From 8c76629301179e5cc4de7cb01d0cf54b448d2fe9 Mon Sep 17 00:00:00 2001 From: wolf Date: Thu, 7 May 1998 18:09:45 +0000 Subject: [PATCH] Example update. Compute maximum of second derivative for Chief Rannacher (fortunately an easy task ;-)) git-svn-id: https://svn.dealii.org/trunk@268 0785d39b-7218-0410-832d-ea1e28bc413d --- .../error-estimation/error-estimation.cc | 50 +++++++++++++------ .../error-estimation/error-estimation.cc | 50 +++++++++++++------ 2 files changed, 68 insertions(+), 32 deletions(-) diff --git a/deal.II/deal.II/Attic/examples/error-estimation/error-estimation.cc b/deal.II/deal.II/Attic/examples/error-estimation/error-estimation.cc index 0c37bccd61..4566b60ab5 100644 --- a/deal.II/deal.II/Attic/examples/error-estimation/error-estimation.cc +++ b/deal.II/deal.II/Attic/examples/error-estimation/error-estimation.cc @@ -80,6 +80,8 @@ class PoissonProblem : public ProblemBase { vector l2_error, linfty_error; vector h1_error, estimated_error; vector n_dofs; + + vector laplacian; }; @@ -88,7 +90,7 @@ class PoissonProblem : public ProblemBase { /** Right hand side constructed such that the exact solution is - $x*y*exp(-(x**2+y**2)*10)$. + $x*y*exp(-(x**2+y**2)*40)$. */ template class RHSPoly : public Function { @@ -121,19 +123,19 @@ class Solution : public Function { double RHSPoly<2>::operator () (const Point<2> &p) const { - return (120.-400.*p.square())*p(0)*p(1)*exp(-10.*p.square()); + return (480.-6400.*p.square())*p(0)*p(1)*exp(-40.*p.square()); }; double Solution<2>::operator () (const Point<2> &p) const { - return p(0)*p(1)*exp(-10*p.square()); + return p(0)*p(1)*exp(-40*p.square()); }; Point<2> Solution<2>::gradient (const Point<2> &p) const { - return Point<2> ((1-20.*p(0)*p(0))*p(1)*exp(-10*p.square()), - (1-20.*p(1)*p(1))*p(0)*exp(-10*p.square())); + return Point<2> ((1-80.*p(0)*p(0))*p(1)*exp(-40*p.square()), + (1-80.*p(1)*p(1))*p(0)*exp(-40*p.square())); }; @@ -279,10 +281,11 @@ void PoissonProblem::run (const unsigned int start_level, QGauss3 quadrature; unsigned int refine_step = 0; - while (tria->n_active_cells() < 6000) + while (tria->n_active_cells() < 2000) { cout << "Refinement step " << refine_step - << ", using " << tria->n_active_cells() << " active cells." + << ", using " << tria->n_active_cells() << " active cells on " + << tria->n_levels() << " levels." << endl; cout << " Distributing dofs... "; dof->distribute_dofs (fe); @@ -303,6 +306,7 @@ void PoissonProblem::run (const unsigned int start_level, Solution sol; dVector l2_error_per_cell, linfty_error_per_cell, h1_error_per_cell; dVector estimated_error_per_cell; + dVector laplacian_per_cell; QGauss3 q; cout << " Calculating L2 error... "; @@ -323,7 +327,6 @@ void PoissonProblem::run (const unsigned int start_level, cout << " Estimating H1 error... "; KellyErrorEstimator ee; QSimpson eq; -// ee.estimate_error (*dof, eq, fe, boundary, KellyErrorEstimator::FunctionMap(), solution, @@ -331,15 +334,27 @@ void PoissonProblem::run (const unsigned int start_level, cout << estimated_error_per_cell.l2_norm() << endl; estimated_error.push_back (estimated_error_per_cell.l2_norm()); + laplacian_per_cell = estimated_error_per_cell; + DoFHandler::active_cell_iterator cell = dof->begin_active(), + endc = dof->end(); + for (unsigned int i=0; cell!=endc; ++cell, ++i) + laplacian_per_cell(i) /= (cell->diameter() * cell->diameter() / 24); + cout << " Computing second derivative maximum... " + << laplacian_per_cell.linfty_norm() + << endl; + laplacian.push_back (laplacian_per_cell.linfty_norm()); + dVector l2_error_per_dof, linfty_error_per_dof; dVector h1_error_per_dof, estimated_error_per_dof; + dVector laplacian_per_dof; dof->distribute_cell_to_dof_vector (l2_error_per_cell, l2_error_per_dof); dof->distribute_cell_to_dof_vector (linfty_error_per_cell, linfty_error_per_dof); dof->distribute_cell_to_dof_vector (h1_error_per_cell, h1_error_per_dof); -// dof->distribute_cell_to_dof_vector (estimated_error_per_cell, estimated_error_per_dof); + dof->distribute_cell_to_dof_vector (laplacian_per_cell, + laplacian_per_dof); DataOut out; @@ -347,8 +362,8 @@ void PoissonProblem::run (const unsigned int start_level, out.add_data_vector (l2_error_per_dof, "L2-Error"); out.add_data_vector (linfty_error_per_dof, "Linfty-Error"); out.add_data_vector (h1_error_per_dof, "H1-Error"); -// out.add_data_vector (estimated_error_per_dof, "Estimated Error"); + out.add_data_vector (laplacian_per_dof, "Second derivative pointwise"); // string filename = "gnuplot."; string filename = "ee."; switch (refine_mode) @@ -363,7 +378,8 @@ void PoissonProblem::run (const unsigned int start_level, filename += "estimated_error."; break; }; - filename += ('0'+start_level+refine_step); + filename += ('0'+(start_level+refine_step)/10); + filename += ('0'+(start_level+refine_step)%10); filename += ".inp"; //* cout << " Writing error plots to <" << filename << ">..." << endl; @@ -381,11 +397,11 @@ void PoissonProblem::run (const unsigned int start_level, tria->refine_global (1); break; case true_error: - tria->refine_fixed_number (h1_error_per_cell, 0.3); + tria->refine_fixed_fraction (h1_error_per_cell, 0.5); tria->execute_refinement (); break; case error_estimator: - tria->refine_fixed_number (estimated_error_per_cell, 0.3); + tria->refine_fixed_number (estimated_error_per_cell, 0.2); tria->execute_refinement (); break; }; @@ -415,11 +431,12 @@ void PoissonProblem::print_history (const RefineMode refine_mode) const { }; filename += "gnuplot"; - cout << endl << "Printing convergence history to" << filename << "..." + cout << endl << "Printing convergence history to <" << filename << ">..." << endl; ofstream out(filename.c_str()); out << "# n_dofs l2_error linfty_error " - << "h1_error estimated_error" + << "h1_error estimated_error " + << "laplacian" << endl; for (unsigned int i=0; i::print_history (const RefineMode refine_mode) const { << l2_error[i] << " " << linfty_error[i] << " " << h1_error[i] << " " - << estimated_error[i] + << estimated_error[i] << " " + << laplacian[i] << endl; double average_l2=0, diff --git a/tests/big-tests/error-estimation/error-estimation.cc b/tests/big-tests/error-estimation/error-estimation.cc index 0c37bccd61..4566b60ab5 100644 --- a/tests/big-tests/error-estimation/error-estimation.cc +++ b/tests/big-tests/error-estimation/error-estimation.cc @@ -80,6 +80,8 @@ class PoissonProblem : public ProblemBase { vector l2_error, linfty_error; vector h1_error, estimated_error; vector n_dofs; + + vector laplacian; }; @@ -88,7 +90,7 @@ class PoissonProblem : public ProblemBase { /** Right hand side constructed such that the exact solution is - $x*y*exp(-(x**2+y**2)*10)$. + $x*y*exp(-(x**2+y**2)*40)$. */ template class RHSPoly : public Function { @@ -121,19 +123,19 @@ class Solution : public Function { double RHSPoly<2>::operator () (const Point<2> &p) const { - return (120.-400.*p.square())*p(0)*p(1)*exp(-10.*p.square()); + return (480.-6400.*p.square())*p(0)*p(1)*exp(-40.*p.square()); }; double Solution<2>::operator () (const Point<2> &p) const { - return p(0)*p(1)*exp(-10*p.square()); + return p(0)*p(1)*exp(-40*p.square()); }; Point<2> Solution<2>::gradient (const Point<2> &p) const { - return Point<2> ((1-20.*p(0)*p(0))*p(1)*exp(-10*p.square()), - (1-20.*p(1)*p(1))*p(0)*exp(-10*p.square())); + return Point<2> ((1-80.*p(0)*p(0))*p(1)*exp(-40*p.square()), + (1-80.*p(1)*p(1))*p(0)*exp(-40*p.square())); }; @@ -279,10 +281,11 @@ void PoissonProblem::run (const unsigned int start_level, QGauss3 quadrature; unsigned int refine_step = 0; - while (tria->n_active_cells() < 6000) + while (tria->n_active_cells() < 2000) { cout << "Refinement step " << refine_step - << ", using " << tria->n_active_cells() << " active cells." + << ", using " << tria->n_active_cells() << " active cells on " + << tria->n_levels() << " levels." << endl; cout << " Distributing dofs... "; dof->distribute_dofs (fe); @@ -303,6 +306,7 @@ void PoissonProblem::run (const unsigned int start_level, Solution sol; dVector l2_error_per_cell, linfty_error_per_cell, h1_error_per_cell; dVector estimated_error_per_cell; + dVector laplacian_per_cell; QGauss3 q; cout << " Calculating L2 error... "; @@ -323,7 +327,6 @@ void PoissonProblem::run (const unsigned int start_level, cout << " Estimating H1 error... "; KellyErrorEstimator ee; QSimpson eq; -// ee.estimate_error (*dof, eq, fe, boundary, KellyErrorEstimator::FunctionMap(), solution, @@ -331,15 +334,27 @@ void PoissonProblem::run (const unsigned int start_level, cout << estimated_error_per_cell.l2_norm() << endl; estimated_error.push_back (estimated_error_per_cell.l2_norm()); + laplacian_per_cell = estimated_error_per_cell; + DoFHandler::active_cell_iterator cell = dof->begin_active(), + endc = dof->end(); + for (unsigned int i=0; cell!=endc; ++cell, ++i) + laplacian_per_cell(i) /= (cell->diameter() * cell->diameter() / 24); + cout << " Computing second derivative maximum... " + << laplacian_per_cell.linfty_norm() + << endl; + laplacian.push_back (laplacian_per_cell.linfty_norm()); + dVector l2_error_per_dof, linfty_error_per_dof; dVector h1_error_per_dof, estimated_error_per_dof; + dVector laplacian_per_dof; dof->distribute_cell_to_dof_vector (l2_error_per_cell, l2_error_per_dof); dof->distribute_cell_to_dof_vector (linfty_error_per_cell, linfty_error_per_dof); dof->distribute_cell_to_dof_vector (h1_error_per_cell, h1_error_per_dof); -// dof->distribute_cell_to_dof_vector (estimated_error_per_cell, estimated_error_per_dof); + dof->distribute_cell_to_dof_vector (laplacian_per_cell, + laplacian_per_dof); DataOut out; @@ -347,8 +362,8 @@ void PoissonProblem::run (const unsigned int start_level, out.add_data_vector (l2_error_per_dof, "L2-Error"); out.add_data_vector (linfty_error_per_dof, "Linfty-Error"); out.add_data_vector (h1_error_per_dof, "H1-Error"); -// out.add_data_vector (estimated_error_per_dof, "Estimated Error"); + out.add_data_vector (laplacian_per_dof, "Second derivative pointwise"); // string filename = "gnuplot."; string filename = "ee."; switch (refine_mode) @@ -363,7 +378,8 @@ void PoissonProblem::run (const unsigned int start_level, filename += "estimated_error."; break; }; - filename += ('0'+start_level+refine_step); + filename += ('0'+(start_level+refine_step)/10); + filename += ('0'+(start_level+refine_step)%10); filename += ".inp"; //* cout << " Writing error plots to <" << filename << ">..." << endl; @@ -381,11 +397,11 @@ void PoissonProblem::run (const unsigned int start_level, tria->refine_global (1); break; case true_error: - tria->refine_fixed_number (h1_error_per_cell, 0.3); + tria->refine_fixed_fraction (h1_error_per_cell, 0.5); tria->execute_refinement (); break; case error_estimator: - tria->refine_fixed_number (estimated_error_per_cell, 0.3); + tria->refine_fixed_number (estimated_error_per_cell, 0.2); tria->execute_refinement (); break; }; @@ -415,11 +431,12 @@ void PoissonProblem::print_history (const RefineMode refine_mode) const { }; filename += "gnuplot"; - cout << endl << "Printing convergence history to" << filename << "..." + cout << endl << "Printing convergence history to <" << filename << ">..." << endl; ofstream out(filename.c_str()); out << "# n_dofs l2_error linfty_error " - << "h1_error estimated_error" + << "h1_error estimated_error " + << "laplacian" << endl; for (unsigned int i=0; i::print_history (const RefineMode refine_mode) const { << l2_error[i] << " " << linfty_error[i] << " " << h1_error[i] << " " - << estimated_error[i] + << estimated_error[i] << " " + << laplacian[i] << endl; double average_l2=0, -- 2.39.5