From 953541fd818b9602d245bcbb45bb292ebacfcf5f Mon Sep 17 00:00:00 2001 From: Oleg Rogozin Date: Wed, 12 Apr 2023 00:20:28 +0300 Subject: [PATCH] Fix some minor typos --- doc/doxygen/tutorial/tutorial.h.in | 4 +++- examples/step-12/doc/intro.dox | 2 +- examples/step-21/step-21.cc | 4 +--- examples/step-22/doc/intro.dox | 6 +++--- examples/step-31/doc/intro.dox | 2 +- examples/step-33/step-33.cc | 1 - examples/step-6/doc/intro.dox | 2 +- include/deal.II/algorithms/theta_timestepping.h | 6 +++--- include/deal.II/base/parameter_acceptor.h | 2 +- include/deal.II/grid/grid_out.h | 2 +- 10 files changed, 15 insertions(+), 16 deletions(-) diff --git a/doc/doxygen/tutorial/tutorial.h.in b/doc/doxygen/tutorial/tutorial.h.in index 76376d9b82..666b9d17a4 100644 --- a/doc/doxygen/tutorial/tutorial.h.in +++ b/doc/doxygen/tutorial/tutorial.h.in @@ -299,7 +299,8 @@ * * step-23 * Finally a "real" time dependent problem, the wave equation. - * Fractional time stepping (explicit, fully implicit and Crank-Nicholson + * Fractional time stepping (explicit, fully implicit and + * [Crank](https://en.wikipedia.org/wiki/John_Crank)-[Nicolson](https://en.wikipedia.org/wiki/Phyllis_Nicolson) * method). *
Keywords: MatrixCreator, VectorTools::project() * @@ -925,6 +926,7 @@ * * * step-12, + * step-12b, * step-21, * step-39, * step-46, diff --git a/examples/step-12/doc/intro.dox b/examples/step-12/doc/intro.dox index d15593e9c5..a55ebe281a 100644 --- a/examples/step-12/doc/intro.dox +++ b/examples/step-12/doc/intro.dox @@ -54,7 +54,7 @@ On each cell $T$, we multiply by a test function $v_h$ from the left and integra to get: @f[ \left( v_h, \nabla \cdot (\beta u_h) \right)_T -= -(\nabla v_h, \beta u_h) + \int_\Gamma v_h u_h \beta \cdot n += -(\nabla v_h, \beta u_h) + \int_{\partial T} v_h u_h \beta \cdot n @f] When summing this expression over all cells $T$, the boundary integral is done over all internal and external faces and as such there are three cases: diff --git a/examples/step-21/step-21.cc b/examples/step-21/step-21.cc index 8fadaf8b5f..07308b7232 100644 --- a/examples/step-21/step-21.cc +++ b/examples/step-21/step-21.cc @@ -615,10 +615,8 @@ namespace Step21 std::vector boundary_values(n_face_q_points); std::vector> k_inverse_values(n_q_points); - std::vector> old_solution_values(n_q_points, + std::vector> old_solution_values(n_q_points, Vector(dim + 2)); - std::vector>> old_solution_grads( - n_q_points, std::vector>(dim + 2)); const FEValuesExtractors::Vector velocities(0); const FEValuesExtractors::Scalar pressure(dim); diff --git a/examples/step-22/doc/intro.dox b/examples/step-22/doc/intro.dox index 0fdabb98fc..ec07c2bd89 100644 --- a/examples/step-22/doc/intro.dox +++ b/examples/step-22/doc/intro.dox @@ -857,11 +857,11 @@ This functions obviates, by the way, also the call to the

Performance optimizations

-The program developed below has seen a lot of TLC. We have run it over and -over under profiling tools (mainly valgrind's cachegrind and callgrind tools, as well as the KDE KCachegrind program for +href="http://kcachegrind.github.io/">KCachegrind program for visualization) to see where the bottlenecks are. This has paid off: through this effort, the program has become about four times as fast when considering the runtime of the refinement cycles zero through three, diff --git a/examples/step-31/doc/intro.dox b/examples/step-31/doc/intro.dox index 3b4c95cde8..cd3b7d74c6 100644 --- a/examples/step-31/doc/intro.dox +++ b/examples/step-31/doc/intro.dox @@ -509,7 +509,7 @@ by using the approximation $\frac 12 T^{n-1}+\frac 12 T^{n-2}$, which means that we calculate the nonlinear viscosity as a function of this intermediate temperature, $\nu_\alpha = \nu_\alpha\left(\frac 12 T^{n-1}+\frac 12 T^{n-2}\right)$. Note that this -evaluation of the residual is nothing else than a Crank-Nicholson scheme, +evaluation of the residual is nothing else than a Crank-Nicolson scheme, so we can be sure that now everything is alright. One might wonder whether it is a problem that the numerical viscosity now is not evaluated at time $n$ (as opposed to the rest of the equation). However, this offset diff --git a/examples/step-33/step-33.cc b/examples/step-33/step-33.cc index 5a28eb6aa3..f430c1c18c 100644 --- a/examples/step-33/step-33.cc +++ b/examples/step-33/step-33.cc @@ -2368,7 +2368,6 @@ namespace Step33 grid_in.read_ucd(input_file); } - dof_handler.clear(); dof_handler.distribute_dofs(fe); // Size all of the fields. diff --git a/examples/step-6/doc/intro.dox b/examples/step-6/doc/intro.dox index c3a17dba26..efc48d091e 100644 --- a/examples/step-6/doc/intro.dox +++ b/examples/step-6/doc/intro.dox @@ -101,7 +101,7 @@ that a cell can be only refined once more than its neighbors), but that we end up with these “hanging nodes” if we do this. -

Why adapatively refined meshes?

+

Why adaptively refined meshes?

Now that you have seen what these adaptively refined meshes look like, you should ask why we would want to do this. After all, we know from diff --git a/include/deal.II/algorithms/theta_timestepping.h b/include/deal.II/algorithms/theta_timestepping.h index fb3c441ab5..de02d56c44 100644 --- a/include/deal.II/algorithms/theta_timestepping.h +++ b/include/deal.II/algorithms/theta_timestepping.h @@ -54,16 +54,16 @@ namespace Algorithms * Application class performing the theta timestepping scheme. * * The theta scheme is an abstraction of implicit and explicit Euler - * schemes, the Crank-Nicholson scheme and linear combinations of those. The + * schemes, the Crank-Nicolson scheme and linear combinations of those. The * choice of the actual scheme is controlled by the parameter #theta as * follows. *
    *
  • #theta=0: explicit Euler scheme *
  • #theta=1: implicit Euler scheme - *
  • #theta=½: Crank-Nicholson scheme + *
  • #theta=½: Crank-Nicolson scheme *
* - * For fixed #theta, the Crank-Nicholson scheme is the only second order + * For fixed #theta, the Crank-Nicolson scheme is the only second order * scheme. Nevertheless, further stability may be achieved by choosing * #theta larger than ½, thereby introducing a first order error term. In * order to avoid a loss of convergence order, the adaptive theta scheme can diff --git a/include/deal.II/base/parameter_acceptor.h b/include/deal.II/base/parameter_acceptor.h index de965147be..f629debdba 100644 --- a/include/deal.II/base/parameter_acceptor.h +++ b/include/deal.II/base/parameter_acceptor.h @@ -177,7 +177,7 @@ DEAL_II_NAMESPACE_OPEN * , my_subclass("Forcing term") * {} * - * void MyClass::declare_parmeters(ParameterHandler &prm) + * void MyClass::declare_parameters(ParameterHandler &prm) * { * // many add_parameter(...); * } diff --git a/include/deal.II/grid/grid_out.h b/include/deal.II/grid/grid_out.h index 41bbb40519..4ba0d5e0d1 100644 --- a/include/deal.II/grid/grid_out.h +++ b/include/deal.II/grid/grid_out.h @@ -931,7 +931,7 @@ namespace GridOutFlags * if you know which format you want to have, or if you want the format to be * a runtime parameter, you can write * @code - * GridOut::OutputFormat grid_format = + * GridOut::OutputFormat output_format = * GridOut::parse_output_format(get_format_name_from_somewhere()); * std::ofstream output_file("some_filename" * + GridOut::default_suffix(output_format)); -- 2.39.5