From 8b4e7aa06ba57f5338ca7afbff22c906afdf6042 Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Wed, 23 Jun 2010 23:42:10 +0000 Subject: [PATCH] Go through most of the code. git-svn-id: https://svn.dealii.org/trunk@21301 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-45/step-45.cc | 223 ++++++++++++++++++++-------- 1 file changed, 157 insertions(+), 66 deletions(-) diff --git a/deal.II/examples/step-45/step-45.cc b/deal.II/examples/step-45/step-45.cc index 4a1c66d9a5..55d2e7d0f6 100644 --- a/deal.II/examples/step-45/step-45.cc +++ b/deal.II/examples/step-45/step-45.cc @@ -45,13 +45,20 @@ using namespace dealii; - // @sect3{The LaplaceProblem class template} + // @sect3{The LaplaceProblem class} // The class LaplaceProblem is // the main class of this problem. As // mentioned in the introduction, it is // fashioned after the corresponding class in - // step-3. + // step-3. Correspondingly, the documentation + // from that tutorial program applies here as + // well. The only new member variable is the + // constraints variables that + // will hold the constraints from the + // periodic boundary condition. We will + // initialize it in the + // setup_system() function. class LaplaceProblem { public: @@ -78,74 +85,52 @@ class LaplaceProblem }; - // The RightHandSide class is a function - // object representing the right-hand side of - // the problem. -class RightHandSide: public Function<2> { + // @sect3{The RightHandSide class} + + // The following implements the right hand + // side function discussed in the + // introduction. Its implementation is + // obvious given what has been shown in + // step-4 before: +class RightHandSide: public Function<2> +{ public: RightHandSide (); - virtual double value (const Point<2>& p, const unsigned int component = 0) const; + + virtual double value (const Point<2>& p, + const unsigned int component = 0) const; }; - // This function returns the value of the - // right-hand side at a given point - // p. -double RightHandSide::value (const Point<2>&p, const unsigned int) const { - return numbers::PI * numbers::PI * std::sin (numbers::PI * p (0)) * std::sin (numbers::PI * p (1)); -} - // Here comes the constructor of the class - // RightHandSide. RightHandSide::RightHandSide () : Function<2> () {} - // The constructor of the class, where the - // DoFHandler and the finite - // element object are initialized. + +double +RightHandSide::value (const Point<2>&p, + const unsigned int) const +{ + return (numbers::PI * numbers::PI * + std::sin (numbers::PI * p (0)) * + std::sin (numbers::PI * p (1))); +} + + // @sect3{Implementation of the LaplaceProblem class} + + // The first part of implementing the main + // class is the constructor. It is unchanged + // from step-3 and step-4: LaplaceProblem::LaplaceProblem () : fe (1), dof_handler (triangulation) {} - //Assembling the system matrix and the - //right-hand side vector is done as in other - //tutorials before. -void LaplaceProblem::assemble_system () { - const unsigned int dofs_per_cell = fe.dofs_per_cell; - QGauss<2> quadrature (2); - const unsigned int n_quadrature_points = quadrature.size (); - double JxW; - FEValues<2> fe_values (fe, quadrature, update_gradients | update_JxW_values | update_quadrature_points | update_values); - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - std::vector > quadrature_points; - std::vector cell_dof_indices (dofs_per_cell); - Vector cell_rhs (dofs_per_cell); - - const RightHandSide right_hand_side; - - for (DoFHandler<2>::active_cell_iterator cell = dof_handler.begin_active (); cell != dof_handler.end (); ++cell) { - cell_rhs = 0; - fe_values.reinit (cell); - quadrature_points = fe_values.get_quadrature_points (); - - for (unsigned int i = 0; i < dofs_per_cell; ++i) - for (unsigned int q_point = 0; q_point < n_quadrature_points; ++q_point) { - JxW = fe_values.JxW (q_point); - cell_rhs (i) += JxW * fe_values.shape_value (i, q_point) * right_hand_side.value (quadrature_points[q_point]); - - for (unsigned int j = 0; j < dofs_per_cell; ++j) - cell_matrix (i, j) += JxW * fe_values.shape_grad (i, q_point) * fe_values.shape_grad (j, q_point); - } - - cell->get_dof_indices (cell_dof_indices); - constraints.distribute_local_to_global (cell_matrix, cell_rhs, cell_dof_indices, system_matrix, system_rhs); - } -} -void LaplaceProblem::setup_system () { +void LaplaceProblem::setup_system () +{ GridGenerator::hyper_cube (triangulation); // We change the boundary indicator on the // parts of the boundary, where we have @@ -265,11 +250,73 @@ void LaplaceProblem::setup_system () { system_rhs.reinit (n_dofs); solution.reinit (n_dofs); } + + + // @sect4{LaplaceProblem::assemble_system} + + // Assembling the system matrix and the + // right-hand side vector is done as in other + // tutorials before. +void LaplaceProblem::assemble_system () +{ + QGauss<2> quadrature_formula(2); + FEValues<2> fe_values (fe, quadrature_formula, + update_values | update_gradients | + update_quadrature_points | update_JxW_values); + + const unsigned int dofs_per_cell = fe.dofs_per_cell; + const unsigned int n_q_points = quadrature_formula.size(); + + FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); + Vector cell_rhs (dofs_per_cell); + + std::vector local_dof_indices (dofs_per_cell); + + const RightHandSide right_hand_side; + + DoFHandler<2>::active_cell_iterator cell = dof_handler.begin_active(), + endc = dof_handler.end(); + for (; cell!=endc; ++cell) + { + fe_values.reinit (cell); + cell_matrix = 0; + cell_rhs = 0; + + for (unsigned int q_point=0; q_pointget_dof_indices (local_dof_indices); + constraints.distribute_local_to_global (cell_matrix, cell_rhs, + local_dof_indices, + system_matrix, system_rhs); + } +} + + + // @sect4{LaplaceProblem::solve} + // To solve the linear system of equations // $Au=b$ we use the CG solver with an - // SSOR-preconditioner. -void LaplaceProblem::solve () { - SolverControl solver_control (dof_handler.n_dofs (), 1e-15); + // SSOR-preconditioner. This is, again, + // copied almost verbatim from step-4, with + // the exception of the preconditioner. As in + // step-6, we need to make sure that + // constrained degrees of freedom get their + // correct values after solving by calling + // the ConstraintMatrix::distribute function: +void LaplaceProblem::solve () +{ + SolverControl solver_control (dof_handler.n_dofs (), 1e-12); PreconditionSSOR > precondition; precondition.initialize (system_matrix); @@ -280,9 +327,14 @@ void LaplaceProblem::solve () { constraints.distribute (solution); } -void LaplaceProblem::output_results () { - // As graphical output we create vtk-file - // of the computed solution. + + // @sect4{LaplaceProblem::output_results} + + // This is another function copied from + // previous tutorial programs. It generates + // graphical output in VTK format: +void LaplaceProblem::output_results () +{ DataOut<2> data_out; data_out.attach_dof_handler (dof_handler); @@ -293,18 +345,57 @@ void LaplaceProblem::output_results () { data_out.write_vtk (output); } - // This function manages the solving process - // of the problem. + + + + // @sect4{LaplaceProblem::run} + + // And another function copied from previous + // programs: void LaplaceProblem::run () { setup_system (); assemble_system (); solve (); output_results (); } + + // @sect3{The main function} + // And at the end we have the main function - // as usual. -int main () { - LaplaceProblem laplace_problem; - - laplace_problem.run (); + // as usual, this time copied from step-6: +int main () +{ + try + { + deallog.depth_console (0); + + LaplaceProblem laplace_problem; + laplace_problem.run (); + } + catch (std::exception &exc) + { + std::cerr << std::endl << std::endl + << "----------------------------------------------------" + << std::endl; + std::cerr << "Exception on processing: " << std::endl + << exc.what() << std::endl + << "Aborting!" << std::endl + << "----------------------------------------------------" + << std::endl; + + return 1; + } + catch (...) + { + std::cerr << std::endl << std::endl + << "----------------------------------------------------" + << std::endl; + std::cerr << "Unknown exception!" << std::endl + << "Aborting!" << std::endl + << "----------------------------------------------------" + << std::endl; + return 1; + } + + return 0; } -- 2.39.5