From 8bd18299a476982318067b911d2099fbc65410c7 Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Wed, 6 Aug 2014 08:44:37 -0500 Subject: [PATCH] Write the steps in lowercase. This way, the filter script can replace them automatically with references to the corresponding pages for each of the tutorial programs. This does not currently work on http://dealii.org/developer/doxygen/deal.II/Tutorial.html . --- doc/doxygen/tutorial/tutorial.h.in | 436 ++++++++++++++--------------- 1 file changed, 218 insertions(+), 218 deletions(-) diff --git a/doc/doxygen/tutorial/tutorial.h.in b/doc/doxygen/tutorial/tutorial.h.in index 0df9c4af25..e95a6d695e 100644 --- a/doc/doxygen/tutorial/tutorial.h.in +++ b/doc/doxygen/tutorial/tutorial.h.in @@ -83,12 +83,12 @@ * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * * * - * + * * @@ -402,49 +402,49 @@ * * * + * * * * * * + * * * * * * + * * * * * * + * * * * * * + * * * * * * + * * * * * * + * * * * * - * + * * * *
Step-1step-1 Creating a grid. A simple way to write it to a file. *
Step-2step-2 Associate degrees of freedom to * each vertex and compute the resulting sparsity pattern of * matrices. Show that renumbering reduces the bandwidth of @@ -97,14 +97,14 @@ *
Step-3step-3 Actually solve Laplace's * problem. Object-orientation. Assembling matrices and * vectors. %Boundary values. *
Step-4step-4 This example is programmed in a * way that it is independent of the dimension for which we want to * solve Laplace's equation; we will solve the equation in 2D and @@ -113,7 +113,7 @@ *
Step-5step-5 Computations on successively * refined grids. Reading a grid from disk. Some optimizations. * Using assertions. Non-constant coefficient in @@ -123,14 +123,14 @@ *
Step-6step-6 Adaptive local * refinement. Handling of hanging nodes. Higher order elements. * Catching exceptions in the main; function. *
Step-7step-7 Helmholtz * equation. Non-homogeneous Neumann boundary conditions and * boundary integrals. Verification of correctness of computed @@ -139,7 +139,7 @@ *
Step-8step-8 The elasticity equations will be * solved instead of Laplace's equation. The solution is * vector-valued and the equations form a system with as many @@ -147,190 +147,190 @@ *
Step-9step-9 Linear advection equation, assembling * the system of equations in parallel using multi-threading, * implementing a refinement criterion based on a finite difference * approximation of the gradient. * *
Step-10step-10 Higher order mappings. Do not * solve equations, but rather compute the value of pi to high * accuracy. *
Step-11step-11 Solving a Laplace problem with * higher order mappings. Using strange constraints and * intermediate representations of sparsity patterns. *
Step-12step-12 Discontinuous Galerkin methods for linear advection problems. *
Step-13step-13 Software design questions and * how to write a modular, extensible finite element program. *
Step-14step-14 Duality based error estimators, * more strategies to write a modular, extensible finite element * program. *
Step-15step-15 A nonlinear elliptic problem: The minimal surface equation. * Newton's method. Transferring a solution across mesh refinement. *
Step-16step-16 Multigrid preconditioning of the Laplace equation on adaptive * meshes. *
Step-17step-17 Using PETSc for linear algebra; running * in parallel on clusters of computers linked together by MPI. *
Step-18step-18 A time dependent problem; using a much * simplified version of implementing elasticity; moving meshes; handling * large scale output of parallel programs. *
Step-19step-19 Input parameter file handling. Merging * output of a parallel program. *
Step-20step-20 Mixed finite elements. Using block * matrices and block vectors to define more complicated solvers and * preconditioners working on the Schur complement. *
Step-21step-21 The time dependent two-phase flow in * porous media. Extensions of mixed Laplace discretizations. More * complicated block solvers. Simple time stepping. *
Step-22step-22 Solving the Stokes equations of slow fluid flow on adaptive * meshes. More on Schur complement solvers. Advanced use of the * ConstraintMatrix class. *
Step-23step-23 Finally a "real" time dependent problem, the wave equation. *
Step-24step-24 A variant of step-23 with absorbing * boundary conditions, and extracting practically useful data. *
Step-25step-25 The sine-Gordon * soliton equation, which is a nonlinear variant of the time * dependent wave equation covered in step-23 and step-24. *
Step-26step-26 The heat equation, solved on a mesh that is adapted * every few time steps. *
Step-27step-27 hp finite element methods
Step-28step-28 Multiple grids for solving a multigroup diffusion equation * in nuclear physics simulating a nuclear reactor core
Step-29step-29 Solving a complex-valued Helmholtz equation. Sparse direct * solvers. Dealing with parameter files.
Step-30step-30 Anisotropic refinement for DG finite element methods. *
Step-31step-31 Time-dependent Stokes flow driven by temperature * differences in a fluid. Adaptive meshes that change between time * steps. *
Step-32step-32 A massively parallel solver for time-dependent Stokes flow driven * by temperature differences in a fluid. Adapting methods for real-world * equations. *
Step-33step-33 A nonlinear hyperbolic conservation law: The Euler equations of * compressible gas dynamics. *
Step-34step-34 %Boundary element methods (BEM) of low order: Exterior irrotational * flow. The ParsedFunction class. *
Step-35step-35 A projection solver for the Navier–Stokes equations. *
Step-36step-36 Using SLEPc for linear algebra; solving an eigenspectrum * problem. The Schrödinger wave equation. *
Step-37step-37 Solving a Poisson problem with a multilevel preconditioner without * explicitly storing the matrix (a matrix-free method). *
Step-38step-38Solving the Laplace-Beltrami equation on curved manifolds embedded * in higher dimensional spaces. *
Step-39step-39 Solving Poisson's equation once more, this time with the * interior penalty method, one of the discontinous Galerkin * methods developed for this problem. Error estimator, adaptive @@ -339,56 +339,56 @@ *
Step-40step-40 Techniques for the massively parallel solution of the Laplace * equation (up to 10,000s of processors). *
Step-41step-41 Solving the obstacle problem, a variational inequality. *
Step-42step-42 A solver for an elasto-plastic contact problem, running on * parallel machines. *
Step-43step-43 Advanced techniques for the simulation of porous media flow. *
Step-44step-44 Finite strain hyperelasticity based on a three-field formulation. *
Step-45step-45 Periodic boundary conditions. *
Step-46step-46 Coupling different kinds of equations in different parts of the domain. *
Step-48step-48 Explicit time stepping for the Sine–Gordon equation based on * a diagonal mass matrix. Efficient implementation of (nonlinear) finite * element operators. *
Step-49step-49 Advanced mesh creation and manipulation techniques. *
Step-51step-51 Solving the convection-diffusion equation with a hyrbidizable * discontinuous Galerkin method using face elements. *
Creating a grid. A simple way to write it to a file - * Step-1step-1
Degrees of freedom - * Step-2step-2
Solve the Laplace equation - * Step-3step-3
Dimension independent programming, non-zero data - * Step-4step-4
Computing on uniformly refined meshes - * Step-5step-5
Adaptivity - * Step-6, step-26step-6, step-26
Evaluating errors - * Step-7step-7
Nonlinear problems, Newton's method * Step-15step-15
@@ -455,12 +455,12 @@ * Multithreading * * - * Step-9, - * Step-28, - * Step-32, - * Step-44, - * Step-48, - * Step-51 + * step-9, + * step-28, + * step-32, + * step-44, + * step-48, + * step-51 * * * @@ -468,13 +468,13 @@ * Block solvers and preconditioners * * - * Step-20, - * Step-21, - * Step-22, - * Step-31, - * Step-32, - * Step-43, - * Step-44 + * step-20, + * step-21, + * step-22, + * step-31, + * step-32, + * step-43, + * step-44 * * * @@ -482,12 +482,12 @@ * Using Trilinos * * - * Step-31, - * Step-32, - * Step-33, - * Step-41, - * Step-42, - * Step-43 + * step-31, + * step-32, + * step-33, + * step-41, + * step-42, + * step-43 * * * @@ -495,10 +495,10 @@ * Parallelization via PETSc and MPI * * - * Step-17, - * Step-18, - * Step-19, - * Step-40 + * step-17, + * step-18, + * step-19, + * step-40 * * * @@ -506,8 +506,8 @@ * Parallelization via Trilinos and MPI * * - * Step-32, - * Step-42 + * step-32, + * step-42 * * * @@ -515,9 +515,9 @@ * Parallelization on very large numbers of processors * * - * Step-32, - * Step-40, - * Step-42 + * step-32, + * step-40, + * step-42 * * * @@ -525,16 +525,16 @@ * Input parameter handling * * - * Step-19, - * Step-28, - * Step-29, - * Step-32, - * Step-33, - * Step-34, - * Step-35, - * Step-36, - * Step-42, - * Step-44 + * step-19, + * step-28, + * step-29, + * step-32, + * step-33, + * step-34, + * step-35, + * step-36, + * step-42, + * step-44 * * * @@ -542,9 +542,9 @@ * Higher order mappings * * - * Step-10, - * Step-11, - * Step-32 + * step-10, + * step-11, + * step-32 * * * @@ -552,10 +552,10 @@ * Error indicators and estimators * * - * Step-6, - * Step-9, - * Step-14, - * Step-39 + * step-6, + * step-9, + * step-14, + * step-39 * * * @@ -563,13 +563,13 @@ * Transferring solutions across mesh refinement * * - * Step-15, - * Step-28, - * Step-31, - * Step-32, - * Step-33, - * Step-42, - * Step-43 + * step-15, + * step-28, + * step-31, + * step-32, + * step-33, + * step-42, + * step-43 * * * @@ -577,11 +577,11 @@ * Discontinuous Galerkin methods * * - * Step-12, - * Step-21, - * Step-39, - * Step-46, - * Step-51 + * step-12, + * step-21, + * step-39, + * step-46, + * step-51 * * * @@ -589,44 +589,44 @@ * hp finite elements * * - * Step-27, - * Step-46 + * step-27, + * step-46 * * * * * Anisotropic refinement for DG finite element methods * - * Step-30 + * step-30 * * * * Multilevel preconditioners * * - * Step-16, - * Step-31, - * Step-32, - * Step-39, - * Step-41, - * Step-42, - * Step-43 + * step-16, + * step-31, + * step-32, + * step-39, + * step-41, + * step-42, + * step-43 * * * * * Computing Jacobians from residuals, automatic differentiation * - * Step-33 + * step-33 * * * * %Boundary element methods, curved manifolds * * - * Step-32, - * Step-34, - * Step-38 + * step-32, + * step-34, + * step-38 * * * @@ -634,7 +634,7 @@ * Periodic boundary conditions * * - * Step-45 + * step-45 * * * @@ -642,8 +642,8 @@ * Matrix-free methods * * - * Step-37, - * Step-48 + * step-37, + * step-48 * * * @@ -651,7 +651,7 @@ * Advanced meshes * * - * Step-49 + * step-49 * * * @@ -662,33 +662,33 @@ * * Conjugate Gradient solver * - * Step-3 + * step-3 * * * * Preconditioned CG solver * - * Step-5 + * step-5 * * * * BiCGStab * - * Step-9 + * step-9 * * * * Multilevel preconditioners * * - * Step-16, - * Step-31, - * Step-32, - * Step-37, - * Step-39, - * Step-41, - * Step-42, - * Step-43 + * step-16, + * step-31, + * step-32, + * step-37, + * step-39, + * step-41, + * step-42, + * step-43 * * * @@ -696,11 +696,11 @@ * Parallel solvers * * - * Step-17, - * Step-18, - * Step-32, - * Step-40, - * Step-42 + * step-17, + * step-18, + * step-32, + * step-40, + * step-42 * * * @@ -708,36 +708,36 @@ * Block and Schur complement solvers * * - * Step-20, - * Step-21, - * Step-22, - * Step-31, - * Step-32, - * Step-43 + * step-20, + * step-21, + * step-22, + * step-31, + * step-32, + * step-43 * * * * * Decoupled projection solvers * - * Step-35 + * step-35 * * * * Linear Newton systems from nonlinear equations * * - * Step-33, - * Step-41, - * Step-42, - * Step-44 + * step-33, + * step-41, + * step-42, + * step-44 * * * * * Eigenvalue solvers * - * Step-36 + * step-36 * * * @@ -748,8 +748,8 @@ * Helmholtz equation * * - * Step-7, - * Step-29 + * step-7, + * step-29 * * * @@ -757,9 +757,9 @@ * Elasticity and elasto-plasticity equations * * - * Step-8, - * Step-42, - * Step-46 + * step-8, + * step-42, + * step-46 * * * @@ -767,7 +767,7 @@ * The heat equation * * - * Step-26 + * step-26 * * * @@ -775,7 +775,7 @@ * Minimal surface equation * * - * Step-15 + * step-15 * * * @@ -783,36 +783,36 @@ * Quasi-static elasticity equations * * - * Step-18, - * Step-44 + * step-18, + * step-44 * * * * * Transport (advection) equations * - * Step-9, - * Step-21, - * Step-31, - * Step-32, - * Step-43, - * Step-51 + * step-9, + * step-21, + * step-31, + * step-32, + * step-43, + * step-51 * * * * * The nonlinear hyperbolic Euler system of compressible gas dynamics * - * Step-33 + * step-33 * * * * Mixed Laplace, Darcy, Porous media * * - * Step-20, - * Step-21, - * Step-43 + * step-20, + * step-21, + * step-43 * * * @@ -820,11 +820,11 @@ * Stokes and incompressible Navier-Stokes flow * * - * Step-22, - * Step-31, - * Step-32, - * Step-35, - * Step-46 + * step-22, + * step-31, + * step-32, + * step-35, + * step-46 * * * @@ -832,44 +832,44 @@ * The wave equation, in linear and nonlinear variants * * - * Step-23, - * Step-24, - * Step-25, - * Step-48 + * step-23, + * step-24, + * step-25, + * step-48 * * * * * A multigroup diffusion problem in neutron transport * - * Step-28 + * step-28 * * * * Irrotational flow * - * Step-34 + * step-34 * * * * An eigenspectrum problem * - * Step-36 + * step-36 * * * * The obstacle problem, a variational inequality * * - * Step-41, - * Step-42 + * step-41, + * step-42 * * * * * Coupling different equations in different parts of the domain * - * Step-46 + * step-46 * * * @@ -880,49 +880,49 @@ * Elasticity and elasto-plasticity equations * * - * Step-8, - * Step-42 + * step-8, + * step-42 * * * * * Mixed Laplace * - * Step-20 + * step-20 * * * * Mixed Laplace plus an advection equation * - * Step-21, - * Step-43 + * step-21, + * step-43 * * * * * Incompressible Stokes and Navier-Stokes flow * - * Step-22, - * Step-31, - * Step-32, - * Step-35 + * step-22, + * step-31, + * step-32, + * step-35 * * * * A complex-valued Helmholtz problem * - * Step-29 + * step-29 * * * * The Euler equations of compressible gas dynamics * - * Step-33 + * step-33 * * * * Coupling different equations in different parts of the domain - * Step-46 + * step-46 * * * @@ -934,7 +934,7 @@ * * The heat equation * - * Step-26 + * step-26 * * * @@ -942,41 +942,41 @@ * Quasi-static elasticity * * - * Step-18, - * Step-44 + * step-18, + * step-44 * * * * * Porous media flow * - * Step-21, - * Step-43 + * step-21, + * step-43 * * * * * The wave equation, in linear and nonlinear variants * - * Step-23, - * Step-24, - * Step-25, - * Step-48 + * step-23, + * step-24, + * step-25, + * step-48 * * * * * Time dependent Stokes flow driven by buoyancy * - * Step-31, - * Step-32 + * step-31, + * step-32 * * * * * The Euler equations of compressible gas dynamics * - * Step-33 + * step-33 * * */ -- 2.39.5