From a9b6118c803e296a396e7f1cb182690ffe45092e Mon Sep 17 00:00:00 2001
From: guido
Date: Sun, 1 Feb 2004 22:27:46 +0000
Subject: [PATCH] step 16
git-svn-id: https://svn.dealii.org/trunk@8379 0785d39b-7218-0410-832d-ea1e28bc413d
---
.../step-16.data/intro.html | 32 +++
deal.II/examples/step-16/Makefile | 4 -
deal.II/examples/step-16/step-16.cc | 188 +++++++++++-------
3 files changed, 152 insertions(+), 72 deletions(-)
diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-16.data/intro.html b/deal.II/doc/tutorial/chapter-2.step-by-step/step-16.data/intro.html
index c59cfdf609..39d27081c8 100644
--- a/deal.II/doc/tutorial/chapter-2.step-by-step/step-16.data/intro.html
+++ b/deal.II/doc/tutorial/chapter-2.step-by-step/step-16.data/intro.html
@@ -1,2 +1,34 @@
Introduction
+
+
+This example shows the basic usage of the multilevel functions in
+deal.II. It solves Helmholtz equation with Neumann boundary conditions
+to avoid additional complications due to Dirichlet boundary conditions (there,
+some library functionsare missing). In all other respects, it is similar to
+step 5.
+
+
+ In order to allow sufficient flexibility in conjunction with systems of
+differential equations and block preconditioners, quite a few different objects
+have to be created before starting the multilevel method. These are
+
+- MGTransfer, the object handling transfer between grids
+
- MGCoarse, the solver on the coarsest level
+
- MGSmoother, the smoother on all other levels
+
- MGMatrix, the matrix object having a special level multipplication.
+
+
+
+
+These objects are combined in an object of type Multigrid, containing the
+implementation of the V-cycle, which is in turn used by the preconditioner
+PreconditionMG, ready for plug-in into a linear slver of the LAC library.
+
+
+
+The multilevel method in deal.II follows in many respects the outlines
+of the various publications by James Bramble, Joseph Pasciak and ??? Xu. In
+order to understand many of the options, a rough familiarity with their work is
+quite helpful.
+
\ No newline at end of file
diff --git a/deal.II/examples/step-16/Makefile b/deal.II/examples/step-16/Makefile
index 433c82b233..dae158698b 100644
--- a/deal.II/examples/step-16/Makefile
+++ b/deal.II/examples/step-16/Makefile
@@ -1,9 +1,5 @@
# $Id$
-# Protect the file from being made automatically as long as it is not tested
-default:
- @echo Example not ready for compiling
-
# For the small projects Makefile, you basically need to fill in only
# four fields.
#
diff --git a/deal.II/examples/step-16/step-16.cc b/deal.II/examples/step-16/step-16.cc
index 1c6a1d1fd1..73f3c5f51b 100644
--- a/deal.II/examples/step-16/step-16.cc
+++ b/deal.II/examples/step-16/step-16.cc
@@ -53,6 +53,10 @@
// DoFTools class are declared:
#include
+#include
+#include
+#include
+
// This is C++ ... see step 5 for
// further comments.
#include
@@ -151,8 +155,14 @@ void LaplaceProblem::setup_system ()
// revision). Remark, that the
// finest level is nlevels-1.
const unsigned int nlevels = triangulation.n_levels();
- mg_sparsity.resize(0, nlevels-1);
+ // We first have to resize the
+ // container holding the
+ // SparseMatrix classes, since they
+ // have to release their
+ // SparsityPattern before it can be
+ // destroyed.
mg_matrices.resize(0, nlevels-1);
+ mg_sparsity.resize(0, nlevels-1);
// Now, we have to build a matrix
// on each level. Technically, we
@@ -238,9 +248,11 @@ void LaplaceProblem::assemble_system ()
for (unsigned int i=0; i::assemble_system ()
};
// Again use zero boundary values:
- std::map boundary_values;
- VectorTools::interpolate_boundary_values (mg_dof_handler,
- 0,
- ZeroFunction(),
- boundary_values);
- MatrixTools::apply_boundary_values (boundary_values,
- system_matrix,
- solution,
- system_rhs);
+// std::map boundary_values;
+// VectorTools::interpolate_boundary_values (mg_dof_handler,
+// 0,
+// ZeroFunction(),
+// boundary_values);
+// MatrixTools::apply_boundary_values (boundary_values,
+// system_matrix,
+// solution,
+// system_rhs);
}
@@ -280,7 +292,7 @@ void LaplaceProblem::assemble_system ()
// the same as above. Only the loop
// goes over all existing cells now
// and the results must be entered
- // into the right matrix.
+ // into the correct matrix.
// Since we only do multi-level
// preconditioning, no right-hand
@@ -291,7 +303,8 @@ void LaplaceProblem::assemble_multigrid ()
QGauss2 quadrature_formula;
FEValues fe_values (fe, quadrature_formula,
- UpdateFlags(update_gradients |
+ UpdateFlags(update_values |
+ update_gradients |
update_q_points |
update_JxW_values));
@@ -303,8 +316,8 @@ void LaplaceProblem::assemble_multigrid ()
std::vector local_dof_indices (dofs_per_cell);
//
- typename DoFHandler::cell_iterator cell = mg_dof_handler.begin(),
- endc = mg_dof_handler.end();
+ typename MGDoFHandler::cell_iterator cell = mg_dof_handler.begin(),
+ endc = mg_dof_handler.end();
for (; cell!=endc; ++cell)
{
// Remember the level of the
@@ -323,9 +336,11 @@ void LaplaceProblem::assemble_multigrid ()
for (unsigned int i=0; i::assemble_multigrid ()
};
// Again use zero boundary values:
- std::map boundary_values;
- VectorTools::interpolate_boundary_values (mg_dof_handler,
- 0,
- ZeroFunction(),
- boundary_values);
- MatrixTools::apply_boundary_values (boundary_values,
- system_matrix,
- solution,
- system_rhs);
+// std::map boundary_values;
+// VectorTools::interpolate_boundary_values (mg_dof_handler,
+// 0,
+// ZeroFunction(),
+// boundary_values);
+// MatrixTools::apply_boundary_values (boundary_values,
+// system_matrix,
+// solution,
+// system_rhs);
}
@@ -374,48 +389,84 @@ void LaplaceProblem::assemble_multigrid ()
template
void LaplaceProblem::solve ()
{
+ // Create a memory handler for
+ // regular vectors. Note, that
+ // GrowingVectorMemory is more time
+ // efficient than
+ // PrimitiveVectorMemory.
+ GrowingVectorMemory<> vector_memory;
+
+ // Now, create an object handling
+ // the transfer of functions
+ // between different grid
+ // levels.
+ MGTransferPrebuilt mg_transfer;
+ mg_transfer.build_matrices(mg_dof_handler);
+
+ // Next, we need a coarse grid
+ // solver. Since our coarse grid is
+ // VERY coarse, we decide for a
+ // direct solver, even if its
+ // implementation is not very
+ // clever.
+ FullMatrix coarse_matrix;
+ coarse_matrix.copy_from (mg_matrices[0]);
+ MGCoarseGridHouseholder > mg_coarse;
+ mg_coarse.initialize(coarse_matrix);
+
+ // The final ingredient for the
+ // multilevel preconditioner is the
+ // smoother. It is very customary
+ // to use a relaxation method
+ // here. Names are getting quite
+ // long here, so we help with
+ // typedefs.
+ typedef PreconditionSOR > RELAXATION;
+ MGSmootherRelaxation, RELAXATION, Vector >
+ mg_smoother(vector_memory);
+
+ // Initialize the smoother with our
+ // level matrices and the required,
+ // additional data for the
+ // relaxaton method with default
+ // values.
+ RELAXATION::AdditionalData smoother_data;
+ mg_smoother.initialize(mg_matrices, smoother_data);
+
+ // Do two smoothing steps per level
+ mg_smoother.set_steps(2);
+ // Since the SOR method is not
+ // symmetric, but we use conjugate
+ // gradient iteration below, here
+ // is a trick to make the
+ // multilevel preconditioner a
+ // symmetric operator even for
+ // nonsymmetric smoothers.
+ mg_smoother.set_symmetric(true);
+
+ // We must wrap our matrices in an
+ // object having the required
+ // multiplication functions.
+ MGMatrix, Vector >
+ mg_matrix(&mg_matrices);
+ // Now, we are ready to set up the
+ // V-cycle operator and the
+ // multilevel preconditioner.
+ Multigrid > mg(mg_dof_handler,
+ mg_matrix,
+ mg_coarse,
+ mg_transfer,
+ mg_smoother,
+ mg_smoother);
+ PreconditionMG, MGTransferPrebuilt >
+ preconditioner(mg_dof_handler, mg, mg_transfer);
+
+ // Finally, create the solver
+ // object and solve the system
SolverControl solver_control (1000, 1e-12);
- PrimitiveVectorMemory<> vector_memory;
SolverCG<> cg (solver_control, vector_memory);
- // The only thing we have to alter
- // is that we need an object which
- // will act as a preconditioner. We
- // will use SSOR (symmetric
- // successive overrelaxation), with
- // a relaxation factor of 1.2. For
- // this purpose, the SparseMatrix
- // class has a function which does
- // one SSOR step, and we need to
- // package the address of this
- // function together with the
- // matrix on which it should act
- // (which is the matrix to be
- // inverted) and the relaxation
- // factor into one object. This can
- // be done like this:
- PreconditionSSOR<> preconditioner;
- preconditioner.initialize(system_matrix, 1.2);
- // (Note that we did not have to
- // explicitely pass the address of
- // the SSOR function of the matrix
- // to this objects, rather it is
- // hardcoded into the object, thus
- // the name.)
- //
- // The default template parameters
- // of the ``PreconditionRelaxation''
- // class is the matrix type, which
- // defaults to the types used in
- // this program.
-
- // Calling the solver now looks
- // mostly like in the example
- // before, but where there was an
- // object of type
- // PreconditionIdentity before,
- // there now is the newly generated
- // preconditioner object.
+
cg.solve (system_matrix, solution, system_rhs,
preconditioner);
@@ -503,6 +554,7 @@ void LaplaceProblem::run ()
setup_system ();
assemble_system ();
+ assemble_multigrid ();
solve ();
output_results (cycle);
};
--
2.39.5