From 9ebec14e01780940a354e9862d7f574cf961bd22 Mon Sep 17 00:00:00 2001 From: wolf Date: Mon, 29 Apr 2002 12:20:44 +0000 Subject: [PATCH] . git-svn-id: https://svn.dealii.org/trunk@5740 0785d39b-7218-0410-832d-ea1e28bc413d --- .../point_value/error-estimation.eps | 676 ++++++++++++++++ .../point_value/error-estimation.gif | Bin 0 -> 6796 bytes .../step-14.data/point_value/error.eps | 723 ++++++++++++++++++ .../step-14.data/point_value/error.gif | Bin 0 -> 7961 bytes .../step-14.data/results.html | 213 ++++++ 5 files changed, 1612 insertions(+) create mode 100644 deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/point_value/error-estimation.eps create mode 100644 deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/point_value/error-estimation.gif create mode 100644 deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/point_value/error.eps create mode 100644 deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/point_value/error.gif diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/point_value/error-estimation.eps b/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/point_value/error-estimation.eps new file mode 100644 index 0000000000..d7e3358c7e --- /dev/null +++ b/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/point_value/error-estimation.eps @@ -0,0 +1,676 @@ +%!PS-Adobe-2.0 EPSF-2.0 +%%Title: x.eps +%%Creator: gnuplot 3.7 patchlevel 1 +%%CreationDate: Mon Apr 29 09:33:11 2002 +%%DocumentFonts: (atend) +%%BoundingBox: 50 50 266 201 +%%Orientation: Portrait +%%EndComments +/gnudict 256 dict def +gnudict begin +/Color true def +/Solid false def +/gnulinewidth 5.000 def +/userlinewidth gnulinewidth def +/vshift -46 def +/dl {10 mul} def +/hpt_ 31.5 def +/vpt_ 31.5 def +/hpt hpt_ def +/vpt vpt_ def +/M {moveto} bind def +/L {lineto} bind def +/R {rmoveto} bind def +/V {rlineto} bind def +/vpt2 vpt 2 mul def +/hpt2 hpt 2 mul def +/Lshow { currentpoint stroke M + 0 vshift R show } def +/Rshow { currentpoint stroke M + dup stringwidth pop neg vshift R show } def +/Cshow { currentpoint stroke M + dup stringwidth pop -2 div vshift R show } def +/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def + /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def +/DL { Color {setrgbcolor Solid {pop []} if 0 setdash } + {pop pop pop Solid {pop []} if 0 setdash} ifelse } def +/BL { stroke userlinewidth 2 mul setlinewidth } def +/AL { stroke userlinewidth 2 div setlinewidth } def +/UL { dup gnulinewidth mul /userlinewidth exch def + 10 mul /udl exch def } def +/PL { stroke userlinewidth setlinewidth } def +/LTb { BL [] 0 0 0 DL } def +/LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def +/LT0 { PL [] 1 0 0 DL } def +/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def +/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def +/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def +/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def +/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def +/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def +/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def +/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def +/Pnt { stroke [] 0 setdash + gsave 1 setlinecap M 0 0 V stroke grestore } def +/Dia { stroke [] 0 setdash 2 copy vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V closepath stroke + Pnt } def +/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V + currentpoint stroke M + hpt neg vpt neg R hpt2 0 V stroke + } def +/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V closepath stroke + Pnt } def +/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M + hpt2 vpt2 neg V currentpoint stroke M + hpt2 neg 0 R hpt2 vpt2 V stroke } def +/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V closepath stroke + Pnt } def +/Star { 2 copy Pls Crs } def +/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V closepath fill } def +/TriUF { stroke [] 0 setdash vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V closepath fill } def +/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V closepath stroke + Pnt } def +/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V closepath fill} def +/DiaF { stroke [] 0 setdash vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V closepath fill } def +/Pent { stroke [] 0 setdash 2 copy gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + closepath stroke grestore Pnt } def +/PentF { stroke [] 0 setdash gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + closepath fill grestore } def +/Circle { stroke [] 0 setdash 2 copy + hpt 0 360 arc stroke Pnt } def +/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def +/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def +/C1 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 90 arc closepath fill + vpt 0 360 arc closepath } bind def +/C2 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 90 180 arc closepath fill + vpt 0 360 arc closepath } bind def +/C3 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 180 arc closepath fill + vpt 0 360 arc closepath } bind def +/C4 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 180 270 arc closepath fill + vpt 0 360 arc closepath } bind def +/C5 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 90 arc + 2 copy moveto + 2 copy vpt 180 270 arc closepath fill + vpt 0 360 arc } bind def +/C6 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 90 270 arc closepath fill + vpt 0 360 arc closepath } bind def +/C7 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 270 arc closepath fill + vpt 0 360 arc closepath } bind def +/C8 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 270 360 arc closepath fill + vpt 0 360 arc closepath } bind def +/C9 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 270 450 arc closepath fill + vpt 0 360 arc closepath } bind def +/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill + 2 copy moveto + 2 copy vpt 90 180 arc closepath fill + vpt 0 360 arc closepath } bind def +/C11 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 180 arc closepath fill + 2 copy moveto + 2 copy vpt 270 360 arc closepath fill + vpt 0 360 arc closepath } bind def +/C12 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 180 360 arc closepath fill + vpt 0 360 arc closepath } bind def +/C13 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 90 arc closepath fill + 2 copy moveto + 2 copy vpt 180 360 arc closepath fill + vpt 0 360 arc closepath } bind def +/C14 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 90 360 arc closepath fill + vpt 0 360 arc } bind def +/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill + vpt 0 360 arc closepath } bind def +/Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto + neg 0 rlineto closepath } bind def +/Square { dup Rec } bind def +/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def +/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def +/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def +/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def +/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def +/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def +/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill + exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def +/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def +/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill + 2 copy vpt Square fill + Bsquare } bind def +/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def +/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def +/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill + Bsquare } bind def +/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill + Bsquare } bind def +/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def +/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill + 2 copy vpt Square fill Bsquare } bind def +/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill + 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def +/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def +/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def +/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def +/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def +/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def +/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def +/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def +/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def +/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def +/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def +/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def +/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def +/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def +/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def +/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def +/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def +/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def +/DiaE { stroke [] 0 setdash vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V closepath stroke } def +/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V closepath stroke } def +/TriUE { stroke [] 0 setdash vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V closepath stroke } def +/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V closepath stroke } def +/PentE { stroke [] 0 setdash gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + closepath stroke grestore } def +/CircE { stroke [] 0 setdash + hpt 0 360 arc stroke } def +/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def +/DiaW { stroke [] 0 setdash vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V Opaque stroke } def +/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V Opaque stroke } def +/TriUW { stroke [] 0 setdash vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V Opaque stroke } def +/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V Opaque stroke } def +/PentW { stroke [] 0 setdash gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + Opaque stroke grestore } def +/CircW { stroke [] 0 setdash + hpt 0 360 arc Opaque stroke } def +/BoxFill { gsave Rec 1 setgray fill grestore } def +/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont +dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall +currentdict end definefont +/MFshow {{dup dup 0 get findfont exch 1 get scalefont setfont + [ currentpoint ] exch dup 2 get 0 exch rmoveto dup dup 5 get exch 4 get + {show} {stringwidth pop 0 rmoveto}ifelse dup 3 get + {2 get neg 0 exch rmoveto pop} {pop aload pop moveto}ifelse} forall} bind def +/MFwidth {0 exch {dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont + 5 get stringwidth pop add} + {pop} ifelse} forall} bind def +/MLshow { currentpoint stroke M + 0 exch R MFshow } bind def +/MRshow { currentpoint stroke M + exch dup MFwidth neg 3 -1 roll R MFshow } def +/MCshow { currentpoint stroke M + exch dup MFwidth -2 div 3 -1 roll R MFshow } def +end +%%EndProlog +gnudict begin +gsave +50 50 translate +0.050 0.050 scale +0 setgray +newpath +(Helvetica) findfont 140 scalefont setfont +1.000 UL +LTb +882 420 M +63 0 V +3137 0 R +-63 0 V + stroke +798 420 M +[ [(Helvetica) 140.0 0.0 true true (1e-06)] +] -46.7 MRshow +882 584 M +31 0 V +3169 0 R +-31 0 V +882 681 M +31 0 V +3169 0 R +-31 0 V +882 749 M +31 0 V +3169 0 R +-31 0 V +882 802 M +31 0 V +3169 0 R +-31 0 V +882 845 M +31 0 V +3169 0 R +-31 0 V +882 881 M +31 0 V +3169 0 R +-31 0 V +882 913 M +31 0 V +3169 0 R +-31 0 V +882 941 M +31 0 V +3169 0 R +-31 0 V +882 966 M +63 0 V +3137 0 R +-63 0 V + stroke +798 966 M +[ [(Helvetica) 140.0 0.0 true true (1e-05)] +] -46.7 MRshow +882 1130 M +31 0 V +3169 0 R +-31 0 V +882 1227 M +31 0 V +3169 0 R +-31 0 V +882 1295 M +31 0 V +3169 0 R +-31 0 V +882 1348 M +31 0 V +3169 0 R +-31 0 V +882 1391 M +31 0 V +3169 0 R +-31 0 V +882 1427 M +31 0 V +3169 0 R +-31 0 V +882 1459 M +31 0 V +3169 0 R +-31 0 V +882 1487 M +31 0 V +3169 0 R +-31 0 V +882 1512 M +63 0 V +3137 0 R +-63 0 V + stroke +798 1512 M +[ [(Helvetica) 140.0 0.0 true true (0.0001)] +] -46.7 MRshow +882 1676 M +31 0 V +3169 0 R +-31 0 V +882 1773 M +31 0 V +3169 0 R +-31 0 V +882 1841 M +31 0 V +3169 0 R +-31 0 V +882 1894 M +31 0 V +3169 0 R +-31 0 V +882 1937 M +31 0 V +3169 0 R +-31 0 V +882 1973 M +31 0 V +3169 0 R +-31 0 V +882 2005 M +31 0 V +3169 0 R +-31 0 V +882 2033 M +31 0 V +3169 0 R +-31 0 V +882 2058 M +63 0 V +3137 0 R +-63 0 V + stroke +798 2058 M +[ [(Helvetica) 140.0 0.0 true true (0.001)] +] -46.7 MRshow +882 2222 M +31 0 V +3169 0 R +-31 0 V +882 2319 M +31 0 V +3169 0 R +-31 0 V +882 2387 M +31 0 V +3169 0 R +-31 0 V +882 2440 M +31 0 V +3169 0 R +-31 0 V +882 2483 M +31 0 V +3169 0 R +-31 0 V +882 2519 M +31 0 V +3169 0 R +-31 0 V +882 2551 M +31 0 V +3169 0 R +-31 0 V +882 2579 M +31 0 V +3169 0 R +-31 0 V +882 2604 M +63 0 V +3137 0 R +-63 0 V + stroke +798 2604 M +[ [(Helvetica) 140.0 0.0 true true (0.01)] +] -46.7 MRshow +882 420 M +0 63 V +0 2121 R +0 -63 V + stroke +882 280 M +[ [(Helvetica) 140.0 0.0 true true (10)] +] -46.7 MCshow +1123 420 M +0 31 V +0 2153 R +0 -31 V +1264 420 M +0 31 V +0 2153 R +0 -31 V +1364 420 M +0 31 V +0 2153 R +0 -31 V +1441 420 M +0 31 V +0 2153 R +0 -31 V +1505 420 M +0 31 V +0 2153 R +0 -31 V +1558 420 M +0 31 V +0 2153 R +0 -31 V +1604 420 M +0 31 V +0 2153 R +0 -31 V +1645 420 M +0 31 V +0 2153 R +0 -31 V +1682 420 M +0 63 V +0 2121 R +0 -63 V + stroke +1682 280 M +[ [(Helvetica) 140.0 0.0 true true (100)] +] -46.7 MCshow +1923 420 M +0 31 V +0 2153 R +0 -31 V +2064 420 M +0 31 V +0 2153 R +0 -31 V +2164 420 M +0 31 V +0 2153 R +0 -31 V +2241 420 M +0 31 V +0 2153 R +0 -31 V +2305 420 M +0 31 V +0 2153 R +0 -31 V +2358 420 M +0 31 V +0 2153 R +0 -31 V +2404 420 M +0 31 V +0 2153 R +0 -31 V +2445 420 M +0 31 V +0 2153 R +0 -31 V +2482 420 M +0 63 V +0 2121 R +0 -63 V + stroke +2482 280 M +[ [(Helvetica) 140.0 0.0 true true (1000)] +] -46.7 MCshow +2723 420 M +0 31 V +0 2153 R +0 -31 V +2864 420 M +0 31 V +0 2153 R +0 -31 V +2964 420 M +0 31 V +0 2153 R +0 -31 V +3041 420 M +0 31 V +0 2153 R +0 -31 V +3105 420 M +0 31 V +0 2153 R +0 -31 V +3158 420 M +0 31 V +0 2153 R +0 -31 V +3204 420 M +0 31 V +0 2153 R +0 -31 V +3245 420 M +0 31 V +0 2153 R +0 -31 V +3282 420 M +0 63 V +0 2121 R +0 -63 V + stroke +3282 280 M +[ [(Helvetica) 140.0 0.0 true true (10000)] +] -46.7 MCshow +3523 420 M +0 31 V +0 2153 R +0 -31 V +3664 420 M +0 31 V +0 2153 R +0 -31 V +3764 420 M +0 31 V +0 2153 R +0 -31 V +3841 420 M +0 31 V +0 2153 R +0 -31 V +3905 420 M +0 31 V +0 2153 R +0 -31 V +3958 420 M +0 31 V +0 2153 R +0 -31 V +4004 420 M +0 31 V +0 2153 R +0 -31 V +4045 420 M +0 31 V +0 2153 R +0 -31 V +4082 420 M +0 63 V +0 2121 R +0 -63 V + stroke +4082 280 M +[ [(Helvetica) 140.0 0.0 true true (100000)] +] -46.7 MCshow +1.000 UL +LTb +882 420 M +3200 0 V +0 2184 V +-3200 0 V +882 420 L + stroke +140 1512 M +currentpoint gsave translate 90 rotate 0 0 moveto +[ [(Helvetica) 140.0 0.0 true true (Error)] +] -46.7 MCshow +grestore +2482 70 M +[ [(Helvetica) 140.0 0.0 true true (Number of degrees of freedom)] +] -46.7 MCshow +2482 2814 M +[ [(Helvetica) 140.0 0.0 true true (Errors)] +] -46.7 MCshow +1.000 UP +1.000 UL +LT0 +3431 2471 M +[ [(Helvetica) 140.0 0.0 true true (Error in computed value)] +] -46.7 MRshow +3515 2471 M +399 0 V +1568 2062 M +-25 -13 V +230 -162 V +299 -154 V +295 -275 V +298 -182 V +304 -202 V +3250 867 L +3561 664 L +1568 2062 Pls +1543 2049 Pls +1773 1887 Pls +2072 1733 Pls +2367 1458 Pls +2665 1276 Pls +2969 1074 Pls +3250 867 Pls +3561 664 Pls +3714 2471 Pls +1.000 UP +1.000 UL +LT1 +3431 2331 M +[ [(Helvetica) 140.0 0.0 true true (Estimated error)] +] -46.7 MRshow +3515 2331 M +399 0 V +1568 1974 M +-25 56 V +230 -159 V +299 -150 V +295 -277 V +298 -182 V +304 -201 V +3250 854 L +1568 1974 Crs +1543 2030 Crs +1773 1871 Crs +2072 1721 Crs +2367 1444 Crs +2665 1262 Crs +2969 1061 Crs +3250 854 Crs +3714 2331 Crs +stroke +grestore +end +showpage diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/point_value/error-estimation.gif b/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/point_value/error-estimation.gif new file mode 100644 index 0000000000000000000000000000000000000000..8e0c389a9349ea891aa8844c519b9dc3a3f675fe GIT binary patch literal 6796 zcmd5<_ct6|*S$m-HBo{gNTQ7%A&4$S_v9g>6NKo!GrH)#_f7~#^lr51B8gxyI?)DE zqK%j@@B4j!#CLwWXRWi&K6~$b?^;JmMNv%DEC9b7?;QL$uE7NW7uOdDy+AYx5E1}c zSpbIv1_nS$31Bc_Wd)#60D*u|7ywov2nq-xU;=<_00;n({Z9{90Bist2LSRf06_rI z{yhO;#AvYEY;zZo%K}JY3MdN$0{j5r0iX>BbISmS14v{w2wDI(I6#gB5IkvoQ8z&N z2*3z%RsaVDI0(Rjzo5|nv!hi9Q z5bzX`^_T(zCjcWGuv$eyaX1JP`5XXz00;rN4cH90wps z0N8~=|J?s3ya2d};vL0<+m8TH*Z^55AbhxC{BXy$T zef(`gKm_?a8-9Q?4&MRSO-6`^26`p#Xxcd(8xGhLfCT`KV4&IxkV8Y^7_cz^f#OA{ zSPBs#0Yp|-9d&on-Vq0dBLChMW&7U_^EA-Ee*C|Vza9bbpSJ)YH-E|BSN>Gk8w#Q3 zHX8m^)E{w|RW(<+uK05dy^t+>xUOU<;emYgeU>7XePDh z>bVB%sgK5E%{2=x&g-LjYAuMx4)2rQ#j%#!Wn|DTQfBqmPpkcr)I28Rt##`|iL7e* z>TUI#W0^vBOXF<~Ta$(IG0Yn6?y8{TRTZIWdy^fq>Mb%~ql15UzSV8vT}?;JVN=V! zB?{@>7TLKWeWI87S1l)7f*Gv5`S6}&)Ib{J5JgwVc?v4$Mu-y@PFV-} zTdn<|`zBG!|LkmeZ~2Yj&DGV(oD!4I$&uAcF!`p^gCMdeku0tdMVOgK-)-w6xm)-Z z^I`XyD++z+__s}i36fE(QD6O)A4bxbXBda>W<{>Wc3loFgz`N)U$GTF%PbD$AtYW4 ze?AB+Nl@mf+(=dz+1W_>SCMNoRa?hqGfnSZs$v)p+7-O#k+s@?CPli2@)uj!9SY^}nb zmJWfwLM^P5GUWo}rvY+OeWxKNOCv<|C9(BUpv&#Oqn?ZBkmX*+q0V3JYd;yEjElUy z|7oPagiLGj!K+-M;jF9cq~Wb(^+%JJ_}RyCVcgN&%?geLr^8Fx5XXu8NJ+{WVu11;_vzOd6kss6hCs)eaMS?f$zpxHgvjW*$D^r)(fFB{{6#m@^_1F zjF7b0O4&3ydOiL`qfI9{Fx|%>&TYDFE5oYE$Ev{Tb^CTvsH4wDWx^GDC%X5*H?BrN zMBD;@1A#rjFHFT6Al+!Lry?Rev2Qy$5B(0c$YqjFpmK*ZN7*A3nWwWtFDcJxU7Wo3 z>q1#F&;64o6ECTX-lUv8(GSeT24vyM&VFh1?a={-_ z-+S_cq4;hzgHbWH0AzsA;9Imh+Zx@;>}LiMmk6U%W1<)$hKsb9QP%faDMvCBSqAH3 zHH9HeQ_Au?`;@U-0}oh;Y!r##2_|}{zLifM9##}TPU0zzWF!_E>3aMm-fEx_LbM}w zaOn~jg;~EZ7o{jsew4!NZbp+atg>&Z6(?L-YHE>{p%H!@L)*B?^BbmUbW<1I&Bo61 zdb?k<{CoHlqav;sTmvbm_3VuV>cWTSYU&KHGVWt61T@>!bZnpGn6R;MpG1zk=2Im} zXtSu~>nq&pu60hWe8=Mxr6zZvm3Vq{%_03lWzw-YCAWoO?b%VAx>I*p-b(O?pETT1 zA42K`6xvF-)&RjQW+?M!~Ovp0H1)OZEkrK7J{XX;!$v2w+hr`%=W z;&*Kjd62?&GX*JwN<0R5-mSNZ41lAmY&*hIx8eX4@+WV=2E#4>UxzRj;9U zSig!l*Ru-p$!puuf5Yc(sCa#&YK)OJ2OhAZ>wEk9}woSb47Fpi>ay&C*p2{8tk|@r9qmJdrTT39Vbi2As4;)Gfv)`MtAXL==!;SI)@uxo86T_waiVp zc)5(fT~n>^O0}p+*WNS6t?Bm9-m8uBxNj2nSZ`2p=FnAwR6p~9=M&w4@2+X+6{sP7 z8;7HFiVbFiTFIw>w8`a0nF5o{tMqQ*Yt|EgF8BsXN9MS@$Vuk;xD`xP{|lpv6E;Ya zUQ8xpSna?y^Yyi*BqMa(oc~w!Ys{wdxy}T0k~2{W=>jL+TzgFOX|5N>oSiOfP}0*q z$V-w|zUA{YlItj$U2=(B{;DH7|96ZW-vaSM_Dnb7skW)qv(E34C|kMaI>r+FMq$6X z)pg;f$v?xn><>(ebtV=j$Z+8^<3Pe}x$cb+8>>lQ4fRGdec;gd?Nou>Xy zmrUAIKDtT}^{mt)UNka&CNUpZd{!ImZ)sjY)4UdsY@6!BK)NNC=HH2B&M9+OY#IaZ z?em_YEnaRr3Dk0a$uD*Gqpp7U^*65GcBCf9*TwMhY|fz1dtXj-=u{UUp82S>by=PU zM4PI;oc+-{#c5IN;pdOFVa z=IuD$%G=Nz+_lIp>GTL8{o_yyEJC5R{>x#2O7U{4AE{-}Yubt{qB!hCD+}xw?y&<_ z8n-%&^j+REBMJ{d&jzyg2B-%IS<(iQ=>-v5i+FnYYYM*IIS-OK3(Rr}R4Ou{unyjM z4##rPcBN@Edo$pPNpV`6c5GUNX@}e$HZeUiCxyxKD^rm`Jh-f>{&<-4>4lo~o6uX+ zGHr*NQHNy|1siGxD-7SKYSn!@!pRp)EFXb z0SPx#ey`X{TQMY=y%nl#E%BftJfKOU!YW+FE3~x!{h_Fz10>u#)6=&#qCqr_{~|)k zEb``2oqw2haHJkhoU&!vme#wANO`%a`!4U3%flwEqU3s`pbtZ%ts_uFP^ayC60Lz= z+97511}~kVw?#-m=~0{|%eOG4-j1HqsSfF`bPJJ!1RlFh{rawO&` zGP=V@~mCf2B-Pk3_abf`x!LktydbCe?%q&-h|5KO&ilK?|8Q|NOcJmQ`~X81JOr*pKj7`EBlM^U+O(b(#9Iya|0 z^-5RpaMZQ&$@hBTv?K06^7LKQgJ3Rhi@#7rndX;?mPGD>(1#JkX$f2+NzWd7>~I(p zd%d4~m^H#-!Nu?U>^;?!tneq9+sg1?rT>z#2fIbll<#nQMP)2LcT&?8ZLtZfCC-U! z;}Z3T@49-tntjk$nNu=CS7*biX+y;=zg4aY#wh@pCtnG{*sk9e^V)Hk-=7= z!ZG6$gd*nZ;1opo9bR@GYL@g8k6VogT`jn`e9QtVD+@n~>Y1=uv>; zZZYXe!N18#^YTgNk4m4;M>RrAU>l_j;$=?ZWryDq87DgT=$zGM|%;e?G z>4xeRbDj&9&}(ZRCtaX8TsOp33#+F4k@jxp5OO^ogeQ+>Po` zxtGlm^;YXc*kw8W5Ifu;&w-)Ri{yjhb3K!JwnST@Xx|E$R)z7}2kvYyG0qBl299zD zt}558x8EzJ@hfYy%gwYZP3tSx+DxY++1p2p%txW6yH&m7_Qh9hma5J}4ALJzmUr#4 z)r`_1cWL{%*{7~T>_e(vyVf`gan_Hrplu&}9M>FDB1DBa=daj)`U-qjO$@eA{)N@U22@7;z@o`aZ06KQcQBjUJjoa=vZFep}Lzry&w2wgE&R;&m6f>*ocO&ubs-p&eEI2`z+yl!8q zR(>#KdY&0{=!oTToZAMuz08UD z)m%;ylRV{FFPYO6RNWKhASaC|lyJ4-N~x@BHy86N)2%ZWcdF`eg>O5w#B`*M*{4+bB4gP2 za#~B8I;yMu19F0UNoh)BpqayU1&keTq7D3e4TCo^o hv6z^JJ+>}Ji`g-cEFS0x zqy)jhulS?$9Mxt<;^QOkFaI%fm#Ax_qwAdWseef~LbFRL%U&tE{6jKw(T;siE%wIl zVY5n+O9hhPvWvp2r%=^{ge-&%!>~RUeK+=v2LDSSK#pZe7h`Ve7hTHzYyonv+ZI*y+ZSl`tPO>|8O*td~5u?Nc4wo7QQ- zM;kkj9Wg~!Oj!4%N{%f|rFLP)CQpXGijB@F4=E^*uh5Ov5087=_iOErEAWgn7LBW` zy#Ilr{K{L_nmb`RK8C_fu$WCeg^sVqQZD2U4#KImc-c3qsrK#pzhfqLFy3*oPA9xy z4#}!7dE2&(sD6(p{JfrIs+;VYpCBNo#M@7X1cZ@xRc81`G3T=@B&jW3XqX%HrrDA+|M``e4jf9j5l zin!EQNj@qeht{V|NpeyOoLy5&f4=@p`a`W|LS_HQ%YFM7QpvCW7_7pl|L{y3kblWW zPaEbLH;;peXQT{_{!{X?IWM{v)y68W-b+4pj|$$WsMU@lS;nUjHN3S1jbB}qau1gm8RJ}{;9uM9TABW{^x$Si zUVeo|Xq6Hnv@O^B&2?QYe_gzLU2qQzR}t%1lw!G>PtyqeZ=NA&*p{Qhc^^8&$xX*)y!DNKOm6bFzx*5%)I3) zz2$DQ-J8QR*uZ;6O2T>a`eVvh6ecB$#5`=^!SO!ab^cJEj;lySQz; z^gRJll4de4!4S|oH$!K=EH=MW6hHo^WvB4VPKo2LJ=e1y;&1la9yN%@>6YRlx;?bS zp5UWLXBvC0H9H;od+jCyhBtdzj*CJR;z;tRCh?&(6nR0udz6Sm-2?QE==#Ot=4ltE zBn@+aWPc&+(*z=K@_^bfexHhYQ%`!^$7}z^b&+Bx;}UblveZEY^Zq^V&5itu(fs{h z#J-)y{`S(rb^gH=)#0%8;o%p|*}=gL;>#-kKK7qq)7=Mnlf`5ShYQ^+^jrI<6p?oV z52!; zV3;A{8Pmff3`RJG#7A zp~si-?yKtMD+KQ96AQLp2HW@s+Z>2(Ex@)Tv7O79!Tv7adApGfY~KiT=Gn!7HW z*ROHksLeK%A03s!rJC*Yt-i+Z3?bhWLUdlX;Pz|nqswai`}_LG7Nco=fxMV=Uh~F; z3D+Bw+>`yc+2MDP9%G+utOhHB(>Wv!8g`oyzr#8B`~)1(aHThd%tjZ^YoA}t1Q=tR zttJ}|L*8|F3SqV@al7v*n1nr+zPCv%J2JM6e4inA6U{gI<9oI*@J=Vd*w=AMS7XwN zsiWi1ZpSpq<|N0r_LzSj57@8O%G_>H8V?-rgF>bH>mwNs9Nc}{U?NOd`ya2(CfzqDVMn@V5$w%+ pZ{J&<=vii1HtSn45uEDVd?;%+u&eznV(8Ga*=*<(MGgTH{{z3@^EUth literal 0 HcmV?d00001 diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/point_value/error.eps b/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/point_value/error.eps new file mode 100644 index 0000000000..a2e5cd4d4a --- /dev/null +++ b/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/point_value/error.eps @@ -0,0 +1,723 @@ +%!PS-Adobe-2.0 EPSF-2.0 +%%Title: x.eps +%%Creator: gnuplot 3.7 patchlevel 1 +%%CreationDate: Mon Apr 29 09:24:19 2002 +%%DocumentFonts: (atend) +%%BoundingBox: 50 50 266 201 +%%Orientation: Portrait +%%EndComments +/gnudict 256 dict def +gnudict begin +/Color true def +/Solid false def +/gnulinewidth 5.000 def +/userlinewidth gnulinewidth def +/vshift -46 def +/dl {10 mul} def +/hpt_ 31.5 def +/vpt_ 31.5 def +/hpt hpt_ def +/vpt vpt_ def +/M {moveto} bind def +/L {lineto} bind def +/R {rmoveto} bind def +/V {rlineto} bind def +/vpt2 vpt 2 mul def +/hpt2 hpt 2 mul def +/Lshow { currentpoint stroke M + 0 vshift R show } def +/Rshow { currentpoint stroke M + dup stringwidth pop neg vshift R show } def +/Cshow { currentpoint stroke M + dup stringwidth pop -2 div vshift R show } def +/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def + /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def +/DL { Color {setrgbcolor Solid {pop []} if 0 setdash } + {pop pop pop Solid {pop []} if 0 setdash} ifelse } def +/BL { stroke userlinewidth 2 mul setlinewidth } def +/AL { stroke userlinewidth 2 div setlinewidth } def +/UL { dup gnulinewidth mul /userlinewidth exch def + 10 mul /udl exch def } def +/PL { stroke userlinewidth setlinewidth } def +/LTb { BL [] 0 0 0 DL } def +/LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def +/LT0 { PL [] 1 0 0 DL } def +/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def +/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def +/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def +/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def +/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def +/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def +/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def +/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def +/Pnt { stroke [] 0 setdash + gsave 1 setlinecap M 0 0 V stroke grestore } def +/Dia { stroke [] 0 setdash 2 copy vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V closepath stroke + Pnt } def +/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V + currentpoint stroke M + hpt neg vpt neg R hpt2 0 V stroke + } def +/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V closepath stroke + Pnt } def +/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M + hpt2 vpt2 neg V currentpoint stroke M + hpt2 neg 0 R hpt2 vpt2 V stroke } def +/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V closepath stroke + Pnt } def +/Star { 2 copy Pls Crs } def +/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V closepath fill } def +/TriUF { stroke [] 0 setdash vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V closepath fill } def +/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V closepath stroke + Pnt } def +/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V closepath fill} def +/DiaF { stroke [] 0 setdash vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V closepath fill } def +/Pent { stroke [] 0 setdash 2 copy gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + closepath stroke grestore Pnt } def +/PentF { stroke [] 0 setdash gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + closepath fill grestore } def +/Circle { stroke [] 0 setdash 2 copy + hpt 0 360 arc stroke Pnt } def +/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def +/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def +/C1 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 90 arc closepath fill + vpt 0 360 arc closepath } bind def +/C2 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 90 180 arc closepath fill + vpt 0 360 arc closepath } bind def +/C3 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 180 arc closepath fill + vpt 0 360 arc closepath } bind def +/C4 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 180 270 arc closepath fill + vpt 0 360 arc closepath } bind def +/C5 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 90 arc + 2 copy moveto + 2 copy vpt 180 270 arc closepath fill + vpt 0 360 arc } bind def +/C6 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 90 270 arc closepath fill + vpt 0 360 arc closepath } bind def +/C7 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 270 arc closepath fill + vpt 0 360 arc closepath } bind def +/C8 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 270 360 arc closepath fill + vpt 0 360 arc closepath } bind def +/C9 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 270 450 arc closepath fill + vpt 0 360 arc closepath } bind def +/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill + 2 copy moveto + 2 copy vpt 90 180 arc closepath fill + vpt 0 360 arc closepath } bind def +/C11 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 180 arc closepath fill + 2 copy moveto + 2 copy vpt 270 360 arc closepath fill + vpt 0 360 arc closepath } bind def +/C12 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 180 360 arc closepath fill + vpt 0 360 arc closepath } bind def +/C13 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 90 arc closepath fill + 2 copy moveto + 2 copy vpt 180 360 arc closepath fill + vpt 0 360 arc closepath } bind def +/C14 { BL [] 0 setdash 2 copy moveto + 2 copy vpt 90 360 arc closepath fill + vpt 0 360 arc } bind def +/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill + vpt 0 360 arc closepath } bind def +/Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto + neg 0 rlineto closepath } bind def +/Square { dup Rec } bind def +/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def +/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def +/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def +/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def +/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def +/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def +/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill + exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def +/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def +/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill + 2 copy vpt Square fill + Bsquare } bind def +/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def +/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def +/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill + Bsquare } bind def +/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill + Bsquare } bind def +/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def +/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill + 2 copy vpt Square fill Bsquare } bind def +/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill + 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def +/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def +/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def +/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def +/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def +/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def +/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def +/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def +/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def +/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def +/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def +/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def +/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def +/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def +/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def +/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def +/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def +/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def +/DiaE { stroke [] 0 setdash vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V closepath stroke } def +/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V closepath stroke } def +/TriUE { stroke [] 0 setdash vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V closepath stroke } def +/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V closepath stroke } def +/PentE { stroke [] 0 setdash gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + closepath stroke grestore } def +/CircE { stroke [] 0 setdash + hpt 0 360 arc stroke } def +/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def +/DiaW { stroke [] 0 setdash vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V Opaque stroke } def +/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V Opaque stroke } def +/TriUW { stroke [] 0 setdash vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V Opaque stroke } def +/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V Opaque stroke } def +/PentW { stroke [] 0 setdash gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + Opaque stroke grestore } def +/CircW { stroke [] 0 setdash + hpt 0 360 arc Opaque stroke } def +/BoxFill { gsave Rec 1 setgray fill grestore } def +/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont +dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall +currentdict end definefont +/MFshow {{dup dup 0 get findfont exch 1 get scalefont setfont + [ currentpoint ] exch dup 2 get 0 exch rmoveto dup dup 5 get exch 4 get + {show} {stringwidth pop 0 rmoveto}ifelse dup 3 get + {2 get neg 0 exch rmoveto pop} {pop aload pop moveto}ifelse} forall} bind def +/MFwidth {0 exch {dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont + 5 get stringwidth pop add} + {pop} ifelse} forall} bind def +/MLshow { currentpoint stroke M + 0 exch R MFshow } bind def +/MRshow { currentpoint stroke M + exch dup MFwidth neg 3 -1 roll R MFshow } def +/MCshow { currentpoint stroke M + exch dup MFwidth -2 div 3 -1 roll R MFshow } def +end +%%EndProlog +gnudict begin +gsave +50 50 translate +0.050 0.050 scale +0 setgray +newpath +(Helvetica) findfont 140 scalefont setfont +1.000 UL +LTb +882 420 M +63 0 V +3137 0 R +-63 0 V + stroke +798 420 M +[ [(Helvetica) 140.0 0.0 true true (1e-07)] +] -46.7 MRshow +882 551 M +31 0 V +3169 0 R +-31 0 V +882 725 M +31 0 V +3169 0 R +-31 0 V +882 814 M +31 0 V +3169 0 R +-31 0 V +882 857 M +63 0 V +3137 0 R +-63 0 V + stroke +798 857 M +[ [(Helvetica) 140.0 0.0 true true (1e-06)] +] -46.7 MRshow +882 988 M +31 0 V +3169 0 R +-31 0 V +882 1162 M +31 0 V +3169 0 R +-31 0 V +882 1251 M +31 0 V +3169 0 R +-31 0 V +882 1294 M +63 0 V +3137 0 R +-63 0 V + stroke +798 1294 M +[ [(Helvetica) 140.0 0.0 true true (1e-05)] +] -46.7 MRshow +882 1425 M +31 0 V +3169 0 R +-31 0 V +882 1599 M +31 0 V +3169 0 R +-31 0 V +882 1688 M +31 0 V +3169 0 R +-31 0 V +882 1730 M +63 0 V +3137 0 R +-63 0 V + stroke +798 1730 M +[ [(Helvetica) 140.0 0.0 true true (0.0001)] +] -46.7 MRshow +882 1862 M +31 0 V +3169 0 R +-31 0 V +882 2036 M +31 0 V +3169 0 R +-31 0 V +882 2125 M +31 0 V +3169 0 R +-31 0 V +882 2167 M +63 0 V +3137 0 R +-63 0 V + stroke +798 2167 M +[ [(Helvetica) 140.0 0.0 true true (0.001)] +] -46.7 MRshow +882 2299 M +31 0 V +3169 0 R +-31 0 V +882 2473 M +31 0 V +3169 0 R +-31 0 V +882 2562 M +31 0 V +3169 0 R +-31 0 V +882 2604 M +63 0 V +3137 0 R +-63 0 V + stroke +798 2604 M +[ [(Helvetica) 140.0 0.0 true true (0.01)] +] -46.7 MRshow +882 420 M +0 63 V +0 2121 R +0 -63 V + stroke +882 280 M +[ [(Helvetica) 140.0 0.0 true true (10)] +] -46.7 MCshow +1123 420 M +0 31 V +0 2153 R +0 -31 V +1264 420 M +0 31 V +0 2153 R +0 -31 V +1364 420 M +0 31 V +0 2153 R +0 -31 V +1441 420 M +0 31 V +0 2153 R +0 -31 V +1505 420 M +0 31 V +0 2153 R +0 -31 V +1558 420 M +0 31 V +0 2153 R +0 -31 V +1604 420 M +0 31 V +0 2153 R +0 -31 V +1645 420 M +0 31 V +0 2153 R +0 -31 V +1682 420 M +0 63 V +0 2121 R +0 -63 V + stroke +1682 280 M +[ [(Helvetica) 140.0 0.0 true true (100)] +] -46.7 MCshow +1923 420 M +0 31 V +0 2153 R +0 -31 V +2064 420 M +0 31 V +0 2153 R +0 -31 V +2164 420 M +0 31 V +0 2153 R +0 -31 V +2241 420 M +0 31 V +0 2153 R +0 -31 V +2305 420 M +0 31 V +0 2153 R +0 -31 V +2358 420 M +0 31 V +0 2153 R +0 -31 V +2404 420 M +0 31 V +0 2153 R +0 -31 V +2445 420 M +0 31 V +0 2153 R +0 -31 V +2482 420 M +0 63 V +0 2121 R +0 -63 V + stroke +2482 280 M +[ [(Helvetica) 140.0 0.0 true true (1000)] +] -46.7 MCshow +2723 420 M +0 31 V +0 2153 R +0 -31 V +2864 420 M +0 31 V +0 2153 R +0 -31 V +2964 420 M +0 31 V +0 2153 R +0 -31 V +3041 420 M +0 31 V +0 2153 R +0 -31 V +3105 420 M +0 31 V +0 2153 R +0 -31 V +3158 420 M +0 31 V +0 2153 R +0 -31 V +3204 420 M +0 31 V +0 2153 R +0 -31 V +3245 420 M +0 31 V +0 2153 R +0 -31 V +3282 420 M +0 63 V +0 2121 R +0 -63 V + stroke +3282 280 M +[ [(Helvetica) 140.0 0.0 true true (10000)] +] -46.7 MCshow +3523 420 M +0 31 V +0 2153 R +0 -31 V +3664 420 M +0 31 V +0 2153 R +0 -31 V +3764 420 M +0 31 V +0 2153 R +0 -31 V +3841 420 M +0 31 V +0 2153 R +0 -31 V +3905 420 M +0 31 V +0 2153 R +0 -31 V +3958 420 M +0 31 V +0 2153 R +0 -31 V +4004 420 M +0 31 V +0 2153 R +0 -31 V +4045 420 M +0 31 V +0 2153 R +0 -31 V +4082 420 M +0 63 V +0 2121 R +0 -63 V + stroke +4082 280 M +[ [(Helvetica) 140.0 0.0 true true (100000)] +] -46.7 MCshow +1.000 UL +LTb +882 420 M +3200 0 V +0 2184 V +-3200 0 V +882 420 L + stroke +140 1512 M +currentpoint gsave translate 90 rotate 0 0 moveto +[ [(Helvetica) 140.0 0.0 true true (Error)] +] -46.7 MCshow +grestore +2482 70 M +[ [(Helvetica) 140.0 0.0 true true (Number of degrees of freedom)] +] -46.7 MCshow +2482 2814 M +[ [(Helvetica) 140.0 0.0 true true (Errors)] +] -46.7 MCshow +1.000 UP +1.000 UL +LT0 +3431 2471 M +[ [(Helvetica) 140.0 0.0 true true (Error in computed value)] +] -46.7 MRshow +3515 2471 M +399 0 V +1568 2170 M +-25 -10 V +230 -130 V +299 -123 V +295 -219 V +298 -147 V +304 -161 V +281 -165 V +311 -163 V +1568 2170 Pls +1543 2160 Pls +1773 2030 Pls +2072 1907 Pls +2367 1688 Pls +2665 1541 Pls +2969 1380 Pls +3250 1215 Pls +3561 1052 Pls +3714 2471 Pls +1.000 UP +1.000 UL +LT1 +3431 2331 M +[ [(Helvetica) 140.0 0.0 true true (Error in computed value+estimated error)] +] -46.7 MRshow +3515 2331 M +399 0 V +1568 1948 M +-25 -271 V +230 -170 V +299 -169 V +295 -180 V +2665 998 L +2969 827 L +3250 665 L +1568 1948 Crs +1543 1677 Crs +1773 1507 Crs +2072 1338 Crs +2367 1158 Crs +2665 998 Crs +2969 827 Crs +3250 665 Crs +3714 2331 Crs +1.000 UL +LT2 +3431 2191 M +[ [(Helvetica) 140.0 0.0 true true (O\(1/N\))] +] -46.7 MRshow +3515 2191 M +399 0 V +1543 1980 M +20 -11 V +21 -11 V +20 -11 V +20 -11 V +21 -11 V +20 -12 V +21 -11 V +20 -11 V +20 -11 V +21 -11 V +20 -11 V +20 -11 V +21 -11 V +20 -12 V +21 -11 V +20 -11 V +20 -11 V +21 -11 V +20 -11 V +21 -11 V +20 -12 V +20 -11 V +21 -11 V +20 -11 V +20 -11 V +21 -11 V +20 -11 V +21 -11 V +20 -12 V +20 -11 V +21 -11 V +20 -11 V +20 -11 V +21 -11 V +20 -11 V +21 -11 V +20 -12 V +20 -11 V +21 -11 V +20 -11 V +21 -11 V +20 -11 V +20 -11 V +21 -11 V +20 -12 V +20 -11 V +21 -11 V +20 -11 V +21 -11 V +20 -11 V +20 -11 V +21 -11 V +20 -12 V +20 -11 V +21 -11 V +20 -11 V +21 -11 V +20 -11 V +20 -11 V +21 -12 V +20 -11 V +21 -11 V +20 -11 V +20 -11 V +21 -11 V +20 -11 V +20 -11 V +21 -12 V +20 -11 V +21 -11 V +20 -11 V +20 -11 V +21 -11 V +20 -11 V +21 -11 V +20 -12 V +20 -11 V +21 -11 V +20 -11 V +20 -11 V +21 -11 V +20 -11 V +21 -11 V +20 -12 V +20 -11 V +21 -11 V +20 -11 V +20 -11 V +21 -11 V +20 -11 V +21 -12 V +20 -11 V +20 -11 V +21 -11 V +20 -11 V +21 -11 V +20 -11 V +20 -11 V +21 -12 V +stroke +grestore +end +showpage diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/point_value/error.gif b/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/point_value/error.gif new file mode 100644 index 0000000000000000000000000000000000000000..d4c0249fe478438c6328dab7f8ea20214b0ac1a7 GIT binary patch literal 7961 zcmd6r^;gtUx5mGuL#fmZLn+-T-6fq$Nl166NJzsV-Q6JF-7wNEBFzxe4H8PvT;KcN zKjQA6&ROfM{p|gD&ROfMEw3miC}8>-y<s_;1_*55Nro+&tU}Bmmf$fTSeg>kE*R z1B8SCGc#aq4M3p)2n2*M1AsLU2nDb~z$5@<0stleNd6~>8vxh>0097i-T^=$0D%9k z0KkAkf1}0rIY1x@fbx@o;!xlfCjg)UfR-Ai}sEj&?E$CaIvrN z0IVkfGsZu(|7jFZ&<7lC0Vu&g;sz=hD`-I2F|dCNJb3~Dz5qZD0EGX6j`k}UD6$1e z2tH#zpgS!BP*isffR^&VmN28xtp8Pm`X-9Kg7`0HU;tNZ<;fBXgn~=LM;3ta z06<6p2Slk*m){!#B4#xhsVnIJ@|;d7TcN&iFp7-FZe^tY>u}sl=}1b&hN96VX3YwN z(T3vjwAbci*@}%NlUai9hbyCvrBiv5A-GgZO=Z(x6_QvD$C}D#O5c4|%28^rn5)!n zv|Al(u3V@!>5rsRZmC*ow3(?e9B-*cw7P7K??G4QBW+Uhp? z!-?69Cfe$^hU4j!b5+_KcE;0r?AIpR8~3L2MKH)zJ9qpYUr(ui$M3w}iq!)4&lGU|*^$I{W=l!qvWXeph%^+vx!PH5oXU=U5bQn0$U3NJlp6vI0fx7j)zQ$rUk-K_qT@QNlU0@{;pMU>d z(8f7affVvYCo_c1N`WR2B)3@b<$3CGK^Q$Y+2&_#e+9!Yzf$%KBW|VAHUs)uY?h-0 z`$lr3shzxN;s|rox8h~Mw%Z8`jOE*jD*OlAN$=!Xc9ON;+wP?3T9xml8hkp~Nizv! z*-f`dwcX9IDJkF0bZ9x)&2kxHDK!<~)+&v2-_@J<=;mNHi}JxSO6Q4hi?@7js=RhO+S#jC*Z*r>ctbcEt* z3vpz}nf#ySsA_jgwaP+&j1c9z{s*P1*Ml$TlpVvbZ1EjBelTXg>O_+^sF!*1LX@_3 zZK%slh6B=d0O#RGMG2^l}d+ZwI%h z!&N`5gR;3v??ue?EcVv8M>F2DoRj%of4|Gl6wXy}p2_-BdEL9b;=jmzhqEOCUH|Wo zbYmeBk=JW_G(9PsQK(1lUxh-P;H?N{YVc0V*Rb}YREf3ry^oGY>HF^!au4>5GW5l`aYZidEy_$P~d7~%wj1tW_?ZlrjZsBy~`g^BV-`iPVxv6nWQR5i| zshG)vM6#bOf`>}~kB7%p+6`X9i-cQV4!Ge_W&PXqn;wi8@H zuzDMW6dA#kwSkkS#s_lDzQiSHlO*c-5zLKGgEyxm6-@FPhGd$4sUq4&aZNA;6MZm! z>NoNR#vC7^R+JAa7?EUToDS29HUXz8ykV=J54Nk=tICdc)c%ZJHflM1#VE%28sQbDDN7E-PdMf#n`K3Rq0z)OJ` zw>~yy;w$6rh^!zwQJgb-5fh9|0o^|#UX$0HQPE8?MMi_iHZ+Qo?^aQaQ6{;i%N(hI zGbU81k@h9ql)&D0n6=L(y_|O&mnU3~j+!ymIb(;y-FEbX!98wff)ROfqs)zcnb}cg zE=UnB^y@pga=sAcQ;Te7@-_qC@Y1Nua%0pwa@OjVdxWy96>-p4l0BhX5V1$Y zK#r@_{u#cKs@Yva0Y=Owm}zX1Udc6Cg4dF{xJ(V;PtGsHKVZ~bQknN)OgN{c2dvwb zC~B@?x1zh~hBmTPKFL9nSEXFWtTS$$#2?q)txVqCO>3IP7ysd{Ad1tUGG6;wBDAu> z@WSTD+fO`2zq)J>LxqKFN^t!Cs@v3dMKadS%U7)>ttwE3zV9v9E`{2$eb~O6AN!%r zaYYztbUmhnmMv3jkH#*Kc~9IoKTsFbZVwlnT^K^n)oMsN$k2Z#9HRy|VAiqA@gkmo z7f-4R9%Zw_+FF7oe`@$TIBF}9r9UetS8qdzbToY*^?X@)poP7cL-wQc^EL3Zrg|Qb zH5!}lX6$@D2G^++$bO|ev!%8h=H&LsYS^PD&^S*DGK*p}JQi+!`J?#w6Bk1FA`{Xz zJXz!NL1gtz?z%J9lGCHH(&+4GYv-zCts8OT`s1li=S@zn;^MfG4tndSXpYx`^_?cS zv}wJYe9qptBBu8htzBf;F0kQB(;M-{zCYbgANf``u(EUqUNX7_v8|Zy4e9ie^}MpE zjxqq3>Nc|ftquHeY>NGitcyFSdW|UC^sEQcO~>f!$dJ9gQ*u2Z&hPeF_Soo!JK3O4 zY(sKF_BPvi+PI#aYm(}*2|JJXn1$L2GOd8pvj4sJ#QRU~>Ft%j;^RI27!92h`m1($ z*(@f_!rb$>CM+fByua_AxY=_k?=iRw{D=d84DGElk)&H5O?`hE4e2&hZOoW@Uel;h zrc6weCEN7*Z&Q)L7Fz={p5+5!^>+MK?Y5pVMmeEdp^AgLeYM}h4>=qoZUx_2~JJM+t)>$ z1Sjo{Y|Sc#H@B$0MyMvwLp7Hc2#uTjAW!WA(qtxCtyh1AiCks{+z+h%ZJ&=(bCo^1 z-g^7jyLji(U1wbPz~^sAqUCp|W{BUogS`849H(pLeG4t7QR(VS?^3dR#II*1J_stY zlbD&TVd@sH<`c)QcqSyAYu>pT+I@!XAlue=YJw^Invd!rF8TMa+FS2NMofkK*N}C; z+WmcmlDfATbv)zZR?Ngi9v3J)yZbNikCx#&gF>y%ev<~yh`p{q%T8jutv)C1E8R8X zT+Qpp7ry(KGItieNYx6YvtN!)fE!!f@o4AULN zL|62#H=#IQUy#qz!%Y>wh@=NXzud%V3@=8$tU?`sc04Su&D6pv6~?FvZ!KWx(c!w#+iuqL>L93 zgt|r`3kddiAx6wAJbEPRYX9|5FP_~TomjtY6B zNjc-B<`br2F-Uvp+1ap&`Hhl5HkYA*!j0L`iz2IT_+cO&Le$X)fm(JY3p3ESaRHnHs&BT+{01<(a(FndUoWJM>wY zZ?bGHv+5(V_%ER~OM3Kz{#346JwjRO-lYB>!2>u%Ddm~Hww|sJ4tM&*?Z-2bwybmQU;>aV%;pkTNxy`?FJde zhByitY%H1g-Xs|MIgbZrcb7f}h78GFUy|ZUXVYf@> zRw5E5C%LxulOiWcxFwObD>7~`N<=GGoi4&N{YrbD6G2-XpHQU5N+QoHqKKO&-2u_f zEH=jt4mB+nz%8=Yj|(X%(QivOy(2d0Ahi@`awqq5jC3rW<8m9i?1k&}b!%?I-1H*5&HzWk00LofGq5&`@5MQ2vYr zA=(N@?p#J&8kl*^d$J5E;WG8!3j56ph&QcuI4#&avFWfp1V-E_nA{f0xN-0*HaI>s z1lHF<*diQqQ1pJZBN9GR6;M{eTLB){XPhGsAJ>naDXTUntY%%RHoK_K+mBkr6@aot zYn#?Ep;dr`YIH85y+JiNGc_}tRlg5u|LQZ`uqGUl*RXTfd>^C7xhk8A%*N`h-HeRe zt{}fU6crz+bGxkr_0{s~g??}~AQUFaI3yIzWa{uqyyZ?}MpX7TAo&dv+%8zd??dXd z%?0R%l0IKo2ym6OrN(dMYvKE9EnIS12Gj%MWXD+ewDMkVr)-NE9>59+5GR z`I*$etzNEE8*K&$HP_v|wcS)R63H~0&dC#QSi#U4Sx(FL;nySl^sb-<{Q0fpht%fV zdUyE}v`Tu=pOzzXy=IU6t(jK&H!Yi>7_0L}0m9~G^ER2_HdJJZ33rnmdYeE{dw^-X zbYc6a2ynD=)yGQ0Y=nQ)Xk#a+qX5x%g46E$CoKujU$VV=ajQf4XVYQBYuboTU5yTO zjpnOF-sBIovG;Ad!EH`S9gg)KmK&X~gIisWO2)^#EH=8VkvlCCmmwZf-7z8^MF^#q z4-|PW_{k|yB8H=Y@YjXf!(>W#yFhb6Rg ztP^4q1unDgU^wpKQR-!3Ct1si-RSg}miZRA;i5;__o&&QMbrEA4njIXHa`xP>;muI zKYvQu-!Sn0Wc-^~y_t@6FNgX-I#*AvPx+VL0g2xJ`K!)F`#yd4koTfcMM{rYSGcYE z(1)>Jnv5Yk_70wh?t=t52u7K;gSG2K2WRh4l<6?i6eI6XRJwmOSs**7S9FId_wYyd zp2+OZ@Z%u}S{HTK@G4?BRs~LV{3^s3YH$pOQR?fLcj7HIXPJ&#Nu@nR5fx>R_-qau z`_@>O0f)j?@VPkx~BQXXN!nmW=H+|XXqxqtZjiQ-lh1~^G6JluNtSOp0qGRQS z6Y-l9t=s)n7USwc<2>iRlDiOnisWVdq&lg*b^Py8_KYp|oFmFwr%$Bw_+NoP{U=p9 ze;i2H@cX1JT0ePAJ@4&QLU2TnP73u-;E_&tMhSl0>f4W?c;ZV|5Ium5P6WE^-7cqy z#Ym}#Ne3&+t+J4iPZWC0>anBdpc|?&{V{1UD6`tEqUs|b6DCqUtCiH&zA?K( zJ|{6cQ=!nq$1OOPId^7Tb~5ub=$=n|tHA;~MMr7iPdwt}Hy6}4ztlTte>_+65VGAl zZ@oy(H}jIE`ln&>JnzL%JoI@5j+Z{a4;h0%)<-F!k6GsEiB^GvfV{R^+lM<4N* zy(hDt@`|Qcf9JedjL(4|ML`(--o2az!yJhdP863O#xV+)tqWpns1S1J%Z6q%DrhU% zR`iYCiqVrV+33P(Abo+I%G<&F_<=POB>-`V{ptf^Lah!>*fRs<70e;=>j zYO2htPN`j34Lg?Rs+P_h`k(tjCYs6ms!KIWmqH0#j7`_x+^_LVjRyEGzxug0k^={N z#0wv%H7=TDvVZxqtO;qj?vF1=DyP3g_gExYt+tOR>sfoy10x^Te^#y;nEgt^-KgW( zIEvZi;o2Ol-ei$l;SpaCtKUdl+3<)+( z{CTag9;sgx3nh&{jA}p1z&lQnnyE$}B{?xlI35^IPebjuJ$8;d{Eq{XWR>DXbDYq@ zQ=*Br%syoM@spFNyWmyo4chb*TY|%xwZX}!*;_^wyFF#KMq59TEN9|N`_uuyVoj3$ z#*00d7pPefoa;EN!i|}Op54i}Jw&ZNo2J$4^wpgq9O-{*AmNeBaSnCh#ta+V0BU1vHYmHuYGsn<{2#ReO4k5qD-dKYWY4u9`(7Hr~Q&wl@l|K?cv?6~cAhQfIB zy!=9%>FAO(Gh}`A*y$z^bshU+GaP<#Aby!4eaq^6i+O*O5CBEh@a5DFL=0X_%iO&! zyxpeM@{u?xGv29`xT}3}2PeJ9;Ji0*?r(WTSnb>t@#3!Y)$jDYdzv-(6N|eD+Xp7j z+XW+J{h=eztz`B7=UHAiNrDu;Z#>h^O z?}N^deQ(!JP>+YG52q5SxmT#aa7fybQES_BG^lKdqZj72~#lm2ewO&9@{cqp0r zrc5L$htWW~`j%WQ6$Lu*OMP1*kpU~1H$!7bDV4*pClsn_C7;aWxK^Y~yr-5c=7+>2 zpDj@T*^5_g@ zi3K3B{nXv}Cvp_?8^%jP5L|!?r5_w-^Q$HLyZ{SBjI&8>O_I9wG9c z-S*53w5-;Ky%j&XaCd+=;M3#v7T-0NmD~{B*^8~w`qr=&aau$(p`z+?OxmGDis%MclhSO@d>V$Blh~j4qrztsWzj>96BS=O^AO1iwGJT9 z3mD90G*!rFW+TS=A#cvd#72vf-o@Eaa8L2>u_vowK`7kS#Ta%7e+W}`%xK6$VrJwL zxlbzJNHH-qO(}C#Yt~4vQ+`y_ERANKX4GSt(`I?G#r6F?1s|{6jXxH@uIU$s7G3i= zS$;jsG|Lt}>pU30zHMo7i@xojODzqx#?TRcXE>ICf$K0stAYEJtbl>TSNwQ2Di1#r z5%0ZX9aTr^YQ8m}>m8jo1LNbXS^p=DUh4sLvX|?@5UVy*t^$j?Q66uPHnXUM>RH1v z#*!PeI0h@ z)ZIuaXZUOa>^d%xX6HJknA0_1D3jLskv;}<)yeD2`y&rI7Ec_HE{UlXR>Uo14q|@w zRMcbr%h~GHJdpsk`;0dnQvb{ORgZTrf#sU|X0h?OFC97f$ejz3mj#tkf|Aj`A-dR5J z3|4`7@!Jgah9Jx(L`YN>4~K4msAVurR%TN>cBJF9`!%yXJMB|KkPMC)jwDQdnN;ja zCzh(3ixK9p-#yH7r>@g{ChX?qt%59YtOPqYiw%mU`Jti|Ri_9M{rzJbx+c{sr=TUe zf!$R8;T=L>u@H00+9F=z`FcAo=^`lUD6fLXMM9z$4qfRdMP)fR>pV)3MuQ)|4eNi_&0@XS2p_lGYyVu^>5NEq+$l1NgtN6;!bH- zvErY}n39>R$`4j#MT^LkY}cpbOH{Dgw3D03Rz%oXrnW>7XRkUeuGJh2w7G<5J0 z%txrrm1!zoMwjILZvUoQyq$B!i?5VEG8F${9j`E>pDO;bq|>iD-~G5q@FF;XBQBymk|{l#%r&V;`h>)@e1RPSDvb#Or9 z*ER?Fsa4gPS-?wt^X-l5>&SV^WNmf9`KCh_6~%`=9lEc`!4t7McT;j3iF-Ry=vZC# z##VvpoZalTskYyzW?G}`aveASt16f*nTh-1T9bp#Y7#k{Qd7(Rd=zOv|%S=T-c+&Eym%!IUadApG!@v7<_o8FvsRnm>^P~O0Pf>XZ>sawob6SQ*r4~o*Ov_Np z89Cx!>*h4A%f!$^MTc!I4x6tG^2au=t7WPAv89(Et9qSm!f>D4tFNm0br9+ZdSVw- zb97>kIocwAy^@^tRL(|Tll4XahG#-blg-

Results

+ +

Point values

+ +

+This program offers a lot of possibilities to play around. We can thus +only show a small part of all possible results that can be obtained +with the help of this program. However, you are encouraged to just try +it out, by changing the settings in the main program. Here, we start +by simple letting it run, unmodified: + +

+Refinement cycle: 0
+   Number of degrees of freedom=72
+   Point value=0.03243
+   Estimated error=0.000702385
+Refinement cycle: 1
+   Number of degrees of freedom=67
+   Point value=0.0324827
+   Estimated error=0.000888953
+Refinement cycle: 2
+   Number of degrees of freedom=130
+   Point value=0.0329619
+   Estimated error=0.000454606
+Refinement cycle: 3
+   Number of degrees of freedom=307
+   Point value=0.0331934
+   Estimated error=0.000241254
+Refinement cycle: 4
+   Number of degrees of freedom=718
+   Point value=0.0333675
+   Estimated error=7.4912e-05
+Refinement cycle: 5
+   Number of degrees of freedom=1691
+   Point value=0.0334104
+   Estimated error=3.47976e-05
+Refinement cycle: 6
+   Number of degrees of freedom=4065
+   Point value=0.0334315
+   Estimated error=1.49476e-05
+Refinement cycle: 7
+   Number of degrees of freedom=9113
+   Point value=0.0334407
+   Estimated error=6.23712e-06
+Refinement cycle: 8
+   Number of degrees of freedom=22303
+   Point value=0.0334445
+
+ +

+ +

+First let's look what the program actually computed, by looking at +some of the grids and solutions that were printed: +TODO + +Note the subtle interplay between resolving the corner singularities, +and resolving around the point of evaluation. It will be rather +difficult to generate such a mesh by hand, as this would involve to +judge quantitatively how much which of the four corner singularities +shall be resolved, and to set the weight compared to the vicinity of +the evaluation point. +

+ +

+The program prints the point value and the estimated error in this +quantity. From extrapolating it, we can guess that the exact value is +somewhat like 0.0334473, plus or minus 0.0000001 (note that we get +almost 6 valid digits from only 22,000 (primal) degrees of +freedom. This number cannot be obtaint from the value of the +functional alone, but I have used the assumption that the error +estimator is mostly exact, and extrapolated the computed value plus +the estimated error, to get an approximation of the true +value. Computing with more degrees of freedom shows that this +assumption is indeed valid. +

+ +

+From the computed results, we can generate two graphs: one that shows +the convergence of the error J(u)-J(uh) (taking the +extrapolated value as correct) in the point value, and the value that +we get by adding up computed value J(uh) and estimated +error eta (if the error estimator eta were exact, then the value +J(uh)+eta would equal the exact point value, and the error +in this quantity would always be zero; however, since the error +estimator is only a - good - approximation to the true error, we can +by this only reduce the size of the error). In this graph, we also +indicate the complexity O(1/N) to show that mesh refinement +acts optimal in this case. The second chart compares +true and estimated error, and shows that the two are actually very +close to each other, even for such a complicated quantity as the point +value: +

+ + + + + + + +
+ + Error in point value + + + + Error in point value + +
+ + +

Comparing refinement criteria

+ +

+Since we have accepted quite some effort when using the mesh +refinement driven by the dual weighted error estimator (for solving +the dual problem, and for evaluating the error representation), it is +worth while asking whether that effort was successful. To this end, we +first compare the achieved error levels for different mesh refinement +criteria. To generate this data, simply change the value of the mesh +refinement criterion variable in the main program. The results are thus: +TODO +

+ + +

Evaluation of point stresses

+ +

+Besides evaluating the values of the solution at a certain point, the +program also offers the possibility to evaluate the x-derivatives at a +certain point, and also to tailor mesh refinement for this. To let the +program compute these quantities, simply replace the two occurences of +PointValueEvaluation in the main function by +PointXDerivativeEvaluation, and let the program run: + +

+Refinement cycle: 0
+   Number of degrees of freedom=72
+   Point x-derivative=-0.287759
+   Estimated error=-0.0126173
+Refinement cycle: 1
+   Number of degrees of freedom=61
+   Point x-derivative=-0.283182
+   Estimated error=-0.00774316
+Refinement cycle: 2
+   Number of degrees of freedom=131
+   Point x-derivative=-0.227468
+   Estimated error=-0.00313426
+Refinement cycle: 3
+   Number of degrees of freedom=247
+   Point x-derivative=-0.212132
+   Estimated error=-0.00136114
+Refinement cycle: 4
+   Number of degrees of freedom=541
+   Point x-derivative=-0.210584
+   Estimated error=-0.000555479
+Refinement cycle: 5
+   Number of degrees of freedom=1286
+   Point x-derivative=-0.210758
+   Estimated error=-0.0002261
+Refinement cycle: 6
+   Number of degrees of freedom=2924
+   Point x-derivative=-0.211001
+   Estimated error=-9.38035e-05
+Refinement cycle: 7
+   Number of degrees of freedom=6578
+   Point x-derivative=-0.211151
+   Estimated error=-3.94139e-05
+Refinement cycle: 8
+   Number of degrees of freedom=14780
+   Point x-derivative=-0.211219
+   Estimated error=-1.85456e-05
+Refinement cycle: 9
+   Number of degrees of freedom=31438
+   Point x-derivative=-0.211258
+

+ +

+We again look at the meshes first: +TODO +

+ +

+Then, it is interesting to compare actually computed values of the +quantity of interest (i.e. the x-derivative of the solution at one +point) with those values which we get from computing +on finer meshes. +TODO +

+ + + +

Step-13 revisited

+ +

+If instead of the Exercise_2_3 data set, we choose +CurvedRidges in the main function, we can redo the +computations of the previous example program, to compare whether the +results obtained with the help of the dual weighted error estimator +are better than those we had previously. +TODO +

+ + +

Outlook

+ +

+As stated, the program is quite modular, and implementing another test +case, or another evaluation and dual functional is simple. You are +encouraged to take the program as a basis for your own experiments, +and to play a little. +

\ No newline at end of file -- 2.39.5