From a0cbc744644e078f8a9c5f2aeda0318fa383fe8a Mon Sep 17 00:00:00 2001 From: Guido Kanschat Date: Wed, 13 Mar 2013 20:17:20 +0000 Subject: [PATCH] Fix offensive formula git-svn-id: https://svn.dealii.org/trunk@28890 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-42/doc/intro-step-42.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/deal.II/examples/step-42/doc/intro-step-42.tex b/deal.II/examples/step-42/doc/intro-step-42.tex index 17767acd14..a6c6b1f752 100644 --- a/deal.II/examples/step-42/doc/intro-step-42.tex +++ b/deal.II/examples/step-42/doc/intro-step-42.tex @@ -230,7 +230,7 @@ problem. Again we do so to gain a formulation that allows us to solve a linear system of equations finally.\\ We introduce a Lagrange multiplier $\lambda$ and the convex cone $K\subset W'$, $W'$ dual space of the trace space $W:=\left[ H_0^{\frac{1}{2}}(\Gamma_C) -\right]^{\textrm{dim}$ of $V$ restricted to $\Gamma_C$, $$K:=\{\mu\in W':\mu_T = 0,\quad\langle\mu n,v\rangle_{\Gamma_C}\geq 0,\quad +\right]^{\textrm{dim}}$ of $V$ restricted to $\Gamma_C$, $$K:=\{\mu\in W':\mu_T = 0,\quad\langle\mu n,v\rangle_{\Gamma_C}\geq 0,\quad \forall v\in H_0^{\frac{1}{2}}(\Gamma_C), v \ge 0\text{ on }\Gamma_C \}$$ of Lagrange multipliers, where $\langle\cdot,\cdot\rangle$ denotes the duality pairing, i.e. a boundary integral, between $W'$ and $W$. -- 2.39.5