_i)\leq 0. + cB_{ii},& \text{if}\ \Lambda^k_i + c([BU^k]_i - G_i)< 0\\ + 0,& \text{if}\ \Lambda^k_i + c([BU^k]_i - G_i)\geq 0. \end{cases} \end{equation*} \begin{equation*} \dfrac{\partial}{\partial\Lambda^k_i}C([BU^k]_i,\Lambda^k_i) = \begin{cases} - 0,& \text{if}\ \Lambda^k_i + c([BU^k]_i - G_i)> 0\\ - \Lambda^k_i,& \text{if}\ \Lambda^k_i + c([BU^k]_i - G_i)\leq 0. + 0,& \text{if}\ \Lambda^k_i + c([BU^k]_i - G_i)< 0\\ + -1,& \text{if}\ \Lambda^k_i + c([BU^k]_i - G_i)\geq 0. \end{cases} \end{equation*} This suggest a semismooth Newton step of the form @@ -282,15 +293,15 @@ This suggest a semismooth Newton step of the form \begin{pmatrix} A_{\mathcal{F}_k\mathcal{F}_k} & A_{\mathcal{F}_k\mathcal{A}_k} & B_{\mathcal{F}_k} & 0\\ A_{\mathcal{A}_k\mathcal{F}_k} & A_{\mathcal{A}_k\mathcal{A}_k} & 0 & B_{\mathcal{A}_k}\\ - 0 & 0 & Id_{\mathcal{F}_k} & 0\\ - 0 & -cB_{\mathcal{A}_k} & 0 & 0 + 0 & 0 & -Id_{\mathcal{F}_k} & 0\\ + 0 & cB_{\mathcal{A}_k} & 0 & 0 \end{pmatrix} \begin{pmatrix} \delta U^k_{\mathcal{F}_k}\\ \delta U^k_{\mathcal{A}_k}\\ \delta \Lambda^k_{\mathcal{F}_k}\\ \delta \Lambda^k_{\mathcal{A}_k} \end{pmatrix} = -\begin{pmatrix} - (AU^k + \Lambda^k - F)_{\mathcal{F}_k}\\ (AU^k + \Lambda^k - F)_{\mathcal{A}_k}\\ \Lambda^k_{\mathcal{F}_k}\\ -c(B_{\mathcal{A}_k} U^k - G)_{\mathcal{A}_k} + (AU^k + \Lambda^k - F)_{\mathcal{F}_k}\\ (AU^k + \Lambda^k - F)_{\mathcal{A}_k}\\ -\Lambda^k_{\mathcal{F}_k}\\ c(B_{\mathcal{A}_k} U^k - G)_{\mathcal{A}_k} \end{pmatrix}, \end{equation*} where we have split matrices $A,B$ as well as vectors in the natural way into @@ -313,7 +324,7 @@ bringing all known terms to the right hand side. This yields \end{pmatrix} = \begin{pmatrix} - f_{\mathcal{F}_k}\\ f_{\mathcal{A}_k}\\ 0\\ g_{\mathcal{A}_k} + F_{\mathcal{F}_k}\\ F_{\mathcal{A}_k}\\ 0\\ G_{\mathcal{A}_k} \end{pmatrix}. \end{equation*} These are the equations outlines above in the description of the basic algorithm. @@ -336,19 +347,36 @@ because it implies $\Lambda_{\mathcal{F}_k} = 0$: \end{pmatrix}. \end{equation*} This shows that one in fact only needs to solve for the Lagrange multipliers -located on the active set. One would then recover the full Lagrange multiplier -vector through +located on the active set. By considering the second row one would then recover +the full Lagrange multiplier vector through \begin{equation*} - \Lambda = B^{-1}\left(f_{\mathcal{S}} - A_{\mathcal{S}}u_{\mathcal{S}}\right). + \Lambda^k_S = B^{-1}\left(f_{\mathcal{S}} - A_{\mathcal{S}}U^k_{\mathcal{S}}\right). \end{equation*} - -Finally we have to solve linear problems for which we use CG-Solver with a AMG -preconditioner from Trilinos. +Because of the third row and the fact that $B_{\mathcal{A}_k}$ is a diagonal matrix we are able +to calculate $U^k_{\mathcal{A}_k}$ directly. At least the first row yields the following reduced linear +system for each iteration $k$ +\begin{equation*} +\begin{pmatrix} + A_{\mathcal{F}_k\mathcal{F}_k} & A_{\mathcal{F}_k\mathcal{A}_k}\\ + A_{\mathcal{A}_k\mathcal{F}_k} & A_{\mathcal{A}_k\mathcal{A}_k} +\end{pmatrix} +\begin{pmatrix} + U^k_{\mathcal{F}_k}\\ U^k_{\mathcal{A}_k} +\end{pmatrix} += +\begin{pmatrix} + F_{\mathcal{F}_k}\\ F_{\mathcal{A}_k} +\end{pmatrix}. +\end{equation*} +By considering the dofs in $\mathcal{A}_k$ as Dirichlet data we solve this system with a CG-method +and the AMG preconditioner from Trilinos. \marginpar{Which system do we actually solve with CG?} \section{Implementation} -... need to write something here... +This tutorial is quite similar to step-4. But to solve the obstacle problem, two new methods are +implemented: assemble_mass_matrix_diagonal (TrilinosWrappers::SparseMatrix &mass_matrix) and +update_solution_and_constraints (). \end{document} \ No newline at end of file -- 2.39.5