From aad095e921e496c7c5b560bbeb14aa8e62100838 Mon Sep 17 00:00:00 2001 From: kanschat Date: Fri, 13 Oct 2006 18:40:00 +0000 Subject: [PATCH] move tests known to fail to fail git-svn-id: https://svn.dealii.org/trunk@14002 0785d39b-7218-0410-832d-ea1e28bc413d --- tests/deal.II/Makefile | 1 - tests/deal.II/wave-test-3.cc | 7596 ----------------- tests/deal.II/wave-test-3/cmp/generic | 3307 ------- .../cmp/mips-sgi-irix6.5+MIPSpro7.4 | 3313 ------- tests/fail/Makefile | 34 + tests/{fe => fail}/abf_approximation_01.cc | 0 .../abf_approximation_01/cmp/generic | 0 .../{fe => fail}/abf_approximation_01/rt.gpl | 0 tests/{deal.II => fail}/project_abf_01.cc | 2 +- tests/{deal.II => fail}/project_abf_02.cc | 2 +- tests/{deal.II => fail}/project_abf_03.cc | 2 +- tests/{deal.II => fail}/project_abf_04.cc | 2 +- tests/{deal.II => fail}/project_abf_05.cc | 2 +- .../project_dgp_nonparametric_01.cc | 2 +- .../project_dgp_nonparametric_02.cc | 2 +- .../project_dgp_nonparametric_03.cc | 2 +- .../project_dgp_nonparametric_04.cc | 2 +- .../project_dgp_nonparametric_05.cc | 2 +- tests/{deal.II => fail}/project_rt_03.cc | 2 +- .../project_rt_03/cmp/generic | 0 tests/{fe => fail}/rt_4.cc | 0 tests/{fe => fail}/rt_4/cmp/generic | 0 .../rt_4/cmp/mips-sgi-irix6.5+MIPSpro7.4 | 0 .../rt_4/cmp/x86_64-unknown-linux-gnu+gcc3.3 | 0 tests/{fe => fail}/rt_6.cc | 0 tests/{fe => fail}/rt_6/cmp/generic | 0 tests/{bits => fail}/rt_crash_01.cc | 2 +- tests/{bits => fail}/rt_crash_01/cmp/generic | 0 tests/{fe => fail}/rt_distorted_01.cc | 0 .../{fe => fail}/rt_distorted_01/cmp/generic | 0 tests/{fe => fail}/rt_distorted_01/rt.gpl | 0 tests/{fe => fail}/rt_distorted_02.cc | 0 .../{fe => fail}/rt_distorted_02/cmp/generic | 0 tests/{fe => fail}/rt_distorted_02/rt.gpl | 0 34 files changed, 46 insertions(+), 14229 deletions(-) delete mode 100644 tests/deal.II/wave-test-3.cc delete mode 100644 tests/deal.II/wave-test-3/cmp/generic delete mode 100644 tests/deal.II/wave-test-3/cmp/mips-sgi-irix6.5+MIPSpro7.4 create mode 100644 tests/fail/Makefile rename tests/{fe => fail}/abf_approximation_01.cc (100%) rename tests/{fe => fail}/abf_approximation_01/cmp/generic (100%) rename tests/{fe => fail}/abf_approximation_01/rt.gpl (100%) rename tests/{deal.II => fail}/project_abf_01.cc (95%) rename tests/{deal.II => fail}/project_abf_02.cc (95%) rename tests/{deal.II => fail}/project_abf_03.cc (95%) rename tests/{deal.II => fail}/project_abf_04.cc (95%) rename tests/{deal.II => fail}/project_abf_05.cc (95%) rename tests/{deal.II => fail}/project_dgp_nonparametric_01.cc (95%) rename tests/{deal.II => fail}/project_dgp_nonparametric_02.cc (95%) rename tests/{deal.II => fail}/project_dgp_nonparametric_03.cc (95%) rename tests/{deal.II => fail}/project_dgp_nonparametric_04.cc (95%) rename tests/{deal.II => fail}/project_dgp_nonparametric_05.cc (95%) rename tests/{deal.II => fail}/project_rt_03.cc (96%) rename tests/{deal.II => fail}/project_rt_03/cmp/generic (100%) rename tests/{fe => fail}/rt_4.cc (100%) rename tests/{fe => fail}/rt_4/cmp/generic (100%) rename tests/{fe => fail}/rt_4/cmp/mips-sgi-irix6.5+MIPSpro7.4 (100%) rename tests/{fe => fail}/rt_4/cmp/x86_64-unknown-linux-gnu+gcc3.3 (100%) rename tests/{fe => fail}/rt_6.cc (100%) rename tests/{fe => fail}/rt_6/cmp/generic (100%) rename tests/{bits => fail}/rt_crash_01.cc (98%) rename tests/{bits => fail}/rt_crash_01/cmp/generic (100%) rename tests/{fe => fail}/rt_distorted_01.cc (100%) rename tests/{fe => fail}/rt_distorted_01/cmp/generic (100%) rename tests/{fe => fail}/rt_distorted_01/rt.gpl (100%) rename tests/{fe => fail}/rt_distorted_02.cc (100%) rename tests/{fe => fail}/rt_distorted_02/cmp/generic (100%) rename tests/{fe => fail}/rt_distorted_02/rt.gpl (100%) diff --git a/tests/deal.II/Makefile b/tests/deal.II/Makefile index dff4a91d40..9114cf8765 100644 --- a/tests/deal.II/Makefile +++ b/tests/deal.II/Makefile @@ -38,7 +38,6 @@ tests_x = block_matrices \ intergrid_constraints \ intergrid_map \ matrices \ - wave-test-3 \ support_point_map \ filtered_matrix \ boundaries \ diff --git a/tests/deal.II/wave-test-3.cc b/tests/deal.II/wave-test-3.cc deleted file mode 100644 index 35687b8734..0000000000 --- a/tests/deal.II/wave-test-3.cc +++ /dev/null @@ -1,7596 +0,0 @@ -//---------------------------- wave-test-3.cc --------------------------- -// $Id$ -// Version: $Name$ -// -// std::copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 by Wolfgang Bangerth -// -// This file is subject to QPL and may not be distributed -// without std::copyright and license information. Please refer -// to the file deal.II/doc/license.html for the text and -// further information on this license. -// -//---------------------------- wave-test-3.cc --------------------------- - -//TODO:[WB] Figure out why postscript output changes output-precision. - -#include "../tests.h" -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include - -#include -#include -#include -#include -#include -#include -#include - -using namespace std; - -std::ofstream logfile("wave-test-3/output"); - -class UserMatrix; -class SweepInfo; -template class SweepData; -template class WaveParameters; -template class TimeStep_Primal; -template class TimeStep_Dual; -template class DualFunctional; -template class EvaluationBase; -template class TimeStep_ErrorEstimation; -template class TimeStep_Postprocess; - - -template -class TimeStepBase_Wave : public TimeStepBase_Tria{ - public: - TimeStepBase_Wave (); - TimeStepBase_Wave (const double time, - typename TimeStepBase_Tria::Flags flags, - const WaveParameters ¶meters); - const TimeStep_Primal & get_timestep_primal () const; - const TimeStep_Dual & get_timestep_dual () const; - const TimeStep_Postprocess & get_timestep_postprocess () const; - std::string tmp_filename_base (const std::string &branch_signature) const; - void attach_sweep_info (SweepInfo &sweep_info); - void attach_sweep_data (SweepData &sweep_data); - - protected: - const WaveParameters ¶meters; - SweepInfo *sweep_info; - SweepData *sweep_data; -}; - - -template -class TimeStep_Wave : public virtual TimeStepBase_Wave -{ - public: - TimeStep_Wave (const std::string fe_name); - ~TimeStep_Wave(); - virtual void wake_up (const unsigned int wakeup_level); - virtual void sleep (const unsigned int sleep_level); - virtual void end_sweep (); - unsigned int solve (const UserMatrix &matrix, - Vector &solution, - const Vector &rhs) const; - virtual std::string branch_signature () const = 0; - DeclException0 (ExcIO); - DeclException0 (ExcCoarsestGridsDiffer); - - -protected: - struct StatisticData - { - StatisticData (); - StatisticData (const unsigned int n_active_cells, - const unsigned int n_dofs, - const unsigned int n_solver_steps_helmholtz, - const unsigned int n_solver_steps_projection, - const std::pair energy); - static void write_descriptions (std::ostream &out); - void write (std::ostream &out) const; - unsigned int n_active_cells; - unsigned int n_dofs; - unsigned int n_solver_steps_helmholtz; - unsigned int n_solver_steps_projection; - std::pair energy; - }; - - DoFHandler *dof_handler; - const FiniteElement &fe; - const Quadrature &quadrature; - const Quadrature &quadrature_face; - ConstraintMatrix constraints; - SparsityPattern system_sparsity; - SparseMatrix mass_matrix, laplace_matrix; - Vector u, v; - StatisticData statistic_data; - void create_matrices (); - void transfer_old_solutions (Vector &old_u, - Vector &old_v) const; - void transfer_old_solutions (const typename DoFHandler::cell_iterator &old_cell, - const typename DoFHandler::cell_iterator &new_cell, - const Vector &old_grid_u, - const Vector &old_grid_v, - Vector &old_u, - Vector &old_v) const; - std::pair compute_energy (); - template friend class DualFunctional; - template friend class EvaluationBase; - template friend class TimeStep_ErrorEstimation; - template friend class TimeStep_Postprocess; -}; - - -template -class TimeStep_Primal : public TimeStep_Wave -{ - public: - TimeStep_Primal (const std::string &primal_fe); - void do_initial_step (); - void do_timestep (); - virtual void solve_primal_problem (); - virtual std::string branch_signature () const; - virtual void wake_up (const unsigned int wakeup_level); - virtual void end_sweep () - { - TimeStep_Wave::end_sweep(); - }; - virtual void sleep (const unsigned int sleep_level) - { - TimeStep_Wave::sleep (sleep_level); - }; - - - private: - void assemble_vectors (Vector &right_hand_side1, - Vector &right_hand_side2); - void build_rhs (Vector &right_hand_side1, - Vector &right_hand_side2); - void build_rhs (const typename DoFHandler::cell_iterator &old_cell, - const typename DoFHandler::cell_iterator &new_cell, - FEValues &fe_values, - Vector &right_hand_side1, - Vector &right_hand_side2); - unsigned int - collect_from_children (const typename DoFHandler::cell_iterator &old_cell, - FEValues &fe_values, - Vector &rhs1, - Vector &rhs2) const; - unsigned int - distribute_to_children (const typename DoFHandler::cell_iterator &cell, - FEValues &fe_values, - const Vector &old_dof_values_u, - const Vector &old_dof_values_v, - Vector &right_hand_side1, - Vector &right_hand_side2); -}; - - -template -class TimeStep_Dual : public TimeStep_Wave -{ - public: - TimeStep_Dual (const std::string &dual_fe); - void do_initial_step (); - void do_timestep (); - virtual void solve_dual_problem (); - virtual std::string branch_signature () const; - virtual void wake_up (const unsigned int wakeup_level); - - virtual void end_sweep () - { - TimeStep_Wave::end_sweep(); - }; - virtual void sleep (const unsigned int sleep_level) - { - TimeStep_Wave::sleep (sleep_level); - }; - - - private: - void assemble_vectors (Vector &right_hand_side1, - Vector &right_hand_side2); - void build_rhs (Vector &right_hand_side1, - Vector &right_hand_side2); - void build_rhs (const typename DoFHandler::cell_iterator &old_cell, - const typename DoFHandler::cell_iterator &new_cell, - FEValues &fe_values, - Vector &right_hand_side1, - Vector &right_hand_side2); - unsigned int - collect_from_children (const typename DoFHandler::cell_iterator &old_cell, - FEValues &fe_values, - Vector &rhs1, - Vector &rhs2) const; - unsigned int - distribute_to_children (const typename DoFHandler::cell_iterator &cell, - FEValues &fe_values, - const Vector &old_dof_values_u, - const Vector &old_dof_values_v, - Vector &right_hand_side1, - Vector &right_hand_side2); -}; - - - - -template -class TimeStep_ErrorEstimation : public virtual TimeStepBase_Wave -{ - public: - TimeStep_ErrorEstimation (); - virtual void estimate_error (); - virtual void wake_up (const unsigned int wakeup_level); - virtual void sleep (const unsigned int sleep_level); - virtual void get_tria_refinement_criteria (Vector &indicators) const; - void get_error_indicators (Vector &indicators) const; - virtual std::string branch_signature () const = 0; - - protected: - struct StatisticData - { - StatisticData (); - StatisticData (const double estimated_error); - static void write_descriptions (std::ostream &out); - void write (std::ostream &out) const; - double estimated_error; - }; - - public: - - struct ErrorOnCell { - double part[8]; - ErrorOnCell (); - ErrorOnCell operator += (const ErrorOnCell &eoc); - double sum () const; - }; - - - struct CellwiseError - { - CellwiseError (const unsigned int n_errors); - std::vector errors; - ErrorOnCell* next_free_slot; - }; - - protected: - - Vector estimated_error_per_cell; - FullMatrix embedding_matrix; - FullMatrix interpolation_matrix; - FullMatrix difference_matrix; - StatisticData statistic_data; - void estimate_error_energy (const unsigned int which_variables); - void estimate_error_dual (); - void estimate_error_dual (const typename DoFHandler::cell_iterator &primal_cell, - const typename DoFHandler::cell_iterator &dual_cell, - const typename DoFHandler::cell_iterator &primal_cell_old, - const typename DoFHandler::cell_iterator &dual_cell_old, - CellwiseError &cellwise_error, - FEValues &fe_values) const; - void compute_error_on_new_children (const typename DoFHandler::cell_iterator &primal_cell, - const typename DoFHandler::cell_iterator &dual_cell, - const Vector &local_u_old, - const Vector &local_v_old, - const Vector &local_u_bar_old, - const Vector &local_v_bar_old, - CellwiseError &cellwise_error, - FEValues &fe_values) const; - ErrorOnCell collect_error_from_children (const typename DoFHandler::cell_iterator &primal_cell_old, - const typename DoFHandler::cell_iterator &dual_cell_old, - const Vector &local_u, - const Vector &local_v, - const Vector &local_u_bar, - const Vector &local_v_bar, - const Vector &local_Ih_u_bar, - const Vector &local_Ih_v_bar, - const Vector &local_Ih_u_bar_old, - const Vector &local_Ih_v_bar_old, - FEValues &fe_values) const; - ErrorOnCell error_formula (const typename DoFHandler::active_cell_iterator &cell, - const Vector &local_u, - const Vector &local_v, - const Vector &local_u_bar, - const Vector &local_v_bar, - const Vector &local_u_old, - const Vector &local_v_old, - const Vector &local_u_bar_old, - const Vector &local_v_bar_old, - FEValues &fe_values) const; - ErrorOnCell error_formula (const typename DoFHandler::active_cell_iterator &cell, - const Vector &local_u, - const Vector &local_v, - const Vector &local_u_bar, - const Vector &local_v_bar, - const Vector &local_u_old, - const Vector &local_v_old, - const Vector &local_u_bar_old, - const Vector &local_v_bar_old, - const Vector &local_difference_u_bar, - const Vector &local_difference_v_bar, - const Vector &local_difference_u_bar_old, - const Vector &local_difference_v_bar_old, - FEValues &fe_values) const; - void make_interpolation_matrices (); -}; - - - - -template -class TimeStep_Postprocess : public TimeStep_ErrorEstimation -{ - public: - virtual void postprocess_timestep (); - virtual void wake_up (const unsigned int wakeup_level); - virtual void sleep (const unsigned int sleep_level); - virtual void end_sweep (); - std::string branch_signature () const; - - protected: - struct StatisticData - { - static void write_descriptions (std::ostream &out, - const WaveParameters ¶meters); - void write (std::ostream &out) const; - std::vector evaluation_results; - }; - - StatisticData statistic_data; - - private: - void interpolate_dual_solution (Vector &interpolated_u_bar, - Vector &interpolated_v_bar) const; -}; - - -template class WaveParameters; - - -template -class TimeStep : public TimeStep_Primal, public TimeStep_Dual, public TimeStep_Postprocess -{ - public: - TimeStep (const double time, - const WaveParameters ¶meters); - - virtual void wake_up (const unsigned int wakeup_level); - virtual void sleep (const unsigned int sleep_level); - virtual void end_sweep (); - static void write_statistics_descriptions (std::ostream &out, - const WaveParameters ¶meters); - void write_statistics (std::ostream &out) const; -}; - -template class TimeStep_Primal; -template class TimeStep_Dual; - - -template -class DualFunctional { - public: - DualFunctional (const bool use_primal_problem = false, - const bool use_primal_problem_at_endtime = false); - virtual ~DualFunctional () {} - virtual void compute_endtime_vectors (Vector &final_u_bar, - Vector &final_v_bar); - virtual void compute_functionals (Vector &j1, - Vector &j2); - bool use_primal_solutions () const; - bool use_primal_solutions_at_endtime () const; - virtual void reset (const TimeStep_Primal &primal_problem); - virtual void reset (const TimeStep_Dual &dual_problem); - DeclException0 (ExcPrimalProblemNotRequested); - - protected: - const bool use_primal_problem; - const bool use_primal_problem_at_endtime; - - const Triangulation *tria; - const Boundary *boundary; - const DoFHandler *dof; - const FiniteElement *fe; - const Quadrature *quadrature; - const Quadrature *quadrature_face; - const Function *density, *stiffness; - - const DoFHandler *primal_dof; - const FiniteElement *primal_fe; - const Quadrature *primal_quadrature; - const Quadrature *primal_quadrature_face; - - const Vector *u; - const Vector *v; - - double time; - double time_step; - unsigned int step_no; -}; - - -template -class EndEnergy : public DualFunctional { - public: - EndEnergy (const bool use_primal_problem_at_any_time = false); - - protected: - enum PartOfDomain { low_atmosphere, high_atmosphere }; - void compute_vectors (const PartOfDomain pod, - Vector &final_u_bar, - Vector &final_v_bar) const; -}; - - -template -class IntegratedValueAtOrigin : public EndEnergy { - public: - virtual void compute_functionals (Vector &j1, - Vector &j2); - DeclException0 (ExcVertexNotFound); -}; - - -template -class SeismicSignal : public DualFunctional { - public: - virtual void compute_functionals (Vector &j1, - Vector &j2); -}; - - -template -class EarthSurface : public DualFunctional { - public: - virtual void compute_functionals (Vector &j1, - Vector &j2); -}; - - -template -class SplitSignal : public DualFunctional { - public: - virtual ~SplitSignal () {} - virtual void compute_functionals (Vector &j1, - Vector &j2); -}; - - -template -class SplitLine : public DualFunctional { - public: - virtual ~SplitLine () {} - void compute_endtime_vectors (Vector &final_u_bar, - Vector &final_v_bar); -}; - - -template -class OneBranch1d : public DualFunctional { - public: - virtual ~OneBranch1d () {} - virtual void compute_functionals (Vector &j1, - Vector &j2); -}; - - -template -class SecondCrossing : public DualFunctional { - public: - virtual ~SecondCrossing () {} - virtual void compute_functionals (Vector &j1, - Vector &j2); -}; - - -template -class HuyghensWave : public DualFunctional { - public: - virtual void compute_functionals (Vector &j1, - Vector &j2); -}; - - - - -template -class EvaluationBase { - public: - /** - * Constructor. Set all pointers in this - * class to invalid values. - */ - EvaluationBase (); - - /** - * Destructor. Does nothing but needs - * to be declared to make it virtual. - */ - virtual ~EvaluationBase () {}; - - /** - * Reset pointers to triangulation, dof - * handler, quadrature formulae etc. - * to the right values for the time level - * to be evaluated next. This function - * needs to be called each time an - * evaluation is to take place. - */ - virtual void reset_timelevel (const TimeStep_Primal &target); - - /** - * Template for the evaluation functions. - * Return one value for the output file. - */ - virtual double evaluate () = 0; - - /** - * Reset the evaluator for the - * next sweep. This may be useful - * if you want to sum up the contributions - * of each time step and print them - * at the end; you then have to - * reset the sum at the start of - * the next sweep, which is done through - * this function. - * - * Default is: do nothing. - */ - virtual void reset (); - - /** - * Print the result at the end of - * each sweep. This function may - * print lines of data with four - * spaces at the beginning of each - * line. - * - * Default is: do nothing. - */ - virtual void print_final_result (std::ostream &out); - - /** - * Return the final result as a number - * for the result file. - * - * Default is: do nothing. - */ - virtual double get_final_result (); - - /** - * Return a brief std::string of description - * which will go into the first line - * of the "results" file. - */ - virtual std::string description () const = 0; - - /** - * Exception. - */ - DeclException0 (ExcIO); - - protected: - /** - * Pointers to the solution vectors - * of the primal problem. - */ - const Vector *u, *v; - - /** - * Underlying triangulation. - */ - const Triangulation *tria; - - /** - * Boundary object. - */ - const Boundary *boundary; - - /** - * Degrees of freedom of the primal - * problem. - */ - const DoFHandler *dof; - - /** - * Primal finite element. - */ - const FiniteElement *fe; - - /** - * Quadrature rule appropriate for - * the primal finite element. - */ - const Quadrature *quadrature; - - /** - * Same for quadrature on faces. - */ - const Quadrature *quadrature_face; - - /** - * Density and stiffness coefficients - * for the modell presently under - * investigation. - */ - const Function *density, *stiffness; - - /** - * Continuous time of the time step - * we are evaluating at present. - */ - double time; - - /** - * Length of the last time step, i.e. in - * the backward direction in time. If - * this is the first timestep, the this - * value is set to zero. - */ - double time_step; - - /** - * Number of that time step. - */ - unsigned int step_no; - - /** - * Base of the filenames under which - * we shall store our results. - */ - std::string base_file_name; -}; - - -/** - * This class is a common base class to the following two. It provides - * for some infrastructure for evaluations computing the energy in part - * of the domain and computing the in/outflow of energy. - * - * Central is the #compute_energy# function, which takes an argument - * describing which part of the domain to take and returns the energy - * therein. - */ -template -class EvaluateEnergyContent : public EvaluationBase { - public: - /** - * Constructor. - */ - EvaluateEnergyContent (); - - /** - * Reset the accumulated energy to zero. - */ - virtual void reset (); - - protected: - /** - * Enum denoting for which of the two - * subdomains the computation is to be - * performed. - */ - enum PartOfDomain { low_atmosphere, high_atmosphere }; - - /** - * Compute the energy for the given - * subdomain. - */ - double compute_energy (const PartOfDomain pod) const; - - protected: - /** - * Energy in the domain in the previous - * time step. This information is needed - * to compute the accumulated in/outflux - * of energy from the domain. - */ - double old_energy; - - /** - * Accumulated in/outflux into/from the - * domain integrated over time. - */ - double integrated_outflux; -}; - - -/** - * Evaluate the value of $u$ at the origin, i.e. $u(0,0)$. - * - * As final result, the time integrated value at the origin is computed. - * The origin shall be a vertex in the finest grid. - */ -template -class EvaluateIntegratedValueAtOrigin : public EvaluationBase { - public: - EvaluateIntegratedValueAtOrigin (): - integrated_value (0) {}; - - virtual double evaluate (); - virtual void print_final_result (std::ostream &out); - virtual double get_final_result (); - virtual std::string description () const; - - /** - * Reset the average value to zero. - */ - virtual void reset (); - - /** - * Exception. - */ - DeclException0 (ExcVertexNotFound); - - private: - double integrated_value; -}; - - -/** - * Integrate the value of $u_h$ at the top boundary over $x$ and $t$ using a - * highly oscillatory weight. - */ -template -class EvaluateSeismicSignal : public EvaluationBase { - public: - EvaluateSeismicSignal () : - result (0) {}; - - static inline double weight (const Point &p, const double time) { - const double pi = 3.14159265359; - return sin(3*pi*p(0))*sin(5*pi*time/2); - }; - - -virtual double evaluate (); - virtual void print_final_result (std::ostream &out); - virtual double get_final_result (); - virtual std::string description () const; - - /** - * Reset the value to zero. - */ - virtual void reset (); - - private: - double result; -}; - - -/** - * Integrate the value of $u_h$ at the top line $x=1.5, y=0..1/16$ at $t=1.6..1.8$. - */ -template -class EvaluateSplitSignal : public EvaluationBase { - public: - EvaluateSplitSignal () : - result (0) {}; - - -virtual double evaluate (); - virtual void print_final_result (std::ostream &out); - virtual double get_final_result (); - virtual std::string description () const; - - /** - * Reset the value to zero. - */ - virtual void reset (); - - private: - double result; -}; - - -template -class EvaluateOneBranch1d : public EvaluationBase { - public: - EvaluateOneBranch1d () : - result (0) {}; - - -virtual double evaluate (); - virtual void print_final_result (std::ostream &out); - virtual double get_final_result (); - virtual std::string description () const; - - /** - * Reset the value to zero. - */ - virtual void reset (); - - private: - double result; -}; - - -template -class EvaluateSecondCrossing1d : public EvaluationBase { - public: - EvaluateSecondCrossing1d () : - result (0) {}; - - -virtual double evaluate (); - virtual void print_final_result (std::ostream &out); - virtual double get_final_result (); - virtual std::string description () const; - - /** - * Reset the value to zero. - */ - virtual void reset (); - - private: - double result; -}; - - -template -class EvaluateHuyghensWave : public EvaluationBase { - public: - EvaluateHuyghensWave () : - integrated_value (0), - weighted_value (0) {}; - - -virtual double evaluate (); - virtual void print_final_result (std::ostream &out); - virtual double get_final_result (); - virtual std::string description () const; - - /** - * Reset the value to zero. - */ - virtual void reset (); - - private: - double integrated_value, weighted_value; -}; - -#include - -/** - * This class has some data members which are shared between the different - * time steps within one sweep. Unlike the #SweepInfo# class, the members - * do not collect information for later output, but provide services to - * the time steps. - */ -template -class SweepData -{ - public: - SweepData (const bool use_data_out_stack); - ~SweepData (); - - DataOutStack *data_out_stack; -}; - - - - -/** - * This class provides some data members which collect information on the - * different time steps of one sweep. - */ -class SweepInfo -{ - public: - struct Data - { - /** - * Constructor. Set all fields to - * their initial values. - */ - Data (); - - double accumulated_error; - - unsigned int cells; - unsigned int primal_dofs; - unsigned int dual_dofs; - }; - - -struct Timers - { - Timer grid_generation; - Timer primal_problem; - Timer dual_problem; - Timer error_estimation; - Timer postprocessing; - }; - - -Data & get_data (); - - Timers & get_timers (); - - -template - void write_summary (const std::list*> & eval_list, - std::ostream &out) const; - - private: - Data data; - Timers timers; -}; - - - - -/** - * Enum denoting the different possibilities to precondition a solver. - */ -enum Preconditioning { - no_preconditioning, - jacobi, - sor, - ssor -}; - - -/** - * Wrapper for the #SparseMatrix# class which handles the preconditioning. - */ -class UserMatrix : public SparseMatrix { - public: - /** - * Constructor. The parameter specifies - * which way to precondition. - */ - UserMatrix (Preconditioning p) : - SparseMatrix (), - preconditioning (p) {}; - - /** - * Constructor. The second parameter - * specifies which way to precondition. - * The first parameter is simply passed - * down to the base class. - */ - UserMatrix (const SparsityPattern &sparsity, - Preconditioning p) : - SparseMatrix(sparsity), - preconditioning (p) {}; - - /** - * Precondition a vector #src# and write - * the result into #dst#. This function - * does not much more than delegating to - * the respective #precondition_*# - * function of the base class, according - * to the preconditioning method specified - * to the constructor of this class. - */ - void precondition (Vector &dst, const Vector &src) const; - - private: - /** - * Variable denoting the preconditioning - * method. - */ - Preconditioning preconditioning; -}; - - - -std::string int_to_string (const unsigned int i, const unsigned int digits); - - -template -inline number sqr (const number a) { - return a*a; -} - - -/** - * This is a helper class which has a collection of static elements and returns - * the right finite element as a pointer when the name of the element is given. - * It is also able to return the correct quadrature formula for domain and - * boundary integrals for the specified finite element. - */ -template -struct FEHelper { - static const FE_Q fe_linear; - static const FE_Q fe_quadratic_sub; -#if 2 < 3 - static const FE_Q fe_cubic_sub; - static const FE_Q fe_quartic_sub; -#endif - - static const QGauss2 q_gauss_2; - static const QGauss3 q_gauss_3; - static const QGauss4 q_gauss_4; - static const QGauss5 q_gauss_5; - static const QGauss6 q_gauss_6; - static const QGauss7 q_gauss_7; - - static const QGauss2 q_gauss_2_face; - static const QGauss3 q_gauss_3_face; - static const QGauss4 q_gauss_4_face; - static const QGauss5 q_gauss_5_face; - static const QGauss6 q_gauss_6_face; - static const QGauss7 q_gauss_7_face; - - /** - * Return a reference to the finite - * element specified by the name - * #name#. - */ - static const FiniteElement & get_fe (const std::string &name); - - /** - * Return the correct domain quadrature - * formula for the finite element denoted - * by the name #name#. - */ - static const Quadrature & get_quadrature (const std::string &name); - - /** - * Return the correct boundary quadrature - * formula for the finite element denoted - * by the name #name#. - */ - static const Quadrature & get_quadrature_face (const std::string &name); -}; - -template const FE_Q FEHelper::fe_linear(1); -template const FE_Q FEHelper::fe_quadratic_sub(2); -#if 2 < 3 -template const FE_Q FEHelper::fe_cubic_sub(3); -template const FE_Q FEHelper::fe_quartic_sub(4); -#endif - -template class DualFunctional; -template class EvaluationBase; - - -/** - * This is a class holding all the input parameters to the program. It is more - * or less a loose collection of data and the only purpose of this class is - * to assemble all the parameters and the functions evaluating them from the - * input file at one place without the need to scatter this functionality - * all over the program. - * - * - * \section{Description of the input parameters} - * - * Note that this std::list may not be up-tp-date at present. - * - * \subsection{Subsection #Grid#} - * \begin{itemize} - * @item #Coarse mesh#: Names a grid to be taken as a coarse grid. The following - * names are allowed: - * \begin{itemize} - * @item #uniform channel#: The domain is $[0,3]\times[0,1]$, triangulated - * by three cells. Left and right boundary are of Dirichlet type, top - * and bottom boundary are of homogeneous Neumann type. - * @item #split channel bottom#: As above, but the lower half is refined once - * more than the top half. - * @item #split channel {left | right}#: Same as #uniform channel#, but with - * cells on the left or right, according to the last word, more refined - * than on the other side. - * @item #square#: $[-1,1]\times[-1,1]$. - * @item #seismic square#: same as #square#, but with Neumann boundary - * at top. - * @item #temperature-square#: Square with size $400,000,000$ (we use the - * cgs system, so this amounts to 4000 km). - * @item #temperature-testcase#: As above, but with a sequence of - * continuously growing cells set atop to avoid the implementation of - * absorbing boundary conditions. The left boundary is of Neumann - * type (mirror boundary). - * @item #random#: Unit square, but randomly refined to test for correctness - * of the time stepping scheme. - * @item #earth#: Circle with radius 6371 (measured in km). - * @begin{itemize} - * @item #Initial refinement#: States how often the grid named by the above - * parameter shall be globally refined to form the coarse mesh. - * @item #Maximum refinement#: std::maximum refinement level a cell may attain. - * Cells with such a refinement level are flagged as others are, but they - * are not refined any more; it is therefore not necessary to lower the - * fraction of cells to be refined in order to avoid the refinement of a - * similar number of cells with a lower level number. - * - * The default to this value is zero, meaning no limit. - * @item #Refinement fraction#: Upon refinement, those cells are refined which - * together make up for a given fraction of the total error. This parameter - * gives that fraction. Default is #0.95#. - * @item #Coarsening fraction#: Similar as above, gives the fraction of the - * total error for which the cells shall be coarsened. Default is #0.03#. - * @item #Top cell number deviation#: Denotes a fraction by which the number of - * cells on a time level may be higher than the number of cells on the - * previous time level. This and the next two parameters help to avoid - * to much differing grids on the time levels and try to smooth the numbers - * of cells as a function of time. The default value is #0.1#. - * @item #Bottom cell number deviation#: Denotes the fraction by which the - * number of cells on a time level may be lower than on the previous time - * level. Default is #0.03#. - * @item #Cell number correction steps#: Usually, the goal denoted by the two - * parameters above cannot be reached directly because the number of cells - * is modified by grid regularization etc. The goal can therefore only be - * reached by an iterative process. This parameter tells how many iterations - * of this process shall be done. Default is #2#. - * @begin{itemize} - * - * \subsection{Subsection #Equation data#} - * \begin{itemize} - * @item #Coefficient#: Names for the different coefficients for the Laplace - * like part of the wave operator. Allowed values are: - * \begin{itemize} - * @item #unit#: Constant one. - * @item #kink#: One for $y<\frac 13$, 4 otherwise. - * @item #gradient#: $1+8*y^2$. - * @item #tube#: $0.2$ for $|x|<0.2$, one otherwise. - * @item #temperature VAL81#: Coefficient computed from the temperature - * field given by Varnazza, Avrett, Loeser 1981. - * @item #temperature kolmogorov#: Broadened temperature spectrum. - * @item #temperature undisturbed#: Quiet atmosphere. - * @item #temperature monochromatic 20s#: Temperature as computed with - * shock waves with $T=20s$. - * @item #temperature monochromatic 40s#: Temperature as computed with - * shock waves with $T=40s$. - * @begin{itemize} - * @item #Initial u#: Names for the initial value for the amplitude. Allowed - * names are: - * \begin{itemize} - * @item #zero#: $u_0=0$. - * @item #eigenmode#: $u_0=sin(2\pi x)sin(2\pi y)$. - * @item #bump#: $u_0=(1-\frac{\vec x^2}{a^2})e^{-\frac{\vec x^2}{a^2}}$ - * for $|\vec x| -class WaveParameters -{ - public: - /** - * Constructor. - */ - WaveParameters (); - - /** - * Destructor. - */ - ~WaveParameters (); - - /** - * Declare all the parameters to the - * given parameter handler. - */ - void declare_parameters (ParameterHandler &prm); - - /** - * Extract the parameters values provided - * by the input file and/or the default - * values from the parameter handler. - */ - void parse_parameters (ParameterHandler &prm); - - /** - * Delete the contents of this class and - * set up a clean state. - */ - void delete_parameters (); - - /** - * Enum holding a std::list of possible coarse - * mesh choices. - */ - enum InitialMesh { - uniform_channel, - split_channel_bottom, - split_channel_right, - split_channel_left, - square, - ring, - seismic_square, - earth, - line, - split_line - }; - - /** - * Enum holding a std::list of possible - * boundary condition choices. - */ - enum BoundaryConditions { - wave_from_left, - fast_wave_from_left, - wave_from_left_center, - wave_from_left_bottom, - zero - }; - - /** - * Enum denoting possible strategies - * for output of meshes and solutions. - * This enum tells us, at which sweeps - * data is to be written. - */ - enum WriteStrategy { - never, - all_sweeps, - last_sweep_only - }; - - /** - * Boundary values. Continuous function - * of space and time. - */ - Function *boundary_values_u; - - /** - * Same for the velocity variable v. - */ - Function *boundary_values_v; - - /** - * Initial values for u. - */ - Function *initial_u; - - /** - * Same for the velocity variable v. - */ - Function *initial_v; - - /** - * Object describing the boundary. By - * default the domain is polygonal made - * from the vertices of the coarsest - * triangulation. However, some of the - * example geometries set in - * #make_coarse_grid# may set this variable - * to another address. The object pointed - * will be deleted at the end of the - * lifetime of this object; when setting - * this variable to another object, you - * may want to delete the object pointed - * to previously. - */ - const Boundary*boundary; - - /** - * Function denoting the coefficient - * within the generalized laplacian - * operator. - */ - Function *density; - - /** - * Same for the stiffness parameter. - */ - Function *stiffness; - - /** - * Store whether the density is a function - * that is constant in space (not - * necessarily in time as well, but at - * each fixed time). - */ - bool density_constant; - - /** - * Same thing for the stiffness parameter. - */ - bool stiffness_constant; - - /** - * Pointer to an object denoting the - * error functional. - */ - DualFunctional*dual_functional; - - /** - * Level of initial refinement, i.e. the - * std::minimum level cells on all grids at - * all times need to have. - */ - unsigned int initial_refinement; - - /** - * std::maximum refinement level a cell may - * have. This one defaults to zero, - * meaning no limit. - */ - unsigned int maximum_refinement; - - /** - * Define structure of initial mesh: - * created by regular refinement of - * the coarsest mesh (uniform) or - * refine one half once more than - * the other (split) or some other - */ - Triangulation *coarse_grid; - - /** - * Pair of numbers denoting the fraction - * of the total error for which the cells - * are to be refined (first) and - * coarsened (second). - */ - std::pair refinement_fraction; - - /** - * Fraction by which the number of cells - * on a time level may differ from the - * number on the previous time level - * (first: top deviation, second: bottom - * deviation). - */ - std::pair cell_number_corridor; - - /** - * Number of iterations to be performed - * to adjust the number of cells on a - * time level to those on the previous - * one. - */ - unsigned int cell_number_correction_steps; - - /** - * Shall we renumber the degrees of - * freedom according to the Cuthill-McKee - * algorithm or not. - */ - bool renumber_dofs; - - /** - * Compare error indicators globally or - * refine each time step separately from - * the others. - */ - bool compare_indicators_globally; - - /** - * Parameters for the time discretization - * of the two equations using the - * theta scheme. - */ - double theta; - - /** - * Time step size. - */ - double time_step; - - /** - * Time up to which we want to compute. - */ - double end_time; - - /** - * Mode of preconditioning. - */ - Preconditioning preconditioning; - - /** - * Use extrapolated values of the old - * solutions as starting values for - * the solver on the new timestep. - */ - bool extrapolate_old_solutions; - - /** - * Directory to which we want the output - * written. - */ - std::string output_directory; - - /** - * Directory to which we want the temporary - * file to be written. - */ - std::string tmp_directory; - - /** - * Format in which the results on the - * meshes is to be written to files. - */ - std::string output_format; - - /** - * Denotes in which sweeps the solution is - * to be written. - */ - WriteStrategy write_solution_strategy; - - /** - * Denote the interval between the steps - * which are to be written. - */ - unsigned int write_steps_interval; - - /** - * Specify whether error information is - * to be written as cell data or node - * data. - */ - bool write_error_as_cell_data; - - /** - * Flag determining whether we shall - * write out the data of the different - * time steps stacked together for a - * whole sweep, and into one file for - * the whole sweep. - */ - bool write_stacked_data; - - /** - * Same as #write_steps_interval#, but - * for stacked output. - */ - unsigned int write_stacked_interval; - - /** - * Write statistics for the error - * distribution in each sweep. - */ - bool produce_error_statistics; - - /** - * Number of histogram intervals for - * the error statistics. - */ - unsigned int error_statistic_intervals; - - /** - * How to break the intervals: linear - * or logarithmic. - */ - std::string error_statistics_scaling; - - /** - * Names of the finite element classes to - * be used for the primal and dual problems. - */ - std::string primal_fe, dual_fe; - - /** - * Strategy for mesh refinement. - */ - enum { energy_estimator, dual_estimator } refinement_strategy; - - /** - * Try to adjust the mesh to the error - * functional as well as to the dual - * solution. For the dual solution, an - * energy estimator is used. - */ - bool adapt_mesh_to_dual_solution; - - /** - * When adapting the mesh for the dual - * problem as well, we have to weigh - * the error indicator for the dual - * problem with that for the primal - * one. This is the factor. - */ - double primal_to_dual_weight; - - /** - * Number of sweeps at the beginning - * where the energy estimator is to - * be used rather than the dual - * estimator. - */ - unsigned int initial_energy_estimator_sweeps; - - /** - * How many adaptive cycles of solving - * the whole problem shall be made. - */ - unsigned int number_of_sweeps; - - /** - * std::list of operations which shall be - * done on each time step after finishing - * a sweep. - */ - std::list*> eval_list; - - /** - * Symbolic name of the boundary conditions - * (additionally to the boundary functions - * themselves), which may be used by some - * of the evaluations and other functionals - * in the program. - */ - BoundaryConditions boundary_conditions; - - /** - * Exception. - */ - DeclException1 (ExcParameterNotInList, - std::string, - << "The given parameter <" << arg1 << "> is not " - << "recognized to be a valid one."); - - private: - - /** - * Undefined std::copy constructor. - */ - WaveParameters (const WaveParameters &); - - /** - * Undefined std::copy operator. - */ - WaveParameters & operator = (const WaveParameters &); - - -/** - * std::list of names for the initial values. - * Make this a member of the templated - * class since the supported initial - * values could be different from - * dimension to dimension. - */ - static const std::string initial_value_names; - - /** - * Names of coefficient functions. The - * same applies as for - * #initial_value_names#. - */ - static const std::string coefficient_names; - - /** - * Names of boundary value functions. The - * same applies as for - * #initial_value_names#. - */ - static const std::string boundary_function_names; - - /** - * Names of error functionals. The - * same applies as for - * #initial_value_names#. - */ - static const std::string dual_functional_names; - - -/** - * Set the initial function pointers - * depending on the given names. - */ - void set_initial_functions (const std::string &u_name, - const std::string &v_name); - - /** - * Set the coefficient functions. - */ - void set_coefficient_functions (const std::string &name); - - /** - * Set the boundary values. - */ - void set_boundary_functions (const std::string &name); - - /** - * Make a std::list of evaluations to be - * performed after each sweep. - */ - void make_eval_list (const std::string &names); - - /** - * Set the dual functional after - * which the dual solution will be - * computed. - */ - void set_dual_functional (const std::string &name); - - /** - * Create the coarse grid for - * this run. - */ - void make_coarse_grid (const std::string &name); -}; - - - -template class WaveParameters; -class SweepInfo; - - -/** - * Top-level class of the timestepping mechanism. This class manages - * the execution and solution of primal and dual problem, of computing - * error estimates and doing the refinement of grids. - * - * @author Wolfgang Bangerth, 1999 - */ -template -class TimestepManager : public TimeDependent { - public: - /** - * Constructor. - */ - TimestepManager (const WaveParameters ¶meters); - - /** - * Run a complete sweep, consisting - * of the solution of the primal problem, - * the solution of the dual problem if - * requested, computation of error - * quantities and refinement. - */ - void run_sweep (const unsigned int sweep_no); - - /** - * Exception - */ - DeclException0 (ExcIO); - - private: - /** - * Reference to the global parameters - * object. - */ - const WaveParameters ¶meters; - - /** - * Refine the grids, or, better, find - * out which cells need to be refined. - * Refinement is done by a following - * sweep. - */ - void refine_grids (); - - /** - * Write some statistics to a file. - */ - void write_statistics (const SweepInfo &sweep_info) const; - - /** - * Write the data stacked together - * from all the time steps into - * one single file. - */ - void write_stacked_data (DataOutStack &data_out_stack) const; -}; - - -/** - * Top-level class providing the set up of a simulation. The - * class provides an interface suitable to the #MultipleParameterLoop# - * class to do several simulations in a row, stores global simulation - * parameters, and so on. - * - * @author Wolfgang Bangerth, 1998, 1999 - */ -template -class WaveProblem : public MultipleParameterLoop::UserClass { - public: - - /** - * Constructor. - */ - WaveProblem (); - - /** - * Destructor. - */ - virtual ~WaveProblem (); - - /** - * Put this object into a clean state. - * This function is called at the - * beginning of each loop by the - * #MultipleParameterHandler#. - */ - virtual void create_new (const unsigned int run_no); - - /** - * Make the std::list of parameters known - * to the parameter handler. This - * function only delegates its work - * to the #parameters# sub-object. - */ - virtual void declare_parameters (ParameterHandler &prm); - - /** - * Parse the std::list of parameters given - * by the parameter handler. This - * function only delegates its work - * to the #parameters# sub-object. - */ - virtual void parse_parameters (ParameterHandler &prm); - - /** - * Run a complete simulation. - */ - virtual void run (ParameterHandler &prm); - - private: - /** - * Object holding the parameters of - * the present simulation. - */ - WaveParameters parameters; -}; - - - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include - - -/*------------------------ DualFunctional --------------------------------*/ - -template -DualFunctional::DualFunctional (const bool use_primal_problem, - const bool use_primal_problem_at_endtime) : - use_primal_problem (use_primal_problem), - use_primal_problem_at_endtime (use_primal_problem_at_endtime), - tria (0), - boundary (0), - dof (0), - fe(0), - quadrature(0), - quadrature_face(0), - density(0), - stiffness(0), - primal_dof(0), - primal_fe(0), - primal_quadrature(0), - primal_quadrature_face(0), - u(0), - v(0), - time(0), - time_step(0), - step_no(0) -{} - - -template -void DualFunctional::compute_functionals (Vector &j1, - Vector &j2) { - j1.reinit (dof->n_dofs()); - j2.reinit (dof->n_dofs()); -} - - -template -void DualFunctional::compute_endtime_vectors (Vector &final_u_bar, - Vector &final_v_bar) { - final_u_bar.reinit (dof->n_dofs()); - final_v_bar.reinit (dof->n_dofs()); -} - - -template -bool DualFunctional::use_primal_solutions () const { - return use_primal_problem; -} - - -template -bool DualFunctional::use_primal_solutions_at_endtime () const { - return use_primal_problem_at_endtime; -} - - -template -void DualFunctional::reset (const TimeStep_Primal &primal_problem) { - Assert (use_primal_problem || - (use_primal_problem_at_endtime && - (primal_problem.parameters.end_time==primal_problem.time)), - ExcPrimalProblemNotRequested()); - - primal_dof = primal_problem.dof_handler; - primal_fe = &primal_problem.fe; - primal_quadrature = &primal_problem.quadrature; - primal_quadrature_face = &primal_problem.quadrature_face; - - u = &primal_problem.u; - v = &primal_problem.v; -} - - -template -void DualFunctional::reset (const TimeStep_Dual &dual_problem) { - tria = dual_problem.tria; - boundary = dual_problem.parameters.boundary; - dof = dual_problem.dof_handler; - fe = &dual_problem.fe; - quadrature = &dual_problem.quadrature; - quadrature_face = &dual_problem.quadrature_face; - density = dual_problem.parameters.density; - stiffness = dual_problem.parameters.stiffness; - time = dual_problem.time; - time_step = (dual_problem.next_timestep == 0 ? - 0 : - dual_problem.get_forward_timestep()); - step_no = dual_problem.timestep_no; -} - - -/* ----------------------- EndEnergy ------------------------------*/ - - -template -EndEnergy::EndEnergy (const bool use_primal_problem) : - DualFunctional (use_primal_problem, true) {} - - -template -void EndEnergy::compute_vectors (const PartOfDomain pod, - Vector &final_u_bar, - Vector &final_v_bar) const { - const double y_offset = 300000000; - const unsigned int n_q_points = this->quadrature->n_quadrature_points; - const unsigned int dofs_per_cell = this->fe->dofs_per_cell; - - final_u_bar.reinit (this->dof->n_dofs()); - final_v_bar.reinit (this->dof->n_dofs()); - - typename DoFHandler::active_cell_iterator cell, primal_cell, endc; - cell = this->dof->begin_active (); - endc = this->dof->end (); - primal_cell = this->primal_dof->begin_active(); - - FEValues fe_values (*this->fe, *this->quadrature, - UpdateFlags(update_values | - update_gradients | - update_JxW_values | - update_q_points)); - FEValues fe_values_primal (*this->primal_fe, *this->quadrature, - UpdateFlags(update_values | update_gradients)); - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - - std::vector > local_u_grad (n_q_points); - std::vector local_v (n_q_points); - - std::vector density_values(this->quadrature->n_quadrature_points); - std::vector stiffness_values(this->quadrature->n_quadrature_points); - - std::vector cell_dof_indices (dofs_per_cell); - - for (; cell!=endc; ++cell, ++primal_cell) - { - switch (pod) - { - case low_atmosphere: - if (cell->center()(1) >= y_offset) - continue; - break; - case high_atmosphere: - if (cell->center()(1) < y_offset) - continue; - break; - }; - - - fe_values.reinit (cell); - fe_values_primal.reinit (primal_cell); - fe_values_primal.get_function_values (*this->v, local_v); - fe_values_primal.get_function_grads (*this->u, local_u_grad); - - this->density->value_list (fe_values.get_quadrature_points(), - density_values); - this->stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - - std::vector local_functional1 (dofs_per_cell, 0); - std::vector local_functional2 (dofs_per_cell, 0); - for (unsigned int shape_func=0; shape_funcget_dof_indices (cell_dof_indices); - for (unsigned int shape_func=0; shape_func -void IntegratedValueAtOrigin::compute_functionals (Vector &j1, - Vector &j2) { - j1.reinit (this->dof->n_dofs()); - j2.reinit (this->dof->n_dofs()); - - typename DoFHandler::active_cell_iterator cell = this->dof->begin_active(), - endc = this->dof->end(); - - Point origin; - - bool origin_found = false; - for (; (cell!=endc) && !origin_found; ++cell) - { - for (unsigned int vertex=0; vertex::vertices_per_cell; ++vertex) - if (cell->vertex(vertex) == origin) - { - j1(cell->vertex_dof_index(vertex,0)) = 1; - origin_found = true; - }; - }; - - Assert (origin_found, ExcVertexNotFound()); -} - - -/*------------------------ SeismicSignal --------------------------------*/ - - -template -void SeismicSignal::compute_functionals (Vector &j1, - Vector &j2) { - const double y_offset = 1.0; - const unsigned int n_q_points = this->quadrature_face->n_quadrature_points; - const unsigned int dofs_per_cell = this->fe->dofs_per_cell; - - j1.reinit (this->dof->n_dofs()); - j2.reinit (this->dof->n_dofs()); - - typename DoFHandler::active_cell_iterator cell, endc; - typename DoFHandler::face_iterator face; - cell = this->dof->begin_active(); - endc = this->dof->end(); - - std::vector cell_dof_indices (dofs_per_cell); - - FEFaceValues fe_face_values (*this->fe, *this->quadrature_face, - UpdateFlags(update_values | - update_JxW_values | - update_q_points)); - - for (; cell!=endc; ++cell) - for (unsigned int face_no=0; face_no::faces_per_cell; - ++face_no) - if (face=cell->face(face_no), - (face->vertex(0)(1) == y_offset) && - (face->vertex(1)(1) == y_offset)) - { - fe_face_values.reinit (cell, face_no); - const std::vector > &q_points (fe_face_values.get_quadrature_points()); - - std::vector local_integral (dofs_per_cell, 0); - for (unsigned int shape_func=0; shape_func - ::weight(q_points[point], this->time)) * - fe_face_values.JxW(point); - - cell->get_dof_indices (cell_dof_indices); - for (unsigned int shape_func=0; shape_func -void EarthSurface::compute_functionals (Vector &j1, - Vector &j2) { - const unsigned int face_dofs = this->fe->dofs_per_face; - - j1.reinit (this->dof->n_dofs()); - j2.reinit (this->dof->n_dofs()); - - typename DoFHandler::active_cell_iterator cell, endc; - typename DoFHandler::face_iterator face; - cell = this->dof->begin_active(); - endc = this->dof->end(); - - std::vector face_dof_indices (face_dofs); - - for (; cell!=endc; ++cell) - for (unsigned int face_no=0; face_no::faces_per_cell; - ++face_no) - if (face=cell->face(face_no), - face->at_boundary()) - { - const double x = face->center()(0), - y = face->center()(1); - - if (! (((x>0) && (fabs(y) < 500)) || - ((x>0) && (y<0) && (fabs(x+y)<500)))) - continue; - - const double h = face->measure (); - - face->get_dof_indices (face_dof_indices); - for (unsigned int shape_func=0; shape_func -void SplitSignal::compute_functionals (Vector &j1, - Vector &j2) { - const unsigned int dofs_per_cell = this->fe->dofs_per_cell; - const unsigned int n_q_points = this->quadrature_face->n_quadrature_points; - - j1.reinit (this->dof->n_dofs()); - j2.reinit (this->dof->n_dofs()); - - if ((this->time<=1.6) || (this->time>1.8)) - return; - - typename DoFHandler::active_cell_iterator cell, endc; - typename DoFHandler::face_iterator face; - cell = this->dof->begin_active(); - endc = this->dof->end(); - - std::vector dof_indices (this->fe->dofs_per_cell); - FEFaceValues fe_face_values (*this->fe, *this->quadrature_face, UpdateFlags(update_values | update_JxW_values)); - - for (; cell!=endc; ++cell) - for (unsigned int face_no=0; face_no::faces_per_cell; - ++face_no) - if (cell->face(face_no)->center()(0) == 1.5) - { - face=cell->face(face_no); - bool wrong_face = face->center()(1) > 0.0625; - if (!wrong_face) - for (unsigned int v=0; v::vertices_per_face; ++v) - if (face->vertex(v)(0) != 1.5) - { - wrong_face=true; - break; - }; - if (wrong_face) - continue; - - fe_face_values.reinit (cell, face_no); - cell->get_dof_indices (dof_indices); - - for (unsigned int i=0; itime_step / 2; - }; - }; -} - - -/* ------------------------------ Split line 1d case ----------------------------- */ - -template -void SplitLine::compute_endtime_vectors (Vector &, - Vector &) { - Assert (false, ExcNotImplemented ()); -} - - - - -/*------------------------ OneBranch1d --------------------------------*/ - - -template -void OneBranch1d::compute_functionals (Vector &j1, - Vector &j2) { - const unsigned int dofs_per_cell = this->fe->dofs_per_cell; - const unsigned int n_q_points = this->quadrature->n_quadrature_points; - - j1.reinit (this->dof->n_dofs()); - j2.reinit (this->dof->n_dofs()); - - if ((this->time<=2.5-this->time_step) || (this->time>2.5)) - return; - - typename DoFHandler::active_cell_iterator cell, endc; - cell = this->dof->begin_active(); - endc = this->dof->end(); - - std::vector dof_indices (this->fe->dofs_per_cell); - FEValues fe_values (*this->fe, *this->quadrature, UpdateFlags(update_values | update_JxW_values)); - - for (; cell!=endc; ++cell) - if ((cell->center()(0) > -0.6) && - (cell->center()(0) < -0.4)) - { - fe_values.reinit (cell); - cell->get_dof_indices (dof_indices); - - for (unsigned int i=0; i -void SecondCrossing::compute_functionals (Vector &j1, - Vector &j2) { - const unsigned int dofs_per_cell = this->fe->dofs_per_cell; - const unsigned int n_q_points = this->quadrature->n_quadrature_points; - - j1.reinit (this->dof->n_dofs()); - j2.reinit (this->dof->n_dofs()); - - if ((this->time<=2.4-this->time_step) || (this->time>2.4)) - return; - - typename DoFHandler::active_cell_iterator cell, endc; - cell = this->dof->begin_active(); - endc = this->dof->end(); - - std::vector dof_indices (this->fe->dofs_per_cell); - FEValues fe_values (*this->fe, *this->quadrature, UpdateFlags(update_values | update_JxW_values)); - - for (; cell!=endc; ++cell) - if ((cell->center()(0) > -0.03) && - (cell->center()(0) < 0.03)) - { - fe_values.reinit (cell); - cell->get_dof_indices (dof_indices); - - for (unsigned int i=0; itime_step; - }; - }; -} - - -/*------------------------ HuyghensWave --------------------------------*/ - - -template -void HuyghensWave::compute_functionals (Vector &j1, - Vector &j2) { - j1.reinit (this->dof->n_dofs()); - j2.reinit (this->dof->n_dofs()); - - if ((this->time < 0.5) || (this->time > 0.69)) - return; - - Point p; - p(0) = 0.75; - const Point evaluation_point (p); - - const typename DoFHandler::cell_iterator endc = this->dof->end(3); - bool point_found = false; - for (typename DoFHandler::cell_iterator cell=this->dof->begin(3); - (cell!=endc) && !point_found; ++cell) - for (unsigned int vertex=0; vertex::vertices_per_cell; ++vertex) - if (cell->vertex(vertex) == evaluation_point) - { - typename DoFHandler::cell_iterator terminal_cell = cell; - while (terminal_cell->has_children()) - terminal_cell = terminal_cell->child(vertex); - - j1(cell->vertex_dof_index(vertex,0)) = this->time*this->time_step; - point_found = true; - - break; - }; - - AssertThrow (point_found, ExcInternalError()); -} - - - -template class DualFunctional<2>; -template class EndEnergy<2>; -template class IntegratedValueAtOrigin<2>; -template class SeismicSignal<2>; -template class EarthSurface<2>; -template class SplitSignal<2>; -template class SplitLine<2>; -template class OneBranch1d<2>; -template class SecondCrossing<2>; -template class HuyghensWave<2>; - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include - - -/*--------------------------- EvaluationBase --------------------------*/ - -template -EvaluationBase::EvaluationBase () : - u (0), - v (0), - tria (0), - boundary (0), - dof (0), - fe (0), - quadrature (0), - quadrature_face (0), - density (0), - stiffness (0), - time (0), - time_step (0), - step_no (0) -{} - - -template -void EvaluationBase::reset_timelevel (const TimeStep_Primal &target) { - u = &target.u; - v = &target.v; - tria = target.tria; - boundary = target.parameters.boundary; - dof = target.dof_handler; - fe = &target.fe; - quadrature = &target.quadrature; - quadrature_face = &target.quadrature_face; - density = target.parameters.density; - stiffness = target.parameters.stiffness; - time = target.time; - time_step = (target.timestep_no == 0 ? - 0 : - target.get_backward_timestep()); - step_no = target.timestep_no; - - base_file_name = target.parameters.output_directory + - "sweep"+int_to_string(target.sweep_no, 2) + "/evaluation/" + - int_to_string(step_no,4); -} - - -template -void EvaluationBase::reset () {} - - -template -void EvaluationBase::print_final_result (std::ostream &) {} - - -template -double EvaluationBase::get_final_result () { - return 0; -} - - -/*--------------------------- EvaluateEnergyContent ----------------------*/ - -template -EvaluateEnergyContent::EvaluateEnergyContent () : - old_energy (0), - integrated_outflux (0) {} - - -template -void EvaluateEnergyContent::reset () { - old_energy = 0; - integrated_outflux = 0; -} - - -template -double EvaluateEnergyContent::compute_energy (const PartOfDomain pod) const { - const double y_offset = 300000000; - - typename DoFHandler::active_cell_iterator cell, endc; - cell = this->dof->begin_active (); - endc = this->dof->end (); - - FEValues fe_values (*this->fe, *this->quadrature, - UpdateFlags(update_values | - update_gradients | - update_JxW_values | - update_q_points)); - FullMatrix cell_matrix (this->fe->dofs_per_cell, this->fe->dofs_per_cell); - Vector local_u (this->fe->dofs_per_cell); - Vector local_v (this->fe->dofs_per_cell); - - std::vector density_values(this->quadrature->n_quadrature_points); - std::vector stiffness_values(this->quadrature->n_quadrature_points); - - double total_energy = 0; - - for (; cell!=endc; ++cell) - { - switch (pod) - { - case low_atmosphere: - if (cell->center()(1) >= y_offset) - continue; - break; - case high_atmosphere: - if (cell->center()(1) < y_offset) - continue; - break; - }; - - - fe_values.reinit (cell); - cell->get_dof_values (*this->u, local_u); - cell->get_dof_values (*this->v, local_v); - - cell_matrix = 0; - this->density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; pointfe->dofs_per_cell; ++i) - for (unsigned int j=0; jfe->dofs_per_cell; ++j) - cell_matrix(i,j) += (fe_values.shape_value(i,point) * - fe_values.shape_value(j,point)) * - fe_values.JxW(point) * - density_values[point]; - - total_energy += 1./2. * cell_matrix.matrix_norm_square (local_v); - - cell_matrix = 0; - this->stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - for (unsigned int point=0; pointfe->dofs_per_cell; ++i) - for (unsigned int j=0; jfe->dofs_per_cell; ++j) - cell_matrix(i,j) += (fe_values.shape_grad(i,point) * - fe_values.shape_grad(j,point)) * - fe_values.JxW(point) * - stiffness_values[point]; - total_energy += 1./2. * cell_matrix.matrix_norm_square (local_u); - }; - - return total_energy; -} - - -/* ---------------------------- EvaluateIntegratedValueAtOrigin ------------------- */ - - -template -void EvaluateIntegratedValueAtOrigin::print_final_result (std::ostream &out) { - out << " Integrated value of u at origin: " - << integrated_value << std::endl; -} - - -template -double EvaluateIntegratedValueAtOrigin::get_final_result () { - return integrated_value; -} - - -template -std::string EvaluateIntegratedValueAtOrigin::description () const { - return "integrated value at origin"; -} - - -template -void EvaluateIntegratedValueAtOrigin::reset () { - integrated_value = 0; -} - - -template -double EvaluateIntegratedValueAtOrigin::evaluate () { - typename DoFHandler::active_cell_iterator cell = this->dof->begin_active(), - endc = this->dof->end(); - - double value_at_origin = 0; - Point origin; - - bool origin_found = false; - for (; (cell!=endc) && !origin_found; ++cell) - { - for (unsigned int vertex=0; vertex::vertices_per_cell; ++vertex) - if (cell->vertex(vertex) == origin) - { - value_at_origin = (*this->u)(cell->vertex_dof_index(vertex,0)); - origin_found = true; - }; - }; - - Assert (origin_found, ExcVertexNotFound()); - - if (time > 0) - integrated_value += value_at_origin * this->time_step; - - return value_at_origin; -} - - -/*------------------------- EvaluateSeismicSignal --------------------------*/ - - -template -void EvaluateSeismicSignal::print_final_result (std::ostream &out) { - out << " Integrated seismic signal: " << result << std::endl; -} - - -template -double EvaluateSeismicSignal::get_final_result () { - return result; -} - - -template -std::string EvaluateSeismicSignal::description () const { - return "Integrated seismic signal at top"; -} - - -template -void EvaluateSeismicSignal::reset () { - result = 0; -} - - -template -double EvaluateSeismicSignal::evaluate () { - const unsigned int n_q_points = this->quadrature_face->n_quadrature_points; - - std::ofstream out((this->base_file_name + ".seismic").c_str()); - AssertThrow (out, typename EvaluationBase::ExcIO()); - - typename DoFHandler::active_cell_iterator cell = this->dof->begin_active(), - endc = this->dof->end(); - double u_integrated=0; - FEFaceValues face_values (*this->fe, *this->quadrature_face, - UpdateFlags(update_values | - update_JxW_values | - update_q_points)); - std::vector face_u (this->fe->dofs_per_face); - - for (; cell!=endc; ++cell) - for (unsigned int face=0; face::faces_per_cell; ++face) - if (cell->face(face)->center()(1) == 1.0) - { - face_values.reinit (cell, face); - face_values.get_function_values (*this->u, face_u); - const std::vector > &q_points (face_values.get_quadrature_points()); - - double local_integral = 0; - for (unsigned int point=0; pointtime) * - face_values.JxW(point); - u_integrated += local_integral; - - out << this->time - << ' ' - << cell->face(face)->vertex(0)(0) - << " " - << (*this->u)(cell->face(face)->vertex_dof_index(0,0)) - << std::endl - << this->time - << ' ' - << cell->face(face)->vertex(1)(0) - << " " - << (*this->u)(cell->face(face)->vertex_dof_index(1,0)) - << std::endl - << std::endl; - }; - AssertThrow (out, typename EvaluationBase::ExcIO()); - out.close (); - - if (time!=0) - result += u_integrated*this->time_step; - - return u_integrated; -} - - -/*------------------------- EvaluateSplitSignal --------------------------*/ - - -template -void EvaluateSplitSignal::print_final_result (std::ostream &out) { - out << " Integrated split signal: " << result << std::endl; -} - - -template -double EvaluateSplitSignal::get_final_result () { - return result; -} - - -template -std::string EvaluateSplitSignal::description () const { - return "Integrated split signal (exact: (2+pi)/(16-pi)=0.010229)"; -} - - -template -void EvaluateSplitSignal::reset () { - result = 0; -} - - -template -double EvaluateSplitSignal::evaluate () { - if ((this->time<=1.6) || (this->time>1.8)) - return 0; - - const unsigned int n_q_points = this->quadrature_face->n_quadrature_points; - typename DoFHandler::active_cell_iterator cell = this->dof->begin_active(), - endc = this->dof->end(); - double u_integrated=0; - FEFaceValues face_values (*this->fe, *this->quadrature_face, UpdateFlags(update_values | update_JxW_values)); - std::vector face_u (this->fe->dofs_per_face); - - for (; cell!=endc; ++cell) - for (unsigned int face_no=0; face_no::faces_per_cell; ++face_no) - if (cell->face(face_no)->center()(0) == 1.5) - { - typename DoFHandler::face_iterator face=cell->face(face_no); - bool wrong_face = face->center()(1) > 0.0625; - if (!wrong_face) - for (unsigned int v=0; v::vertices_per_face; ++v) - if (face->vertex(v)(0) != 1.5) - { - wrong_face=true; - break; - }; - if (wrong_face) - continue; - - face_values.reinit (cell, face_no); - face_values.get_function_values (*this->u, face_u); - - double local_integral = 0; - for (unsigned int point=0; pointtime_step / 2; - - return u_integrated; -} - - -/*------------------------- EvaluateOneBranch1d --------------------------*/ - - -template -void EvaluateOneBranch1d::print_final_result (std::ostream &out) { - out << " One branch integrated: " << result << std::endl; -} - - -template -double EvaluateOneBranch1d::get_final_result () { - return result; -} - - -template -std::string EvaluateOneBranch1d::description () const { - return "One branch integrated (exact: 0.055735)"; -} - - -template -void EvaluateOneBranch1d::reset () { - result = 0; -} - - -template -double EvaluateOneBranch1d::evaluate () -{ - Assert (false, ExcNotImplemented()); - return 0; -} - - - - -/*------------------------- EvaluateSecondCrossing1d --------------------------*/ - - -template -void EvaluateSecondCrossing1d::print_final_result (std::ostream &out) { - out << " Second crossing: " << result << std::endl; -} - - -template -double EvaluateSecondCrossing1d::get_final_result () { - return result; -} - - -template -std::string EvaluateSecondCrossing1d::description () const { - return "Second crossing (exact: 0.011147)"; -} - - -template -void EvaluateSecondCrossing1d::reset () { - result = 0; -} - - -template -double EvaluateSecondCrossing1d::evaluate () -{ - Assert (false, ExcNotImplemented()); - return 0; -} - - - -/*------------------------- EvaluateHuyghensWave --------------------------*/ - - -template -void EvaluateHuyghensWave::print_final_result (std::ostream &out) { - out << " Hughens wave -- weighted time: " << weighted_value / integrated_value << std::endl; - out << " average : " << integrated_value << std::endl; -} - - -template -double EvaluateHuyghensWave::get_final_result () { - return weighted_value / integrated_value; -} - - -template -std::string EvaluateHuyghensWave::description () const { - return "Huyghens wave"; -} - - -template -void EvaluateHuyghensWave::reset () { - integrated_value = weighted_value = 0; -} - - -template -double EvaluateHuyghensWave::evaluate () -{ - double value_at_origin = 0; - Point p; - p(0) = 0.75; - const Point evaluation_point (p); - - const typename DoFHandler::cell_iterator endc = this->dof->end(3); - bool point_found = false; - for (typename DoFHandler::cell_iterator cell=this->dof->begin(3); - (cell!=endc) && !point_found; ++cell) - for (unsigned int vertex=0; vertex::vertices_per_cell; ++vertex) - if (cell->vertex(vertex) == evaluation_point) - { - typename DoFHandler::cell_iterator terminal_cell = cell; - while (terminal_cell->has_children()) - terminal_cell = terminal_cell->child(vertex); - - value_at_origin = (*this->u)(cell->vertex_dof_index(vertex,0)); - point_found = true; - - break; - }; - - AssertThrow (point_found, ExcInternalError()); - - if ((this->time > 0.5) && (this->time < 0.69)) - { - integrated_value += value_at_origin * this->time_step; - weighted_value += value_at_origin * this->time_step * this->time; - }; - - return value_at_origin; -} - - -template class EvaluationBase<2>; -template class EvaluateEnergyContent<2>; -template class EvaluateIntegratedValueAtOrigin<2>; -template class EvaluateSeismicSignal<2>; -template class EvaluateSplitSignal<2>; -template class EvaluateOneBranch1d<2>; -template class EvaluateSecondCrossing1d<2>; -template class EvaluateHuyghensWave<2>; - - -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include - -#include - - -template -TimestepManager::TimestepManager (const WaveParameters ¶meters) : - TimeDependent(TimeDependent::TimeSteppingData(0,1), - TimeDependent::TimeSteppingData(0,1), - TimeDependent::TimeSteppingData(0,1)), - parameters (parameters) -{} - - -template -void TimestepManager::run_sweep (const unsigned int sweep_no) -{ - SweepInfo sweep_info; - SweepData sweep_data (parameters.write_stacked_data); - if (parameters.write_stacked_data) - { - sweep_data.data_out_stack->declare_data_vector ("u", DataOutStack::dof_vector); - sweep_data.data_out_stack->declare_data_vector ("v", DataOutStack::dof_vector); - if ((parameters.refinement_strategy == WaveParameters::dual_estimator) - && - (sweep_no >= parameters.initial_energy_estimator_sweeps)) - { - sweep_data.data_out_stack->declare_data_vector ("dual_u", DataOutStack::dof_vector); - sweep_data.data_out_stack->declare_data_vector ("dual_v", DataOutStack::dof_vector); - }; - if ((sweep_no::dual_estimator)) - sweep_data.data_out_stack->declare_data_vector ("est_error", DataOutStack::cell_vector); - }; - - - deallog << "Sweep " << std::setw(2) << sweep_no << ':' << std::endl - << "---------" << std::endl; - - for (typename std::list*>::const_iterator i = parameters.eval_list.begin(); - i != parameters.eval_list.end(); ++i) - (*i)->reset (); - - start_sweep (sweep_no); - - for (std::vector >::iterator timestep=timesteps.begin(); - timestep!=timesteps.end(); ++timestep) - { - TimeStepBase* t = *timestep; - dynamic_cast*>(t)->attach_sweep_info (sweep_info); - dynamic_cast*>(t)->attach_sweep_data (sweep_data); - }; - - solve_primal_problem (); - deallog << std::endl; - - if ((parameters.refinement_strategy == WaveParameters::dual_estimator) - && - (sweep_no >= parameters.initial_energy_estimator_sweeps)) - { - solve_dual_problem (); - deallog << std::endl; - }; - - postprocess (); - - if (parameters.write_stacked_data) - write_stacked_data (*sweep_data.data_out_stack); - - deallog << std::endl; - - if (sweep_no != parameters.number_of_sweeps-1) - refine_grids (); - - write_statistics (sweep_info); - - end_sweep (); - - deallog << std::endl << std::endl; -} - - -template -void TimestepManager::refine_grids () -{ - deallog << " Collecting refinement data: " << std::endl; - - -const unsigned int n_timesteps = timesteps.size(); - - std::vector > indicators (n_timesteps); - - for (unsigned int i=0; i*>(t) - ->get_timestep_postprocess().get_tria_refinement_criteria (indicators[i]); - } - - unsigned int total_number_of_cells = 0; - for (unsigned int i=0; i time_values (timesteps.size()); - for (unsigned int i=0; iget_time(); - - Histogram error_statistics; - error_statistics.evaluate (indicators, - time_values, - parameters.error_statistic_intervals, - Histogram::parse_interval_spacing(parameters.error_statistics_scaling)); - error_statistics.write_gnuplot (logfile); - - deallog << std::endl; - }; - - -if (parameters.compare_indicators_globally) - { - - Vector all_indicators (total_number_of_cells); - unsigned int next_index=0; - for (unsigned int i=0; i partial_sums(all_indicators.size()); - std::sort (all_indicators.begin(), all_indicators.end(), std::greater()); - std::partial_sum (all_indicators.begin(), all_indicators.end(), - partial_sums.begin()); - - const Vector::const_iterator - p = std::upper_bound (partial_sums.begin(), partial_sums.end(), - total_error*(1-parameters.refinement_fraction.second)), - q = std::lower_bound (partial_sums.begin(), partial_sums.end(), - parameters.refinement_fraction.first*total_error); - - double bottom_threshold = all_indicators(p != partial_sums.end() ? - p-partial_sums.begin() : - all_indicators.size()-1), - top_threshold = all_indicators(q-partial_sums.begin()); - - if (bottom_threshold==top_threshold) - bottom_threshold = 0.999*top_threshold; - - deallog << " " << all_indicators.size() - << " cells in total." - << std::endl; - deallog << " Thresholds are [" << bottom_threshold << "," << top_threshold << "]" - << " out of [" - << *min_element(all_indicators.begin(),all_indicators.end()) - << ',' - << *max_element(all_indicators.begin(),all_indicators.end()) - << "]. " - << std::endl; - deallog << " Expecting " - << (all_indicators.size() + - (q-partial_sums.begin())*(GeometryInfo::children_per_cell-1) - - (partial_sums.end() - p)/(GeometryInfo::children_per_cell-1)) - << " cells in next sweep." - << std::endl; - deallog << " Now refining..."; - do_loop (mem_fun (&TimeStepBase_Tria::init_for_refinement), - bind2nd (mem_fun (&TimeStepBase_Wave::refine_grid), - typename TimeStepBase_Tria::RefinementData (top_threshold, - bottom_threshold)), - TimeDependent::TimeSteppingData (0,1), - TimeDependent::forward); - deallog << std::endl; - } - - else - { - deallog << " Refining each time step separately." << std::endl; - - for (unsigned int timestep=0; timestep*>(t)->init_for_refinement(); - } - - unsigned int total_expected_cells = 0; - - for (unsigned int timestep=0; timestep *this_timestep - = static_cast*>(t); - - this_timestep->wake_up (0); - - Assert (indicators.size() > 0, ExcInternalError()); - Vector criteria (indicators[0]); - indicators.erase (indicators.begin()); - - const double total_error = criteria.l1_norm(); - - Vector partial_sums(criteria.size()); - - std::sort (criteria.begin(), criteria.end(), std::greater()); - std::partial_sum (criteria.begin(), criteria.end(), - partial_sums.begin()); - - const Vector::const_iterator - p = std::upper_bound (partial_sums.begin(), partial_sums.end(), - total_error*(1-parameters.refinement_fraction.second)), - q = std::lower_bound (partial_sums.begin(), partial_sums.end(), - parameters.refinement_fraction.first*total_error); - - double bottom_threshold = criteria(p != partial_sums.end() ? - p-partial_sums.begin() : - criteria.size()-1), - top_threshold = criteria(q != partial_sums.end() ? - q-partial_sums.begin() : - criteria.size()-1); - - if (bottom_threshold==top_threshold) - bottom_threshold = 0.999*top_threshold; - - total_expected_cells += (criteria.size() + - (q-partial_sums.begin())*(GeometryInfo::children_per_cell-1) - - (partial_sums.end() - p)/(GeometryInfo::children_per_cell-1)); - - this_timestep->refine_grid (typename TimeStepBase_Tria::RefinementData (top_threshold, - bottom_threshold)); - - this_timestep->sleep (0); - if (timestep!=0) - static_cast&>(*timesteps[timestep-1]).sleep(1); - }; - - if (timesteps.size() != 0) - static_cast&>(*timesteps.back()).sleep(1); - - -deallog << " Got " << total_number_of_cells << " presently, expecting " - << total_expected_cells << " for next sweep." << std::endl; - }; -} - - -template -void TimestepManager::write_statistics (const SweepInfo &sweep_info) const -{ - if (true) - { - deallog << " Writing statistics for whole sweep."; - - deallog << "# Description of fields" << std::endl - << "# =====================" << std::endl - << "# General:" << std::endl - << "# time" << std::endl; - - TimeStep::write_statistics_descriptions (logfile, parameters); - deallog << std::endl << std::endl; - - for (unsigned int timestep=0; timestepget_time() - << " "; - dynamic_cast&> - (static_cast&> - (*timesteps[timestep])).write_statistics (logfile); - deallog << std::endl; - }; - - AssertThrow (logfile, ExcIO()); - - deallog << std::endl; - }; - - - if (true) - { - deallog << " Writing summary."; - - sweep_info.write_summary (parameters.eval_list, - logfile); - AssertThrow (logfile, ExcIO()); - - deallog << std::endl; - }; -} - - -template -void TimestepManager::write_stacked_data (DataOutStack &data_out_stack) const -{ - DataOutBase::OutputFormat output_format - = DataOutBase::parse_output_format (parameters.output_format); - - deallog << " Writing stacked time steps"; - DataOutBase::EpsFlags eps_flags; - eps_flags.height_vector = eps_flags.color_vector = 2; - eps_flags.draw_mesh = false; - eps_flags.draw_cells = true; - eps_flags.azimut_angle = 0; - eps_flags.turn_angle = 0; - data_out_stack.set_flags (eps_flags); - data_out_stack.write (logfile, output_format); - deallog << '.' << std::endl; -} - - -template class TimestepManager<2>; - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include - - -template -const std::string WaveParameters::initial_value_names ("zero" - "|eigenmode" - "|bump" - "|small bump" - "|center-kink" - "|shifted bump" - "|plateau" - "|earthquake"); -template -const std::string WaveParameters::coefficient_names ("unit" - "|kink" - "|gradient" - "|preliminary earth model" - "|distorted"); -template -const std::string WaveParameters::boundary_function_names ("wave from left" - "|fast wave from left" - "|wave from left center" - "|wave from left bottom" - "|zero"); -template -const std::string WaveParameters::dual_functional_names ("none" - "|integrated value at origin" - "|seismic signature" - "|split signal" - "|earth surface" - "|split line" - "|one branch 1d" - "|second crossing" - "|Huyghens wave"); - - -DeclException1 (ExcUnknownName, - std::string, - << "Unknown description std::string " << arg1); - - -template -class InitialValues { - public: - class EigenMode : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926539; - return sin(2*pi*p(0))*sin(2*pi*p(1)); - }; - }; - - class Bump : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double width = 0.1; - const double r2 = p.square(); - return exp(-r2/width/width) * (r2 { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double width = 0.02; - const double r2 = p.square(); - return exp(-r2/width/width) * (r2 { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double width = 0.1; - Point shift; - shift(0) = 0.5; - const double r2 = (p-shift).square(); - return exp(-r2/width/width) * (r2 { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double width = 0.1; - const double r = sqrt(p.square()); - return (r { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double width = 0.1; - const double r = sqrt(p.square()); - return (r { - public: - virtual double value (const Point &p, - const unsigned int) const { - Point earthquake_center = p; - earthquake_center(1) -= 5500; - const double r2 = earthquake_center.square(); - - return (r2<300*300 ? 1-r2/300/300 : 0); - }; - }; -}; - - -template -class Coefficients { - public: - class Kink : public Function { - public: - inline virtual double value (const Point &p, - const unsigned int) const { - return 1+8*(p(dim-1)>1./5. ? 1. : 0.); - }; - - virtual void value_list (const std::vector > &points, - std::vector &values, - const unsigned int) const { - Assert (values.size() == points.size(), - ExcDimensionMismatch(values.size(), points.size())); - for (unsigned int i=0; iKink::value(points[i], 0); - }; - - virtual Tensor<1,dim> gradient (const Point &p, - const unsigned int) const { - Tensor<1,dim> tmp; - if (fabs(p(1)-1./5.) < 1./400.) - tmp[1] = 100; - return tmp; - }; - - virtual void gradient_list (const std::vector > &points, - std::vector > &gradients, - const unsigned int) const { - for (unsigned int i=0; i { - public: - inline virtual double value (const Point &p, - const unsigned int) const { - return 1+8*p(1)*p(1); - }; - - virtual void value_list (const std::vector > &points, - std::vector &values, - const unsigned int) const { - Assert (values.size() == points.size(), - ExcDimensionMismatch(values.size(), points.size())); - for (unsigned int i=0; iGradient::value(points[i], 0); - }; - - virtual Tensor<1,dim> gradient (const Point &p, - const unsigned int) const { - Tensor<1,dim> tmp; - tmp[1] = 16*p(1); - return tmp; - }; - - virtual void gradient_list (const std::vector > &points, - std::vector > &gradients, - const unsigned int) const { - for (unsigned int i=0; i { - public: - inline virtual double value (const Point &p, - const unsigned int) const { - const double r=sqrt(p.square()); - return 10+2.5*(2-r/6371)*(2-r/6371)+20*(r<2000 ? 1 : 0); - }; - - virtual void value_list (const std::vector > &points, - std::vector &values, - const unsigned int) const { - Assert (values.size() == points.size(), - ExcDimensionMismatch(values.size(), points.size())); - for (unsigned int i=0; iPreliminaryEarthModel::value(points[i], 0); - }; - - virtual Tensor<1,dim> gradient (const Point &p, - const unsigned int) const { - Tensor<1,dim> tmp(p); - const double r=sqrt(p.square()); - tmp *= 1./r * 2*(10-5*r/6371); - return tmp; - }; - - virtual void gradient_list (const std::vector > &points, - std::vector > &gradients, - const unsigned int) const { - for (unsigned int i=0; i { - public: - inline virtual double value (const Point &p, - const unsigned int) const { - const double x=p(0), - y=p(1); - const double pi = 3.1415926539; - - return (1+0.5*((sin(3*pi*x)>0 ? 1 : 0)+ - (sin(3*pi*(2*x+y)/sqrt(3.0)))>0 ? 1 : 0)); - }; - - virtual void value_list (const std::vector > &points, - std::vector &values, - const unsigned int) const { - Assert (values.size() == points.size(), - ExcDimensionMismatch(values.size(), points.size())); - for (unsigned int i=0; iDistorted::value(points[i], 0); - }; - - virtual Tensor<1,dim> gradient (const Point &, - const unsigned int) const { - return Tensor<1,dim>(); - }; - - virtual void gradient_list (const std::vector > &points, - std::vector > &gradients, - const unsigned int) const { - for (unsigned int i=0; i -class BoundaryValues { - public: - - class WaveFromLeft_u : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - if (p(0)==0) - return sin(pi*this->get_time()/0.4)*sin(pi*this->get_time()/0.4); - else - return 0; - }; - }; - - class WaveFromLeft_v : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - if (p(0)==0) - return 2*pi/0.4*sin(pi*this->get_time()/0.4)*cos(pi*this->get_time()/0.4); - else - return 0; - }; - }; - - -class FastWaveFromLeft_u : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - if ((this->get_time()<0.2) && (p(0)==0)) - return sin(pi*this->get_time()/0.2)*sin(pi*this->get_time()/0.2); - else - return 0; - }; - }; - - class FastWaveFromLeft_v : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - if ((this->get_time()<0.2) && (p(0)==0)) - return 2*pi/0.2*sin(pi*this->get_time()/0.2)*cos(pi*this->get_time()/0.2); - else - return 0; - }; - }; - - -class WaveFromLeftCenter_u : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - if ((0.4 <= p(1)) && (p(1) <= 0.6) && (p(0) <= 0.5)) - return (p(1)-0.4)*(0.6-p(1)) * sin(pi*this->get_time()/0.2); - else - return 0; - }; - }; - - class WaveFromLeftCenter_v : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - if ((0.4 <= p(1)) && (p(1) <= 0.6) && (p(0) <= 0.5)) - return pi/0.2*(p(1)-0.4)*(0.6-p(1)) * cos(pi*this->get_time()/0.2); - else - return 0; - }; - }; - - -class WaveFromLeftBottom_u : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - const double r = sqrt(p.square()); - const double a = 5000000; - - const double period = 60; - - if ((this->get_time()>=period) || (r>=a)) - return 0; - - const double s = cos(r/a*pi/2)*sin(pi*this->get_time()/period); - return s*s; - }; - }; - - class WaveFromLeftBottom_v : public Function { - public: - virtual double value (const Point &p, - const unsigned int) const { - const double pi = 3.1415926536; - const double r = sqrt(p.square()); - const double a = 5000000; - const double period = 60; - - if ((this->get_time()>=period) || (r>=a)) - return 0; - else - return (2*pi/period*cos(r/a*pi/2)*cos(r/a*pi/2)* - sin(pi*this->get_time()/period)*cos(pi*this->get_time()/period)); - }; - }; - -}; - - -template -class Boundaries -{ - public: - class Ring : public StraightBoundary - { - public: - virtual Point - get_new_point_on_line (const typename Triangulation::line_iterator &line) const { - Point middle = StraightBoundary::get_new_point_on_line (line); - middle *= sqrt(line->vertex(0).square()) / sqrt(middle.square()); - return middle; - }; - - -virtual Point - get_new_point_on_quad (const typename Triangulation::quad_iterator &quad) const { - Point middle = StraightBoundary::get_new_point_on_quad (quad); - middle *= sqrt(quad->vertex(0).square()) / sqrt(middle.square()); - return middle; - }; - }; -}; - - -template -WaveParameters::WaveParameters () : - boundary_values_u (0), - boundary_values_v (0), - initial_u (0), - initial_v (0), - boundary (0), - density (0), - stiffness (0), - dual_functional (0), - coarse_grid (0) -{} - - -template -WaveParameters::~WaveParameters () -{ - delete_parameters (); -} - - -template -void WaveParameters::delete_parameters () -{ - if (boundary_values_u) - delete boundary_values_u; - boundary_values_u = 0; - - if (boundary_values_v) - delete boundary_values_v; - boundary_values_v = 0; - - if (initial_u) - delete initial_u; - initial_u = 0; - - if (initial_v) - delete initial_v; - initial_v = 0; - - if (boundary) - delete boundary; - boundary = 0; - - if (density) - delete density; - density = 0; - - if (stiffness) - delete stiffness; - stiffness = 0; - - if (dual_functional) - delete dual_functional; - dual_functional = 0; - - if (coarse_grid) - delete coarse_grid; - coarse_grid = 0; - - for (typename std::list*>::iterator i=eval_list.begin(); - i!=eval_list.end(); ++i) - delete *i; - eval_list.erase (eval_list.begin(), eval_list.end()); -} - - -template -void WaveParameters::set_initial_functions (const std::string &u_name, - const std::string &v_name) { - Assert (initial_u==0, ExcInternalError()); - Assert (initial_v==0, ExcInternalError()); - - const std::string names[2] = {u_name, v_name}; - Function *functions[2]; - - for (unsigned int i=0; i<2; ++i) - { - if (names[i]=="eigenmode") - functions[i] = new typename InitialValues::EigenMode(); - else - if (names[i]=="zero") - functions[i] = new ZeroFunction(); - else - if (names[i]=="center-kink") - functions[i] = new typename InitialValues::CenterKink(); - else - if (names[i]=="bump") - functions[i] = new typename InitialValues::Bump(); - else - if (names[i]=="small bump") - functions[i] = new typename InitialValues::SmallBump(); - else - if (names[i]=="shifted bump") - functions[i] = new typename InitialValues::ShiftedBump(); - else - if (names[i]=="plateau") - functions[i] = new typename InitialValues::Plateau (); - else - if (names[i]=="earthquake") - functions[i] = new typename InitialValues::Earthquake (); - else - AssertThrow (false, ExcUnknownName(names[i])); - }; - - initial_u = functions[0]; - initial_v = functions[1]; -} - - -template -void WaveParameters::set_coefficient_functions (const std::string &name) { - Assert (density==0, ExcInternalError()); - Assert (stiffness==0, ExcInternalError()); - - density = new ConstantFunction(1); - density_constant = true; - - if (name=="kink") - { - stiffness = new typename Coefficients::Kink(); - stiffness_constant = false; - } - else - if (name=="gradient") - { - stiffness = new typename Coefficients::Gradient(); - stiffness_constant = false; - } - else - if (name=="unit") - { - stiffness = new ConstantFunction(1); - stiffness_constant = true; - } - else - if (name=="preliminary earth model") - { - stiffness = new typename Coefficients::PreliminaryEarthModel(); - stiffness_constant = false; - } - else - if (name=="distorted") - { - stiffness = new typename Coefficients::Distorted(); - stiffness_constant = false; - } - else - AssertThrow (false, ExcUnknownName (name)); -} - - -template -void WaveParameters::set_boundary_functions (const std::string &name) { - Assert (boundary_values_u==0, ExcInternalError()); - Assert (boundary_values_v==0, ExcInternalError()); - - if (name=="wave from left") - { - boundary_values_u = new typename BoundaryValues::WaveFromLeft_u (); - boundary_values_v = new typename BoundaryValues::WaveFromLeft_v (); - } - else - if (name=="fast wave from left") - { - boundary_values_u = new typename BoundaryValues::FastWaveFromLeft_u (); - boundary_values_v = new typename BoundaryValues::FastWaveFromLeft_v (); - } - else - if (name=="wave from left center") - { - boundary_values_u = new typename BoundaryValues::WaveFromLeftCenter_u (); - boundary_values_v = new typename BoundaryValues::WaveFromLeftCenter_v (); - } - else - if (name=="wave from left bottom") - { - boundary_values_u = new typename BoundaryValues::WaveFromLeftBottom_u (); - boundary_values_v = new typename BoundaryValues::WaveFromLeftBottom_v (); - } - else - if (name=="zero") - { - boundary_values_u = new ZeroFunction(); - boundary_values_v = new ZeroFunction(); - } - else - AssertThrow (false, ExcUnknownName (name)); -} - - -template -void WaveParameters::make_eval_list (const std::string &names) { - Assert (eval_list.size()==0, ExcInternalError()); - std::string split_list = names; - - while (split_list.length()) - { - std::string name; - name = split_list; - - if (name.find(",") != std::string::npos) - { - name.erase (name.find(","), std::string::npos); - split_list.erase (0, split_list.find(",")+1); - } - else - split_list = ""; - - while (name[0] == ' ') - name.erase (0,1); - while (name[name.length()-1] == ' ') - name.erase (name.length()-1, 1); - - if (name == "integrated value at origin") - eval_list.push_back (new EvaluateIntegratedValueAtOrigin()); - else - if (name == "seismic signature") - eval_list.push_back (new EvaluateSeismicSignal()); - else - if (name == "split signal") - eval_list.push_back (new EvaluateSplitSignal()); - else - if (name == "one branch 1d") - eval_list.push_back (new EvaluateOneBranch1d()); - else - if (name == "second crossing") - eval_list.push_back (new EvaluateSecondCrossing1d()); - else - if (name == "Huyghens wave") - eval_list.push_back (new EvaluateHuyghensWave()); - else - AssertThrow (false, ExcUnknownName (name)); - }; -} - - -template -void WaveParameters::set_dual_functional (const std::string &name) { - Assert (dual_functional==0, ExcInternalError()); - if (name == "none") - dual_functional = new DualFunctional(); - else - if (name == "integrated value at origin") - dual_functional = new IntegratedValueAtOrigin (); - else - if (name == "seismic signature") - dual_functional = new SeismicSignal (); - else - if (name == "split signal") - dual_functional = new SplitSignal (); - else - if (name == "earth surface") - dual_functional = new EarthSurface (); - else - if (name == "split line") - dual_functional = new SplitLine (); - else - if (name == "one branch 1d") - dual_functional = new OneBranch1d (); - else - if (name == "second crossing") - dual_functional = new SecondCrossing (); - else - if (name == "Huyghens wave") - dual_functional = new HuyghensWave (); - else - AssertThrow (false, ExcUnknownName (name)); -} - - - -#if 2 == 2 - -template <> -void WaveParameters<2>::make_coarse_grid (const std::string &name) { - const unsigned int dim=2; - - std::map initial_mesh_list; - initial_mesh_list["split channel bottom"] = split_channel_bottom; - initial_mesh_list["split channel left"] = split_channel_left; - initial_mesh_list["split channel right"] = split_channel_right; - initial_mesh_list["uniform channel"] = uniform_channel; - initial_mesh_list["square"] = square; - initial_mesh_list["ring"] = ring; - initial_mesh_list["earth"] = earth; - initial_mesh_list["seismic square"] = seismic_square; - AssertThrow (initial_mesh_list.find(name) != initial_mesh_list.end(), - ExcParameterNotInList(name)); - - const InitialMesh initial_mesh = initial_mesh_list[name]; - - coarse_grid = new Triangulation - (Triangulation::MeshSmoothing(Triangulation::smoothing_on_refinement | - Triangulation::eliminate_refined_inner_islands)); - - switch (initial_mesh) - { - case uniform_channel: - case split_channel_bottom: - case split_channel_left: - case split_channel_right: - { - const Point vertices[8] = { Point (0,0), - Point (1,0), - Point (1,1), - Point (0,1), - Point (2,0), - Point (2,1), - Point (3,0), - Point (3,1) }; - const int cell_vertices[3][4] = {{0, 1, 2, 3}, - {1, 4, 5, 2}, - {4, 6, 7, 5}}; - - std::vector > cells (3, CellData()); - - for (unsigned int i=0; i<3; ++i) - { - for (unsigned int j=0; j<4; ++j) - cells[i].vertices[j] = cell_vertices[i][j]; - cells[i].material_id = 0; - }; - - SubCellData boundary_info; - if ((boundary_conditions == wave_from_left) || - (boundary_conditions == fast_wave_from_left)) - { - for (unsigned int i=0; i<6; ++i) - { - boundary_info.boundary_lines.push_back (CellData<1>()); - boundary_info.boundary_lines.back().material_id = 1; - }; - - boundary_info.boundary_lines[0].vertices[0] = 0; - boundary_info.boundary_lines[0].vertices[1] = 1; - boundary_info.boundary_lines[1].vertices[0] = 1; - boundary_info.boundary_lines[1].vertices[1] = 4; - boundary_info.boundary_lines[2].vertices[0] = 4; - boundary_info.boundary_lines[2].vertices[1] = 6; - boundary_info.boundary_lines[3].vertices[0] = 3; - boundary_info.boundary_lines[3].vertices[1] = 2; - boundary_info.boundary_lines[4].vertices[0] = 2; - boundary_info.boundary_lines[4].vertices[1] = 5; - boundary_info.boundary_lines[5].vertices[0] = 5; - boundary_info.boundary_lines[5].vertices[1] = 7; - }; - - if (boundary_conditions == wave_from_left_bottom) - { - boundary_info.boundary_lines.push_back (CellData<1>()); - boundary_info.boundary_lines.back().material_id = 1; - boundary_info.boundary_lines[0].vertices[0] = 0; - boundary_info.boundary_lines[0].vertices[1] = 3; - }; - - coarse_grid->create_triangulation (std::vector >(&vertices[0], - &vertices[8]), - cells, boundary_info); - - if (initial_refinement >= 1) - { - coarse_grid->refine_global (1); - - switch (initial_mesh) - { - case split_channel_bottom: - { - Triangulation::active_cell_iterator cell; - cell = coarse_grid->begin_active(); - (cell++)->set_refine_flag (); - (cell++)->set_refine_flag (); - ++cell; ++cell; - (cell++)->set_refine_flag (); - (cell++)->set_refine_flag (); - ++cell; ++cell; - (cell++)->set_refine_flag (); - (cell++)->set_refine_flag (); - coarse_grid->execute_coarsening_and_refinement (); - - coarse_grid->refine_global (initial_refinement-1); - - break; - }; - - case split_channel_left: - case split_channel_right: - { - coarse_grid->refine_global (1); - for (unsigned int i=0; i<2; ++i) - { - Triangulation::active_cell_iterator - cell = coarse_grid->begin_active(); - - for (; cell!=coarse_grid->end(); ++cell) - if (((cell->center()(0) >= 1) && - (initial_mesh == split_channel_right)) || - ((cell->center()(0) <= 1) && - (initial_mesh == split_channel_left))) - cell->set_refine_flag (); - coarse_grid->execute_coarsening_and_refinement (); - }; - - if (initial_refinement > 4) - coarse_grid->refine_global (initial_refinement-4); - - break; - }; - - - case uniform_channel: - { - coarse_grid->refine_global (initial_refinement-1); - break; - }; - - - default: - Assert (false, ExcInternalError()); - }; - }; - break; - }; - - - case square: - case seismic_square: - { - GridGenerator::hyper_cube (*coarse_grid, -1, 1); - if (initial_mesh==seismic_square) - coarse_grid->begin_active()->face(2)->set_boundary_indicator(1); - - coarse_grid->refine_global (initial_refinement); - - break; - }; - - case earth: - { - GridGenerator::hyper_ball (*coarse_grid, Point(), 6371); - - if (boundary) - delete boundary; - - Triangulation::active_face_iterator face; - for (face=coarse_grid->begin_active_face(); - face != coarse_grid->end_face(); - ++face) - if (face->at_boundary()) - face->set_boundary_indicator (1); - - const Point origin; - boundary = new HyperBallBoundary(origin, 6371); - coarse_grid->set_boundary (1, *boundary); - - coarse_grid->refine_global (initial_refinement); - - break; - }; - - case ring: - { - const double radius = 1.; - const double a = radius/2; - const Point<2> vertices[8] = { Point<2>(-1,-1)*(radius/sqrt(2.0)), - Point<2>(+1,-1)*(radius/sqrt(2.0)), - Point<2>(-1,-1)*(radius/sqrt(2.0)*a), - Point<2>(+1,-1)*(radius/sqrt(2.0)*a), - Point<2>(-1,+1)*(radius/sqrt(2.0)*a), - Point<2>(+1,+1)*(radius/sqrt(2.0)*a), - Point<2>(-1,+1)*(radius/sqrt(2.0)), - Point<2>(+1,+1)*(radius/sqrt(2.0)) }; - - const int cell_vertices[4][4] = {{0, 1, 3, 2}, - {0, 2, 4, 6}, - {1, 7, 5, 3}, - {6, 4, 5, 7}}; - - std::vector > cells (4, CellData<2>()); - - for (unsigned int i=0; i<4; ++i) - { - for (unsigned int j=0; j<4; ++j) - cells[i].vertices[j] = cell_vertices[i][j]; - cells[i].material_id = 0; - }; - - coarse_grid->create_triangulation (std::vector >(&vertices[0], - &vertices[8]), - cells, - SubCellData()); - if (boundary) - delete boundary; - boundary = new Boundaries::Ring(); - coarse_grid->set_boundary (0, *boundary); - - coarse_grid->refine_global (initial_refinement); - - break; - }; - - default: - Assert (false, ExcInternalError()); - }; -} - -#endif - - -#if 2 == 3 - -template <> -void WaveParameters<3>::make_coarse_grid (const std::string &name) { - const unsigned int dim=3; - - std::map initial_mesh_list; - initial_mesh_list["square"] = square; - initial_mesh_list["earth"] = earth; - initial_mesh_list["seismic square"] = seismic_square; - AssertThrow (initial_mesh_list.find(name) != initial_mesh_list.end(), - ExcParameterNotInList(name)); - - const InitialMesh initial_mesh = initial_mesh_list[name]; - - coarse_grid = new Triangulation(MeshSmoothing(smoothing_on_refinement | - eliminate_refined_inner_islands)); - - switch (initial_mesh) - { - case square: - case seismic_square: - { - GridGenerator::hyper_cube (*coarse_grid, -1, 1); - if (initial_mesh==seismic_square) - coarse_grid->begin_active()->face(2)->set_boundary_indicator(1); - - coarse_grid->refine_global (initial_refinement); - - break; - }; - - case earth: - { - GridGenerator::hyper_ball (*coarse_grid, Point(), 6371); - - if (boundary) - delete boundary; - - Triangulation::active_face_iterator face; - for (face=coarse_grid->begin_active_face(); - face != coarse_grid->end_face(); - ++face) - if (face->at_boundary()) - face->set_boundary_indicator (1); - - const Point origin; - boundary = new HyperBallBoundary(origin, 6371); - coarse_grid->set_boundary (1, *boundary); - - coarse_grid->refine_global (initial_refinement); - - break; - }; - - default: - AssertThrow (false, ExcInternalError()); - break; - }; -}; - -#endif - - -template -void WaveParameters::declare_parameters (ParameterHandler &prm) -{ - prm.enter_subsection ("Grid"); - if (true) { - prm.declare_entry ("Initial refinement", "0", Patterns::Integer()); - prm.declare_entry ("Coarse mesh", "uniform channel", - Patterns::Selection ("uniform channel|split channel bottom|" - "split channel left|split channel right|" - "square|line|split line|ring|" - "seismic square|temperature-square|" - "temperature-testcase|random|earth")); - prm.enter_subsection ("Refinement"); - if (true) { - prm.declare_entry ("Refinement fraction", "0.95", - Patterns::Double()); - prm.declare_entry ("Coarsening fraction", "0.02", - Patterns::Double()); - prm.declare_entry ("Compare indicators globally", "true", Patterns::Bool()); - prm.declare_entry ("Maximum refinement", "0", Patterns::Integer()); - prm.declare_entry ("Adapt mesh to dual solution", "true", - Patterns::Bool()); - prm.declare_entry ("Primal to dual weight", "1.0", - Patterns::Double()); - prm.declare_entry ("Initial energy estimator sweeps", "0", - Patterns::Integer()); - }; - prm.leave_subsection (); - - prm.enter_subsection ("Mesh smoothing"); - if (true) { - prm.declare_entry ("Top cell number deviation", "0.1", Patterns::Double()); - prm.declare_entry ("Bottom cell number deviation", "0.03", Patterns::Double()); - prm.declare_entry ("Cell number correction steps", "2", Patterns::Integer()); - }; - prm.leave_subsection (); - }; - prm.declare_entry ("Renumber dofs", "false", Patterns::Bool()); - prm.leave_subsection (); - - prm.enter_subsection ("Equation data"); - if (true) { - prm.declare_entry ("Coefficient", "unit", Patterns::Selection(coefficient_names)); - prm.declare_entry ("Initial u", "zero", Patterns::Selection (initial_value_names)); - prm.declare_entry ("Initial v", "zero", Patterns::Selection (initial_value_names)); - prm.declare_entry ("Boundary", "wave from left", - Patterns::Selection (boundary_function_names)); - }; - prm.leave_subsection (); - - prm.enter_subsection ("Discretization"); - prm.declare_entry ("Primal FE", "linear", - Patterns::Selection ("linear|quadratic|cubic|quartic")); - prm.declare_entry ("Dual FE", "linear", - Patterns::Selection ("linear|quadratic|cubic|quartic")); - - prm.enter_subsection ("Time stepping"); - prm.declare_entry ("Primal method", "fractional step", - Patterns::Selection ("theta|fractional step")); - prm.declare_entry ("Dual method", "fractional step", - Patterns::Selection ("theta|fractional step")); - prm.declare_entry ("Theta", "0.5", Patterns::Double()); - prm.declare_entry ("Time step", "0.1", Patterns::Double()); - prm.declare_entry ("End time", "1", Patterns::Double()); - prm.leave_subsection (); - prm.leave_subsection (); - - prm.enter_subsection ("Solver"); - prm.declare_entry ("Preconditioning", "none", - Patterns::Selection ("none|jacobi|sor|ssor")); - prm.declare_entry ("Extrapolate old solutions", "true", - Patterns::Bool()); - prm.leave_subsection (); - - prm.enter_subsection ("Output"); - prm.declare_entry ("Format", "gnuplot", - Patterns::Selection(DataOutBase::get_output_format_names())); - prm.declare_entry ("Directory", "data"); - prm.declare_entry ("Directory for temporaries", "data/tmp"); - prm.declare_entry ("Write solutions", "all sweeps", - Patterns::Selection ("never|all sweeps|last sweep only")); - prm.declare_entry ("Write stacked time steps", "false", Patterns::Bool()); - prm.declare_entry ("Write stacked interval", "1", Patterns::Integer()); - prm.declare_entry ("Write steps interval", "1", Patterns::Integer()); - prm.declare_entry ("Write error as cell data", "true", Patterns::Bool()); - prm.enter_subsection ("Error statistics"); - prm.declare_entry ("Produce error statistics", "false", Patterns::Bool()); - prm.declare_entry ("Number of intervals", "10", Patterns::Integer()); - prm.declare_entry ("Interval spacing", "linear", - Patterns::Selection(Histogram::get_interval_spacing_names())); - prm.leave_subsection (); - prm.leave_subsection (); - - -prm.enter_subsection ("Goal"); - prm.declare_entry ("Goal", "none", - Patterns::Selection (dual_functional_names)); - prm.declare_entry ("Evaluate", ""); - prm.leave_subsection (); - - -prm.declare_entry ("Refinement criterion", "energy estimator", - Patterns::Selection ("energy estimator|dual estimator")); - prm.declare_entry ("Sweeps", "3", Patterns::Integer()); -} - - -template -void WaveParameters::parse_parameters (ParameterHandler &prm) { - std::map boundary_conditions_list; - boundary_conditions_list["wave from left"] = wave_from_left; - boundary_conditions_list["fast wave from left"] = fast_wave_from_left; - boundary_conditions_list["wave from left center"] = wave_from_left_center; - boundary_conditions_list["wave from left bottom"] = wave_from_left_bottom; - boundary_conditions_list["zero"] = zero; - - std::map preconditioning_list; - preconditioning_list["jacobi"] = jacobi; - preconditioning_list["sor"] = sor; - preconditioning_list["ssor"] = ssor; - preconditioning_list["none"] = no_preconditioning; - - std::map write_strategy_list; - write_strategy_list["never"] = never; - write_strategy_list["all sweeps"] = all_sweeps; - write_strategy_list["last sweep only"] = last_sweep_only; - - -prm.enter_subsection ("Grid"); - initial_refinement = prm.get_integer ("Initial refinement"); - - prm.enter_subsection ("Refinement"); - { - refinement_fraction.first = prm.get_double ("Refinement fraction"); - refinement_fraction.second = prm.get_double ("Coarsening fraction"); - compare_indicators_globally = prm.get_bool ("Compare indicators globally"); - maximum_refinement = prm.get_integer ("Maximum refinement"); - adapt_mesh_to_dual_solution = prm.get_bool ("Adapt mesh to dual solution"); - primal_to_dual_weight = prm.get_double ("Primal to dual weight"); - initial_energy_estimator_sweeps = prm.get_integer("Initial energy estimator sweeps"); - }; - prm.leave_subsection (); - - prm.enter_subsection ("Mesh smoothing"); - { - cell_number_corridor.first = prm.get_double ("Top cell number deviation"); - cell_number_corridor.second = prm.get_double ("Bottom cell number deviation"); - cell_number_correction_steps= prm.get_integer ("Cell number correction steps"); - }; - prm.leave_subsection (); - - renumber_dofs = prm.get_bool ("Renumber dofs"); - prm.leave_subsection (); - - prm.enter_subsection ("Equation data"); - set_coefficient_functions (prm.get("Coefficient")); - set_initial_functions (prm.get("Initial u"), prm.get("Initial v")); - boundary_conditions = boundary_conditions_list[prm.get("Boundary")]; - set_boundary_functions (prm.get("Boundary")); - Assert (boundary_conditions_list.find(prm.get("Boundary")) != - boundary_conditions_list.end(), - ExcParameterNotInList(prm.get("Boundary"))); - prm.leave_subsection (); - - prm.enter_subsection ("Discretization"); - primal_fe = prm.get("Primal FE"); - dual_fe = prm.get("Dual FE"); - prm.enter_subsection ("Time stepping"); - theta = prm.get_double ("Theta"); - time_step= prm.get_double ("Time step"); - end_time = prm.get_double ("End time"); - prm.leave_subsection (); - prm.leave_subsection (); - - prm.enter_subsection ("Solver"); - preconditioning = preconditioning_list[prm.get("Preconditioning")]; - Assert (preconditioning_list.find(prm.get("Preconditioning")) != - preconditioning_list.end(), - ExcParameterNotInList(prm.get("Preconditioning"))); - extrapolate_old_solutions = prm.get_bool ("Extrapolate old solutions"); - prm.leave_subsection (); - - prm.enter_subsection ("Output"); - output_format = prm.get("Format"); - output_directory = prm.get("Directory"); - if (output_directory[output_directory.size()-1] != '/') - output_directory += '/'; - tmp_directory = prm.get ("Directory for temporaries"); - if (tmp_directory[tmp_directory.size()-1] != '/') - tmp_directory += '/'; - write_solution_strategy = write_strategy_list[prm.get("Write solutions")]; - Assert (write_strategy_list.find(prm.get("Write solutions")) != - write_strategy_list.end(), - ExcParameterNotInList(prm.get("Write solutions"))); - write_stacked_data = prm.get_bool ("Write stacked time steps"); - write_stacked_interval = prm.get_integer ("Write stacked interval"); - write_steps_interval = prm.get_integer ("Write steps interval"); - write_error_as_cell_data = prm.get_bool ("Write error as cell data"); - prm.enter_subsection ("Error statistics"); - produce_error_statistics = prm.get_bool ("Produce error statistics"); - error_statistic_intervals= prm.get_integer ("Number of intervals"); - error_statistics_scaling = prm.get ("Interval spacing"); - prm.leave_subsection (); - prm.leave_subsection (); - - -prm.enter_subsection ("Goal"); - set_dual_functional (prm.get("Goal")); - make_eval_list (prm.get("Evaluate")); - prm.leave_subsection (); - - -if (prm.get("Refinement criterion")=="energy estimator") - refinement_strategy = energy_estimator; - else - refinement_strategy = dual_estimator; - - number_of_sweeps = prm.get_integer ("Sweeps"); - - prm.enter_subsection ("Grid"); - make_coarse_grid (prm.get("Coarse mesh")); - prm.leave_subsection (); -} - - -template class WaveParameters<2>; - -#include -#include //?? -#include - - -template -SweepData::SweepData (const bool use_data_out_stack) -{ - if (use_data_out_stack) - data_out_stack = new DataOutStack(); - else - data_out_stack = 0; -} - - -template -SweepData::~SweepData () -{ - if (data_out_stack != 0) - delete data_out_stack; - data_out_stack = 0; -} - - -template class SweepData<2>; - - -#include -#include - - -SweepInfo::Data & -SweepInfo::get_data () -{ - return data; -} - - -SweepInfo::Timers & -SweepInfo::get_timers () -{ - return timers; -} - - -template -void -SweepInfo::write_summary (const std::list*> &eval_list, - std::ostream &out) const -{ - out << "Summary of this sweep:" << std::endl - << "======================" << std::endl - << std::endl; - - out << " Accumulated number of cells: " << data.cells << std::endl - << " Acc. number of primal dofs : " << data.primal_dofs << std::endl - << " Acc. number of dual dofs : " << data.dual_dofs << std::endl - << " Accumulated error : " << data.accumulated_error << std::endl; - - if (eval_list.size() != 0) - { - out << std::endl; - out << " Evaluations:" << std::endl - << " ------------" << std::endl; - - for (typename std::list*>::const_iterator i = eval_list.begin(); - i != eval_list.end(); ++i) - - (*i)->print_final_result (out); - }; - - time_t time1= time (0); - tm *time = localtime(&time1); - out << " Time tag: " - << time->tm_year+1900 << "/" - << time->tm_mon+1 << "/" - << time->tm_mday << ' ' - << int_to_string (time->tm_hour, 2) << ":" - << int_to_string (time->tm_min, 2) << ":" - << int_to_string (time->tm_sec, 2) << std::endl; -} - - -SweepInfo::Data::Data () : - accumulated_error (0), - cells (0), - primal_dofs (0), - dual_dofs (0) -{} - - -template -void SweepInfo::write_summary (const std::list*> &eval_list, - std::ostream &out) const; - - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - -#include -#include - - -static const std::pair relaxations[3] -= { std::make_pair(100,5), std::make_pair(300,3), std::make_pair(500,2) }; - - -static const TimeStepBase_Tria<2>::RefinementFlags::CorrectionRelaxations -wave_correction_relaxations (1, - std::vector > (&relaxations[0], - &relaxations[3])); - - -template -TimeStepBase_Wave::TimeStepBase_Wave (): - TimeStepBase_Tria (), - parameters (parameters) -{} - - -template -TimeStepBase_Wave::TimeStepBase_Wave (const double time, - typename TimeStepBase_Tria::Flags flags, - const WaveParameters ¶meters) - : - TimeStepBase_Tria (time, - *parameters.coarse_grid, - flags, - typename TimeStepBase_Wave::RefinementFlags - (parameters.maximum_refinement, - 1, - 0, - parameters.cell_number_corridor.first, - parameters.cell_number_corridor.first, - wave_correction_relaxations, - parameters.cell_number_correction_steps, - (parameters.refinement_strategy == - WaveParameters::dual_estimator), - true)), - parameters (parameters) -{} - - -template -const TimeStep_Primal & -TimeStepBase_Wave::get_timestep_primal () const -{ - return dynamic_cast &> (*this); -} - - -template -const TimeStep_Dual & -TimeStepBase_Wave::get_timestep_dual () const -{ - return dynamic_cast &> (*this); -} - - -template -const TimeStep_Postprocess & -TimeStepBase_Wave::get_timestep_postprocess () const -{ - return dynamic_cast &> (*this); -} - - -template -std::string TimeStepBase_Wave::tmp_filename_base (const std::string &branch_signature) const -{ - return (parameters.tmp_directory + - branch_signature + 's' + - int_to_string (this->sweep_no, 2) + 't' + - int_to_string (this->timestep_no, 4)); -} - - -template -void TimeStepBase_Wave::attach_sweep_info (SweepInfo &si) -{ - this->sweep_info = &si; -} - - -template -void TimeStepBase_Wave::attach_sweep_data (SweepData &sd) -{ - sweep_data = &sd; -} - - -/* --------------------------------------------------------------*/ - - -template -TimeStep_Wave::TimeStep_Wave (const std::string fe_name) : - dof_handler (0), - fe (FEHelper::get_fe(fe_name)), - quadrature (FEHelper::get_quadrature(fe_name)), - quadrature_face (FEHelper::get_quadrature_face(fe_name)), - statistic_data() -{} - - -template -TimeStep_Wave::~TimeStep_Wave () -{ - Assert (dof_handler == 0, ExcInternalError()); - Assert (constraints.n_constraints() == 0, ExcInternalError()); - Assert (system_sparsity.empty(), ExcInternalError()); - Assert (mass_matrix.empty(), ExcInternalError()); - Assert (laplace_matrix.empty(), ExcInternalError()); - Assert (u.size() ==0, ExcInternalError()); - Assert (v.size() ==0, ExcInternalError()); -} - - -template -void TimeStep_Wave::wake_up (const unsigned int wakeup_level) -{ - if (wakeup_level==0) - { - Assert (dof_handler==0, ExcInternalError()); - - this->sweep_info->get_timers().grid_generation.start(); - - dof_handler = new DoFHandler(*this->tria); - dof_handler->distribute_dofs (fe); - - if (this->parameters.renumber_dofs) - DoFRenumbering::Cuthill_McKee (*dof_handler); - - -constraints.clear (); - DoFTools::make_hanging_node_constraints (*dof_handler, constraints); - constraints.close (); - - this->sweep_info->get_timers().grid_generation.stop(); - - Assert (u.size()==0, ExcInternalError ()); - Assert (v.size()==0, ExcInternalError ()); - - switch (this->next_action) - { - case TimeStepBase::primal_problem: - case TimeStepBase::dual_problem: - { - Assert (((this->next_action == TimeStepBase::primal_problem) && - (static_cast*>(&this->get_timestep_primal()) - == this)) - || - ((this->next_action == TimeStepBase::dual_problem) && - (static_cast*>(&this->get_timestep_dual()) - == this)), - ExcInternalError()); - - u.reinit (dof_handler->n_dofs(), - this->parameters.extrapolate_old_solutions && (this->timestep_no!=0)); - v.reinit (dof_handler->n_dofs(), - this->parameters.extrapolate_old_solutions && (this->timestep_no!=0)); - break; - }; - - case TimeStepBase::postprocess: - { - this->sweep_info->get_timers().postprocessing.start(); - std::ifstream tmp_in(this->tmp_filename_base(branch_signature()).c_str()); - u.block_read (tmp_in); - v.block_read (tmp_in); - tmp_in.close (); - - this->sweep_info->get_timers().postprocessing.stop(); - - break; - }; - - default: - Assert (false, ExcInternalError()); - }; - }; -} - - -template -void TimeStep_Wave::sleep (const unsigned int sleep_level) -{ - switch (sleep_level) - { - case 1: - { - Assert (dof_handler!=0, ExcInternalError()); - - delete dof_handler; - dof_handler = 0; - - Assert (u.size() != 0, ExcInternalError()); - Assert (v.size() != 0, ExcInternalError()); - - std::ofstream tmp_out(this->tmp_filename_base(branch_signature()).c_str()); - u.block_write (tmp_out); - v.block_write (tmp_out); - tmp_out.close (); - - u.reinit (0); - v.reinit (0); - - Assert (constraints.n_constraints() == 0, ExcInternalError()); - Assert (system_sparsity.empty(), ExcInternalError()); - Assert (mass_matrix.empty(), ExcInternalError()); - Assert (laplace_matrix.empty(), ExcInternalError()); - - break; - }; - - case 0: - { - constraints.clear (); - system_sparsity.reinit (0,0,0); - mass_matrix.reinit (system_sparsity); - laplace_matrix.reinit (system_sparsity); - - break; - }; - - default: - Assert (false, ExcInternalError()); - }; -} - - -template -void TimeStep_Wave::end_sweep () -{ - std::string tmp_filename = this->tmp_filename_base(branch_signature()); - remove (tmp_filename.c_str()); -} - - -template -unsigned int TimeStep_Wave::solve (const UserMatrix &matrix, - Vector &solution, - const Vector &rhs) const { - SolverControl control(2000, 1.e-12); - PrimitiveVectorMemory<> memory; - SolverCG<> pcg(control,memory); - - pcg.template solve (matrix, solution, rhs, - PreconditionUseMatrix - (matrix, - &UserMatrix::precondition)); - constraints.distribute (solution); - - return control.last_step(); -} - - -template -void TimeStep_Wave::create_matrices () -{ - system_sparsity.reinit (dof_handler->n_dofs(), dof_handler->n_dofs(), - dof_handler->max_couplings_between_dofs()); - DoFTools::make_sparsity_pattern (*dof_handler, system_sparsity); - constraints.condense (system_sparsity); - system_sparsity.compress (); - - laplace_matrix.reinit (system_sparsity); - mass_matrix.reinit (system_sparsity); - - const unsigned int dofs_per_cell = fe.dofs_per_cell, - n_q_points = quadrature.n_quadrature_points; - - const bool density_constant = this->parameters.density_constant, - stiffness_constant = this->parameters.stiffness_constant; - - std::vector density_values (n_q_points, 1.); - std::vector stiffness_values (n_q_points, 1.); - - if (density_constant) - fill_n (density_values.begin(), n_q_points, - this->parameters.density->value(Point())); - if (stiffness_constant) - fill_n (stiffness_values.begin(), n_q_points, - this->parameters.stiffness->value(Point())); - - -FEValues fe_values (fe, quadrature, - UpdateFlags(update_values | - update_gradients | - update_JxW_values | - (!density_constant || !stiffness_constant ? - update_q_points : - 0))); - - std::vector dof_indices_on_cell (dofs_per_cell); - FullMatrix cell_mass_matrix (dofs_per_cell, dofs_per_cell); - FullMatrix cell_laplace_matrix (dofs_per_cell, dofs_per_cell); - - - for (typename DoFHandler::active_cell_iterator cell=dof_handler->begin_active(); - cell != dof_handler->end(); ++cell) - { - fe_values.reinit (cell); - cell_mass_matrix = 0; - cell_laplace_matrix = 0; - cell->get_dof_indices (dof_indices_on_cell); - - if (!density_constant || !stiffness_constant) - { - if (!density_constant) - this->parameters.density->value_list (fe_values.get_quadrature_points (), - density_values); - if (!stiffness_constant) - this->parameters.stiffness->value_list (fe_values.get_quadrature_points (), - stiffness_values); - }; - - for (unsigned int q_point=0; q_point -void TimeStep_Wave::transfer_old_solutions (Vector &old_u, - Vector &old_v) const -{ - const DoFHandler *present_dof_handler = dof_handler, - * old_dof_handler = 0; - const Vector *old_grid_u = 0, - *old_grid_v = 0; - - switch (this->next_action) - { - case TimeStepBase::primal_problem: - Assert (this->previous_timestep != 0, ExcInternalError()); - - old_dof_handler = (static_cast*> - (this->previous_timestep)->get_timestep_primal()).dof_handler; - old_grid_u = &(static_cast*> - (this->previous_timestep)->get_timestep_primal()).u; - old_grid_v = &(static_cast*> - (this->previous_timestep)->get_timestep_primal()).v; - - break; - - case TimeStepBase::dual_problem: - Assert (this->next_timestep != 0, ExcInternalError()); - - old_dof_handler = (static_cast*> - (this->next_timestep)->get_timestep_dual()).dof_handler; - old_grid_u = &(static_cast*> - (this->next_timestep)->get_timestep_dual()).u; - old_grid_v = &(static_cast*> - (this->next_timestep)->get_timestep_dual()).v; - - break; - }; - - Assert (old_dof_handler != 0, ExcInternalError()); - - typename DoFHandler::cell_iterator old_cell = old_dof_handler->begin(), - new_cell = present_dof_handler->begin(); -// In the following loop, we should really increment new_cell as well. but we -// don't. this is a bug, but it was in the program back when we made it a -// testsuite program, and we're too lazy to fix this here because it would -// involve changing all the testsuite outputs as well - for (; old_cell != (old_dof_handler->get_tria().n_levels() == 1 ? - static_cast::cell_iterator>(old_dof_handler->end()) : - old_dof_handler->begin(1)); - ++old_cell) - transfer_old_solutions (old_cell, new_cell, - *old_grid_u, *old_grid_v, - old_u, old_v); -} - - -template -void -TimeStep_Wave::transfer_old_solutions (const typename DoFHandler::cell_iterator &old_cell, - const typename DoFHandler::cell_iterator &new_cell, - const Vector &old_grid_u, - const Vector &old_grid_v, - Vector &old_u, - Vector &old_v) const -{ - if (!old_cell->has_children() && !new_cell->has_children()) - { - for (unsigned int c=0; c::children_per_cell; ++c) - transfer_old_solutions (old_cell->child(c), - new_cell->child(c), - old_grid_u, old_grid_v, - old_u, old_v); - } - else - { - Vector cell_data (fe.dofs_per_cell); - - old_cell->get_interpolated_dof_values (old_grid_u, cell_data); - new_cell->set_dof_values_by_interpolation (cell_data, old_u); - - old_cell->get_interpolated_dof_values (old_grid_v, cell_data); - new_cell->set_dof_values_by_interpolation (cell_data, old_v); - }; -} - - -template -std::pair -TimeStep_Wave::compute_energy () { - std::pair energy; - - switch (this->next_action) - { - case TimeStepBase::primal_problem: - energy.first = 0.5*laplace_matrix.matrix_norm_square (u); - energy.second = 0.5*mass_matrix.matrix_norm_square(v); - break; - - case TimeStepBase::dual_problem: - energy.first = 0.5*laplace_matrix.matrix_norm_square (v); - energy.second = 0.5*mass_matrix.matrix_norm_square(u); - break; - - default: - Assert (false, ExcInternalError()); - }; - - return energy; -} - - -template -TimeStep_Wave::StatisticData:: -StatisticData () : - n_active_cells (0), - n_dofs (0), - n_solver_steps_helmholtz (0), - n_solver_steps_projection (0), - energy (std::make_pair(0.0, 0.0)) -{} - - -template -TimeStep_Wave::StatisticData:: -StatisticData (const unsigned int n_active_cells, - const unsigned int n_dofs, - const unsigned int n_solver_steps_helmholtz, - const unsigned int n_solver_steps_projection, - const std::pair energy) : - n_active_cells (n_active_cells), - n_dofs (n_dofs), - n_solver_steps_helmholtz (n_solver_steps_helmholtz), - n_solver_steps_projection (n_solver_steps_projection), - energy (energy) -{} - - -template -void -TimeStep_Wave::StatisticData::write_descriptions (std::ostream &out) -{ - out << "# number of active cells" << std::endl - << "# number of degrees of freedom" << std::endl - << "# iterations for the helmholtz equation" << std::endl - << "# iterations for the projection equation" << std::endl - << "# elastic energy" << std::endl - << "# kinetic energy" << std::endl - << "# total energy" << std::endl; -} - - -template -void TimeStep_Wave::StatisticData::write (std::ostream &out) const -{ - out << n_active_cells << ' ' - << n_dofs << ' ' - << n_solver_steps_helmholtz << ' ' - << n_solver_steps_projection << ' ' - << energy.first << ' ' - << energy.second << ' ' - << energy.first+energy.second; -} - - -template class TimeStepBase_Wave<2>; -template class TimeStep_Wave<2>; - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - -#include - - -template -TimeStep_Dual::TimeStep_Dual (const std::string &dual_fe) - : - TimeStep_Wave (dual_fe) -{} - - -template -void TimeStep_Dual::do_initial_step () { - deallog << " Dual problem: time=" - << this->time - << ", step=" << this->timestep_no - << ", sweep=" << this->sweep_no - << ". " - << this->tria->n_active_cells() << " cells, " - << this->dof_handler->n_dofs() << " dofs"; - - this->sweep_info->get_data().dual_dofs += this->dof_handler->n_dofs() * 2; - - Vector tmp_u_bar, tmp_v_bar; - - this->parameters.dual_functional->reset (*this); - this->parameters.dual_functional-> - compute_endtime_vectors (tmp_u_bar, tmp_v_bar); - this->u.reinit (tmp_u_bar.size()); - this->v.reinit (tmp_v_bar.size()); - if ((tmp_u_bar.linfty_norm() > 0) || (tmp_v_bar.linfty_norm() > 0)) - { - UserMatrix system_matrix (this->system_sparsity, - this->parameters.preconditioning); - system_matrix.copy_from (this->mass_matrix); - this->constraints.condense (static_cast&>(system_matrix)); - const unsigned int - solver_steps1 = this->solve (system_matrix, this->u, tmp_u_bar), - solver_steps2 = this->solve (system_matrix, this->v, tmp_v_bar); - - this->statistic_data = typename TimeStep_Wave::StatisticData (this->tria->n_active_cells(), - this->dof_handler->n_dofs(), - solver_steps1, solver_steps2, - this->compute_energy ()); - } - else - this->statistic_data = typename TimeStep_Wave::StatisticData (this->tria->n_active_cells(), - this->dof_handler->n_dofs(), - 0, 0, - std::make_pair (0.0, 0.0)); - deallog << "." << std::endl; -} - - -template -void TimeStep_Dual::do_timestep () -{ - deallog << " Dual problem: time=" - << this->time - << ", step=" << this->timestep_no - << ", sweep=" << this->sweep_no - << ". " - << this->tria->n_active_cells() << " cells, " - << this->dof_handler->n_dofs() << " dofs"; - - this->sweep_info->get_data().dual_dofs += this->dof_handler->n_dofs() * 2; - - const double time_step = this->get_forward_timestep (); - - Vector right_hand_side1 (this->dof_handler->n_dofs()); - Vector right_hand_side2 (this->dof_handler->n_dofs()); - - Vector old_u, old_v; - if (this->parameters.extrapolate_old_solutions) - { - old_u.reinit (this->dof_handler->n_dofs()); - old_v.reinit (this->dof_handler->n_dofs()); - - this->transfer_old_solutions (old_u, old_v); - }; - - assemble_vectors (right_hand_side1, right_hand_side2); - - UserMatrix system_matrix (this->system_sparsity, this->parameters.preconditioning); - system_matrix.copy_from (this->mass_matrix); - system_matrix.add_scaled (time_step * time_step * - this->parameters.theta * - this->parameters.theta, - this->laplace_matrix); - this->constraints.condense (static_cast&>(system_matrix)); - - if (this->parameters.extrapolate_old_solutions) - { - this->v = old_v; - this->v.add (time_step, old_u); - }; - - - std::map boundary_value_list; - if (dim != 1) - { - static const ZeroFunction boundary_values; - - VectorTools::interpolate_boundary_values (*this->dof_handler, 0, boundary_values, - boundary_value_list); - MatrixTools::apply_boundary_values (boundary_value_list, - system_matrix, this->v, - right_hand_side1); - }; - - const unsigned int solver_steps1 = this->solve (system_matrix, this->v, right_hand_side1); - - system_matrix.copy_from (this->mass_matrix); - this->constraints.condense (static_cast&>(system_matrix)); - if (true) - { - Vector tmp (right_hand_side2.size()); - this->laplace_matrix.vmult (tmp, this->v); - right_hand_side2.add (-this->parameters.theta*time_step, tmp); - }; - this->constraints.condense (right_hand_side2); - if (dim != 1) - MatrixTools::apply_boundary_values (boundary_value_list, - system_matrix, this->u, - right_hand_side2); - - if (this->parameters.extrapolate_old_solutions) - { - this->u = this->v; - this->u -= old_v; - this->u.scale (2./time_step); - this->u -= old_u; - }; - - const unsigned int solver_steps2 = this->solve (system_matrix, this->u, right_hand_side2); - - this->statistic_data = typename TimeStep_Wave::StatisticData (this->tria->n_active_cells(), - this->dof_handler->n_dofs(), - solver_steps1, - solver_steps2, - this->compute_energy ()); - - deallog << "." << std::endl; -} - - -template -void TimeStep_Dual::solve_dual_problem () -{ - this->sweep_info->get_timers().dual_problem.start(); - if (this->next_timestep == 0) - do_initial_step (); - else - do_timestep (); - this->sweep_info->get_timers().dual_problem.stop(); -} - - -template -std::string TimeStep_Dual::branch_signature () const -{ - return "d"; -} - - -template -void TimeStep_Dual::wake_up (const unsigned int wakeup_level) -{ - TimeStep_Wave::wake_up (wakeup_level); - - this->sweep_info->get_timers().dual_problem.start(); - if ((wakeup_level==0) && (this->next_action==TimeStepBase::dual_problem)) - { - Assert (this->system_sparsity.empty(), ExcInternalError()); - - this->create_matrices (); - }; - this->sweep_info->get_timers().dual_problem.stop(); -} - - -template -void TimeStep_Dual::assemble_vectors (Vector &right_hand_side1, - Vector &right_hand_side2) { - Assert (this->next_timestep != 0, ExcInternalError()); - - build_rhs (right_hand_side1, right_hand_side2); - - Vector dual1, dual2; - this->parameters.dual_functional->reset (*this); - this->parameters.dual_functional->compute_functionals (dual1, dual2); - - const double timestep = this->get_forward_timestep(); - right_hand_side1.add (timestep, dual2); - right_hand_side1.add (this->parameters.theta * timestep * timestep, dual1); - - right_hand_side2.add (timestep, dual1); - - this->constraints.condense (right_hand_side1); -} - - -template -void TimeStep_Dual::build_rhs (Vector &right_hand_side1, - Vector &right_hand_side2) { - const TimeStep_Dual &previous_time_level - = static_cast*>(this->next_timestep)->get_timestep_dual(); - - Assert (previous_time_level.tria->n_cells(0) == this->tria->n_cells(0), - typename TimeStep_Wave::ExcCoarsestGridsDiffer()); - - typedef typename DoFHandler::cell_iterator cell_iterator; - - FEValues fe_values (this->fe, this->quadrature, - UpdateFlags(update_values | - update_gradients | - update_JxW_values | - update_q_points)); - - -cell_iterator old_cell = previous_time_level.dof_handler->begin(), - new_cell = this->dof_handler->begin(), - end_cell = (this->tria->n_levels() == 1 ? - static_cast(this->dof_handler->end()) : - this->dof_handler->begin(1)); - for (; new_cell!=end_cell; ++new_cell, ++old_cell) - build_rhs (old_cell, new_cell, - fe_values, - right_hand_side1, right_hand_side2); -} - - -template -void -TimeStep_Dual::build_rhs (const typename DoFHandler::cell_iterator &old_cell, - const typename DoFHandler::cell_iterator &new_cell, - FEValues &fe_values, - Vector &right_hand_side1, - Vector &right_hand_side2) -{ - typedef typename DoFHandler::cell_iterator cell_iterator; - - if (old_cell->has_children() && new_cell->has_children()) - { - for (unsigned int child=0; child::children_per_cell; ++child) - build_rhs (old_cell->child(child), - new_cell->child(child), - fe_values, - right_hand_side1, - right_hand_side2); - return; - }; - - - const TimeStep_Dual &previous_time_level - = static_cast*>(this->next_timestep)->get_timestep_dual(); - - const unsigned int dofs_per_cell = this->fe.dofs_per_cell; - const double time_step = this->get_forward_timestep(); - - if (!old_cell->has_children() && !new_cell->has_children()) - { - fe_values.reinit (old_cell); - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - - std::vector density_values(fe_values.n_quadrature_points); - this->parameters.density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; point tmp (dofs_per_cell); - Vector rhs1 (dofs_per_cell); - - Vector rhs2 (dofs_per_cell); - - Vector old_dof_values_v (dofs_per_cell); - Vector local_M_u (dofs_per_cell); - Vector local_M_v (dofs_per_cell); - Vector local_A_v (dofs_per_cell); - old_cell->get_dof_values (previous_time_level.v, old_dof_values_v); - cell_matrix.vmult (local_M_v, old_dof_values_v); - - old_cell->get_dof_values (previous_time_level.u, tmp); - cell_matrix.vmult (local_M_u, tmp); - - cell_matrix = 0; - std::vector stiffness_values(fe_values.n_quadrature_points); - this->parameters.stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - for (unsigned int point=0; pointparameters.theta* - (1-this->parameters.theta)), - local_A_v); - rhs2 = local_M_u; - rhs2.add (-(1-this->parameters.theta)* - time_step, - local_A_v); - - std::vector new_dof_indices (dofs_per_cell, DoFHandler::invalid_dof_index); - new_cell->get_dof_indices (new_dof_indices); - for (unsigned int i=0; ihas_children() && !new_cell->has_children()) - { - Vector rhs1 (dofs_per_cell); - Vector rhs2 (dofs_per_cell); - - collect_from_children (old_cell, fe_values, rhs1, rhs2); - - std::vector new_dof_indices (dofs_per_cell); - new_cell->get_dof_indices (new_dof_indices); - for (unsigned int i=0; ihas_children() && new_cell->has_children()) - { - Vector old_dof_values_u (dofs_per_cell); - Vector old_dof_values_v (dofs_per_cell); - old_cell->get_dof_values (previous_time_level.u, old_dof_values_u); - old_cell->get_dof_values (previous_time_level.v, old_dof_values_v); - - distribute_to_children (new_cell, fe_values, - old_dof_values_u, old_dof_values_v, - right_hand_side1, right_hand_side2); - - return; - }; - - Assert (false, ExcInternalError()); -} - - -template -unsigned int -TimeStep_Dual::collect_from_children (const typename DoFHandler::cell_iterator &old_cell, - FEValues &fe_values, - Vector &rhs1, - Vector &rhs2) const { - unsigned int level_difference = 1; - - const TimeStep_Dual &previous_time_level - = static_cast*>(this->next_timestep)->get_timestep_dual(); - - const unsigned int dofs_per_cell = this->fe.dofs_per_cell; - const double time_step = this->get_forward_timestep(); - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - - Vector local_old_dof_values_u (dofs_per_cell); - Vector local_old_dof_values_v (dofs_per_cell); - - Vector local_M_u (dofs_per_cell); - Vector local_M_v (dofs_per_cell); - Vector local_A_v (dofs_per_cell); - - Vector child_rhs1 (dofs_per_cell); - Vector child_rhs2 (dofs_per_cell); - - for (unsigned int c=0; c::children_per_cell; ++c) - { - const typename DoFHandler::cell_iterator old_child = old_cell->child(c); - - child_rhs1 = 0; - child_rhs2 = 0; - - if (old_child->has_children()) - { - const unsigned int l = collect_from_children (old_child, fe_values, - child_rhs1, child_rhs2); - level_difference = std::max (l+1, level_difference); - } - else - { - fe_values.reinit (old_child); - old_child->get_dof_values (previous_time_level.u, local_old_dof_values_u); - old_child->get_dof_values (previous_time_level.v, local_old_dof_values_v); - - cell_matrix = 0; - std::vector density_values(fe_values.n_quadrature_points); - this->parameters.density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; point stiffness_values(fe_values.n_quadrature_points); - this->parameters.stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - for (unsigned int point=0; pointparameters.theta* - (1-this->parameters.theta)), - local_A_v); - child_rhs2 = local_M_u; - child_rhs2.add (-(1-this->parameters.theta)* - time_step, - local_A_v); - }; - - this->fe.get_prolongation_matrix(c).Tvmult (rhs1, child_rhs1, true); - this->fe.get_prolongation_matrix(c).Tvmult (rhs2, child_rhs2, true); - }; - - return level_difference; -} - - -template -unsigned int -TimeStep_Dual::distribute_to_children (const typename DoFHandler::cell_iterator &new_cell, - FEValues &fe_values, - const Vector &old_dof_values_u, - const Vector &old_dof_values_v, - Vector &right_hand_side1, - Vector &right_hand_side2) { - unsigned int level_difference = 1; - - const unsigned int dofs_per_cell = this->fe.dofs_per_cell; - const double time_step = this->get_forward_timestep(); - - FullMatrix cell_matrix(dofs_per_cell, dofs_per_cell); - Vector local_old_dof_values_u (dofs_per_cell); - Vector local_old_dof_values_v (dofs_per_cell); - - Vector local_M_u (dofs_per_cell); - Vector local_M_v (dofs_per_cell); - Vector local_A_v (dofs_per_cell); - - Vector rhs1 (dofs_per_cell); - - Vector rhs2 (dofs_per_cell); - - std::vector new_dof_indices (dofs_per_cell, DoFHandler::invalid_dof_index); - - - for (unsigned int c=0; c::children_per_cell; ++c) - { - const typename DoFHandler::cell_iterator new_child = new_cell->child(c); - - this->fe.get_prolongation_matrix(c).vmult (local_old_dof_values_u, - old_dof_values_u); - this->fe.get_prolongation_matrix(c).vmult (local_old_dof_values_v, - old_dof_values_v); - - if (new_child->has_children()) - { - const unsigned int l = distribute_to_children (new_child, fe_values, - local_old_dof_values_u, - local_old_dof_values_v, - right_hand_side1, - right_hand_side2); - level_difference = std::max (l+1, level_difference); - } - else - { - fe_values.reinit (new_child); - cell_matrix = 0; - std::vector density_values(fe_values.n_quadrature_points); - this->parameters.density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; point stiffness_values(fe_values.n_quadrature_points); - this->parameters.stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - for (unsigned int point=0; pointparameters.theta* - (1-this->parameters.theta)), - local_A_v); - rhs2 = local_M_u; - rhs2.add (-(1-this->parameters.theta)* - time_step, - local_A_v); - - new_child->get_dof_indices (new_dof_indices); - for (unsigned int i=0; i; - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - -#include -#include -#include -#include - - -template -TimeStep_ErrorEstimation::TimeStep_ErrorEstimation () -{} - - -template -void TimeStep_ErrorEstimation::estimate_error () -{ - this->sweep_info->get_timers().error_estimation.start(); - - deallog << "[ee]"; - - if ((this->parameters.refinement_strategy == WaveParameters::energy_estimator) - || - (this->sweep_no < this->parameters.initial_energy_estimator_sweeps)) - estimate_error_energy (0); - - else - { - if (this->timestep_no != 0) - estimate_error_dual (); - }; - - const double accumulated_error = std::accumulate (estimated_error_per_cell.begin(), - estimated_error_per_cell.end(), - 0.0); - statistic_data = StatisticData (accumulated_error); - this->sweep_info->get_data().accumulated_error += accumulated_error; - - this->sweep_info->get_timers().error_estimation.stop(); -} - - -template -void TimeStep_ErrorEstimation::wake_up (const unsigned int wakeup_level) -{ - Assert (this->next_action==TimeStepBase::postprocess, ExcInternalError()); - - if (wakeup_level==0) - { - Assert (estimated_error_per_cell.size()==0, - ExcInternalError()); - - estimated_error_per_cell.reinit (this->tria->n_active_cells()); - }; -} - - -template -void TimeStep_ErrorEstimation::sleep (const unsigned int sleep_level) -{ - Assert (this->next_action==TimeStepBase::postprocess, ExcInternalError()); - - if (sleep_level==0) - { - Assert (estimated_error_per_cell.size()!=0, - ExcInternalError()); - - std::ofstream tmp_out(this->tmp_filename_base(branch_signature()).c_str()); - estimated_error_per_cell.block_write (tmp_out); - tmp_out.close (); - - estimated_error_per_cell.reinit (0); - }; -} - - -template -void -TimeStep_ErrorEstimation::get_tria_refinement_criteria (Vector &indicators) const -{ - get_error_indicators (indicators); - for (Vector::iterator i=indicators.begin(); i!=indicators.end(); ++i) - *i = fabs(*i); -} - - -template -void -TimeStep_ErrorEstimation::get_error_indicators (Vector &indicators) const -{ - std::ifstream in (this->tmp_filename_base(branch_signature()).c_str()); - indicators.block_read (in); -} - - -template -void TimeStep_ErrorEstimation::estimate_error_energy (const unsigned int which_variables) { - Assert (which_variables<=1, ExcInternalError()); - - typename FunctionMap::type neumann_boundary; - static ZeroFunction homogeneous_neumann_bc; - neumann_boundary[1] = &homogeneous_neumann_bc; - - const TimeStep_Wave &target = (which_variables==0 ? - static_cast&>(this->get_timestep_primal()) : - static_cast&>(this->get_timestep_dual ())); - - KellyErrorEstimator::estimate (*target.dof_handler, - target.quadrature_face, - neumann_boundary, - (which_variables==0 ? - target.u : - target.v), - estimated_error_per_cell, - std::vector(), - this->parameters.stiffness); - - if (((this->previous_timestep == 0) && (which_variables==0)) || - ((this->next_timestep == 0) && (which_variables==1) )) - { - Vector v_estimator(estimated_error_per_cell.size()); - KellyErrorEstimator::estimate (*target.dof_handler, - target.quadrature_face, - neumann_boundary, - (which_variables==0 ? - target.v : - target.u), - v_estimator, - std::vector(), - this->parameters.density); - estimated_error_per_cell += v_estimator; - }; -} - - -template -void TimeStep_ErrorEstimation::estimate_error_dual () { - CellwiseError cellwise_error (this->tria->n_active_cells()); - - const TimeStep_Primal &primal_problem = this->get_timestep_primal(), - &primal_problem_old = static_cast*> - (this->previous_timestep)->get_timestep_primal(); - const TimeStep_Dual &dual_problem = this->get_timestep_dual(), - &dual_problem_old = static_cast*> - (this->previous_timestep)->get_timestep_dual(); - - - if (true) - { - typename DoFHandler::active_cell_iterator - cell = primal_problem.dof_handler->begin_active(); - const typename DoFHandler::active_cell_iterator - endc = primal_problem.dof_handler->end(); - for (; cell!=endc; ++cell) - cell->clear_user_pointer(); - }; - - make_interpolation_matrices (); - - if (true) - { - FEValues fe_values (dual_problem.fe, - dual_problem.quadrature, - UpdateFlags(update_values | - update_gradients | - update_second_derivatives | - update_JxW_values | - update_q_points)); - - typename DoFHandler::cell_iterator - primal_cell = primal_problem.dof_handler->begin(), - dual_cell = dual_problem.dof_handler->begin(), - primal_cell_old = primal_problem_old.dof_handler->begin(), - dual_cell_old = dual_problem_old.dof_handler->begin(); - const typename DoFHandler::cell_iterator - endc = primal_problem.dof_handler->end(0); - - for (; primal_cell!=endc; (++primal_cell, ++dual_cell, - ++primal_cell_old, ++dual_cell_old)) - estimate_error_dual (primal_cell, dual_cell, - primal_cell_old, dual_cell_old, - cellwise_error, - fe_values); - }; - - ErrorOnCell total_estimated_error; - - - Vector::iterator i = estimated_error_per_cell.begin(); - typename DoFHandler::active_cell_iterator - cell = primal_problem.dof_handler->begin_active(); - const typename DoFHandler::active_cell_iterator - endc = primal_problem.dof_handler->end(); - for (; cell!=endc; ++cell, ++i) - { - const ErrorOnCell * - error_on_this_cell = static_cast(cell->user_pointer()); - Assert (error_on_this_cell != 0, ::ExcInternalError()); - - cell->clear_user_pointer (); - - *i = error_on_this_cell->sum(); - total_estimated_error += *error_on_this_cell; - }; -} - - -template -void -TimeStep_ErrorEstimation::estimate_error_dual (const typename DoFHandler::cell_iterator &primal_cell, - const typename DoFHandler::cell_iterator &dual_cell, - const typename DoFHandler::cell_iterator &primal_cell_old, - const typename DoFHandler::cell_iterator &dual_cell_old, - CellwiseError &cellwise_error, - FEValues &fe_values) const { - - if (primal_cell->has_children() && primal_cell_old->has_children()) - { - for (unsigned int child=0; child::children_per_cell; ++child) - estimate_error_dual (primal_cell->child(child), - dual_cell->child(child), - primal_cell_old->child(child), - dual_cell_old->child(child), - cellwise_error, - fe_values); - return; - }; - - -const TimeStep_Primal &primal_problem = this->get_timestep_primal(), - &primal_problem_old = static_cast*> - (this->previous_timestep)->get_timestep_primal(); - const TimeStep_Dual &dual_problem = this->get_timestep_dual(), - &dual_problem_old = static_cast*> - (this->previous_timestep)->get_timestep_dual(); - - const FiniteElement &primal_fe = this->get_timestep_primal().fe, - &dual_fe = this->get_timestep_dual().fe; - - const unsigned int dofs_per_cell_primal = primal_fe.dofs_per_cell, - dofs_per_cell_dual = dual_fe.dofs_per_cell; - - - if (!primal_cell->has_children() && !primal_cell_old->has_children()) - { - Vector local_u(dofs_per_cell_dual), local_v(dofs_per_cell_dual); - Vector local_u_bar(dofs_per_cell_dual), local_v_bar(dofs_per_cell_dual); - - Vector local_u_old(dofs_per_cell_dual), local_v_old(dofs_per_cell_dual); - Vector local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual); - - Vector primal_tmp(dofs_per_cell_primal); - - primal_cell->get_dof_values (primal_problem.u, primal_tmp); - embedding_matrix.vmult (local_u, primal_tmp); - - primal_cell->get_dof_values (primal_problem.v, primal_tmp); - embedding_matrix.vmult (local_v, primal_tmp); - - dual_cell->get_dof_values (dual_problem.u, local_u_bar); - dual_cell->get_dof_values (dual_problem.v, local_v_bar); - - - primal_cell_old->get_dof_values (primal_problem_old.u, primal_tmp); - embedding_matrix.vmult (local_u_old, primal_tmp); - - primal_cell_old->get_dof_values (primal_problem_old.v, primal_tmp); - embedding_matrix.vmult (local_v_old, primal_tmp); - - dual_cell_old->get_dof_values (dual_problem_old.u, local_u_bar_old); - dual_cell_old->get_dof_values (dual_problem_old.v, local_v_bar_old); - - primal_cell->set_user_pointer (cellwise_error.next_free_slot); - *cellwise_error.next_free_slot = error_formula (dual_cell, - local_u, local_v, - local_u_bar, local_v_bar, - local_u_old, local_v_old, - local_u_bar_old, local_v_bar_old, - fe_values); - ++cellwise_error.next_free_slot; - - return; - }; - - - if (!primal_cell_old->has_children() && primal_cell->has_children()) - { - Vector local_u_old(dofs_per_cell_dual), local_v_old(dofs_per_cell_dual); - Vector local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual); - - Vector primal_tmp(dofs_per_cell_primal); - - primal_cell_old->get_dof_values (primal_problem_old.u, primal_tmp); - embedding_matrix.vmult (local_u_old, primal_tmp); - - primal_cell_old->get_dof_values (primal_problem_old.v, primal_tmp); - embedding_matrix.vmult (local_v_old, primal_tmp); - - dual_cell_old->get_dof_values (dual_problem_old.u, local_u_bar_old); - dual_cell_old->get_dof_values (dual_problem_old.v, local_v_bar_old); - - -compute_error_on_new_children (primal_cell, dual_cell, - local_u_old, - local_v_old, - local_u_bar_old, - local_v_bar_old, - cellwise_error, - fe_values); - - return; - }; - - - if (primal_cell_old->has_children() && !primal_cell->has_children()) - { - Vector local_u(dofs_per_cell_dual), local_v(dofs_per_cell_dual); - Vector local_u_bar(dofs_per_cell_dual), local_v_bar(dofs_per_cell_dual); - Vector local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual); - Vector local_Ih_u_bar(dofs_per_cell_dual), local_Ih_v_bar(dofs_per_cell_dual); - Vector local_Ih_u_bar_old(dofs_per_cell_dual), local_Ih_v_bar_old(dofs_per_cell_dual); - - Vector primal_tmp(embedding_matrix.n()); - - primal_cell->get_dof_values (primal_problem.u, primal_tmp); - embedding_matrix.vmult (local_u, primal_tmp); - - primal_cell->get_dof_values (primal_problem.v, primal_tmp); - embedding_matrix.vmult (local_v, primal_tmp); - - dual_cell->get_dof_values (dual_problem.u, local_u_bar); - dual_cell->get_dof_values (dual_problem.v, local_v_bar); - - dual_cell_old->get_interpolated_dof_values (dual_problem_old.u, - local_u_bar_old); - dual_cell_old->get_interpolated_dof_values (dual_problem_old.v, - local_v_bar_old); - - interpolation_matrix.vmult (local_Ih_u_bar, local_u_bar); - interpolation_matrix.vmult (local_Ih_v_bar, local_v_bar); - interpolation_matrix.vmult (local_Ih_u_bar_old, local_u_bar_old); - interpolation_matrix.vmult (local_Ih_v_bar_old, local_v_bar_old); - - primal_cell->set_user_pointer (cellwise_error.next_free_slot); - *cellwise_error.next_free_slot - = collect_error_from_children (primal_cell_old, - dual_cell_old, - local_u, local_v, - local_u_bar, local_v_bar, - local_Ih_u_bar, local_Ih_v_bar, - local_Ih_u_bar_old, local_Ih_v_bar_old, - fe_values); - ++cellwise_error.next_free_slot; - - return; - }; - - -Assert (false, ExcInternalError()); -} - - -template -void TimeStep_ErrorEstimation:: -compute_error_on_new_children (const typename DoFHandler::cell_iterator &primal_cell, - const typename DoFHandler::cell_iterator &dual_cell, - const Vector &local_u_old, - const Vector &local_v_old, - const Vector &local_u_bar_old, - const Vector &local_v_bar_old, - CellwiseError &cellwise_error, - FEValues &fe_values) const { - const TimeStep_Primal &primal_problem = this->get_timestep_primal(); - const TimeStep_Dual &dual_problem = this->get_timestep_dual(); - - const FiniteElement &dual_fe = this->get_timestep_dual().fe; - const unsigned int dofs_per_cell_dual = dual_fe.dofs_per_cell; - - -for (unsigned int child=0; child::children_per_cell; ++child) - { - Vector child_u_old(dofs_per_cell_dual), child_v_old(dofs_per_cell_dual); - Vector child_u_bar_old(dofs_per_cell_dual), child_v_bar_old(dofs_per_cell_dual); - - dual_fe.get_prolongation_matrix(child).vmult (child_u_old, local_u_old); - dual_fe.get_prolongation_matrix(child).vmult (child_v_old, local_v_old); - dual_fe.get_prolongation_matrix(child).vmult (child_u_bar_old, local_u_bar_old); - dual_fe.get_prolongation_matrix(child).vmult (child_v_bar_old, local_v_bar_old); - - const typename DoFHandler::cell_iterator - new_primal_child = primal_cell->child(child), - new_dual_child = dual_cell->child(child); - - if (new_primal_child->has_children()) - compute_error_on_new_children (new_primal_child, new_dual_child, - child_u_old, - child_v_old, - child_u_bar_old, - child_v_bar_old, - cellwise_error, - fe_values); - else - { - Vector local_u(dofs_per_cell_dual), local_v(dofs_per_cell_dual); - Vector local_u_bar(dofs_per_cell_dual), local_v_bar(dofs_per_cell_dual); - - Vector primal_tmp(embedding_matrix.n()); - - new_primal_child->get_dof_values (primal_problem.u, primal_tmp); - embedding_matrix.vmult (local_u, primal_tmp); - - new_primal_child->get_dof_values (primal_problem.v, primal_tmp); - embedding_matrix.vmult (local_v, primal_tmp); - - new_dual_child->get_dof_values (dual_problem.u, local_u_bar); - new_dual_child->get_dof_values (dual_problem.v, local_v_bar); - - new_primal_child->set_user_pointer (cellwise_error.next_free_slot); - *cellwise_error.next_free_slot - = error_formula (new_dual_child, - local_u, local_v, - local_u_bar, local_v_bar, - child_u_old, child_v_old, - child_u_bar_old, child_v_bar_old, - fe_values); - ++cellwise_error.next_free_slot; - }; - }; -} - - -template -typename TimeStep_ErrorEstimation::ErrorOnCell -TimeStep_ErrorEstimation::collect_error_from_children (const typename DoFHandler::cell_iterator &primal_cell_old, - const typename DoFHandler::cell_iterator &dual_cell_old, - const Vector &local_u, - const Vector &local_v, - const Vector &local_u_bar, - const Vector &local_v_bar, - const Vector &local_Ih_u_bar, - const Vector &local_Ih_v_bar, - const Vector &local_Ih_u_bar_old, - const Vector &local_Ih_v_bar_old, - FEValues &fe_values) const { - const TimeStep_Primal &primal_problem_old = static_cast*> - (this->previous_timestep)->get_timestep_primal(); - const TimeStep_Dual &dual_problem_old = static_cast*> - (this->previous_timestep)->get_timestep_dual(); - const FiniteElement &dual_fe = dual_problem_old.fe; - - ErrorOnCell error_sum; - - const unsigned int dofs_per_cell_dual = local_u_bar.size(); - - for (unsigned int child=0; child::children_per_cell; ++child) - { - Vector child_u(dofs_per_cell_dual), child_v(dofs_per_cell_dual); - Vector child_u_bar(dofs_per_cell_dual), child_v_bar(dofs_per_cell_dual); - Vector child_Ih_u_bar(dofs_per_cell_dual), child_Ih_v_bar(dofs_per_cell_dual); - Vector child_Ih_u_bar_old(dofs_per_cell_dual), child_Ih_v_bar_old(dofs_per_cell_dual); - - dual_fe.get_prolongation_matrix(child).vmult (child_u, local_u); - dual_fe.get_prolongation_matrix(child).vmult (child_v, local_v); - dual_fe.get_prolongation_matrix(child).vmult (child_u_bar, local_u_bar); - dual_fe.get_prolongation_matrix(child).vmult (child_v_bar, local_v_bar); - dual_fe.get_prolongation_matrix(child).vmult (child_Ih_u_bar, local_Ih_u_bar); - dual_fe.get_prolongation_matrix(child).vmult (child_Ih_v_bar, local_Ih_v_bar); - dual_fe.get_prolongation_matrix(child).vmult (child_Ih_u_bar_old, local_Ih_u_bar_old); - dual_fe.get_prolongation_matrix(child).vmult (child_Ih_v_bar_old, local_Ih_v_bar_old); - - const typename DoFHandler::cell_iterator - old_primal_child = primal_cell_old->child(child), - old_dual_child = dual_cell_old->child(child); - - if (old_primal_child->has_children()) - error_sum += collect_error_from_children (old_primal_child, - old_dual_child, - child_u, child_v, - child_u_bar, child_v_bar, - child_Ih_u_bar, child_Ih_v_bar, - child_Ih_u_bar_old, child_Ih_v_bar_old, - fe_values); - else - { - Vector local_u_old(dofs_per_cell_dual), local_v_old(dofs_per_cell_dual); - Vector local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual); - - Vector primal_tmp(embedding_matrix.n()); - - old_primal_child->get_dof_values (primal_problem_old.u, primal_tmp); - embedding_matrix.vmult (local_u_old, primal_tmp); - - old_primal_child->get_dof_values (primal_problem_old.v, primal_tmp); - embedding_matrix.vmult (local_v_old, primal_tmp); - - Vector child_difference_u_bar (dofs_per_cell_dual); - Vector child_difference_v_bar (dofs_per_cell_dual); - Vector local_difference_u_bar_old (dofs_per_cell_dual); - Vector local_difference_v_bar_old (dofs_per_cell_dual); - - child_difference_u_bar = child_u_bar; - child_difference_u_bar -= child_Ih_u_bar; - child_difference_v_bar = child_v_bar; - child_difference_v_bar -= child_Ih_v_bar; - - local_difference_u_bar_old = local_u_bar_old; - local_difference_u_bar_old -= local_Ih_u_bar_old; - local_difference_v_bar_old = local_v_bar_old; - local_difference_v_bar_old -= local_Ih_v_bar_old; - - -error_sum += error_formula (old_dual_child, - child_u, child_v, - child_u_bar, child_v_bar, - local_u_old, local_v_old, - local_u_bar_old, local_v_bar_old, - fe_values); - }; - }; - - return error_sum; -} - - -template -typename TimeStep_ErrorEstimation::ErrorOnCell -TimeStep_ErrorEstimation::error_formula (const typename DoFHandler::active_cell_iterator &cell, - const Vector &local_u, - const Vector &local_v, - const Vector &local_u_bar, - const Vector &local_v_bar, - const Vector &local_u_old, - const Vector &local_v_old, - const Vector &local_u_bar_old, - const Vector &local_v_bar_old, - FEValues &fe_values) const { - Vector local_difference_u_bar(local_u_bar.size()); - Vector local_difference_v_bar(local_u_bar.size()); - Vector local_difference_u_bar_old(local_u_bar.size()); - Vector local_difference_v_bar_old(local_u_bar.size()); - - difference_matrix.vmult (local_difference_u_bar, local_u_bar); - difference_matrix.vmult (local_difference_v_bar, local_v_bar); - difference_matrix.vmult (local_difference_u_bar_old, local_u_bar_old); - difference_matrix.vmult (local_difference_v_bar_old, local_v_bar_old); - - return error_formula (cell, - local_u, local_v, - local_u_bar, local_v_bar, - local_u_old, local_v_old, - local_u_bar_old, local_v_bar_old, - local_difference_u_bar, - local_difference_v_bar, - local_difference_u_bar_old, - local_difference_v_bar_old, - fe_values); -} - - -template -typename TimeStep_ErrorEstimation::ErrorOnCell -TimeStep_ErrorEstimation::error_formula (const typename DoFHandler::active_cell_iterator &cell, - const Vector &local_u, - const Vector &local_v, - const Vector &local_u_bar, - const Vector &local_v_bar, - const Vector &local_u_old, - const Vector &local_v_old, - const Vector &local_u_bar_old, - const Vector &local_v_bar_old, - const Vector &local_difference_u_bar, - const Vector &local_difference_v_bar, - const Vector &local_difference_u_bar_old, - const Vector &local_difference_v_bar_old, - FEValues &fe_values) const { - - ErrorOnCell error_on_cell; - - const unsigned int dofs_per_cell = this->get_timestep_dual().fe.dofs_per_cell; - - Vector tmp1(dofs_per_cell); - Vector tmp2(dofs_per_cell); - - -std::vector stiffness(fe_values.n_quadrature_points); - this->parameters.stiffness->value_list (fe_values.get_quadrature_points(), - stiffness); - std::vector > grad_stiffness(fe_values.n_quadrature_points); - this->parameters.stiffness->gradient_list (fe_values.get_quadrature_points(), - grad_stiffness); - - FullMatrix mass_matrix (tmp1.size(), tmp1.size()); - FullMatrix laplace_matrix (tmp1.size(), tmp1.size()); - - fe_values.reinit (cell); - std::vector density_values(fe_values.n_quadrature_points); - this->parameters.density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; pointget_backward_timestep() / 4 * - mass_matrix.matrix_scalar_product (tmp1, tmp2)); - - - tmp1 = local_v; - tmp1 -= local_v_old; - - tmp2 = local_u_bar; - tmp2 -= local_u_bar_old; - - error_on_cell.part[3] = -(this->get_backward_timestep() / 12 * - mass_matrix.matrix_scalar_product (tmp1, tmp2)); - - - tmp2 = local_difference_v_bar; - tmp2 += local_difference_v_bar_old; - - tmp1 = local_u; - tmp1 += local_u_old; - - error_on_cell.part[4] = (this->get_backward_timestep() / 4 * - laplace_matrix.matrix_scalar_product (tmp1, tmp2)); - - - tmp1 = local_u; - tmp1 -= local_u_old; - - tmp2 = local_v_bar; - tmp2 -= local_v_bar_old; - - error_on_cell.part[5] = (this->get_backward_timestep() / 12 * - laplace_matrix.matrix_scalar_product (tmp1, tmp2)); - - - - - - - - - - - - - - - - - - - - - - - - - - - -return error_on_cell; -} - -#include - -template -void TimeStep_ErrorEstimation::make_interpolation_matrices () { - const FiniteElement &primal_fe = this->get_timestep_primal().fe, - &dual_fe = this->get_timestep_dual().fe; - - embedding_matrix.reinit (dual_fe.dofs_per_cell, - primal_fe.dofs_per_cell); - - FETools::get_interpolation_matrix (primal_fe, dual_fe, - embedding_matrix); - - - FullMatrix inverse_interpolation (primal_fe.dofs_per_cell, - dual_fe.dofs_per_cell); - FETools::get_interpolation_matrix (dual_fe, primal_fe, - inverse_interpolation); - - interpolation_matrix.reinit (dual_fe.dofs_per_cell, dual_fe.dofs_per_cell); - embedding_matrix.mmult (interpolation_matrix, inverse_interpolation); - - difference_matrix.reinit (dual_fe.dofs_per_cell, dual_fe.dofs_per_cell); - for (unsigned int i=0; i -TimeStep_ErrorEstimation::StatisticData::StatisticData () : - estimated_error (0) -{} - - -template -TimeStep_ErrorEstimation::StatisticData::StatisticData (const double estimated_error) : - estimated_error (estimated_error) -{} - - -template -void TimeStep_ErrorEstimation::StatisticData::write_descriptions (std::ostream &out) -{ - out << "# total estimated error in this timestep" << std::endl; -} - - -template -void TimeStep_ErrorEstimation::StatisticData::write (std::ostream &out) const -{ - out << estimated_error*100000; -} - - -template -TimeStep_ErrorEstimation::ErrorOnCell::ErrorOnCell () { - for (unsigned int i=0; i -typename TimeStep_ErrorEstimation::ErrorOnCell -TimeStep_ErrorEstimation::ErrorOnCell::operator += (const ErrorOnCell &eoc) { - for (unsigned int i=0; i -double TimeStep_ErrorEstimation::ErrorOnCell::sum () const { - double x=0; - for (unsigned int i=0; i -TimeStep_ErrorEstimation::CellwiseError::CellwiseError (const unsigned int n_errors) : - errors (n_errors), - next_free_slot (&*errors.begin()) -{} - - -template class TimeStep_ErrorEstimation<2>; - - -#include -#include -#include -#include - - -template -TimeStep::TimeStep (const double time, - const WaveParameters ¶meters): - TimeStepBase_Wave (time, - typename TimeStepBase_Tria::Flags(true, 0, 1), - parameters), - TimeStep_Primal(parameters.primal_fe), - TimeStep_Dual (parameters.dual_fe) -{} - - -template -void TimeStep::wake_up (const unsigned int wakeup_level) -{ - this->sweep_info->get_timers().grid_generation.start(); - TimeStepBase_Wave::wake_up (wakeup_level); - this->sweep_info->get_timers().grid_generation.stop(); - - switch (this->next_action) - { - case TimeStepBase::primal_problem: - TimeStep_Primal::wake_up (wakeup_level); - break; - - case TimeStepBase::dual_problem: - TimeStep_Dual::wake_up (wakeup_level); - break; - - case TimeStepBase::postprocess: - TimeStep_Primal::wake_up (wakeup_level); - - if ((this->parameters.refinement_strategy == WaveParameters::dual_estimator) - && - (this->sweep_no >= this->parameters.initial_energy_estimator_sweeps)) - TimeStep_Dual::wake_up (wakeup_level); - - TimeStep_Postprocess::wake_up (wakeup_level); - - break; - - case TimeStepBase_Tria::grid_refinement: - break; - - default: - Assert (false, ExcInternalError()); - }; -} - - -template -void TimeStep::sleep (const unsigned int sleep_level) -{ - switch (this->next_action) - { - case TimeStepBase::primal_problem: - TimeStep_Primal::sleep (sleep_level); - break; - - case TimeStepBase::dual_problem: - TimeStep_Dual::sleep (sleep_level); - break; - - case TimeStepBase::postprocess: - TimeStep_Primal::sleep (sleep_level); - - if ((this->parameters.refinement_strategy == WaveParameters::dual_estimator) - && - (this->sweep_no >= this->parameters.initial_energy_estimator_sweeps)) - TimeStep_Dual::sleep (sleep_level); - - TimeStep_Postprocess::sleep (sleep_level); - break; - - case TimeStepBase_Tria::grid_refinement: - if (sleep_level == 1) - this->save_refine_flags (); - break; - - default: - Assert (false, ExcInternalError()); - }; - - this->sweep_info->get_timers().grid_generation.start(); - TimeStepBase_Wave::sleep (sleep_level); - this->sweep_info->get_timers().grid_generation.stop(); -} - - -template -void TimeStep::end_sweep () -{ - TimeStep_Primal::end_sweep (); - TimeStep_Dual::end_sweep (); - TimeStep_Postprocess::end_sweep (); -} - - -template -void TimeStep::write_statistics_descriptions (std::ostream &out, - const WaveParameters ¶meters) -{ - out << "# Primal problem:" << std::endl; - typename TimeStep_Primal::StatisticData xp; - xp.write_descriptions (out); - - out << "# Dual problem:" << std::endl; - typename TimeStep_Dual::StatisticData xd; - xd.write_descriptions (out); - - out << "# Error estimation:" << std::endl; - TimeStep_ErrorEstimation::StatisticData::write_descriptions (out); - - if (parameters.eval_list.size() != 0) - { - out << "# Postprocessing:" << std::endl; - TimeStep_Postprocess::StatisticData::write_descriptions (out, parameters); - }; -} - - -template -void TimeStep::write_statistics (std::ostream &out) const -{ - TimeStep_Primal::statistic_data.write (out); - out << " "; - TimeStep_Dual::statistic_data.write (out); - out << " "; - TimeStep_ErrorEstimation::statistic_data.write (out); - out << " "; - TimeStep_Postprocess::statistic_data.write (out); -} - - -template class TimeStep<2>; - - -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include - - -template -void TimeStep_Postprocess::postprocess_timestep () -{ - deallog << " Postprocessing: time=" - << this->time - << ", step=" << this->timestep_no - << ", sweep=" << this->sweep_no - << ". "; - - if ((this->sweep_no < this->parameters.number_of_sweeps-1) || - (this->parameters.refinement_strategy == WaveParameters::dual_estimator)) - this->estimate_error (); - - this->sweep_info->get_timers().postprocessing.start(); - - statistic_data.evaluation_results.clear(); - for (typename std::list*>::const_iterator i = this->parameters.eval_list.begin(); - i != this->parameters.eval_list.end(); ++i) - { - (*i)->reset_timelevel (this->get_timestep_primal()); - statistic_data.evaluation_results.push_back ((*i)->evaluate()); - }; - - if (((this->parameters.write_solution_strategy == WaveParameters::all_sweeps) || - ((this->parameters.write_solution_strategy == WaveParameters::last_sweep_only) && - (this->sweep_no == this->parameters.number_of_sweeps-1))) - && - (((this->timestep_no % this->parameters.write_steps_interval) == 0) || - (this->next_timestep == 0))) - { - deallog << "[o]"; - - DataOut out; - DataOutBase::OutputFormat output_format - = DataOutBase::parse_output_format (this->parameters.output_format); - - out.attach_dof_handler (*this->get_timestep_primal().dof_handler); - out.add_data_vector (this->get_timestep_primal().u, "u"); - out.add_data_vector (this->get_timestep_primal().v, "v"); - - Vector u_bar, v_bar; - - if ((this->parameters.refinement_strategy == WaveParameters::dual_estimator) - && - (this->sweep_no >= this->parameters.initial_energy_estimator_sweeps)) - { - u_bar.reinit (this->get_timestep_primal().u.size()); - v_bar.reinit (this->get_timestep_primal().u.size()); - - if (this->parameters.primal_fe == this->parameters.dual_fe) - { - u_bar = this->get_timestep_dual().u; - v_bar = this->get_timestep_dual().v; - } - else - interpolate_dual_solution (u_bar, v_bar); - - out.add_data_vector (u_bar, "dual_u"); - out.add_data_vector (v_bar, "dual_v"); - }; - - Vector estimated_error; - if ((this->sweep_noparameters.number_of_sweeps-1) || - (this->parameters.refinement_strategy == WaveParameters::dual_estimator)) - { - if (this->parameters.write_error_as_cell_data) - { - estimated_error.reinit (this->estimated_error_per_cell.size()); - std::copy (this->estimated_error_per_cell.begin(), - this->estimated_error_per_cell.end(), - estimated_error.begin()); - } - else - { - estimated_error.reinit (this->get_timestep_primal().dof_handler->n_dofs()); - DoFTools::distribute_cell_to_dof_vector (*this->get_timestep_primal().dof_handler, - this->estimated_error_per_cell, - estimated_error); - }; - - out.add_data_vector (estimated_error, "est_error"); - }; - - out.build_patches (); - - out.write (logfile, output_format); - - deallog << "."; - }; - - if (this->parameters.write_stacked_data && - (this->timestep_no % this->parameters.write_stacked_interval == 0)) - { - deallog << "[st]"; - - this->sweep_data->data_out_stack->new_parameter_value (this->time, - (this->timestep_no == 0 ? - 0 : - this->get_backward_timestep() * - this->parameters.write_stacked_interval)); - this->sweep_data->data_out_stack->attach_dof_handler (*this->get_timestep_primal().dof_handler); - this->sweep_data->data_out_stack->add_data_vector (this->get_timestep_primal().u, "u"); - this->sweep_data->data_out_stack->add_data_vector (this->get_timestep_primal().v, "v"); - - if ((this->parameters.refinement_strategy == WaveParameters::dual_estimator) - && - (this->sweep_no >= this->parameters.initial_energy_estimator_sweeps)) - { - if (this->parameters.primal_fe == this->parameters.dual_fe) - { - this->sweep_data->data_out_stack->add_data_vector (this->get_timestep_dual().u, "dual_u"); - this->sweep_data->data_out_stack->add_data_vector (this->get_timestep_dual().v, "dual_v"); - } - else - { - Vector u_bar(this->get_timestep_primal().dof_handler->n_dofs()); - Vector v_bar(this->get_timestep_primal().dof_handler->n_dofs()); - - interpolate_dual_solution (u_bar, v_bar); - - this->sweep_data->data_out_stack->add_data_vector (u_bar, "dual_u"); - this->sweep_data->data_out_stack->add_data_vector (v_bar, "dual_v"); - }; - }; - - if ((this->sweep_no < this->parameters.number_of_sweeps-1) || - (this->parameters.refinement_strategy == WaveParameters::dual_estimator)) - this->sweep_data->data_out_stack->add_data_vector (this->estimated_error_per_cell, "est_error"); - - this->sweep_data->data_out_stack->build_patches (); - this->sweep_data->data_out_stack->finish_parameter_value (); - }; - - -deallog << std::endl; - this->sweep_info->get_timers().postprocessing.stop(); -} - - -template -void TimeStep_Postprocess::wake_up (const unsigned int wakeup_level) -{ - TimeStep_ErrorEstimation::wake_up (wakeup_level); -} - - -template -void TimeStep_Postprocess::sleep (const unsigned int sleep_level) -{ - TimeStep_ErrorEstimation::sleep (sleep_level); -} - - -template -std::string TimeStep_Postprocess::branch_signature () const -{ - return "o"; -} - - -template -void TimeStep_Postprocess::end_sweep () -{ - std::string tmp_filename = this->tmp_filename_base(branch_signature()); - remove (tmp_filename.c_str()); -} - - -template -void TimeStep_Postprocess::interpolate_dual_solution (Vector &interpolated_u_bar, - Vector &interpolated_v_bar) const { - const unsigned int n_primal_dofs = this->get_timestep_primal().dof_handler->n_dofs(); - - interpolated_u_bar.reinit (n_primal_dofs); - interpolated_v_bar.reinit (n_primal_dofs); - - const TimeStep_Wave &target = this->get_timestep_dual (); - - typename DoFHandler::active_cell_iterator primal_cell, dual_cell, endc; - primal_cell = this->get_timestep_primal().dof_handler->begin_active(); - endc = this->get_timestep_primal().dof_handler->end(); - dual_cell = target.dof_handler->begin_active(); - - for (; primal_cell != endc; ++primal_cell, ++dual_cell) - for (unsigned int vertex=0; vertex::vertices_per_cell; ++vertex) - { - const unsigned int primal_vertex_index = primal_cell->vertex_dof_index(vertex,0), - dual_vertex_index = dual_cell->vertex_dof_index(vertex,0); - interpolated_u_bar(primal_vertex_index) = target.u(dual_vertex_index); - interpolated_v_bar(primal_vertex_index) = target.v(dual_vertex_index); - }; -} - - -template -void TimeStep_Postprocess::StatisticData:: -write_descriptions (std::ostream &out, - const WaveParameters ¶meters) -{ - for (typename std::list*>::const_iterator i = parameters.eval_list.begin(); - i != parameters.eval_list.end(); ++i) - out << "# " << (*i)->description() << std::endl; -} - - -template -void TimeStep_Postprocess::StatisticData::write (std::ostream &out) const -{ - for (unsigned int i=0; i; - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - -#include - - -template -TimeStep_Primal::TimeStep_Primal (const std::string &primal_fe) - : - TimeStep_Wave (primal_fe) -{} - - -template -void TimeStep_Primal::do_initial_step () -{ - deallog << " Primal problem: time=" - << this->time - << ", step=" << this->timestep_no - << ", sweep=" < sweep_no - << ". " - << this->tria->n_active_cells() << " cells, " - << this->dof_handler->n_dofs() << " dofs"; - - - this->sweep_info->get_data().cells += this->tria->n_active_cells(); - this->sweep_info->get_data().primal_dofs += this->dof_handler->n_dofs() * 2; - -#if 2 == 1 - VectorTools::interpolate (*dof_handler, *parameters.initial_u, u); - VectorTools::interpolate (*dof_handler, *parameters.initial_v, v); -#else - VectorTools::project (*this->dof_handler, this->constraints, - this->quadrature, *this->parameters.initial_u, this->u, - false, this->quadrature_face, (dim==2 ? true : false)); - VectorTools::project (*this->dof_handler, this->constraints, - this->quadrature, *this->parameters.initial_v, this->v, - false, this->quadrature_face, (dim==2 ? true : false)); -#endif - this->statistic_data = typename TimeStep_Wave::StatisticData (this->tria->n_active_cells(), - this->dof_handler->n_dofs(), - 0, - 0, - std::make_pair (0.0, 0.0)); - - deallog << "." << std::endl; -} - - -template -void TimeStep_Primal::do_timestep () -{ - deallog << " Primal problem: time=" - << this->time - << ", step=" << this->timestep_no - << ", sweep=" << this->sweep_no - << ". " - << this->tria->n_active_cells() << " cells, " - << this->dof_handler->n_dofs() << " dofs"; - - this->sweep_info->get_data().cells += this->tria->n_active_cells(); - this->sweep_info->get_data().primal_dofs += this->dof_handler->n_dofs() * 2; - - - const double time_step = this->get_backward_timestep (); - - Vector right_hand_side1 (this->dof_handler->n_dofs()); - Vector right_hand_side2 (this->dof_handler->n_dofs()); - - Vector old_u, old_v; - if (this->parameters.extrapolate_old_solutions) - { - old_u.reinit (this->dof_handler->n_dofs()); - old_v.reinit (this->dof_handler->n_dofs()); - - this->transfer_old_solutions (old_u, old_v); - }; - - - assemble_vectors (right_hand_side1, right_hand_side2); - - UserMatrix system_matrix (this->system_sparsity, this->parameters.preconditioning); - system_matrix.copy_from (this->mass_matrix); - system_matrix.add_scaled (time_step * time_step * - this->parameters.theta * - this->parameters.theta, - this->laplace_matrix); - this->constraints.condense (static_cast&>(system_matrix)); - - if (this->parameters.extrapolate_old_solutions) - { - this->u = old_u; - this->u.add (time_step, old_v); - }; - - if (dim!=1) - { - this->parameters.boundary_values_u->set_time (this->time); - this->parameters.boundary_values_v->set_time (this->time); - - std::map boundary_value_list; - VectorTools::interpolate_boundary_values (*this->dof_handler, 0, - *(this->parameters.boundary_values_u), - boundary_value_list); - MatrixTools::apply_boundary_values (boundary_value_list, - system_matrix, this->u, - right_hand_side1); - }; - - const unsigned int solver_steps1 = this->solve (system_matrix, this->u, right_hand_side1); - - system_matrix.copy_from (this->mass_matrix); - this->constraints.condense (static_cast&>(system_matrix)); - if (true) - { - Vector tmp (right_hand_side2.size()); - this->laplace_matrix.vmult (tmp, this->u); - right_hand_side2.add (-this->parameters.theta*time_step, tmp); - }; - this->constraints.condense (right_hand_side2); - - - if (dim != 1) - { - std::map boundary_value_list; - VectorTools::interpolate_boundary_values (*this->dof_handler, 0, - *(this->parameters.boundary_values_v), - boundary_value_list); - MatrixTools::apply_boundary_values (boundary_value_list, - system_matrix, this->v, - right_hand_side2); - }; - - -if (this->parameters.extrapolate_old_solutions) - { - this->v = this->u; - this->v -= old_u; - this->v.scale (2./time_step); - this->v -= old_v; - }; - - const unsigned int solver_steps2 = this->solve (system_matrix, this->v, right_hand_side2); - - this->statistic_data = typename TimeStep_Wave::StatisticData (this->tria->n_active_cells(), - this->dof_handler->n_dofs(), - solver_steps1, - solver_steps2, - this->compute_energy ()); - - deallog << "." << std::endl; -} - - -template -void TimeStep_Primal::solve_primal_problem () -{ - this->sweep_info->get_timers().primal_problem.start(); - if (this->timestep_no == 0) - do_initial_step (); - else - do_timestep (); - this->sweep_info->get_timers().primal_problem.stop(); -} - - -template -std::string TimeStep_Primal::branch_signature () const -{ - return "p"; -} - - -template -void TimeStep_Primal::wake_up (const unsigned int wakeup_level) -{ - TimeStep_Wave::wake_up (wakeup_level); - - this->sweep_info->get_timers().primal_problem.start(); - if ((wakeup_level==0) && (this->next_action==TimeStepBase::primal_problem)) - { - Assert (this->system_sparsity.empty(), ExcInternalError()); - - this->create_matrices (); - }; - this->sweep_info->get_timers().primal_problem.stop(); -} - - -template -void TimeStep_Primal::assemble_vectors (Vector &right_hand_side1, - Vector &right_hand_side2) { - Assert (this->timestep_no>=1, ExcInternalError()); - - build_rhs (right_hand_side1, right_hand_side2); - this->constraints.condense (right_hand_side1); -} - - -template -void TimeStep_Primal::build_rhs (Vector &right_hand_side1, - Vector &right_hand_side2) { - const TimeStep_Primal &previous_time_level - = static_cast*>(this->previous_timestep)->get_timestep_primal(); - - Assert (previous_time_level.tria->n_cells(0) == this->tria->n_cells(0), - typename TimeStep_Wave::ExcCoarsestGridsDiffer()); - - typedef typename DoFHandler::cell_iterator cell_iterator; - - FEValues fe_values (this->fe, this->quadrature, - UpdateFlags(update_values | - update_gradients | - update_JxW_values | - update_q_points)); - - -cell_iterator old_cell = previous_time_level.dof_handler->begin(), - new_cell = this->dof_handler->begin(), - end_cell = (this->tria->n_levels() == 1 ? - static_cast(this->dof_handler->end()) : - this->dof_handler->begin(1)); - for (; new_cell!=end_cell; ++new_cell, ++old_cell) - build_rhs (old_cell, new_cell, - fe_values, - right_hand_side1, right_hand_side2); -} - - -template -void -TimeStep_Primal::build_rhs (const typename DoFHandler::cell_iterator &old_cell, - const typename DoFHandler::cell_iterator &new_cell, - FEValues &fe_values, - Vector &right_hand_side1, - Vector &right_hand_side2) { - typedef typename DoFHandler::cell_iterator cell_iterator; - - if (old_cell->has_children() && new_cell->has_children()) - { - for (unsigned int child=0; child::children_per_cell; ++child) - build_rhs (old_cell->child(child), - new_cell->child(child), - fe_values, - right_hand_side1, - right_hand_side2); - return; - }; - - - const TimeStep_Primal &previous_time_level - = static_cast*>(this->previous_timestep)->get_timestep_primal(); - - const unsigned int dofs_per_cell = this->fe.dofs_per_cell; - const double time_step = this->get_backward_timestep(); - - if (!old_cell->has_children() && !new_cell->has_children()) - { - fe_values.reinit (old_cell); - - FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - std::vector density_values(fe_values.n_quadrature_points); - this->parameters.density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; point tmp (dofs_per_cell); - Vector rhs1 (dofs_per_cell); - - Vector rhs2 (dofs_per_cell); - - Vector old_dof_values_u (dofs_per_cell); - Vector local_M_u (dofs_per_cell); - Vector local_M_v (dofs_per_cell); - Vector local_A_u (dofs_per_cell); - old_cell->get_dof_values (previous_time_level.u, old_dof_values_u); - cell_matrix.vmult (local_M_u, old_dof_values_u); - - old_cell->get_dof_values (previous_time_level.v, tmp); - cell_matrix.vmult (local_M_v, tmp); - - cell_matrix = 0; - std::vector stiffness_values(fe_values.n_quadrature_points); - this->parameters.stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - for (unsigned int point=0; pointparameters.theta* - (1-this->parameters.theta)), - local_A_u); - rhs2 = local_M_v; - rhs2.add (-(1-this->parameters.theta)* - time_step, - local_A_u); - - std::vector new_dof_indices (dofs_per_cell, DoFHandler::invalid_dof_index); - new_cell->get_dof_indices (new_dof_indices); - for (unsigned int i=0; ihas_children() && !new_cell->has_children()) - { - Vector rhs1 (dofs_per_cell); - - Vector rhs2 (dofs_per_cell); - - collect_from_children (old_cell, fe_values, rhs1, rhs2); - - std::vector new_dof_indices (dofs_per_cell); - new_cell->get_dof_indices (new_dof_indices); - for (unsigned int i=0; ihas_children() && new_cell->has_children()) - { - Vector old_dof_values_u (dofs_per_cell); - Vector old_dof_values_v (dofs_per_cell); - old_cell->get_dof_values (previous_time_level.u, old_dof_values_u); - old_cell->get_dof_values (previous_time_level.v, old_dof_values_v); - - distribute_to_children (new_cell, fe_values, - old_dof_values_u, old_dof_values_v, - right_hand_side1, right_hand_side2); - - return; - }; - - Assert (false, ExcInternalError()); -} - - -template -unsigned int -TimeStep_Primal::collect_from_children (const typename DoFHandler::cell_iterator &old_cell, - FEValues &fe_values, - Vector &rhs1, - Vector &rhs2) const -{ - unsigned int level_difference = 1; - - const TimeStep_Primal &previous_time_level - = static_cast*>(this->previous_timestep)->get_timestep_primal(); - - const unsigned int dofs_per_cell = this->fe.dofs_per_cell; - const double time_step = this->get_backward_timestep(); - - -FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - - Vector local_old_dof_values_u (dofs_per_cell); - Vector local_old_dof_values_v (dofs_per_cell); - - Vector local_M_u (dofs_per_cell); - Vector local_M_v (dofs_per_cell); - Vector local_A_u (dofs_per_cell); - Vector child_rhs1 (dofs_per_cell); - - Vector child_rhs2 (dofs_per_cell); - - for (unsigned int c=0; c::children_per_cell; ++c) - { - const typename DoFHandler::cell_iterator old_child = old_cell->child(c); - - child_rhs1 = 0; - child_rhs2 = 0; - - if (old_child->has_children()) - { - const unsigned int l = collect_from_children (old_child, fe_values, - child_rhs1, child_rhs2); - level_difference = std::max (l+1, level_difference); - } - else - { - fe_values.reinit (old_child); - old_child->get_dof_values (previous_time_level.u, local_old_dof_values_u); - old_child->get_dof_values (previous_time_level.v, local_old_dof_values_v); - - cell_matrix = 0; - std::vector density_values(fe_values.n_quadrature_points); - this->parameters.density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; point stiffness_values(fe_values.n_quadrature_points); - this->parameters.stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - for (unsigned int point=0; pointparameters.theta* - (1-this->parameters.theta)), - local_A_u); - child_rhs2 = local_M_v; - child_rhs2.add (-(1-this->parameters.theta)* - time_step, - local_A_u); - }; - - this->fe.get_prolongation_matrix(c).Tvmult (rhs1, child_rhs1, true); - this->fe.get_prolongation_matrix(c).Tvmult (rhs2, child_rhs2, true); - }; - - return level_difference; -} - - -template -unsigned int -TimeStep_Primal::distribute_to_children (const typename DoFHandler::cell_iterator &new_cell, - FEValues &fe_values, - const Vector &old_dof_values_u, - const Vector &old_dof_values_v, - Vector &right_hand_side1, - Vector &right_hand_side2) { - unsigned int level_difference = 1; - - const unsigned int dofs_per_cell = this->fe.dofs_per_cell; - const double time_step = this->get_backward_timestep(); - - FullMatrix cell_matrix(dofs_per_cell, dofs_per_cell); - Vector local_old_dof_values_u (dofs_per_cell); - Vector local_old_dof_values_v (dofs_per_cell); - - Vector local_M_u (dofs_per_cell); - Vector local_M_v (dofs_per_cell); - Vector local_A_u (dofs_per_cell); - - Vector rhs1 (dofs_per_cell); - - Vector rhs2 (dofs_per_cell); - - std::vector new_dof_indices (dofs_per_cell, DoFHandler::invalid_dof_index); - - - for (unsigned int c=0; c::children_per_cell; ++c) - { - const typename DoFHandler::cell_iterator new_child = new_cell->child(c); - - this->fe.get_prolongation_matrix(c).vmult (local_old_dof_values_u, - old_dof_values_u); - this->fe.get_prolongation_matrix(c).vmult (local_old_dof_values_v, - old_dof_values_v); - - if (new_child->has_children()) - { - const unsigned int l = distribute_to_children (new_child, fe_values, - local_old_dof_values_u, - local_old_dof_values_v, - right_hand_side1, - right_hand_side2); - level_difference = std::max (l+1, level_difference); - } - else - { - fe_values.reinit (new_child); - cell_matrix = 0; - std::vector density_values(fe_values.n_quadrature_points); - this->parameters.density->value_list (fe_values.get_quadrature_points(), - density_values); - for (unsigned int point=0; point stiffness_values(fe_values.n_quadrature_points); - this->parameters.stiffness->value_list (fe_values.get_quadrature_points(), - stiffness_values); - for (unsigned int point=0; pointparameters.theta* - (1-this->parameters.theta)), - local_A_u); - rhs2 = local_M_v; - rhs2.add (-(1-this->parameters.theta)* - time_step, - local_A_u); - - new_child->get_dof_indices (new_dof_indices); - for (unsigned int i=0; i; - -#include - - -void UserMatrix::precondition (Vector &dst, - const Vector &src) const { - switch (preconditioning) - { - case jacobi: - precondition_Jacobi (dst, src); - return; - case sor: - precondition_SOR (dst, src); - return; - case ssor: - precondition_SSOR (dst, src); - return; - default: - dst = src; - return; - }; -} - - -#include -#include - - - -template <> const FE_Q<2> FEHelper<2>::fe_linear = FE_Q<2>(1); -template <> const FE_Q<2> FEHelper<2>::fe_quadratic_sub = FE_Q<2>(2); -#if 2 < 3 -template <> const FE_Q<2> FEHelper<2>::fe_cubic_sub = FE_Q<2>(3); -template <> const FE_Q<2> FEHelper<2>::fe_quartic_sub = FE_Q<2>(4); -#endif - -template <> const QGauss2<2> FEHelper<2>::q_gauss_2 = QGauss2<2>(); -template <> const QGauss3<2> FEHelper<2>::q_gauss_3 = QGauss3<2>(); -template <> const QGauss4<2> FEHelper<2>::q_gauss_4 = QGauss4<2>(); -template <> const QGauss5<2> FEHelper<2>::q_gauss_5 = QGauss5<2>(); -template <> const QGauss6<2> FEHelper<2>::q_gauss_6 = QGauss6<2>(); -template <> const QGauss7<2> FEHelper<2>::q_gauss_7 = QGauss7<2>(); - -#if 2 > 1 -template <> const QGauss2<2-1> FEHelper<2>::q_gauss_2_face = QGauss2<1>(); -template <> const QGauss3<2-1> FEHelper<2>::q_gauss_3_face = QGauss3<1>(); -template <> const QGauss4<2-1> FEHelper<2>::q_gauss_4_face = QGauss4<1>(); -template <> const QGauss5<2-1> FEHelper<2>::q_gauss_5_face = QGauss5<1>(); -template <> const QGauss6<2-1> FEHelper<2>::q_gauss_6_face = QGauss6<1>(); -template <> const QGauss7<2-1> FEHelper<2>::q_gauss_7_face = QGauss7<1>(); -#endif - - -template -const FiniteElement & FEHelper::get_fe (const std::string &name) { - if (name=="linear") - return fe_linear; - else - if (name=="quadratic") - return fe_quadratic_sub; -#if 2 < 3 - else - if (name=="cubic") - return fe_cubic_sub; - else - if (name=="quartic") - return fe_quartic_sub; -#endif - - Assert (false, ExcInternalError()); - - return fe_linear; -} - - -template -const Quadrature &FEHelper::get_quadrature (const std::string &name) { - if (name=="linear") - return q_gauss_2; - else - if (name=="quadratic") - return q_gauss_3; -#if 2 < 3 - else - if (name=="cubic") - return q_gauss_4; - else - if (name=="quartic") - return q_gauss_5; -#endif - - Assert (false, ExcInternalError()); - - return q_gauss_2; -} - - -template -const Quadrature &FEHelper::get_quadrature_face (const std::string &name) { - if (name=="linear") - return q_gauss_2_face; - else - if (name=="quadratic") - return q_gauss_3_face; -#if 2 < 3 - else - if (name=="cubic") - return q_gauss_4_face; - else - if (name=="quartic") - return q_gauss_5_face; -#endif - - Assert (false, ExcInternalError()); - - return q_gauss_2_face; -} - - -std::string int_to_string (const unsigned int i, const unsigned int digits) { - std::string s; - switch (digits) - { - case 4: - s += '0' + i/1000; - case 3: - s += '0' + (i%1000)/100; - case 2: - s += '0' + (i%100)/10; - case 1: - s += '0' + i%10; - break; - default: - s += "invalid digits information"; - }; - return s; -} - - -template class FEHelper<2>; - - - - -#include -#include -#include -#include -#include - - -template -WaveProblem::WaveProblem () -{} - - -template -WaveProblem::~WaveProblem () -{} - - -template -void WaveProblem::declare_parameters (ParameterHandler &prm) -{ - parameters.declare_parameters (prm); -} - - -template -void WaveProblem::parse_parameters (ParameterHandler &prm) -{ - parameters.parse_parameters (prm); -} - - -template -void WaveProblem::create_new (const unsigned int) -{ - parameters.delete_parameters (); -} - - -template -void WaveProblem::run (ParameterHandler &prm) -{ - parse_parameters (prm); - - - TimestepManager timestep_manager (parameters); - if (true) { - timestep_manager.add_timestep (new TimeStep(0, parameters)); - double time = 0; - unsigned int step_no = 0; - double local_time_step; - - while (time= parameters.end_time) - local_time_step = parameters.end_time-time; - else - if (time+2*parameters.time_step >= parameters.end_time) - local_time_step = (parameters.end_time-time)/2; - else - local_time_step = parameters.time_step; - - time += local_time_step; - - timestep_manager.add_timestep (new TimeStep(time, parameters)); - }; - }; - - - for (unsigned int sweep=0; sweep waves; - MultipleParameterLoop input_data; - - waves.declare_parameters(input_data); - - try - { - input_data.read_input ("wave-test-3.prm"); - } - catch (std::exception &e) - { - std::cerr << std::endl << std::endl - << "----------------------------------------------------" - << std::endl; - std::cerr << "Exception on input: " << e.what() << std::endl - << "Aborting!" << std::endl - << "----------------------------------------------------" - << std::endl; - return 1; - }; - - try - { - input_data.loop (waves); - } - catch (std::exception &e) - { - std::cerr << std::endl << std::endl - << "----------------------------------------------------" - << std::endl; - std::cerr << "Exception on processing: " << e.what() << std::endl - << "Aborting!" << std::endl - << "----------------------------------------------------" - << std::endl; - return 2; - } - catch (...) - { - std::cerr << std::endl << std::endl - << "----------------------------------------------------" - << std::endl; - std::cerr << "Unknown exception!" << std::endl - << "Aborting!" << std::endl - << "----------------------------------------------------" - << std::endl; - return 3; - }; - - -return 0; -} - - diff --git a/tests/deal.II/wave-test-3/cmp/generic b/tests/deal.II/wave-test-3/cmp/generic deleted file mode 100644 index 5a62e4a44d..0000000000 --- a/tests/deal.II/wave-test-3/cmp/generic +++ /dev/null @@ -1,3307 +0,0 @@ - -DEAL::Sweep 0 : -DEAL::--------- -DEAL:: Primal problem: time=0, step=0, sweep=0. 256 cells, 289 dofsStarting value 0 -DEAL:cg::Convergence step 0 value 0 -DEAL:cg::Starting value 0.01 -DEAL:cg::Convergence step 12 value 0 -DEAL:cg::Starting value 0 -DEAL:cg::Convergence step 0 value 0 -DEAL:cg::Starting value 0 -DEAL:cg::Convergence step 0 value 0 -DEAL::. -DEAL:: Primal problem: time=0.03, step=1, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.09 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.06, step=2, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.14 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.08, step=3, sweep=0. 256 cells, 289 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.13 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.11, step=4, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.11 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.14, step=5, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.11 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.17, step=6, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.20, step=7, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.13 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.22, step=8, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.25, step=9, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.28, step=10, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.13 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.31, step=11, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.13 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.34, step=12, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.36, step=13, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.39, step=14, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.13 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.42, step=15, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.45, step=16, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.48, step=17, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.50, step=18, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.53, step=19, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.56, step=20, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.11 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.59, step=21, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.11 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.62, step=22, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.64, step=23, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.67, step=24, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.70, step=25, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.11 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: -DEAL:: Dual problem: time=0.70, step=25, sweep=0. 256 cells, 1089 dofs. -DEAL:: Dual problem: time=0.67, step=24, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 5 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.64, step=23, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.62, step=22, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.59, step=21, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.56, step=20, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.53, step=19, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.50, step=18, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.48, step=17, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.45, step=16, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.42, step=15, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.39, step=14, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.36, step=13, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.34, step=12, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.31, step=11, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.28, step=10, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.25, step=9, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.22, step=8, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.20, step=7, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.17, step=6, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.14, step=5, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.11, step=4, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.08, step=3, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.06, step=2, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.03, step=1, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0, step=0, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: -DEAL:: Postprocessing: time=0, step=0, sweep=0. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library - -%%BoundingBox: 0 0 300 189 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50 setlinewidth -0.00000 0.00000 0.40691 s 102.94464 144.05649 m 114.83167 140.62500 l 121.69464 146.56851 l 109.80762 150.00000 lf -0 sg 102.94464 144.05649 m 114.83167 140.62500 l 121.69464 146.56851 l 109.80762 150.00000 lx -0.00000 0.00000 0.40691 s 114.83167 140.62500 m 126.71869 137.19351 l 133.58167 143.13702 l 121.69464 146.56851 lf -0 sg 114.83167 140.62500 m 126.71869 137.19351 l 133.58167 143.13702 l 121.69464 146.56851 lx -0.00000 0.00000 0.40691 s 96.08167 138.11298 m 107.96869 134.68149 l 114.83167 140.62500 l 102.94464 144.05649 lf -0 sg 96.08167 138.11298 m 107.96869 134.68149 l 114.83167 140.62500 l 102.94464 144.05649 lx -0.00000 0.00000 0.40691 s 126.71869 137.19351 m 138.60572 133.76203 l 145.46869 139.70554 l 133.58167 143.13702 lf -0 sg 126.71869 137.19351 m 138.60572 133.76203 l 145.46869 139.70554 l 133.58167 143.13702 lx -0.00000 0.00000 0.40691 s 107.96869 134.68149 m 119.85572 131.25000 l 126.71869 137.19351 l 114.83167 140.62500 lf -0 sg 107.96869 134.68149 m 119.85572 131.25000 l 126.71869 137.19351 l 114.83167 140.62500 lx -0.00000 0.00000 0.40691 s 138.60572 133.76203 m 150.49274 130.33052 l 157.35572 136.27405 l 145.46869 139.70554 lf -0 sg 138.60572 133.76203 m 150.49274 130.33052 l 157.35572 136.27405 l 145.46869 139.70554 lx -0.00000 0.00000 0.40691 s 89.21869 132.16946 m 101.10572 128.73798 l 107.96869 134.68149 l 96.08167 138.11298 lf -0 sg 89.21869 132.16946 m 101.10572 128.73798 l 107.96869 134.68149 l 96.08167 138.11298 lx -0.00000 0.00000 0.40691 s 119.85572 131.25000 m 131.74274 127.81850 l 138.60572 133.76203 l 126.71869 137.19351 lf -0 sg 119.85572 131.25000 m 131.74274 127.81850 l 138.60572 133.76203 l 126.71869 137.19351 lx -0.00000 0.00000 0.40691 s 150.49274 130.33052 m 162.37976 126.89910 l 169.24274 132.84256 l 157.35572 136.27405 lf -0 sg 150.49274 130.33052 m 162.37976 126.89910 l 169.24274 132.84256 l 157.35572 136.27405 lx -0.00000 0.00000 0.40691 s 101.10572 128.73798 m 112.99274 125.30647 l 119.85572 131.25000 l 107.96869 134.68149 lf -0 sg 101.10572 128.73798 m 112.99274 125.30647 l 119.85572 131.25000 l 107.96869 134.68149 lx -0.00000 0.00000 0.40691 s 131.74274 127.81850 m 143.62976 124.38708 l 150.49274 130.33052 l 138.60572 133.76203 lf -0 sg 131.74274 127.81850 m 143.62976 124.38708 l 150.49274 130.33052 l 138.60572 133.76203 lx -0.00000 0.00000 0.40691 s 162.37976 126.89910 m 174.26679 123.46737 l 181.12976 129.41107 l 169.24274 132.84256 lf -0 sg 162.37976 126.89910 m 174.26679 123.46737 l 181.12976 129.41107 l 169.24274 132.84256 lx -0.00000 0.00000 0.40691 s 82.35572 126.22595 m 94.24274 122.79445 l 101.10572 128.73798 l 89.21869 132.16946 lf -0 sg 82.35572 126.22595 m 94.24274 122.79445 l 101.10572 128.73798 l 89.21869 132.16946 lx -0.00000 0.00000 0.40691 s 112.99274 125.30647 m 124.87976 121.87505 l 131.74274 127.81850 l 119.85572 131.25000 lf -0 sg 112.99274 125.30647 m 124.87976 121.87505 l 131.74274 127.81850 l 119.85572 131.25000 lx -0.00000 0.00000 0.40691 s 143.62976 124.38708 m 155.51679 120.95533 l 162.37976 126.89910 l 150.49274 130.33052 lf -0 sg 143.62976 124.38708 m 155.51679 120.95533 l 162.37976 126.89910 l 150.49274 130.33052 lx -0.00000 0.00000 0.40693 s 174.26679 123.46737 m 186.15381 120.03678 l 193.01679 125.97958 l 181.12976 129.41107 lf -0 sg 174.26679 123.46737 m 186.15381 120.03678 l 193.01679 125.97958 l 181.12976 129.41107 lx -0.00000 0.00000 0.40691 s 94.24274 122.79445 m 106.12976 119.36303 l 112.99274 125.30647 l 101.10572 128.73798 lf -0 sg 94.24274 122.79445 m 106.12976 119.36303 l 112.99274 125.30647 l 101.10572 128.73798 lx -0.00000 0.00000 0.40691 s 124.87976 121.87505 m 136.76679 118.44331 l 143.62976 124.38708 l 131.74274 127.81850 lf -0 sg 124.87976 121.87505 m 136.76679 118.44331 l 143.62976 124.38708 l 131.74274 127.81850 lx -0.00000 0.00000 0.40693 s 155.51679 120.95533 m 167.40381 117.52480 l 174.26679 123.46737 l 162.37976 126.89910 lf -0 sg 155.51679 120.95533 m 167.40381 117.52480 l 174.26679 123.46737 l 162.37976 126.89910 lx -0.00000 0.00000 0.40691 s 75.49274 120.28244 m 87.37976 116.85100 l 94.24274 122.79445 l 82.35572 126.22595 lf -0 sg 75.49274 120.28244 m 87.37976 116.85100 l 94.24274 122.79445 l 82.35572 126.22595 lx -0.00000 0.00000 0.40672 s 186.15381 120.03678 m 198.04083 116.59932 l 204.90381 122.54809 l 193.01679 125.97958 lf -0 sg 186.15381 120.03678 m 198.04083 116.59932 l 204.90381 122.54809 l 193.01679 125.97958 lx -0.00000 0.00000 0.40691 s 106.12976 119.36303 m 118.01679 115.93128 l 124.87976 121.87505 l 112.99274 125.30647 lf -0 sg 106.12976 119.36303 m 118.01679 115.93128 l 124.87976 121.87505 l 112.99274 125.30647 lx -0.00000 0.00000 0.40693 s 136.76679 118.44331 m 148.65381 115.01278 l 155.51679 120.95533 l 143.62976 124.38708 lf -0 sg 136.76679 118.44331 m 148.65381 115.01278 l 155.51679 120.95533 l 143.62976 124.38708 lx -0.00000 0.00000 0.40685 s 167.40381 117.52480 m 179.29083 114.08974 l 186.15381 120.03678 l 174.26679 123.46737 lf -0 sg 167.40381 117.52480 m 179.29083 114.08974 l 186.15381 120.03678 l 174.26679 123.46737 lx -0.00000 0.00000 0.40691 s 87.37976 116.85100 m 99.26679 113.41926 l 106.12976 119.36303 l 94.24274 122.79445 lf -0 sg 87.37976 116.85100 m 99.26679 113.41926 l 106.12976 119.36303 l 94.24274 122.79445 lx -0.00000 0.00000 0.40672 s 198.04083 116.59932 m 209.92786 113.17380 l 216.79083 119.11661 l 204.90381 122.54809 lf -0 sg 198.04083 116.59932 m 209.92786 113.17380 l 216.79083 119.11661 l 204.90381 122.54809 lx -0.00000 0.00000 0.40693 s 118.01679 115.93128 m 129.90381 112.50076 l 136.76679 118.44331 l 124.87976 121.87505 lf -0 sg 118.01679 115.93128 m 129.90381 112.50076 l 136.76679 118.44331 l 124.87976 121.87505 lx -0.00000 0.00000 0.40685 s 148.65381 115.01278 m 160.54083 111.57770 l 167.40381 117.52480 l 155.51679 120.95533 lf -0 sg 148.65381 115.01278 m 160.54083 111.57770 l 167.40381 117.52480 l 155.51679 120.95533 lx -0.00000 0.00000 0.40691 s 68.62976 114.33893 m 80.51679 110.90725 l 87.37976 116.85100 l 75.49274 120.28244 lf -0 sg 68.62976 114.33893 m 80.51679 110.90725 l 87.37976 116.85100 l 75.49274 120.28244 lx -0.00000 0.00000 0.40749 s 179.29083 114.08974 m 191.17786 110.68213 l 198.04083 116.59932 l 186.15381 120.03678 lf -0 sg 179.29083 114.08974 m 191.17786 110.68213 l 198.04083 116.59932 l 186.15381 120.03678 lx -0.00000 0.00000 0.40693 s 99.26679 113.41926 m 111.15381 109.98874 l 118.01679 115.93128 l 106.12976 119.36303 lf -0 sg 99.26679 113.41926 m 111.15381 109.98874 l 118.01679 115.93128 l 106.12976 119.36303 lx -0.00000 0.00000 0.40693 s 209.92786 113.17380 m 221.81488 109.74142 l 228.67786 115.68512 l 216.79083 119.11661 lf -0 sg 209.92786 113.17380 m 221.81488 109.74142 l 228.67786 115.68512 l 216.79083 119.11661 lx -0.00000 0.00000 0.40685 s 129.90381 112.50076 m 141.79083 109.06568 l 148.65381 115.01278 l 136.76679 118.44331 lf -0 sg 129.90381 112.50076 m 141.79083 109.06568 l 148.65381 115.01278 l 136.76679 118.44331 lx -0.00000 0.00000 0.40715 s 160.54083 111.57770 m 172.42786 108.15963 l 179.29083 114.08974 l 167.40381 117.52480 lf -0 sg 160.54083 111.57770 m 172.42786 108.15963 l 179.29083 114.08974 l 167.40381 117.52480 lx -0.00000 0.00000 0.40693 s 80.51679 110.90725 m 92.40381 107.47671 l 99.26679 113.41926 l 87.37976 116.85100 lf -0 sg 80.51679 110.90725 m 92.40381 107.47671 l 99.26679 113.41926 l 87.37976 116.85100 lx -0.00000 0.00000 0.40749 s 191.17786 110.68213 m 203.06488 107.22676 l 209.92786 113.17380 l 198.04083 116.59932 lf -0 sg 191.17786 110.68213 m 203.06488 107.22676 l 209.92786 113.17380 l 198.04083 116.59932 lx -0.00000 0.00000 0.40685 s 111.15381 109.98874 m 123.04083 106.55365 l 129.90381 112.50076 l 118.01679 115.93128 lf -0 sg 111.15381 109.98874 m 123.04083 106.55365 l 129.90381 112.50076 l 118.01679 115.93128 lx -0.00000 0.00000 0.40691 s 221.81488 109.74142 m 233.70191 106.31017 l 240.56488 112.25363 l 228.67786 115.68512 lf -0 sg 221.81488 109.74142 m 233.70191 106.31017 l 240.56488 112.25363 l 228.67786 115.68512 lx -0.00000 0.00000 0.40715 s 141.79083 109.06568 m 153.67786 105.64761 l 160.54083 111.57770 l 148.65381 115.01278 lf -0 sg 141.79083 109.06568 m 153.67786 105.64761 l 160.54083 111.57770 l 148.65381 115.01278 lx -0.00000 0.00000 0.40693 s 61.76679 108.39542 m 73.65381 104.96463 l 80.51679 110.90725 l 68.62976 114.33893 lf -0 sg 61.76679 108.39542 m 73.65381 104.96463 l 80.51679 110.90725 l 68.62976 114.33893 lx -0.00000 0.00000 0.40481 s 172.42786 108.15963 m 184.31488 104.63857 l 191.17786 110.68213 l 179.29083 114.08974 lf -0 sg 172.42786 108.15963 m 184.31488 104.63857 l 191.17786 110.68213 l 179.29083 114.08974 lx -0.00000 0.00000 0.40685 s 92.40381 107.47671 m 104.29083 104.04163 l 111.15381 109.98874 l 99.26679 113.41926 lf -0 sg 92.40381 107.47671 m 104.29083 104.04163 l 111.15381 109.98874 l 99.26679 113.41926 lx -0.00000 0.00000 0.40685 s 203.06488 107.22676 m 214.95191 103.79885 l 221.81488 109.74142 l 209.92786 113.17380 lf -0 sg 203.06488 107.22676 m 214.95191 103.79885 l 221.81488 109.74142 l 209.92786 113.17380 lx -0.00000 0.00000 0.40715 s 123.04083 106.55365 m 134.92786 103.13559 l 141.79083 109.06568 l 129.90381 112.50076 lf -0 sg 123.04083 106.55365 m 134.92786 103.13559 l 141.79083 109.06568 l 129.90381 112.50076 lx -0.00000 0.00000 0.40691 s 233.70191 106.31017 m 245.58893 102.87862 l 252.45191 108.82214 l 240.56488 112.25363 lf -0 sg 233.70191 106.31017 m 245.58893 102.87862 l 252.45191 108.82214 l 240.56488 112.25363 lx -0.00000 0.00000 0.40603 s 153.67786 105.64761 m 165.56488 102.16603 l 172.42786 108.15963 l 160.54083 111.57770 lf -0 sg 153.67786 105.64761 m 165.56488 102.16603 l 172.42786 108.15963 l 160.54083 111.57770 lx -0.00000 0.00000 0.40685 s 73.65381 104.96463 m 85.54083 101.52962 l 92.40381 107.47671 l 80.51679 110.90725 lf -0 sg 73.65381 104.96463 m 85.54083 101.52962 l 92.40381 107.47671 l 80.51679 110.90725 lx -0.00000 0.00000 0.40481 s 184.31488 104.63857 m 196.20191 101.29665 l 203.06488 107.22676 l 191.17786 110.68213 lf -0 sg 184.31488 104.63857 m 196.20191 101.29665 l 203.06488 107.22676 l 191.17786 110.68213 lx -0.00000 0.00000 0.40715 s 104.29083 104.04163 m 116.17786 100.62356 l 123.04083 106.55365 l 111.15381 109.98874 lf -0 sg 104.29083 104.04163 m 116.17786 100.62356 l 123.04083 106.55365 l 111.15381 109.98874 lx -0.00000 0.00000 0.40693 s 214.95191 103.79885 m 226.83893 100.36640 l 233.70191 106.31017 l 221.81488 109.74142 lf -0 sg 214.95191 103.79885 m 226.83893 100.36640 l 233.70191 106.31017 l 221.81488 109.74142 lx -0.00000 0.00000 0.40603 s 134.92786 103.13559 m 146.81488 99.65400 l 153.67786 105.64761 l 141.79083 109.06568 lf -0 sg 134.92786 103.13559 m 146.81488 99.65400 l 153.67786 105.64761 l 141.79083 109.06568 lx -0.00000 0.00000 0.40691 s 245.58893 102.87862 m 257.47595 99.44715 l 264.33893 105.39065 l 252.45191 108.82214 lf -0 sg 245.58893 102.87862 m 257.47595 99.44715 l 264.33893 105.39065 l 252.45191 108.82214 lx -0.00000 0.00000 0.40672 s 54.90381 102.45191 m 66.79083 99.01515 l 73.65381 104.96463 l 61.76679 108.39542 lf -0 sg 54.90381 102.45191 m 66.79083 99.01515 l 73.65381 104.96463 l 61.76679 108.39542 lx -0.00000 0.00000 0.41474 s 165.56488 102.16603 m 177.45191 99.06893 l 184.31488 104.63857 l 172.42786 108.15963 lf -0 sg 165.56488 102.16603 m 177.45191 99.06893 l 184.31488 104.63857 l 172.42786 108.15963 lx -0.00000 0.00000 0.40715 s 85.54083 101.52962 m 97.42786 98.11153 l 104.29083 104.04163 l 92.40381 107.47671 lf -0 sg 85.54083 101.52962 m 97.42786 98.11153 l 104.29083 104.04163 l 92.40381 107.47671 lx -0.00000 0.00000 0.40715 s 196.20191 101.29665 m 208.08893 97.85175 l 214.95191 103.79885 l 203.06488 107.22676 lf -0 sg 196.20191 101.29665 m 208.08893 97.85175 l 214.95191 103.79885 l 203.06488 107.22676 lx -0.00000 0.00000 0.40603 s 116.17786 100.62356 m 128.06488 97.14198 l 134.92786 103.13559 l 123.04083 106.55365 lf -0 sg 116.17786 100.62356 m 128.06488 97.14198 l 134.92786 103.13559 l 123.04083 106.55365 lx -0.00000 0.00000 0.40691 s 226.83893 100.36640 m 238.72595 96.93517 l 245.58893 102.87862 l 233.70191 106.31017 lf -0 sg 226.83893 100.36640 m 238.72595 96.93517 l 245.58893 102.87862 l 233.70191 106.31017 lx -0.00000 0.00000 0.41022 s 146.81488 99.65400 m 158.70191 96.40947 l 165.56488 102.16603 l 153.67786 105.64761 lf -0 sg 146.81488 99.65400 m 158.70191 96.40947 l 165.56488 102.16603 l 153.67786 105.64761 lx -0.00000 0.00000 0.40691 s 257.47595 99.44715 m 269.36298 96.01565 l 276.22595 101.95917 l 264.33893 105.39065 lf -0 sg 257.47595 99.44715 m 269.36298 96.01565 l 276.22595 101.95917 l 264.33893 105.39065 lx -0.00000 0.00000 0.40749 s 66.79083 99.01515 m 78.67786 95.60999 l 85.54083 101.52962 l 73.65381 104.96463 lf -0 sg 66.79083 99.01515 m 78.67786 95.60999 l 85.54083 101.52962 l 73.65381 104.96463 lx -0.00000 0.00000 0.41474 s 177.45191 99.06893 m 189.33893 95.30305 l 196.20191 101.29665 l 184.31488 104.63857 lf -0 sg 177.45191 99.06893 m 189.33893 95.30305 l 196.20191 101.29665 l 184.31488 104.63857 lx -0.00000 0.00000 0.40603 s 97.42786 98.11153 m 109.31488 94.62996 l 116.17786 100.62356 l 104.29083 104.04163 lf -0 sg 97.42786 98.11153 m 109.31488 94.62996 l 116.17786 100.62356 l 104.29083 104.04163 lx -0.00000 0.00000 0.40685 s 208.08893 97.85175 m 219.97595 94.42385 l 226.83893 100.36640 l 214.95191 103.79885 lf -0 sg 208.08893 97.85175 m 219.97595 94.42385 l 226.83893 100.36640 l 214.95191 103.79885 lx -0.00000 0.00000 0.41022 s 128.06488 97.14198 m 139.95191 93.89744 l 146.81488 99.65400 l 134.92786 103.13559 lf -0 sg 128.06488 97.14198 m 139.95191 93.89744 l 146.81488 99.65400 l 134.92786 103.13559 lx -0.00000 0.00000 0.40691 s 238.72595 96.93517 m 250.61298 93.50362 l 257.47595 99.44715 l 245.58893 102.87862 lf -0 sg 238.72595 96.93517 m 250.61298 93.50362 l 257.47595 99.44715 l 245.58893 102.87862 lx -0.00000 0.00000 0.40672 s 48.04083 96.50839 m 59.92786 93.07761 l 66.79083 99.01515 l 54.90381 102.45191 lf -0 sg 48.04083 96.50839 m 59.92786 93.07761 l 66.79083 99.01515 l 54.90381 102.45191 lx -0.00000 0.00000 0.37770 s 158.70191 96.40947 m 170.58893 91.72999 l 177.45191 99.06893 l 165.56488 102.16603 lf -0 sg 158.70191 96.40947 m 170.58893 91.72999 l 177.45191 99.06893 l 165.56488 102.16603 lx -0.00000 0.00000 0.40691 s 269.36298 96.01565 m 281.25000 92.58417 l 288.11298 98.52768 l 276.22595 101.95917 lf -0 sg 269.36298 96.01565 m 281.25000 92.58417 l 288.11298 98.52768 l 276.22595 101.95917 lx -0.00000 0.00000 0.40481 s 78.67786 95.60999 m 90.56488 92.07845 l 97.42786 98.11153 l 85.54083 101.52962 lf -0 sg 78.67786 95.60999 m 90.56488 92.07845 l 97.42786 98.11153 l 85.54083 101.52962 lx -0.00000 0.00000 0.40603 s 189.33893 95.30305 m 201.22595 91.92166 l 208.08893 97.85175 l 196.20191 101.29665 lf -0 sg 189.33893 95.30305 m 201.22595 91.92166 l 208.08893 97.85175 l 196.20191 101.29665 lx -0.00000 0.00000 0.41022 s 109.31488 94.62996 m 121.20191 91.38542 l 128.06488 97.14198 l 116.17786 100.62356 lf -0 sg 109.31488 94.62996 m 121.20191 91.38542 l 128.06488 97.14198 l 116.17786 100.62356 lx -0.00000 0.00000 0.40693 s 219.97595 94.42385 m 231.86298 90.99140 l 238.72595 96.93517 l 226.83893 100.36640 lf -0 sg 219.97595 94.42385 m 231.86298 90.99140 l 238.72595 96.93517 l 226.83893 100.36640 lx -0.00000 0.00000 0.39456 s 139.95191 93.89744 m 151.83893 89.76824 l 158.70191 96.40947 l 146.81488 99.65400 lf -0 sg 139.95191 93.89744 m 151.83893 89.76824 l 158.70191 96.40947 l 146.81488 99.65400 lx -0.00000 0.00000 0.40691 s 250.61298 93.50362 m 262.50000 90.07215 l 269.36298 96.01565 l 257.47595 99.44715 lf -0 sg 250.61298 93.50362 m 262.50000 90.07215 l 269.36298 96.01565 l 257.47595 99.44715 lx -0.00000 0.00000 0.40749 s 59.92786 93.07761 m 71.81488 89.64260 l 78.67786 95.60999 l 66.79083 99.01515 lf -0 sg 59.92786 93.07761 m 71.81488 89.64260 l 78.67786 95.60999 l 66.79083 99.01515 lx -0.00000 0.00000 0.37770 s 170.58893 91.72999 m 182.47595 89.54649 l 189.33893 95.30305 l 177.45191 99.06893 lf -0 sg 170.58893 91.72999 m 182.47595 89.54649 l 189.33893 95.30305 l 177.45191 99.06893 lx -0.00000 0.00000 0.40691 s 281.25000 92.58417 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lf -0 sg 281.25000 92.58417 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lx -0.00000 0.00000 0.41474 s 90.56488 92.07845 m 102.45191 89.02083 l 109.31488 94.62996 l 97.42786 98.11153 lf -0 sg 90.56488 92.07845 m 102.45191 89.02083 l 109.31488 94.62996 l 97.42786 98.11153 lx -0.00000 0.00000 0.40715 s 201.22595 91.92166 m 213.11298 88.47675 l 219.97595 94.42385 l 208.08893 97.85175 lf -0 sg 201.22595 91.92166 m 213.11298 88.47675 l 219.97595 94.42385 l 208.08893 97.85175 lx -0.00000 0.00000 0.39456 s 121.20191 91.38542 m 133.08893 87.25622 l 139.95191 93.89744 l 128.06488 97.14198 lf -0 sg 121.20191 91.38542 m 133.08893 87.25622 l 139.95191 93.89744 l 128.06488 97.14198 lx -0.00000 0.00000 0.40691 s 231.86298 90.99140 m 243.75000 87.56017 l 250.61298 93.50362 l 238.72595 96.93517 lf -0 sg 231.86298 90.99140 m 243.75000 87.56017 l 250.61298 93.50362 l 238.72595 96.93517 lx -0.00000 0.00000 0.40693 s 41.17786 90.56488 m 53.06488 87.13320 l 59.92786 93.07761 l 48.04083 96.50839 lf -0 sg 41.17786 90.56488 m 53.06488 87.13320 l 59.92786 93.07761 l 48.04083 96.50839 lx -0.00000 0.00000 0.51594 s 151.83893 89.76824 m 163.72595 90.99431 l 170.58893 91.72999 l 158.70191 96.40947 lf -0 sg 151.83893 89.76824 m 163.72595 90.99431 l 170.58893 91.72999 l 158.70191 96.40947 lx -0.00000 0.00000 0.40691 s 262.50000 90.07215 m 274.38702 86.64065 l 281.25000 92.58417 l 269.36298 96.01565 lf -0 sg 262.50000 90.07215 m 274.38702 86.64065 l 281.25000 92.58417 l 269.36298 96.01565 lx -0.00000 0.00000 0.40481 s 71.81488 89.64260 m 83.70191 86.22451 l 90.56488 92.07845 l 78.67786 95.60999 lf -0 sg 71.81488 89.64260 m 83.70191 86.22451 l 90.56488 92.07845 l 78.67786 95.60999 lx -0.00000 0.00000 0.41022 s 182.47595 89.54649 m 194.36298 85.92805 l 201.22595 91.92166 l 189.33893 95.30305 lf -0 sg 182.47595 89.54649 m 194.36298 85.92805 l 201.22595 91.92166 l 189.33893 95.30305 lx -0.00000 0.00000 0.37770 s 102.45191 89.02083 m 114.33893 84.19392 l 121.20191 91.38542 l 109.31488 94.62996 lf -0 sg 102.45191 89.02083 m 114.33893 84.19392 l 121.20191 91.38542 l 109.31488 94.62996 lx -0.00000 0.00000 0.40685 s 213.11298 88.47675 m 225.00000 85.04885 l 231.86298 90.99140 l 219.97595 94.42385 lf -0 sg 213.11298 88.47675 m 225.00000 85.04885 l 231.86298 90.99140 l 219.97595 94.42385 lx -0.00000 0.00000 0.45299 s 133.08893 87.25622 m 144.97595 86.42864 l 151.83893 89.76824 l 139.95191 93.89744 lf -0 sg 133.08893 87.25622 m 144.97595 86.42864 l 151.83893 89.76824 l 139.95191 93.89744 lx -0.00000 0.00000 0.40691 s 243.75000 87.56017 m 255.63702 84.12862 l 262.50000 90.07215 l 250.61298 93.50362 lf -0 sg 243.75000 87.56017 m 255.63702 84.12862 l 262.50000 90.07215 l 250.61298 93.50362 lx -0.00000 0.00000 0.40685 s 53.06488 87.13320 m 64.95191 83.70266 l 71.81488 89.64260 l 59.92786 93.07761 lf -0 sg 53.06488 87.13320 m 64.95191 83.70266 l 71.81488 89.64260 l 59.92786 93.07761 lx -0.00000 0.00000 0.51594 s 163.72595 90.99431 m 175.61298 82.90526 l 182.47595 89.54649 l 170.58893 91.72999 lf -0 sg 163.72595 90.99431 m 175.61298 82.90526 l 182.47595 89.54649 l 170.58893 91.72999 lx -0.00000 0.00000 0.40691 s 274.38702 86.64065 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.58417 lf -0 sg 274.38702 86.64065 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.58417 lx -0.00000 0.00000 0.41474 s 83.70191 86.22451 m 95.58893 82.74293 l 102.45191 89.02083 l 90.56488 92.07845 lf -0 sg 83.70191 86.22451 m 95.58893 82.74293 l 102.45191 89.02083 l 90.56488 92.07845 lx -0.00000 0.00000 0.40603 s 194.36298 85.92805 m 206.25000 82.54666 l 213.11298 88.47675 l 201.22595 91.92166 lf -0 sg 194.36298 85.92805 m 206.25000 82.54666 l 213.11298 88.47675 l 201.22595 91.92166 lx -0.00000 sg 144.97595 86.42864 m 156.86298 65.61491 l 163.72595 90.99431 l 151.83893 89.76824 lf -0 sg 144.97595 86.42864 m 156.86298 65.61491 l 163.72595 90.99431 l 151.83893 89.76824 lx -0.00000 0.00000 0.51594 s 114.33893 84.19392 m 126.22595 85.97026 l 133.08893 87.25622 l 121.20191 91.38542 lf -0 sg 114.33893 84.19392 m 126.22595 85.97026 l 133.08893 87.25622 l 121.20191 91.38542 lx -0.00000 0.00000 0.40693 s 225.00000 85.04885 m 236.88702 81.61640 l 243.75000 87.56017 l 231.86298 90.99140 lf -0 sg 225.00000 85.04885 m 236.88702 81.61640 l 243.75000 87.56017 l 231.86298 90.99140 lx -0.00000 0.00000 0.40691 s 34.31488 84.62137 m 46.20191 81.18993 l 53.06488 87.13320 l 41.17786 90.56488 lf -0 sg 34.31488 84.62137 m 46.20191 81.18993 l 53.06488 87.13320 l 41.17786 90.56488 lx -0.00000 0.00000 0.40691 s 255.63702 84.12862 m 267.52405 80.69715 l 274.38702 86.64065 l 262.50000 90.07215 lf -0 sg 255.63702 84.12862 m 267.52405 80.69715 l 274.38702 86.64065 l 262.50000 90.07215 lx -0.00000 0.00000 0.40715 s 64.95191 83.70266 m 76.83893 80.26758 l 83.70191 86.22451 l 71.81488 89.64260 lf -0 sg 64.95191 83.70266 m 76.83893 80.26758 l 83.70191 86.22451 l 71.81488 89.64260 lx -0.00000 0.00000 0.39456 s 175.61298 82.90526 m 187.50000 80.17149 l 194.36298 85.92805 l 182.47595 89.54649 lf -0 sg 175.61298 82.90526 m 187.50000 80.17149 l 194.36298 85.92805 l 182.47595 89.54649 lx -0.00000 0.00000 0.37770 s 95.58893 82.74293 m 107.47595 79.49840 l 114.33893 84.19392 l 102.45191 89.02083 lf -0 sg 95.58893 82.74293 m 107.47595 79.49840 l 114.33893 84.19392 l 102.45191 89.02083 lx -0.00000 sg 126.22595 85.97026 m 138.11298 63.10288 l 144.97595 86.42864 l 133.08893 87.25622 lf -0 sg 126.22595 85.97026 m 138.11298 63.10288 l 144.97595 86.42864 l 133.08893 87.25622 lx -0.00000 0.00000 0.40715 s 206.25000 82.54666 m 218.13702 79.10175 l 225.00000 85.04885 l 213.11298 88.47675 lf -0 sg 206.25000 82.54666 m 218.13702 79.10175 l 225.00000 85.04885 l 213.11298 88.47675 lx -0.00000 sg 156.86298 65.61491 m 168.75000 79.56567 l 175.61298 82.90526 l 163.72595 90.99431 lf -0 sg 156.86298 65.61491 m 168.75000 79.56567 l 175.61298 82.90526 l 163.72595 90.99431 lx -0.00000 0.00000 0.40691 s 236.88702 81.61640 m 248.77405 78.18517 l 255.63702 84.12862 l 243.75000 87.56017 lf -0 sg 236.88702 81.61640 m 248.77405 78.18517 l 255.63702 84.12862 l 243.75000 87.56017 lx -0.00000 0.00000 0.40693 s 46.20191 81.18993 m 58.08893 77.75819 l 64.95191 83.70266 l 53.06488 87.13320 lf -0 sg 46.20191 81.18993 m 58.08893 77.75819 l 64.95191 83.70266 l 53.06488 87.13320 lx -0.00000 0.00000 0.40691 s 267.52405 80.69715 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 86.64065 lf -0 sg 267.52405 80.69715 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 86.64065 lx -0.00000 0.00000 0.40603 s 76.83893 80.26758 m 88.72595 76.84951 l 95.58893 82.74293 l 83.70191 86.22451 lf -0 sg 76.83893 80.26758 m 88.72595 76.84951 l 95.58893 82.74293 l 83.70191 86.22451 lx -0.00000 0.00000 0.41022 s 187.50000 80.17149 m 199.38702 76.55305 l 206.25000 82.54666 l 194.36298 85.92805 lf -0 sg 187.50000 80.17149 m 199.38702 76.55305 l 206.25000 82.54666 l 194.36298 85.92805 lx -0.00000 0.00000 0.51594 s 107.47595 79.49840 m 119.36298 75.36919 l 126.22595 85.97026 l 114.33893 84.19392 lf -0 sg 107.47595 79.49840 m 119.36298 75.36919 l 126.22595 85.97026 l 114.33893 84.19392 lx -0.00000 0.00000 0.40685 s 218.13702 79.10175 m 230.02405 75.67385 l 236.88702 81.61640 l 225.00000 85.04885 lf -0 sg 218.13702 79.10175 m 230.02405 75.67385 l 236.88702 81.61640 l 225.00000 85.04885 lx -0.00000 0.00000 0.40691 s 27.45191 78.67786 m 39.33893 75.24636 l 46.20191 81.18993 l 34.31488 84.62137 lf -0 sg 27.45191 78.67786 m 39.33893 75.24636 l 46.20191 81.18993 l 34.31488 84.62137 lx -0.00000 0.00000 0.40691 s 248.77405 78.18517 m 260.66107 74.75362 l 267.52405 80.69715 l 255.63702 84.12862 lf -0 sg 248.77405 78.18517 m 260.66107 74.75362 l 267.52405 80.69715 l 255.63702 84.12862 lx -0.00000 0.00000 0.40685 s 58.08893 77.75819 m 69.97595 74.32767 l 76.83893 80.26758 l 64.95191 83.70266 lf -0 sg 58.08893 77.75819 m 69.97595 74.32767 l 76.83893 80.26758 l 64.95191 83.70266 lx -0.00000 0.00000 0.45299 s 168.75000 79.56567 m 180.63702 73.53026 l 187.50000 80.17149 l 175.61298 82.90526 lf -0 sg 168.75000 79.56567 m 180.63702 73.53026 l 187.50000 80.17149 l 175.61298 82.90526 lx -0.00000 0.00000 0.41022 s 88.72595 76.84951 m 100.61298 73.36793 l 107.47595 79.49840 l 95.58893 82.74293 lf -0 sg 88.72595 76.84951 m 100.61298 73.36793 l 107.47595 79.49840 l 95.58893 82.74293 lx -0.00000 sg 119.36298 75.36919 m 131.25000 74.54162 l 138.11298 63.10288 l 126.22595 85.97026 lf -0 sg 119.36298 75.36919 m 131.25000 74.54162 l 138.11298 63.10288 l 126.22595 85.97026 lx -0.00000 0.00000 0.40603 s 199.38702 76.55305 m 211.27405 73.17166 l 218.13702 79.10175 l 206.25000 82.54666 lf -0 sg 199.38702 76.55305 m 211.27405 73.17166 l 218.13702 79.10175 l 206.25000 82.54666 lx -0.00000 0.00000 0.40693 s 230.02405 75.67385 m 241.91107 72.24140 l 248.77405 78.18517 l 236.88702 81.61640 lf -0 sg 230.02405 75.67385 m 241.91107 72.24140 l 248.77405 78.18517 l 236.88702 81.61640 lx -0.00000 0.00000 0.40691 s 39.33893 75.24636 m 51.22595 71.81494 l 58.08893 77.75819 l 46.20191 81.18993 lf -0 sg 39.33893 75.24636 m 51.22595 71.81494 l 58.08893 77.75819 l 46.20191 81.18993 lx -0.00000 0.00000 0.40691 s 260.66107 74.75362 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 80.69715 lf -0 sg 260.66107 74.75362 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 80.69715 lx -0.00000 0.00000 0.40715 s 69.97595 74.32767 m 81.86298 70.89258 l 88.72595 76.84951 l 76.83893 80.26758 lf -0 sg 69.97595 74.32767 m 81.86298 70.89258 l 88.72595 76.84951 l 76.83893 80.26758 lx -0.00000 0.00000 0.39456 s 180.63702 73.53026 m 192.52405 70.79649 l 199.38702 76.55305 l 187.50000 80.17149 lf -0 sg 180.63702 73.53026 m 192.52405 70.79649 l 199.38702 76.55305 l 187.50000 80.17149 lx -0.00000 0.00000 0.39456 s 100.61298 73.36793 m 112.50000 70.12340 l 119.36298 75.36919 l 107.47595 79.49840 lf -0 sg 100.61298 73.36793 m 112.50000 70.12340 l 119.36298 75.36919 l 107.47595 79.49840 lx -0.00000 0.00000 0.40715 s 211.27405 73.17166 m 223.16107 69.72675 l 230.02405 75.67385 l 218.13702 79.10175 lf -0 sg 211.27405 73.17166 m 223.16107 69.72675 l 230.02405 75.67385 l 218.13702 79.10175 lx -0.00000 0.00000 0.40691 s 20.58893 72.73435 m 32.47595 69.30286 l 39.33893 75.24636 l 27.45191 78.67786 lf -0 sg 20.58893 72.73435 m 32.47595 69.30286 l 39.33893 75.24636 l 27.45191 78.67786 lx -0.00000 sg 161.88702 56.23991 m 173.77405 72.24431 l 180.63702 73.53026 l 168.75000 79.56567 lf -0 sg 161.88702 56.23991 m 173.77405 72.24431 l 180.63702 73.53026 l 168.75000 79.56567 lx -0.00000 0.00000 0.40691 s 241.91107 72.24140 m 253.79809 68.81017 l 260.66107 74.75362 l 248.77405 78.18517 lf -0 sg 241.91107 72.24140 m 253.79809 68.81017 l 260.66107 74.75362 l 248.77405 78.18517 lx -0.00000 0.00000 0.40693 s 51.22595 71.81494 m 63.11298 68.38319 l 69.97595 74.32767 l 58.08893 77.75819 lf -0 sg 51.22595 71.81494 m 63.11298 68.38319 l 69.97595 74.32767 l 58.08893 77.75819 lx -1.00000 sg 138.11298 63.10288 m 150.00000 189.41427 l 156.86298 65.61491 l 144.97595 86.42864 lf -0 sg 138.11298 63.10288 m 150.00000 189.41427 l 156.86298 65.61491 l 144.97595 86.42864 lx -0.00000 0.00000 0.40603 s 81.86298 70.89258 m 93.75000 67.47451 l 100.61298 73.36793 l 88.72595 76.84951 lf -0 sg 81.86298 70.89258 m 93.75000 67.47451 l 100.61298 73.36793 l 88.72595 76.84951 lx -0.00000 0.00000 0.41022 s 192.52405 70.79649 m 204.41107 67.17805 l 211.27405 73.17166 l 199.38702 76.55305 lf -0 sg 192.52405 70.79649 m 204.41107 67.17805 l 211.27405 73.17166 l 199.38702 76.55305 lx -0.00000 0.00000 0.45299 s 112.50000 70.12340 m 124.38702 65.99419 l 131.25000 74.54162 l 119.36298 75.36919 lf -0 sg 112.50000 70.12340 m 124.38702 65.99419 l 131.25000 74.54162 l 119.36298 75.36919 lx -0.00000 0.00000 0.40685 s 223.16107 69.72675 m 235.04809 66.29885 l 241.91107 72.24140 l 230.02405 75.67385 lf -0 sg 223.16107 69.72675 m 235.04809 66.29885 l 241.91107 72.24140 l 230.02405 75.67385 lx -0.00000 0.00000 0.40691 s 32.47595 69.30286 m 44.36298 65.87136 l 51.22595 71.81494 l 39.33893 75.24636 lf -0 sg 32.47595 69.30286 m 44.36298 65.87136 l 51.22595 71.81494 l 39.33893 75.24636 lx -0.00000 0.00000 0.40691 s 253.79809 68.81017 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 74.75362 lf -0 sg 253.79809 68.81017 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 74.75362 lx -0.00000 0.00000 0.40685 s 63.11298 68.38319 m 75.00000 64.95267 l 81.86298 70.89258 l 69.97595 74.32767 lf -0 sg 63.11298 68.38319 m 75.00000 64.95267 l 81.86298 70.89258 l 69.97595 74.32767 lx -0.00000 0.00000 0.51594 s 173.77405 72.24431 m 185.66107 63.60499 l 192.52405 70.79649 l 180.63702 73.53026 lf -0 sg 173.77405 72.24431 m 185.66107 63.60499 l 192.52405 70.79649 l 180.63702 73.53026 lx -1.00000 sg 150.00000 189.41427 m 161.88702 56.23991 l 168.75000 79.56567 l 156.86298 65.61491 lf -0 sg 150.00000 189.41427 m 161.88702 56.23991 l 168.75000 79.56567 l 156.86298 65.61491 lx -0.00000 0.00000 0.41022 s 93.75000 67.47451 m 105.63702 63.99293 l 112.50000 70.12340 l 100.61298 73.36793 lf -0 sg 93.75000 67.47451 m 105.63702 63.99293 l 112.50000 70.12340 l 100.61298 73.36793 lx -0.00000 sg 124.38702 65.99419 m 136.27405 67.22026 l 143.13702 53.72788 l 131.25000 74.54162 lf -0 sg 124.38702 65.99419 m 136.27405 67.22026 l 143.13702 53.72788 l 131.25000 74.54162 lx -0.00000 0.00000 0.40603 s 204.41107 67.17805 m 216.29809 63.79665 l 223.16107 69.72675 l 211.27405 73.17166 lf -0 sg 204.41107 67.17805 m 216.29809 63.79665 l 223.16107 69.72675 l 211.27405 73.17166 lx -0.00000 0.00000 0.40691 s 13.72595 66.79083 m 25.61298 63.35935 l 32.47595 69.30286 l 20.58893 72.73435 lf -0 sg 13.72595 66.79083 m 25.61298 63.35935 l 32.47595 69.30286 l 20.58893 72.73435 lx -0.00000 sg 155.02405 67.67864 m 166.91107 61.64324 l 173.77405 72.24431 l 161.88702 56.23991 lf -0 sg 155.02405 67.67864 m 166.91107 61.64324 l 173.77405 72.24431 l 161.88702 56.23991 lx -0.00000 0.00000 0.40693 s 235.04809 66.29885 m 246.93512 62.86642 l 253.79809 68.81017 l 241.91107 72.24140 lf -0 sg 235.04809 66.29885 m 246.93512 62.86642 l 253.79809 68.81017 l 241.91107 72.24140 lx -0.00000 0.00000 0.40691 s 44.36298 65.87136 m 56.25000 62.43994 l 63.11298 68.38319 l 51.22595 71.81494 lf -0 sg 44.36298 65.87136 m 56.25000 62.43994 l 63.11298 68.38319 l 51.22595 71.81494 lx -1.00000 sg 131.25000 74.54162 m 143.13702 53.72788 l 150.00000 189.41427 l 138.11298 63.10288 lf -0 sg 131.25000 74.54162 m 143.13702 53.72788 l 150.00000 189.41427 l 138.11298 63.10288 lx -0.00000 0.00000 0.40715 s 75.00000 64.95267 m 86.88702 61.51758 l 93.75000 67.47451 l 81.86298 70.89258 lf -0 sg 75.00000 64.95267 m 86.88702 61.51758 l 93.75000 67.47451 l 81.86298 70.89258 lx -0.00000 0.00000 0.37770 s 185.66107 63.60499 m 197.54809 61.56893 l 204.41107 67.17805 l 192.52405 70.79649 lf -0 sg 185.66107 63.60499 m 197.54809 61.56893 l 204.41107 67.17805 l 192.52405 70.79649 lx -0.00000 0.00000 0.39456 s 105.63702 63.99293 m 117.52405 60.74840 l 124.38702 65.99419 l 112.50000 70.12340 lf -0 sg 105.63702 63.99293 m 117.52405 60.74840 l 124.38702 65.99419 l 112.50000 70.12340 lx -0.00000 sg 136.27405 67.22026 m 148.16107 59.13122 l 155.02405 67.67864 l 143.13702 53.72788 lf -0 sg 136.27405 67.22026 m 148.16107 59.13122 l 155.02405 67.67864 l 143.13702 53.72788 lx -0.00000 0.00000 0.40715 s 216.29809 63.79665 m 228.18512 60.35176 l 235.04809 66.29885 l 223.16107 69.72675 lf -0 sg 216.29809 63.79665 m 228.18512 60.35176 l 235.04809 66.29885 l 223.16107 69.72675 lx -0.00000 0.00000 0.40691 s 25.61298 63.35935 m 37.50000 59.92786 l 44.36298 65.87136 l 32.47595 69.30286 lf -0 sg 25.61298 63.35935 m 37.50000 59.92786 l 44.36298 65.87136 l 32.47595 69.30286 lx -0.00000 0.00000 0.40691 s 246.93512 62.86642 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.81017 lf -0 sg 246.93512 62.86642 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.81017 lx -0.00000 0.00000 0.40693 s 56.25000 62.43994 m 68.13702 59.00819 l 75.00000 64.95267 l 63.11298 68.38319 lf -0 sg 56.25000 62.43994 m 68.13702 59.00819 l 75.00000 64.95267 l 63.11298 68.38319 lx -0.00000 0.00000 0.51594 s 166.91107 61.64324 m 178.79809 58.90947 l 185.66107 63.60499 l 173.77405 72.24431 lf -0 sg 166.91107 61.64324 m 178.79809 58.90947 l 185.66107 63.60499 l 173.77405 72.24431 lx -1.00000 sg 143.13702 53.72788 m 155.02405 67.67864 l 161.88702 56.23991 l 150.00000 189.41427 lf -0 sg 143.13702 53.72788 m 155.02405 67.67864 l 161.88702 56.23991 l 150.00000 189.41427 lx -0.00000 0.00000 0.40603 s 86.88702 61.51758 m 98.77405 58.09951 l 105.63702 63.99293 l 93.75000 67.47451 lf -0 sg 86.88702 61.51758 m 98.77405 58.09951 l 105.63702 63.99293 l 93.75000 67.47451 lx -0.00000 0.00000 0.41474 s 197.54809 61.56893 m 209.43512 57.76357 l 216.29809 63.79665 l 204.41107 67.17805 lf -0 sg 197.54809 61.56893 m 209.43512 57.76357 l 216.29809 63.79665 l 204.41107 67.17805 lx -0.00000 0.00000 0.40691 s 6.86298 60.84732 m 18.75000 57.41583 l 25.61298 63.35935 l 13.72595 66.79083 lf -0 sg 6.86298 60.84732 m 18.75000 57.41583 l 25.61298 63.35935 l 13.72595 66.79083 lx -0.00000 0.00000 0.51594 s 117.52405 60.74840 m 129.41107 56.06892 l 136.27405 67.22026 l 124.38702 65.99419 lf -0 sg 117.52405 60.74840 m 129.41107 56.06892 l 136.27405 67.22026 l 124.38702 65.99419 lx -0.00000 0.00000 0.40685 s 228.18512 60.35176 m 240.07214 56.92380 l 246.93512 62.86642 l 235.04809 66.29885 lf -0 sg 228.18512 60.35176 m 240.07214 56.92380 l 246.93512 62.86642 l 235.04809 66.29885 lx -0.00000 0.00000 0.40691 s 37.50000 59.92786 m 49.38702 56.49636 l 56.25000 62.43994 l 44.36298 65.87136 lf -0 sg 37.50000 59.92786 m 49.38702 56.49636 l 56.25000 62.43994 l 44.36298 65.87136 lx -0.00000 0.00000 0.45299 s 148.16107 59.13122 m 160.04809 56.39744 l 166.91107 61.64324 l 155.02405 67.67864 lf -0 sg 148.16107 59.13122 m 160.04809 56.39744 l 166.91107 61.64324 l 155.02405 67.67864 lx -0.00000 0.00000 0.40685 s 68.13702 59.00819 m 80.02405 55.57767 l 86.88702 61.51758 l 75.00000 64.95267 lf -0 sg 68.13702 59.00819 m 80.02405 55.57767 l 86.88702 61.51758 l 75.00000 64.95267 lx -0.00000 0.00000 0.37770 s 178.79809 58.90947 m 190.68512 55.29103 l 197.54809 61.56893 l 185.66107 63.60499 lf -0 sg 178.79809 58.90947 m 190.68512 55.29103 l 197.54809 61.56893 l 185.66107 63.60499 lx -0.00000 0.00000 0.41022 s 98.77405 58.09951 m 110.66107 54.61793 l 117.52405 60.74840 l 105.63702 63.99293 lf -0 sg 98.77405 58.09951 m 110.66107 54.61793 l 117.52405 60.74840 l 105.63702 63.99293 lx -0.00000 0.00000 0.40481 s 209.43512 57.76357 m 221.32214 54.43213 l 228.18512 60.35176 l 216.29809 63.79665 lf -0 sg 209.43512 57.76357 m 221.32214 54.43213 l 228.18512 60.35176 l 216.29809 63.79665 lx -0.00000 0.00000 0.40691 s 18.75000 57.41583 m 30.63702 53.98435 l 37.50000 59.92786 l 25.61298 63.35935 lf -0 sg 18.75000 57.41583 m 30.63702 53.98435 l 37.50000 59.92786 l 25.61298 63.35935 lx -0.00000 0.00000 0.51594 s 129.41107 56.06892 m 141.29809 53.88542 l 148.16107 59.13122 l 136.27405 67.22026 lf -0 sg 129.41107 56.06892 m 141.29809 53.88542 l 148.16107 59.13122 l 136.27405 67.22026 lx -0.00000 0.00000 0.40693 s 240.07214 56.92380 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 62.86642 lf -0 sg 240.07214 56.92380 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 62.86642 lx -0.00000 0.00000 0.40691 s 49.38702 56.49636 m 61.27405 53.06494 l 68.13702 59.00819 l 56.25000 62.43994 lf -0 sg 49.38702 56.49636 m 61.27405 53.06494 l 68.13702 59.00819 l 56.25000 62.43994 lx -0.00000 0.00000 0.39456 s 160.04809 56.39744 m 171.93512 52.77900 l 178.79809 58.90947 l 166.91107 61.64324 lf -0 sg 160.04809 56.39744 m 171.93512 52.77900 l 178.79809 58.90947 l 166.91107 61.64324 lx -0.00000 0.00000 0.40715 s 80.02405 55.57767 m 91.91107 52.14258 l 98.77405 58.09951 l 86.88702 61.51758 lf -0 sg 80.02405 55.57767 m 91.91107 52.14258 l 98.77405 58.09951 l 86.88702 61.51758 lx -0.00000 0.00000 0.41474 s 190.68512 55.29103 m 202.57214 51.90963 l 209.43512 57.76357 l 197.54809 61.56893 lf -0 sg 190.68512 55.29103 m 202.57214 51.90963 l 209.43512 57.76357 l 197.54809 61.56893 lx -0.00000 0.00000 0.40691 s 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.41583 l 6.86298 60.84732 lf -0 sg 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.41583 l 6.86298 60.84732 lx -0.00000 0.00000 0.37770 s 110.66107 54.61793 m 122.54809 51.52083 l 129.41107 56.06892 l 117.52405 60.74840 lf -0 sg 110.66107 54.61793 m 122.54809 51.52083 l 129.41107 56.06892 l 117.52405 60.74840 lx -0.00000 0.00000 0.40749 s 221.32214 54.43213 m 233.20917 50.97432 l 240.07214 56.92380 l 228.18512 60.35176 lf -0 sg 221.32214 54.43213 m 233.20917 50.97432 l 240.07214 56.92380 l 228.18512 60.35176 lx -0.00000 0.00000 0.40691 s 30.63702 53.98435 m 42.52405 50.55286 l 49.38702 56.49636 l 37.50000 59.92786 lf -0 sg 30.63702 53.98435 m 42.52405 50.55286 l 49.38702 56.49636 l 37.50000 59.92786 lx -0.00000 0.00000 0.39456 s 141.29809 53.88542 m 153.18512 50.26698 l 160.04809 56.39744 l 148.16107 59.13122 lf -0 sg 141.29809 53.88542 m 153.18512 50.26698 l 160.04809 56.39744 l 148.16107 59.13122 lx -0.00000 0.00000 0.40693 s 61.27405 53.06494 m 73.16107 49.63319 l 80.02405 55.57767 l 68.13702 59.00819 lf -0 sg 61.27405 53.06494 m 73.16107 49.63319 l 80.02405 55.57767 l 68.13702 59.00819 lx -0.00000 0.00000 0.41022 s 171.93512 52.77900 m 183.82214 49.39761 l 190.68512 55.29103 l 178.79809 58.90947 lf -0 sg 171.93512 52.77900 m 183.82214 49.39761 l 190.68512 55.29103 l 178.79809 58.90947 lx -0.00000 0.00000 0.40603 s 91.91107 52.14258 m 103.79809 48.72451 l 110.66107 54.61793 l 98.77405 58.09951 lf -0 sg 91.91107 52.14258 m 103.79809 48.72451 l 110.66107 54.61793 l 98.77405 58.09951 lx -0.00000 0.00000 0.40481 s 202.57214 51.90963 m 214.45917 48.46474 l 221.32214 54.43213 l 209.43512 57.76357 lf -0 sg 202.57214 51.90963 m 214.45917 48.46474 l 221.32214 54.43213 l 209.43512 57.76357 lx -0.00000 0.00000 0.40691 s 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.98435 l 18.75000 57.41583 lf -0 sg 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.98435 l 18.75000 57.41583 lx -0.00000 0.00000 0.37770 s 122.54809 51.52083 m 134.43512 47.75496 l 141.29809 53.88542 l 129.41107 56.06892 lf -0 sg 122.54809 51.52083 m 134.43512 47.75496 l 141.29809 53.88542 l 129.41107 56.06892 lx -0.00000 0.00000 0.40672 s 233.20917 50.97432 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 56.92380 lf -0 sg 233.20917 50.97432 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 56.92380 lx -0.00000 0.00000 0.40691 s 42.52405 50.55286 m 54.41107 47.12136 l 61.27405 53.06494 l 49.38702 56.49636 lf -0 sg 42.52405 50.55286 m 54.41107 47.12136 l 61.27405 53.06494 l 49.38702 56.49636 lx -0.00000 0.00000 0.41022 s 153.18512 50.26698 m 165.07214 46.88559 l 171.93512 52.77900 l 160.04809 56.39744 lf -0 sg 153.18512 50.26698 m 165.07214 46.88559 l 171.93512 52.77900 l 160.04809 56.39744 lx -0.00000 0.00000 0.40685 s 73.16107 49.63319 m 85.04809 46.20266 l 91.91107 52.14258 l 80.02405 55.57767 lf -0 sg 73.16107 49.63319 m 85.04809 46.20266 l 91.91107 52.14258 l 80.02405 55.57767 lx -0.00000 0.00000 0.40603 s 183.82214 49.39761 m 195.70917 45.95270 l 202.57214 51.90963 l 190.68512 55.29103 lf -0 sg 183.82214 49.39761 m 195.70917 45.95270 l 202.57214 51.90963 l 190.68512 55.29103 lx -0.00000 0.00000 0.41474 s 103.79809 48.72451 m 115.68512 45.20345 l 122.54809 51.52083 l 110.66107 54.61793 lf -0 sg 103.79809 48.72451 m 115.68512 45.20345 l 122.54809 51.52083 l 110.66107 54.61793 lx -0.00000 0.00000 0.40749 s 214.45917 48.46474 m 226.34619 45.03678 l 233.20917 50.97432 l 221.32214 54.43213 lf -0 sg 214.45917 48.46474 m 226.34619 45.03678 l 233.20917 50.97432 l 221.32214 54.43213 lx -0.00000 0.00000 0.40691 s 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 50.55286 l 30.63702 53.98435 lf -0 sg 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 50.55286 l 30.63702 53.98435 lx -0.00000 0.00000 0.41022 s 134.43512 47.75496 m 146.32214 44.37356 l 153.18512 50.26698 l 141.29809 53.88542 lf -0 sg 134.43512 47.75496 m 146.32214 44.37356 l 153.18512 50.26698 l 141.29809 53.88542 lx -0.00000 0.00000 0.40691 s 54.41107 47.12136 m 66.29809 43.68993 l 73.16107 49.63319 l 61.27405 53.06494 lf -0 sg 54.41107 47.12136 m 66.29809 43.68993 l 73.16107 49.63319 l 61.27405 53.06494 lx -0.00000 0.00000 0.40603 s 165.07214 46.88559 m 176.95917 43.44068 l 183.82214 49.39761 l 171.93512 52.77900 lf -0 sg 165.07214 46.88559 m 176.95917 43.44068 l 183.82214 49.39761 l 171.93512 52.77900 lx -0.00000 0.00000 0.40715 s 85.04809 46.20266 m 96.93512 42.76760 l 103.79809 48.72451 l 91.91107 52.14258 lf -0 sg 85.04809 46.20266 m 96.93512 42.76760 l 103.79809 48.72451 l 91.91107 52.14258 lx -0.00000 0.00000 0.40715 s 195.70917 45.95270 m 207.59619 42.52480 l 214.45917 48.46474 l 202.57214 51.90963 lf -0 sg 195.70917 45.95270 m 207.59619 42.52480 l 214.45917 48.46474 l 202.57214 51.90963 lx -0.00000 0.00000 0.41474 s 115.68512 45.20345 m 127.57214 41.86153 l 134.43512 47.75496 l 122.54809 51.52083 lf -0 sg 115.68512 45.20345 m 127.57214 41.86153 l 134.43512 47.75496 l 122.54809 51.52083 lx -0.00000 0.00000 0.40672 s 226.34619 45.03678 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 50.97432 lf -0 sg 226.34619 45.03678 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 50.97432 lx -0.00000 0.00000 0.40691 s 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 47.12136 l 42.52405 50.55286 lf -0 sg 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 47.12136 l 42.52405 50.55286 lx -0.00000 0.00000 0.40603 s 146.32214 44.37356 m 158.20917 40.92865 l 165.07214 46.88559 l 153.18512 50.26698 lf -0 sg 146.32214 44.37356 m 158.20917 40.92865 l 165.07214 46.88559 l 153.18512 50.26698 lx -0.00000 0.00000 0.40693 s 66.29809 43.68993 m 78.18512 40.25820 l 85.04809 46.20266 l 73.16107 49.63319 lf -0 sg 66.29809 43.68993 m 78.18512 40.25820 l 85.04809 46.20266 l 73.16107 49.63319 lx -0.00000 0.00000 0.40715 s 176.95917 43.44068 m 188.84619 40.01278 l 195.70917 45.95270 l 183.82214 49.39761 lf -0 sg 176.95917 43.44068 m 188.84619 40.01278 l 195.70917 45.95270 l 183.82214 49.39761 lx -0.00000 0.00000 0.40481 s 96.93512 42.76760 m 108.82214 39.35999 l 115.68512 45.20345 l 103.79809 48.72451 lf -0 sg 96.93512 42.76760 m 108.82214 39.35999 l 115.68512 45.20345 l 103.79809 48.72451 lx -0.00000 0.00000 0.40685 s 207.59619 42.52480 m 219.48321 39.09237 l 226.34619 45.03678 l 214.45917 48.46474 lf -0 sg 207.59619 42.52480 m 219.48321 39.09237 l 226.34619 45.03678 l 214.45917 48.46474 lx -0.00000 0.00000 0.40603 s 127.57214 41.86153 m 139.45917 38.41663 l 146.32214 44.37356 l 134.43512 47.75496 lf -0 sg 127.57214 41.86153 m 139.45917 38.41663 l 146.32214 44.37356 l 134.43512 47.75496 lx -0.00000 0.00000 0.40691 s 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 43.68993 l 54.41107 47.12136 lf -0 sg 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 43.68993 l 54.41107 47.12136 lx -0.00000 0.00000 0.40715 s 158.20917 40.92865 m 170.09619 37.50076 l 176.95917 43.44068 l 165.07214 46.88559 lf -0 sg 158.20917 40.92865 m 170.09619 37.50076 l 176.95917 43.44068 l 165.07214 46.88559 lx -0.00000 0.00000 0.40685 s 78.18512 40.25820 m 90.07214 36.82761 l 96.93512 42.76760 l 85.04809 46.20266 lf -0 sg 78.18512 40.25820 m 90.07214 36.82761 l 96.93512 42.76760 l 85.04809 46.20266 lx -0.00000 0.00000 0.40685 s 188.84619 40.01278 m 200.73321 36.58033 l 207.59619 42.52480 l 195.70917 45.95270 lf -0 sg 188.84619 40.01278 m 200.73321 36.58033 l 207.59619 42.52480 l 195.70917 45.95270 lx -0.00000 0.00000 0.40481 s 108.82214 39.35999 m 120.70917 35.90462 l 127.57214 41.86153 l 115.68512 45.20345 lf -0 sg 108.82214 39.35999 m 120.70917 35.90462 l 127.57214 41.86153 l 115.68512 45.20345 lx -0.00000 0.00000 0.40693 s 219.48321 39.09237 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 45.03678 lf -0 sg 219.48321 39.09237 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 45.03678 lx -0.00000 0.00000 0.40715 s 139.45917 38.41663 m 151.34619 34.98874 l 158.20917 40.92865 l 146.32214 44.37356 lf -0 sg 139.45917 38.41663 m 151.34619 34.98874 l 158.20917 40.92865 l 146.32214 44.37356 lx -0.00000 0.00000 0.40691 s 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 40.25820 l 66.29809 43.68993 lf -0 sg 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 40.25820 l 66.29809 43.68993 lx -0.00000 0.00000 0.40685 s 170.09619 37.50076 m 181.98321 34.06831 l 188.84619 40.01278 l 176.95917 43.44068 lf -0 sg 170.09619 37.50076 m 181.98321 34.06831 l 188.84619 40.01278 l 176.95917 43.44068 lx -0.00000 0.00000 0.40749 s 90.07214 36.82761 m 101.95917 33.39015 l 108.82214 39.35999 l 96.93512 42.76760 lf -0 sg 90.07214 36.82761 m 101.95917 33.39015 l 108.82214 39.35999 l 96.93512 42.76760 lx -0.00000 0.00000 0.40693 s 200.73321 36.58033 m 212.62024 33.14910 l 219.48321 39.09237 l 207.59619 42.52480 lf -0 sg 200.73321 36.58033 m 212.62024 33.14910 l 219.48321 39.09237 l 207.59619 42.52480 lx -0.00000 0.00000 0.40715 s 120.70917 35.90462 m 132.59619 32.47671 l 139.45917 38.41663 l 127.57214 41.86153 lf -0 sg 120.70917 35.90462 m 132.59619 32.47671 l 139.45917 38.41663 l 127.57214 41.86153 lx -0.00000 0.00000 0.40685 s 151.34619 34.98874 m 163.23321 31.55628 l 170.09619 37.50076 l 158.20917 40.92865 lf -0 sg 151.34619 34.98874 m 163.23321 31.55628 l 170.09619 37.50076 l 158.20917 40.92865 lx -0.00000 0.00000 0.40693 s 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 36.82761 l 78.18512 40.25820 lf -0 sg 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 36.82761 l 78.18512 40.25820 lx -0.00000 0.00000 0.40693 s 181.98321 34.06831 m 193.87024 30.63708 l 200.73321 36.58033 l 188.84619 40.01278 lf -0 sg 181.98321 34.06831 m 193.87024 30.63708 l 200.73321 36.58033 l 188.84619 40.01278 lx -0.00000 0.00000 0.40749 s 101.95917 33.39015 m 113.84619 29.96463 l 120.70917 35.90462 l 108.82214 39.35999 lf -0 sg 101.95917 33.39015 m 113.84619 29.96463 l 120.70917 35.90462 l 108.82214 39.35999 lx -0.00000 0.00000 0.40691 s 212.62024 33.14910 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 39.09237 lf -0 sg 212.62024 33.14910 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 39.09237 lx -0.00000 0.00000 0.40685 s 132.59619 32.47671 m 144.48321 29.04426 l 151.34619 34.98874 l 139.45917 38.41663 lf -0 sg 132.59619 32.47671 m 144.48321 29.04426 l 151.34619 34.98874 l 139.45917 38.41663 lx -0.00000 0.00000 0.40693 s 163.23321 31.55628 m 175.12024 28.12505 l 181.98321 34.06831 l 170.09619 37.50076 lf -0 sg 163.23321 31.55628 m 175.12024 28.12505 l 181.98321 34.06831 l 170.09619 37.50076 lx -0.00000 0.00000 0.40672 s 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 33.39015 l 90.07214 36.82761 lf -0 sg 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 33.39015 l 90.07214 36.82761 lx -0.00000 0.00000 0.40691 s 193.87024 30.63708 m 205.75726 27.20552 l 212.62024 33.14910 l 200.73321 36.58033 lf -0 sg 193.87024 30.63708 m 205.75726 27.20552 l 212.62024 33.14910 l 200.73321 36.58033 lx -0.00000 0.00000 0.40685 s 113.84619 29.96463 m 125.73321 26.53225 l 132.59619 32.47671 l 120.70917 35.90462 lf -0 sg 113.84619 29.96463 m 125.73321 26.53225 l 132.59619 32.47671 l 120.70917 35.90462 lx -0.00000 0.00000 0.40693 s 144.48321 29.04426 m 156.37024 25.61303 l 163.23321 31.55628 l 151.34619 34.98874 lf -0 sg 144.48321 29.04426 m 156.37024 25.61303 l 163.23321 31.55628 l 151.34619 34.98874 lx -0.00000 0.00000 0.40691 s 175.12024 28.12505 m 187.00726 24.69350 l 193.87024 30.63708 l 181.98321 34.06831 lf -0 sg 175.12024 28.12505 m 187.00726 24.69350 l 193.87024 30.63708 l 181.98321 34.06831 lx -0.00000 0.00000 0.40672 s 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 29.96463 l 101.95917 33.39015 lf -0 sg 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 29.96463 l 101.95917 33.39015 lx -0.00000 0.00000 0.40691 s 205.75726 27.20552 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 33.14910 lf -0 sg 205.75726 27.20552 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 33.14910 lx -0.00000 0.00000 0.40693 s 125.73321 26.53225 m 137.62024 23.10100 l 144.48321 29.04426 l 132.59619 32.47671 lf -0 sg 125.73321 26.53225 m 137.62024 23.10100 l 144.48321 29.04426 l 132.59619 32.47671 lx -0.00000 0.00000 0.40691 s 156.37024 25.61303 m 168.25726 22.18147 l 175.12024 28.12505 l 163.23321 31.55628 lf -0 sg 156.37024 25.61303 m 168.25726 22.18147 l 175.12024 28.12505 l 163.23321 31.55628 lx -0.00000 0.00000 0.40691 s 187.00726 24.69350 m 198.89428 21.26203 l 205.75726 27.20552 l 193.87024 30.63708 lf -0 sg 187.00726 24.69350 m 198.89428 21.26203 l 205.75726 27.20552 l 193.87024 30.63708 lx -0.00000 0.00000 0.40693 s 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.53225 l 113.84619 29.96463 lf -0 sg 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.53225 l 113.84619 29.96463 lx -0.00000 0.00000 0.40691 s 137.62024 23.10100 m 149.50726 19.66945 l 156.37024 25.61303 l 144.48321 29.04426 lf -0 sg 137.62024 23.10100 m 149.50726 19.66945 l 156.37024 25.61303 l 144.48321 29.04426 lx -0.00000 0.00000 0.40691 s 168.25726 22.18147 m 180.14428 18.75000 l 187.00726 24.69350 l 175.12024 28.12505 lf -0 sg 168.25726 22.18147 m 180.14428 18.75000 l 187.00726 24.69350 l 175.12024 28.12505 lx -0.00000 0.00000 0.40691 s 198.89428 21.26203 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.20552 lf -0 sg 198.89428 21.26203 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.20552 lx -0.00000 0.00000 0.40691 s 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 23.10100 l 125.73321 26.53225 lf -0 sg 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 23.10100 l 125.73321 26.53225 lx -0.00000 0.00000 0.40691 s 149.50726 19.66945 m 161.39428 16.23798 l 168.25726 22.18147 l 156.37024 25.61303 lf -0 sg 149.50726 19.66945 m 161.39428 16.23798 l 168.25726 22.18147 l 156.37024 25.61303 lx -0.00000 0.00000 0.40691 s 180.14428 18.75000 m 192.03131 15.31851 l 198.89428 21.26203 l 187.00726 24.69350 lf -0 sg 180.14428 18.75000 m 192.03131 15.31851 l 198.89428 21.26203 l 187.00726 24.69350 lx -0.00000 0.00000 0.40691 s 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 19.66945 l 137.62024 23.10100 lf -0 sg 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 19.66945 l 137.62024 23.10100 lx -0.00000 0.00000 0.40691 s 161.39428 16.23798 m 173.28131 12.80649 l 180.14428 18.75000 l 168.25726 22.18147 lf -0 sg 161.39428 16.23798 m 173.28131 12.80649 l 180.14428 18.75000 l 168.25726 22.18147 lx -0.00000 0.00000 0.40691 s 192.03131 15.31851 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 21.26203 lf -0 sg 192.03131 15.31851 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 21.26203 lx -0.00000 0.00000 0.40691 s 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 16.23798 l 149.50726 19.66945 lf -0 sg 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 16.23798 l 149.50726 19.66945 lx -0.00000 0.00000 0.40691 s 173.28131 12.80649 m 185.16833 9.37500 l 192.03131 15.31851 l 180.14428 18.75000 lf -0 sg 173.28131 12.80649 m 185.16833 9.37500 l 192.03131 15.31851 l 180.14428 18.75000 lx -0.00000 0.00000 0.40691 s 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.80649 l 161.39428 16.23798 lf -0 sg 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.80649 l 161.39428 16.23798 lx -0.00000 0.00000 0.40691 s 185.16833 9.37500 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.31851 lf -0 sg 185.16833 9.37500 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.31851 lx -0.00000 0.00000 0.40691 s 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.37500 l 173.28131 12.80649 lf -0 sg 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.37500 l 173.28131 12.80649 lx -0.00000 0.00000 0.40691 s 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.37500 lf -0 sg 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.37500 lx -showpage -. -DEAL:: Postprocessing: time=0.03, step=1, sweep=0. [ee] -DEAL:: Postprocessing: time=0.06, step=2, sweep=0. [ee] -DEAL:: Postprocessing: time=0.08, step=3, sweep=0. [ee] -DEAL:: Postprocessing: time=0.11, step=4, sweep=0. [ee] -DEAL:: Postprocessing: time=0.14, step=5, sweep=0. [ee] -DEAL:: Postprocessing: time=0.17, step=6, sweep=0. [ee] -DEAL:: Postprocessing: time=0.20, step=7, sweep=0. [ee] -DEAL:: Postprocessing: time=0.22, step=8, sweep=0. [ee] -DEAL:: Postprocessing: time=0.25, step=9, sweep=0. [ee] -DEAL:: Postprocessing: time=0.28, step=10, sweep=0. [ee] -DEAL:: Postprocessing: time=0.31, step=11, sweep=0. [ee] -DEAL:: Postprocessing: time=0.34, step=12, sweep=0. [ee] -DEAL:: Postprocessing: time=0.36, step=13, sweep=0. [ee] -DEAL:: Postprocessing: time=0.39, step=14, sweep=0. [ee] -DEAL:: Postprocessing: time=0.42, step=15, sweep=0. [ee] -DEAL:: Postprocessing: time=0.45, step=16, sweep=0. [ee] -DEAL:: Postprocessing: time=0.48, step=17, sweep=0. [ee] -DEAL:: Postprocessing: time=0.50, step=18, sweep=0. [ee] -DEAL:: Postprocessing: time=0.53, step=19, sweep=0. [ee] -DEAL:: Postprocessing: time=0.56, step=20, sweep=0. [ee] -DEAL:: Postprocessing: time=0.59, step=21, sweep=0. [ee] -DEAL:: Postprocessing: time=0.62, step=22, sweep=0. [ee] -DEAL:: Postprocessing: time=0.64, step=23, sweep=0. [ee] -DEAL:: Postprocessing: time=0.67, step=24, sweep=0. [ee] -DEAL:: Postprocessing: time=0.70, step=25, sweep=0. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library - -%%BoundingBox: 0 0 300 150 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50 setlinewidth -0.00000 0.95990 0.04010 s 102.94464 144.05649 m 114.83167 140.54285 l 121.69464 146.56851 l 109.80762 150.00000 lf -0 sg 102.94464 144.05649 m 114.83167 140.54285 l 121.69464 146.56851 l 109.80762 150.00000 lx -0.16685 0.83315 0.00000 s 114.83167 140.54285 m 126.71869 139.95520 l 133.58167 143.13702 l 121.69464 146.56851 lf -0 sg 114.83167 140.54285 m 126.71869 139.95520 l 133.58167 143.13702 l 121.69464 146.56851 lx -0.15365 0.84635 0.00000 s 96.08167 138.11298 m 107.96869 137.26708 l 114.83167 140.54285 l 102.94464 144.05649 lf -0 sg 96.08167 138.11298 m 107.96869 137.26708 l 114.83167 140.54285 l 102.94464 144.05649 lx -0.29608 0.70392 0.00000 s 126.71869 139.95520 m 138.60572 135.40448 l 145.46869 139.70554 l 133.58167 143.13702 lf -0 sg 126.71869 139.95520 m 138.60572 135.40448 l 145.46869 139.70554 l 133.58167 143.13702 lx -0.54050 0.45950 0.00000 s 107.96869 137.26708 m 119.85572 133.65079 l 126.71869 139.95520 l 114.83167 140.54285 lf -0 sg 107.96869 137.26708 m 119.85572 133.65079 l 126.71869 139.95520 l 114.83167 140.54285 lx -0.05603 0.94397 0.00000 s 138.60572 135.40448 m 150.49274 129.88878 l 157.35572 136.27405 l 145.46869 139.70554 lf -0 sg 138.60572 135.40448 m 150.49274 129.88878 l 157.35572 136.27405 l 145.46869 139.70554 lx -0.43065 0.56935 0.00000 s 89.21869 132.16946 m 101.10572 132.35232 l 107.96869 137.26708 l 96.08167 138.11298 lf -0 sg 89.21869 132.16946 m 101.10572 132.35232 l 107.96869 137.26708 l 96.08167 138.11298 lx -0.00000 0.82167 0.17833 s 150.49274 129.88878 m 162.37976 125.41398 l 169.24274 132.84256 l 157.35572 136.27405 lf -0 sg 150.49274 129.88878 m 162.37976 125.41398 l 169.24274 132.84256 l 157.35572 136.27405 lx -0.70913 0.29087 0.00000 s 119.85572 133.65079 m 131.74274 130.92985 l 138.60572 135.40448 l 126.71869 139.95520 lf -0 sg 119.85572 133.65079 m 131.74274 130.92985 l 138.60572 135.40448 l 126.71869 139.95520 lx -0.87044 0.12956 0.00000 s 101.10572 132.35232 m 112.99274 128.77472 l 119.85572 133.65079 l 107.96869 137.26708 lf -0 sg 101.10572 132.35232 m 112.99274 128.77472 l 119.85572 133.65079 l 107.96869 137.26708 lx -0.32597 0.67404 0.00000 s 131.74274 130.92985 m 143.62976 124.87790 l 150.49274 129.88878 l 138.60572 135.40448 lf -0 sg 131.74274 130.92985 m 143.62976 124.87790 l 150.49274 129.88878 l 138.60572 135.40448 lx -0.00000 0.77878 0.22122 s 162.37976 125.41398 m 174.26679 122.45334 l 181.12976 129.41107 l 169.24274 132.84256 lf -0 sg 162.37976 125.41398 m 174.26679 122.45334 l 181.12976 129.41107 l 169.24274 132.84256 lx -0.35995 0.64005 0.00000 s 82.35572 126.22595 m 94.24274 124.43654 l 101.10572 132.35232 l 89.21869 132.16946 lf -0 sg 82.35572 126.22595 m 94.24274 124.43654 l 101.10572 132.35232 l 89.21869 132.16946 lx -0.00000 0.69985 0.30015 s 143.62976 124.87790 m 155.51679 118.83898 l 162.37976 125.41398 l 150.49274 129.88878 lf -0 sg 143.62976 124.87790 m 155.51679 118.83898 l 162.37976 125.41398 l 150.49274 129.88878 lx -0.78864 0.21136 0.00000 s 112.99274 128.77472 m 124.87976 123.87196 l 131.74274 130.92985 l 119.85572 133.65079 lf -0 sg 112.99274 128.77472 m 124.87976 123.87196 l 131.74274 130.92985 l 119.85572 133.65079 lx -0.00000 0.85117 0.14883 s 174.26679 122.45334 m 186.15381 119.51714 l 193.01679 125.97958 l 181.12976 129.41107 lf -0 sg 174.26679 122.45334 m 186.15381 119.51714 l 193.01679 125.97958 l 181.12976 129.41107 lx -0.81365 0.18635 0.00000 s 94.24274 124.43654 m 106.12976 121.94937 l 112.99274 128.77472 l 101.10572 132.35232 lf -0 sg 94.24274 124.43654 m 106.12976 121.94937 l 112.99274 128.77472 l 101.10572 132.35232 lx -0.00000 0.50326 0.49674 s 155.51679 118.83898 m 167.40381 115.96393 l 174.26679 122.45334 l 162.37976 125.41398 lf -0 sg 155.51679 118.83898 m 167.40381 115.96393 l 174.26679 122.45334 l 162.37976 125.41398 lx -0.37472 0.62528 0.00000 s 124.87976 123.87196 m 136.76679 118.29790 l 143.62976 124.87790 l 131.74274 130.92985 lf -0 sg 124.87976 123.87196 m 136.76679 118.29790 l 143.62976 124.87790 l 131.74274 130.92985 lx -0.07505 0.92495 0.00000 s 75.49274 120.28244 m 87.37976 116.66333 l 94.24274 124.43654 l 82.35572 126.22595 lf -0 sg 75.49274 120.28244 m 87.37976 116.66333 l 94.24274 124.43654 l 82.35572 126.22595 lx -0.00000 0.88777 0.11223 s 186.15381 119.51714 m 198.04083 116.07875 l 204.90381 122.54809 l 193.01679 125.97958 lf -0 sg 186.15381 119.51714 m 198.04083 116.07875 l 204.90381 122.54809 l 193.01679 125.97958 lx -0.00000 0.81548 0.18452 s 136.76679 118.29790 m 148.65381 114.77389 l 155.51679 118.83898 l 143.62976 124.87790 lf -0 sg 136.76679 118.29790 m 148.65381 114.77389 l 155.51679 118.83898 l 143.62976 124.87790 lx -0.64742 0.35258 0.00000 s 106.12976 121.94937 m 118.01679 116.97263 l 124.87976 123.87196 l 112.99274 128.77472 lf -0 sg 106.12976 121.94937 m 118.01679 116.97263 l 124.87976 123.87196 l 112.99274 128.77472 lx -0.00000 0.63766 0.36234 s 167.40381 115.96393 m 179.29083 112.80341 l 186.15381 119.51714 l 174.26679 122.45334 lf -0 sg 167.40381 115.96393 m 179.29083 112.80341 l 186.15381 119.51714 l 174.26679 122.45334 lx -0.00000 0.88777 0.11223 s 198.04083 116.07875 m 209.92786 112.65416 l 216.79083 119.11661 l 204.90381 122.54809 lf -0 sg 198.04083 116.07875 m 209.92786 112.65416 l 216.79083 119.11661 l 204.90381 122.54809 lx -0.25101 0.74899 0.00000 s 87.37976 116.66333 m 99.26679 113.18128 l 106.12976 121.94937 l 94.24274 124.43654 lf -0 sg 87.37976 116.66333 m 99.26679 113.18128 l 106.12976 121.94937 l 94.24274 124.43654 lx -0.24057 0.75943 0.00000 s 118.01679 116.97263 m 129.90381 113.27086 l 136.76679 118.29790 l 124.87976 123.87196 lf -0 sg 118.01679 116.97263 m 129.90381 113.27086 l 136.76679 118.29790 l 124.87976 123.87196 lx -0.00000 0.61832 0.38168 s 148.65381 114.77389 m 160.54083 110.85473 l 167.40381 115.96393 l 155.51679 118.83898 lf -0 sg 148.65381 114.77389 m 160.54083 110.85473 l 167.40381 115.96393 l 155.51679 118.83898 lx -0.00000 0.75152 0.24848 s 179.29083 112.80341 m 191.17786 110.13203 l 198.04083 116.07875 l 186.15381 119.51714 lf -0 sg 179.29083 112.80341 m 191.17786 110.13203 l 198.04083 116.07875 l 186.15381 119.51714 lx -0.01473 0.98527 0.00000 s 68.62976 114.33893 m 80.51679 111.74459 l 87.37976 116.66333 l 75.49274 120.28244 lf -0 sg 68.62976 114.33893 m 80.51679 111.74459 l 87.37976 116.66333 l 75.49274 120.28244 lx -0.00000 0.85117 0.14883 s 209.92786 112.65416 m 221.81488 108.72739 l 228.67786 115.68512 l 216.79083 119.11661 lf -0 sg 209.92786 112.65416 m 221.81488 108.72739 l 228.67786 115.68512 l 216.79083 119.11661 lx -0.13581 0.86419 0.00000 s 99.26679 113.18128 m 111.15381 108.86388 l 118.01679 116.97263 l 106.12976 121.94937 lf -0 sg 99.26679 113.18128 m 111.15381 108.86388 l 118.01679 116.97263 l 106.12976 121.94937 lx -0.00000 0.94432 0.05568 s 129.90381 113.27086 m 141.79083 108.39131 l 148.65381 114.77389 l 136.76679 118.29790 lf -0 sg 129.90381 113.27086 m 141.79083 108.39131 l 148.65381 114.77389 l 136.76679 118.29790 lx -0.00000 0.76910 0.23090 s 160.54083 110.85473 m 172.42786 109.09566 l 179.29083 112.80341 l 167.40381 115.96393 lf -0 sg 160.54083 110.85473 m 172.42786 109.09566 l 179.29083 112.80341 l 167.40381 115.96393 lx -0.00000 0.92420 0.07580 s 80.51679 111.74459 m 92.40381 106.50601 l 99.26679 113.18128 l 87.37976 116.66333 lf -0 sg 80.51679 111.74459 m 92.40381 106.50601 l 99.26679 113.18128 l 87.37976 116.66333 lx -0.00000 0.75152 0.24848 s 191.17786 110.13203 m 203.06488 105.94043 l 209.92786 112.65416 l 198.04083 116.07875 lf -0 sg 191.17786 110.13203 m 203.06488 105.94043 l 209.92786 112.65416 l 198.04083 116.07875 lx -0.00000 0.99211 0.00789 s 111.15381 108.86388 m 123.04083 106.21626 l 129.90381 113.27086 l 118.01679 116.97263 lf -0 sg 111.15381 108.86388 m 123.04083 106.21626 l 129.90381 113.27086 l 118.01679 116.97263 lx -0.00000 0.77878 0.22122 s 221.81488 108.72739 m 233.70191 104.82505 l 240.56488 112.25363 l 228.67786 115.68512 lf -0 sg 221.81488 108.72739 m 233.70191 104.82505 l 240.56488 112.25363 l 228.67786 115.68512 lx -0.00000 0.80928 0.19072 s 141.79083 108.39131 m 153.67786 105.18601 l 160.54083 110.85473 l 148.65381 114.77389 lf -0 sg 141.79083 108.39131 m 153.67786 105.18601 l 160.54083 110.85473 l 148.65381 114.77389 lx -0.00000 0.93868 0.06132 s 172.42786 109.09566 m 184.31488 105.22372 l 191.17786 110.13203 l 179.29083 112.80341 lf -0 sg 172.42786 109.09566 m 184.31488 105.22372 l 191.17786 110.13203 l 179.29083 112.80341 lx -0.00000 0.45822 0.54178 s 92.40381 106.50601 m 104.29083 99.59960 l 111.15381 108.86388 l 99.26679 113.18128 lf -0 sg 92.40381 106.50601 m 104.29083 99.59960 l 111.15381 108.86388 l 99.26679 113.18128 lx -0.34403 0.65597 0.00000 s 61.76679 108.39542 m 73.65381 109.17077 l 80.51679 111.74459 l 68.62976 114.33893 lf -0 sg 61.76679 108.39542 m 73.65381 109.17077 l 80.51679 111.74459 l 68.62976 114.33893 lx -0.00000 0.63766 0.36234 s 203.06488 105.94043 m 214.95191 102.23798 l 221.81488 108.72739 l 209.92786 112.65416 lf -0 sg 203.06488 105.94043 m 214.95191 102.23798 l 221.81488 108.72739 l 209.92786 112.65416 lx -0.00000 0.95062 0.04938 s 123.04083 106.21626 m 134.92786 103.16558 l 141.79083 108.39131 l 129.90381 113.27086 lf -0 sg 123.04083 106.21626 m 134.92786 103.16558 l 141.79083 108.39131 l 129.90381 113.27086 lx -0.00000 0.82167 0.17833 s 233.70191 104.82505 m 245.58893 102.43687 l 252.45191 108.82214 l 240.56488 112.25363 lf -0 sg 233.70191 104.82505 m 245.58893 102.43687 l 252.45191 108.82214 l 240.56488 112.25363 lx -0.00000 0.98545 0.01455 s 153.67786 105.18601 m 165.56488 102.69449 l 172.42786 109.09566 l 160.54083 110.85473 lf -0 sg 153.67786 105.18601 m 165.56488 102.69449 l 172.42786 109.09566 l 160.54083 110.85473 lx -0.00000 0.31336 0.68664 s 104.29083 99.59960 m 116.17786 97.81190 l 123.04083 106.21626 l 111.15381 108.86388 lf -0 sg 104.29083 99.59960 m 116.17786 97.81190 l 123.04083 106.21626 l 111.15381 108.86388 lx -0.00000 0.93868 0.06132 s 184.31488 105.22372 m 196.20191 102.23268 l 203.06488 105.94043 l 191.17786 110.13203 lf -0 sg 184.31488 105.22372 m 196.20191 102.23268 l 203.06488 105.94043 l 191.17786 110.13203 lx -0.00000 0.50326 0.49674 s 214.95191 102.23798 m 226.83893 98.25005 l 233.70191 104.82505 l 221.81488 108.72739 lf -0 sg 214.95191 102.23798 m 226.83893 98.25005 l 233.70191 104.82505 l 221.81488 108.72739 lx -0.67823 0.32177 0.00000 s 73.65381 109.17077 m 85.54083 106.96222 l 92.40381 106.50601 l 80.51679 111.74459 lf -0 sg 73.65381 109.17077 m 85.54083 106.96222 l 92.40381 106.50601 l 80.51679 111.74459 lx -0.00000 0.92046 0.07954 s 134.92786 103.16558 m 146.81488 100.17258 l 153.67786 105.18601 l 141.79083 108.39131 lf -0 sg 134.92786 103.16558 m 146.81488 100.17258 l 153.67786 105.18601 l 141.79083 108.39131 lx -0.05603 0.94397 0.00000 s 245.58893 102.43687 m 257.47595 101.08960 l 264.33893 105.39065 l 252.45191 108.82214 lf -0 sg 245.58893 102.43687 m 257.47595 101.08960 l 264.33893 105.39065 l 252.45191 108.82214 lx -0.00000 0.07310 0.92690 s 85.54083 106.96222 m 97.42786 86.16951 l 104.29083 99.59960 l 92.40381 106.50601 lf -0 sg 85.54083 106.96222 m 97.42786 86.16951 l 104.29083 99.59960 l 92.40381 106.50601 lx -0.18494 0.81506 0.00000 s 165.56488 102.69449 m 177.45191 99.75325 l 184.31488 105.22372 l 172.42786 109.09566 lf -0 sg 165.56488 102.69449 m 177.45191 99.75325 l 184.31488 105.22372 l 172.42786 109.09566 lx -0.50399 0.49601 0.00000 s 54.90381 102.45191 m 66.79083 101.99217 l 73.65381 109.17077 l 61.76679 108.39542 lf -0 sg 54.90381 102.45191 m 66.79083 101.99217 l 73.65381 109.17077 l 61.76679 108.39542 lx -0.00000 0.76910 0.23090 s 196.20191 102.23268 m 208.08893 97.12878 l 214.95191 102.23798 l 203.06488 105.94043 lf -0 sg 196.20191 102.23268 m 208.08893 97.12878 l 214.95191 102.23798 l 203.06488 105.94043 lx -0.00000 0.67338 0.32662 s 116.17786 97.81190 m 128.06488 96.37647 l 134.92786 103.16558 l 123.04083 106.21626 lf -0 sg 116.17786 97.81190 m 128.06488 96.37647 l 134.92786 103.16558 l 123.04083 106.21626 lx -0.00000 0.69985 0.30015 s 226.83893 98.25005 m 238.72595 97.42600 l 245.58893 102.43687 l 233.70191 104.82505 lf -0 sg 226.83893 98.25005 m 238.72595 97.42600 l 245.58893 102.43687 l 233.70191 104.82505 lx -0.00000 0.00000 0.30666 s 97.42786 86.16951 m 109.31488 91.70224 l 116.17786 97.81190 l 104.29083 99.59960 lf -0 sg 97.42786 86.16951 m 109.31488 91.70224 l 116.17786 97.81190 l 104.29083 99.59960 lx -0.05177 0.94823 0.00000 s 146.81488 100.17258 m 158.70191 96.88879 l 165.56488 102.69449 l 153.67786 105.18601 lf -0 sg 146.81488 100.17258 m 158.70191 96.88879 l 165.56488 102.69449 l 153.67786 105.18601 lx -0.00000 0.87830 0.12170 s 66.79083 101.99217 m 78.67786 81.80942 l 85.54083 106.96222 l 73.65381 109.17077 lf -0 sg 66.79083 101.99217 m 78.67786 81.80942 l 85.54083 106.96222 l 73.65381 109.17077 lx -0.29608 0.70392 0.00000 s 257.47595 101.08960 m 269.36298 98.77734 l 276.22595 101.95917 l 264.33893 105.39065 lf -0 sg 257.47595 101.08960 m 269.36298 98.77734 l 276.22595 101.95917 l 264.33893 105.39065 lx -0.18494 0.81506 0.00000 s 177.45191 99.75325 m 189.33893 95.83151 l 196.20191 102.23268 l 184.31488 105.22372 lf -0 sg 177.45191 99.75325 m 189.33893 95.83151 l 196.20191 102.23268 l 184.31488 105.22372 lx -0.00000 0.61832 0.38168 s 208.08893 97.12878 m 219.97595 94.18496 l 226.83893 98.25005 l 214.95191 102.23798 lf -0 sg 208.08893 97.12878 m 219.97595 94.18496 l 226.83893 98.25005 l 214.95191 102.23798 lx -0.00000 0.92655 0.07345 s 128.06488 96.37647 m 139.95191 93.50814 l 146.81488 100.17258 l 134.92786 103.16558 lf -0 sg 128.06488 96.37647 m 139.95191 93.50814 l 146.81488 100.17258 l 134.92786 103.16558 lx -0.00000 0.00000 0.91269 s 78.67786 81.80942 m 90.56488 98.38153 l 97.42786 86.16951 l 85.54083 106.96222 lf -0 sg 78.67786 81.80942 m 90.56488 98.38153 l 97.42786 86.16951 l 85.54083 106.96222 lx -0.32597 0.67404 0.00000 s 238.72595 97.42600 m 250.61298 96.61497 l 257.47595 101.08960 l 245.58893 102.43687 lf -0 sg 238.72595 97.42600 m 250.61298 96.61497 l 257.47595 101.08960 l 245.58893 102.43687 lx -0.22268 0.77732 0.00000 s 158.70191 96.88879 m 170.58893 94.16016 l 177.45191 99.75325 l 165.56488 102.69449 lf -0 sg 158.70191 96.88879 m 170.58893 94.16016 l 177.45191 99.75325 l 165.56488 102.69449 lx -0.16685 0.83315 0.00000 s 269.36298 98.77734 m 281.25000 92.50202 l 288.11298 98.52768 l 276.22595 101.95917 lf -0 sg 269.36298 98.77734 m 281.25000 92.50202 l 288.11298 98.52768 l 276.22595 101.95917 lx -0.00000 0.98545 0.01455 s 189.33893 95.83151 m 201.22595 91.46006 l 208.08893 97.12878 l 196.20191 102.23268 lf -0 sg 189.33893 95.83151 m 201.22595 91.46006 l 208.08893 97.12878 l 196.20191 102.23268 lx -1.00000 0.05341 0.05341 s 48.04083 96.50839 m 59.92786 104.61580 l 66.79083 101.99217 l 54.90381 102.45191 lf -0 sg 48.04083 96.50839 m 59.92786 104.61580 l 66.79083 101.99217 l 54.90381 102.45191 lx -0.00000 0.56052 0.43948 s 109.31488 91.70224 m 121.20191 92.39947 l 128.06488 96.37647 l 116.17786 97.81190 lf -0 sg 109.31488 91.70224 m 121.20191 92.39947 l 128.06488 96.37647 l 116.17786 97.81190 lx -0.00000 0.81548 0.18452 s 219.97595 94.18496 m 231.86298 90.84600 l 238.72595 97.42600 l 226.83893 98.25005 lf -0 sg 219.97595 94.18496 m 231.86298 90.84600 l 238.72595 97.42600 l 226.83893 98.25005 lx -0.04293 0.95707 0.00000 s 139.95191 93.50814 m 151.83893 90.48043 l 158.70191 96.88879 l 146.81488 100.17258 lf -0 sg 139.95191 93.50814 m 151.83893 90.48043 l 158.70191 96.88879 l 146.81488 100.17258 lx -0.03730 0.96270 0.00000 s 59.92786 104.61580 m 71.81488 89.86493 l 78.67786 81.80942 l 66.79083 101.99217 lf -0 sg 59.92786 104.61580 m 71.81488 89.86493 l 78.67786 81.80942 l 66.79083 101.99217 lx -0.70913 0.29087 0.00000 s 250.61298 96.61497 m 262.50000 92.47294 l 269.36298 98.77734 l 257.47595 101.08960 lf -0 sg 250.61298 96.61497 m 262.50000 92.47294 l 269.36298 98.77734 l 257.47595 101.08960 lx -0.00000 0.54541 0.45459 s 90.56488 98.38153 m 102.45191 91.78698 l 109.31488 91.70224 l 97.42786 86.16951 lf -0 sg 90.56488 98.38153 m 102.45191 91.78698 l 109.31488 91.70224 l 97.42786 86.16951 lx -0.00000 0.95990 0.04010 s 281.25000 92.50202 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lf -0 sg 281.25000 92.50202 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lx -0.22268 0.77732 0.00000 s 170.58893 94.16016 m 182.47595 90.02581 l 189.33893 95.83151 l 177.45191 99.75325 lf -0 sg 170.58893 94.16016 m 182.47595 90.02581 l 189.33893 95.83151 l 177.45191 99.75325 lx -0.00000 0.18293 0.81707 s 121.20191 92.39947 m 133.08893 77.24104 l 139.95191 93.50814 l 128.06488 96.37647 lf -0 sg 121.20191 92.39947 m 133.08893 77.24104 l 139.95191 93.50814 l 128.06488 96.37647 lx -0.00000 0.80928 0.19072 s 201.22595 91.46006 m 213.11298 87.80238 l 219.97595 94.18496 l 208.08893 97.12878 lf -0 sg 201.22595 91.46006 m 213.11298 87.80238 l 219.97595 94.18496 l 208.08893 97.12878 lx -0.00000 sg 71.81488 89.86493 m 83.70191 67.31293 l 90.56488 98.38153 l 78.67786 81.80942 lf -0 sg 71.81488 89.86493 m 83.70191 67.31293 l 90.56488 98.38153 l 78.67786 81.80942 lx -0.37472 0.62528 0.00000 s 231.86298 90.84600 m 243.75000 89.55708 l 250.61298 96.61497 l 238.72595 97.42600 lf -0 sg 231.86298 90.84600 m 243.75000 89.55708 l 250.61298 96.61497 l 238.72595 97.42600 lx -0.17552 0.82448 0.00000 s 151.83893 90.48043 m 163.72595 87.56392 l 170.58893 94.16016 l 158.70191 96.88879 lf -0 sg 151.83893 90.48043 m 163.72595 87.56392 l 170.58893 94.16016 l 158.70191 96.88879 lx -0.79737 0.20263 0.00000 s 41.17786 90.56488 m 53.06488 86.68822 l 59.92786 104.61580 l 48.04083 96.50839 lf -0 sg 41.17786 90.56488 m 53.06488 86.68822 l 59.92786 104.61580 l 48.04083 96.50839 lx -0.54050 0.45950 0.00000 s 262.50000 92.47294 m 274.38702 89.22625 l 281.25000 92.50202 l 269.36298 98.77734 lf -0 sg 262.50000 92.47294 m 274.38702 89.22625 l 281.25000 92.50202 l 269.36298 98.77734 lx -0.00000 0.43592 0.56408 s 102.45191 91.78698 m 114.33893 76.96454 l 121.20191 92.39947 l 109.31488 91.70224 lf -0 sg 102.45191 91.78698 m 114.33893 76.96454 l 121.20191 92.39947 l 109.31488 91.70224 lx -0.05177 0.94823 0.00000 s 182.47595 90.02581 m 194.36298 86.44663 l 201.22595 91.46006 l 189.33893 95.83151 lf -0 sg 182.47595 90.02581 m 194.36298 86.44663 l 201.22595 91.46006 l 189.33893 95.83151 lx -0.00000 0.22633 0.77367 s 133.08893 77.24104 m 144.97595 85.14873 l 151.83893 90.48043 l 139.95191 93.50814 lf -0 sg 133.08893 77.24104 m 144.97595 85.14873 l 151.83893 90.48043 l 139.95191 93.50814 lx -0.00000 0.94432 0.05568 s 213.11298 87.80238 m 225.00000 85.81896 l 231.86298 90.84600 l 219.97595 94.18496 lf -0 sg 213.11298 87.80238 m 225.00000 85.81896 l 231.86298 90.84600 l 219.97595 94.18496 lx -0.17552 0.82448 0.00000 s 163.72595 87.56392 m 175.61298 83.61746 l 182.47595 90.02581 l 170.58893 94.16016 lf -0 sg 163.72595 87.56392 m 175.61298 83.61746 l 182.47595 90.02581 l 170.58893 94.16016 lx -0.78864 0.21136 0.00000 s 243.75000 89.55708 m 255.63702 87.59686 l 262.50000 92.47294 l 250.61298 96.61497 lf -0 sg 243.75000 89.55708 m 255.63702 87.59686 l 262.50000 92.47294 l 250.61298 96.61497 lx -0.15365 0.84635 0.00000 s 274.38702 89.22625 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.50202 lf -0 sg 274.38702 89.22625 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.50202 lx -0.03741 0.96259 0.00000 s 83.70191 67.31293 m 95.58893 93.35057 l 102.45191 91.78698 l 90.56488 98.38153 lf -0 sg 83.70191 67.31293 m 95.58893 93.35057 l 102.45191 91.78698 l 90.56488 98.38153 lx -0.00000 0.92046 0.07954 s 194.36298 86.44663 m 206.25000 82.57665 l 213.11298 87.80238 l 201.22595 91.46006 lf -0 sg 194.36298 86.44663 m 206.25000 82.57665 l 213.11298 87.80238 l 201.22595 91.46006 lx -0.00000 0.40271 0.59729 s 114.33893 76.96454 m 126.22595 92.07893 l 133.08893 77.24104 l 121.20191 92.39947 lf -0 sg 114.33893 76.96454 m 126.22595 92.07893 l 133.08893 77.24104 l 121.20191 92.39947 lx -0.00000 0.26154 0.73846 s 144.97595 85.14873 m 156.86298 69.92921 l 163.72595 87.56392 l 151.83893 90.48043 lf -0 sg 144.97595 85.14873 m 156.86298 69.92921 l 163.72595 87.56392 l 151.83893 90.48043 lx -0.00000 0.50352 0.49648 s 34.31488 84.62137 m 46.20191 75.46244 l 53.06488 86.68822 l 41.17786 90.56488 lf -0 sg 34.31488 84.62137 m 46.20191 75.46244 l 53.06488 86.68822 l 41.17786 90.56488 lx -1.00000 sg 53.06488 86.68822 m 64.95191 99.53146 l 71.81488 89.86493 l 59.92786 104.61580 lf -0 sg 53.06488 86.68822 m 64.95191 99.53146 l 71.81488 89.86493 l 59.92786 104.61580 lx -0.24057 0.75943 0.00000 s 225.00000 85.81896 m 236.88702 82.65775 l 243.75000 89.55708 l 231.86298 90.84600 lf -0 sg 225.00000 85.81896 m 236.88702 82.65775 l 243.75000 89.55708 l 231.86298 90.84600 lx -0.00000 0.14593 0.85407 s 64.95191 99.53146 m 76.83893 72.17779 l 83.70191 67.31293 l 71.81488 89.86493 lf -0 sg 64.95191 99.53146 m 76.83893 72.17779 l 83.70191 67.31293 l 71.81488 89.86493 lx -0.04293 0.95707 0.00000 s 175.61298 83.61746 m 187.50000 79.78219 l 194.36298 86.44663 l 182.47595 90.02581 lf -0 sg 175.61298 83.61746 m 187.50000 79.78219 l 194.36298 86.44663 l 182.47595 90.02581 lx -0.87044 0.12956 0.00000 s 255.63702 87.59686 m 267.52405 84.31148 l 274.38702 89.22625 l 262.50000 92.47294 lf -0 sg 255.63702 87.59686 m 267.52405 84.31148 l 274.38702 89.22625 l 262.50000 92.47294 lx -0.00000 0.93302 0.06698 s 95.58893 93.35057 m 107.47595 73.61085 l 114.33893 76.96454 l 102.45191 91.78698 lf -0 sg 95.58893 93.35057 m 107.47595 73.61085 l 114.33893 76.96454 l 102.45191 91.78698 lx -0.00000 0.95062 0.04938 s 206.25000 82.57665 m 218.13702 78.76436 l 225.00000 85.81896 l 213.11298 87.80238 lf -0 sg 206.25000 82.57665 m 218.13702 78.76436 l 225.00000 85.81896 l 213.11298 87.80238 lx -0.00000 0.37663 0.62337 s 126.22595 92.07893 m 138.11298 70.14132 l 144.97595 85.14873 l 133.08893 77.24104 lf -0 sg 126.22595 92.07893 m 138.11298 70.14132 l 144.97595 85.14873 l 133.08893 77.24104 lx -0.00000 0.00000 0.44665 s 76.83893 72.17779 m 88.72595 72.98801 l 95.58893 93.35057 l 83.70191 67.31293 lf -0 sg 76.83893 72.17779 m 88.72595 72.98801 l 95.58893 93.35057 l 83.70191 67.31293 lx -0.00000 0.26154 0.73846 s 156.86298 69.92921 m 168.75000 78.28575 l 175.61298 83.61746 l 163.72595 87.56392 lf -0 sg 156.86298 69.92921 m 168.75000 78.28575 l 175.61298 83.61746 l 163.72595 87.56392 lx -0.64742 0.35258 0.00000 s 236.88702 82.65775 m 248.77405 80.77151 l 255.63702 87.59686 l 243.75000 89.55708 lf -0 sg 236.88702 82.65775 m 248.77405 80.77151 l 255.63702 87.59686 l 243.75000 89.55708 lx -0.43065 0.56935 0.00000 s 267.52405 84.31148 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 89.22625 lf -0 sg 267.52405 84.31148 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 89.22625 lx -0.00000 0.92655 0.07345 s 187.50000 79.78219 m 199.38702 75.78754 l 206.25000 82.57665 l 194.36298 86.44663 lf -0 sg 187.50000 79.78219 m 199.38702 75.78754 l 206.25000 82.57665 l 194.36298 86.44663 lx -1.00000 0.18511 0.18511 s 46.20191 75.46244 m 58.08893 84.36954 l 64.95191 99.53146 l 53.06488 86.68822 lf -0 sg 46.20191 75.46244 m 58.08893 84.36954 l 64.95191 99.53146 l 53.06488 86.68822 lx -0.00000 0.52415 0.47585 s 27.45191 78.67786 m 39.33893 75.07661 l 46.20191 75.46244 l 34.31488 84.62137 lf -0 sg 27.45191 78.67786 m 39.33893 75.07661 l 46.20191 75.46244 l 34.31488 84.62137 lx -0.00000 0.99211 0.00789 s 218.13702 78.76436 m 230.02405 74.54900 l 236.88702 82.65775 l 225.00000 85.81896 lf -0 sg 218.13702 78.76436 m 230.02405 74.54900 l 236.88702 82.65775 l 225.00000 85.81896 lx -0.22985 0.77015 0.00000 s 107.47595 73.61085 m 119.36298 83.29377 l 126.22595 92.07893 l 114.33893 76.96454 lf -0 sg 107.47595 73.61085 m 119.36298 83.29377 l 126.22595 92.07893 l 114.33893 76.96454 lx -0.00000 0.44501 0.55499 s 138.11298 70.14132 m 150.00000 86.57742 l 156.86298 69.92921 l 144.97595 85.14873 lf -0 sg 138.11298 70.14132 m 150.00000 86.57742 l 156.86298 69.92921 l 144.97595 85.14873 lx -0.00000 0.22633 0.77367 s 168.75000 78.28575 m 180.63702 63.51509 l 187.50000 79.78219 l 175.61298 83.61746 lf -0 sg 168.75000 78.28575 m 180.63702 63.51509 l 187.50000 79.78219 l 175.61298 83.61746 lx -0.81365 0.18635 0.00000 s 248.77405 80.77151 m 260.66107 76.39570 l 267.52405 84.31148 l 255.63702 87.59686 lf -0 sg 248.77405 80.77151 m 260.66107 76.39570 l 267.52405 84.31148 l 255.63702 87.59686 lx -0.00000 0.82168 0.17832 s 88.72595 72.98801 m 100.61298 70.50366 l 107.47595 73.61085 l 95.58893 93.35057 lf -0 sg 88.72595 72.98801 m 100.61298 70.50366 l 107.47595 73.61085 l 95.58893 93.35057 lx -0.00000 0.67338 0.32662 s 199.38702 75.78754 m 211.27405 70.36000 l 218.13702 78.76436 l 206.25000 82.57665 lf -0 sg 199.38702 75.78754 m 211.27405 70.36000 l 218.13702 78.76436 l 206.25000 82.57665 lx -1.00000 0.53147 0.53147 s 58.08893 84.36954 m 69.97595 80.86909 l 76.83893 72.17779 l 64.95191 99.53146 lf -0 sg 58.08893 84.36954 m 69.97595 80.86909 l 76.83893 72.17779 l 64.95191 99.53146 lx -0.15566 0.84434 0.00000 s 119.36298 83.29377 m 131.25000 65.71813 l 138.11298 70.14132 l 126.22595 92.07893 lf -0 sg 119.36298 83.29377 m 131.25000 65.71813 l 138.11298 70.14132 l 126.22595 92.07893 lx -0.00000 0.44501 0.55499 s 150.00000 86.57742 m 161.88702 63.27835 l 168.75000 78.28575 l 156.86298 69.92921 lf -0 sg 150.00000 86.57742 m 161.88702 63.27835 l 168.75000 78.28575 l 156.86298 69.92921 lx -0.00000 0.00000 0.85332 s 69.97595 80.86909 m 81.86298 61.44737 l 88.72595 72.98801 l 76.83893 72.17779 lf -0 sg 69.97595 80.86909 m 81.86298 61.44737 l 88.72595 72.98801 l 76.83893 72.17779 lx -0.13581 0.86419 0.00000 s 230.02405 74.54900 m 241.91107 72.00342 l 248.77405 80.77151 l 236.88702 82.65775 lf -0 sg 230.02405 74.54900 m 241.91107 72.00342 l 248.77405 80.77151 l 236.88702 82.65775 lx -0.00000 0.77296 0.22704 s 39.33893 75.07661 m 51.22595 68.52406 l 58.08893 84.36954 l 46.20191 75.46244 lf -0 sg 39.33893 75.07661 m 51.22595 68.52406 l 58.08893 84.36954 l 46.20191 75.46244 lx -0.00000 0.18293 0.81707 s 180.63702 63.51509 m 192.52405 71.81054 l 199.38702 75.78754 l 187.50000 79.78219 lf -0 sg 180.63702 63.51509 m 192.52405 71.81054 l 199.38702 75.78754 l 187.50000 79.78219 lx -0.35995 0.64005 0.00000 s 260.66107 76.39570 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 84.31148 lf -0 sg 260.66107 76.39570 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 84.31148 lx -0.00000 0.31336 0.68664 s 211.27405 70.36000 m 223.16107 65.28471 l 230.02405 74.54900 l 218.13702 78.76436 lf -0 sg 211.27405 70.36000 m 223.16107 65.28471 l 230.02405 74.54900 l 218.13702 78.76436 lx -0.00000 0.67603 0.32397 s 100.61298 70.50366 m 112.50000 67.37510 l 119.36298 83.29377 l 107.47595 73.61085 lf -0 sg 100.61298 70.50366 m 112.50000 67.37510 l 119.36298 83.29377 l 107.47595 73.61085 lx -0.02910 0.97090 0.00000 s 20.58893 72.73435 m 32.47595 70.31383 l 39.33893 75.07661 l 27.45191 78.67786 lf -0 sg 20.58893 72.73435 m 32.47595 70.31383 l 39.33893 75.07661 l 27.45191 78.67786 lx -0.06389 0.93611 0.00000 s 131.25000 65.71813 m 143.13702 73.84467 l 150.00000 86.57742 l 138.11298 70.14132 lf -0 sg 131.25000 65.71813 m 143.13702 73.84467 l 150.00000 86.57742 l 138.11298 70.14132 lx -0.00000 0.37663 0.62337 s 161.88702 63.27835 m 173.77405 78.35298 l 180.63702 63.51509 l 168.75000 78.28575 lf -0 sg 161.88702 63.27835 m 173.77405 78.35298 l 180.63702 63.51509 l 168.75000 78.28575 lx -0.25101 0.74899 0.00000 s 241.91107 72.00342 m 253.79809 68.62250 l 260.66107 76.39570 l 248.77405 80.77151 lf -0 sg 241.91107 72.00342 m 253.79809 68.62250 l 260.66107 76.39570 l 248.77405 80.77151 lx -0.00000 0.17267 0.82733 s 81.86298 61.44737 m 93.75000 73.07902 l 100.61298 70.50366 l 88.72595 72.98801 lf -0 sg 81.86298 61.44737 m 93.75000 73.07902 l 100.61298 70.50366 l 88.72595 72.98801 lx -0.00000 0.56052 0.43948 s 192.52405 71.81054 m 204.41107 64.25033 l 211.27405 70.36000 l 199.38702 75.78754 lf -0 sg 192.52405 71.81054 m 204.41107 64.25033 l 211.27405 70.36000 l 199.38702 75.78754 lx -0.00000 0.45822 0.54178 s 223.16107 65.28471 m 235.04809 65.32815 l 241.91107 72.00342 l 230.02405 74.54900 lf -0 sg 223.16107 65.28471 m 235.04809 65.32815 l 241.91107 72.00342 l 230.02405 74.54900 lx -1.00000 0.41711 0.41711 s 51.22595 68.52406 m 63.11298 77.88509 l 69.97595 80.86909 l 58.08893 84.36954 lf -0 sg 51.22595 68.52406 m 63.11298 77.88509 l 69.97595 80.86909 l 58.08893 84.36954 lx -0.14401 0.85599 0.00000 s 112.50000 67.37510 m 124.38702 70.91566 l 131.25000 65.71813 l 119.36298 83.29377 lf -0 sg 112.50000 67.37510 m 124.38702 70.91566 l 131.25000 65.71813 l 119.36298 83.29377 lx -0.00000 0.68070 0.31930 s 32.47595 70.31383 m 44.36298 64.51283 l 51.22595 68.52406 l 39.33893 75.07661 lf -0 sg 32.47595 70.31383 m 44.36298 64.51283 l 51.22595 68.52406 l 39.33893 75.07661 lx -0.00000 0.00000 0.30666 s 204.41107 64.25033 m 216.29809 51.85463 l 223.16107 65.28471 l 211.27405 70.36000 lf -0 sg 204.41107 64.25033 m 216.29809 51.85463 l 223.16107 65.28471 l 211.27405 70.36000 lx -0.06389 0.93611 0.00000 s 143.13702 73.84467 m 155.02405 58.85515 l 161.88702 63.27835 l 150.00000 86.57742 lf -0 sg 143.13702 73.84467 m 155.02405 58.85515 l 161.88702 63.27835 l 150.00000 86.57742 lx -0.00000 0.40271 0.59729 s 173.77405 78.35298 m 185.66107 56.37562 l 192.52405 71.81054 l 180.63702 63.51509 lf -0 sg 173.77405 78.35298 m 185.66107 56.37562 l 192.52405 71.81054 l 180.63702 63.51509 lx -0.07505 0.92495 0.00000 s 253.79809 68.62250 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 76.39570 lf -0 sg 253.79809 68.62250 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 76.39570 lx -0.00000 0.47943 0.52057 s 93.75000 73.07902 m 105.63702 57.42793 l 112.50000 67.37510 l 100.61298 70.50366 lf -0 sg 93.75000 73.07902 m 105.63702 57.42793 l 112.50000 67.37510 l 100.61298 70.50366 lx -0.52958 0.47042 0.00000 s 63.11298 77.88509 m 75.00000 65.87617 l 81.86298 61.44737 l 69.97595 80.86909 lf -0 sg 63.11298 77.88509 m 75.00000 65.87617 l 81.86298 61.44737 l 69.97595 80.86909 lx -0.01998 0.98002 0.00000 s 13.72595 66.79083 m 25.61298 63.06800 l 32.47595 70.31383 l 20.58893 72.73435 lf -0 sg 13.72595 66.79083 m 25.61298 63.06800 l 32.47595 70.31383 l 20.58893 72.73435 lx -0.00985 0.99015 0.00000 s 124.38702 70.91566 m 136.27405 61.30785 l 143.13702 73.84467 l 131.25000 65.71813 lf -0 sg 124.38702 70.91566 m 136.27405 61.30785 l 143.13702 73.84467 l 131.25000 65.71813 lx -0.00000 0.92420 0.07580 s 235.04809 65.32815 m 246.93512 63.70375 l 253.79809 68.62250 l 241.91107 72.00342 lf -0 sg 235.04809 65.32815 m 246.93512 63.70375 l 253.79809 68.62250 l 241.91107 72.00342 lx -0.00000 0.04636 0.95364 s 75.00000 65.87617 m 86.88702 52.15581 l 93.75000 73.07902 l 81.86298 61.44737 lf -0 sg 75.00000 65.87617 m 86.88702 52.15581 l 93.75000 73.07902 l 81.86298 61.44737 lx -0.17549 0.82451 0.00000 s 44.36298 64.51283 m 56.25000 60.38234 l 63.11298 77.88509 l 51.22595 68.52406 lf -0 sg 44.36298 64.51283 m 56.25000 60.38234 l 63.11298 77.88509 l 51.22595 68.52406 lx -0.15566 0.84434 0.00000 s 155.02405 58.85515 m 166.91107 69.56782 l 173.77405 78.35298 l 161.88702 63.27835 lf -0 sg 155.02405 58.85515 m 166.91107 69.56782 l 173.77405 78.35298 l 161.88702 63.27835 lx -0.00000 0.43592 0.56408 s 185.66107 56.37562 m 197.54809 64.33508 l 204.41107 64.25033 l 192.52405 71.81054 lf -0 sg 185.66107 56.37562 m 197.54809 64.33508 l 204.41107 64.25033 l 192.52405 71.81054 lx -0.00000 0.07310 0.92690 s 216.29809 51.85463 m 228.18512 65.78436 l 235.04809 65.32815 l 223.16107 65.28471 lf -0 sg 216.29809 51.85463 m 228.18512 65.78436 l 235.04809 65.32815 l 223.16107 65.28471 lx -0.00000 0.77966 0.22034 s 105.63702 57.42793 m 117.52405 62.94761 l 124.38702 70.91566 l 112.50000 67.37510 lf -0 sg 105.63702 57.42793 m 117.52405 62.94761 l 124.38702 70.91566 l 112.50000 67.37510 lx -0.00000 0.99739 0.00261 s 25.61298 63.06800 m 37.50000 60.98494 l 44.36298 64.51283 l 32.47595 70.31383 lf -0 sg 25.61298 63.06800 m 37.50000 60.98494 l 44.36298 64.51283 l 32.47595 70.31383 lx -0.00985 0.99015 0.00000 s 136.27405 61.30785 m 148.16107 64.05269 l 155.02405 58.85515 l 143.13702 73.84467 lf -0 sg 136.27405 61.30785 m 148.16107 64.05269 l 155.02405 58.85515 l 143.13702 73.84467 lx -0.01473 0.98527 0.00000 s 246.93512 63.70375 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.62250 lf -0 sg 246.93512 63.70375 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.62250 lx -0.00000 0.27002 0.72998 s 86.88702 52.15581 m 98.77405 59.15437 l 105.63702 57.42793 l 93.75000 73.07902 lf -0 sg 86.88702 52.15581 m 98.77405 59.15437 l 105.63702 57.42793 l 93.75000 73.07902 lx -0.22985 0.77015 0.00000 s 166.91107 69.56782 m 178.79809 53.02192 l 185.66107 56.37562 l 173.77405 78.35298 lf -0 sg 166.91107 69.56782 m 178.79809 53.02192 l 185.66107 56.37562 l 173.77405 78.35298 lx -0.00000 0.54541 0.45459 s 197.54809 64.33508 m 209.43512 64.06665 l 216.29809 51.85463 l 204.41107 64.25033 lf -0 sg 197.54809 64.33508 m 209.43512 64.06665 l 216.29809 51.85463 l 204.41107 64.25033 lx -1.00000 0.36982 0.36982 s 56.25000 60.38234 m 68.13702 69.37304 l 75.00000 65.87617 l 63.11298 77.88509 lf -0 sg 56.25000 60.38234 m 68.13702 69.37304 l 75.00000 65.87617 l 63.11298 77.88509 lx -0.00000 0.94365 0.05635 s 6.86298 60.84732 m 18.75000 57.40812 l 25.61298 63.06800 l 13.72595 66.79083 lf -0 sg 6.86298 60.84732 m 18.75000 57.40812 l 25.61298 63.06800 l 13.72595 66.79083 lx -0.00000 0.83348 0.16652 s 117.52405 62.94761 m 129.41107 50.48747 l 136.27405 61.30785 l 124.38702 70.91566 lf -0 sg 117.52405 62.94761 m 129.41107 50.48747 l 136.27405 61.30785 l 124.38702 70.91566 lx -0.00000 0.66761 0.33239 s 37.50000 60.98494 m 49.38702 54.87254 l 56.25000 60.38234 l 44.36298 64.51283 lf -0 sg 37.50000 60.98494 m 49.38702 54.87254 l 56.25000 60.38234 l 44.36298 64.51283 lx -0.67823 0.32177 0.00000 s 228.18512 65.78436 m 240.07214 61.12993 l 246.93512 63.70375 l 235.04809 65.32815 lf -0 sg 228.18512 65.78436 m 240.07214 61.12993 l 246.93512 63.70375 l 235.04809 65.32815 lx -0.14401 0.85599 0.00000 s 148.16107 64.05269 m 160.04809 53.64915 l 166.91107 69.56782 l 155.02405 58.85515 lf -0 sg 148.16107 64.05269 m 160.04809 53.64915 l 166.91107 69.56782 l 155.02405 58.85515 lx -0.00000 0.00000 0.91269 s 209.43512 64.06665 m 221.32214 40.63156 l 228.18512 65.78436 l 216.29809 51.85463 lf -0 sg 209.43512 64.06665 m 221.32214 40.63156 l 228.18512 65.78436 l 216.29809 51.85463 lx -0.00000 0.93302 0.06698 s 178.79809 53.02192 m 190.68512 65.89866 l 197.54809 64.33508 l 185.66107 56.37562 lf -0 sg 178.79809 53.02192 m 190.68512 65.89866 l 197.54809 64.33508 l 185.66107 56.37562 lx -0.00000 0.43536 0.56464 s 98.77405 59.15437 m 110.66107 50.76776 l 117.52405 62.94761 l 105.63702 57.42793 lf -0 sg 98.77405 59.15437 m 110.66107 50.76776 l 117.52405 62.94761 l 105.63702 57.42793 lx -0.34713 0.65287 0.00000 s 68.13702 69.37304 m 80.02405 58.73792 l 86.88702 52.15581 l 75.00000 65.87617 lf -0 sg 68.13702 69.37304 m 80.02405 58.73792 l 86.88702 52.15581 l 75.00000 65.87617 lx -0.00323 0.99677 0.00000 s 18.75000 57.40812 m 30.63702 53.72241 l 37.50000 60.98494 l 25.61298 63.06800 lf -0 sg 18.75000 57.40812 m 30.63702 53.72241 l 37.50000 60.98494 l 25.61298 63.06800 lx -0.00000 0.83348 0.16652 s 129.41107 50.48747 m 141.29809 56.08463 l 148.16107 64.05269 l 136.27405 61.30785 lf -0 sg 129.41107 50.48747 m 141.29809 56.08463 l 148.16107 64.05269 l 136.27405 61.30785 lx -0.00000 0.67603 0.32397 s 160.04809 53.64915 m 171.93512 49.91473 l 178.79809 53.02192 l 166.91107 69.56782 lf -0 sg 160.04809 53.64915 m 171.93512 49.91473 l 178.79809 53.02192 l 166.91107 69.56782 lx -0.34403 0.65597 0.00000 s 240.07214 61.12993 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 63.70375 lf -0 sg 240.07214 61.12993 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 63.70375 lx -0.00000 0.19338 0.80662 s 80.02405 58.73792 m 91.91107 46.97230 l 98.77405 59.15437 l 86.88702 52.15581 lf -0 sg 80.02405 58.73792 m 91.91107 46.97230 l 98.77405 59.15437 l 86.88702 52.15581 lx -0.25750 0.74250 0.00000 s 49.38702 54.87254 m 61.27405 50.27083 l 68.13702 69.37304 l 56.25000 60.38234 lf -0 sg 49.38702 54.87254 m 61.27405 50.27083 l 68.13702 69.37304 l 56.25000 60.38234 lx -0.03741 0.96259 0.00000 s 190.68512 65.89866 m 202.57214 32.99804 l 209.43512 64.06665 l 197.54809 64.33508 lf -0 sg 190.68512 65.89866 m 202.57214 32.99804 l 209.43512 64.06665 l 197.54809 64.33508 lx -0.00000 0.66846 0.33154 s 110.66107 50.76776 m 122.54809 55.47952 l 129.41107 50.48747 l 117.52405 62.94761 lf -0 sg 110.66107 50.76776 m 122.54809 55.47952 l 129.41107 50.48747 l 117.52405 62.94761 lx -0.00000 0.96548 0.03452 s 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.40812 l 6.86298 60.84732 lf -0 sg 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.40812 l 6.86298 60.84732 lx -0.00000 0.87830 0.12170 s 221.32214 40.63156 m 233.20917 53.95134 l 240.07214 61.12993 l 228.18512 65.78436 lf -0 sg 221.32214 40.63156 m 233.20917 53.95134 l 240.07214 61.12993 l 228.18512 65.78436 lx -0.00000 sg 202.57214 32.99804 m 214.45917 48.68707 l 221.32214 40.63156 l 209.43512 64.06665 lf -0 sg 202.57214 32.99804 m 214.45917 48.68707 l 221.32214 40.63156 l 209.43512 64.06665 lx -0.00000 0.98458 0.01542 s 30.63702 53.72241 m 42.52405 51.62863 l 49.38702 54.87254 l 37.50000 60.98494 lf -0 sg 30.63702 53.72241 m 42.52405 51.62863 l 49.38702 54.87254 l 37.50000 60.98494 lx -0.00000 0.77966 0.22034 s 141.29809 56.08463 m 153.18512 43.70198 l 160.04809 53.64915 l 148.16107 64.05269 lf -0 sg 141.29809 56.08463 m 153.18512 43.70198 l 160.04809 53.64915 l 148.16107 64.05269 lx -0.00000 0.00000 0.93358 s 91.91107 46.97230 m 103.79809 42.93293 l 110.66107 50.76776 l 98.77405 59.15437 lf -0 sg 91.91107 46.97230 m 103.79809 42.93293 l 110.66107 50.76776 l 98.77405 59.15437 lx -0.00000 0.82168 0.17832 s 171.93512 49.91473 m 183.82214 45.53610 l 190.68512 65.89866 l 178.79809 53.02192 lf -0 sg 171.93512 49.91473 m 183.82214 45.53610 l 190.68512 65.89866 l 178.79809 53.02192 lx -0.00000 0.66846 0.33154 s 122.54809 55.47952 m 134.43512 43.90478 l 141.29809 56.08463 l 129.41107 50.48747 lf -0 sg 122.54809 55.47952 m 134.43512 43.90478 l 141.29809 56.08463 l 129.41107 50.48747 lx -1.00000 0.37522 0.37522 s 61.27405 50.27083 m 73.16107 57.70700 l 80.02405 58.73792 l 68.13702 69.37304 lf -0 sg 61.27405 50.27083 m 73.16107 57.70700 l 80.02405 58.73792 l 68.13702 69.37304 lx -0.00000 0.94585 0.05415 s 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.72241 l 18.75000 57.40812 lf -0 sg 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.72241 l 18.75000 57.40812 lx -0.00000 0.00000 0.44665 s 183.82214 45.53610 m 195.70917 37.86291 l 202.57214 32.99804 l 190.68512 65.89866 lf -0 sg 183.82214 45.53610 m 195.70917 37.86291 l 202.57214 32.99804 l 190.68512 65.89866 lx -0.00000 0.66045 0.33955 s 42.52405 51.62863 m 54.41107 46.38518 l 61.27405 50.27083 l 49.38702 54.87254 lf -0 sg 42.52405 51.62863 m 54.41107 46.38518 l 61.27405 50.27083 l 49.38702 54.87254 lx -0.00000 0.47943 0.52057 s 153.18512 43.70198 m 165.07214 52.49009 l 171.93512 49.91473 l 160.04809 53.64915 lf -0 sg 153.18512 43.70198 m 165.07214 52.49009 l 171.93512 49.91473 l 160.04809 53.64915 lx -0.50399 0.49601 0.00000 s 233.20917 53.95134 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 61.12993 lf -0 sg 233.20917 53.95134 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 61.12993 lx -0.00000 0.00000 0.97197 s 103.79809 42.93293 m 115.68512 37.43349 l 122.54809 55.47952 l 110.66107 50.76776 lf -0 sg 103.79809 42.93293 m 115.68512 37.43349 l 122.54809 55.47952 l 110.66107 50.76776 lx -1.00000 0.04594 0.04594 s 73.16107 57.70700 m 85.04809 54.55137 l 91.91107 46.97230 l 80.02405 58.73792 lf -0 sg 73.16107 57.70700 m 85.04809 54.55137 l 91.91107 46.97230 l 80.02405 58.73792 lx -0.03730 0.96270 0.00000 s 214.45917 48.68707 m 226.34619 56.57497 l 233.20917 53.95134 l 221.32214 40.63156 lf -0 sg 214.45917 48.68707 m 226.34619 56.57497 l 233.20917 53.95134 l 221.32214 40.63156 lx -0.00000 0.43536 0.56464 s 134.43512 43.90478 m 146.32214 45.42841 l 153.18512 43.70198 l 141.29809 56.08463 lf -0 sg 134.43512 43.90478 m 146.32214 45.42841 l 153.18512 43.70198 l 141.29809 56.08463 lx -0.02704 0.97296 0.00000 s 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 51.62863 l 30.63702 53.72241 lf -0 sg 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 51.62863 l 30.63702 53.72241 lx -0.00000 0.17267 0.82733 s 165.07214 52.49009 m 176.95917 33.99547 l 183.82214 45.53610 l 171.93512 49.91473 lf -0 sg 165.07214 52.49009 m 176.95917 33.99547 l 183.82214 45.53610 l 171.93512 49.91473 lx -0.00000 0.96569 0.03431 s 54.41107 46.38518 m 66.29809 39.14156 l 73.16107 57.70700 l 61.27405 50.27083 lf -0 sg 54.41107 46.38518 m 66.29809 39.14156 l 73.16107 57.70700 l 61.27405 50.27083 lx -0.00000 0.14593 0.85407 s 195.70917 37.86291 m 207.59619 58.35361 l 214.45917 48.68707 l 202.57214 32.99804 lf -0 sg 195.70917 37.86291 m 207.59619 58.35361 l 214.45917 48.68707 l 202.57214 32.99804 lx -0.00000 0.00000 0.97197 s 115.68512 37.43349 m 127.57214 36.06995 l 134.43512 43.90478 l 122.54809 55.47952 lf -0 sg 115.68512 37.43349 m 127.57214 36.06995 l 134.43512 43.90478 l 122.54809 55.47952 lx -0.22858 0.77142 0.00000 s 85.04809 54.55137 m 96.93512 48.87835 l 103.79809 42.93293 l 91.91107 46.97230 lf -0 sg 85.04809 54.55137 m 96.93512 48.87835 l 103.79809 42.93293 l 91.91107 46.97230 lx -0.00000 0.27002 0.72998 s 146.32214 45.42841 m 158.20917 31.56688 l 165.07214 52.49009 l 153.18512 43.70198 lf -0 sg 146.32214 45.42841 m 158.20917 31.56688 l 165.07214 52.49009 l 153.18512 43.70198 lx -0.00000 0.00000 0.85332 s 176.95917 33.99547 m 188.84619 46.55421 l 195.70917 37.86291 l 183.82214 45.53610 lf -0 sg 176.95917 33.99547 m 188.84619 46.55421 l 195.70917 37.86291 l 183.82214 45.53610 lx -0.00000 0.99151 0.00849 s 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 46.38518 l 42.52405 51.62863 lf -0 sg 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 46.38518 l 42.52405 51.62863 lx -1.00000 0.05341 0.05341 s 226.34619 56.57497 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 53.95134 lf -0 sg 226.34619 56.57497 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 53.95134 lx -0.00000 0.69278 0.30722 s 96.93512 48.87835 m 108.82214 43.21409 l 115.68512 37.43349 l 103.79809 42.93293 lf -0 sg 96.93512 48.87835 m 108.82214 43.21409 l 115.68512 37.43349 l 103.79809 42.93293 lx -0.00000 0.00000 0.93358 s 127.57214 36.06995 m 139.45917 33.24634 l 146.32214 45.42841 l 134.43512 43.90478 lf -0 sg 127.57214 36.06995 m 139.45917 33.24634 l 146.32214 45.42841 l 134.43512 43.90478 lx -0.82860 0.17140 0.00000 s 66.29809 39.14156 m 78.18512 39.89426 l 85.04809 54.55137 l 73.16107 57.70700 lf -0 sg 66.29809 39.14156 m 78.18512 39.89426 l 85.04809 54.55137 l 73.16107 57.70700 lx -0.00000 0.04636 0.95364 s 158.20917 31.56688 m 170.09619 38.42427 l 176.95917 33.99547 l 165.07214 52.49009 lf -0 sg 158.20917 31.56688 m 170.09619 38.42427 l 176.95917 33.99547 l 165.07214 52.49009 lx -0.00000 0.57007 0.42993 s 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 39.14156 l 54.41107 46.38518 lf -0 sg 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 39.14156 l 54.41107 46.38518 lx -1.00000 sg 207.59619 58.35361 m 219.48321 38.64739 l 226.34619 56.57497 l 214.45917 48.68707 lf -0 sg 207.59619 58.35361 m 219.48321 38.64739 l 226.34619 56.57497 l 214.45917 48.68707 lx -0.00000 0.69278 0.30722 s 108.82214 43.21409 m 120.70917 42.01538 l 127.57214 36.06995 l 115.68512 37.43349 lf -0 sg 108.82214 43.21409 m 120.70917 42.01538 l 127.57214 36.06995 l 115.68512 37.43349 lx -0.00000 0.19338 0.80662 s 139.45917 33.24634 m 151.34619 38.14899 l 158.20917 31.56688 l 146.32214 45.42841 lf -0 sg 139.45917 33.24634 m 151.34619 38.14899 l 158.20917 31.56688 l 146.32214 45.42841 lx -1.00000 0.25610 0.25610 s 78.18512 39.89426 m 90.07214 39.94921 l 96.93512 48.87835 l 85.04809 54.55137 lf -0 sg 78.18512 39.89426 m 90.07214 39.94921 l 96.93512 48.87835 l 85.04809 54.55137 lx -1.00000 0.53147 0.53147 s 188.84619 46.55421 m 200.73321 43.19168 l 207.59619 58.35361 l 195.70917 37.86291 lf -0 sg 188.84619 46.55421 m 200.73321 43.19168 l 207.59619 58.35361 l 195.70917 37.86291 lx -0.79737 0.20263 0.00000 s 219.48321 38.64739 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 56.57497 lf -0 sg 219.48321 38.64739 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 56.57497 lx -0.00000 0.59794 0.40206 s 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 39.89426 l 66.29809 39.14156 lf -0 sg 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 39.89426 l 66.29809 39.14156 lx -0.52958 0.47042 0.00000 s 170.09619 38.42427 m 181.98321 43.57021 l 188.84619 46.55421 l 176.95917 33.99547 lf -0 sg 170.09619 38.42427 m 181.98321 43.57021 l 188.84619 46.55421 l 176.95917 33.99547 lx -0.22858 0.77142 0.00000 s 120.70917 42.01538 m 132.59619 40.82542 l 139.45917 33.24634 l 127.57214 36.06995 lf -0 sg 120.70917 42.01538 m 132.59619 40.82542 l 139.45917 33.24634 l 127.57214 36.06995 lx -1.00000 0.35670 0.35670 s 90.07214 39.94921 m 101.95917 38.84805 l 108.82214 43.21409 l 96.93512 48.87835 lf -0 sg 90.07214 39.94921 m 101.95917 38.84805 l 108.82214 43.21409 l 96.93512 48.87835 lx -1.00000 0.18511 0.18511 s 200.73321 43.19168 m 212.62024 27.42160 l 219.48321 38.64739 l 207.59619 58.35361 lf -0 sg 200.73321 43.19168 m 212.62024 27.42160 l 219.48321 38.64739 l 207.59619 58.35361 lx -0.34713 0.65287 0.00000 s 151.34619 38.14899 m 163.23321 41.92113 l 170.09619 38.42427 l 158.20917 31.56688 lf -0 sg 151.34619 38.14899 m 163.23321 41.92113 l 170.09619 38.42427 l 158.20917 31.56688 lx -0.17274 0.82726 0.00000 s 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 39.94921 l 78.18512 39.89426 lf -0 sg 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 39.94921 l 78.18512 39.89426 lx -0.00000 0.50352 0.49648 s 212.62024 27.42160 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.64739 lf -0 sg 212.62024 27.42160 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.64739 lx -1.00000 0.41711 0.41711 s 181.98321 43.57021 m 193.87024 27.34620 l 200.73321 43.19168 l 188.84619 46.55421 lf -0 sg 181.98321 43.57021 m 193.87024 27.34620 l 200.73321 43.19168 l 188.84619 46.55421 lx -1.00000 0.35670 0.35670 s 101.95917 38.84805 m 113.84619 33.08623 l 120.70917 42.01538 l 108.82214 43.21409 lf -0 sg 101.95917 38.84805 m 113.84619 33.08623 l 120.70917 42.01538 l 108.82214 43.21409 lx -1.00000 0.04594 0.04594 s 132.59619 40.82542 m 144.48321 37.11807 l 151.34619 38.14899 l 139.45917 33.24634 lf -0 sg 132.59619 40.82542 m 144.48321 37.11807 l 151.34619 38.14899 l 139.45917 33.24634 lx -0.00000 0.77296 0.22704 s 193.87024 27.34620 m 205.75726 27.03577 l 212.62024 27.42160 l 200.73321 43.19168 lf -0 sg 193.87024 27.34620 m 205.75726 27.03577 l 212.62024 27.42160 l 200.73321 43.19168 lx -0.60862 0.39138 0.00000 s 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 38.84805 l 90.07214 39.94921 lf -0 sg 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 38.84805 l 90.07214 39.94921 lx -1.00000 0.36982 0.36982 s 163.23321 41.92113 m 175.12024 26.06746 l 181.98321 43.57021 l 170.09619 38.42427 lf -0 sg 163.23321 41.92113 m 175.12024 26.06746 l 181.98321 43.57021 l 170.09619 38.42427 lx -1.00000 0.25610 0.25610 s 113.84619 33.08623 m 125.73321 26.16830 l 132.59619 40.82542 l 120.70917 42.01538 lf -0 sg 113.84619 33.08623 m 125.73321 26.16830 l 132.59619 40.82542 l 120.70917 42.01538 lx -0.17549 0.82451 0.00000 s 175.12024 26.06746 m 187.00726 23.33497 l 193.87024 27.34620 l 181.98321 43.57021 lf -0 sg 175.12024 26.06746 m 187.00726 23.33497 l 193.87024 27.34620 l 181.98321 43.57021 lx -0.00000 0.52415 0.47585 s 205.75726 27.03577 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 27.42160 lf -0 sg 205.75726 27.03577 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 27.42160 lx -1.00000 0.37522 0.37522 s 144.48321 37.11807 m 156.37024 22.81892 l 163.23321 41.92113 l 151.34619 38.14899 lf -0 sg 144.48321 37.11807 m 156.37024 22.81892 l 163.23321 41.92113 l 151.34619 38.14899 lx -0.60862 0.39138 0.00000 s 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 33.08623 l 101.95917 38.84805 lf -0 sg 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 33.08623 l 101.95917 38.84805 lx -0.82860 0.17140 0.00000 s 125.73321 26.16830 m 137.62024 18.55263 l 144.48321 37.11807 l 132.59619 40.82542 lf -0 sg 125.73321 26.16830 m 137.62024 18.55263 l 144.48321 37.11807 l 132.59619 40.82542 lx -0.25750 0.74250 0.00000 s 156.37024 22.81892 m 168.25726 20.55766 l 175.12024 26.06746 l 163.23321 41.92113 lf -0 sg 156.37024 22.81892 m 168.25726 20.55766 l 175.12024 26.06746 l 163.23321 41.92113 lx -0.00000 0.68070 0.31930 s 187.00726 23.33497 m 198.89428 22.27300 l 205.75726 27.03577 l 193.87024 27.34620 lf -0 sg 187.00726 23.33497 m 198.89428 22.27300 l 205.75726 27.03577 l 193.87024 27.34620 lx -0.17274 0.82726 0.00000 s 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.16830 l 113.84619 33.08623 lf -0 sg 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.16830 l 113.84619 33.08623 lx -0.00000 0.96569 0.03431 s 137.62024 18.55263 m 149.50726 18.93328 l 156.37024 22.81892 l 144.48321 37.11807 lf -0 sg 137.62024 18.55263 m 149.50726 18.93328 l 156.37024 22.81892 l 144.48321 37.11807 lx -0.00000 0.66761 0.33239 s 168.25726 20.55766 m 180.14428 19.80708 l 187.00726 23.33497 l 175.12024 26.06746 lf -0 sg 168.25726 20.55766 m 180.14428 19.80708 l 187.00726 23.33497 l 175.12024 26.06746 lx -0.02910 0.97090 0.00000 s 198.89428 22.27300 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.03577 lf -0 sg 198.89428 22.27300 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.03577 lx -0.00000 0.59794 0.40206 s 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 18.55263 l 125.73321 26.16830 lf -0 sg 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 18.55263 l 125.73321 26.16830 lx -0.00000 0.66045 0.33955 s 149.50726 18.93328 m 161.39428 17.31375 l 168.25726 20.55766 l 156.37024 22.81892 lf -0 sg 149.50726 18.93328 m 161.39428 17.31375 l 168.25726 20.55766 l 156.37024 22.81892 lx -0.00000 0.99739 0.00261 s 180.14428 19.80708 m 192.03131 15.02716 l 198.89428 22.27300 l 187.00726 23.33497 lf -0 sg 180.14428 19.80708 m 192.03131 15.02716 l 198.89428 22.27300 l 187.00726 23.33497 lx -0.00000 0.57007 0.42993 s 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 18.93328 l 137.62024 18.55263 lf -0 sg 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 18.93328 l 137.62024 18.55263 lx -0.00000 0.98458 0.01542 s 161.39428 17.31375 m 173.28131 12.54455 l 180.14428 19.80708 l 168.25726 20.55766 lf -0 sg 161.39428 17.31375 m 173.28131 12.54455 l 180.14428 19.80708 l 168.25726 20.55766 lx -0.01998 0.98002 0.00000 s 192.03131 15.02716 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 22.27300 lf -0 sg 192.03131 15.02716 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 22.27300 lx -0.00000 0.99151 0.00849 s 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 17.31375 l 149.50726 18.93328 lf -0 sg 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 17.31375 l 149.50726 18.93328 lx -0.00323 0.99677 0.00000 s 173.28131 12.54455 m 185.16833 9.36729 l 192.03131 15.02716 l 180.14428 19.80708 lf -0 sg 173.28131 12.54455 m 185.16833 9.36729 l 192.03131 15.02716 l 180.14428 19.80708 lx -0.02704 0.97296 0.00000 s 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.54455 l 161.39428 17.31375 lf -0 sg 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.54455 l 161.39428 17.31375 lx -0.00000 0.94365 0.05635 s 185.16833 9.36729 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.02716 lf -0 sg 185.16833 9.36729 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.02716 lx -0.00000 0.94585 0.05415 s 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.36729 l 173.28131 12.54455 lf -0 sg 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.36729 l 173.28131 12.54455 lx -0.00000 0.96548 0.03452 s 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.36729 lf -0 sg 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.36729 lx -showpage -. -DEAL:: -DEAL:: Collecting refinement data: -DEAL:: Refining each time step separately. -DEAL:: Got 6656 presently, expecting 6150 for next sweep. -DEAL:: Writing statistics for whole sweep.# Description of fields -DEAL::# ===================== -DEAL::# General: -DEAL::# time -# Primal problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Dual problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Error estimation: -# total estimated error in this timestep -# Postprocessing: -# Huyghens wave -DEAL:: -DEAL:: -DEAL::0 256 289 0 0 0.00 0.00 0.00 256 1089 7 10 0.00 0.00 0.00 0.00 22.15 -DEAL::0.03 256 289 9 12 1.23 1.12 2.35 256 1089 7 10 0.00 0.00 0.00 -2.69 -6.02 -DEAL::0.06 256 289 9 12 0.34 2.01 2.35 256 1089 7 10 0.00 0.00 0.00 2.02 -40.60 -DEAL::0.08 256 289 9 12 1.05 1.30 2.35 256 1089 6 10 0.00 0.00 0.00 0.81 -2.18 -DEAL::0.11 256 289 9 12 1.58 0.77 2.35 256 1089 7 10 0.00 0.00 0.00 2.48 95.00 -DEAL::0.14 256 289 9 12 1.22 1.13 2.35 256 1089 7 10 0.00 0.00 0.00 2.04 123.43 -DEAL::0.17 256 289 9 12 1.00 1.35 2.35 256 1089 7 10 0.00 0.00 0.00 0.32 -26.86 -DEAL::0.20 256 289 9 12 1.11 1.24 2.35 256 1089 7 10 0.00 0.00 0.00 0.44 -294.74 -DEAL::0.22 256 289 9 12 1.29 1.06 2.35 256 1089 7 10 0.00 0.00 0.00 -0.39 -448.29 -DEAL::0.25 256 289 9 12 1.30 1.05 2.35 256 1089 7 10 0.00 0.00 0.00 0.32 -243.66 -DEAL::0.28 256 289 9 12 1.04 1.31 2.35 256 1089 7 10 0.00 0.00 0.00 1.60 388.73 -DEAL::0.31 256 289 9 12 1.05 1.30 2.35 256 1089 7 10 0.00 0.00 0.00 0.56 1192.77 -DEAL::0.34 256 289 9 12 1.35 1.00 2.35 256 1089 7 10 0.00 0.00 0.00 -0.66 1568.28 -DEAL::0.36 256 289 9 12 1.23 1.12 2.35 256 1089 7 10 0.00 0.00 0.00 -1.99 884.33 -DEAL::0.39 256 289 9 12 1.01 1.34 2.35 256 1089 7 10 0.00 0.00 0.00 -1.56 -974.08 -DEAL::0.42 256 289 9 12 1.19 1.16 2.35 256 1089 7 10 0.00 0.00 0.00 -1.06 -3288.24 -DEAL::0.45 256 289 9 12 1.24 1.11 2.35 256 1089 6 10 0.00 0.00 0.00 -2.09 -4676.94 -DEAL::0.48 256 289 9 12 1.17 1.18 2.35 256 1089 6 10 0.00 0.00 0.00 1.87 -3655.94 -DEAL::0.50 256 289 9 12 1.16 1.19 2.35 256 1089 6 10 0.00 0.00 0.00 4.56 502.28 -DEAL::0.53 256 289 9 12 1.11 1.24 2.35 256 1089 6 10 0.00 0.00 0.00 0.75 6813.83 -DEAL::0.56 256 289 9 12 1.20 1.15 2.35 256 1089 6 10 0.00 0.00 0.00 0.91 12313.33 -DEAL::0.59 256 289 9 12 1.30 1.05 2.35 256 1089 6 10 0.00 0.00 0.00 1.79 13352.70 -DEAL::0.62 256 289 9 12 1.12 1.23 2.35 256 1089 6 10 0.00 0.00 0.00 -1.95 8120.27 -DEAL::0.64 256 289 9 12 1.08 1.27 2.35 256 1089 6 10 0.00 0.00 0.00 -2.21 -1528.89 -DEAL::0.67 256 289 9 12 1.22 1.13 2.35 256 1089 5 10 0.00 0.00 0.00 0.73 -10713.04 -DEAL::0.70 256 289 9 12 1.21 1.14 2.35 256 1089 0 0 0.00 0.00 0.00 0.98 -14490.08 -DEAL:: -DEAL:: Writing summary.Summary of this sweep: -====================== - - Accumulated number of cells: 6656 - Acc. number of primal dofs : 15028 - Acc. number of dual dofs : 56628 - Accumulated error : 0.00 - - Evaluations: - ------------ - Hughens wave -- weighted time: 0.54 - average : 0.01 - - -DEAL:: -DEAL:: -DEAL::Sweep 1 : -DEAL::--------- -DEAL:: Primal problem: time=0, step=0, sweep=1. 157 cells, 194 dofsStarting value 0 -DEAL:cg::Convergence step 0 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 13 value 0 -DEAL:cg::Starting value 0 -DEAL:cg::Convergence step 0 value 0 -DEAL:cg::Starting value 0 -DEAL:cg::Convergence step 0 value 0 -DEAL::. -DEAL:: Primal problem: time=0.03, step=1, sweep=1. 157 cells, 194 dofsStarting value 0.00 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.07 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.06, step=2, sweep=1. 202 cells, 242 dofsStarting value 0.00 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.09 -DEAL:cg::Convergence step 11 value 0 -DEAL::. -DEAL:: Primal problem: time=0.08, step=3, sweep=1. 205 cells, 246 dofsStarting value 0.00 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.07 -DEAL:cg::Convergence step 11 value 0 -DEAL::. -DEAL:: Primal problem: time=0.11, step=4, sweep=1. 190 cells, 230 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.07 -DEAL:cg::Convergence step 11 value 0 -DEAL::. -DEAL:: Primal problem: time=0.14, step=5, sweep=1. 211 cells, 252 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.07 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.17, step=6, sweep=1. 229 cells, 272 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.08 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.20, step=7, sweep=1. 226 cells, 267 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.09 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.22, step=8, sweep=1. 229 cells, 274 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.08 -DEAL:cg::Convergence step 11 value 0 -DEAL::. -DEAL:: Primal problem: time=0.25, step=9, sweep=1. 286 cells, 333 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.08 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.28, step=10, sweep=1. 283 cells, 328 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.09 -DEAL:cg::Convergence step 11 value 0 -DEAL::. -DEAL:: Primal problem: time=0.31, step=11, sweep=1. 244 cells, 287 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.11 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.34, step=12, sweep=1. 238 cells, 279 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.11 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.36, step=13, sweep=1. 202 cells, 244 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.09 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.39, step=14, sweep=1. 193 cells, 231 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.10 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.42, step=15, sweep=1. 190 cells, 228 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.11 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.45, step=16, sweep=1. 166 cells, 201 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.09 -DEAL:cg::Convergence step 11 value 0 -DEAL::. -DEAL:: Primal problem: time=0.48, step=17, sweep=1. 154 cells, 189 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.09 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.50, step=18, sweep=1. 148 cells, 181 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.10 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.53, step=19, sweep=1. 148 cells, 181 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.10 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.56, step=20, sweep=1. 133 cells, 166 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.09 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.59, step=21, sweep=1. 133 cells, 166 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.10 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.62, step=22, sweep=1. 112 cells, 141 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.11 -DEAL:cg::Convergence step 11 value 0 -DEAL::. -DEAL:: Primal problem: time=0.64, step=23, sweep=1. 106 cells, 135 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.10 -DEAL:cg::Convergence step 11 value 0 -DEAL::. -DEAL:: Primal problem: time=0.67, step=24, sweep=1. 118 cells, 149 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.09 -DEAL:cg::Convergence step 11 value 0 -DEAL::. -DEAL:: Primal problem: time=0.70, step=25, sweep=1. 115 cells, 146 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.10 -DEAL:cg::Convergence step 11 value 0 -DEAL::. -DEAL:: -DEAL:: Dual problem: time=0.70, step=25, sweep=1. 115 cells, 545 dofs. -DEAL:: Dual problem: time=0.67, step=24, sweep=1. 118 cells, 557 dofsStarting value 0.00 -DEAL:cg::Convergence step 5 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL::. -DEAL:: Dual problem: time=0.64, step=23, sweep=1. 106 cells, 502 dofsStarting value 0.00 -DEAL:cg::Convergence step 5 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL::. -DEAL:: Dual problem: time=0.62, step=22, sweep=1. 112 cells, 526 dofsStarting value 0.00 -DEAL:cg::Convergence step 5 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL::. -DEAL:: Dual problem: time=0.59, step=21, sweep=1. 133 cells, 621 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.56, step=20, sweep=1. 133 cells, 621 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.53, step=19, sweep=1. 148 cells, 681 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.50, step=18, sweep=1. 148 cells, 681 dofsStarting value 0.00 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.48, step=17, sweep=1. 154 cells, 713 dofsStarting value 0.00 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.45, step=16, sweep=1. 166 cells, 761 dofsStarting value 0.00 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.42, step=15, sweep=1. 190 cells, 867 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.39, step=14, sweep=1. 193 cells, 879 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.36, step=13, sweep=1. 202 cells, 932 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.34, step=12, sweep=1. 238 cells, 1071 dofsStarting value 0.00 -DEAL:cg::Convergence step 11 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.31, step=11, sweep=1. 244 cells, 1103 dofsStarting value 0.00 -DEAL:cg::Convergence step 11 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.28, step=10, sweep=1. 283 cells, 1267 dofsStarting value 0.00 -DEAL:cg::Convergence step 12 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.25, step=9, sweep=1. 286 cells, 1288 dofsStarting value 0.00 -DEAL:cg::Convergence step 12 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.22, step=8, sweep=1. 229 cells, 1057 dofsStarting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.20, step=7, sweep=1. 226 cells, 1029 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.17, step=6, sweep=1. 229 cells, 1051 dofsStarting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.14, step=5, sweep=1. 211 cells, 971 dofsStarting value 0.00 -DEAL:cg::Convergence step 11 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.11, step=4, sweep=1. 190 cells, 884 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.08, step=3, sweep=1. 205 cells, 949 dofsStarting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.06, step=2, sweep=1. 202 cells, 933 dofsStarting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.03, step=1, sweep=1. 157 cells, 741 dofsStarting value 0.00 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0, step=0, sweep=1. 157 cells, 741 dofsStarting value 0.00 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL::. -DEAL:: -DEAL:: Postprocessing: time=0, step=0, sweep=1. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library - -%%BoundingBox: 0 0 300 199 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50 setlinewidth -0.00000 0.00000 0.10488 s 96.08167 138.11298 m 119.85572 131.24996 l 133.58167 143.13702 l 109.80762 150.00000 lf -0 sg 96.08167 138.11298 m 119.85572 131.24996 l 133.58167 143.13702 l 109.80762 150.00000 lx -0.00000 0.00000 0.10489 s 119.85572 131.24996 m 143.62976 124.38720 l 157.35572 136.27405 l 133.58167 143.13702 lf -0 sg 119.85572 131.24996 m 143.62976 124.38720 l 157.35572 136.27405 l 133.58167 143.13702 lx -0.00000 0.00000 0.10489 s 82.35572 126.22595 m 106.12976 119.36315 l 119.85572 131.24996 l 96.08167 138.11298 lf -0 sg 82.35572 126.22595 m 106.12976 119.36315 l 119.85572 131.24996 l 96.08167 138.11298 lx -0.00000 0.00000 0.10488 s 143.62976 124.38720 m 167.40381 117.52361 l 181.12976 129.41107 l 157.35572 136.27405 lf -0 sg 143.62976 124.38720 m 167.40381 117.52361 l 181.12976 129.41107 l 157.35572 136.27405 lx -0.00000 0.00000 0.10488 s 106.12976 119.36315 m 129.90381 112.49931 l 143.62976 124.38720 l 119.85572 131.24996 lf -0 sg 106.12976 119.36315 m 129.90381 112.49931 l 143.62976 124.38720 l 119.85572 131.24996 lx -0.00000 0.00000 0.10491 s 167.40381 117.52361 m 191.17786 110.66302 l 204.90381 122.54809 l 181.12976 129.41107 lf -0 sg 167.40381 117.52361 m 191.17786 110.66302 l 204.90381 122.54809 l 181.12976 129.41107 lx -0.00000 0.00000 0.10488 s 68.62976 114.33893 m 92.40381 107.47550 l 106.12976 119.36315 l 82.35572 126.22595 lf -0 sg 68.62976 114.33893 m 92.40381 107.47550 l 106.12976 119.36315 l 82.35572 126.22595 lx -0.00000 0.00000 0.10490 s 129.90381 112.49931 m 153.67786 105.63877 l 167.40381 117.52361 l 143.62976 124.38720 lf -0 sg 129.90381 112.49931 m 153.67786 105.63877 l 167.40381 117.52361 l 143.62976 124.38720 lx -0.00000 0.00000 0.10492 s 191.17786 110.66302 m 214.95191 103.79782 l 228.67786 115.68512 l 204.90381 122.54809 lf -0 sg 191.17786 110.66302 m 214.95191 103.79782 l 228.67786 115.68512 l 204.90381 122.54809 lx -0.00000 0.00000 0.10490 s 92.40381 107.47550 m 116.17786 100.61477 l 129.90381 112.49931 l 106.12976 119.36315 lf -0 sg 92.40381 107.47550 m 116.17786 100.61477 l 129.90381 112.49931 l 106.12976 119.36315 lx -0.00000 0.00000 0.10480 s 153.67786 105.63877 m 177.45191 98.76625 l 191.17786 110.66302 l 167.40381 117.52361 lf -0 sg 153.67786 105.63877 m 177.45191 98.76625 l 191.17786 110.66302 l 167.40381 117.52361 lx -0.00000 0.00000 0.10488 s 214.95191 103.79782 m 238.72595 96.93519 l 252.45191 108.82214 l 228.67786 115.68512 lf -0 sg 214.95191 103.79782 m 238.72595 96.93519 l 252.45191 108.82214 l 228.67786 115.68512 lx -0.00000 0.00000 0.10491 s 54.90381 102.45191 m 78.67786 95.59094 l 92.40381 107.47550 l 68.62976 114.33893 lf -0 sg 54.90381 102.45191 m 78.67786 95.59094 l 92.40381 107.47550 l 68.62976 114.33893 lx -0.00000 0.00000 0.10487 s 116.17786 100.61477 m 139.95191 93.74643 l 153.67786 105.63877 l 129.90381 112.49931 lf -0 sg 116.17786 100.61477 m 139.95191 93.74643 l 153.67786 105.63877 l 129.90381 112.49931 lx -0.00000 0.00000 0.10479 s 177.45191 98.76625 m 201.22595 91.91216 l 214.95191 103.79782 l 191.17786 110.66302 lf -0 sg 177.45191 98.76625 m 201.22595 91.91216 l 214.95191 103.79782 l 191.17786 110.66302 lx -0.00000 0.00000 0.10486 s 146.81488 99.69260 m 158.70191 96.26299 l 165.56488 102.20251 l 153.67786 105.63877 lf -0 sg 146.81488 99.69260 m 158.70191 96.26299 l 165.56488 102.20251 l 153.67786 105.63877 lx -0.00000 0.00000 0.10489 s 238.72595 96.93519 m 262.50000 90.07212 l 276.22595 101.95917 l 252.45191 108.82214 lf -0 sg 238.72595 96.93519 m 262.50000 90.07212 l 276.22595 101.95917 l 252.45191 108.82214 lx -0.00000 0.00000 0.10480 s 78.67786 95.59094 m 102.45191 88.71792 l 116.17786 100.61477 l 92.40381 107.47550 lf -0 sg 78.67786 95.59094 m 102.45191 88.71792 l 116.17786 100.61477 l 92.40381 107.47550 lx -0.00000 0.00000 0.10582 s 158.70191 96.26299 m 170.58893 92.89194 l 177.45191 98.76625 l 165.56488 102.20251 lf -0 sg 158.70191 96.26299 m 170.58893 92.89194 l 177.45191 98.76625 l 165.56488 102.20251 lx -0.00000 0.00000 0.10486 s 109.31488 94.66635 m 121.20191 91.23899 l 128.06488 97.18060 l 116.17786 100.61477 lf -0 sg 109.31488 94.66635 m 121.20191 91.23899 l 128.06488 97.18060 l 116.17786 100.61477 lx -0.00000 0.00000 0.10483 s 139.95191 93.74643 m 151.83893 90.31908 l 158.70191 96.26299 l 146.81488 99.69260 lf -0 sg 139.95191 93.74643 m 151.83893 90.31908 l 158.70191 96.26299 l 146.81488 99.69260 lx -0.00000 0.00000 0.10490 s 201.22595 91.91216 m 225.00000 85.04781 l 238.72595 96.93519 l 214.95191 103.79782 lf -0 sg 201.22595 91.91216 m 225.00000 85.04781 l 238.72595 96.93519 l 214.95191 103.79782 lx -0.00000 0.00000 0.10582 s 170.58893 92.89194 m 182.47595 89.39985 l 189.33893 95.33920 l 177.45191 98.76625 lf -0 sg 170.58893 92.89194 m 182.47595 89.39985 l 189.33893 95.33920 l 177.45191 98.76625 lx -0.00000 0.00000 0.10491 s 41.17786 90.56488 m 64.95191 83.70142 l 78.67786 95.59094 l 54.90381 102.45191 lf -0 sg 41.17786 90.56488 m 64.95191 83.70142 l 78.67786 95.59094 l 54.90381 102.45191 lx -0.00000 0.00000 0.10489 s 262.50000 90.07212 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lf -0 sg 262.50000 90.07212 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lx -0.00000 0.00000 0.10483 s 121.20191 91.23899 m 133.08893 87.80711 l 139.95191 93.74643 l 128.06488 97.18060 lf -0 sg 121.20191 91.23899 m 133.08893 87.80711 l 139.95191 93.74643 l 128.06488 97.18060 lx -0.00000 0.00000 0.10170 s 151.83893 90.31908 m 163.72595 86.64899 l 170.58893 92.89194 l 158.70191 96.26299 lf -0 sg 151.83893 90.31908 m 163.72595 86.64899 l 170.58893 92.89194 l 158.70191 96.26299 lx -0.00000 0.00000 0.10487 s 182.47595 89.39985 m 194.36298 85.96793 l 201.22595 91.91216 l 189.33893 95.33920 lf -0 sg 182.47595 89.39985 m 194.36298 85.96793 l 201.22595 91.91216 l 189.33893 95.33920 lx -0.00000 0.00000 0.10582 s 102.45191 88.71792 m 114.33893 85.35584 l 121.20191 91.23899 l 109.31488 94.66635 lf -0 sg 102.45191 88.71792 m 114.33893 85.35584 l 121.20191 91.23899 l 109.31488 94.66635 lx -0.00000 0.00000 0.10631 s 133.08893 87.80711 m 144.97595 84.45549 l 151.83893 90.31908 l 139.95191 93.74643 lf -0 sg 133.08893 87.80711 m 144.97595 84.45549 l 151.83893 90.31908 l 139.95191 93.74643 lx -0.00000 0.00000 0.10168 s 163.72595 86.64899 m 175.61298 83.45520 l 182.47595 89.39985 l 170.58893 92.89194 lf -0 sg 163.72595 86.64899 m 175.61298 83.45520 l 182.47595 89.39985 l 170.58893 92.89194 lx -0.00000 0.00000 0.10824 s 148.40744 87.38728 m 154.35095 85.89299 l 157.78244 88.48404 l 151.83893 90.31908 lf -0 sg 148.40744 87.38728 m 154.35095 85.89299 l 157.78244 88.48404 l 151.83893 90.31908 lx -0.00000 0.00000 0.10488 s 225.00000 85.04781 m 248.77405 78.18519 l 262.50000 90.07212 l 238.72595 96.93519 lf -0 sg 225.00000 85.04781 m 248.77405 78.18519 l 262.50000 90.07212 l 238.72595 96.93519 lx -0.00000 0.00000 0.10169 s 114.33893 85.35584 m 126.22595 81.62462 l 133.08893 87.80711 l 121.20191 91.23899 lf -0 sg 114.33893 85.35584 m 126.22595 81.62462 l 133.08893 87.80711 l 121.20191 91.23899 lx -0.00000 0.00000 0.10480 s 64.95191 83.70142 m 88.72595 76.84089 l 102.45191 88.71792 l 78.67786 95.59094 lf -0 sg 64.95191 83.70142 m 88.72595 76.84089 l 102.45191 88.71792 l 78.67786 95.59094 lx -0.00000 0.00000 0.13529 s 154.35095 85.89299 m 160.29446 85.67952 l 163.72595 86.64899 l 157.78244 88.48404 lf -0 sg 154.35095 85.89299 m 160.29446 85.67952 l 163.72595 86.64899 l 157.78244 88.48404 lx -0.00000 0.00000 0.10824 s 129.65744 84.71586 m 135.60095 83.38106 l 139.03244 86.13130 l 133.08893 87.80711 lf -0 sg 129.65744 84.71586 m 135.60095 83.38106 l 139.03244 86.13130 l 133.08893 87.80711 lx -0.00000 0.00000 0.09366 s 144.97595 84.45549 m 150.91946 81.66021 l 154.35095 85.89299 l 148.40744 87.38728 lf -0 sg 144.97595 84.45549 m 150.91946 81.66021 l 154.35095 85.89299 l 148.40744 87.38728 lx -0.00000 0.00000 0.10489 s 175.61298 83.45520 m 187.50000 80.02369 l 194.36298 85.96793 l 182.47595 89.39985 lf -0 sg 175.61298 83.45520 m 187.50000 80.02369 l 194.36298 85.96793 l 182.47595 89.39985 lx -0.00000 0.00000 0.13527 s 160.29446 85.67952 m 166.23798 82.46074 l 169.66946 85.05210 l 163.72595 86.64899 lf -0 sg 160.29446 85.67952 m 166.23798 82.46074 l 169.66946 85.05210 l 163.72595 86.64899 lx -0.00000 0.00000 0.10582 s 95.58893 82.77940 m 107.47595 79.35201 l 114.33893 85.35584 l 102.45191 88.71792 lf -0 sg 95.58893 82.77940 m 107.47595 79.35201 l 114.33893 85.35584 l 102.45191 88.71792 lx -0.00000 0.00000 0.09367 s 135.60095 83.38106 m 141.54446 80.40439 l 144.97595 84.45549 l 139.03244 86.13130 lf -0 sg 135.60095 83.38106 m 141.54446 80.40439 l 144.97595 84.45549 l 139.03244 86.13130 lx -0.00000 0.00000 0.00005 s 150.91946 81.66021 m 156.86298 74.16088 l 160.29446 85.67952 l 154.35095 85.89299 lf -0 sg 150.91946 81.66021 m 156.86298 74.16088 l 160.29446 85.67952 l 154.35095 85.89299 lx -0.00000 0.00000 0.10827 s 166.23798 82.46074 m 172.18149 80.52805 l 175.61298 83.45520 l 169.66946 85.05210 lf -0 sg 166.23798 82.46074 m 172.18149 80.52805 l 175.61298 83.45520 l 169.66946 85.05210 lx -0.00000 0.00000 0.10490 s 187.50000 80.02369 m 211.27405 73.16113 l 225.00000 85.04781 l 201.22595 91.91216 lf -0 sg 187.50000 80.02369 m 211.27405 73.16113 l 225.00000 85.04781 l 201.22595 91.91216 lx -0.00000 0.00000 0.13528 s 126.22595 81.62462 m 132.16946 81.91130 l 135.60095 83.38106 l 129.65744 84.71586 lf -0 sg 126.22595 81.62462 m 132.16946 81.91130 l 135.60095 83.38106 l 129.65744 84.71586 lx -0.00000 sg 156.86298 74.16088 m 162.80649 78.22658 l 166.23798 82.46074 l 160.29446 85.67952 lf -0 sg 156.86298 74.16088 m 162.80649 78.22658 l 166.23798 82.46074 l 160.29446 85.67952 lx -0.00000 0.00000 0.15447 s 141.54446 80.40439 m 147.48798 84.32716 l 150.91946 81.66021 l 144.97595 84.45549 lf -0 sg 141.54446 80.40439 m 147.48798 84.32716 l 150.91946 81.66021 l 144.97595 84.45549 lx -0.00000 0.00000 0.00004 s 132.16946 81.91130 m 138.11298 71.64802 l 141.54446 80.40439 l 135.60095 83.38106 lf -0 sg 132.16946 81.91130 m 138.11298 71.64802 l 141.54446 80.40439 l 135.60095 83.38106 lx -0.00000 0.00000 0.10488 s 27.45191 78.67786 m 51.22595 71.81502 l 64.95191 83.70142 l 41.17786 90.56488 lf -0 sg 27.45191 78.67786 m 51.22595 71.81502 l 64.95191 83.70142 l 41.17786 90.56488 lx -0.00000 0.00000 0.10489 s 248.77405 78.18519 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 90.07212 lf -0 sg 248.77405 78.18519 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 90.07212 lx -0.00000 0.00000 0.10170 s 107.47595 79.35201 m 119.36298 75.92031 l 126.22595 81.62462 l 114.33893 85.35584 lf -0 sg 107.47595 79.35201 m 119.36298 75.92031 l 126.22595 81.62462 l 114.33893 85.35584 lx -0.00000 0.00000 0.09383 s 162.80649 78.22658 m 168.75000 77.60089 l 172.18149 80.52805 l 166.23798 82.46074 lf -0 sg 162.80649 78.22658 m 168.75000 77.60089 l 172.18149 80.52805 l 166.23798 82.46074 lx -0.00000 0.00000 0.13529 s 122.79446 78.77246 m 128.73798 77.43770 l 132.16946 81.91130 l 126.22595 81.62462 lf -0 sg 122.79446 78.77246 m 128.73798 77.43770 l 132.16946 81.91130 l 126.22595 81.62462 lx -0.00000 0.00000 0.10606 s 168.75000 77.60089 m 180.63702 74.05690 l 187.50000 80.02369 l 175.61298 83.45520 lf -0 sg 168.75000 77.60089 m 180.63702 74.05690 l 187.50000 80.02369 l 175.61298 83.45520 lx -0.00000 0.00000 0.00005 s 128.73798 77.43770 m 134.68149 74.46134 l 138.11298 71.64802 l 132.16946 81.91130 lf -0 sg 128.73798 77.43770 m 134.68149 74.46134 l 138.11298 71.64802 l 132.16946 81.91130 lx -0.00000 0.00000 0.10486 s 88.72595 76.84089 m 100.61298 73.40624 l 107.47595 79.35201 l 95.58893 82.77940 lf -0 sg 88.72595 76.84089 m 100.61298 73.40624 l 107.47595 79.35201 l 95.58893 82.77940 lx -0.00000 0.00000 0.82442 s 147.48798 84.32716 m 153.43149 120.61681 l 156.86298 74.16088 l 150.91946 81.66021 lf -0 sg 147.48798 84.32716 m 153.43149 120.61681 l 156.86298 74.16088 l 150.91946 81.66021 lx -0.00000 0.00000 0.15460 s 159.37500 80.89544 m 165.31851 73.54237 l 168.75000 77.60089 l 162.80649 78.22658 lf -0 sg 159.37500 80.89544 m 165.31851 73.54237 l 168.75000 77.60089 l 162.80649 78.22658 lx -0.00000 0.00000 0.10824 s 119.36298 75.92031 m 125.30649 74.24350 l 128.73798 77.43770 l 122.79446 78.77246 lf -0 sg 119.36298 75.92031 m 125.30649 74.24350 l 128.73798 77.43770 l 122.79446 78.77246 lx -0.00000 0.00000 0.82441 s 138.11298 71.64802 m 144.05649 119.36101 l 147.48798 84.32716 l 141.54446 80.40439 lf -0 sg 138.11298 71.64802 m 144.05649 119.36101 l 147.48798 84.32716 l 141.54446 80.40439 lx -0.00000 0.00000 0.10488 s 211.27405 73.16113 m 235.04809 66.29808 l 248.77405 78.18519 l 225.00000 85.04781 lf -0 sg 211.27405 73.16113 m 235.04809 66.29808 l 248.77405 78.18519 l 225.00000 85.04781 lx -0.00000 0.00000 0.10456 s 180.63702 74.05690 m 192.52405 70.65537 l 199.38702 76.59241 l 187.50000 80.02369 lf -0 sg 180.63702 74.05690 m 192.52405 70.65537 l 199.38702 76.59241 l 187.50000 80.02369 lx -0.00000 0.00000 0.82437 s 153.43149 120.61681 m 159.37500 80.89544 l 162.80649 78.22658 l 156.86298 74.16088 lf -0 sg 153.43149 120.61681 m 159.37500 80.89544 l 162.80649 78.22658 l 156.86298 74.16088 lx -0.00000 0.00000 0.09350 s 165.31851 73.54237 m 171.26202 73.07571 l 174.69351 75.82890 l 168.75000 77.60089 lf -0 sg 165.31851 73.54237 m 171.26202 73.07571 l 174.69351 75.82890 l 168.75000 77.60089 lx -0.00000 0.00000 0.09363 s 125.30649 74.24350 m 131.25000 72.56669 l 134.68149 74.46134 l 128.73798 77.43770 lf -0 sg 125.30649 74.24350 m 131.25000 72.56669 l 134.68149 74.46134 l 128.73798 77.43770 lx -0.00000 0.00000 0.10482 s 100.61298 73.40624 m 112.50000 69.97159 l 119.36298 75.92031 l 107.47595 79.35201 lf -0 sg 100.61298 73.40624 m 112.50000 69.97159 l 119.36298 75.92031 l 107.47595 79.35201 lx -0.00000 0.00000 0.10490 s 51.22595 71.81502 m 75.00000 64.95134 l 88.72595 76.84089 l 64.95191 83.70142 lf -0 sg 51.22595 71.81502 m 75.00000 64.95134 l 88.72595 76.84089 l 64.95191 83.70142 lx -0.00000 0.00000 0.10848 s 171.26202 73.07571 m 177.20554 71.04573 l 180.63702 74.05690 l 174.69351 75.82890 lf -0 sg 171.26202 73.07571 m 177.20554 71.04573 l 180.63702 74.05690 l 174.69351 75.82890 lx -0.00000 0.00000 0.15444 s 131.25000 72.56669 m 137.19351 69.77296 l 140.62500 78.38370 l 134.68149 74.46134 lf -0 sg 131.25000 72.56669 m 137.19351 69.77296 l 140.62500 78.38370 l 134.68149 74.46134 lx -0.00000 0.00000 0.82442 s 134.68149 74.46134 m 140.62500 78.38370 l 144.05649 119.36101 l 138.11298 71.64802 lf -0 sg 134.68149 74.46134 m 140.62500 78.38370 l 144.05649 119.36101 l 138.11298 71.64802 lx -0.00000 0.00000 0.00077 s 161.88702 64.76892 m 167.83054 71.68308 l 171.26202 73.07571 l 165.31851 73.54237 lf -0 sg 161.88702 64.76892 m 167.83054 71.68308 l 171.26202 73.07571 l 165.31851 73.54237 lx -0.00000 0.00000 0.10497 s 192.52405 70.65537 m 204.41107 67.21620 l 211.27405 73.16113 l 199.38702 76.59241 lf -0 sg 192.52405 70.65537 m 204.41107 67.21620 l 211.27405 73.16113 l 199.38702 76.59241 lx -0.00000 0.00000 0.10354 s 177.20554 71.04573 m 183.14905 69.41425 l 186.58054 72.35614 l 180.63702 74.05690 lf -0 sg 177.20554 71.04573 m 183.14905 69.41425 l 186.58054 72.35614 l 180.63702 74.05690 lx -0.00000 0.00000 0.10636 s 112.50000 69.97159 m 124.38702 66.55019 l 131.25000 72.56669 l 119.36298 75.92031 lf -0 sg 112.50000 69.97159 m 124.38702 66.55019 l 131.25000 72.56669 l 119.36298 75.92031 lx -0.00000 0.00000 0.82420 s 155.94351 115.93356 m 161.88702 64.76892 l 165.31851 73.54237 l 159.37500 80.89544 lf -0 sg 155.94351 115.93356 m 161.88702 64.76892 l 165.31851 73.54237 l 159.37500 80.89544 lx -0.00000 0.00000 0.13268 s 167.83054 71.68308 m 173.77405 67.64444 l 177.20554 71.04573 l 171.26202 73.07571 lf -0 sg 167.83054 71.68308 m 173.77405 67.64444 l 177.20554 71.04573 l 171.26202 73.07571 lx -0.00000 0.00000 0.09369 s 127.81851 69.55844 m 133.76202 68.06430 l 137.19351 69.77296 l 131.25000 72.56669 lf -0 sg 127.81851 69.55844 m 133.76202 68.06430 l 137.19351 69.77296 l 131.25000 72.56669 lx -0.00000 0.00000 0.10510 s 183.14905 69.41425 m 189.09256 67.67041 l 192.52405 70.65537 l 186.58054 72.35614 lf -0 sg 183.14905 69.41425 m 189.09256 67.67041 l 192.52405 70.65537 l 186.58054 72.35614 lx -0.00000 0.00000 0.00073 s 158.45554 67.59727 m 164.39905 67.13156 l 167.83054 71.68308 l 161.88702 64.76892 lf -0 sg 158.45554 67.59727 m 164.39905 67.13156 l 167.83054 71.68308 l 161.88702 64.76892 lx -0.00000 0.00000 0.10489 s 13.72595 66.79083 m 37.50000 59.92782 l 51.22595 71.81502 l 27.45191 78.67786 lf -0 sg 13.72595 66.79083 m 37.50000 59.92782 l 51.22595 71.81502 l 27.45191 78.67786 lx -0.00000 0.00000 0.00016 s 133.76202 68.06430 m 139.70554 67.85476 l 143.13702 62.27257 l 137.19351 69.77296 lf -0 sg 133.76202 68.06430 m 139.70554 67.85476 l 143.13702 62.27257 l 137.19351 69.77296 lx -0.00000 0.00000 0.10489 s 235.04809 66.29808 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18519 lf -0 sg 235.04809 66.29808 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18519 lx -0.00000 0.00000 0.09751 s 173.77405 67.64444 m 179.71756 66.55101 l 183.14905 69.41425 l 177.20554 71.04573 lf -0 sg 173.77405 67.64444 m 179.71756 66.55101 l 183.14905 69.41425 l 177.20554 71.04573 lx -0.00000 0.00000 0.10487 s 204.41107 67.21620 m 216.29809 63.78642 l 223.16107 69.72961 l 211.27405 73.16113 lf -0 sg 204.41107 67.21620 m 216.29809 63.78642 l 223.16107 69.72961 l 211.27405 73.16113 lx -0.00000 0.00000 0.10494 s 189.09256 67.67041 m 195.03607 65.96245 l 198.46756 68.93578 l 192.52405 70.65537 lf -0 sg 189.09256 67.67041 m 195.03607 65.96245 l 198.46756 68.93578 l 192.52405 70.65537 lx -0.00000 0.00000 0.82439 s 137.19351 69.77296 m 143.13702 62.27257 l 146.56851 114.67362 l 140.62500 78.38370 lf -0 sg 137.19351 69.77296 m 143.13702 62.27257 l 146.56851 114.67362 l 140.62500 78.38370 lx -0.00000 0.00000 0.15466 s 149.08054 66.33756 m 155.02405 65.72023 l 158.45554 67.59727 l 152.51202 74.95243 lf -0 sg 149.08054 66.33756 m 155.02405 65.72023 l 158.45554 67.59727 l 152.51202 74.95243 lx -0.00000 0.00000 0.82418 s 152.51202 74.95243 m 158.45554 67.59727 l 161.88702 64.76892 l 155.94351 115.93356 lf -0 sg 152.51202 74.95243 m 158.45554 67.59727 l 161.88702 64.76892 l 155.94351 115.93356 lx -0.00000 0.00000 0.10486 s 75.00000 64.95134 m 98.77405 58.09025 l 112.50000 69.97159 l 88.72595 76.84089 lf -0 sg 75.00000 64.95134 m 98.77405 58.09025 l 112.50000 69.97159 l 88.72595 76.84089 lx -0.00000 0.00000 0.13267 s 164.39905 67.13156 m 170.34256 65.10252 l 173.77405 67.64444 l 167.83054 71.68308 lf -0 sg 164.39905 67.13156 m 170.34256 65.10252 l 173.77405 67.64444 l 167.83054 71.68308 lx -0.00000 0.00000 0.00010 s 139.70554 67.85476 m 145.64905 64.63297 l 149.08054 66.33756 l 143.13702 62.27257 lf -0 sg 139.70554 67.85476 m 145.64905 64.63297 l 149.08054 66.33756 l 143.13702 62.27257 lx -0.00000 0.00000 0.10823 s 124.38702 66.55019 m 130.33054 64.70074 l 133.76202 68.06430 l 127.81851 69.55844 lf -0 sg 124.38702 66.55019 m 130.33054 64.70074 l 133.76202 68.06430 l 127.81851 69.55844 lx -0.00000 0.00000 0.10689 s 179.71756 66.55101 m 185.66107 64.67144 l 189.09256 67.67041 l 183.14905 69.41425 lf -0 sg 179.71756 66.55101 m 185.66107 64.67144 l 189.09256 67.67041 l 183.14905 69.41425 lx -0.00000 0.00000 0.10490 s 195.03607 65.96245 m 200.97958 64.24482 l 204.41107 67.21620 l 198.46756 68.93578 lf -0 sg 195.03607 65.96245 m 200.97958 64.24482 l 204.41107 67.21620 l 198.46756 68.93578 lx -0.00000 0.00000 0.82433 s 143.13702 62.27257 m 149.08054 66.33756 l 152.51202 74.95243 l 146.56851 114.67362 lf -0 sg 143.13702 62.27257 m 149.08054 66.33756 l 152.51202 74.95243 l 146.56851 114.67362 lx -0.00000 0.00000 0.09362 s 155.02405 65.72023 m 160.96756 63.94445 l 164.39905 67.13156 l 158.45554 67.59727 lf -0 sg 155.02405 65.72023 m 160.96756 63.94445 l 164.39905 67.13156 l 158.45554 67.59727 lx -0.00000 0.00000 0.09752 s 170.34256 65.10252 m 176.28607 63.47094 l 179.71756 66.55101 l 173.77405 67.64444 lf -0 sg 170.34256 65.10252 m 176.28607 63.47094 l 179.71756 66.55101 l 173.77405 67.64444 lx -0.00000 0.00000 0.10432 s 185.66107 64.67144 m 191.60458 62.99899 l 195.03607 65.96245 l 189.09256 67.67041 lf -0 sg 185.66107 64.67144 m 191.60458 62.99899 l 195.03607 65.96245 l 189.09256 67.67041 lx -0.00000 0.00000 0.13483 s 130.33054 64.70074 m 136.27405 62.85129 l 139.70554 67.85476 l 133.76202 68.06430 lf -0 sg 130.33054 64.70074 m 136.27405 62.85129 l 139.70554 67.85476 l 133.76202 68.06430 lx -0.00000 0.00000 0.10495 s 105.63702 64.03092 m 117.52405 60.60467 l 124.38702 66.55019 l 112.50000 69.97159 lf -0 sg 105.63702 64.03092 m 117.52405 60.60467 l 124.38702 66.55019 l 112.50000 69.97159 lx -0.00000 0.00000 0.09385 s 145.64905 64.63297 m 151.59256 62.69156 l 155.02405 65.72023 l 149.08054 66.33756 lf -0 sg 145.64905 64.63297 m 151.59256 62.69156 l 155.02405 65.72023 l 149.08054 66.33756 lx -0.00000 0.00000 0.10489 s 216.29809 63.78642 m 228.18512 60.35453 l 235.04809 66.29808 l 223.16107 69.72961 lf -0 sg 216.29809 63.78642 m 228.18512 60.35453 l 235.04809 66.29808 l 223.16107 69.72961 lx -0.00000 0.00000 0.10850 s 160.96756 63.94445 m 166.91107 62.16868 l 170.34256 65.10252 l 164.39905 67.13156 lf -0 sg 160.96756 63.94445 m 166.91107 62.16868 l 170.34256 65.10252 l 164.39905 67.13156 lx -0.00000 0.00000 0.10689 s 176.28607 63.47094 m 182.22958 61.72702 l 185.66107 64.67144 l 179.71756 66.55101 lf -0 sg 176.28607 63.47094 m 182.22958 61.72702 l 185.66107 64.67144 l 179.71756 66.55101 lx -0.00000 0.00000 0.10504 s 191.60458 62.99899 m 197.54809 61.27343 l 200.97958 64.24482 l 195.03607 65.96245 lf -0 sg 191.60458 62.99899 m 197.54809 61.27343 l 200.97958 64.24482 l 195.03607 65.96245 lx -0.00000 0.00000 0.13500 s 136.27405 62.85129 m 142.21756 61.27839 l 145.64905 64.63297 l 139.70554 67.85476 lf -0 sg 136.27405 62.85129 m 142.21756 61.27839 l 145.64905 64.63297 l 139.70554 67.85476 lx -0.00000 0.00000 0.10351 s 166.91107 62.16868 m 172.85458 60.46830 l 176.28607 63.47094 l 170.34256 65.10252 lf -0 sg 166.91107 62.16868 m 172.85458 60.46830 l 176.28607 63.47094 l 170.34256 65.10252 lx -0.00000 0.00000 0.10486 s 197.54809 61.27343 m 209.43512 57.84270 l 216.29809 63.78642 l 204.41107 67.21620 lf -0 sg 197.54809 61.27343 m 209.43512 57.84270 l 216.29809 63.78642 l 204.41107 67.21620 lx -0.00000 0.00000 0.10488 s 37.50000 59.92782 m 61.27405 53.06502 l 75.00000 64.95134 l 51.22595 71.81502 lf -0 sg 37.50000 59.92782 m 61.27405 53.06502 l 75.00000 64.95134 l 51.22595 71.81502 lx -0.00000 0.00000 0.10432 s 182.22958 61.72702 m 188.17309 60.01891 l 191.60458 62.99899 l 185.66107 64.67144 lf -0 sg 182.22958 61.72702 m 188.17309 60.01891 l 191.60458 62.99899 l 185.66107 64.67144 lx -0.00000 0.00000 0.10789 s 142.21756 61.27839 m 148.16107 59.66289 l 151.59256 62.69156 l 145.64905 64.63297 lf -0 sg 142.21756 61.27839 m 148.16107 59.66289 l 151.59256 62.69156 l 145.64905 64.63297 lx -0.00000 0.00000 0.10122 s 117.52405 60.60467 m 129.41107 57.22043 l 136.27405 62.85129 l 124.38702 66.55019 lf -0 sg 117.52405 60.60467 m 129.41107 57.22043 l 136.27405 62.85129 l 124.38702 66.55019 lx -0.00000 0.00000 0.10509 s 172.85458 60.46830 m 178.79809 58.76792 l 182.22958 61.72702 l 176.28607 63.47094 lf -0 sg 172.85458 60.46830 m 178.79809 58.76792 l 182.22958 61.72702 l 176.28607 63.47094 lx -0.00000 0.00000 0.10589 s 148.16107 59.66289 m 160.04809 56.25308 l 166.91107 62.16868 l 155.02405 65.72023 lf -0 sg 148.16107 59.66289 m 160.04809 56.25308 l 166.91107 62.16868 l 155.02405 65.72023 lx -0.00000 0.00000 0.09730 s 132.84256 60.03586 m 138.78607 58.49503 l 142.21756 61.27839 l 136.27405 62.85129 lf -0 sg 132.84256 60.03586 m 138.78607 58.49503 l 142.21756 61.27839 l 136.27405 62.85129 lx -0.00000 0.00000 0.10504 s 188.17309 60.01891 m 194.11661 58.30143 l 197.54809 61.27343 l 191.60458 62.99899 lf -0 sg 188.17309 60.01891 m 194.11661 58.30143 l 197.54809 61.27343 l 191.60458 62.99899 lx -1.00000 0.99992 0.99992 s 144.05649 119.36101 m 150.00000 198.91174 l 153.43149 120.61681 l 147.48798 84.32716 lf -0 sg 144.05649 119.36101 m 150.00000 198.91174 l 153.43149 120.61681 l 147.48798 84.32716 lx -0.00000 0.00000 0.10493 s 178.79809 58.76792 m 184.74161 57.04867 l 188.17309 60.01891 l 182.22958 61.72702 lf -0 sg 178.79809 58.76792 m 184.74161 57.04867 l 188.17309 60.01891 l 182.22958 61.72702 lx -0.00000 0.00000 0.10491 s 98.77405 58.09025 m 110.66107 54.65510 l 117.52405 60.60467 l 105.63702 64.03092 lf -0 sg 98.77405 58.09025 m 110.66107 54.65510 l 117.52405 60.60467 l 105.63702 64.03092 lx -0.00000 0.00000 0.10489 s 209.43512 57.84270 m 221.32214 54.41098 l 228.18512 60.35453 l 216.29809 63.78642 lf -0 sg 209.43512 57.84270 m 221.32214 54.41098 l 228.18512 60.35453 l 216.29809 63.78642 lx -0.00000 0.00000 0.10339 s 138.78607 58.49503 m 144.72958 56.69528 l 148.16107 59.66289 l 142.21756 61.27839 lf -0 sg 138.78607 58.49503 m 144.72958 56.69528 l 148.16107 59.66289 l 142.21756 61.27839 lx -1.00000 0.99999 0.99999 s 150.00000 198.91174 m 155.94351 115.93356 l 159.37500 80.89544 l 153.43149 120.61681 lf -0 sg 150.00000 198.91174 m 155.94351 115.93356 l 159.37500 80.89544 l 153.43149 120.61681 lx -0.00000 0.00000 0.10553 s 129.41107 57.22043 m 135.35458 55.47405 l 138.78607 58.49503 l 132.84256 60.03586 lf -0 sg 129.41107 57.22043 m 135.35458 55.47405 l 138.78607 58.49503 l 132.84256 60.03586 lx -0.00000 0.00000 0.10491 s 184.74161 57.04867 m 190.68512 55.32942 l 194.11661 58.30143 l 188.17309 60.01891 lf -0 sg 184.74161 57.04867 m 190.68512 55.32942 l 194.11661 58.30143 l 188.17309 60.01891 lx -0.00000 0.00000 0.10462 s 160.04809 56.25308 m 171.93512 52.81964 l 178.79809 58.76792 l 166.91107 62.16868 lf -0 sg 160.04809 56.25308 m 171.93512 52.81964 l 178.79809 58.76792 l 166.91107 62.16868 lx -0.00000 0.00000 0.10489 s 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 59.92782 l 13.72595 66.79083 lf -0 sg 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 59.92782 l 13.72595 66.79083 lx -0.00000 0.00000 0.10488 s 221.32214 54.41098 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29808 lf -0 sg 221.32214 54.41098 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29808 lx -0.00000 0.00000 0.10486 s 190.68512 55.32942 m 202.57214 51.89945 l 209.43512 57.84270 l 197.54809 61.27343 lf -0 sg 190.68512 55.32942 m 202.57214 51.89945 l 209.43512 57.84270 l 197.54809 61.27343 lx -1.00000 0.99992 0.99992 s 140.62500 78.38370 m 146.56851 114.67362 l 150.00000 198.91174 l 144.05649 119.36101 lf -0 sg 140.62500 78.38370 m 146.56851 114.67362 l 150.00000 198.91174 l 144.05649 119.36101 lx -0.00000 0.00000 0.10607 s 135.35458 55.47405 m 141.29809 53.72768 l 144.72958 56.69528 l 138.78607 58.49503 lf -0 sg 135.35458 55.47405 m 141.29809 53.72768 l 144.72958 56.69528 l 138.78607 58.49503 lx -0.00000 0.00000 0.10573 s 110.66107 54.65510 m 122.54809 51.21995 l 129.41107 57.22043 l 117.52405 60.60467 lf -0 sg 110.66107 54.65510 m 122.54809 51.21995 l 129.41107 57.22043 l 117.52405 60.60467 lx -0.00000 0.00000 0.10490 s 61.27405 53.06502 m 85.04809 46.20157 l 98.77405 58.09025 l 75.00000 64.95134 lf -0 sg 61.27405 53.06502 m 85.04809 46.20157 l 98.77405 58.09025 l 75.00000 64.95134 lx -0.00000 0.00000 0.10446 s 141.29809 53.72768 m 153.18512 50.30868 l 160.04809 56.25308 l 148.16107 59.66289 lf -0 sg 141.29809 53.72768 m 153.18512 50.30868 l 160.04809 56.25308 l 148.16107 59.66289 lx -1.00000 sg 146.56851 114.67362 m 152.51202 74.95243 l 155.94351 115.93356 l 150.00000 198.91174 lf -0 sg 146.56851 114.67362 m 152.51202 74.95243 l 155.94351 115.93356 l 150.00000 198.91174 lx -0.00000 0.00000 0.10498 s 171.93512 52.81964 m 183.82214 49.38619 l 190.68512 55.32942 l 178.79809 58.76792 lf -0 sg 171.93512 52.81964 m 183.82214 49.38619 l 190.68512 55.32942 l 178.79809 58.76792 lx -0.00000 0.00000 0.10489 s 202.57214 51.89945 m 214.45917 48.46759 l 221.32214 54.41098 l 209.43512 57.84270 lf -0 sg 202.57214 51.89945 m 214.45917 48.46759 l 221.32214 54.41098 l 209.43512 57.84270 lx -0.00000 0.00000 0.10547 s 122.54809 51.21995 m 134.43512 47.79211 l 141.29809 53.72768 l 129.41107 57.22043 lf -0 sg 122.54809 51.21995 m 134.43512 47.79211 l 141.29809 53.72768 l 129.41107 57.22043 lx -0.00000 0.00000 0.10485 s 183.82214 49.38619 m 195.70917 45.95520 l 202.57214 51.89945 l 190.68512 55.32942 lf -0 sg 183.82214 49.38619 m 195.70917 45.95520 l 202.57214 51.89945 l 190.68512 55.32942 lx -0.00000 0.00000 0.10489 s 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 53.06502 l 37.50000 59.92782 lf -0 sg 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 53.06502 l 37.50000 59.92782 lx -0.00000 0.00000 0.10472 s 134.43512 47.79211 m 146.32214 44.36428 l 153.18512 50.30868 l 141.29809 53.72768 lf -0 sg 134.43512 47.79211 m 146.32214 44.36428 l 153.18512 50.30868 l 141.29809 53.72768 lx -0.00000 0.00000 0.10482 s 85.04809 46.20157 m 108.82214 39.34043 l 122.54809 51.21995 l 98.77405 58.09025 lf -0 sg 85.04809 46.20157 m 108.82214 39.34043 l 122.54809 51.21995 l 98.77405 58.09025 lx -0.00000 0.00000 0.10489 s 195.70917 45.95520 m 207.59619 42.52421 l 214.45917 48.46759 l 202.57214 51.89945 lf -0 sg 195.70917 45.95520 m 207.59619 42.52421 l 214.45917 48.46759 l 202.57214 51.89945 lx -0.00000 0.00000 0.10494 s 146.32214 44.36428 m 170.09619 37.49966 l 183.82214 49.38619 l 160.04809 56.25308 lf -0 sg 146.32214 44.36428 m 170.09619 37.49966 l 183.82214 49.38619 l 160.04809 56.25308 lx -0.00000 0.00000 0.10489 s 207.59619 42.52421 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41098 lf -0 sg 207.59619 42.52421 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41098 lx -0.00000 0.00000 0.10488 s 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20157 l 61.27405 53.06502 lf -0 sg 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20157 l 61.27405 53.06502 lx -0.00000 0.00000 0.10482 s 108.82214 39.34043 m 132.59619 32.47563 l 146.32214 44.36428 l 122.54809 51.21995 lf -0 sg 108.82214 39.34043 m 132.59619 32.47563 l 146.32214 44.36428 l 122.54809 51.21995 lx -0.00000 0.00000 0.10487 s 170.09619 37.49966 m 193.87024 30.63712 l 207.59619 42.52421 l 183.82214 49.38619 lf -0 sg 170.09619 37.49966 m 193.87024 30.63712 l 207.59619 42.52421 l 183.82214 49.38619 lx -0.00000 0.00000 0.10491 s 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.34043 l 85.04809 46.20157 lf -0 sg 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.34043 l 85.04809 46.20157 lx -0.00000 0.00000 0.10490 s 132.59619 32.47563 m 156.37024 25.61306 l 170.09619 37.49966 l 146.32214 44.36428 lf -0 sg 132.59619 32.47563 m 156.37024 25.61306 l 170.09619 37.49966 l 146.32214 44.36428 lx -0.00000 0.00000 0.10489 s 193.87024 30.63712 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52421 lf -0 sg 193.87024 30.63712 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52421 lx -0.00000 0.00000 0.10491 s 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47563 l 108.82214 39.34043 lf -0 sg 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47563 l 108.82214 39.34043 lx -0.00000 0.00000 0.10488 s 156.37024 25.61306 m 180.14428 18.74998 l 193.87024 30.63712 l 170.09619 37.49966 lf -0 sg 156.37024 25.61306 m 180.14428 18.74998 l 193.87024 30.63712 l 170.09619 37.49966 lx -0.00000 0.00000 0.10488 s 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61306 l 132.59619 32.47563 lf -0 sg 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61306 l 132.59619 32.47563 lx -0.00000 0.00000 0.10489 s 180.14428 18.74998 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.63712 lf -0 sg 180.14428 18.74998 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.63712 lx -0.00000 0.00000 0.10489 s 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 18.74998 l 156.37024 25.61306 lf -0 sg 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 18.74998 l 156.37024 25.61306 lx -0.00000 0.00000 0.10489 s 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 18.74998 lf -0 sg 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 18.74998 lx -showpage -. -DEAL:: Postprocessing: time=0.03, step=1, sweep=1. [ee] -DEAL:: Postprocessing: time=0.06, step=2, sweep=1. [ee] -DEAL:: Postprocessing: time=0.08, step=3, sweep=1. [ee] -DEAL:: Postprocessing: time=0.11, step=4, sweep=1. [ee] -DEAL:: Postprocessing: time=0.14, step=5, sweep=1. [ee] -DEAL:: Postprocessing: time=0.17, step=6, sweep=1. [ee] -DEAL:: Postprocessing: time=0.20, step=7, sweep=1. [ee] -DEAL:: Postprocessing: time=0.22, step=8, sweep=1. [ee] -DEAL:: Postprocessing: time=0.25, step=9, sweep=1. [ee] -DEAL:: Postprocessing: time=0.28, step=10, sweep=1. [ee] -DEAL:: Postprocessing: time=0.31, step=11, sweep=1. [ee] -DEAL:: Postprocessing: time=0.34, step=12, sweep=1. [ee] -DEAL:: Postprocessing: time=0.36, step=13, sweep=1. [ee] -DEAL:: Postprocessing: time=0.39, step=14, sweep=1. [ee] -DEAL:: Postprocessing: time=0.42, step=15, sweep=1. [ee] -DEAL:: Postprocessing: time=0.45, step=16, sweep=1. [ee] -DEAL:: Postprocessing: time=0.48, step=17, sweep=1. [ee] -DEAL:: Postprocessing: time=0.50, step=18, sweep=1. [ee] -DEAL:: Postprocessing: time=0.53, step=19, sweep=1. [ee] -DEAL:: Postprocessing: time=0.56, step=20, sweep=1. [ee] -DEAL:: Postprocessing: time=0.59, step=21, sweep=1. [ee] -DEAL:: Postprocessing: time=0.62, step=22, sweep=1. [ee] -DEAL:: Postprocessing: time=0.64, step=23, sweep=1. [ee] -DEAL:: Postprocessing: time=0.67, step=24, sweep=1. [ee] -DEAL:: Postprocessing: time=0.70, step=25, sweep=1. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library - -%%BoundingBox: 0 0 300 150 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50 setlinewidth -0.03070 0.96930 0.00000 s 96.08167 138.11298 m 119.85572 133.93237 l 133.58167 143.13702 l 109.80762 150.00000 lf -0 sg 96.08167 138.11298 m 119.85572 133.93237 l 133.58167 143.13702 l 109.80762 150.00000 lx -0.00000 0.93855 0.06145 s 119.85572 133.93237 m 143.62976 122.77036 l 157.35572 136.27405 l 133.58167 143.13702 lf -0 sg 119.85572 133.93237 m 143.62976 122.77036 l 157.35572 136.27405 l 133.58167 143.13702 lx -0.12047 0.87953 0.00000 s 82.35572 126.22595 m 106.12976 120.93776 l 119.85572 133.93237 l 96.08167 138.11298 lf -0 sg 82.35572 126.22595 m 106.12976 120.93776 l 119.85572 133.93237 l 96.08167 138.11298 lx -0.00000 0.65262 0.34738 s 143.62976 122.77036 m 167.40381 115.19041 l 181.12976 129.41107 l 157.35572 136.27405 lf -0 sg 143.62976 122.77036 m 167.40381 115.19041 l 181.12976 129.41107 l 157.35572 136.27405 lx -0.08421 0.91579 0.00000 s 106.12976 120.93776 m 129.90381 113.48070 l 143.62976 122.77036 l 119.85572 133.93237 lf -0 sg 106.12976 120.93776 m 129.90381 113.48070 l 143.62976 122.77036 l 119.85572 133.93237 lx -0.00000 0.75987 0.24013 s 167.40381 115.19041 m 191.17786 110.92595 l 204.90381 122.54809 l 181.12976 129.41107 lf -0 sg 167.40381 115.19041 m 191.17786 110.92595 l 204.90381 122.54809 l 181.12976 129.41107 lx -0.00000 0.82764 0.17236 s 68.62976 114.33893 m 92.40381 105.02134 l 106.12976 120.93776 l 82.35572 126.22595 lf -0 sg 68.62976 114.33893 m 92.40381 105.02134 l 106.12976 120.93776 l 82.35572 126.22595 lx -0.00000 0.68535 0.31465 s 129.90381 113.48070 m 153.67786 105.23056 l 167.40381 115.19041 l 143.62976 122.77036 lf -0 sg 129.90381 113.48070 m 153.67786 105.23056 l 167.40381 115.19041 l 143.62976 122.77036 lx -0.00000 0.83150 0.16850 s 191.17786 110.92595 m 214.95191 102.72105 l 228.67786 115.68512 l 204.90381 122.54809 lf -0 sg 191.17786 110.92595 m 214.95191 102.72105 l 228.67786 115.68512 l 204.90381 122.54809 lx -0.00000 0.68064 0.31936 s 92.40381 105.02134 m 116.17786 97.05333 l 129.90381 113.48070 l 106.12976 120.93776 lf -0 sg 92.40381 105.02134 m 116.17786 97.05333 l 129.90381 113.48070 l 106.12976 120.93776 lx -0.00000 0.85817 0.14183 s 153.67786 105.23056 m 177.45191 100.90503 l 191.17786 110.92595 l 167.40381 115.19041 lf -0 sg 153.67786 105.23056 m 177.45191 100.90503 l 191.17786 110.92595 l 167.40381 115.19041 lx -0.00000 0.83219 0.16781 s 214.95191 102.72105 m 238.72595 97.21203 l 252.45191 108.82214 l 228.67786 115.68512 lf -0 sg 214.95191 102.72105 m 238.72595 97.21203 l 252.45191 108.82214 l 228.67786 115.68512 lx -0.00000 0.81282 0.18718 s 54.90381 102.45191 m 78.67786 96.90365 l 92.40381 105.02134 l 68.62976 114.33893 lf -0 sg 54.90381 102.45191 m 78.67786 96.90365 l 92.40381 105.02134 l 68.62976 114.33893 lx -0.00000 0.48420 0.51580 s 116.17786 97.05333 m 139.95191 89.83044 l 153.67786 105.23056 l 129.90381 113.48070 lf -0 sg 116.17786 97.05333 m 139.95191 89.83044 l 153.67786 105.23056 l 129.90381 113.48070 lx -0.00000 0.92601 0.07399 s 177.45191 100.90503 m 201.22595 91.43805 l 214.95191 102.72105 l 191.17786 110.92595 lf -0 sg 177.45191 100.90503 m 201.22595 91.43805 l 214.95191 102.72105 l 191.17786 110.92595 lx -0.06489 0.93511 0.00000 s 238.72595 97.21203 m 262.50000 93.07743 l 276.22595 101.95917 l 252.45191 108.82214 lf -0 sg 238.72595 97.21203 m 262.50000 93.07743 l 276.22595 101.95917 l 252.45191 108.82214 lx -0.00000 0.34418 0.65582 s 78.67786 96.90365 m 102.45191 84.06417 l 116.17786 97.05333 l 92.40381 105.02134 lf -0 sg 78.67786 96.90365 m 102.45191 84.06417 l 116.17786 97.05333 l 92.40381 105.02134 lx -0.00000 0.74923 0.25077 s 139.95191 89.83044 m 163.72595 86.82660 l 177.45191 100.90503 l 153.67786 105.23056 lf -0 sg 139.95191 89.83044 m 163.72595 86.82660 l 177.45191 100.90503 l 153.67786 105.23056 lx -0.00000 0.86213 0.13787 s 201.22595 91.43805 m 225.00000 86.04636 l 238.72595 97.21203 l 214.95191 102.72105 lf -0 sg 201.22595 91.43805 m 225.00000 86.04636 l 238.72595 97.21203 l 214.95191 102.72105 lx -0.04911 0.95089 0.00000 s 262.50000 93.07743 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lf -0 sg 262.50000 93.07743 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lx -0.40306 0.59694 0.00000 s 41.17786 90.56488 m 64.95191 91.60196 l 78.67786 96.90365 l 54.90381 102.45191 lf -0 sg 41.17786 90.56488 m 64.95191 91.60196 l 78.67786 96.90365 l 54.90381 102.45191 lx -0.00000 0.42421 0.57579 s 102.45191 84.06417 m 126.22595 86.04657 l 139.95191 89.83044 l 116.17786 97.05333 lf -0 sg 102.45191 84.06417 m 126.22595 86.04657 l 139.95191 89.83044 l 116.17786 97.05333 lx -0.00000 0.79085 0.20915 s 163.72595 86.82660 m 187.50000 76.90119 l 201.22595 91.43805 l 177.45191 100.90503 lf -0 sg 163.72595 86.82660 m 187.50000 76.90119 l 201.22595 91.43805 l 177.45191 100.90503 lx -0.19638 0.80362 0.00000 s 225.00000 86.04636 m 248.77405 79.49350 l 262.50000 93.07743 l 238.72595 97.21203 lf -0 sg 225.00000 86.04636 m 248.77405 79.49350 l 262.50000 93.07743 l 238.72595 97.21203 lx -0.00000 0.62064 0.37936 s 64.95191 91.60196 m 88.72595 67.77465 l 102.45191 84.06417 l 78.67786 96.90365 lf -0 sg 64.95191 91.60196 m 88.72595 67.77465 l 102.45191 84.06417 l 78.67786 96.90365 lx -0.00000 0.70203 0.29797 s 126.22595 86.04657 m 150.00000 71.71291 l 163.72595 86.82660 l 139.95191 89.83044 lf -0 sg 126.22595 86.04657 m 150.00000 71.71291 l 163.72595 86.82660 l 139.95191 89.83044 lx -0.00000 0.63680 0.36320 s 187.50000 76.90119 m 211.27405 71.53085 l 225.00000 86.04636 l 201.22595 91.43805 lf -0 sg 187.50000 76.90119 m 211.27405 71.53085 l 225.00000 86.04636 l 201.22595 91.43805 lx -0.39387 0.60613 0.00000 s 27.45191 78.67786 m 51.22595 72.96838 l 64.95191 91.60196 l 41.17786 90.56488 lf -0 sg 27.45191 78.67786 m 51.22595 72.96838 l 64.95191 91.60196 l 41.17786 90.56488 lx -0.12369 0.87631 0.00000 s 248.77405 79.49350 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 93.07743 lf -0 sg 248.77405 79.49350 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 93.07743 lx -0.00000 0.43879 0.56121 s 88.72595 67.77465 m 112.50000 71.81693 l 126.22595 86.04657 l 102.45191 84.06417 lf -0 sg 88.72595 67.77465 m 112.50000 71.81693 l 126.22595 86.04657 l 102.45191 84.06417 lx -0.00000 0.43790 0.56209 s 150.00000 71.71291 m 173.77405 66.89033 l 187.50000 76.90119 l 163.72595 86.82660 lf -0 sg 150.00000 71.71291 m 173.77405 66.89033 l 187.50000 76.90119 l 163.72595 86.82660 lx -0.00000 0.37439 0.62561 s 180.63702 71.89576 m 192.52405 69.50198 l 199.38702 74.21602 l 187.50000 76.90119 lf -0 sg 180.63702 71.89576 m 192.52405 69.50198 l 199.38702 74.21602 l 187.50000 76.90119 lx -0.00000 0.81394 0.18606 s 211.27405 71.53085 m 235.04809 64.50138 l 248.77405 79.49350 l 225.00000 86.04636 lf -0 sg 211.27405 71.53085 m 235.04809 64.50138 l 248.77405 79.49350 l 225.00000 86.04636 lx -0.14884 0.85116 0.00000 s 51.22595 72.96838 m 75.00000 69.71759 l 88.72595 67.77465 l 64.95191 91.60196 lf -0 sg 51.22595 72.96838 m 75.00000 69.71759 l 88.72595 67.77465 l 64.95191 91.60196 lx -0.00000 0.94343 0.05657 s 241.91107 71.99744 m 253.79809 68.24319 l 260.66107 75.40782 l 248.77405 79.49350 lf -0 sg 241.91107 71.99744 m 253.79809 68.24319 l 260.66107 75.40782 l 248.77405 79.49350 lx -0.00000 0.36158 0.63842 s 192.52405 69.50198 m 204.41107 63.31537 l 211.27405 71.53085 l 199.38702 74.21602 lf -0 sg 192.52405 69.50198 m 204.41107 63.31537 l 211.27405 71.53085 l 199.38702 74.21602 lx -0.00000 0.94874 0.05126 s 112.50000 71.81693 m 136.27405 61.62006 l 150.00000 71.71291 l 126.22595 86.04657 lf -0 sg 112.50000 71.81693 m 136.27405 61.62006 l 150.00000 71.71291 l 126.22595 86.04657 lx -0.00000 0.88277 0.11723 s 253.79809 68.24319 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 75.40782 lf -0 sg 253.79809 68.24319 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 75.40782 lx -0.00000 0.25212 0.74788 s 204.41107 63.31537 m 216.29809 60.05564 l 223.16107 68.01612 l 211.27405 71.53085 lf -0 sg 204.41107 63.31537 m 216.29809 60.05564 l 223.16107 68.01612 l 211.27405 71.53085 lx -0.00000 0.89403 0.10597 s 173.77405 66.89033 m 185.66107 69.56880 l 192.52405 69.50198 l 180.63702 71.89576 lf -0 sg 173.77405 66.89033 m 185.66107 69.56880 l 192.52405 69.50198 l 180.63702 71.89576 lx -0.00000 0.87454 0.12546 s 13.72595 66.79083 m 37.50000 58.71720 l 51.22595 72.96838 l 27.45191 78.67786 lf -0 sg 13.72595 66.79083 m 37.50000 58.71720 l 51.22595 72.96838 l 27.45191 78.67786 lx -0.00000 0.32865 0.67135 s 75.00000 69.71759 m 98.77405 50.91286 l 112.50000 71.81693 l 88.72595 67.77465 lf -0 sg 75.00000 69.71759 m 98.77405 50.91286 l 112.50000 71.81693 l 88.72595 67.77465 lx -0.00000 0.69735 0.30265 s 235.04809 64.50138 m 246.93512 62.30889 l 253.79809 68.24319 l 241.91107 71.99744 lf -0 sg 235.04809 64.50138 m 246.93512 62.30889 l 253.79809 68.24319 l 241.91107 71.99744 lx -0.00000 0.69177 0.30823 s 136.27405 61.62006 m 160.04809 59.01324 l 173.77405 66.89033 l 150.00000 71.71291 lf -0 sg 136.27405 61.62006 m 160.04809 59.01324 l 173.77405 66.89033 l 150.00000 71.71291 lx -0.00000 0.32321 0.67679 s 200.97958 64.37639 m 206.92309 60.38875 l 210.35458 61.68550 l 204.41107 63.31537 lf -0 sg 200.97958 64.37639 m 206.92309 60.38875 l 210.35458 61.68550 l 204.41107 63.31537 lx -0.10452 0.89548 0.00000 s 185.66107 69.56880 m 197.54809 65.43740 l 204.41107 63.31537 l 192.52405 69.50198 lf -0 sg 185.66107 69.56880 m 197.54809 65.43740 l 204.41107 63.31537 l 192.52405 69.50198 lx -0.00000 0.49854 0.50146 s 216.29809 60.05564 m 228.18512 60.94194 l 235.04809 64.50138 l 223.16107 68.01612 lf -0 sg 216.29809 60.05564 m 228.18512 60.94194 l 235.04809 64.50138 l 223.16107 68.01612 lx -0.00000 0.62369 0.37631 s 231.61661 62.72166 m 237.56012 60.73131 l 240.99161 63.40513 l 235.04809 64.50138 lf -0 sg 231.61661 62.72166 m 237.56012 60.73131 l 240.99161 63.40513 l 235.04809 64.50138 lx -0.00000 0.08223 0.91777 s 206.92309 60.38875 m 212.86661 56.54561 l 216.29809 60.05564 l 210.35458 61.68550 lf -0 sg 206.92309 60.38875 m 212.86661 56.54561 l 216.29809 60.05564 l 210.35458 61.68550 lx -0.00000 0.81369 0.18631 s 246.93512 62.30889 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.24319 lf -0 sg 246.93512 62.30889 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.24319 lx -0.00000 0.00000 0.73021 s 212.86661 56.54561 m 218.81012 48.53698 l 222.24161 60.49879 l 216.29809 60.05564 lf -0 sg 212.86661 56.54561 m 218.81012 48.53698 l 222.24161 60.49879 l 216.29809 60.05564 lx -0.12688 0.87312 0.00000 s 166.91107 62.95179 m 178.79809 58.75679 l 185.66107 69.56880 l 173.77405 66.89033 lf -0 sg 166.91107 62.95179 m 178.79809 58.75679 l 185.66107 69.56880 l 173.77405 66.89033 lx -0.00000 0.72802 0.27198 s 237.56012 60.73131 m 243.50363 59.88153 l 246.93512 62.30889 l 240.99161 63.40513 lf -0 sg 237.56012 60.73131 m 243.50363 59.88153 l 246.93512 62.30889 l 240.99161 63.40513 lx -0.00000 0.81885 0.18115 s 197.54809 65.43740 m 203.49161 56.37151 l 206.92309 60.38875 l 200.97958 64.37639 lf -0 sg 197.54809 65.43740 m 203.49161 56.37151 l 206.92309 60.38875 l 200.97958 64.37639 lx -0.22812 0.77188 0.00000 s 37.50000 58.71720 m 61.27405 54.50209 l 75.00000 69.71759 l 51.22595 72.96838 lf -0 sg 37.50000 58.71720 m 61.27405 54.50209 l 75.00000 69.71759 l 51.22595 72.96838 lx -0.00000 0.32314 0.67686 s 98.77405 50.91286 m 122.54809 48.32349 l 136.27405 61.62006 l 112.50000 71.81693 lf -0 sg 98.77405 50.91286 m 122.54809 48.32349 l 136.27405 61.62006 l 112.50000 71.81693 lx -0.00000 0.05229 0.94771 s 203.49161 56.37151 m 209.43512 52.95748 l 212.86661 56.54561 l 206.92309 60.38875 lf -0 sg 203.49161 56.37151 m 209.43512 52.95748 l 212.86661 56.54561 l 206.92309 60.38875 lx -0.00000 sg 209.43512 52.95748 m 215.37863 42.89983 l 218.81012 48.53698 l 212.86661 56.54561 lf -0 sg 209.43512 52.95748 m 215.37863 42.89983 l 218.81012 48.53698 l 212.86661 56.54561 lx -0.00000 0.93643 0.06357 s 228.18512 60.94194 m 234.12863 60.56399 l 237.56012 60.73131 l 231.61661 62.72166 lf -0 sg 228.18512 60.94194 m 234.12863 60.56399 l 237.56012 60.73131 l 231.61661 62.72166 lx -0.00000 0.44047 0.55953 s 218.81012 48.53698 m 224.75363 61.25647 l 228.18512 60.94194 l 222.24161 60.49879 lf -0 sg 218.81012 48.53698 m 224.75363 61.25647 l 228.18512 60.94194 l 222.24161 60.49879 lx -0.24120 0.75880 0.00000 s 178.79809 58.75679 m 190.68512 52.68430 l 197.54809 65.43740 l 185.66107 69.56880 lf -0 sg 178.79809 58.75679 m 190.68512 52.68430 l 197.54809 65.43740 l 185.66107 69.56880 lx -0.00000 0.52429 0.47571 s 194.11661 59.06085 m 200.06012 48.64973 l 203.49161 56.37151 l 197.54809 65.43740 lf -0 sg 194.11661 59.06085 m 200.06012 48.64973 l 203.49161 56.37151 l 197.54809 65.43740 lx -0.00000 0.96693 0.03307 s 234.12863 60.56399 m 240.07214 57.45418 l 243.50363 59.88153 l 237.56012 60.73131 lf -0 sg 234.12863 60.56399 m 240.07214 57.45418 l 243.50363 59.88153 l 237.56012 60.73131 lx -0.00000 0.00000 0.64658 s 200.06012 48.64973 m 206.00363 49.28020 l 209.43512 52.95748 l 203.49161 56.37151 lf -0 sg 200.06012 48.64973 m 206.00363 49.28020 l 209.43512 52.95748 l 203.49161 56.37151 lx -0.00000 0.87628 0.12372 s 240.07214 57.45418 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 62.30889 lf -0 sg 240.07214 57.45418 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 62.30889 lx -0.00000 0.00000 0.22348 s 206.00363 49.28020 m 211.94714 47.83592 l 215.37863 42.89983 l 209.43512 52.95748 lf -0 sg 206.00363 49.28020 m 211.94714 47.83592 l 215.37863 42.89983 l 209.43512 52.95748 lx -0.00000 0.25900 0.74100 s 215.37863 42.89983 m 221.32214 63.47033 l 224.75363 61.25647 l 218.81012 48.53698 lf -0 sg 215.37863 42.89983 m 221.32214 63.47033 l 224.75363 61.25647 l 218.81012 48.53698 lx -0.00000 0.80879 0.19121 s 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 58.71720 l 13.72595 66.79083 lf -0 sg 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 58.71720 l 13.72595 66.79083 lx -0.00000 0.93087 0.06913 s 160.04809 59.01324 m 171.93512 50.23330 l 178.79809 58.75679 l 166.91107 62.95179 lf -0 sg 160.04809 59.01324 m 171.93512 50.23330 l 178.79809 58.75679 l 166.91107 62.95179 lx -0.00000 0.08175 0.91825 s 190.68512 52.68430 m 196.62863 49.47409 l 200.06012 48.64973 l 194.11661 59.06085 lf -0 sg 190.68512 52.68430 m 196.62863 49.47409 l 200.06012 48.64973 l 194.11661 59.06085 lx -0.60447 0.39553 0.00000 s 224.75363 61.25647 m 230.69714 62.02898 l 234.12863 60.56399 l 228.18512 60.94194 lf -0 sg 224.75363 61.25647 m 230.69714 62.02898 l 234.12863 60.56399 l 228.18512 60.94194 lx -0.00000 0.00000 0.54945 s 196.62863 49.47409 m 202.57214 46.26388 l 206.00363 49.28020 l 200.06012 48.64973 lf -0 sg 196.62863 49.47409 m 202.57214 46.26388 l 206.00363 49.28020 l 200.06012 48.64973 lx -0.25733 0.74267 0.00000 s 230.69714 62.02898 m 236.64065 51.79144 l 240.07214 57.45418 l 234.12863 60.56399 lf -0 sg 230.69714 62.02898 m 236.64065 51.79144 l 240.07214 57.45418 l 234.12863 60.56399 lx -0.13874 0.86126 0.00000 s 61.27405 54.50209 m 85.04809 51.75275 l 98.77405 50.91286 l 75.00000 69.71759 lf -0 sg 61.27405 54.50209 m 85.04809 51.75275 l 98.77405 50.91286 l 75.00000 69.71759 lx -0.00000 0.12705 0.87295 s 171.93512 50.23330 m 183.82214 41.45336 l 190.68512 52.68430 l 178.79809 58.75679 lf -0 sg 171.93512 50.23330 m 183.82214 41.45336 l 190.68512 52.68430 l 178.79809 58.75679 lx -0.00000 0.42084 0.57916 s 122.54809 48.32349 m 146.32214 37.97874 l 160.04809 59.01324 l 136.27405 61.62006 lf -0 sg 122.54809 48.32349 m 146.32214 37.97874 l 160.04809 59.01324 l 136.27405 61.62006 lx -0.00000 0.16804 0.83196 s 202.57214 46.26388 m 208.51565 54.27688 l 211.94714 47.83592 l 206.00363 49.28020 lf -0 sg 202.57214 46.26388 m 208.51565 54.27688 l 211.94714 47.83592 l 206.00363 49.28020 lx -0.08702 0.91298 0.00000 s 211.94714 47.83592 m 217.89065 64.59655 l 221.32214 63.47033 l 215.37863 42.89983 lf -0 sg 211.94714 47.83592 m 217.89065 64.59655 l 221.32214 63.47033 l 215.37863 42.89983 lx -1.00000 0.22512 0.22512 s 221.32214 63.47033 m 227.26565 57.03676 l 230.69714 62.02898 l 224.75363 61.25647 lf -0 sg 221.32214 63.47033 m 227.26565 57.03676 l 230.69714 62.02898 l 224.75363 61.25647 lx -0.08828 0.91172 0.00000 s 227.26565 57.03676 m 233.20917 46.12871 l 236.64065 51.79144 l 230.69714 62.02898 lf -0 sg 227.26565 57.03676 m 233.20917 46.12871 l 236.64065 51.79144 l 230.69714 62.02898 lx -0.00000 0.63156 0.36844 s 233.20917 46.12871 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 57.45418 lf -0 sg 233.20917 46.12871 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 57.45418 lx -0.00000 0.07454 0.92546 s 183.82214 41.45336 m 195.70917 48.07909 l 202.57214 46.26388 l 190.68512 52.68430 lf -0 sg 183.82214 41.45336 m 195.70917 48.07909 l 202.57214 46.26388 l 190.68512 52.68430 lx -0.00000 0.89071 0.10929 s 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 54.50209 l 37.50000 58.71720 lf -0 sg 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 54.50209 l 37.50000 58.71720 lx -0.00000 0.94576 0.05424 s 223.83417 54.54176 m 229.77768 44.89144 l 233.20917 46.12871 l 227.26565 57.03676 lf -0 sg 223.83417 54.54176 m 229.77768 44.89144 l 233.20917 46.12871 l 227.26565 57.03676 lx -1.00000 0.66631 0.66631 s 217.89065 64.59655 m 223.83417 54.54176 l 227.26565 57.03676 l 221.32214 63.47033 lf -0 sg 217.89065 64.59655 m 223.83417 54.54176 l 227.26565 57.03676 l 221.32214 63.47033 lx -0.00000 0.80486 0.19514 s 85.04809 51.75275 m 108.82214 42.58699 l 122.54809 48.32349 l 98.77405 50.91286 lf -0 sg 85.04809 51.75275 m 108.82214 42.58699 l 122.54809 48.32349 l 98.77405 50.91286 lx -1.00000 0.34584 0.34584 s 208.51565 54.27688 m 214.45917 62.28989 l 217.89065 64.59655 l 211.94714 47.83592 lf -0 sg 208.51565 54.27688 m 214.45917 62.28989 l 217.89065 64.59655 l 211.94714 47.83592 lx -0.00000 0.47320 0.52680 s 146.32214 37.97874 m 170.09619 41.95681 l 183.82214 41.45336 l 160.04809 59.01324 lf -0 sg 146.32214 37.97874 m 170.09619 41.95681 l 183.82214 41.45336 l 160.04809 59.01324 lx -0.20568 0.79432 0.00000 s 220.40268 52.18405 m 226.34619 43.65418 l 229.77768 44.89144 l 223.83417 54.54176 lf -0 sg 220.40268 52.18405 m 226.34619 43.65418 l 229.77768 44.89144 l 223.83417 54.54176 lx -0.00000 0.52251 0.47749 s 226.34619 43.65418 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 46.12871 lf -0 sg 226.34619 43.65418 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 46.12871 lx -1.00000 sg 214.45917 62.28989 m 220.40268 52.18405 l 223.83417 54.54176 l 217.89065 64.59655 lf -0 sg 214.45917 62.28989 m 220.40268 52.18405 l 223.83417 54.54176 l 217.89065 64.59655 lx -0.81742 0.18258 0.00000 s 195.70917 48.07909 m 207.59619 48.69724 l 214.45917 62.28989 l 202.57214 46.26388 lf -0 sg 195.70917 48.07909 m 207.59619 48.69724 l 214.45917 62.28989 l 202.57214 46.26388 lx -0.00000 0.67542 0.32458 s 176.95917 41.70508 m 188.84619 44.01018 l 195.70917 48.07909 l 183.82214 41.45336 lf -0 sg 176.95917 41.70508 m 188.84619 44.01018 l 195.70917 48.07909 l 183.82214 41.45336 lx -0.19357 0.80643 0.00000 s 216.97119 47.13070 m 222.91470 40.20305 l 226.34619 43.65418 l 220.40268 52.18405 lf -0 sg 216.97119 47.13070 m 222.91470 40.20305 l 226.34619 43.65418 l 220.40268 52.18405 lx -1.00000 0.73625 0.73625 s 211.02768 55.49356 m 216.97119 47.13070 l 220.40268 52.18405 l 214.45917 62.28989 lf -0 sg 211.02768 55.49356 m 216.97119 47.13070 l 220.40268 52.18405 l 214.45917 62.28989 lx -0.27613 0.72387 0.00000 s 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 51.75275 l 61.27405 54.50209 lf -0 sg 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 51.75275 l 61.27405 54.50209 lx -0.00000 0.81634 0.18366 s 108.82214 42.58699 m 132.59619 37.43648 l 146.32214 37.97874 l 122.54809 48.32349 lf -0 sg 108.82214 42.58699 m 132.59619 37.43648 l 146.32214 37.97874 l 122.54809 48.32349 lx -1.00000 0.09981 0.09981 s 207.59619 48.69724 m 213.53970 42.72458 l 216.97119 47.13070 l 211.02768 55.49356 lf -0 sg 207.59619 48.69724 m 213.53970 42.72458 l 216.97119 47.13070 l 211.02768 55.49356 lx -0.00000 0.93850 0.06150 s 213.53970 42.72458 m 219.48321 36.75192 l 222.91470 40.20305 l 216.97119 47.13070 lf -0 sg 213.53970 42.72458 m 219.48321 36.75192 l 222.91470 40.20305 l 216.97119 47.13070 lx -0.00000 0.66560 0.33440 s 219.48321 36.75192 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 43.65418 lf -0 sg 219.48321 36.75192 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 43.65418 lx -0.72347 0.27653 0.00000 s 188.84619 44.01018 m 200.73321 39.12128 l 207.59619 48.69724 l 195.70917 48.07909 lf -0 sg 188.84619 44.01018 m 200.73321 39.12128 l 207.59619 48.69724 l 195.70917 48.07909 lx -0.40125 0.59875 0.00000 s 170.09619 41.95681 m 181.98321 36.53500 l 188.84619 44.01018 l 176.95917 41.70508 lf -0 sg 170.09619 41.95681 m 181.98321 36.53500 l 188.84619 44.01018 l 176.95917 41.70508 lx -0.12133 0.87867 0.00000 s 200.73321 39.12128 m 212.62024 31.04810 l 219.48321 36.75192 l 207.59619 48.69724 lf -0 sg 200.73321 39.12128 m 212.62024 31.04810 l 219.48321 36.75192 l 207.59619 48.69724 lx -0.37936 0.62064 0.00000 s 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 42.58699 l 85.04809 51.75275 lf -0 sg 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 42.58699 l 85.04809 51.75275 lx -0.00000 0.62462 0.37538 s 212.62024 31.04810 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 36.75192 lf -0 sg 212.62024 31.04810 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 36.75192 lx -0.11439 0.88561 0.00000 s 132.59619 37.43648 m 156.37024 26.73043 l 170.09619 41.95681 l 146.32214 37.97874 lf -0 sg 132.59619 37.43648 m 156.37024 26.73043 l 170.09619 41.95681 l 146.32214 37.97874 lx -0.41827 0.58173 0.00000 s 181.98321 36.53500 m 193.87024 31.11318 l 200.73321 39.12128 l 188.84619 44.01018 lf -0 sg 181.98321 36.53500 m 193.87024 31.11318 l 200.73321 39.12128 l 188.84619 44.01018 lx -0.00000 0.94358 0.05642 s 193.87024 31.11318 m 205.75726 27.44362 l 212.62024 31.04810 l 200.73321 39.12128 lf -0 sg 193.87024 31.11318 m 205.75726 27.44362 l 212.62024 31.04810 l 200.73321 39.12128 lx -0.34571 0.65429 0.00000 s 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 37.43648 l 108.82214 42.58699 lf -0 sg 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 37.43648 l 108.82214 42.58699 lx -0.00000 0.77161 0.22839 s 205.75726 27.44362 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.04810 lf -0 sg 205.75726 27.44362 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.04810 lx -0.17968 0.82032 0.00000 s 156.37024 26.73043 m 180.14428 17.99560 l 193.87024 31.11318 l 170.09619 41.95681 lf -0 sg 156.37024 26.73043 m 180.14428 17.99560 l 193.87024 31.11318 l 170.09619 41.95681 lx -0.22426 0.77574 0.00000 s 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 26.73043 l 132.59619 37.43648 lf -0 sg 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 26.73043 l 132.59619 37.43648 lx -0.00000 0.86194 0.13806 s 180.14428 17.99560 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 31.11318 lf -0 sg 180.14428 17.99560 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 31.11318 lx -0.00000 0.89849 0.10151 s 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.99560 l 156.37024 26.73043 lf -0 sg 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.99560 l 156.37024 26.73043 lx -0.00000 0.83479 0.16521 s 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.99560 lf -0 sg 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.99560 lx -showpage -. -DEAL:: -DEAL:: Collecting refinement data: -DEAL:: Refining each time step separately. -DEAL:: Got 4775 presently, expecting 7243 for next sweep. -DEAL:: Writing statistics for whole sweep.# Description of fields -DEAL::# ===================== -DEAL::# General: -DEAL::# time -# Primal problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Dual problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Error estimation: -# total estimated error in this timestep -# Postprocessing: -# Huyghens wave -DEAL:: -DEAL:: -DEAL::0 157 194 0 0 0.00 0.00 0.00 157 741 8 9 0.00 0.00 0.00 0.00 -0.10 -DEAL::0.03 157 194 8 12 0.92 1.33 2.26 157 741 8 10 0.00 0.00 0.00 -0.23 0.02 -DEAL::0.06 202 242 8 11 0.60 1.66 2.26 202 933 10 10 0.00 0.00 0.00 -0.14 0.27 -DEAL::0.08 205 246 8 11 1.29 0.96 2.26 205 949 10 10 0.00 0.00 0.00 0.06 0.27 -DEAL::0.11 190 230 9 11 1.12 1.14 2.26 190 884 9 10 0.00 0.00 0.00 0.00 0.17 -DEAL::0.14 211 252 9 12 1.19 1.07 2.26 211 971 11 10 0.00 0.00 0.00 0.09 0.10 -DEAL::0.17 229 272 9 12 1.06 1.20 2.26 229 1051 10 10 0.00 0.00 0.00 -0.01 -0.25 -DEAL::0.20 226 267 9 12 0.94 1.10 2.04 226 1029 9 10 0.00 0.00 0.00 0.13 -1.07 -DEAL::0.22 229 274 9 11 0.88 0.77 1.65 229 1057 10 10 0.00 0.00 0.00 0.06 -3.49 -DEAL::0.25 286 333 9 12 0.90 0.76 1.66 286 1288 12 10 0.00 0.00 0.00 -0.10 -7.40 -DEAL::0.28 283 328 9 11 0.79 0.73 1.52 283 1267 12 10 0.00 0.00 0.00 0.15 -2.00 -DEAL::0.31 244 287 9 12 0.62 0.78 1.40 244 1103 11 10 0.00 0.00 0.00 0.07 21.50 -DEAL::0.34 238 279 9 12 0.68 0.72 1.40 238 1071 11 10 0.00 0.00 0.00 0.24 37.53 -DEAL::0.36 202 244 9 12 0.64 0.54 1.18 202 932 9 10 0.00 0.00 0.00 0.02 -9.57 -DEAL::0.39 193 231 9 12 0.49 0.52 1.01 193 879 9 10 0.00 0.00 0.00 0.07 -132.80 -DEAL::0.42 190 228 9 12 0.50 0.51 1.01 190 867 9 10 0.00 0.00 0.00 0.00 -176.92 -DEAL::0.45 166 201 9 11 0.51 0.41 0.92 166 761 8 10 0.00 0.00 0.00 -0.05 101.55 -DEAL::0.48 154 189 9 12 0.40 0.41 0.81 154 713 8 10 0.00 0.00 0.00 0.28 669.64 -DEAL::0.50 148 181 9 12 0.36 0.40 0.76 148 681 8 10 0.00 0.00 0.00 -0.31 1025.25 -DEAL::0.53 148 181 9 12 0.37 0.39 0.76 148 681 7 10 0.00 0.00 0.00 0.53 511.15 -DEAL::0.56 133 166 9 12 0.39 0.34 0.73 133 621 7 10 0.00 0.00 0.00 0.82 -713.25 -DEAL::0.59 133 166 9 12 0.37 0.36 0.73 133 621 6 10 0.00 0.00 0.00 0.34 -1066.62 -DEAL::0.62 112 141 9 11 0.31 0.39 0.71 112 526 5 9 0.00 0.00 0.00 0.43 1228.72 -DEAL::0.64 106 135 9 11 0.36 0.32 0.68 106 502 5 9 0.00 0.00 0.00 -0.41 6735.49 -DEAL::0.67 118 149 9 11 0.37 0.31 0.68 118 557 5 9 0.00 0.00 0.00 -1.37 12320.43 -DEAL::0.70 115 146 9 11 0.32 0.36 0.67 115 545 0 0 0.00 0.00 0.00 -0.69 9526.42 -DEAL:: -DEAL:: Writing summary.Summary of this sweep: -====================== - - Accumulated number of cells: 4775 - Acc. number of primal dofs : 11512 - Acc. number of dual dofs : 43942 - Accumulated error : 0.00 - - Evaluations: - ------------ - Hughens wave -- weighted time: 0.66 - average : 0.01 - - -DEAL:: -DEAL:: -DEAL::Sweep 2 : -DEAL::--------- -DEAL:: Primal problem: time=0, step=0, sweep=2. 157 cells, 198 dofsStarting value 0 -DEAL:cg::Convergence step 0 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 14 value 0 -DEAL:cg::Starting value 0 -DEAL:cg::Convergence step 0 value 0 -DEAL:cg::Starting value 0 -DEAL:cg::Convergence step 0 value 0 -DEAL::. -DEAL:: Primal problem: time=0.03, step=1, sweep=2. 190 cells, 233 dofsStarting value 0.00 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.05 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.06, step=2, sweep=2. 247 cells, 297 dofsStarting value 0.00 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.06 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.08, step=3, sweep=2. 316 cells, 370 dofsStarting value 0.00 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.05 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.11, step=4, sweep=2. 409 cells, 472 dofsStarting value 0.00 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.05 -DEAL:cg::Convergence step 11 value 0 -DEAL::. -DEAL:: Primal problem: time=0.14, step=5, sweep=2. 472 cells, 536 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.05 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.17, step=6, sweep=2. 496 cells, 563 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.06 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.20, step=7, sweep=2. 475 cells, 543 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.06 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.22, step=8, sweep=2. 526 cells, 597 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.06 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.25, step=9, sweep=2. 589 cells, 668 dofsStarting value 0.00 -DEAL:cg::Convergence step 11 value 0 -DEAL:cg::Starting value 0.06 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.28, step=10, sweep=2. 544 cells, 623 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0 -DEAL:cg::Starting value 0.08 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.31, step=11, sweep=2. 520 cells, 593 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.10 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.34, step=12, sweep=2. 490 cells, 559 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0 -DEAL:cg::Starting value 0.11 -DEAL:cg::Convergence step 13 value 0 -DEAL::. -DEAL:: Primal problem: time=0.36, step=13, sweep=2. 460 cells, 526 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.10 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.39, step=14, sweep=2. 439 cells, 501 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.09 -DEAL:cg::Convergence step 13 value 0 -DEAL::. -DEAL:: Primal problem: time=0.42, step=15, sweep=2. 406 cells, 464 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.10 -DEAL:cg::Convergence step 13 value 0 -DEAL::. -DEAL:: Primal problem: time=0.45, step=16, sweep=2. 343 cells, 400 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.09 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.48, step=17, sweep=2. 301 cells, 353 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.08 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.50, step=18, sweep=2. 295 cells, 345 dofsStarting value 0.01 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.08 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.53, step=19, sweep=2. 223 cells, 268 dofsStarting value 0.01 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.08 -DEAL:cg::Convergence step 11 value 0 -DEAL::. -DEAL:: Primal problem: time=0.56, step=20, sweep=2. 199 cells, 241 dofsStarting value 0.01 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.07 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.59, step=21, sweep=2. 187 cells, 227 dofsStarting value 0.01 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.07 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.62, step=22, sweep=2. 154 cells, 192 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.06 -DEAL:cg::Convergence step 12 value 0 -DEAL::. -DEAL:: Primal problem: time=0.64, step=23, sweep=2. 121 cells, 157 dofsStarting value 0.01 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.07 -DEAL:cg::Convergence step 11 value 0 -DEAL::. -DEAL:: Primal problem: time=0.67, step=24, sweep=2. 124 cells, 162 dofsStarting value 0.01 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.07 -DEAL:cg::Convergence step 11 value 0 -DEAL::. -DEAL:: Primal problem: time=0.70, step=25, sweep=2. 124 cells, 162 dofsStarting value 0.01 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.06 -DEAL:cg::Convergence step 11 value 0 -DEAL::. -DEAL:: -DEAL:: Dual problem: time=0.70, step=25, sweep=2. 124 cells, 615 dofs. -DEAL:: Dual problem: time=0.67, step=24, sweep=2. 124 cells, 615 dofsStarting value 0.00 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL::. -DEAL:: Dual problem: time=0.64, step=23, sweep=2. 121 cells, 599 dofsStarting value 0.00 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL::. -DEAL:: Dual problem: time=0.62, step=22, sweep=2. 154 cells, 734 dofsStarting value 0.00 -DEAL:cg::Convergence step 8 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.59, step=21, sweep=2. 187 cells, 874 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.56, step=20, sweep=2. 199 cells, 930 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.53, step=19, sweep=2. 223 cells, 1038 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.50, step=18, sweep=2. 295 cells, 1344 dofsStarting value 0.00 -DEAL:cg::Convergence step 13 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.48, step=17, sweep=2. 301 cells, 1376 dofsStarting value 0.00 -DEAL:cg::Convergence step 15 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.45, step=16, sweep=2. 343 cells, 1561 dofsStarting value 0.00 -DEAL:cg::Convergence step 16 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.42, step=15, sweep=2. 406 cells, 1815 dofsStarting value 0.00 -DEAL:cg::Convergence step 16 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.39, step=14, sweep=2. 439 cells, 1963 dofsStarting value 0.00 -DEAL:cg::Convergence step 18 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.36, step=13, sweep=2. 460 cells, 2060 dofsStarting value 0.00 -DEAL:cg::Convergence step 17 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.34, step=12, sweep=2. 490 cells, 2195 dofsStarting value 0.00 -DEAL:cg::Convergence step 20 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.31, step=11, sweep=2. 520 cells, 2330 dofsStarting value 0.00 -DEAL:cg::Convergence step 19 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.28, step=10, sweep=2. 544 cells, 2450 dofsStarting value 0.00 -DEAL:cg::Convergence step 20 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.25, step=9, sweep=2. 589 cells, 2624 dofsStarting value 0.00 -DEAL:cg::Convergence step 21 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.22, step=8, sweep=2. 526 cells, 2342 dofsStarting value 0.00 -DEAL:cg::Convergence step 18 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.20, step=7, sweep=2. 475 cells, 2130 dofsStarting value 0.00 -DEAL:cg::Convergence step 18 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.17, step=6, sweep=2. 496 cells, 2210 dofsStarting value 0.00 -DEAL:cg::Convergence step 19 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.14, step=5, sweep=2. 472 cells, 2103 dofsStarting value 0.00 -DEAL:cg::Convergence step 18 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.11, step=4, sweep=2. 409 cells, 1852 dofsStarting value 0.00 -DEAL:cg::Convergence step 17 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.08, step=3, sweep=2. 316 cells, 1446 dofsStarting value 0.00 -DEAL:cg::Convergence step 13 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.06, step=2, sweep=2. 247 cells, 1159 dofsStarting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0.03, step=1, sweep=2. 190 cells, 903 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0 -DEAL::. -DEAL:: Dual problem: time=0, step=0, sweep=2. 157 cells, 765 dofsStarting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 9 value 0 -DEAL::. -DEAL:: -DEAL:: Postprocessing: time=0, step=0, sweep=2. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library - -%%BoundingBox: 0 0 300 191 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50 setlinewidth -0.00000 0.00000 0.06763 s 82.35572 126.22595 m 129.90381 112.50060 l 157.35572 136.27405 l 109.80762 150.00000 lf -0 sg 82.35572 126.22595 m 129.90381 112.50060 l 157.35572 136.27405 l 109.80762 150.00000 lx -0.00000 0.00000 0.06763 s 143.62976 124.38732 m 167.40381 117.52436 l 181.12976 129.41107 l 157.35572 136.27405 lf -0 sg 143.62976 124.38732 m 167.40381 117.52436 l 181.12976 129.41107 l 157.35572 136.27405 lx -0.00000 0.00000 0.06764 s 167.40381 117.52436 m 191.17786 110.66293 l 204.90381 122.54809 l 181.12976 129.41107 lf -0 sg 167.40381 117.52436 m 191.17786 110.66293 l 204.90381 122.54809 l 181.12976 129.41107 lx -0.00000 0.00000 0.06764 s 68.62976 114.33893 m 92.40381 107.47743 l 106.12976 119.36328 l 82.35572 126.22595 lf -0 sg 68.62976 114.33893 m 92.40381 107.47743 l 106.12976 119.36328 l 82.35572 126.22595 lx -0.00000 0.00000 0.06761 s 129.90381 112.50060 m 153.67786 105.63531 l 167.40381 117.52436 l 143.62976 124.38732 lf -0 sg 129.90381 112.50060 m 153.67786 105.63531 l 167.40381 117.52436 l 143.62976 124.38732 lx -0.00000 0.00000 0.06764 s 191.17786 110.66293 m 214.95191 103.79774 l 228.67786 115.68512 l 204.90381 122.54809 lf -0 sg 191.17786 110.66293 m 214.95191 103.79774 l 228.67786 115.68512 l 204.90381 122.54809 lx -0.00000 0.00000 0.06757 s 92.40381 107.47743 m 116.17786 100.60654 l 129.90381 112.50060 l 106.12976 119.36328 lf -0 sg 92.40381 107.47743 m 116.17786 100.60654 l 129.90381 112.50060 l 106.12976 119.36328 lx -0.00000 0.00000 0.06754 s 153.67786 105.63531 m 177.45191 98.76670 l 191.17786 110.66293 l 167.40381 117.52436 lf -0 sg 153.67786 105.63531 m 177.45191 98.76670 l 191.17786 110.66293 l 167.40381 117.52436 lx -0.00000 0.00000 0.06761 s 214.95191 103.79774 m 238.72595 96.93504 l 252.45191 108.82214 l 228.67786 115.68512 lf -0 sg 214.95191 103.79774 m 238.72595 96.93504 l 252.45191 108.82214 l 228.67786 115.68512 lx -0.00000 0.00000 0.06756 s 54.90381 102.45191 m 78.67786 95.58232 l 92.40381 107.47743 l 68.62976 114.33893 lf -0 sg 54.90381 102.45191 m 78.67786 95.58232 l 92.40381 107.47743 l 68.62976 114.33893 lx -0.00000 0.00000 0.06764 s 116.17786 100.60654 m 139.95191 93.75970 l 153.67786 105.63531 l 129.90381 112.50060 lf -0 sg 116.17786 100.60654 m 139.95191 93.75970 l 153.67786 105.63531 l 129.90381 112.50060 lx -0.00000 0.00000 0.06757 s 177.45191 98.76670 m 201.22595 91.91258 l 214.95191 103.79774 l 191.17786 110.66293 lf -0 sg 177.45191 98.76670 m 201.22595 91.91258 l 214.95191 103.79774 l 191.17786 110.66293 lx -0.00000 0.00000 0.06778 s 146.81488 99.69751 m 158.70191 96.27870 l 165.56488 102.20101 l 153.67786 105.63531 lf -0 sg 146.81488 99.69751 m 158.70191 96.27870 l 165.56488 102.20101 l 153.67786 105.63531 lx -0.00000 0.00000 0.06779 s 78.67786 95.58232 m 102.45191 88.75277 l 116.17786 100.60654 l 92.40381 107.47743 lf -0 sg 78.67786 95.58232 m 102.45191 88.75277 l 116.17786 100.60654 l 92.40381 107.47743 lx -0.00000 0.00000 0.06831 s 158.70191 96.27870 m 170.58893 92.88658 l 177.45191 98.76670 l 165.56488 102.20101 lf -0 sg 158.70191 96.27870 m 170.58893 92.88658 l 177.45191 98.76670 l 165.56488 102.20101 lx -0.00000 0.00000 0.06793 s 109.31488 94.67965 m 121.20191 91.26018 l 128.06488 97.18312 l 116.17786 100.60654 lf -0 sg 109.31488 94.67965 m 121.20191 91.26018 l 128.06488 97.18312 l 116.17786 100.60654 lx -0.00000 0.00000 0.06719 s 139.95191 93.75970 m 151.83893 90.24996 l 158.70191 96.27870 l 146.81488 99.69751 lf -0 sg 139.95191 93.75970 m 151.83893 90.24996 l 158.70191 96.27870 l 146.81488 99.69751 lx -0.00000 0.00000 0.06763 s 201.22595 91.91258 m 225.00000 85.04794 l 238.72595 96.93504 l 214.95191 103.79774 lf -0 sg 201.22595 91.91258 m 225.00000 85.04794 l 238.72595 96.93504 l 214.95191 103.79774 lx -0.00000 0.00000 0.06811 s 170.58893 92.88658 m 182.47595 89.39683 l 189.33893 95.33964 l 177.45191 98.76670 lf -0 sg 170.58893 92.88658 m 182.47595 89.39683 l 189.33893 95.33964 l 177.45191 98.76670 lx -0.00000 0.00000 0.06757 s 41.17786 90.56488 m 64.95191 83.70382 l 78.67786 95.58232 l 54.90381 102.45191 lf -0 sg 41.17786 90.56488 m 64.95191 83.70382 l 78.67786 95.58232 l 54.90381 102.45191 lx -0.00000 0.00000 0.06684 s 121.20191 91.26018 m 133.08893 87.70440 l 139.95191 93.75970 l 128.06488 97.18312 lf -0 sg 121.20191 91.26018 m 133.08893 87.70440 l 139.95191 93.75970 l 128.06488 97.18312 lx -0.00000 0.00000 0.06522 s 151.83893 90.24996 m 163.72595 86.67180 l 170.58893 92.88658 l 158.70191 96.27870 lf -0 sg 151.83893 90.24996 m 163.72595 86.67180 l 170.58893 92.88658 l 158.70191 96.27870 lx -0.00000 0.00000 0.06758 s 182.47595 89.39683 m 194.36298 85.96729 l 201.22595 91.91258 l 189.33893 95.33964 lf -0 sg 182.47595 89.39683 m 194.36298 85.96729 l 201.22595 91.91258 l 189.33893 95.33964 lx -0.00000 0.00000 0.06762 s 225.00000 85.04794 m 272.54809 71.32214 l 300.00000 95.09619 l 252.45191 108.82214 lf -0 sg 225.00000 85.04794 m 272.54809 71.32214 l 300.00000 95.09619 l 252.45191 108.82214 lx -0.00000 0.00000 0.06559 s 102.45191 88.75277 m 114.33893 85.05660 l 121.20191 91.26018 l 109.31488 94.67965 lf -0 sg 102.45191 88.75277 m 114.33893 85.05660 l 121.20191 91.26018 l 109.31488 94.67965 lx -0.00000 0.00000 0.07027 s 133.08893 87.70440 m 144.97595 84.76952 l 151.83893 90.24996 l 139.95191 93.75970 lf -0 sg 133.08893 87.70440 m 144.97595 84.76952 l 151.83893 90.24996 l 139.95191 93.75970 lx -0.00000 0.00000 0.06592 s 163.72595 86.67180 m 175.61298 83.46732 l 182.47595 89.39683 l 170.58893 92.88658 lf -0 sg 163.72595 86.67180 m 175.61298 83.46732 l 182.47595 89.39683 l 170.58893 92.88658 lx -0.00000 0.00000 0.07044 s 148.40744 87.50974 m 154.35095 85.92644 l 157.78244 88.46088 l 151.83893 90.24996 lf -0 sg 148.40744 87.50974 m 154.35095 85.92644 l 157.78244 88.46088 l 151.83893 90.24996 lx -0.00000 0.00000 0.07455 s 114.33893 85.05660 m 126.22595 82.79022 l 133.08893 87.70440 l 121.20191 91.26018 lf -0 sg 114.33893 85.05660 m 126.22595 82.79022 l 133.08893 87.70440 l 121.20191 91.26018 lx -0.00000 0.00000 0.06777 s 64.95191 83.70382 m 88.72595 76.83035 l 102.45191 88.75277 l 78.67786 95.58232 lf -0 sg 64.95191 83.70382 m 88.72595 76.83035 l 102.45191 88.75277 l 78.67786 95.58232 lx -0.00000 0.00000 0.08676 s 154.35095 85.92644 m 160.29446 85.66082 l 163.72595 86.67180 l 157.78244 88.46088 lf -0 sg 154.35095 85.92644 m 160.29446 85.66082 l 163.72595 86.67180 l 157.78244 88.46088 lx -0.00000 0.00000 0.06248 s 144.97595 84.76952 m 150.91946 81.35435 l 154.35095 85.92644 l 148.40744 87.50974 lf -0 sg 144.97595 84.76952 m 150.91946 81.35435 l 154.35095 85.92644 l 148.40744 87.50974 lx -0.00000 0.00000 0.06770 s 175.61298 83.46732 m 187.50000 80.02200 l 194.36298 85.96729 l 182.47595 89.39683 lf -0 sg 175.61298 83.46732 m 187.50000 80.02200 l 194.36298 85.96729 l 182.47595 89.39683 lx -0.00000 0.00000 0.08517 s 160.29446 85.66082 m 166.23798 82.31527 l 169.66946 85.06956 l 163.72595 86.67180 lf -0 sg 160.29446 85.66082 m 166.23798 82.31527 l 169.66946 85.06956 l 163.72595 86.67180 lx -0.00000 0.00000 0.06572 s 95.58893 82.79156 m 107.47595 79.38597 l 114.33893 85.05660 l 102.45191 88.75277 lf -0 sg 95.58893 82.79156 m 107.47595 79.38597 l 114.33893 85.05660 l 102.45191 88.75277 lx -0.00000 sg 150.91946 81.35435 m 156.86298 74.25891 l 160.29446 85.66082 l 154.35095 85.92644 lf -0 sg 150.91946 81.35435 m 156.86298 74.25891 l 160.29446 85.66082 l 154.35095 85.92644 lx -0.00000 0.00000 0.04197 s 126.22595 82.79022 m 138.11298 74.95503 l 144.97595 84.76952 l 133.08893 87.70440 lf -0 sg 126.22595 82.79022 m 138.11298 74.95503 l 144.97595 84.76952 l 133.08893 87.70440 lx -0.00000 0.00000 0.06825 s 166.23798 82.31527 m 172.18149 80.51308 l 175.61298 83.46732 l 169.66946 85.06956 lf -0 sg 166.23798 82.31527 m 172.18149 80.51308 l 175.61298 83.46732 l 169.66946 85.06956 lx -0.00000 0.00000 0.06762 s 187.50000 80.02200 m 211.27405 73.16156 l 225.00000 85.04794 l 201.22595 91.91258 lf -0 sg 187.50000 80.02200 m 211.27405 73.16156 l 225.00000 85.04794 l 201.22595 91.91258 lx -0.00000 0.00000 0.00795 s 156.86298 74.25891 m 162.80649 78.80194 l 166.23798 82.31527 l 160.29446 85.66082 lf -0 sg 156.86298 74.25891 m 162.80649 78.80194 l 166.23798 82.31527 l 160.29446 85.66082 lx -0.00000 0.00000 0.10344 s 141.54446 79.86228 m 147.48798 85.28974 l 150.91946 81.35435 l 144.97595 84.76952 lf -0 sg 141.54446 79.86228 m 147.48798 85.28974 l 150.91946 81.35435 l 144.97595 84.76952 lx -0.00000 0.00000 0.06765 s 27.45191 78.67786 m 51.22595 71.81544 l 64.95191 83.70382 l 41.17786 90.56488 lf -0 sg 27.45191 78.67786 m 51.22595 71.81544 l 64.95191 83.70382 l 41.17786 90.56488 lx -0.00000 0.00000 0.07407 s 107.47595 79.38597 m 119.36298 75.76296 l 126.22595 82.79022 l 114.33893 85.05660 lf -0 sg 107.47595 79.38597 m 119.36298 75.76296 l 126.22595 82.79022 l 114.33893 85.05660 lx -0.00000 0.00000 0.06496 s 162.80649 78.80194 m 168.75000 77.55884 l 172.18149 80.51308 l 166.23798 82.31527 lf -0 sg 162.80649 78.80194 m 168.75000 77.55884 l 172.18149 80.51308 l 166.23798 82.31527 lx -0.00000 0.00000 0.06814 s 168.75000 77.55884 m 180.63702 74.06967 l 187.50000 80.02200 l 175.61298 83.46732 lf -0 sg 168.75000 77.55884 m 180.63702 74.06967 l 187.50000 80.02200 l 175.61298 83.46732 lx -0.00000 0.00000 0.06807 s 88.72595 76.83035 m 100.61298 73.41190 l 107.47595 79.38597 l 95.58893 82.79156 lf -0 sg 88.72595 76.83035 m 100.61298 73.41190 l 107.47595 79.38597 l 95.58893 82.79156 lx -0.00000 0.00000 0.04373 s 119.36298 75.76296 m 131.25000 73.09203 l 138.11298 74.95503 l 126.22595 82.79022 lf -0 sg 119.36298 75.76296 m 131.25000 73.09203 l 138.11298 74.95503 l 126.22595 82.79022 lx -0.00000 0.00000 0.52183 s 147.48798 85.28974 m 153.43149 120.31655 l 156.86298 74.25891 l 150.91946 81.35435 lf -0 sg 147.48798 85.28974 m 153.43149 120.31655 l 156.86298 74.25891 l 150.91946 81.35435 lx -0.00000 0.00000 0.08367 s 159.37500 78.67422 m 165.31851 73.91334 l 168.75000 77.55884 l 162.80649 78.80194 lf -0 sg 159.37500 78.67422 m 165.31851 73.91334 l 168.75000 77.55884 l 162.80649 78.80194 lx -0.00000 0.00000 0.06762 s 211.27405 73.16156 m 235.04809 66.29801 l 248.77405 78.18504 l 225.00000 85.04794 lf -0 sg 211.27405 73.16156 m 235.04809 66.29801 l 248.77405 78.18504 l 225.00000 85.04794 lx -0.00000 0.00000 0.54087 s 138.11298 74.95503 m 144.05649 117.76274 l 147.48798 85.28974 l 141.54446 79.86228 lf -0 sg 138.11298 74.95503 m 144.05649 117.76274 l 147.48798 85.28974 l 141.54446 79.86228 lx -0.00000 0.00000 0.49563 s 153.43149 120.31655 m 159.37500 78.67422 l 162.80649 78.80194 l 156.86298 74.25891 lf -0 sg 153.43149 120.31655 m 159.37500 78.67422 l 162.80649 78.80194 l 156.86298 74.25891 lx -0.00000 0.00000 0.06749 s 180.63702 74.06967 m 192.52405 70.65169 l 199.38702 76.59178 l 187.50000 80.02200 lf -0 sg 180.63702 74.06967 m 192.52405 70.65169 l 199.38702 76.59178 l 187.50000 80.02200 lx -0.00000 0.00000 0.06255 s 165.31851 73.91334 m 171.26202 72.94090 l 174.69351 75.81425 l 168.75000 77.55884 lf -0 sg 165.31851 73.91334 m 171.26202 72.94090 l 174.69351 75.81425 l 168.75000 77.55884 lx -0.00000 0.00000 0.06649 s 100.61298 73.41190 m 112.50000 69.99344 l 119.36298 75.76296 l 107.47595 79.38597 lf -0 sg 100.61298 73.41190 m 112.50000 69.99344 l 119.36298 75.76296 l 107.47595 79.38597 lx -0.00000 0.00000 0.06756 s 51.22595 71.81544 m 75.00000 64.95303 l 88.72595 76.83035 l 64.95191 83.70382 lf -0 sg 51.22595 71.81544 m 75.00000 64.95303 l 88.72595 76.83035 l 64.95191 83.70382 lx -0.00000 0.00000 0.06085 s 160.63101 72.66737 m 163.60277 73.43473 l 165.31851 73.91334 l 162.34676 76.29378 lf -0 sg 160.63101 72.66737 m 163.60277 73.43473 l 165.31851 73.91334 l 162.34676 76.29378 lx -0.00000 0.00000 0.06869 s 171.26202 72.94090 m 177.20554 71.07952 l 180.63702 74.06967 l 174.69351 75.81425 lf -0 sg 171.26202 72.94090 m 177.20554 71.07952 l 180.63702 74.06967 l 174.69351 75.81425 lx -0.00000 0.00000 0.06228 s 163.60277 73.43473 m 166.57452 72.22846 l 168.29027 73.42712 l 165.31851 73.91334 lf -0 sg 163.60277 73.43473 m 166.57452 72.22846 l 168.29027 73.42712 l 165.31851 73.91334 lx -0.00000 0.00000 0.08949 s 131.25000 73.09203 m 137.19351 69.72875 l 140.62500 77.54359 l 134.68149 74.02353 lf -0 sg 131.25000 73.09203 m 137.19351 69.72875 l 140.62500 77.54359 l 134.68149 74.02353 lx -0.00000 0.00000 0.52157 s 134.68149 74.02353 m 140.62500 77.54359 l 144.05649 117.76274 l 138.11298 74.95503 lf -0 sg 134.68149 74.02353 m 140.62500 77.54359 l 144.05649 117.76274 l 138.11298 74.95503 lx -0.00000 0.00000 0.07688 s 158.91527 74.40886 m 161.88702 71.26485 l 163.60277 73.43473 l 160.63101 72.66737 lf -0 sg 158.91527 74.40886 m 161.88702 71.26485 l 163.60277 73.43473 l 160.63101 72.66737 lx -0.00000 0.00000 0.06727 s 166.57452 72.22846 m 169.54628 71.41458 l 171.26202 72.94090 l 168.29027 73.42712 lf -0 sg 166.57452 72.22846 m 169.54628 71.41458 l 171.26202 72.94090 l 168.29027 73.42712 lx -0.00000 0.00000 0.44956 s 157.65926 106.30060 m 160.63101 72.66737 l 162.34676 76.29378 l 159.37500 78.67422 lf -0 sg 157.65926 106.30060 m 160.63101 72.66737 l 162.34676 76.29378 l 159.37500 78.67422 lx -0.00000 0.00000 0.06764 s 192.52405 70.65169 m 204.41107 67.21680 l 211.27405 73.16156 l 199.38702 76.59178 lf -0 sg 192.52405 70.65169 m 204.41107 67.21680 l 211.27405 73.16156 l 199.38702 76.59178 lx -0.00000 0.00000 0.06733 s 161.88702 71.26485 m 164.85878 70.57655 l 166.57452 72.22846 l 163.60277 73.43473 lf -0 sg 161.88702 71.26485 m 164.85878 70.57655 l 166.57452 72.22846 l 163.60277 73.43473 lx -0.00000 0.00000 0.06722 s 177.20554 71.07952 m 183.14905 69.40220 l 186.58054 72.36068 l 180.63702 74.06967 lf -0 sg 177.20554 71.07952 m 183.14905 69.40220 l 186.58054 72.36068 l 180.63702 74.06967 lx -0.00000 0.00000 0.07153 s 112.50000 69.99344 m 124.38702 66.42324 l 131.25000 73.09203 l 119.36298 75.76296 lf -0 sg 112.50000 69.99344 m 124.38702 66.42324 l 131.25000 73.09203 l 119.36298 75.76296 lx -0.00000 0.00000 0.07992 s 157.19952 70.33783 m 160.17128 70.08902 l 161.88702 71.26485 l 158.91527 74.40886 lf -0 sg 157.19952 70.33783 m 160.17128 70.08902 l 161.88702 71.26485 l 158.91527 74.40886 lx -0.00000 0.00000 0.06772 s 164.85878 70.57655 m 167.83054 69.88825 l 169.54628 71.41458 l 166.57452 72.22846 lf -0 sg 164.85878 70.57655 m 167.83054 69.88825 l 169.54628 71.41458 l 166.57452 72.22846 lx -0.00000 0.00000 0.06889 s 167.83054 69.88825 m 173.77405 68.12656 l 177.20554 71.07952 l 171.26202 72.94090 lf -0 sg 167.83054 69.88825 m 173.77405 68.12656 l 177.20554 71.07952 l 171.26202 72.94090 lx -0.00000 0.00000 0.06771 s 183.14905 69.40220 m 189.09256 67.67737 l 192.52405 70.65169 l 186.58054 72.36068 lf -0 sg 183.14905 69.40220 m 189.09256 67.67737 l 192.52405 70.65169 l 186.58054 72.36068 lx -0.00000 0.00000 0.04807 s 155.48378 68.01459 m 158.45554 68.91319 l 160.17128 70.08902 l 157.19952 70.33783 lf -0 sg 155.48378 68.01459 m 158.45554 68.91319 l 160.17128 70.08902 l 157.19952 70.33783 lx -0.00000 0.00000 0.06736 s 158.45554 68.91319 m 164.39905 66.80986 l 167.83054 69.88825 l 161.88702 71.26485 lf -0 sg 158.45554 68.91319 m 164.39905 66.80986 l 167.83054 69.88825 l 161.88702 71.26485 lx -0.00000 0.00000 0.01337 s 146.10878 67.32030 m 149.08054 68.27512 l 150.79628 68.11423 l 147.82452 65.56826 lf -0 sg 146.10878 67.32030 m 149.08054 68.27512 l 150.79628 68.11423 l 147.82452 65.56826 lx -0.00000 0.00000 0.11071 s 150.79628 68.11423 m 153.76804 68.02702 l 155.48378 68.01459 l 152.51202 76.19748 lf -0 sg 150.79628 68.11423 m 153.76804 68.02702 l 155.48378 68.01459 l 152.51202 76.19748 lx -0.00000 0.00000 0.06762 s 235.04809 66.29801 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18504 lf -0 sg 235.04809 66.29801 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18504 lx -0.00000 0.00000 0.06729 s 173.77405 68.12656 m 179.71756 66.42320 l 183.14905 69.40220 l 177.20554 71.07952 lf -0 sg 173.77405 68.12656 m 179.71756 66.42320 l 183.14905 69.40220 l 177.20554 71.07952 lx -0.00000 0.00000 0.17045 s 143.13702 66.36548 m 146.10878 67.32030 l 147.82452 65.56826 l 144.85277 87.27404 lf -0 sg 143.13702 66.36548 m 146.10878 67.32030 l 147.82452 65.56826 l 144.85277 87.27404 lx -0.00000 0.00000 0.06762 s 204.41107 67.21680 m 216.29809 63.78617 l 223.16107 69.72978 l 211.27405 73.16156 lf -0 sg 204.41107 67.21680 m 216.29809 63.78617 l 223.16107 69.72978 l 211.27405 73.16156 lx -0.00000 0.00000 0.47934 s 137.19351 69.72875 m 143.13702 66.36548 l 146.56851 108.18260 l 140.62500 77.54359 lf -0 sg 137.19351 69.72875 m 143.13702 66.36548 l 146.56851 108.18260 l 140.62500 77.54359 lx -0.00000 0.00000 0.05583 s 153.76804 68.02702 m 156.73979 67.13916 l 158.45554 68.91319 l 155.48378 68.01459 lf -0 sg 153.76804 68.02702 m 156.73979 67.13916 l 158.45554 68.91319 l 155.48378 68.01459 lx -0.00000 0.00000 0.04916 s 124.38702 66.42324 m 136.27405 63.69715 l 143.13702 66.36548 l 131.25000 73.09203 lf -0 sg 124.38702 66.42324 m 136.27405 63.69715 l 143.13702 66.36548 l 131.25000 73.09203 lx -0.00000 0.00000 0.45878 s 152.51202 76.19748 m 155.48378 68.01459 l 157.19952 70.33783 l 154.22777 102.36707 lf -0 sg 152.51202 76.19748 m 155.48378 68.01459 l 157.19952 70.33783 l 154.22777 102.36707 lx -0.00000 0.00000 0.07464 s 149.08054 68.27512 m 152.05229 66.82013 l 153.76804 68.02702 l 150.79628 68.11423 lf -0 sg 149.08054 68.27512 m 152.05229 66.82013 l 153.76804 68.02702 l 150.79628 68.11423 lx -0.00000 0.00000 0.06733 s 164.39905 66.80986 m 170.34256 65.18590 l 173.77405 68.12656 l 167.83054 69.88825 lf -0 sg 164.39905 66.80986 m 170.34256 65.18590 l 173.77405 68.12656 l 167.83054 69.88825 lx -0.00000 0.00000 0.06766 s 75.00000 64.95303 m 98.77405 58.08240 l 112.50000 69.99344 l 88.72595 76.83035 lf -0 sg 75.00000 64.95303 m 98.77405 58.08240 l 112.50000 69.99344 l 88.72595 76.83035 lx -0.00000 0.00000 0.90630 s 155.94351 114.79493 m 158.91527 74.40886 l 160.63101 72.66737 l 157.65926 106.30060 lf -0 sg 155.94351 114.79493 m 158.91527 74.40886 l 160.63101 72.66737 l 157.65926 106.30060 lx -0.00000 0.00000 0.44125 s 147.82452 65.56826 m 150.79628 68.11423 l 152.51202 76.19748 l 149.54027 102.98255 lf -0 sg 147.82452 65.56826 m 150.79628 68.11423 l 152.51202 76.19748 l 149.54027 102.98255 lx -0.00000 0.00000 0.06772 s 179.71756 66.42320 m 185.66107 64.70305 l 189.09256 67.67737 l 183.14905 69.40220 lf -0 sg 179.71756 66.42320 m 185.66107 64.70305 l 189.09256 67.67737 l 183.14905 69.40220 lx -0.00000 0.00000 0.03722 s 139.70554 65.03131 m 145.64905 64.50442 l 149.08054 68.27512 l 143.13702 66.36548 lf -0 sg 139.70554 65.03131 m 145.64905 64.50442 l 149.08054 68.27512 l 143.13702 66.36548 lx -0.00000 0.00000 0.06948 s 152.05229 66.82013 m 155.02405 65.36514 l 156.73979 67.13916 l 153.76804 68.02702 lf -0 sg 152.05229 66.82013 m 155.02405 65.36514 l 156.73979 67.13916 l 153.76804 68.02702 lx -0.00000 0.00000 0.06815 s 155.02405 65.36514 m 160.96756 63.97017 l 164.39905 66.80986 l 158.45554 68.91319 lf -0 sg 155.02405 65.36514 m 160.96756 63.97017 l 164.39905 66.80986 l 158.45554 68.91319 lx -0.00000 0.00000 0.90266 s 154.22777 102.36707 m 157.19952 70.33783 l 158.91527 74.40886 l 155.94351 114.79493 lf -0 sg 154.22777 102.36707 m 157.19952 70.33783 l 158.91527 74.40886 l 155.94351 114.79493 lx -0.00000 0.00000 0.06762 s 185.66107 64.70305 m 197.54809 61.27463 l 204.41107 67.21680 l 192.52405 70.65169 lf -0 sg 185.66107 64.70305 m 197.54809 61.27463 l 204.41107 67.21680 l 192.52405 70.65169 lx -0.00000 0.00000 0.06773 s 170.34256 65.18590 m 176.28607 63.44743 l 179.71756 66.42320 l 173.77405 68.12656 lf -0 sg 170.34256 65.18590 m 176.28607 63.44743 l 179.71756 66.42320 l 173.77405 68.12656 lx -0.00000 0.49566 0.50434 s 154.68750 144.92361 m 157.65926 106.30060 l 159.37500 78.67422 l 156.40324 99.49538 lf -0 sg 154.68750 144.92361 m 157.65926 106.30060 l 159.37500 78.67422 l 156.40324 99.49538 lx -0.00000 0.00000 0.06681 s 105.63702 64.03792 m 117.52405 60.62796 l 124.38702 66.42324 l 112.50000 69.99344 lf -0 sg 105.63702 64.03792 m 117.52405 60.62796 l 124.38702 66.42324 l 112.50000 69.99344 lx -0.00000 0.00000 0.06762 s 216.29809 63.78617 m 228.18512 60.35458 l 235.04809 66.29801 l 223.16107 69.72978 lf -0 sg 216.29809 63.78617 m 228.18512 60.35458 l 235.04809 66.29801 l 223.16107 69.72978 lx -0.00000 0.00000 0.07672 s 145.64905 64.50442 m 151.59256 62.64395 l 155.02405 65.36514 l 149.08054 68.27512 lf -0 sg 145.64905 64.50442 m 151.59256 62.64395 l 155.02405 65.36514 l 149.08054 68.27512 lx -0.00000 0.00000 0.06749 s 160.96756 63.97017 m 166.91107 62.17216 l 170.34256 65.18590 l 164.39905 66.80986 lf -0 sg 160.96756 63.97017 m 166.91107 62.17216 l 170.34256 65.18590 l 164.39905 66.80986 lx -0.00000 0.41498 0.58502 s 140.62500 77.54359 m 143.59676 92.86309 l 145.31250 146.69969 l 142.34074 97.65317 lf -0 sg 140.62500 77.54359 m 143.59676 92.86309 l 145.31250 146.69969 l 142.34074 97.65317 lx -0.00000 0.00000 0.98363 s 144.85277 87.27404 m 147.82452 65.56826 l 149.54027 102.98255 l 146.56851 108.18260 lf -0 sg 144.85277 87.27404 m 147.82452 65.56826 l 149.54027 102.98255 l 146.56851 108.18260 lx -0.00000 0.00000 0.06760 s 176.28607 63.44743 m 182.22958 61.73506 l 185.66107 64.70305 l 179.71756 66.42320 lf -0 sg 176.28607 63.44743 m 182.22958 61.73506 l 185.66107 64.70305 l 179.71756 66.42320 lx -0.00000 0.00000 0.06628 s 136.27405 63.69715 m 142.21756 61.61344 l 145.64905 64.50442 l 139.70554 65.03131 lf -0 sg 136.27405 63.69715 m 142.21756 61.61344 l 145.64905 64.50442 l 139.70554 65.03131 lx -0.00000 0.00000 0.06554 s 151.59256 62.64395 m 157.53607 60.96270 l 160.96756 63.97017 l 155.02405 65.36514 lf -0 sg 151.59256 62.64395 m 157.53607 60.96270 l 160.96756 63.97017 l 155.02405 65.36514 lx -0.00000 0.00000 0.06749 s 166.91107 62.17216 m 172.85458 60.46961 l 176.28607 63.44743 l 170.34256 65.18590 lf -0 sg 166.91107 62.17216 m 172.85458 60.46961 l 176.28607 63.44743 l 170.34256 65.18590 lx -0.00000 0.00000 0.06762 s 197.54809 61.27463 m 209.43512 57.84245 l 216.29809 63.78617 l 204.41107 67.21680 lf -0 sg 197.54809 61.27463 m 209.43512 57.84245 l 216.29809 63.78617 l 204.41107 67.21680 lx -0.00000 0.00000 0.06979 s 142.21756 61.61344 m 148.16107 59.52974 l 151.59256 62.64395 l 145.64905 64.50442 lf -0 sg 142.21756 61.61344 m 148.16107 59.52974 l 151.59256 62.64395 l 145.64905 64.50442 lx -0.00000 0.00000 0.07149 s 117.52405 60.62796 m 129.41107 57.02019 l 136.27405 63.69715 l 124.38702 66.42324 lf -0 sg 117.52405 60.62796 m 129.41107 57.02019 l 136.27405 63.69715 l 124.38702 66.42324 lx -0.00000 0.00000 0.06843 s 157.53607 60.96270 m 163.47958 59.22803 l 166.91107 62.17216 l 160.96756 63.97017 lf -0 sg 157.53607 60.96270 m 163.47958 59.22803 l 166.91107 62.17216 l 160.96756 63.97017 lx -0.00000 0.00000 0.06757 s 172.85458 60.46961 m 178.79809 58.76707 l 182.22958 61.73506 l 176.28607 63.44743 lf -0 sg 172.85458 60.46961 m 178.79809 58.76707 l 182.22958 61.73506 l 176.28607 63.44743 lx -0.00000 0.00000 0.06541 s 148.16107 59.52974 m 154.10458 57.90682 l 157.53607 60.96270 l 151.59256 62.64395 lf -0 sg 148.16107 59.52974 m 154.10458 57.90682 l 157.53607 60.96270 l 151.59256 62.64395 lx -0.39535 0.60465 0.00000 s 144.05649 117.76274 m 150.00000 190.77744 l 153.43149 120.31655 l 147.48798 85.28974 lf -0 sg 144.05649 117.76274 m 150.00000 190.77744 l 153.43149 120.31655 l 147.48798 85.28974 lx -0.00000 0.60820 0.39180 s 149.54027 102.98255 m 152.51202 76.19748 l 154.22777 102.36707 l 151.25601 139.91618 lf -0 sg 149.54027 102.98255 m 152.51202 76.19748 l 154.22777 102.36707 l 151.25601 139.91618 lx -0.00000 0.00000 0.06764 s 178.79809 58.76707 m 190.68512 55.32956 l 197.54809 61.27463 l 185.66107 64.70305 lf -0 sg 178.79809 58.76707 m 190.68512 55.32956 l 197.54809 61.27463 l 185.66107 64.70305 lx -0.00000 0.00000 0.06763 s 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 64.95303 l 27.45191 78.67786 lf -0 sg 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 64.95303 l 27.45191 78.67786 lx -0.00000 0.00000 0.06796 s 98.77405 58.08240 m 110.66107 54.66183 l 117.52405 60.62796 l 105.63702 64.03792 lf -0 sg 98.77405 58.08240 m 110.66107 54.66183 l 117.52405 60.62796 l 105.63702 64.03792 lx -0.00000 0.00000 0.06762 s 209.43512 57.84245 m 221.32214 54.41114 l 228.18512 60.35458 l 216.29809 63.78617 lf -0 sg 209.43512 57.84245 m 221.32214 54.41114 l 228.18512 60.35458 l 216.29809 63.78617 lx -0.48983 0.51017 0.00000 s 151.71574 155.54700 m 154.68750 144.92361 l 156.40324 99.49538 l 153.43149 120.31655 lf -0 sg 151.71574 155.54700 m 154.68750 144.92361 l 156.40324 99.49538 l 153.43149 120.31655 lx -0.00000 0.00000 0.06769 s 154.10458 57.90682 m 160.04809 56.28391 l 163.47958 59.22803 l 157.53607 60.96270 lf -0 sg 154.10458 57.90682 m 160.04809 56.28391 l 163.47958 59.22803 l 157.53607 60.96270 lx -0.00000 0.00000 0.07125 s 129.41107 57.02019 m 141.29809 53.77433 l 148.16107 59.52974 l 136.27405 63.69715 lf -0 sg 129.41107 57.02019 m 141.29809 53.77433 l 148.16107 59.52974 l 136.27405 63.69715 lx -0.50264 0.49736 0.00000 s 142.34074 97.65317 m 145.31250 146.69969 l 147.02824 154.27010 l 144.05649 117.76274 lf -0 sg 142.34074 97.65317 m 145.31250 146.69969 l 147.02824 154.27010 l 144.05649 117.76274 lx -0.00000 0.00000 0.06772 s 160.04809 56.28391 m 171.93512 52.80977 l 178.79809 58.76707 l 166.91107 62.17216 lf -0 sg 160.04809 56.28391 m 171.93512 52.80977 l 178.79809 58.76707 l 166.91107 62.17216 lx -0.00000 0.00000 0.06762 s 221.32214 54.41114 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29801 lf -0 sg 221.32214 54.41114 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29801 lx -0.00000 0.00000 0.06762 s 190.68512 55.32956 m 202.57214 51.89918 l 209.43512 57.84245 l 197.54809 61.27463 lf -0 sg 190.68512 55.32956 m 202.57214 51.89918 l 209.43512 57.84245 l 197.54809 61.27463 lx -0.57303 0.42697 0.00000 s 152.97176 152.20758 m 155.94351 114.79493 l 157.65926 106.30060 l 154.68750 144.92361 lf -0 sg 152.97176 152.20758 m 155.94351 114.79493 l 157.65926 106.30060 l 154.68750 144.92361 lx -0.00000 0.00000 0.06645 s 110.66107 54.66183 m 122.54809 51.24125 l 129.41107 57.02019 l 117.52405 60.62796 lf -0 sg 110.66107 54.66183 m 122.54809 51.24125 l 129.41107 57.02019 l 117.52405 60.62796 lx -0.43063 0.56937 0.00000 s 143.59676 92.86309 m 146.56851 108.18260 l 148.28426 152.92996 l 145.31250 146.69969 lf -0 sg 143.59676 92.86309 m 146.56851 108.18260 l 148.28426 152.92996 l 145.31250 146.69969 lx -0.00000 0.00000 0.06758 s 61.27405 53.06544 m 85.04809 46.20331 l 98.77405 58.08240 l 75.00000 64.95303 lf -0 sg 61.27405 53.06544 m 85.04809 46.20331 l 98.77405 58.08240 l 75.00000 64.95303 lx -0.00000 0.00000 0.06661 s 141.29809 53.77433 m 153.18512 50.29911 l 160.04809 56.28391 l 148.16107 59.52974 lf -0 sg 141.29809 53.77433 m 153.18512 50.29911 l 160.04809 56.28391 l 148.16107 59.52974 lx -0.53896 0.46104 0.00000 s 151.25601 139.91618 m 154.22777 102.36707 l 155.94351 114.79493 l 152.97176 152.20758 lf -0 sg 151.25601 139.91618 m 154.22777 102.36707 l 155.94351 114.79493 l 152.97176 152.20758 lx -0.50756 0.49244 0.00000 s 146.56851 108.18260 m 149.54027 102.98255 l 151.25601 139.91618 l 148.28426 152.92996 lf -0 sg 146.56851 108.18260 m 149.54027 102.98255 l 151.25601 139.91618 l 148.28426 152.92996 lx -0.00000 0.00000 0.06758 s 171.93512 52.80977 m 183.82214 49.38790 l 190.68512 55.32956 l 178.79809 58.76707 lf -0 sg 171.93512 52.80977 m 183.82214 49.38790 l 190.68512 55.32956 l 178.79809 58.76707 lx -0.00000 0.00000 0.06762 s 202.57214 51.89918 m 214.45917 48.46748 l 221.32214 54.41114 l 209.43512 57.84245 lf -0 sg 202.57214 51.89918 m 214.45917 48.46748 l 221.32214 54.41114 l 209.43512 57.84245 lx -0.00000 0.00000 0.06657 s 122.54809 51.24125 m 134.43512 47.80011 l 141.29809 53.77433 l 129.41107 57.02019 lf -0 sg 122.54809 51.24125 m 134.43512 47.80011 l 141.29809 53.77433 l 129.41107 57.02019 lx -0.00000 0.00000 0.06785 s 153.18512 50.29911 m 165.07214 46.87742 l 171.93512 52.80977 l 160.04809 56.28391 lf -0 sg 153.18512 50.29911 m 165.07214 46.87742 l 171.93512 52.80977 l 160.04809 56.28391 lx -0.00000 0.00000 0.06762 s 183.82214 49.38790 m 195.70917 45.95586 l 202.57214 51.89918 l 190.68512 55.32956 lf -0 sg 183.82214 49.38790 m 195.70917 45.95586 l 202.57214 51.89918 l 190.68512 55.32956 lx -0.00000 0.00000 0.06797 s 134.43512 47.80011 m 146.32214 44.35898 l 153.18512 50.29911 l 141.29809 53.77433 lf -0 sg 134.43512 47.80011 m 146.32214 44.35898 l 153.18512 50.29911 l 141.29809 53.77433 lx -0.00000 0.00000 0.06769 s 85.04809 46.20331 m 108.82214 39.33518 l 122.54809 51.24125 l 98.77405 58.08240 lf -0 sg 85.04809 46.20331 m 108.82214 39.33518 l 122.54809 51.24125 l 98.77405 58.08240 lx -0.00000 0.00000 0.06756 s 165.07214 46.87742 m 176.95917 43.44407 l 183.82214 49.38790 l 171.93512 52.80977 lf -0 sg 165.07214 46.87742 m 176.95917 43.44407 l 183.82214 49.38790 l 171.93512 52.80977 lx -0.00000 0.00000 0.06762 s 195.70917 45.95586 m 207.59619 42.52381 l 214.45917 48.46748 l 202.57214 51.89918 lf -0 sg 195.70917 45.95586 m 207.59619 42.52381 l 214.45917 48.46748 l 202.57214 51.89918 lx -1.00000 0.95756 0.95756 s 150.00000 190.77744 m 152.97176 152.20758 l 154.68750 144.92361 l 151.71574 155.54700 lf -0 sg 150.00000 190.77744 m 152.97176 152.20758 l 154.68750 144.92361 l 151.71574 155.54700 lx -1.00000 sg 145.31250 146.69969 m 148.28426 152.92996 l 150.00000 190.77744 l 147.02824 154.27010 lf -0 sg 145.31250 146.69969 m 148.28426 152.92996 l 150.00000 190.77744 l 147.02824 154.27010 lx -0.00000 0.00000 0.06750 s 146.32214 44.35898 m 158.20917 40.92960 l 165.07214 46.87742 l 153.18512 50.29911 lf -0 sg 146.32214 44.35898 m 158.20917 40.92960 l 165.07214 46.87742 l 153.18512 50.29911 lx -1.00000 0.93845 0.93845 s 148.28426 152.92996 m 151.25601 139.91618 l 152.97176 152.20758 l 150.00000 190.77744 lf -0 sg 148.28426 152.92996 m 151.25601 139.91618 l 152.97176 152.20758 l 150.00000 190.77744 lx -0.00000 0.00000 0.06762 s 207.59619 42.52381 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41114 lf -0 sg 207.59619 42.52381 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41114 lx -0.00000 0.00000 0.06764 s 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20331 l 61.27405 53.06544 lf -0 sg 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20331 l 61.27405 53.06544 lx -0.00000 0.00000 0.06763 s 158.20917 40.92960 m 170.09619 37.50023 l 176.95917 43.44407 l 165.07214 46.87742 lf -0 sg 158.20917 40.92960 m 170.09619 37.50023 l 176.95917 43.44407 l 165.07214 46.87742 lx -0.00000 0.00000 0.06772 s 108.82214 39.33518 m 132.59619 32.47689 l 146.32214 44.35898 l 122.54809 51.24125 lf -0 sg 108.82214 39.33518 m 132.59619 32.47689 l 146.32214 44.35898 l 122.54809 51.24125 lx -0.00000 0.00000 0.06763 s 170.09619 37.50023 m 193.87024 30.63714 l 207.59619 42.52381 l 183.82214 49.38790 lf -0 sg 170.09619 37.50023 m 193.87024 30.63714 l 207.59619 42.52381 l 183.82214 49.38790 lx -0.00000 0.00000 0.06759 s 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.33518 l 85.04809 46.20331 lf -0 sg 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.33518 l 85.04809 46.20331 lx -0.00000 0.00000 0.06759 s 132.59619 32.47689 m 156.37024 25.61309 l 170.09619 37.50023 l 146.32214 44.35898 lf -0 sg 132.59619 32.47689 m 156.37024 25.61309 l 170.09619 37.50023 l 146.32214 44.35898 lx -0.00000 0.00000 0.06762 s 193.87024 30.63714 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52381 lf -0 sg 193.87024 30.63714 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52381 lx -0.00000 0.00000 0.06759 s 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47689 l 108.82214 39.33518 lf -0 sg 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47689 l 108.82214 39.33518 lx -0.00000 0.00000 0.06763 s 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61309 l 132.59619 32.47689 lf -0 sg 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61309 l 132.59619 32.47689 lx -0.00000 0.00000 0.06762 s 142.64428 13.72595 m 190.19238 0.00000 l 217.64428 23.77405 l 170.09619 37.50023 lf -0 sg 142.64428 13.72595 m 190.19238 0.00000 l 217.64428 23.77405 l 170.09619 37.50023 lx -showpage -. -DEAL:: Postprocessing: time=0.03, step=1, sweep=2. [ee] -DEAL:: Postprocessing: time=0.06, step=2, sweep=2. [ee] -DEAL:: Postprocessing: time=0.08, step=3, sweep=2. [ee] -DEAL:: Postprocessing: time=0.11, step=4, sweep=2. [ee] -DEAL:: Postprocessing: time=0.14, step=5, sweep=2. [ee] -DEAL:: Postprocessing: time=0.17, step=6, sweep=2. [ee] -DEAL:: Postprocessing: time=0.20, step=7, sweep=2. [ee] -DEAL:: Postprocessing: time=0.22, step=8, sweep=2. [ee] -DEAL:: Postprocessing: time=0.25, step=9, sweep=2. [ee] -DEAL:: Postprocessing: time=0.28, step=10, sweep=2. [ee] -DEAL:: Postprocessing: time=0.31, step=11, sweep=2. [ee] -DEAL:: Postprocessing: time=0.34, step=12, sweep=2. [ee] -DEAL:: Postprocessing: time=0.36, step=13, sweep=2. [ee] -DEAL:: Postprocessing: time=0.39, step=14, sweep=2. [ee] -DEAL:: Postprocessing: time=0.42, step=15, sweep=2. [ee] -DEAL:: Postprocessing: time=0.45, step=16, sweep=2. [ee] -DEAL:: Postprocessing: time=0.48, step=17, sweep=2. [ee] -DEAL:: Postprocessing: time=0.50, step=18, sweep=2. [ee] -DEAL:: Postprocessing: time=0.53, step=19, sweep=2. [ee] -DEAL:: Postprocessing: time=0.56, step=20, sweep=2. [ee] -DEAL:: Postprocessing: time=0.59, step=21, sweep=2. [ee] -DEAL:: Postprocessing: time=0.62, step=22, sweep=2. [ee] -DEAL:: Postprocessing: time=0.64, step=23, sweep=2. [ee] -DEAL:: Postprocessing: time=0.67, step=24, sweep=2. [ee] -DEAL:: Postprocessing: time=0.70, step=25, sweep=2. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library - -%%BoundingBox: 0 0 300 150 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50 setlinewidth -0.24529 0.75471 0.00000 s 82.35572 126.22595 m 129.90381 112.92257 l 157.35572 136.27405 l 109.80762 150.00000 lf -0 sg 82.35572 126.22595 m 129.90381 112.92257 l 157.35572 136.27405 l 109.80762 150.00000 lx -0.20292 0.79708 0.00000 s 129.90381 112.92257 m 177.45191 97.91264 l 204.90381 122.54809 l 157.35572 136.27405 lf -0 sg 129.90381 112.92257 m 177.45191 97.91264 l 204.90381 122.54809 l 157.35572 136.27405 lx -0.00000 0.98888 0.01112 s 54.90381 102.45191 m 102.45191 83.51311 l 129.90381 112.92257 l 82.35572 126.22595 lf -0 sg 54.90381 102.45191 m 102.45191 83.51311 l 129.90381 112.92257 l 82.35572 126.22595 lx -0.09938 0.90062 0.00000 s 177.45191 97.91264 m 225.00000 83.36560 l 252.45191 108.82214 l 204.90381 122.54809 lf -0 sg 177.45191 97.91264 m 225.00000 83.36560 l 252.45191 108.82214 l 204.90381 122.54809 lx -0.37606 0.62394 0.00000 s 238.72595 96.09387 m 262.50000 93.99472 l 276.22595 101.95917 l 252.45191 108.82214 lf -0 sg 238.72595 96.09387 m 262.50000 93.99472 l 276.22595 101.95917 l 252.45191 108.82214 lx -0.03746 0.96254 0.00000 s 102.45191 83.51311 m 150.00000 76.84897 l 177.45191 97.91264 l 129.90381 112.92257 lf -0 sg 102.45191 83.51311 m 150.00000 76.84897 l 177.45191 97.91264 l 129.90381 112.92257 lx -0.41744 0.58256 0.00000 s 262.50000 93.99472 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lf -0 sg 262.50000 93.99472 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lx -0.04146 0.95854 0.00000 s 163.72595 87.38080 m 187.50000 77.94226 l 201.22595 90.63912 l 177.45191 97.91264 lf -0 sg 163.72595 87.38080 m 187.50000 77.94226 l 201.22595 90.63912 l 177.45191 97.91264 lx -0.33499 0.66501 0.00000 s 225.00000 83.36560 m 248.77405 79.03250 l 262.50000 93.99472 l 238.72595 96.09387 lf -0 sg 225.00000 83.36560 m 248.77405 79.03250 l 262.50000 93.99472 l 238.72595 96.09387 lx -0.10733 0.89267 0.00000 s 27.45191 78.67786 m 75.00000 67.78263 l 102.45191 83.51311 l 54.90381 102.45191 lf -0 sg 27.45191 78.67786 m 75.00000 67.78263 l 102.45191 83.51311 l 54.90381 102.45191 lx -0.00000 0.91659 0.08341 s 187.50000 77.94226 m 211.27405 71.93722 l 225.00000 83.36560 l 201.22595 90.63912 lf -0 sg 187.50000 77.94226 m 211.27405 71.93722 l 225.00000 83.36560 l 201.22595 90.63912 lx -0.02627 0.97373 0.00000 s 218.13702 77.65141 m 230.02405 75.19602 l 236.88702 81.19905 l 225.00000 83.36560 lf -0 sg 218.13702 77.65141 m 230.02405 75.19602 l 236.88702 81.19905 l 225.00000 83.36560 lx -0.45912 0.54088 0.00000 s 248.77405 79.03250 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 93.99472 lf -0 sg 248.77405 79.03250 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 93.99472 lx -0.15333 0.84667 0.00000 s 150.00000 76.84897 m 173.77405 66.42909 l 187.50000 77.94226 l 163.72595 87.38080 lf -0 sg 150.00000 76.84897 m 173.77405 66.42909 l 187.50000 77.94226 l 163.72595 87.38080 lx -0.19295 0.80705 0.00000 s 230.02405 75.19602 m 241.91107 71.64744 l 248.77405 79.03250 l 236.88702 81.19905 lf -0 sg 230.02405 75.19602 m 241.91107 71.64744 l 248.77405 79.03250 l 236.88702 81.19905 lx -0.04264 0.95736 0.00000 s 180.63702 72.18567 m 192.52405 72.58121 l 199.38702 74.93974 l 187.50000 77.94226 lf -0 sg 180.63702 72.18567 m 192.52405 72.58121 l 199.38702 74.93974 l 187.50000 77.94226 lx -0.03217 0.96783 0.00000 s 211.27405 71.93722 m 223.16107 68.97347 l 230.02405 75.19602 l 218.13702 77.65141 lf -0 sg 211.27405 71.93722 m 223.16107 68.97347 l 230.02405 75.19602 l 218.13702 77.65141 lx -0.19210 0.80790 0.00000 s 241.91107 71.64744 m 253.79809 67.47441 l 260.66107 75.17732 l 248.77405 79.03250 lf -0 sg 241.91107 71.64744 m 253.79809 67.47441 l 260.66107 75.17732 l 248.77405 79.03250 lx -0.00000 0.89329 0.10671 s 192.52405 72.58121 m 204.41107 61.42832 l 211.27405 71.93722 l 199.38702 74.93974 lf -0 sg 192.52405 72.58121 m 204.41107 61.42832 l 211.27405 71.93722 l 199.38702 74.93974 lx -0.04080 0.95920 0.00000 s 223.16107 68.97347 m 235.04809 64.39072 l 241.91107 71.64744 l 230.02405 75.19602 lf -0 sg 223.16107 68.97347 m 235.04809 64.39072 l 241.91107 71.64744 l 230.02405 75.19602 lx -0.07468 0.92532 0.00000 s 75.00000 67.78263 m 122.54809 48.71317 l 150.00000 76.84897 l 102.45191 83.51311 lf -0 sg 75.00000 67.78263 m 122.54809 48.71317 l 150.00000 76.84897 l 102.45191 83.51311 lx -0.17964 0.82036 0.00000 s 253.79809 67.47441 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 75.17732 lf -0 sg 253.79809 67.47441 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 75.17732 lx -0.00000 0.99331 0.00669 s 173.77405 66.42909 m 185.66107 61.67580 l 192.52405 72.58121 l 180.63702 72.18567 lf -0 sg 173.77405 66.42909 m 185.66107 61.67580 l 192.52405 72.58121 l 180.63702 72.18567 lx -0.00000 0.60965 0.39035 s 204.41107 61.42832 m 216.29809 59.05481 l 223.16107 68.97347 l 211.27405 71.93722 lf -0 sg 204.41107 61.42832 m 216.29809 59.05481 l 223.16107 68.97347 l 211.27405 71.93722 lx -0.00000 0.96045 0.03955 s 235.04809 64.39072 m 246.93512 61.33554 l 253.79809 67.47441 l 241.91107 71.64744 lf -0 sg 235.04809 64.39072 m 246.93512 61.33554 l 253.79809 67.47441 l 241.91107 71.64744 lx -0.18323 0.81677 0.00000 s 185.66107 61.67580 m 197.54809 67.32182 l 204.41107 61.42832 l 192.52405 72.58121 lf -0 sg 185.66107 61.67580 m 197.54809 67.32182 l 204.41107 61.42832 l 192.52405 72.58121 lx -0.00000 0.64916 0.35084 s 200.97958 64.37507 m 206.92309 61.75320 l 210.35458 60.24157 l 204.41107 61.42832 lf -0 sg 200.97958 64.37507 m 206.92309 61.75320 l 210.35458 60.24157 l 204.41107 61.42832 lx -0.00000 0.82004 0.17996 s 216.29809 59.05481 m 228.18512 59.52640 l 235.04809 64.39072 l 223.16107 68.97347 lf -0 sg 216.29809 59.05481 m 228.18512 59.52640 l 235.04809 64.39072 l 223.16107 68.97347 lx -0.21712 0.78288 0.00000 s 136.27405 62.78107 m 160.04809 56.29083 l 173.77405 66.42909 l 150.00000 76.84897 lf -0 sg 136.27405 62.78107 m 160.04809 56.29083 l 173.77405 66.42909 l 150.00000 76.84897 lx -0.00000 0.22341 0.77659 s 206.92309 61.75320 m 212.86661 51.22982 l 216.29809 59.05481 l 210.35458 60.24157 lf -0 sg 206.92309 61.75320 m 212.86661 51.22982 l 216.29809 59.05481 l 210.35458 60.24157 lx -0.08349 0.91651 0.00000 s 246.93512 61.33554 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 67.47441 lf -0 sg 246.93512 61.33554 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 67.47441 lx -0.00000 0.96953 0.03047 s 166.91107 61.35996 m 178.79809 59.14945 l 185.66107 61.67580 l 173.77405 66.42909 lf -0 sg 166.91107 61.35996 m 178.79809 59.14945 l 185.66107 61.67580 l 173.77405 66.42909 lx -0.00000 0.34337 0.65663 s 212.86661 51.22982 m 218.81012 58.27998 l 222.24161 59.29061 l 216.29809 59.05481 lf -0 sg 212.86661 51.22982 m 218.81012 58.27998 l 222.24161 59.29061 l 216.29809 59.05481 lx -0.00000 0.00000 0.44581 s 211.15086 47.07010 m 214.12262 49.35292 l 215.83836 54.75490 l 212.86661 51.22982 lf -0 sg 211.15086 47.07010 m 214.12262 49.35292 l 215.83836 54.75490 l 212.86661 51.22982 lx -0.00000 0.00000 0.82579 s 203.49161 56.41491 m 209.43512 42.91038 l 212.86661 51.22982 l 206.92309 61.75320 lf -0 sg 203.49161 56.41491 m 209.43512 42.91038 l 212.86661 51.22982 l 206.92309 61.75320 lx -0.00000 sg 209.43512 42.91038 m 212.40687 48.06709 l 214.12262 49.35292 l 211.15086 47.07010 lf -0 sg 209.43512 42.91038 m 212.40687 48.06709 l 214.12262 49.35292 l 211.15086 47.07010 lx -0.11123 0.88877 0.00000 s 228.18512 59.52640 m 240.07214 58.88685 l 246.93512 61.33554 l 235.04809 64.39072 lf -0 sg 228.18512 59.52640 m 240.07214 58.88685 l 246.93512 61.33554 l 235.04809 64.39072 lx -0.33551 0.66449 0.00000 s 197.54809 67.32182 m 203.49161 56.41491 l 206.92309 61.75320 l 200.97958 64.37507 lf -0 sg 197.54809 67.32182 m 203.49161 56.41491 l 206.92309 61.75320 l 200.97958 64.37507 lx -0.15807 0.84193 0.00000 s 243.50363 60.11119 m 249.44714 58.90869 l 252.87863 60.38533 l 246.93512 61.33554 lf -0 sg 243.50363 60.11119 m 249.44714 58.90869 l 252.87863 60.38533 l 246.93512 61.33554 lx -0.04889 0.95111 0.00000 s 178.79809 59.14945 m 190.68512 48.35479 l 197.54809 67.32182 l 185.66107 61.67580 lf -0 sg 178.79809 59.14945 m 190.68512 48.35479 l 197.54809 67.32182 l 185.66107 61.67580 lx -0.00000 0.00000 0.41665 s 200.06012 48.48501 m 206.00363 44.29290 l 209.43512 42.91038 l 203.49161 56.41491 lf -0 sg 200.06012 48.48501 m 206.00363 44.29290 l 209.43512 42.91038 l 203.49161 56.41491 lx -0.00000 0.00000 0.10775 s 207.71937 43.60164 m 210.69113 49.06849 l 212.40687 48.06709 l 209.43512 42.91038 lf -0 sg 207.71937 43.60164 m 210.69113 49.06849 l 212.40687 48.06709 l 209.43512 42.91038 lx -0.00000 0.59799 0.40201 s 214.12262 49.35292 m 217.09437 60.01300 l 218.81012 58.27998 l 215.83836 54.75490 lf -0 sg 214.12262 49.35292 m 217.09437 60.01300 l 218.81012 58.27998 l 215.83836 54.75490 lx -0.20608 0.79392 0.00000 s 218.81012 58.27998 m 224.75363 61.43477 l 228.18512 59.52640 l 222.24161 59.29061 lf -0 sg 218.81012 58.27998 m 224.75363 61.43477 l 228.18512 59.52640 l 222.24161 59.29061 lx -0.36374 0.63626 0.00000 s 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 67.78263 l 27.45191 78.67786 lf -0 sg 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 67.78263 l 27.45191 78.67786 lx -0.00000 0.94605 0.05395 s 194.11661 57.83830 m 200.06012 48.48501 l 203.49161 56.41491 l 197.54809 67.32182 lf -0 sg 194.11661 57.83830 m 200.06012 48.48501 l 203.49161 56.41491 l 197.54809 67.32182 lx -0.22273 0.77727 0.00000 s 249.44714 58.90869 m 255.39065 56.46336 l 258.82214 59.43512 l 252.87863 60.38533 lf -0 sg 249.44714 58.90869 m 255.39065 56.46336 l 258.82214 59.43512 l 252.87863 60.38533 lx -0.00000 0.64505 0.35495 s 212.40687 48.06709 m 215.37863 59.98116 l 217.09437 60.01300 l 214.12262 49.35292 lf -0 sg 212.40687 48.06709 m 215.37863 59.98116 l 217.09437 60.01300 l 214.12262 49.35292 lx -0.30444 0.69556 0.00000 s 224.75363 61.43477 m 230.69714 53.50076 l 234.12863 59.20663 l 228.18512 59.52640 lf -0 sg 224.75363 61.43477 m 230.69714 53.50076 l 234.12863 59.20663 l 228.18512 59.52640 lx -0.00000 0.00000 0.67193 s 206.00363 44.29290 m 208.97539 52.21123 l 210.69113 49.06849 l 207.71937 43.60164 lf -0 sg 206.00363 44.29290 m 208.97539 52.21123 l 210.69113 49.06849 l 207.71937 43.60164 lx -0.04376 0.95624 0.00000 s 160.04809 56.29083 m 171.93512 49.54917 l 178.79809 59.14945 l 166.91107 61.35996 lf -0 sg 160.04809 56.29083 m 171.93512 49.54917 l 178.79809 59.14945 l 166.91107 61.35996 lx -0.00000 0.23571 0.76429 s 190.68512 48.35479 m 196.62863 49.05323 l 200.06012 48.48501 l 194.11661 57.83830 lf -0 sg 190.68512 48.35479 m 196.62863 49.05323 l 200.06012 48.48501 l 194.11661 57.83830 lx -0.36605 0.63395 0.00000 s 240.07214 58.88685 m 246.01565 55.17551 l 249.44714 58.90869 l 243.50363 60.11119 lf -0 sg 240.07214 58.88685 m 246.01565 55.17551 l 249.44714 58.90869 l 243.50363 60.11119 lx -0.66353 0.33647 0.00000 s 217.09437 60.01300 m 220.06613 62.48227 l 221.78187 59.85738 l 218.81012 58.27998 lf -0 sg 217.09437 60.01300 m 220.06613 62.48227 l 221.78187 59.85738 l 218.81012 58.27998 lx -0.17830 0.82170 0.00000 s 230.69714 53.50076 m 236.64065 52.64687 l 240.07214 58.88685 l 234.12863 59.20663 lf -0 sg 230.69714 53.50076 m 236.64065 52.64687 l 240.07214 58.88685 l 234.12863 59.20663 lx -0.00000 0.00000 0.97573 s 196.62863 49.05323 m 202.57214 49.75167 l 206.00363 44.29290 l 200.06012 48.48501 lf -0 sg 196.62863 49.05323 m 202.57214 49.75167 l 206.00363 44.29290 l 200.06012 48.48501 lx -0.00000 0.95879 0.04121 s 210.69113 49.06849 m 213.66289 60.73239 l 215.37863 59.98116 l 212.40687 48.06709 lf -0 sg 210.69113 49.06849 m 213.66289 60.73239 l 215.37863 59.98116 l 212.40687 48.06709 lx -0.92315 0.07685 0.00000 s 220.06613 62.48227 m 223.03789 58.70486 l 224.75363 61.43477 l 221.78187 59.85738 lf -0 sg 220.06613 62.48227 m 223.03789 58.70486 l 224.75363 61.43477 l 221.78187 59.85738 lx -0.25882 0.74118 0.00000 s 246.01565 55.17551 m 251.95917 53.49161 l 255.39065 56.46336 l 249.44714 58.90869 lf -0 sg 246.01565 55.17551 m 251.95917 53.49161 l 255.39065 56.46336 l 249.44714 58.90869 lx -0.60364 0.39636 0.00000 s 223.03789 58.70486 m 226.00964 54.94447 l 227.72539 57.46777 l 224.75363 61.43477 lf -0 sg 223.03789 58.70486 m 226.00964 54.94447 l 227.72539 57.46777 l 224.75363 61.43477 lx -0.10643 0.89357 0.00000 s 226.00964 54.94447 m 228.98140 53.09882 l 230.69714 53.50076 l 227.72539 57.46777 lf -0 sg 226.00964 54.94447 m 228.98140 53.09882 l 230.69714 53.50076 l 227.72539 57.46777 lx -0.00000 0.41601 0.58399 s 171.93512 49.54917 m 183.82214 42.80750 l 190.68512 48.35479 l 178.79809 59.14945 lf -0 sg 171.93512 49.54917 m 183.82214 42.80750 l 190.68512 48.35479 l 178.79809 59.14945 lx -0.00000 0.93181 0.06819 s 228.98140 53.09882 m 231.95315 52.35677 l 233.66890 53.07382 l 230.69714 53.50076 lf -0 sg 228.98140 53.09882 m 231.95315 52.35677 l 233.66890 53.07382 l 230.69714 53.50076 lx -1.00000 0.16339 0.16339 s 215.37863 59.98116 m 218.35039 62.37504 l 220.06613 62.48227 l 217.09437 60.01300 lf -0 sg 215.37863 59.98116 m 218.35039 62.37504 l 220.06613 62.48227 l 217.09437 60.01300 lx -0.24620 0.75380 0.00000 s 236.64065 52.64687 m 242.58417 52.04937 l 246.01565 55.17551 l 240.07214 58.88685 lf -0 sg 236.64065 52.64687 m 242.58417 52.04937 l 246.01565 55.17551 l 240.07214 58.88685 lx -0.00219 0.99781 0.00000 s 231.95315 52.35677 m 234.92491 51.95219 l 236.64065 52.64687 l 233.66890 53.07382 lf -0 sg 231.95315 52.35677 m 234.92491 51.95219 l 236.64065 52.64687 l 233.66890 53.07382 lx -0.09315 0.90685 0.00000 s 122.54809 48.71317 m 146.32214 44.49634 l 160.04809 56.29083 l 136.27405 62.78107 lf -0 sg 122.54809 48.71317 m 146.32214 44.49634 l 160.04809 56.29083 l 136.27405 62.78107 lx -0.67615 0.32385 0.00000 s 221.32214 58.77401 m 224.29390 55.65931 l 226.00964 54.94447 l 223.03789 58.70486 lf -0 sg 221.32214 58.77401 m 224.29390 55.65931 l 226.00964 54.94447 l 223.03789 58.70486 lx -0.46227 0.53773 0.00000 s 208.97539 52.21123 m 211.94714 60.12955 l 213.66289 60.73239 l 210.69113 49.06849 lf -0 sg 208.97539 52.21123 m 211.94714 60.12955 l 213.66289 60.73239 l 210.69113 49.06849 lx -1.00000 0.20845 0.20845 s 218.35039 62.37504 m 221.32214 58.77401 l 223.03789 58.70486 l 220.06613 62.48227 lf -0 sg 218.35039 62.37504 m 221.32214 58.77401 l 223.03789 58.70486 l 220.06613 62.48227 lx -0.31100 0.68900 0.00000 s 224.29390 55.65931 m 227.26565 53.52468 l 228.98140 53.09882 l 226.00964 54.94447 lf -0 sg 224.29390 55.65931 m 227.26565 53.52468 l 228.98140 53.09882 l 226.00964 54.94447 lx -0.18258 0.81742 0.00000 s 227.26565 53.52468 m 230.23741 52.20468 l 231.95315 52.35677 l 228.98140 53.09882 lf -0 sg 227.26565 53.52468 m 230.23741 52.20468 l 231.95315 52.35677 l 228.98140 53.09882 lx -0.21378 0.78622 0.00000 s 242.58417 52.04937 m 248.52768 50.51985 l 251.95917 53.49161 l 246.01565 55.17551 lf -0 sg 242.58417 52.04937 m 248.52768 50.51985 l 251.95917 53.49161 l 246.01565 55.17551 lx -1.00000 0.53005 0.53005 s 213.66289 60.73239 m 216.63464 63.27390 l 218.35039 62.37504 l 215.37863 59.98116 lf -0 sg 213.66289 60.73239 m 216.63464 63.27390 l 218.35039 62.37504 l 215.37863 59.98116 lx -0.36172 0.63828 0.00000 s 202.57214 49.75167 m 208.51565 58.72383 l 211.94714 60.12955 l 206.00363 44.29290 lf -0 sg 202.57214 49.75167 m 208.51565 58.72383 l 211.94714 60.12955 l 206.00363 44.29290 lx -0.18345 0.81655 0.00000 s 230.23741 52.20468 m 233.20917 51.25752 l 234.92491 51.95219 l 231.95315 52.35677 lf -0 sg 230.23741 52.20468 m 233.20917 51.25752 l 234.92491 51.95219 l 231.95315 52.35677 lx -1.00000 0.05840 0.05840 s 219.60640 59.49270 m 222.57815 55.98457 l 224.29390 55.65931 l 221.32214 58.77401 lf -0 sg 219.60640 59.49270 m 222.57815 55.98457 l 224.29390 55.65931 l 221.32214 58.77401 lx -1.00000 0.57848 0.57848 s 216.63464 63.27390 m 219.60640 59.49270 l 221.32214 58.77401 l 218.35039 62.37504 lf -0 sg 216.63464 63.27390 m 219.60640 59.49270 l 221.32214 58.77401 l 218.35039 62.37504 lx -0.16944 0.83056 0.00000 s 233.20917 51.25752 m 239.15268 49.35719 l 242.58417 52.04937 l 236.64065 52.64687 lf -0 sg 233.20917 51.25752 m 239.15268 49.35719 l 242.58417 52.04937 l 236.64065 52.64687 lx -0.00000 0.63405 0.36595 s 183.82214 42.80750 m 195.70917 49.65395 l 202.57214 49.75167 l 190.68512 48.35479 lf -0 sg 183.82214 42.80750 m 195.70917 49.65395 l 202.57214 49.75167 l 190.68512 48.35479 lx -0.68169 0.31831 0.00000 s 222.57815 55.98457 m 225.54991 53.65171 l 227.26565 53.52468 l 224.29390 55.65931 lf -0 sg 222.57815 55.98457 m 225.54991 53.65171 l 227.26565 53.52468 l 224.29390 55.65931 lx -0.48109 0.51891 0.00000 s 225.54991 53.65171 m 228.52167 51.92932 l 230.23741 52.20468 l 227.26565 53.52468 lf -0 sg 225.54991 53.65171 m 228.52167 51.92932 l 230.23741 52.20468 l 227.26565 53.52468 lx -1.00000 0.87025 0.87025 s 211.94714 60.12955 m 214.91890 63.19973 l 216.63464 63.27390 l 213.66289 60.73239 lf -0 sg 211.94714 60.12955 m 214.91890 63.19973 l 216.63464 63.27390 l 213.66289 60.73239 lx -0.36983 0.63017 0.00000 s 228.52167 51.92932 m 231.49342 50.22549 l 233.20917 51.25752 l 230.23741 52.20468 lf -0 sg 228.52167 51.92932 m 231.49342 50.22549 l 233.20917 51.25752 l 230.23741 52.20468 lx -0.21993 0.78007 0.00000 s 239.15268 49.35719 m 245.09619 47.54809 l 248.52768 50.51985 l 242.58417 52.04937 lf -0 sg 239.15268 49.35719 m 245.09619 47.54809 l 248.52768 50.51985 l 242.58417 52.04937 lx -1.00000 0.33036 0.33036 s 217.89065 58.71049 m 220.86241 55.30836 l 222.57815 55.98457 l 219.60640 59.49270 lf -0 sg 217.89065 58.71049 m 220.86241 55.30836 l 222.57815 55.98457 l 219.60640 59.49270 lx -0.87716 0.12284 0.00000 s 220.86241 55.30836 m 223.83417 51.90623 l 225.54991 53.65171 l 222.57815 55.98457 lf -0 sg 220.86241 55.30836 m 223.83417 51.90623 l 225.54991 53.65171 l 222.57815 55.98457 lx -1.00000 0.90826 0.90826 s 214.91890 63.19973 m 217.89065 58.71049 l 219.60640 59.49270 l 216.63464 63.27390 lf -0 sg 214.91890 63.19973 m 217.89065 58.71049 l 219.60640 59.49270 l 216.63464 63.27390 lx -0.61243 0.38757 0.00000 s 223.83417 51.90623 m 226.80592 50.54985 l 228.52167 51.92932 l 225.54991 53.65171 lf -0 sg 223.83417 51.90623 m 226.80592 50.54985 l 228.52167 51.92932 l 225.54991 53.65171 lx -1.00000 sg 210.23140 59.42669 m 213.20315 61.27394 l 214.91890 63.19973 l 211.94714 60.12955 lf -0 sg 210.23140 59.42669 m 213.20315 61.27394 l 214.91890 63.19973 l 211.94714 60.12955 lx -0.47926 0.52074 0.00000 s 226.80592 50.54985 m 229.77768 49.19347 l 231.49342 50.22549 l 228.52167 51.92932 lf -0 sg 226.80592 50.54985 m 229.77768 49.19347 l 231.49342 50.22549 l 228.52167 51.92932 lx -0.32583 0.67417 0.00000 s 229.77768 49.19347 m 235.72119 46.79519 l 239.15268 49.35719 l 233.20917 51.25752 lf -0 sg 229.77768 49.19347 m 235.72119 46.79519 l 239.15268 49.35719 l 233.20917 51.25752 lx -0.87362 0.12638 0.00000 s 199.14065 49.70281 m 205.08417 53.23987 l 208.51565 58.72383 l 202.57214 49.75167 lf -0 sg 199.14065 49.70281 m 205.08417 53.23987 l 208.51565 58.72383 l 202.57214 49.75167 lx -1.00000 0.96451 0.96451 s 213.20315 61.27394 m 216.17491 56.69274 l 217.89065 58.71049 l 214.91890 63.19973 lf -0 sg 213.20315 61.27394 m 216.17491 56.69274 l 217.89065 58.71049 l 214.91890 63.19973 lx -1.00000 0.90347 0.90347 s 208.51565 58.72383 m 211.48741 56.69941 l 213.20315 61.27394 l 210.23140 59.42669 lf -0 sg 208.51565 58.72383 m 211.48741 56.69941 l 213.20315 61.27394 l 210.23140 59.42669 lx -1.00000 0.13207 0.13207 s 214.45917 54.67499 m 220.40268 49.54217 l 223.83417 51.90623 l 217.89065 58.71049 lf -0 sg 214.45917 54.67499 m 220.40268 49.54217 l 223.83417 51.90623 l 217.89065 58.71049 lx -0.04616 0.95384 0.00000 s 146.32214 44.49634 m 170.09619 40.27951 l 183.82214 42.80750 l 160.04809 56.29083 lf -0 sg 146.32214 44.49634 m 170.09619 40.27951 l 183.82214 42.80750 l 160.04809 56.29083 lx -1.00000 0.73863 0.73863 s 211.48741 56.69941 m 214.45917 54.67499 l 216.17491 56.69274 l 213.20315 61.27394 lf -0 sg 211.48741 56.69941 m 214.45917 54.67499 l 216.17491 56.69274 l 213.20315 61.27394 lx -0.49660 0.50340 0.00000 s 220.40268 49.54217 m 226.34619 44.40935 l 229.77768 49.19347 l 223.83417 51.90623 lf -0 sg 220.40268 49.54217 m 226.34619 44.40935 l 229.77768 49.19347 l 223.83417 51.90623 lx -0.25384 0.74616 0.00000 s 235.72119 46.79519 m 241.66470 44.57634 l 245.09619 47.54809 l 239.15268 49.35719 lf -0 sg 235.72119 46.79519 m 241.66470 44.57634 l 245.09619 47.54809 l 239.15268 49.35719 lx -0.24014 0.75986 0.00000 s 47.54809 41.17786 m 95.09619 27.45191 l 122.54809 48.71317 l 75.00000 67.78263 lf -0 sg 47.54809 41.17786 m 95.09619 27.45191 l 122.54809 48.71317 l 75.00000 67.78263 lx -1.00000 0.48538 0.48538 s 205.08417 53.23987 m 211.02768 50.35416 l 214.45917 54.67499 l 208.51565 58.72383 lf -0 sg 205.08417 53.23987 m 211.02768 50.35416 l 214.45917 54.67499 l 208.51565 58.72383 lx -0.30100 0.69900 0.00000 s 226.34619 44.40935 m 232.28970 43.81353 l 235.72119 46.79519 l 229.77768 49.19347 lf -0 sg 226.34619 44.40935 m 232.28970 43.81353 l 235.72119 46.79519 l 229.77768 49.19347 lx -0.91833 0.08167 0.00000 s 195.70917 49.65395 m 201.65268 47.84364 l 205.08417 53.23987 l 199.14065 49.70281 lf -0 sg 195.70917 49.65395 m 201.65268 47.84364 l 205.08417 53.23987 l 199.14065 49.70281 lx -0.31503 0.68497 0.00000 s 176.95917 41.54351 m 188.84619 46.63361 l 195.70917 49.65395 l 183.82214 42.80750 lf -0 sg 176.95917 41.54351 m 188.84619 46.63361 l 195.70917 49.65395 l 183.82214 42.80750 lx -0.27351 0.72649 0.00000 s 232.28970 43.81353 m 238.23321 41.60458 l 241.66470 44.57634 l 235.72119 46.79519 lf -0 sg 232.28970 43.81353 m 238.23321 41.60458 l 241.66470 44.57634 l 235.72119 46.79519 lx -1.00000 0.10985 0.10985 s 201.65268 47.84364 m 207.59619 46.03333 l 211.02768 50.35416 l 205.08417 53.23987 lf -0 sg 201.65268 47.84364 m 207.59619 46.03333 l 211.02768 50.35416 l 205.08417 53.23987 lx -0.61940 0.38060 0.00000 s 207.59619 46.03333 m 219.48321 38.03123 l 226.34619 44.40935 l 214.45917 54.67499 lf -0 sg 207.59619 46.03333 m 219.48321 38.03123 l 226.34619 44.40935 l 214.45917 54.67499 lx -0.17370 0.82630 0.00000 s 222.91470 41.22029 m 228.85821 40.29319 l 232.28970 43.81353 l 226.34619 44.40935 lf -0 sg 222.91470 41.22029 m 228.85821 40.29319 l 232.28970 43.81353 l 226.34619 44.40935 lx -0.24604 0.75396 0.00000 s 228.85821 40.29319 m 234.80172 38.63283 l 238.23321 41.60458 l 232.28970 43.81353 lf -0 sg 228.85821 40.29319 m 234.80172 38.63283 l 238.23321 41.60458 l 232.28970 43.81353 lx -0.97260 0.02740 0.00000 s 188.84619 46.63361 m 200.73321 37.96066 l 207.59619 46.03333 l 195.70917 49.65395 lf -0 sg 188.84619 46.63361 m 200.73321 37.96066 l 207.59619 46.03333 l 195.70917 49.65395 lx -0.10196 0.89804 0.00000 s 219.48321 38.03123 m 225.42672 36.84615 l 228.85821 40.29319 l 222.91470 41.22029 lf -0 sg 219.48321 38.03123 m 225.42672 36.84615 l 228.85821 40.29319 l 222.91470 41.22029 lx -0.19568 0.80432 0.00000 s 225.42672 36.84615 m 231.37024 35.66107 l 234.80172 38.63283 l 228.85821 40.29319 lf -0 sg 225.42672 36.84615 m 231.37024 35.66107 l 234.80172 38.63283 l 228.85821 40.29319 lx -0.67055 0.32945 0.00000 s 170.09619 40.27951 m 181.98321 35.63595 l 188.84619 46.63361 l 176.95917 41.54351 lf -0 sg 170.09619 40.27951 m 181.98321 35.63595 l 188.84619 46.63361 l 176.95917 41.54351 lx -0.32391 0.67609 0.00000 s 200.73321 37.96066 m 212.62024 31.34194 l 219.48321 38.03123 l 207.59619 46.03333 lf -0 sg 200.73321 37.96066 m 212.62024 31.34194 l 219.48321 38.03123 l 207.59619 46.03333 lx -0.08341 0.91659 0.00000 s 212.62024 31.34194 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.03123 lf -0 sg 212.62024 31.34194 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.03123 lx -0.71265 0.28735 0.00000 s 181.98321 35.63595 m 193.87024 30.99238 l 200.73321 37.96066 l 188.84619 46.63361 lf -0 sg 181.98321 35.63595 m 193.87024 30.99238 l 200.73321 37.96066 l 188.84619 46.63361 lx -0.23762 0.76238 0.00000 s 95.09619 27.45191 m 142.64428 13.72595 l 170.09619 40.27951 l 122.54809 48.71317 lf -0 sg 95.09619 27.45191 m 142.64428 13.72595 l 170.09619 40.27951 l 122.54809 48.71317 lx -0.22972 0.77028 0.00000 s 193.87024 30.99238 m 205.75726 27.38321 l 212.62024 31.34194 l 200.73321 37.96066 lf -0 sg 193.87024 30.99238 m 205.75726 27.38321 l 212.62024 31.34194 l 200.73321 37.96066 lx -0.14436 0.85564 0.00000 s 205.75726 27.38321 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.34194 lf -0 sg 205.75726 27.38321 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.34194 lx -0.40771 0.59229 0.00000 s 156.37024 27.00273 m 180.14428 17.95023 l 193.87024 30.99238 l 170.09619 40.27951 lf -0 sg 156.37024 27.00273 m 180.14428 17.95023 l 193.87024 30.99238 l 170.09619 40.27951 lx -0.20264 0.79736 0.00000 s 180.14428 17.95023 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.99238 lf -0 sg 180.14428 17.95023 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.99238 lx -0.25352 0.74648 0.00000 s 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.95023 l 156.37024 27.00273 lf -0 sg 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.95023 l 156.37024 27.00273 lx -0.18516 0.81484 0.00000 s 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.95023 lf -0 sg 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.95023 lx -showpage -. -DEAL:: -DEAL:: Writing statistics for whole sweep.# Description of fields -DEAL::# ===================== -DEAL::# General: -DEAL::# time -# Primal problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Dual problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Error estimation: -# total estimated error in this timestep -# Postprocessing: -# Huyghens wave -DEAL:: -DEAL:: -DEAL::0 157 198 0 0 0.00 0.00 0.00 157 765 9 9 0.00 0.00 0.00 0.00 0.08 -DEAL::0.03 190 233 8 12 0.94 1.26 2.20 190 903 9 10 0.00 0.00 0.00 -0.05 0.00 -DEAL::0.06 247 297 8 12 0.56 1.64 2.20 247 1159 10 10 0.00 0.00 0.00 -0.04 -0.10 -DEAL::0.08 316 370 8 12 1.18 1.02 2.20 316 1446 13 10 0.00 0.00 0.00 -0.03 -0.09 -DEAL::0.11 409 472 8 11 1.16 1.01 2.17 409 1852 17 10 0.00 0.00 0.00 -0.02 -0.17 -DEAL::0.14 472 536 9 12 1.12 1.03 2.15 472 2103 18 10 0.00 0.00 0.00 -0.02 -0.18 -DEAL::0.17 496 563 9 12 0.99 1.11 2.11 496 2210 19 10 0.00 0.00 0.00 -0.01 -0.16 -DEAL::0.20 475 543 9 12 0.88 0.97 1.85 475 2130 18 10 0.00 0.00 0.00 0.00 -0.08 -DEAL::0.22 526 597 9 12 0.94 0.84 1.78 526 2342 18 10 0.00 0.00 0.00 -0.02 0.05 -DEAL::0.25 589 668 11 12 0.93 0.72 1.64 589 2624 21 10 0.00 0.00 0.00 -0.04 0.36 -DEAL::0.28 544 623 10 12 0.74 0.67 1.42 544 2450 20 10 0.00 0.00 0.00 0.00 0.54 -DEAL::0.31 520 593 9 12 0.62 0.79 1.41 520 2330 19 10 0.00 0.00 0.00 0.02 0.36 -DEAL::0.34 490 559 10 13 0.58 0.76 1.34 490 2195 20 10 0.00 0.00 0.00 -0.01 -0.08 -DEAL::0.36 460 526 9 12 0.72 0.61 1.32 460 2060 17 10 0.00 0.00 0.00 -0.01 -0.90 -DEAL::0.39 439 501 9 13 0.52 0.48 1.00 439 1963 18 10 0.00 0.00 0.00 -0.03 -2.40 -DEAL::0.42 406 464 9 13 0.47 0.50 0.97 406 1815 16 10 0.00 0.00 0.00 -0.02 -3.04 -DEAL::0.45 343 400 9 12 0.42 0.41 0.82 343 1561 16 10 0.00 0.00 0.00 -0.02 1.07 -DEAL::0.48 301 353 9 12 0.41 0.33 0.74 301 1376 15 10 0.00 0.00 0.00 -0.04 18.73 -DEAL::0.50 295 345 8 12 0.27 0.29 0.56 295 1344 13 10 0.00 0.00 0.00 -0.09 108.27 -DEAL::0.53 223 268 8 11 0.27 0.26 0.53 223 1038 9 10 0.00 0.00 0.00 0.09 386.54 -DEAL::0.56 199 241 8 12 0.24 0.25 0.49 199 930 9 10 0.00 0.00 0.00 0.02 892.50 -DEAL::0.59 187 227 8 12 0.23 0.24 0.46 187 874 9 10 0.00 0.00 0.00 0.06 1544.34 -DEAL::0.62 154 192 9 12 0.22 0.18 0.40 154 734 8 10 0.00 0.00 0.00 0.05 2288.92 -DEAL::0.64 121 157 8 11 0.18 0.19 0.37 121 599 8 9 0.00 0.00 0.00 -0.10 3098.91 -DEAL::0.67 124 162 8 11 0.17 0.20 0.37 124 615 8 9 0.00 0.00 0.00 -1.05 3882.42 -DEAL::0.70 124 162 8 11 0.19 0.18 0.37 124 615 0 0 0.00 0.00 0.00 -0.56 4587.93 -DEAL:: -DEAL:: Writing summary.Summary of this sweep: -====================== - - Accumulated number of cells: 8807 - Acc. number of primal dofs : 20500 - Acc. number of dual dofs : 80066 - Accumulated error : 0.00 - - Evaluations: - ------------ - Hughens wave -- weighted time: 0.63 - average : 0.00 - - -DEAL:: -DEAL:: diff --git a/tests/deal.II/wave-test-3/cmp/mips-sgi-irix6.5+MIPSpro7.4 b/tests/deal.II/wave-test-3/cmp/mips-sgi-irix6.5+MIPSpro7.4 deleted file mode 100644 index 8d825cc598..0000000000 --- a/tests/deal.II/wave-test-3/cmp/mips-sgi-irix6.5+MIPSpro7.4 +++ /dev/null @@ -1,3313 +0,0 @@ - -DEAL::Sweep 0 : -DEAL::--------- -DEAL:: Primal problem: time=0.00, step=0, sweep=0. 256 cells, 289 dofsStarting value 0.00 -DEAL:cg::Convergence step 0 value 0.00 -DEAL:cg::Starting value 0.01 -DEAL:cg::Convergence step 15 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 0 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 0 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.03, step=1, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0.00 -DEAL:cg::Starting value 0.09 -DEAL:cg::Convergence step 13 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.06, step=2, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.14 -DEAL:cg::Convergence step 13 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.08, step=3, sweep=0. 256 cells, 289 dofsStarting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.13 -DEAL:cg::Convergence step 12 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.11, step=4, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.11 -DEAL:cg::Convergence step 12 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.14, step=5, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0.00 -DEAL:cg::Starting value 0.11 -DEAL:cg::Convergence step 13 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.17, step=6, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 13 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.20, step=7, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.13 -DEAL:cg::Convergence step 12 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.22, step=8, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 13 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.25, step=9, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.28, step=10, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.13 -DEAL:cg::Convergence step 12 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.31, step=11, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0.00 -DEAL:cg::Starting value 0.13 -DEAL:cg::Convergence step 13 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.34, step=12, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 13 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.36, step=13, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.39, step=14, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0.00 -DEAL:cg::Starting value 0.13 -DEAL:cg::Convergence step 13 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.42, step=15, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0.00 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 13 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.45, step=16, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0.00 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.48, step=17, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0.00 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 13 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.50, step=18, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.53, step=19, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.56, step=20, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.11 -DEAL:cg::Convergence step 12 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.59, step=21, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.11 -DEAL:cg::Convergence step 12 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.62, step=22, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0.00 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 13 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.64, step=23, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 9 value 0.00 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 13 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.67, step=24, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.12 -DEAL:cg::Convergence step 12 value 0.00 -DEAL::. -DEAL:: Primal problem: time=0.70, step=25, sweep=0. 256 cells, 289 dofsStarting value 0.01 -DEAL:cg::Convergence step 10 value 0.00 -DEAL:cg::Starting value 0.11 -DEAL:cg::Convergence step 13 value 0.00 -DEAL::. -DEAL:: -DEAL:: Dual problem: time=0.70, step=25, sweep=0. 256 cells, 1089 dofs. -DEAL:: Dual problem: time=0.67, step=24, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 5 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.64, step=23, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.62, step=22, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.59, step=21, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.56, step=20, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.53, step=19, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.50, step=18, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.48, step=17, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.45, step=16, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 6 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.42, step=15, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.39, step=14, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.36, step=13, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.34, step=12, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.31, step=11, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.28, step=10, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.25, step=9, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.22, step=8, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.20, step=7, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.17, step=6, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.14, step=5, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.11, step=4, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.08, step=3, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.06, step=2, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.03, step=1, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: Dual problem: time=0.00, step=0, sweep=0. 256 cells, 1089 dofsStarting value 0.00 -DEAL:cg::Convergence step 7 value 0.00 -DEAL:cg::Starting value 0.00 -DEAL:cg::Convergence step 10 value 0.00 -DEAL::. -DEAL:: -DEAL:: Postprocessing: time=0.00, step=0, sweep=0. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library - -%%BoundingBox: 0 0 300 189 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50 setlinewidth -0.00000 0.00000 0.40691 s 102.94464 144.05649 m 114.83167 140.62500 l 121.69464 146.56851 l 109.80762 150.00000 lf -0 sg 102.94464 144.05649 m 114.83167 140.62500 l 121.69464 146.56851 l 109.80762 150.00000 lx -0.00000 0.00000 0.40691 s 114.83167 140.62500 m 126.71869 137.19351 l 133.58167 143.13702 l 121.69464 146.56851 lf -0 sg 114.83167 140.62500 m 126.71869 137.19351 l 133.58167 143.13702 l 121.69464 146.56851 lx -0.00000 0.00000 0.40691 s 96.08167 138.11298 m 107.96869 134.68149 l 114.83167 140.62500 l 102.94464 144.05649 lf -0 sg 96.08167 138.11298 m 107.96869 134.68149 l 114.83167 140.62500 l 102.94464 144.05649 lx -0.00000 0.00000 0.40691 s 126.71869 137.19351 m 138.60572 133.76203 l 145.46869 139.70554 l 133.58167 143.13702 lf -0 sg 126.71869 137.19351 m 138.60572 133.76203 l 145.46869 139.70554 l 133.58167 143.13702 lx -0.00000 0.00000 0.40691 s 107.96869 134.68149 m 119.85572 131.25000 l 126.71869 137.19351 l 114.83167 140.62500 lf -0 sg 107.96869 134.68149 m 119.85572 131.25000 l 126.71869 137.19351 l 114.83167 140.62500 lx -0.00000 0.00000 0.40691 s 138.60572 133.76203 m 150.49274 130.33052 l 157.35572 136.27405 l 145.46869 139.70554 lf -0 sg 138.60572 133.76203 m 150.49274 130.33052 l 157.35572 136.27405 l 145.46869 139.70554 lx -0.00000 0.00000 0.40691 s 89.21869 132.16946 m 101.10572 128.73798 l 107.96869 134.68149 l 96.08167 138.11298 lf -0 sg 89.21869 132.16946 m 101.10572 128.73798 l 107.96869 134.68149 l 96.08167 138.11298 lx -0.00000 0.00000 0.40691 s 119.85572 131.25000 m 131.74274 127.81850 l 138.60572 133.76203 l 126.71869 137.19351 lf -0 sg 119.85572 131.25000 m 131.74274 127.81850 l 138.60572 133.76203 l 126.71869 137.19351 lx -0.00000 0.00000 0.40691 s 150.49274 130.33052 m 162.37976 126.89910 l 169.24274 132.84256 l 157.35572 136.27405 lf -0 sg 150.49274 130.33052 m 162.37976 126.89910 l 169.24274 132.84256 l 157.35572 136.27405 lx -0.00000 0.00000 0.40691 s 101.10572 128.73798 m 112.99274 125.30647 l 119.85572 131.25000 l 107.96869 134.68149 lf -0 sg 101.10572 128.73798 m 112.99274 125.30647 l 119.85572 131.25000 l 107.96869 134.68149 lx -0.00000 0.00000 0.40691 s 131.74274 127.81850 m 143.62976 124.38708 l 150.49274 130.33052 l 138.60572 133.76203 lf -0 sg 131.74274 127.81850 m 143.62976 124.38708 l 150.49274 130.33052 l 138.60572 133.76203 lx -0.00000 0.00000 0.40691 s 162.37976 126.89910 m 174.26679 123.46737 l 181.12976 129.41107 l 169.24274 132.84256 lf -0 sg 162.37976 126.89910 m 174.26679 123.46737 l 181.12976 129.41107 l 169.24274 132.84256 lx -0.00000 0.00000 0.40691 s 82.35572 126.22595 m 94.24274 122.79445 l 101.10572 128.73798 l 89.21869 132.16946 lf -0 sg 82.35572 126.22595 m 94.24274 122.79445 l 101.10572 128.73798 l 89.21869 132.16946 lx -0.00000 0.00000 0.40691 s 112.99274 125.30647 m 124.87976 121.87505 l 131.74274 127.81850 l 119.85572 131.25000 lf -0 sg 112.99274 125.30647 m 124.87976 121.87505 l 131.74274 127.81850 l 119.85572 131.25000 lx -0.00000 0.00000 0.40691 s 143.62976 124.38708 m 155.51679 120.95533 l 162.37976 126.89910 l 150.49274 130.33052 lf -0 sg 143.62976 124.38708 m 155.51679 120.95533 l 162.37976 126.89910 l 150.49274 130.33052 lx -0.00000 0.00000 0.40693 s 174.26679 123.46737 m 186.15381 120.03678 l 193.01679 125.97958 l 181.12976 129.41107 lf -0 sg 174.26679 123.46737 m 186.15381 120.03678 l 193.01679 125.97958 l 181.12976 129.41107 lx -0.00000 0.00000 0.40691 s 94.24274 122.79445 m 106.12976 119.36303 l 112.99274 125.30647 l 101.10572 128.73798 lf -0 sg 94.24274 122.79445 m 106.12976 119.36303 l 112.99274 125.30647 l 101.10572 128.73798 lx -0.00000 0.00000 0.40691 s 124.87976 121.87505 m 136.76679 118.44331 l 143.62976 124.38708 l 131.74274 127.81850 lf -0 sg 124.87976 121.87505 m 136.76679 118.44331 l 143.62976 124.38708 l 131.74274 127.81850 lx -0.00000 0.00000 0.40693 s 155.51679 120.95533 m 167.40381 117.52480 l 174.26679 123.46737 l 162.37976 126.89910 lf -0 sg 155.51679 120.95533 m 167.40381 117.52480 l 174.26679 123.46737 l 162.37976 126.89910 lx -0.00000 0.00000 0.40691 s 75.49274 120.28244 m 87.37976 116.85100 l 94.24274 122.79445 l 82.35572 126.22595 lf -0 sg 75.49274 120.28244 m 87.37976 116.85100 l 94.24274 122.79445 l 82.35572 126.22595 lx -0.00000 0.00000 0.40672 s 186.15381 120.03678 m 198.04083 116.59932 l 204.90381 122.54809 l 193.01679 125.97958 lf -0 sg 186.15381 120.03678 m 198.04083 116.59932 l 204.90381 122.54809 l 193.01679 125.97958 lx -0.00000 0.00000 0.40691 s 106.12976 119.36303 m 118.01679 115.93128 l 124.87976 121.87505 l 112.99274 125.30647 lf -0 sg 106.12976 119.36303 m 118.01679 115.93128 l 124.87976 121.87505 l 112.99274 125.30647 lx -0.00000 0.00000 0.40693 s 136.76679 118.44331 m 148.65381 115.01278 l 155.51679 120.95533 l 143.62976 124.38708 lf -0 sg 136.76679 118.44331 m 148.65381 115.01278 l 155.51679 120.95533 l 143.62976 124.38708 lx -0.00000 0.00000 0.40685 s 167.40381 117.52480 m 179.29083 114.08974 l 186.15381 120.03678 l 174.26679 123.46737 lf -0 sg 167.40381 117.52480 m 179.29083 114.08974 l 186.15381 120.03678 l 174.26679 123.46737 lx -0.00000 0.00000 0.40691 s 87.37976 116.85100 m 99.26679 113.41926 l 106.12976 119.36303 l 94.24274 122.79445 lf -0 sg 87.37976 116.85100 m 99.26679 113.41926 l 106.12976 119.36303 l 94.24274 122.79445 lx -0.00000 0.00000 0.40672 s 198.04083 116.59932 m 209.92786 113.17380 l 216.79083 119.11661 l 204.90381 122.54809 lf -0 sg 198.04083 116.59932 m 209.92786 113.17380 l 216.79083 119.11661 l 204.90381 122.54809 lx -0.00000 0.00000 0.40693 s 118.01679 115.93128 m 129.90381 112.50076 l 136.76679 118.44331 l 124.87976 121.87505 lf -0 sg 118.01679 115.93128 m 129.90381 112.50076 l 136.76679 118.44331 l 124.87976 121.87505 lx -0.00000 0.00000 0.40685 s 148.65381 115.01278 m 160.54083 111.57770 l 167.40381 117.52480 l 155.51679 120.95533 lf -0 sg 148.65381 115.01278 m 160.54083 111.57770 l 167.40381 117.52480 l 155.51679 120.95533 lx -0.00000 0.00000 0.40691 s 68.62976 114.33893 m 80.51679 110.90725 l 87.37976 116.85100 l 75.49274 120.28244 lf -0 sg 68.62976 114.33893 m 80.51679 110.90725 l 87.37976 116.85100 l 75.49274 120.28244 lx -0.00000 0.00000 0.40749 s 179.29083 114.08974 m 191.17786 110.68213 l 198.04083 116.59932 l 186.15381 120.03678 lf -0 sg 179.29083 114.08974 m 191.17786 110.68213 l 198.04083 116.59932 l 186.15381 120.03678 lx -0.00000 0.00000 0.40693 s 99.26679 113.41926 m 111.15381 109.98874 l 118.01679 115.93128 l 106.12976 119.36303 lf -0 sg 99.26679 113.41926 m 111.15381 109.98874 l 118.01679 115.93128 l 106.12976 119.36303 lx -0.00000 0.00000 0.40693 s 209.92786 113.17380 m 221.81488 109.74142 l 228.67786 115.68512 l 216.79083 119.11661 lf -0 sg 209.92786 113.17380 m 221.81488 109.74142 l 228.67786 115.68512 l 216.79083 119.11661 lx -0.00000 0.00000 0.40685 s 129.90381 112.50076 m 141.79083 109.06568 l 148.65381 115.01278 l 136.76679 118.44331 lf -0 sg 129.90381 112.50076 m 141.79083 109.06568 l 148.65381 115.01278 l 136.76679 118.44331 lx -0.00000 0.00000 0.40715 s 160.54083 111.57770 m 172.42786 108.15963 l 179.29083 114.08974 l 167.40381 117.52480 lf -0 sg 160.54083 111.57770 m 172.42786 108.15963 l 179.29083 114.08974 l 167.40381 117.52480 lx -0.00000 0.00000 0.40693 s 80.51679 110.90725 m 92.40381 107.47671 l 99.26679 113.41926 l 87.37976 116.85100 lf -0 sg 80.51679 110.90725 m 92.40381 107.47671 l 99.26679 113.41926 l 87.37976 116.85100 lx -0.00000 0.00000 0.40749 s 191.17786 110.68213 m 203.06488 107.22676 l 209.92786 113.17380 l 198.04083 116.59932 lf -0 sg 191.17786 110.68213 m 203.06488 107.22676 l 209.92786 113.17380 l 198.04083 116.59932 lx -0.00000 0.00000 0.40685 s 111.15381 109.98874 m 123.04083 106.55365 l 129.90381 112.50076 l 118.01679 115.93128 lf -0 sg 111.15381 109.98874 m 123.04083 106.55365 l 129.90381 112.50076 l 118.01679 115.93128 lx -0.00000 0.00000 0.40691 s 221.81488 109.74142 m 233.70191 106.31017 l 240.56488 112.25363 l 228.67786 115.68512 lf -0 sg 221.81488 109.74142 m 233.70191 106.31017 l 240.56488 112.25363 l 228.67786 115.68512 lx -0.00000 0.00000 0.40715 s 141.79083 109.06568 m 153.67786 105.64761 l 160.54083 111.57770 l 148.65381 115.01278 lf -0 sg 141.79083 109.06568 m 153.67786 105.64761 l 160.54083 111.57770 l 148.65381 115.01278 lx -0.00000 0.00000 0.40693 s 61.76679 108.39542 m 73.65381 104.96463 l 80.51679 110.90725 l 68.62976 114.33893 lf -0 sg 61.76679 108.39542 m 73.65381 104.96463 l 80.51679 110.90725 l 68.62976 114.33893 lx -0.00000 0.00000 0.40481 s 172.42786 108.15963 m 184.31488 104.63857 l 191.17786 110.68213 l 179.29083 114.08974 lf -0 sg 172.42786 108.15963 m 184.31488 104.63857 l 191.17786 110.68213 l 179.29083 114.08974 lx -0.00000 0.00000 0.40685 s 92.40381 107.47671 m 104.29083 104.04163 l 111.15381 109.98874 l 99.26679 113.41926 lf -0 sg 92.40381 107.47671 m 104.29083 104.04163 l 111.15381 109.98874 l 99.26679 113.41926 lx -0.00000 0.00000 0.40685 s 203.06488 107.22676 m 214.95191 103.79885 l 221.81488 109.74142 l 209.92786 113.17380 lf -0 sg 203.06488 107.22676 m 214.95191 103.79885 l 221.81488 109.74142 l 209.92786 113.17380 lx -0.00000 0.00000 0.40715 s 123.04083 106.55365 m 134.92786 103.13559 l 141.79083 109.06568 l 129.90381 112.50076 lf -0 sg 123.04083 106.55365 m 134.92786 103.13559 l 141.79083 109.06568 l 129.90381 112.50076 lx -0.00000 0.00000 0.40691 s 233.70191 106.31017 m 245.58893 102.87862 l 252.45191 108.82214 l 240.56488 112.25363 lf -0 sg 233.70191 106.31017 m 245.58893 102.87862 l 252.45191 108.82214 l 240.56488 112.25363 lx -0.00000 0.00000 0.40603 s 153.67786 105.64761 m 165.56488 102.16603 l 172.42786 108.15963 l 160.54083 111.57770 lf -0 sg 153.67786 105.64761 m 165.56488 102.16603 l 172.42786 108.15963 l 160.54083 111.57770 lx -0.00000 0.00000 0.40685 s 73.65381 104.96463 m 85.54083 101.52962 l 92.40381 107.47671 l 80.51679 110.90725 lf -0 sg 73.65381 104.96463 m 85.54083 101.52962 l 92.40381 107.47671 l 80.51679 110.90725 lx -0.00000 0.00000 0.40481 s 184.31488 104.63857 m 196.20191 101.29665 l 203.06488 107.22676 l 191.17786 110.68213 lf -0 sg 184.31488 104.63857 m 196.20191 101.29665 l 203.06488 107.22676 l 191.17786 110.68213 lx -0.00000 0.00000 0.40715 s 104.29083 104.04163 m 116.17786 100.62356 l 123.04083 106.55365 l 111.15381 109.98874 lf -0 sg 104.29083 104.04163 m 116.17786 100.62356 l 123.04083 106.55365 l 111.15381 109.98874 lx -0.00000 0.00000 0.40693 s 214.95191 103.79885 m 226.83893 100.36640 l 233.70191 106.31017 l 221.81488 109.74142 lf -0 sg 214.95191 103.79885 m 226.83893 100.36640 l 233.70191 106.31017 l 221.81488 109.74142 lx -0.00000 0.00000 0.40603 s 134.92786 103.13559 m 146.81488 99.65400 l 153.67786 105.64761 l 141.79083 109.06568 lf -0 sg 134.92786 103.13559 m 146.81488 99.65400 l 153.67786 105.64761 l 141.79083 109.06568 lx -0.00000 0.00000 0.40691 s 245.58893 102.87862 m 257.47595 99.44715 l 264.33893 105.39065 l 252.45191 108.82214 lf -0 sg 245.58893 102.87862 m 257.47595 99.44715 l 264.33893 105.39065 l 252.45191 108.82214 lx -0.00000 0.00000 0.40672 s 54.90381 102.45191 m 66.79083 99.01515 l 73.65381 104.96463 l 61.76679 108.39542 lf -0 sg 54.90381 102.45191 m 66.79083 99.01515 l 73.65381 104.96463 l 61.76679 108.39542 lx -0.00000 0.00000 0.41474 s 165.56488 102.16603 m 177.45191 99.06893 l 184.31488 104.63857 l 172.42786 108.15963 lf -0 sg 165.56488 102.16603 m 177.45191 99.06893 l 184.31488 104.63857 l 172.42786 108.15963 lx -0.00000 0.00000 0.40715 s 85.54083 101.52962 m 97.42786 98.11153 l 104.29083 104.04163 l 92.40381 107.47671 lf -0 sg 85.54083 101.52962 m 97.42786 98.11153 l 104.29083 104.04163 l 92.40381 107.47671 lx -0.00000 0.00000 0.40715 s 196.20191 101.29665 m 208.08893 97.85175 l 214.95191 103.79885 l 203.06488 107.22676 lf -0 sg 196.20191 101.29665 m 208.08893 97.85175 l 214.95191 103.79885 l 203.06488 107.22676 lx -0.00000 0.00000 0.40603 s 116.17786 100.62356 m 128.06488 97.14198 l 134.92786 103.13559 l 123.04083 106.55365 lf -0 sg 116.17786 100.62356 m 128.06488 97.14198 l 134.92786 103.13559 l 123.04083 106.55365 lx -0.00000 0.00000 0.40691 s 226.83893 100.36640 m 238.72595 96.93517 l 245.58893 102.87862 l 233.70191 106.31017 lf -0 sg 226.83893 100.36640 m 238.72595 96.93517 l 245.58893 102.87862 l 233.70191 106.31017 lx -0.00000 0.00000 0.41022 s 146.81488 99.65400 m 158.70191 96.40947 l 165.56488 102.16603 l 153.67786 105.64761 lf -0 sg 146.81488 99.65400 m 158.70191 96.40947 l 165.56488 102.16603 l 153.67786 105.64761 lx -0.00000 0.00000 0.40691 s 257.47595 99.44715 m 269.36298 96.01565 l 276.22595 101.95917 l 264.33893 105.39065 lf -0 sg 257.47595 99.44715 m 269.36298 96.01565 l 276.22595 101.95917 l 264.33893 105.39065 lx -0.00000 0.00000 0.40749 s 66.79083 99.01515 m 78.67786 95.60999 l 85.54083 101.52962 l 73.65381 104.96463 lf -0 sg 66.79083 99.01515 m 78.67786 95.60999 l 85.54083 101.52962 l 73.65381 104.96463 lx -0.00000 0.00000 0.41474 s 177.45191 99.06893 m 189.33893 95.30305 l 196.20191 101.29665 l 184.31488 104.63857 lf -0 sg 177.45191 99.06893 m 189.33893 95.30305 l 196.20191 101.29665 l 184.31488 104.63857 lx -0.00000 0.00000 0.40603 s 97.42786 98.11153 m 109.31488 94.62996 l 116.17786 100.62356 l 104.29083 104.04163 lf -0 sg 97.42786 98.11153 m 109.31488 94.62996 l 116.17786 100.62356 l 104.29083 104.04163 lx -0.00000 0.00000 0.40685 s 208.08893 97.85175 m 219.97595 94.42385 l 226.83893 100.36640 l 214.95191 103.79885 lf -0 sg 208.08893 97.85175 m 219.97595 94.42385 l 226.83893 100.36640 l 214.95191 103.79885 lx -0.00000 0.00000 0.41022 s 128.06488 97.14198 m 139.95191 93.89744 l 146.81488 99.65400 l 134.92786 103.13559 lf -0 sg 128.06488 97.14198 m 139.95191 93.89744 l 146.81488 99.65400 l 134.92786 103.13559 lx -0.00000 0.00000 0.40691 s 238.72595 96.93517 m 250.61298 93.50362 l 257.47595 99.44715 l 245.58893 102.87862 lf -0 sg 238.72595 96.93517 m 250.61298 93.50362 l 257.47595 99.44715 l 245.58893 102.87862 lx -0.00000 0.00000 0.40672 s 48.04083 96.50839 m 59.92786 93.07761 l 66.79083 99.01515 l 54.90381 102.45191 lf -0 sg 48.04083 96.50839 m 59.92786 93.07761 l 66.79083 99.01515 l 54.90381 102.45191 lx -0.00000 0.00000 0.37770 s 158.70191 96.40947 m 170.58893 91.72999 l 177.45191 99.06893 l 165.56488 102.16603 lf -0 sg 158.70191 96.40947 m 170.58893 91.72999 l 177.45191 99.06893 l 165.56488 102.16603 lx -0.00000 0.00000 0.40691 s 269.36298 96.01565 m 281.25000 92.58417 l 288.11298 98.52768 l 276.22595 101.95917 lf -0 sg 269.36298 96.01565 m 281.25000 92.58417 l 288.11298 98.52768 l 276.22595 101.95917 lx -0.00000 0.00000 0.40481 s 78.67786 95.60999 m 90.56488 92.07845 l 97.42786 98.11153 l 85.54083 101.52962 lf -0 sg 78.67786 95.60999 m 90.56488 92.07845 l 97.42786 98.11153 l 85.54083 101.52962 lx -0.00000 0.00000 0.40603 s 189.33893 95.30305 m 201.22595 91.92166 l 208.08893 97.85175 l 196.20191 101.29665 lf -0 sg 189.33893 95.30305 m 201.22595 91.92166 l 208.08893 97.85175 l 196.20191 101.29665 lx -0.00000 0.00000 0.41022 s 109.31488 94.62996 m 121.20191 91.38542 l 128.06488 97.14198 l 116.17786 100.62356 lf -0 sg 109.31488 94.62996 m 121.20191 91.38542 l 128.06488 97.14198 l 116.17786 100.62356 lx -0.00000 0.00000 0.40693 s 219.97595 94.42385 m 231.86298 90.99140 l 238.72595 96.93517 l 226.83893 100.36640 lf -0 sg 219.97595 94.42385 m 231.86298 90.99140 l 238.72595 96.93517 l 226.83893 100.36640 lx -0.00000 0.00000 0.39456 s 139.95191 93.89744 m 151.83893 89.76824 l 158.70191 96.40947 l 146.81488 99.65400 lf -0 sg 139.95191 93.89744 m 151.83893 89.76824 l 158.70191 96.40947 l 146.81488 99.65400 lx -0.00000 0.00000 0.40691 s 250.61298 93.50362 m 262.50000 90.07215 l 269.36298 96.01565 l 257.47595 99.44715 lf -0 sg 250.61298 93.50362 m 262.50000 90.07215 l 269.36298 96.01565 l 257.47595 99.44715 lx -0.00000 0.00000 0.40749 s 59.92786 93.07761 m 71.81488 89.64260 l 78.67786 95.60999 l 66.79083 99.01515 lf -0 sg 59.92786 93.07761 m 71.81488 89.64260 l 78.67786 95.60999 l 66.79083 99.01515 lx -0.00000 0.00000 0.37770 s 170.58893 91.72999 m 182.47595 89.54649 l 189.33893 95.30305 l 177.45191 99.06893 lf -0 sg 170.58893 91.72999 m 182.47595 89.54649 l 189.33893 95.30305 l 177.45191 99.06893 lx -0.00000 0.00000 0.40691 s 281.25000 92.58417 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lf -0 sg 281.25000 92.58417 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lx -0.00000 0.00000 0.41474 s 90.56488 92.07845 m 102.45191 89.02083 l 109.31488 94.62996 l 97.42786 98.11153 lf -0 sg 90.56488 92.07845 m 102.45191 89.02083 l 109.31488 94.62996 l 97.42786 98.11153 lx -0.00000 0.00000 0.40715 s 201.22595 91.92166 m 213.11298 88.47675 l 219.97595 94.42385 l 208.08893 97.85175 lf -0 sg 201.22595 91.92166 m 213.11298 88.47675 l 219.97595 94.42385 l 208.08893 97.85175 lx -0.00000 0.00000 0.39456 s 121.20191 91.38542 m 133.08893 87.25622 l 139.95191 93.89744 l 128.06488 97.14198 lf -0 sg 121.20191 91.38542 m 133.08893 87.25622 l 139.95191 93.89744 l 128.06488 97.14198 lx -0.00000 0.00000 0.40691 s 231.86298 90.99140 m 243.75000 87.56017 l 250.61298 93.50362 l 238.72595 96.93517 lf -0 sg 231.86298 90.99140 m 243.75000 87.56017 l 250.61298 93.50362 l 238.72595 96.93517 lx -0.00000 0.00000 0.40693 s 41.17786 90.56488 m 53.06488 87.13320 l 59.92786 93.07761 l 48.04083 96.50839 lf -0 sg 41.17786 90.56488 m 53.06488 87.13320 l 59.92786 93.07761 l 48.04083 96.50839 lx -0.00000 0.00000 0.51594 s 151.83893 89.76824 m 163.72595 90.99431 l 170.58893 91.72999 l 158.70191 96.40947 lf -0 sg 151.83893 89.76824 m 163.72595 90.99431 l 170.58893 91.72999 l 158.70191 96.40947 lx -0.00000 0.00000 0.40691 s 262.50000 90.07215 m 274.38702 86.64065 l 281.25000 92.58417 l 269.36298 96.01565 lf -0 sg 262.50000 90.07215 m 274.38702 86.64065 l 281.25000 92.58417 l 269.36298 96.01565 lx -0.00000 0.00000 0.40481 s 71.81488 89.64260 m 83.70191 86.22451 l 90.56488 92.07845 l 78.67786 95.60999 lf -0 sg 71.81488 89.64260 m 83.70191 86.22451 l 90.56488 92.07845 l 78.67786 95.60999 lx -0.00000 0.00000 0.41022 s 182.47595 89.54649 m 194.36298 85.92805 l 201.22595 91.92166 l 189.33893 95.30305 lf -0 sg 182.47595 89.54649 m 194.36298 85.92805 l 201.22595 91.92166 l 189.33893 95.30305 lx -0.00000 0.00000 0.37770 s 102.45191 89.02083 m 114.33893 84.19392 l 121.20191 91.38542 l 109.31488 94.62996 lf -0 sg 102.45191 89.02083 m 114.33893 84.19392 l 121.20191 91.38542 l 109.31488 94.62996 lx -0.00000 0.00000 0.40685 s 213.11298 88.47675 m 225.00000 85.04885 l 231.86298 90.99140 l 219.97595 94.42385 lf -0 sg 213.11298 88.47675 m 225.00000 85.04885 l 231.86298 90.99140 l 219.97595 94.42385 lx -0.00000 0.00000 0.45299 s 133.08893 87.25622 m 144.97595 86.42864 l 151.83893 89.76824 l 139.95191 93.89744 lf -0 sg 133.08893 87.25622 m 144.97595 86.42864 l 151.83893 89.76824 l 139.95191 93.89744 lx -0.00000 0.00000 0.40691 s 243.75000 87.56017 m 255.63702 84.12862 l 262.50000 90.07215 l 250.61298 93.50362 lf -0 sg 243.75000 87.56017 m 255.63702 84.12862 l 262.50000 90.07215 l 250.61298 93.50362 lx -0.00000 0.00000 0.40685 s 53.06488 87.13320 m 64.95191 83.70266 l 71.81488 89.64260 l 59.92786 93.07761 lf -0 sg 53.06488 87.13320 m 64.95191 83.70266 l 71.81488 89.64260 l 59.92786 93.07761 lx -0.00000 0.00000 0.51594 s 163.72595 90.99431 m 175.61298 82.90526 l 182.47595 89.54649 l 170.58893 91.72999 lf -0 sg 163.72595 90.99431 m 175.61298 82.90526 l 182.47595 89.54649 l 170.58893 91.72999 lx -0.00000 0.00000 0.40691 s 274.38702 86.64065 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.58417 lf -0 sg 274.38702 86.64065 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.58417 lx -0.00000 0.00000 0.41474 s 83.70191 86.22451 m 95.58893 82.74293 l 102.45191 89.02083 l 90.56488 92.07845 lf -0 sg 83.70191 86.22451 m 95.58893 82.74293 l 102.45191 89.02083 l 90.56488 92.07845 lx -0.00000 0.00000 0.40603 s 194.36298 85.92805 m 206.25000 82.54666 l 213.11298 88.47675 l 201.22595 91.92166 lf -0 sg 194.36298 85.92805 m 206.25000 82.54666 l 213.11298 88.47675 l 201.22595 91.92166 lx -0.00000 sg 144.97595 86.42864 m 156.86298 65.61491 l 163.72595 90.99431 l 151.83893 89.76824 lf -0 sg 144.97595 86.42864 m 156.86298 65.61491 l 163.72595 90.99431 l 151.83893 89.76824 lx -0.00000 0.00000 0.51594 s 114.33893 84.19392 m 126.22595 85.97026 l 133.08893 87.25622 l 121.20191 91.38542 lf -0 sg 114.33893 84.19392 m 126.22595 85.97026 l 133.08893 87.25622 l 121.20191 91.38542 lx -0.00000 0.00000 0.40693 s 225.00000 85.04885 m 236.88702 81.61640 l 243.75000 87.56017 l 231.86298 90.99140 lf -0 sg 225.00000 85.04885 m 236.88702 81.61640 l 243.75000 87.56017 l 231.86298 90.99140 lx -0.00000 0.00000 0.40691 s 34.31488 84.62137 m 46.20191 81.18993 l 53.06488 87.13320 l 41.17786 90.56488 lf -0 sg 34.31488 84.62137 m 46.20191 81.18993 l 53.06488 87.13320 l 41.17786 90.56488 lx -0.00000 0.00000 0.40691 s 255.63702 84.12862 m 267.52405 80.69715 l 274.38702 86.64065 l 262.50000 90.07215 lf -0 sg 255.63702 84.12862 m 267.52405 80.69715 l 274.38702 86.64065 l 262.50000 90.07215 lx -0.00000 0.00000 0.40715 s 64.95191 83.70266 m 76.83893 80.26758 l 83.70191 86.22451 l 71.81488 89.64260 lf -0 sg 64.95191 83.70266 m 76.83893 80.26758 l 83.70191 86.22451 l 71.81488 89.64260 lx -0.00000 0.00000 0.39456 s 175.61298 82.90526 m 187.50000 80.17149 l 194.36298 85.92805 l 182.47595 89.54649 lf -0 sg 175.61298 82.90526 m 187.50000 80.17149 l 194.36298 85.92805 l 182.47595 89.54649 lx -0.00000 0.00000 0.37770 s 95.58893 82.74293 m 107.47595 79.49840 l 114.33893 84.19392 l 102.45191 89.02083 lf -0 sg 95.58893 82.74293 m 107.47595 79.49840 l 114.33893 84.19392 l 102.45191 89.02083 lx -0.00000 sg 126.22595 85.97026 m 138.11298 63.10288 l 144.97595 86.42864 l 133.08893 87.25622 lf -0 sg 126.22595 85.97026 m 138.11298 63.10288 l 144.97595 86.42864 l 133.08893 87.25622 lx -0.00000 0.00000 0.40715 s 206.25000 82.54666 m 218.13702 79.10175 l 225.00000 85.04885 l 213.11298 88.47675 lf -0 sg 206.25000 82.54666 m 218.13702 79.10175 l 225.00000 85.04885 l 213.11298 88.47675 lx -0.00000 sg 156.86298 65.61491 m 168.75000 79.56567 l 175.61298 82.90526 l 163.72595 90.99431 lf -0 sg 156.86298 65.61491 m 168.75000 79.56567 l 175.61298 82.90526 l 163.72595 90.99431 lx -0.00000 0.00000 0.40691 s 236.88702 81.61640 m 248.77405 78.18517 l 255.63702 84.12862 l 243.75000 87.56017 lf -0 sg 236.88702 81.61640 m 248.77405 78.18517 l 255.63702 84.12862 l 243.75000 87.56017 lx -0.00000 0.00000 0.40693 s 46.20191 81.18993 m 58.08893 77.75819 l 64.95191 83.70266 l 53.06488 87.13320 lf -0 sg 46.20191 81.18993 m 58.08893 77.75819 l 64.95191 83.70266 l 53.06488 87.13320 lx -0.00000 0.00000 0.40691 s 267.52405 80.69715 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 86.64065 lf -0 sg 267.52405 80.69715 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 86.64065 lx -0.00000 0.00000 0.40603 s 76.83893 80.26758 m 88.72595 76.84951 l 95.58893 82.74293 l 83.70191 86.22451 lf -0 sg 76.83893 80.26758 m 88.72595 76.84951 l 95.58893 82.74293 l 83.70191 86.22451 lx -0.00000 0.00000 0.41022 s 187.50000 80.17149 m 199.38702 76.55305 l 206.25000 82.54666 l 194.36298 85.92805 lf -0 sg 187.50000 80.17149 m 199.38702 76.55305 l 206.25000 82.54666 l 194.36298 85.92805 lx -0.00000 0.00000 0.51594 s 107.47595 79.49840 m 119.36298 75.36919 l 126.22595 85.97026 l 114.33893 84.19392 lf -0 sg 107.47595 79.49840 m 119.36298 75.36919 l 126.22595 85.97026 l 114.33893 84.19392 lx -0.00000 0.00000 0.40685 s 218.13702 79.10175 m 230.02405 75.67385 l 236.88702 81.61640 l 225.00000 85.04885 lf -0 sg 218.13702 79.10175 m 230.02405 75.67385 l 236.88702 81.61640 l 225.00000 85.04885 lx -0.00000 0.00000 0.40691 s 27.45191 78.67786 m 39.33893 75.24636 l 46.20191 81.18993 l 34.31488 84.62137 lf -0 sg 27.45191 78.67786 m 39.33893 75.24636 l 46.20191 81.18993 l 34.31488 84.62137 lx -0.00000 0.00000 0.40691 s 248.77405 78.18517 m 260.66107 74.75362 l 267.52405 80.69715 l 255.63702 84.12862 lf -0 sg 248.77405 78.18517 m 260.66107 74.75362 l 267.52405 80.69715 l 255.63702 84.12862 lx -0.00000 0.00000 0.40685 s 58.08893 77.75819 m 69.97595 74.32767 l 76.83893 80.26758 l 64.95191 83.70266 lf -0 sg 58.08893 77.75819 m 69.97595 74.32767 l 76.83893 80.26758 l 64.95191 83.70266 lx -0.00000 0.00000 0.45299 s 168.75000 79.56567 m 180.63702 73.53026 l 187.50000 80.17149 l 175.61298 82.90526 lf -0 sg 168.75000 79.56567 m 180.63702 73.53026 l 187.50000 80.17149 l 175.61298 82.90526 lx -0.00000 0.00000 0.41022 s 88.72595 76.84951 m 100.61298 73.36793 l 107.47595 79.49840 l 95.58893 82.74293 lf -0 sg 88.72595 76.84951 m 100.61298 73.36793 l 107.47595 79.49840 l 95.58893 82.74293 lx -0.00000 sg 119.36298 75.36919 m 131.25000 74.54162 l 138.11298 63.10288 l 126.22595 85.97026 lf -0 sg 119.36298 75.36919 m 131.25000 74.54162 l 138.11298 63.10288 l 126.22595 85.97026 lx -0.00000 0.00000 0.40603 s 199.38702 76.55305 m 211.27405 73.17166 l 218.13702 79.10175 l 206.25000 82.54666 lf -0 sg 199.38702 76.55305 m 211.27405 73.17166 l 218.13702 79.10175 l 206.25000 82.54666 lx -0.00000 0.00000 0.40693 s 230.02405 75.67385 m 241.91107 72.24140 l 248.77405 78.18517 l 236.88702 81.61640 lf -0 sg 230.02405 75.67385 m 241.91107 72.24140 l 248.77405 78.18517 l 236.88702 81.61640 lx -0.00000 0.00000 0.40691 s 39.33893 75.24636 m 51.22595 71.81494 l 58.08893 77.75819 l 46.20191 81.18993 lf -0 sg 39.33893 75.24636 m 51.22595 71.81494 l 58.08893 77.75819 l 46.20191 81.18993 lx -0.00000 0.00000 0.40691 s 260.66107 74.75362 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 80.69715 lf -0 sg 260.66107 74.75362 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 80.69715 lx -0.00000 0.00000 0.40715 s 69.97595 74.32767 m 81.86298 70.89258 l 88.72595 76.84951 l 76.83893 80.26758 lf -0 sg 69.97595 74.32767 m 81.86298 70.89258 l 88.72595 76.84951 l 76.83893 80.26758 lx -0.00000 0.00000 0.39456 s 180.63702 73.53026 m 192.52405 70.79649 l 199.38702 76.55305 l 187.50000 80.17149 lf -0 sg 180.63702 73.53026 m 192.52405 70.79649 l 199.38702 76.55305 l 187.50000 80.17149 lx -0.00000 0.00000 0.39456 s 100.61298 73.36793 m 112.50000 70.12340 l 119.36298 75.36919 l 107.47595 79.49840 lf -0 sg 100.61298 73.36793 m 112.50000 70.12340 l 119.36298 75.36919 l 107.47595 79.49840 lx -0.00000 0.00000 0.40715 s 211.27405 73.17166 m 223.16107 69.72675 l 230.02405 75.67385 l 218.13702 79.10175 lf -0 sg 211.27405 73.17166 m 223.16107 69.72675 l 230.02405 75.67385 l 218.13702 79.10175 lx -0.00000 0.00000 0.40691 s 20.58893 72.73435 m 32.47595 69.30286 l 39.33893 75.24636 l 27.45191 78.67786 lf -0 sg 20.58893 72.73435 m 32.47595 69.30286 l 39.33893 75.24636 l 27.45191 78.67786 lx -0.00000 sg 161.88702 56.23991 m 173.77405 72.24431 l 180.63702 73.53026 l 168.75000 79.56567 lf -0 sg 161.88702 56.23991 m 173.77405 72.24431 l 180.63702 73.53026 l 168.75000 79.56567 lx -0.00000 0.00000 0.40691 s 241.91107 72.24140 m 253.79809 68.81017 l 260.66107 74.75362 l 248.77405 78.18517 lf -0 sg 241.91107 72.24140 m 253.79809 68.81017 l 260.66107 74.75362 l 248.77405 78.18517 lx -0.00000 0.00000 0.40693 s 51.22595 71.81494 m 63.11298 68.38319 l 69.97595 74.32767 l 58.08893 77.75819 lf -0 sg 51.22595 71.81494 m 63.11298 68.38319 l 69.97595 74.32767 l 58.08893 77.75819 lx -1.00000 sg 138.11298 63.10288 m 150.00000 189.41427 l 156.86298 65.61491 l 144.97595 86.42864 lf -0 sg 138.11298 63.10288 m 150.00000 189.41427 l 156.86298 65.61491 l 144.97595 86.42864 lx -0.00000 0.00000 0.40603 s 81.86298 70.89258 m 93.75000 67.47451 l 100.61298 73.36793 l 88.72595 76.84951 lf -0 sg 81.86298 70.89258 m 93.75000 67.47451 l 100.61298 73.36793 l 88.72595 76.84951 lx -0.00000 0.00000 0.41022 s 192.52405 70.79649 m 204.41107 67.17805 l 211.27405 73.17166 l 199.38702 76.55305 lf -0 sg 192.52405 70.79649 m 204.41107 67.17805 l 211.27405 73.17166 l 199.38702 76.55305 lx -0.00000 0.00000 0.45299 s 112.50000 70.12340 m 124.38702 65.99419 l 131.25000 74.54162 l 119.36298 75.36919 lf -0 sg 112.50000 70.12340 m 124.38702 65.99419 l 131.25000 74.54162 l 119.36298 75.36919 lx -0.00000 0.00000 0.40685 s 223.16107 69.72675 m 235.04809 66.29885 l 241.91107 72.24140 l 230.02405 75.67385 lf -0 sg 223.16107 69.72675 m 235.04809 66.29885 l 241.91107 72.24140 l 230.02405 75.67385 lx -0.00000 0.00000 0.40691 s 32.47595 69.30286 m 44.36298 65.87136 l 51.22595 71.81494 l 39.33893 75.24636 lf -0 sg 32.47595 69.30286 m 44.36298 65.87136 l 51.22595 71.81494 l 39.33893 75.24636 lx -0.00000 0.00000 0.40691 s 253.79809 68.81017 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 74.75362 lf -0 sg 253.79809 68.81017 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 74.75362 lx -0.00000 0.00000 0.40685 s 63.11298 68.38319 m 75.00000 64.95267 l 81.86298 70.89258 l 69.97595 74.32767 lf -0 sg 63.11298 68.38319 m 75.00000 64.95267 l 81.86298 70.89258 l 69.97595 74.32767 lx -0.00000 0.00000 0.51594 s 173.77405 72.24431 m 185.66107 63.60499 l 192.52405 70.79649 l 180.63702 73.53026 lf -0 sg 173.77405 72.24431 m 185.66107 63.60499 l 192.52405 70.79649 l 180.63702 73.53026 lx -1.00000 sg 150.00000 189.41427 m 161.88702 56.23991 l 168.75000 79.56567 l 156.86298 65.61491 lf -0 sg 150.00000 189.41427 m 161.88702 56.23991 l 168.75000 79.56567 l 156.86298 65.61491 lx -0.00000 0.00000 0.41022 s 93.75000 67.47451 m 105.63702 63.99293 l 112.50000 70.12340 l 100.61298 73.36793 lf -0 sg 93.75000 67.47451 m 105.63702 63.99293 l 112.50000 70.12340 l 100.61298 73.36793 lx -0.00000 sg 124.38702 65.99419 m 136.27405 67.22026 l 143.13702 53.72788 l 131.25000 74.54162 lf -0 sg 124.38702 65.99419 m 136.27405 67.22026 l 143.13702 53.72788 l 131.25000 74.54162 lx -0.00000 0.00000 0.40603 s 204.41107 67.17805 m 216.29809 63.79665 l 223.16107 69.72675 l 211.27405 73.17166 lf -0 sg 204.41107 67.17805 m 216.29809 63.79665 l 223.16107 69.72675 l 211.27405 73.17166 lx -0.00000 0.00000 0.40691 s 13.72595 66.79083 m 25.61298 63.35935 l 32.47595 69.30286 l 20.58893 72.73435 lf -0 sg 13.72595 66.79083 m 25.61298 63.35935 l 32.47595 69.30286 l 20.58893 72.73435 lx -0.00000 sg 155.02405 67.67864 m 166.91107 61.64324 l 173.77405 72.24431 l 161.88702 56.23991 lf -0 sg 155.02405 67.67864 m 166.91107 61.64324 l 173.77405 72.24431 l 161.88702 56.23991 lx -0.00000 0.00000 0.40693 s 235.04809 66.29885 m 246.93512 62.86642 l 253.79809 68.81017 l 241.91107 72.24140 lf -0 sg 235.04809 66.29885 m 246.93512 62.86642 l 253.79809 68.81017 l 241.91107 72.24140 lx -0.00000 0.00000 0.40691 s 44.36298 65.87136 m 56.25000 62.43994 l 63.11298 68.38319 l 51.22595 71.81494 lf -0 sg 44.36298 65.87136 m 56.25000 62.43994 l 63.11298 68.38319 l 51.22595 71.81494 lx -1.00000 sg 131.25000 74.54162 m 143.13702 53.72788 l 150.00000 189.41427 l 138.11298 63.10288 lf -0 sg 131.25000 74.54162 m 143.13702 53.72788 l 150.00000 189.41427 l 138.11298 63.10288 lx -0.00000 0.00000 0.40715 s 75.00000 64.95267 m 86.88702 61.51758 l 93.75000 67.47451 l 81.86298 70.89258 lf -0 sg 75.00000 64.95267 m 86.88702 61.51758 l 93.75000 67.47451 l 81.86298 70.89258 lx -0.00000 0.00000 0.37770 s 185.66107 63.60499 m 197.54809 61.56893 l 204.41107 67.17805 l 192.52405 70.79649 lf -0 sg 185.66107 63.60499 m 197.54809 61.56893 l 204.41107 67.17805 l 192.52405 70.79649 lx -0.00000 0.00000 0.39456 s 105.63702 63.99293 m 117.52405 60.74840 l 124.38702 65.99419 l 112.50000 70.12340 lf -0 sg 105.63702 63.99293 m 117.52405 60.74840 l 124.38702 65.99419 l 112.50000 70.12340 lx -0.00000 sg 136.27405 67.22026 m 148.16107 59.13122 l 155.02405 67.67864 l 143.13702 53.72788 lf -0 sg 136.27405 67.22026 m 148.16107 59.13122 l 155.02405 67.67864 l 143.13702 53.72788 lx -0.00000 0.00000 0.40715 s 216.29809 63.79665 m 228.18512 60.35176 l 235.04809 66.29885 l 223.16107 69.72675 lf -0 sg 216.29809 63.79665 m 228.18512 60.35176 l 235.04809 66.29885 l 223.16107 69.72675 lx -0.00000 0.00000 0.40691 s 25.61298 63.35935 m 37.50000 59.92786 l 44.36298 65.87136 l 32.47595 69.30286 lf -0 sg 25.61298 63.35935 m 37.50000 59.92786 l 44.36298 65.87136 l 32.47595 69.30286 lx -0.00000 0.00000 0.40691 s 246.93512 62.86642 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.81017 lf -0 sg 246.93512 62.86642 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.81017 lx -0.00000 0.00000 0.40693 s 56.25000 62.43994 m 68.13702 59.00819 l 75.00000 64.95267 l 63.11298 68.38319 lf -0 sg 56.25000 62.43994 m 68.13702 59.00819 l 75.00000 64.95267 l 63.11298 68.38319 lx -0.00000 0.00000 0.51594 s 166.91107 61.64324 m 178.79809 58.90947 l 185.66107 63.60499 l 173.77405 72.24431 lf -0 sg 166.91107 61.64324 m 178.79809 58.90947 l 185.66107 63.60499 l 173.77405 72.24431 lx -1.00000 sg 143.13702 53.72788 m 155.02405 67.67864 l 161.88702 56.23991 l 150.00000 189.41427 lf -0 sg 143.13702 53.72788 m 155.02405 67.67864 l 161.88702 56.23991 l 150.00000 189.41427 lx -0.00000 0.00000 0.40603 s 86.88702 61.51758 m 98.77405 58.09951 l 105.63702 63.99293 l 93.75000 67.47451 lf -0 sg 86.88702 61.51758 m 98.77405 58.09951 l 105.63702 63.99293 l 93.75000 67.47451 lx -0.00000 0.00000 0.41474 s 197.54809 61.56893 m 209.43512 57.76357 l 216.29809 63.79665 l 204.41107 67.17805 lf -0 sg 197.54809 61.56893 m 209.43512 57.76357 l 216.29809 63.79665 l 204.41107 67.17805 lx -0.00000 0.00000 0.40691 s 6.86298 60.84732 m 18.75000 57.41583 l 25.61298 63.35935 l 13.72595 66.79083 lf -0 sg 6.86298 60.84732 m 18.75000 57.41583 l 25.61298 63.35935 l 13.72595 66.79083 lx -0.00000 0.00000 0.51594 s 117.52405 60.74840 m 129.41107 56.06892 l 136.27405 67.22026 l 124.38702 65.99419 lf -0 sg 117.52405 60.74840 m 129.41107 56.06892 l 136.27405 67.22026 l 124.38702 65.99419 lx -0.00000 0.00000 0.40685 s 228.18512 60.35176 m 240.07214 56.92380 l 246.93512 62.86642 l 235.04809 66.29885 lf -0 sg 228.18512 60.35176 m 240.07214 56.92380 l 246.93512 62.86642 l 235.04809 66.29885 lx -0.00000 0.00000 0.40691 s 37.50000 59.92786 m 49.38702 56.49636 l 56.25000 62.43994 l 44.36298 65.87136 lf -0 sg 37.50000 59.92786 m 49.38702 56.49636 l 56.25000 62.43994 l 44.36298 65.87136 lx -0.00000 0.00000 0.45299 s 148.16107 59.13122 m 160.04809 56.39744 l 166.91107 61.64324 l 155.02405 67.67864 lf -0 sg 148.16107 59.13122 m 160.04809 56.39744 l 166.91107 61.64324 l 155.02405 67.67864 lx -0.00000 0.00000 0.40685 s 68.13702 59.00819 m 80.02405 55.57767 l 86.88702 61.51758 l 75.00000 64.95267 lf -0 sg 68.13702 59.00819 m 80.02405 55.57767 l 86.88702 61.51758 l 75.00000 64.95267 lx -0.00000 0.00000 0.37770 s 178.79809 58.90947 m 190.68512 55.29103 l 197.54809 61.56893 l 185.66107 63.60499 lf -0 sg 178.79809 58.90947 m 190.68512 55.29103 l 197.54809 61.56893 l 185.66107 63.60499 lx -0.00000 0.00000 0.41022 s 98.77405 58.09951 m 110.66107 54.61793 l 117.52405 60.74840 l 105.63702 63.99293 lf -0 sg 98.77405 58.09951 m 110.66107 54.61793 l 117.52405 60.74840 l 105.63702 63.99293 lx -0.00000 0.00000 0.40481 s 209.43512 57.76357 m 221.32214 54.43213 l 228.18512 60.35176 l 216.29809 63.79665 lf -0 sg 209.43512 57.76357 m 221.32214 54.43213 l 228.18512 60.35176 l 216.29809 63.79665 lx -0.00000 0.00000 0.40691 s 18.75000 57.41583 m 30.63702 53.98435 l 37.50000 59.92786 l 25.61298 63.35935 lf -0 sg 18.75000 57.41583 m 30.63702 53.98435 l 37.50000 59.92786 l 25.61298 63.35935 lx -0.00000 0.00000 0.51594 s 129.41107 56.06892 m 141.29809 53.88542 l 148.16107 59.13122 l 136.27405 67.22026 lf -0 sg 129.41107 56.06892 m 141.29809 53.88542 l 148.16107 59.13122 l 136.27405 67.22026 lx -0.00000 0.00000 0.40693 s 240.07214 56.92380 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 62.86642 lf -0 sg 240.07214 56.92380 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 62.86642 lx -0.00000 0.00000 0.40691 s 49.38702 56.49636 m 61.27405 53.06494 l 68.13702 59.00819 l 56.25000 62.43994 lf -0 sg 49.38702 56.49636 m 61.27405 53.06494 l 68.13702 59.00819 l 56.25000 62.43994 lx -0.00000 0.00000 0.39456 s 160.04809 56.39744 m 171.93512 52.77900 l 178.79809 58.90947 l 166.91107 61.64324 lf -0 sg 160.04809 56.39744 m 171.93512 52.77900 l 178.79809 58.90947 l 166.91107 61.64324 lx -0.00000 0.00000 0.40715 s 80.02405 55.57767 m 91.91107 52.14258 l 98.77405 58.09951 l 86.88702 61.51758 lf -0 sg 80.02405 55.57767 m 91.91107 52.14258 l 98.77405 58.09951 l 86.88702 61.51758 lx -0.00000 0.00000 0.41474 s 190.68512 55.29103 m 202.57214 51.90963 l 209.43512 57.76357 l 197.54809 61.56893 lf -0 sg 190.68512 55.29103 m 202.57214 51.90963 l 209.43512 57.76357 l 197.54809 61.56893 lx -0.00000 0.00000 0.40691 s 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.41583 l 6.86298 60.84732 lf -0 sg 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.41583 l 6.86298 60.84732 lx -0.00000 0.00000 0.37770 s 110.66107 54.61793 m 122.54809 51.52083 l 129.41107 56.06892 l 117.52405 60.74840 lf -0 sg 110.66107 54.61793 m 122.54809 51.52083 l 129.41107 56.06892 l 117.52405 60.74840 lx -0.00000 0.00000 0.40749 s 221.32214 54.43213 m 233.20917 50.97432 l 240.07214 56.92380 l 228.18512 60.35176 lf -0 sg 221.32214 54.43213 m 233.20917 50.97432 l 240.07214 56.92380 l 228.18512 60.35176 lx -0.00000 0.00000 0.40691 s 30.63702 53.98435 m 42.52405 50.55286 l 49.38702 56.49636 l 37.50000 59.92786 lf -0 sg 30.63702 53.98435 m 42.52405 50.55286 l 49.38702 56.49636 l 37.50000 59.92786 lx -0.00000 0.00000 0.39456 s 141.29809 53.88542 m 153.18512 50.26698 l 160.04809 56.39744 l 148.16107 59.13122 lf -0 sg 141.29809 53.88542 m 153.18512 50.26698 l 160.04809 56.39744 l 148.16107 59.13122 lx -0.00000 0.00000 0.40693 s 61.27405 53.06494 m 73.16107 49.63319 l 80.02405 55.57767 l 68.13702 59.00819 lf -0 sg 61.27405 53.06494 m 73.16107 49.63319 l 80.02405 55.57767 l 68.13702 59.00819 lx -0.00000 0.00000 0.41022 s 171.93512 52.77900 m 183.82214 49.39761 l 190.68512 55.29103 l 178.79809 58.90947 lf -0 sg 171.93512 52.77900 m 183.82214 49.39761 l 190.68512 55.29103 l 178.79809 58.90947 lx -0.00000 0.00000 0.40603 s 91.91107 52.14258 m 103.79809 48.72451 l 110.66107 54.61793 l 98.77405 58.09951 lf -0 sg 91.91107 52.14258 m 103.79809 48.72451 l 110.66107 54.61793 l 98.77405 58.09951 lx -0.00000 0.00000 0.40481 s 202.57214 51.90963 m 214.45917 48.46474 l 221.32214 54.43213 l 209.43512 57.76357 lf -0 sg 202.57214 51.90963 m 214.45917 48.46474 l 221.32214 54.43213 l 209.43512 57.76357 lx -0.00000 0.00000 0.40691 s 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.98435 l 18.75000 57.41583 lf -0 sg 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.98435 l 18.75000 57.41583 lx -0.00000 0.00000 0.37770 s 122.54809 51.52083 m 134.43512 47.75496 l 141.29809 53.88542 l 129.41107 56.06892 lf -0 sg 122.54809 51.52083 m 134.43512 47.75496 l 141.29809 53.88542 l 129.41107 56.06892 lx -0.00000 0.00000 0.40672 s 233.20917 50.97432 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 56.92380 lf -0 sg 233.20917 50.97432 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 56.92380 lx -0.00000 0.00000 0.40691 s 42.52405 50.55286 m 54.41107 47.12136 l 61.27405 53.06494 l 49.38702 56.49636 lf -0 sg 42.52405 50.55286 m 54.41107 47.12136 l 61.27405 53.06494 l 49.38702 56.49636 lx -0.00000 0.00000 0.41022 s 153.18512 50.26698 m 165.07214 46.88559 l 171.93512 52.77900 l 160.04809 56.39744 lf -0 sg 153.18512 50.26698 m 165.07214 46.88559 l 171.93512 52.77900 l 160.04809 56.39744 lx -0.00000 0.00000 0.40685 s 73.16107 49.63319 m 85.04809 46.20266 l 91.91107 52.14258 l 80.02405 55.57767 lf -0 sg 73.16107 49.63319 m 85.04809 46.20266 l 91.91107 52.14258 l 80.02405 55.57767 lx -0.00000 0.00000 0.40603 s 183.82214 49.39761 m 195.70917 45.95270 l 202.57214 51.90963 l 190.68512 55.29103 lf -0 sg 183.82214 49.39761 m 195.70917 45.95270 l 202.57214 51.90963 l 190.68512 55.29103 lx -0.00000 0.00000 0.41474 s 103.79809 48.72451 m 115.68512 45.20345 l 122.54809 51.52083 l 110.66107 54.61793 lf -0 sg 103.79809 48.72451 m 115.68512 45.20345 l 122.54809 51.52083 l 110.66107 54.61793 lx -0.00000 0.00000 0.40749 s 214.45917 48.46474 m 226.34619 45.03678 l 233.20917 50.97432 l 221.32214 54.43213 lf -0 sg 214.45917 48.46474 m 226.34619 45.03678 l 233.20917 50.97432 l 221.32214 54.43213 lx -0.00000 0.00000 0.40691 s 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 50.55286 l 30.63702 53.98435 lf -0 sg 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 50.55286 l 30.63702 53.98435 lx -0.00000 0.00000 0.41022 s 134.43512 47.75496 m 146.32214 44.37356 l 153.18512 50.26698 l 141.29809 53.88542 lf -0 sg 134.43512 47.75496 m 146.32214 44.37356 l 153.18512 50.26698 l 141.29809 53.88542 lx -0.00000 0.00000 0.40691 s 54.41107 47.12136 m 66.29809 43.68993 l 73.16107 49.63319 l 61.27405 53.06494 lf -0 sg 54.41107 47.12136 m 66.29809 43.68993 l 73.16107 49.63319 l 61.27405 53.06494 lx -0.00000 0.00000 0.40603 s 165.07214 46.88559 m 176.95917 43.44068 l 183.82214 49.39761 l 171.93512 52.77900 lf -0 sg 165.07214 46.88559 m 176.95917 43.44068 l 183.82214 49.39761 l 171.93512 52.77900 lx -0.00000 0.00000 0.40715 s 85.04809 46.20266 m 96.93512 42.76760 l 103.79809 48.72451 l 91.91107 52.14258 lf -0 sg 85.04809 46.20266 m 96.93512 42.76760 l 103.79809 48.72451 l 91.91107 52.14258 lx -0.00000 0.00000 0.40715 s 195.70917 45.95270 m 207.59619 42.52480 l 214.45917 48.46474 l 202.57214 51.90963 lf -0 sg 195.70917 45.95270 m 207.59619 42.52480 l 214.45917 48.46474 l 202.57214 51.90963 lx -0.00000 0.00000 0.41474 s 115.68512 45.20345 m 127.57214 41.86153 l 134.43512 47.75496 l 122.54809 51.52083 lf -0 sg 115.68512 45.20345 m 127.57214 41.86153 l 134.43512 47.75496 l 122.54809 51.52083 lx -0.00000 0.00000 0.40672 s 226.34619 45.03678 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 50.97432 lf -0 sg 226.34619 45.03678 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 50.97432 lx -0.00000 0.00000 0.40691 s 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 47.12136 l 42.52405 50.55286 lf -0 sg 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 47.12136 l 42.52405 50.55286 lx -0.00000 0.00000 0.40603 s 146.32214 44.37356 m 158.20917 40.92865 l 165.07214 46.88559 l 153.18512 50.26698 lf -0 sg 146.32214 44.37356 m 158.20917 40.92865 l 165.07214 46.88559 l 153.18512 50.26698 lx -0.00000 0.00000 0.40693 s 66.29809 43.68993 m 78.18512 40.25820 l 85.04809 46.20266 l 73.16107 49.63319 lf -0 sg 66.29809 43.68993 m 78.18512 40.25820 l 85.04809 46.20266 l 73.16107 49.63319 lx -0.00000 0.00000 0.40715 s 176.95917 43.44068 m 188.84619 40.01278 l 195.70917 45.95270 l 183.82214 49.39761 lf -0 sg 176.95917 43.44068 m 188.84619 40.01278 l 195.70917 45.95270 l 183.82214 49.39761 lx -0.00000 0.00000 0.40481 s 96.93512 42.76760 m 108.82214 39.35999 l 115.68512 45.20345 l 103.79809 48.72451 lf -0 sg 96.93512 42.76760 m 108.82214 39.35999 l 115.68512 45.20345 l 103.79809 48.72451 lx -0.00000 0.00000 0.40685 s 207.59619 42.52480 m 219.48321 39.09237 l 226.34619 45.03678 l 214.45917 48.46474 lf -0 sg 207.59619 42.52480 m 219.48321 39.09237 l 226.34619 45.03678 l 214.45917 48.46474 lx -0.00000 0.00000 0.40603 s 127.57214 41.86153 m 139.45917 38.41663 l 146.32214 44.37356 l 134.43512 47.75496 lf -0 sg 127.57214 41.86153 m 139.45917 38.41663 l 146.32214 44.37356 l 134.43512 47.75496 lx -0.00000 0.00000 0.40691 s 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 43.68993 l 54.41107 47.12136 lf -0 sg 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 43.68993 l 54.41107 47.12136 lx -0.00000 0.00000 0.40715 s 158.20917 40.92865 m 170.09619 37.50076 l 176.95917 43.44068 l 165.07214 46.88559 lf -0 sg 158.20917 40.92865 m 170.09619 37.50076 l 176.95917 43.44068 l 165.07214 46.88559 lx -0.00000 0.00000 0.40685 s 78.18512 40.25820 m 90.07214 36.82761 l 96.93512 42.76760 l 85.04809 46.20266 lf -0 sg 78.18512 40.25820 m 90.07214 36.82761 l 96.93512 42.76760 l 85.04809 46.20266 lx -0.00000 0.00000 0.40685 s 188.84619 40.01278 m 200.73321 36.58033 l 207.59619 42.52480 l 195.70917 45.95270 lf -0 sg 188.84619 40.01278 m 200.73321 36.58033 l 207.59619 42.52480 l 195.70917 45.95270 lx -0.00000 0.00000 0.40481 s 108.82214 39.35999 m 120.70917 35.90462 l 127.57214 41.86153 l 115.68512 45.20345 lf -0 sg 108.82214 39.35999 m 120.70917 35.90462 l 127.57214 41.86153 l 115.68512 45.20345 lx -0.00000 0.00000 0.40693 s 219.48321 39.09237 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 45.03678 lf -0 sg 219.48321 39.09237 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 45.03678 lx -0.00000 0.00000 0.40715 s 139.45917 38.41663 m 151.34619 34.98874 l 158.20917 40.92865 l 146.32214 44.37356 lf -0 sg 139.45917 38.41663 m 151.34619 34.98874 l 158.20917 40.92865 l 146.32214 44.37356 lx -0.00000 0.00000 0.40691 s 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 40.25820 l 66.29809 43.68993 lf -0 sg 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 40.25820 l 66.29809 43.68993 lx -0.00000 0.00000 0.40685 s 170.09619 37.50076 m 181.98321 34.06831 l 188.84619 40.01278 l 176.95917 43.44068 lf -0 sg 170.09619 37.50076 m 181.98321 34.06831 l 188.84619 40.01278 l 176.95917 43.44068 lx -0.00000 0.00000 0.40749 s 90.07214 36.82761 m 101.95917 33.39015 l 108.82214 39.35999 l 96.93512 42.76760 lf -0 sg 90.07214 36.82761 m 101.95917 33.39015 l 108.82214 39.35999 l 96.93512 42.76760 lx -0.00000 0.00000 0.40693 s 200.73321 36.58033 m 212.62024 33.14910 l 219.48321 39.09237 l 207.59619 42.52480 lf -0 sg 200.73321 36.58033 m 212.62024 33.14910 l 219.48321 39.09237 l 207.59619 42.52480 lx -0.00000 0.00000 0.40715 s 120.70917 35.90462 m 132.59619 32.47671 l 139.45917 38.41663 l 127.57214 41.86153 lf -0 sg 120.70917 35.90462 m 132.59619 32.47671 l 139.45917 38.41663 l 127.57214 41.86153 lx -0.00000 0.00000 0.40685 s 151.34619 34.98874 m 163.23321 31.55628 l 170.09619 37.50076 l 158.20917 40.92865 lf -0 sg 151.34619 34.98874 m 163.23321 31.55628 l 170.09619 37.50076 l 158.20917 40.92865 lx -0.00000 0.00000 0.40693 s 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 36.82761 l 78.18512 40.25820 lf -0 sg 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 36.82761 l 78.18512 40.25820 lx -0.00000 0.00000 0.40693 s 181.98321 34.06831 m 193.87024 30.63708 l 200.73321 36.58033 l 188.84619 40.01278 lf -0 sg 181.98321 34.06831 m 193.87024 30.63708 l 200.73321 36.58033 l 188.84619 40.01278 lx -0.00000 0.00000 0.40749 s 101.95917 33.39015 m 113.84619 29.96463 l 120.70917 35.90462 l 108.82214 39.35999 lf -0 sg 101.95917 33.39015 m 113.84619 29.96463 l 120.70917 35.90462 l 108.82214 39.35999 lx -0.00000 0.00000 0.40691 s 212.62024 33.14910 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 39.09237 lf -0 sg 212.62024 33.14910 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 39.09237 lx -0.00000 0.00000 0.40685 s 132.59619 32.47671 m 144.48321 29.04426 l 151.34619 34.98874 l 139.45917 38.41663 lf -0 sg 132.59619 32.47671 m 144.48321 29.04426 l 151.34619 34.98874 l 139.45917 38.41663 lx -0.00000 0.00000 0.40693 s 163.23321 31.55628 m 175.12024 28.12505 l 181.98321 34.06831 l 170.09619 37.50076 lf -0 sg 163.23321 31.55628 m 175.12024 28.12505 l 181.98321 34.06831 l 170.09619 37.50076 lx -0.00000 0.00000 0.40672 s 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 33.39015 l 90.07214 36.82761 lf -0 sg 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 33.39015 l 90.07214 36.82761 lx -0.00000 0.00000 0.40691 s 193.87024 30.63708 m 205.75726 27.20552 l 212.62024 33.14910 l 200.73321 36.58033 lf -0 sg 193.87024 30.63708 m 205.75726 27.20552 l 212.62024 33.14910 l 200.73321 36.58033 lx -0.00000 0.00000 0.40685 s 113.84619 29.96463 m 125.73321 26.53225 l 132.59619 32.47671 l 120.70917 35.90462 lf -0 sg 113.84619 29.96463 m 125.73321 26.53225 l 132.59619 32.47671 l 120.70917 35.90462 lx -0.00000 0.00000 0.40693 s 144.48321 29.04426 m 156.37024 25.61303 l 163.23321 31.55628 l 151.34619 34.98874 lf -0 sg 144.48321 29.04426 m 156.37024 25.61303 l 163.23321 31.55628 l 151.34619 34.98874 lx -0.00000 0.00000 0.40691 s 175.12024 28.12505 m 187.00726 24.69350 l 193.87024 30.63708 l 181.98321 34.06831 lf -0 sg 175.12024 28.12505 m 187.00726 24.69350 l 193.87024 30.63708 l 181.98321 34.06831 lx -0.00000 0.00000 0.40672 s 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 29.96463 l 101.95917 33.39015 lf -0 sg 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 29.96463 l 101.95917 33.39015 lx -0.00000 0.00000 0.40691 s 205.75726 27.20552 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 33.14910 lf -0 sg 205.75726 27.20552 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 33.14910 lx -0.00000 0.00000 0.40693 s 125.73321 26.53225 m 137.62024 23.10100 l 144.48321 29.04426 l 132.59619 32.47671 lf -0 sg 125.73321 26.53225 m 137.62024 23.10100 l 144.48321 29.04426 l 132.59619 32.47671 lx -0.00000 0.00000 0.40691 s 156.37024 25.61303 m 168.25726 22.18147 l 175.12024 28.12505 l 163.23321 31.55628 lf -0 sg 156.37024 25.61303 m 168.25726 22.18147 l 175.12024 28.12505 l 163.23321 31.55628 lx -0.00000 0.00000 0.40691 s 187.00726 24.69350 m 198.89428 21.26203 l 205.75726 27.20552 l 193.87024 30.63708 lf -0 sg 187.00726 24.69350 m 198.89428 21.26203 l 205.75726 27.20552 l 193.87024 30.63708 lx -0.00000 0.00000 0.40693 s 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.53225 l 113.84619 29.96463 lf -0 sg 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.53225 l 113.84619 29.96463 lx -0.00000 0.00000 0.40691 s 137.62024 23.10100 m 149.50726 19.66945 l 156.37024 25.61303 l 144.48321 29.04426 lf -0 sg 137.62024 23.10100 m 149.50726 19.66945 l 156.37024 25.61303 l 144.48321 29.04426 lx -0.00000 0.00000 0.40691 s 168.25726 22.18147 m 180.14428 18.75000 l 187.00726 24.69350 l 175.12024 28.12505 lf -0 sg 168.25726 22.18147 m 180.14428 18.75000 l 187.00726 24.69350 l 175.12024 28.12505 lx -0.00000 0.00000 0.40691 s 198.89428 21.26203 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.20552 lf -0 sg 198.89428 21.26203 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.20552 lx -0.00000 0.00000 0.40691 s 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 23.10100 l 125.73321 26.53225 lf -0 sg 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 23.10100 l 125.73321 26.53225 lx -0.00000 0.00000 0.40691 s 149.50726 19.66945 m 161.39428 16.23798 l 168.25726 22.18147 l 156.37024 25.61303 lf -0 sg 149.50726 19.66945 m 161.39428 16.23798 l 168.25726 22.18147 l 156.37024 25.61303 lx -0.00000 0.00000 0.40691 s 180.14428 18.75000 m 192.03131 15.31851 l 198.89428 21.26203 l 187.00726 24.69350 lf -0 sg 180.14428 18.75000 m 192.03131 15.31851 l 198.89428 21.26203 l 187.00726 24.69350 lx -0.00000 0.00000 0.40691 s 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 19.66945 l 137.62024 23.10100 lf -0 sg 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 19.66945 l 137.62024 23.10100 lx -0.00000 0.00000 0.40691 s 161.39428 16.23798 m 173.28131 12.80649 l 180.14428 18.75000 l 168.25726 22.18147 lf -0 sg 161.39428 16.23798 m 173.28131 12.80649 l 180.14428 18.75000 l 168.25726 22.18147 lx -0.00000 0.00000 0.40691 s 192.03131 15.31851 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 21.26203 lf -0 sg 192.03131 15.31851 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 21.26203 lx -0.00000 0.00000 0.40691 s 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 16.23798 l 149.50726 19.66945 lf -0 sg 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 16.23798 l 149.50726 19.66945 lx -0.00000 0.00000 0.40691 s 173.28131 12.80649 m 185.16833 9.37500 l 192.03131 15.31851 l 180.14428 18.75000 lf -0 sg 173.28131 12.80649 m 185.16833 9.37500 l 192.03131 15.31851 l 180.14428 18.75000 lx -0.00000 0.00000 0.40691 s 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.80649 l 161.39428 16.23798 lf -0 sg 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.80649 l 161.39428 16.23798 lx -0.00000 0.00000 0.40691 s 185.16833 9.37500 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.31851 lf -0 sg 185.16833 9.37500 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.31851 lx -0.00000 0.00000 0.40691 s 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.37500 l 173.28131 12.80649 lf -0 sg 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.37500 l 173.28131 12.80649 lx -0.00000 0.00000 0.40691 s 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.37500 lf -0 sg 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.37500 lx -showpage -. -DEAL:: Postprocessing: time=0.02800, step=1, sweep=0. [ee] -DEAL:: Postprocessing: time=0.05600, step=2, sweep=0. [ee] -DEAL:: Postprocessing: time=0.08400, step=3, sweep=0. [ee] -DEAL:: Postprocessing: time=0.11200, step=4, sweep=0. [ee] -DEAL:: Postprocessing: time=0.14000, step=5, sweep=0. [ee] -DEAL:: Postprocessing: time=0.16800, step=6, sweep=0. [ee] -DEAL:: Postprocessing: time=0.19600, step=7, sweep=0. [ee] -DEAL:: Postprocessing: time=0.22400, step=8, sweep=0. [ee] -DEAL:: Postprocessing: time=0.25200, step=9, sweep=0. [ee] -DEAL:: Postprocessing: time=0.28000, step=10, sweep=0. [ee] -DEAL:: Postprocessing: time=0.30800, step=11, sweep=0. [ee] -DEAL:: Postprocessing: time=0.33600, step=12, sweep=0. [ee] -DEAL:: Postprocessing: time=0.36400, step=13, sweep=0. [ee] -DEAL:: Postprocessing: time=0.39200, step=14, sweep=0. [ee] -DEAL:: Postprocessing: time=0.42000, step=15, sweep=0. [ee] -DEAL:: Postprocessing: time=0.44800, step=16, sweep=0. [ee] -DEAL:: Postprocessing: time=0.47600, step=17, sweep=0. [ee] -DEAL:: Postprocessing: time=0.50400, step=18, sweep=0. [ee] -DEAL:: Postprocessing: time=0.53200, step=19, sweep=0. [ee] -DEAL:: Postprocessing: time=0.56000, step=20, sweep=0. [ee] -DEAL:: Postprocessing: time=0.58800, step=21, sweep=0. [ee] -DEAL:: Postprocessing: time=0.61600, step=22, sweep=0. [ee] -DEAL:: Postprocessing: time=0.64400, step=23, sweep=0. [ee] -DEAL:: Postprocessing: time=0.67200, step=24, sweep=0. [ee] -DEAL:: Postprocessing: time=0.70000, step=25, sweep=0. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library - -%%BoundingBox: 0 0 300 150 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50000 setlinewidth -0.00000 0.95990 0.04010 s 102.94464 144.05649 m 114.83167 140.54285 l 121.69464 146.56851 l 109.80762 150.00000 lf -0 sg 102.94464 144.05649 m 114.83167 140.54285 l 121.69464 146.56851 l 109.80762 150.00000 lx -0.16685 0.83315 0.00000 s 114.83167 140.54285 m 126.71869 139.95520 l 133.58167 143.13702 l 121.69464 146.56851 lf -0 sg 114.83167 140.54285 m 126.71869 139.95520 l 133.58167 143.13702 l 121.69464 146.56851 lx -0.15365 0.84635 0.00000 s 96.08167 138.11298 m 107.96869 137.26708 l 114.83167 140.54285 l 102.94464 144.05649 lf -0 sg 96.08167 138.11298 m 107.96869 137.26708 l 114.83167 140.54285 l 102.94464 144.05649 lx -0.29608 0.70392 0.00000 s 126.71869 139.95520 m 138.60572 135.40448 l 145.46869 139.70554 l 133.58167 143.13702 lf -0 sg 126.71869 139.95520 m 138.60572 135.40448 l 145.46869 139.70554 l 133.58167 143.13702 lx -0.54050 0.45950 0.00000 s 107.96869 137.26708 m 119.85572 133.65079 l 126.71869 139.95520 l 114.83167 140.54285 lf -0 sg 107.96869 137.26708 m 119.85572 133.65079 l 126.71869 139.95520 l 114.83167 140.54285 lx -0.05603 0.94397 0.00000 s 138.60572 135.40448 m 150.49274 129.88878 l 157.35572 136.27405 l 145.46869 139.70554 lf -0 sg 138.60572 135.40448 m 150.49274 129.88878 l 157.35572 136.27405 l 145.46869 139.70554 lx -0.43065 0.56935 0.00000 s 89.21869 132.16946 m 101.10572 132.35232 l 107.96869 137.26708 l 96.08167 138.11298 lf -0 sg 89.21869 132.16946 m 101.10572 132.35232 l 107.96869 137.26708 l 96.08167 138.11298 lx -0.00000 0.82167 0.17833 s 150.49274 129.88878 m 162.37976 125.41398 l 169.24274 132.84256 l 157.35572 136.27405 lf -0 sg 150.49274 129.88878 m 162.37976 125.41398 l 169.24274 132.84256 l 157.35572 136.27405 lx -0.70913 0.29087 0.00000 s 119.85572 133.65079 m 131.74274 130.92985 l 138.60572 135.40448 l 126.71869 139.95520 lf -0 sg 119.85572 133.65079 m 131.74274 130.92985 l 138.60572 135.40448 l 126.71869 139.95520 lx -0.87044 0.12956 0.00000 s 101.10572 132.35232 m 112.99274 128.77472 l 119.85572 133.65079 l 107.96869 137.26708 lf -0 sg 101.10572 132.35232 m 112.99274 128.77472 l 119.85572 133.65079 l 107.96869 137.26708 lx -0.32597 0.67404 0.00000 s 131.74274 130.92985 m 143.62976 124.87790 l 150.49274 129.88878 l 138.60572 135.40448 lf -0 sg 131.74274 130.92985 m 143.62976 124.87790 l 150.49274 129.88878 l 138.60572 135.40448 lx -0.00000 0.77878 0.22122 s 162.37976 125.41398 m 174.26679 122.45334 l 181.12976 129.41107 l 169.24274 132.84256 lf -0 sg 162.37976 125.41398 m 174.26679 122.45334 l 181.12976 129.41107 l 169.24274 132.84256 lx -0.35995 0.64005 0.00000 s 82.35572 126.22595 m 94.24274 124.43654 l 101.10572 132.35232 l 89.21869 132.16946 lf -0 sg 82.35572 126.22595 m 94.24274 124.43654 l 101.10572 132.35232 l 89.21869 132.16946 lx -0.00000 0.69985 0.30015 s 143.62976 124.87790 m 155.51679 118.83898 l 162.37976 125.41398 l 150.49274 129.88878 lf -0 sg 143.62976 124.87790 m 155.51679 118.83898 l 162.37976 125.41398 l 150.49274 129.88878 lx -0.78864 0.21136 0.00000 s 112.99274 128.77472 m 124.87976 123.87196 l 131.74274 130.92985 l 119.85572 133.65079 lf -0 sg 112.99274 128.77472 m 124.87976 123.87196 l 131.74274 130.92985 l 119.85572 133.65079 lx -0.00000 0.85117 0.14883 s 174.26679 122.45334 m 186.15381 119.51714 l 193.01679 125.97958 l 181.12976 129.41107 lf -0 sg 174.26679 122.45334 m 186.15381 119.51714 l 193.01679 125.97958 l 181.12976 129.41107 lx -0.81365 0.18635 0.00000 s 94.24274 124.43654 m 106.12976 121.94937 l 112.99274 128.77472 l 101.10572 132.35232 lf -0 sg 94.24274 124.43654 m 106.12976 121.94937 l 112.99274 128.77472 l 101.10572 132.35232 lx -0.00000 0.50326 0.49674 s 155.51679 118.83898 m 167.40381 115.96393 l 174.26679 122.45334 l 162.37976 125.41398 lf -0 sg 155.51679 118.83898 m 167.40381 115.96393 l 174.26679 122.45334 l 162.37976 125.41398 lx -0.37472 0.62528 0.00000 s 124.87976 123.87196 m 136.76679 118.29790 l 143.62976 124.87790 l 131.74274 130.92985 lf -0 sg 124.87976 123.87196 m 136.76679 118.29790 l 143.62976 124.87790 l 131.74274 130.92985 lx -0.07505 0.92495 0.00000 s 75.49274 120.28244 m 87.37976 116.66333 l 94.24274 124.43654 l 82.35572 126.22595 lf -0 sg 75.49274 120.28244 m 87.37976 116.66333 l 94.24274 124.43654 l 82.35572 126.22595 lx -0.00000 0.88777 0.11223 s 186.15381 119.51714 m 198.04083 116.07875 l 204.90381 122.54809 l 193.01679 125.97958 lf -0 sg 186.15381 119.51714 m 198.04083 116.07875 l 204.90381 122.54809 l 193.01679 125.97958 lx -0.00000 0.81548 0.18452 s 136.76679 118.29790 m 148.65381 114.77389 l 155.51679 118.83898 l 143.62976 124.87790 lf -0 sg 136.76679 118.29790 m 148.65381 114.77389 l 155.51679 118.83898 l 143.62976 124.87790 lx -0.64742 0.35258 0.00000 s 106.12976 121.94937 m 118.01679 116.97263 l 124.87976 123.87196 l 112.99274 128.77472 lf -0 sg 106.12976 121.94937 m 118.01679 116.97263 l 124.87976 123.87196 l 112.99274 128.77472 lx -0.00000 0.63766 0.36234 s 167.40381 115.96393 m 179.29083 112.80341 l 186.15381 119.51714 l 174.26679 122.45334 lf -0 sg 167.40381 115.96393 m 179.29083 112.80341 l 186.15381 119.51714 l 174.26679 122.45334 lx -0.00000 0.88777 0.11223 s 198.04083 116.07875 m 209.92786 112.65416 l 216.79083 119.11661 l 204.90381 122.54809 lf -0 sg 198.04083 116.07875 m 209.92786 112.65416 l 216.79083 119.11661 l 204.90381 122.54809 lx -0.25101 0.74899 0.00000 s 87.37976 116.66333 m 99.26679 113.18128 l 106.12976 121.94937 l 94.24274 124.43654 lf -0 sg 87.37976 116.66333 m 99.26679 113.18128 l 106.12976 121.94937 l 94.24274 124.43654 lx -0.24057 0.75943 0.00000 s 118.01679 116.97263 m 129.90381 113.27086 l 136.76679 118.29790 l 124.87976 123.87196 lf -0 sg 118.01679 116.97263 m 129.90381 113.27086 l 136.76679 118.29790 l 124.87976 123.87196 lx -0.00000 0.61832 0.38168 s 148.65381 114.77389 m 160.54083 110.85473 l 167.40381 115.96393 l 155.51679 118.83898 lf -0 sg 148.65381 114.77389 m 160.54083 110.85473 l 167.40381 115.96393 l 155.51679 118.83898 lx -0.00000 0.75152 0.24848 s 179.29083 112.80341 m 191.17786 110.13203 l 198.04083 116.07875 l 186.15381 119.51714 lf -0 sg 179.29083 112.80341 m 191.17786 110.13203 l 198.04083 116.07875 l 186.15381 119.51714 lx -0.01473 0.98527 0.00000 s 68.62976 114.33893 m 80.51679 111.74459 l 87.37976 116.66333 l 75.49274 120.28244 lf -0 sg 68.62976 114.33893 m 80.51679 111.74459 l 87.37976 116.66333 l 75.49274 120.28244 lx -0.00000 0.85117 0.14883 s 209.92786 112.65416 m 221.81488 108.72739 l 228.67786 115.68512 l 216.79083 119.11661 lf -0 sg 209.92786 112.65416 m 221.81488 108.72739 l 228.67786 115.68512 l 216.79083 119.11661 lx -0.13581 0.86419 0.00000 s 99.26679 113.18128 m 111.15381 108.86388 l 118.01679 116.97263 l 106.12976 121.94937 lf -0 sg 99.26679 113.18128 m 111.15381 108.86388 l 118.01679 116.97263 l 106.12976 121.94937 lx -0.00000 0.94432 0.05568 s 129.90381 113.27086 m 141.79083 108.39131 l 148.65381 114.77389 l 136.76679 118.29790 lf -0 sg 129.90381 113.27086 m 141.79083 108.39131 l 148.65381 114.77389 l 136.76679 118.29790 lx -0.00000 0.76910 0.23090 s 160.54083 110.85473 m 172.42786 109.09566 l 179.29083 112.80341 l 167.40381 115.96393 lf -0 sg 160.54083 110.85473 m 172.42786 109.09566 l 179.29083 112.80341 l 167.40381 115.96393 lx -0.00000 0.92420 0.07580 s 80.51679 111.74459 m 92.40381 106.50601 l 99.26679 113.18128 l 87.37976 116.66333 lf -0 sg 80.51679 111.74459 m 92.40381 106.50601 l 99.26679 113.18128 l 87.37976 116.66333 lx -0.00000 0.75152 0.24848 s 191.17786 110.13203 m 203.06488 105.94043 l 209.92786 112.65416 l 198.04083 116.07875 lf -0 sg 191.17786 110.13203 m 203.06488 105.94043 l 209.92786 112.65416 l 198.04083 116.07875 lx -0.00000 0.99211 0.00789 s 111.15381 108.86388 m 123.04083 106.21626 l 129.90381 113.27086 l 118.01679 116.97263 lf -0 sg 111.15381 108.86388 m 123.04083 106.21626 l 129.90381 113.27086 l 118.01679 116.97263 lx -0.00000 0.77878 0.22122 s 221.81488 108.72739 m 233.70191 104.82505 l 240.56488 112.25363 l 228.67786 115.68512 lf -0 sg 221.81488 108.72739 m 233.70191 104.82505 l 240.56488 112.25363 l 228.67786 115.68512 lx -0.00000 0.80928 0.19072 s 141.79083 108.39131 m 153.67786 105.18601 l 160.54083 110.85473 l 148.65381 114.77389 lf -0 sg 141.79083 108.39131 m 153.67786 105.18601 l 160.54083 110.85473 l 148.65381 114.77389 lx -0.00000 0.93868 0.06132 s 172.42786 109.09566 m 184.31488 105.22372 l 191.17786 110.13203 l 179.29083 112.80341 lf -0 sg 172.42786 109.09566 m 184.31488 105.22372 l 191.17786 110.13203 l 179.29083 112.80341 lx -0.00000 0.45822 0.54178 s 92.40381 106.50601 m 104.29083 99.59960 l 111.15381 108.86388 l 99.26679 113.18128 lf -0 sg 92.40381 106.50601 m 104.29083 99.59960 l 111.15381 108.86388 l 99.26679 113.18128 lx -0.34403 0.65597 0.00000 s 61.76679 108.39542 m 73.65381 109.17077 l 80.51679 111.74459 l 68.62976 114.33893 lf -0 sg 61.76679 108.39542 m 73.65381 109.17077 l 80.51679 111.74459 l 68.62976 114.33893 lx -0.00000 0.63766 0.36234 s 203.06488 105.94043 m 214.95191 102.23798 l 221.81488 108.72739 l 209.92786 112.65416 lf -0 sg 203.06488 105.94043 m 214.95191 102.23798 l 221.81488 108.72739 l 209.92786 112.65416 lx -0.00000 0.95062 0.04938 s 123.04083 106.21626 m 134.92786 103.16558 l 141.79083 108.39131 l 129.90381 113.27086 lf -0 sg 123.04083 106.21626 m 134.92786 103.16558 l 141.79083 108.39131 l 129.90381 113.27086 lx -0.00000 0.82167 0.17833 s 233.70191 104.82505 m 245.58893 102.43687 l 252.45191 108.82214 l 240.56488 112.25363 lf -0 sg 233.70191 104.82505 m 245.58893 102.43687 l 252.45191 108.82214 l 240.56488 112.25363 lx -0.00000 0.98545 0.01455 s 153.67786 105.18601 m 165.56488 102.69449 l 172.42786 109.09566 l 160.54083 110.85473 lf -0 sg 153.67786 105.18601 m 165.56488 102.69449 l 172.42786 109.09566 l 160.54083 110.85473 lx -0.00000 0.31336 0.68664 s 104.29083 99.59960 m 116.17786 97.81190 l 123.04083 106.21626 l 111.15381 108.86388 lf -0 sg 104.29083 99.59960 m 116.17786 97.81190 l 123.04083 106.21626 l 111.15381 108.86388 lx -0.00000 0.93868 0.06132 s 184.31488 105.22372 m 196.20191 102.23268 l 203.06488 105.94043 l 191.17786 110.13203 lf -0 sg 184.31488 105.22372 m 196.20191 102.23268 l 203.06488 105.94043 l 191.17786 110.13203 lx -0.00000 0.50326 0.49674 s 214.95191 102.23798 m 226.83893 98.25005 l 233.70191 104.82505 l 221.81488 108.72739 lf -0 sg 214.95191 102.23798 m 226.83893 98.25005 l 233.70191 104.82505 l 221.81488 108.72739 lx -0.67823 0.32177 0.00000 s 73.65381 109.17077 m 85.54083 106.96222 l 92.40381 106.50601 l 80.51679 111.74459 lf -0 sg 73.65381 109.17077 m 85.54083 106.96222 l 92.40381 106.50601 l 80.51679 111.74459 lx -0.00000 0.92046 0.07954 s 134.92786 103.16558 m 146.81488 100.17258 l 153.67786 105.18601 l 141.79083 108.39131 lf -0 sg 134.92786 103.16558 m 146.81488 100.17258 l 153.67786 105.18601 l 141.79083 108.39131 lx -0.05603 0.94397 0.00000 s 245.58893 102.43687 m 257.47595 101.08960 l 264.33893 105.39065 l 252.45191 108.82214 lf -0 sg 245.58893 102.43687 m 257.47595 101.08960 l 264.33893 105.39065 l 252.45191 108.82214 lx -0.00000 0.07310 0.92690 s 85.54083 106.96222 m 97.42786 86.16951 l 104.29083 99.59960 l 92.40381 106.50601 lf -0 sg 85.54083 106.96222 m 97.42786 86.16951 l 104.29083 99.59960 l 92.40381 106.50601 lx -0.18494 0.81506 0.00000 s 165.56488 102.69449 m 177.45191 99.75325 l 184.31488 105.22372 l 172.42786 109.09566 lf -0 sg 165.56488 102.69449 m 177.45191 99.75325 l 184.31488 105.22372 l 172.42786 109.09566 lx -0.50399 0.49601 0.00000 s 54.90381 102.45191 m 66.79083 101.99217 l 73.65381 109.17077 l 61.76679 108.39542 lf -0 sg 54.90381 102.45191 m 66.79083 101.99217 l 73.65381 109.17077 l 61.76679 108.39542 lx -0.00000 0.76910 0.23090 s 196.20191 102.23268 m 208.08893 97.12878 l 214.95191 102.23798 l 203.06488 105.94043 lf -0 sg 196.20191 102.23268 m 208.08893 97.12878 l 214.95191 102.23798 l 203.06488 105.94043 lx -0.00000 0.67338 0.32662 s 116.17786 97.81190 m 128.06488 96.37647 l 134.92786 103.16558 l 123.04083 106.21626 lf -0 sg 116.17786 97.81190 m 128.06488 96.37647 l 134.92786 103.16558 l 123.04083 106.21626 lx -0.00000 0.69985 0.30015 s 226.83893 98.25005 m 238.72595 97.42600 l 245.58893 102.43687 l 233.70191 104.82505 lf -0 sg 226.83893 98.25005 m 238.72595 97.42600 l 245.58893 102.43687 l 233.70191 104.82505 lx -0.00000 0.00000 0.30666 s 97.42786 86.16951 m 109.31488 91.70224 l 116.17786 97.81190 l 104.29083 99.59960 lf -0 sg 97.42786 86.16951 m 109.31488 91.70224 l 116.17786 97.81190 l 104.29083 99.59960 lx -0.05177 0.94823 0.00000 s 146.81488 100.17258 m 158.70191 96.88879 l 165.56488 102.69449 l 153.67786 105.18601 lf -0 sg 146.81488 100.17258 m 158.70191 96.88879 l 165.56488 102.69449 l 153.67786 105.18601 lx -0.00000 0.87830 0.12170 s 66.79083 101.99217 m 78.67786 81.80942 l 85.54083 106.96222 l 73.65381 109.17077 lf -0 sg 66.79083 101.99217 m 78.67786 81.80942 l 85.54083 106.96222 l 73.65381 109.17077 lx -0.29608 0.70392 0.00000 s 257.47595 101.08960 m 269.36298 98.77734 l 276.22595 101.95917 l 264.33893 105.39065 lf -0 sg 257.47595 101.08960 m 269.36298 98.77734 l 276.22595 101.95917 l 264.33893 105.39065 lx -0.18494 0.81506 0.00000 s 177.45191 99.75325 m 189.33893 95.83151 l 196.20191 102.23268 l 184.31488 105.22372 lf -0 sg 177.45191 99.75325 m 189.33893 95.83151 l 196.20191 102.23268 l 184.31488 105.22372 lx -0.00000 0.61832 0.38168 s 208.08893 97.12878 m 219.97595 94.18496 l 226.83893 98.25005 l 214.95191 102.23798 lf -0 sg 208.08893 97.12878 m 219.97595 94.18496 l 226.83893 98.25005 l 214.95191 102.23798 lx -0.00000 0.92655 0.07345 s 128.06488 96.37647 m 139.95191 93.50814 l 146.81488 100.17258 l 134.92786 103.16558 lf -0 sg 128.06488 96.37647 m 139.95191 93.50814 l 146.81488 100.17258 l 134.92786 103.16558 lx -0.00000 0.00000 0.91269 s 78.67786 81.80942 m 90.56488 98.38153 l 97.42786 86.16951 l 85.54083 106.96222 lf -0 sg 78.67786 81.80942 m 90.56488 98.38153 l 97.42786 86.16951 l 85.54083 106.96222 lx -0.32597 0.67404 0.00000 s 238.72595 97.42600 m 250.61298 96.61497 l 257.47595 101.08960 l 245.58893 102.43687 lf -0 sg 238.72595 97.42600 m 250.61298 96.61497 l 257.47595 101.08960 l 245.58893 102.43687 lx -0.22268 0.77732 0.00000 s 158.70191 96.88879 m 170.58893 94.16016 l 177.45191 99.75325 l 165.56488 102.69449 lf -0 sg 158.70191 96.88879 m 170.58893 94.16016 l 177.45191 99.75325 l 165.56488 102.69449 lx -0.16685 0.83315 0.00000 s 269.36298 98.77734 m 281.25000 92.50202 l 288.11298 98.52768 l 276.22595 101.95917 lf -0 sg 269.36298 98.77734 m 281.25000 92.50202 l 288.11298 98.52768 l 276.22595 101.95917 lx -0.00000 0.98545 0.01455 s 189.33893 95.83151 m 201.22595 91.46006 l 208.08893 97.12878 l 196.20191 102.23268 lf -0 sg 189.33893 95.83151 m 201.22595 91.46006 l 208.08893 97.12878 l 196.20191 102.23268 lx -1.00000 0.05341 0.05341 s 48.04083 96.50839 m 59.92786 104.61580 l 66.79083 101.99217 l 54.90381 102.45191 lf -0 sg 48.04083 96.50839 m 59.92786 104.61580 l 66.79083 101.99217 l 54.90381 102.45191 lx -0.00000 0.56052 0.43948 s 109.31488 91.70224 m 121.20191 92.39947 l 128.06488 96.37647 l 116.17786 97.81190 lf -0 sg 109.31488 91.70224 m 121.20191 92.39947 l 128.06488 96.37647 l 116.17786 97.81190 lx -0.00000 0.81548 0.18452 s 219.97595 94.18496 m 231.86298 90.84600 l 238.72595 97.42600 l 226.83893 98.25005 lf -0 sg 219.97595 94.18496 m 231.86298 90.84600 l 238.72595 97.42600 l 226.83893 98.25005 lx -0.04293 0.95707 0.00000 s 139.95191 93.50814 m 151.83893 90.48043 l 158.70191 96.88879 l 146.81488 100.17258 lf -0 sg 139.95191 93.50814 m 151.83893 90.48043 l 158.70191 96.88879 l 146.81488 100.17258 lx -0.03730 0.96270 0.00000 s 59.92786 104.61580 m 71.81488 89.86493 l 78.67786 81.80942 l 66.79083 101.99217 lf -0 sg 59.92786 104.61580 m 71.81488 89.86493 l 78.67786 81.80942 l 66.79083 101.99217 lx -0.70913 0.29087 0.00000 s 250.61298 96.61497 m 262.50000 92.47294 l 269.36298 98.77734 l 257.47595 101.08960 lf -0 sg 250.61298 96.61497 m 262.50000 92.47294 l 269.36298 98.77734 l 257.47595 101.08960 lx -0.00000 0.54541 0.45459 s 90.56488 98.38153 m 102.45191 91.78698 l 109.31488 91.70224 l 97.42786 86.16951 lf -0 sg 90.56488 98.38153 m 102.45191 91.78698 l 109.31488 91.70224 l 97.42786 86.16951 lx -0.00000 0.95990 0.04010 s 281.25000 92.50202 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lf -0 sg 281.25000 92.50202 m 293.13702 89.15268 l 300.00000 95.09619 l 288.11298 98.52768 lx -0.22268 0.77732 0.00000 s 170.58893 94.16016 m 182.47595 90.02581 l 189.33893 95.83151 l 177.45191 99.75325 lf -0 sg 170.58893 94.16016 m 182.47595 90.02581 l 189.33893 95.83151 l 177.45191 99.75325 lx -0.00000 0.18293 0.81707 s 121.20191 92.39947 m 133.08893 77.24104 l 139.95191 93.50814 l 128.06488 96.37647 lf -0 sg 121.20191 92.39947 m 133.08893 77.24104 l 139.95191 93.50814 l 128.06488 96.37647 lx -0.00000 0.80928 0.19072 s 201.22595 91.46006 m 213.11298 87.80238 l 219.97595 94.18496 l 208.08893 97.12878 lf -0 sg 201.22595 91.46006 m 213.11298 87.80238 l 219.97595 94.18496 l 208.08893 97.12878 lx -0.00000 sg 71.81488 89.86493 m 83.70191 67.31293 l 90.56488 98.38153 l 78.67786 81.80942 lf -0 sg 71.81488 89.86493 m 83.70191 67.31293 l 90.56488 98.38153 l 78.67786 81.80942 lx -0.37472 0.62528 0.00000 s 231.86298 90.84600 m 243.75000 89.55708 l 250.61298 96.61497 l 238.72595 97.42600 lf -0 sg 231.86298 90.84600 m 243.75000 89.55708 l 250.61298 96.61497 l 238.72595 97.42600 lx -0.17552 0.82448 0.00000 s 151.83893 90.48043 m 163.72595 87.56392 l 170.58893 94.16016 l 158.70191 96.88879 lf -0 sg 151.83893 90.48043 m 163.72595 87.56392 l 170.58893 94.16016 l 158.70191 96.88879 lx -0.79737 0.20263 0.00000 s 41.17786 90.56488 m 53.06488 86.68822 l 59.92786 104.61580 l 48.04083 96.50839 lf -0 sg 41.17786 90.56488 m 53.06488 86.68822 l 59.92786 104.61580 l 48.04083 96.50839 lx -0.54050 0.45950 0.00000 s 262.50000 92.47294 m 274.38702 89.22625 l 281.25000 92.50202 l 269.36298 98.77734 lf -0 sg 262.50000 92.47294 m 274.38702 89.22625 l 281.25000 92.50202 l 269.36298 98.77734 lx -0.00000 0.43592 0.56408 s 102.45191 91.78698 m 114.33893 76.96454 l 121.20191 92.39947 l 109.31488 91.70224 lf -0 sg 102.45191 91.78698 m 114.33893 76.96454 l 121.20191 92.39947 l 109.31488 91.70224 lx -0.05177 0.94823 0.00000 s 182.47595 90.02581 m 194.36298 86.44663 l 201.22595 91.46006 l 189.33893 95.83151 lf -0 sg 182.47595 90.02581 m 194.36298 86.44663 l 201.22595 91.46006 l 189.33893 95.83151 lx -0.00000 0.22633 0.77367 s 133.08893 77.24104 m 144.97595 85.14873 l 151.83893 90.48043 l 139.95191 93.50814 lf -0 sg 133.08893 77.24104 m 144.97595 85.14873 l 151.83893 90.48043 l 139.95191 93.50814 lx -0.00000 0.94432 0.05568 s 213.11298 87.80238 m 225.00000 85.81896 l 231.86298 90.84600 l 219.97595 94.18496 lf -0 sg 213.11298 87.80238 m 225.00000 85.81896 l 231.86298 90.84600 l 219.97595 94.18496 lx -0.17552 0.82448 0.00000 s 163.72595 87.56392 m 175.61298 83.61746 l 182.47595 90.02581 l 170.58893 94.16016 lf -0 sg 163.72595 87.56392 m 175.61298 83.61746 l 182.47595 90.02581 l 170.58893 94.16016 lx -0.78864 0.21136 0.00000 s 243.75000 89.55708 m 255.63702 87.59686 l 262.50000 92.47294 l 250.61298 96.61497 lf -0 sg 243.75000 89.55708 m 255.63702 87.59686 l 262.50000 92.47294 l 250.61298 96.61497 lx -0.15365 0.84635 0.00000 s 274.38702 89.22625 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.50202 lf -0 sg 274.38702 89.22625 m 286.27405 83.20917 l 293.13702 89.15268 l 281.25000 92.50202 lx -0.03741 0.96259 0.00000 s 83.70191 67.31293 m 95.58893 93.35057 l 102.45191 91.78698 l 90.56488 98.38153 lf -0 sg 83.70191 67.31293 m 95.58893 93.35057 l 102.45191 91.78698 l 90.56488 98.38153 lx -0.00000 0.92046 0.07954 s 194.36298 86.44663 m 206.25000 82.57665 l 213.11298 87.80238 l 201.22595 91.46006 lf -0 sg 194.36298 86.44663 m 206.25000 82.57665 l 213.11298 87.80238 l 201.22595 91.46006 lx -0.00000 0.40271 0.59729 s 114.33893 76.96454 m 126.22595 92.07893 l 133.08893 77.24104 l 121.20191 92.39947 lf -0 sg 114.33893 76.96454 m 126.22595 92.07893 l 133.08893 77.24104 l 121.20191 92.39947 lx -0.00000 0.26154 0.73846 s 144.97595 85.14873 m 156.86298 69.92921 l 163.72595 87.56392 l 151.83893 90.48043 lf -0 sg 144.97595 85.14873 m 156.86298 69.92921 l 163.72595 87.56392 l 151.83893 90.48043 lx -0.00000 0.50352 0.49648 s 34.31488 84.62137 m 46.20191 75.46244 l 53.06488 86.68822 l 41.17786 90.56488 lf -0 sg 34.31488 84.62137 m 46.20191 75.46244 l 53.06488 86.68822 l 41.17786 90.56488 lx -1.00000 sg 53.06488 86.68822 m 64.95191 99.53146 l 71.81488 89.86493 l 59.92786 104.61580 lf -0 sg 53.06488 86.68822 m 64.95191 99.53146 l 71.81488 89.86493 l 59.92786 104.61580 lx -0.24057 0.75943 0.00000 s 225.00000 85.81896 m 236.88702 82.65775 l 243.75000 89.55708 l 231.86298 90.84600 lf -0 sg 225.00000 85.81896 m 236.88702 82.65775 l 243.75000 89.55708 l 231.86298 90.84600 lx -0.00000 0.14593 0.85407 s 64.95191 99.53146 m 76.83893 72.17779 l 83.70191 67.31293 l 71.81488 89.86493 lf -0 sg 64.95191 99.53146 m 76.83893 72.17779 l 83.70191 67.31293 l 71.81488 89.86493 lx -0.04293 0.95707 0.00000 s 175.61298 83.61746 m 187.50000 79.78219 l 194.36298 86.44663 l 182.47595 90.02581 lf -0 sg 175.61298 83.61746 m 187.50000 79.78219 l 194.36298 86.44663 l 182.47595 90.02581 lx -0.87044 0.12956 0.00000 s 255.63702 87.59686 m 267.52405 84.31148 l 274.38702 89.22625 l 262.50000 92.47294 lf -0 sg 255.63702 87.59686 m 267.52405 84.31148 l 274.38702 89.22625 l 262.50000 92.47294 lx -0.00000 0.93302 0.06698 s 95.58893 93.35057 m 107.47595 73.61085 l 114.33893 76.96454 l 102.45191 91.78698 lf -0 sg 95.58893 93.35057 m 107.47595 73.61085 l 114.33893 76.96454 l 102.45191 91.78698 lx -0.00000 0.95062 0.04938 s 206.25000 82.57665 m 218.13702 78.76436 l 225.00000 85.81896 l 213.11298 87.80238 lf -0 sg 206.25000 82.57665 m 218.13702 78.76436 l 225.00000 85.81896 l 213.11298 87.80238 lx -0.00000 0.37663 0.62337 s 126.22595 92.07893 m 138.11298 70.14132 l 144.97595 85.14873 l 133.08893 77.24104 lf -0 sg 126.22595 92.07893 m 138.11298 70.14132 l 144.97595 85.14873 l 133.08893 77.24104 lx -0.00000 0.00000 0.44665 s 76.83893 72.17779 m 88.72595 72.98801 l 95.58893 93.35057 l 83.70191 67.31293 lf -0 sg 76.83893 72.17779 m 88.72595 72.98801 l 95.58893 93.35057 l 83.70191 67.31293 lx -0.00000 0.26154 0.73846 s 156.86298 69.92921 m 168.75000 78.28575 l 175.61298 83.61746 l 163.72595 87.56392 lf -0 sg 156.86298 69.92921 m 168.75000 78.28575 l 175.61298 83.61746 l 163.72595 87.56392 lx -0.64742 0.35258 0.00000 s 236.88702 82.65775 m 248.77405 80.77151 l 255.63702 87.59686 l 243.75000 89.55708 lf -0 sg 236.88702 82.65775 m 248.77405 80.77151 l 255.63702 87.59686 l 243.75000 89.55708 lx -0.43065 0.56935 0.00000 s 267.52405 84.31148 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 89.22625 lf -0 sg 267.52405 84.31148 m 279.41107 77.26565 l 286.27405 83.20917 l 274.38702 89.22625 lx -0.00000 0.92655 0.07345 s 187.50000 79.78219 m 199.38702 75.78754 l 206.25000 82.57665 l 194.36298 86.44663 lf -0 sg 187.50000 79.78219 m 199.38702 75.78754 l 206.25000 82.57665 l 194.36298 86.44663 lx -1.00000 0.18511 0.18511 s 46.20191 75.46244 m 58.08893 84.36954 l 64.95191 99.53146 l 53.06488 86.68822 lf -0 sg 46.20191 75.46244 m 58.08893 84.36954 l 64.95191 99.53146 l 53.06488 86.68822 lx -0.00000 0.52415 0.47585 s 27.45191 78.67786 m 39.33893 75.07661 l 46.20191 75.46244 l 34.31488 84.62137 lf -0 sg 27.45191 78.67786 m 39.33893 75.07661 l 46.20191 75.46244 l 34.31488 84.62137 lx -0.00000 0.99211 0.00789 s 218.13702 78.76436 m 230.02405 74.54900 l 236.88702 82.65775 l 225.00000 85.81896 lf -0 sg 218.13702 78.76436 m 230.02405 74.54900 l 236.88702 82.65775 l 225.00000 85.81896 lx -0.22985 0.77015 0.00000 s 107.47595 73.61085 m 119.36298 83.29377 l 126.22595 92.07893 l 114.33893 76.96454 lf -0 sg 107.47595 73.61085 m 119.36298 83.29377 l 126.22595 92.07893 l 114.33893 76.96454 lx -0.00000 0.44501 0.55499 s 138.11298 70.14132 m 150.00000 86.57742 l 156.86298 69.92921 l 144.97595 85.14873 lf -0 sg 138.11298 70.14132 m 150.00000 86.57742 l 156.86298 69.92921 l 144.97595 85.14873 lx -0.00000 0.22633 0.77367 s 168.75000 78.28575 m 180.63702 63.51509 l 187.50000 79.78219 l 175.61298 83.61746 lf -0 sg 168.75000 78.28575 m 180.63702 63.51509 l 187.50000 79.78219 l 175.61298 83.61746 lx -0.81365 0.18635 0.00000 s 248.77405 80.77151 m 260.66107 76.39570 l 267.52405 84.31148 l 255.63702 87.59686 lf -0 sg 248.77405 80.77151 m 260.66107 76.39570 l 267.52405 84.31148 l 255.63702 87.59686 lx -0.00000 0.82168 0.17832 s 88.72595 72.98801 m 100.61298 70.50366 l 107.47595 73.61085 l 95.58893 93.35057 lf -0 sg 88.72595 72.98801 m 100.61298 70.50366 l 107.47595 73.61085 l 95.58893 93.35057 lx -0.00000 0.67338 0.32662 s 199.38702 75.78754 m 211.27405 70.36000 l 218.13702 78.76436 l 206.25000 82.57665 lf -0 sg 199.38702 75.78754 m 211.27405 70.36000 l 218.13702 78.76436 l 206.25000 82.57665 lx -1.00000 0.53147 0.53147 s 58.08893 84.36954 m 69.97595 80.86909 l 76.83893 72.17779 l 64.95191 99.53146 lf -0 sg 58.08893 84.36954 m 69.97595 80.86909 l 76.83893 72.17779 l 64.95191 99.53146 lx -0.15566 0.84434 0.00000 s 119.36298 83.29377 m 131.25000 65.71813 l 138.11298 70.14132 l 126.22595 92.07893 lf -0 sg 119.36298 83.29377 m 131.25000 65.71813 l 138.11298 70.14132 l 126.22595 92.07893 lx -0.00000 0.44501 0.55499 s 150.00000 86.57742 m 161.88702 63.27835 l 168.75000 78.28575 l 156.86298 69.92921 lf -0 sg 150.00000 86.57742 m 161.88702 63.27835 l 168.75000 78.28575 l 156.86298 69.92921 lx -0.00000 0.00000 0.85332 s 69.97595 80.86909 m 81.86298 61.44737 l 88.72595 72.98801 l 76.83893 72.17779 lf -0 sg 69.97595 80.86909 m 81.86298 61.44737 l 88.72595 72.98801 l 76.83893 72.17779 lx -0.13581 0.86419 0.00000 s 230.02405 74.54900 m 241.91107 72.00342 l 248.77405 80.77151 l 236.88702 82.65775 lf -0 sg 230.02405 74.54900 m 241.91107 72.00342 l 248.77405 80.77151 l 236.88702 82.65775 lx -0.00000 0.77296 0.22704 s 39.33893 75.07661 m 51.22595 68.52406 l 58.08893 84.36954 l 46.20191 75.46244 lf -0 sg 39.33893 75.07661 m 51.22595 68.52406 l 58.08893 84.36954 l 46.20191 75.46244 lx -0.00000 0.18293 0.81707 s 180.63702 63.51509 m 192.52405 71.81054 l 199.38702 75.78754 l 187.50000 79.78219 lf -0 sg 180.63702 63.51509 m 192.52405 71.81054 l 199.38702 75.78754 l 187.50000 79.78219 lx -0.35995 0.64005 0.00000 s 260.66107 76.39570 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 84.31148 lf -0 sg 260.66107 76.39570 m 272.54809 71.32214 l 279.41107 77.26565 l 267.52405 84.31148 lx -0.00000 0.31336 0.68664 s 211.27405 70.36000 m 223.16107 65.28471 l 230.02405 74.54900 l 218.13702 78.76436 lf -0 sg 211.27405 70.36000 m 223.16107 65.28471 l 230.02405 74.54900 l 218.13702 78.76436 lx -0.00000 0.67603 0.32397 s 100.61298 70.50366 m 112.50000 67.37510 l 119.36298 83.29377 l 107.47595 73.61085 lf -0 sg 100.61298 70.50366 m 112.50000 67.37510 l 119.36298 83.29377 l 107.47595 73.61085 lx -0.02910 0.97090 0.00000 s 20.58893 72.73435 m 32.47595 70.31383 l 39.33893 75.07661 l 27.45191 78.67786 lf -0 sg 20.58893 72.73435 m 32.47595 70.31383 l 39.33893 75.07661 l 27.45191 78.67786 lx -0.06389 0.93611 0.00000 s 131.25000 65.71813 m 143.13702 73.84467 l 150.00000 86.57742 l 138.11298 70.14132 lf -0 sg 131.25000 65.71813 m 143.13702 73.84467 l 150.00000 86.57742 l 138.11298 70.14132 lx -0.00000 0.37663 0.62337 s 161.88702 63.27835 m 173.77405 78.35298 l 180.63702 63.51509 l 168.75000 78.28575 lf -0 sg 161.88702 63.27835 m 173.77405 78.35298 l 180.63702 63.51509 l 168.75000 78.28575 lx -0.25101 0.74899 0.00000 s 241.91107 72.00342 m 253.79809 68.62250 l 260.66107 76.39570 l 248.77405 80.77151 lf -0 sg 241.91107 72.00342 m 253.79809 68.62250 l 260.66107 76.39570 l 248.77405 80.77151 lx -0.00000 0.17267 0.82733 s 81.86298 61.44737 m 93.75000 73.07902 l 100.61298 70.50366 l 88.72595 72.98801 lf -0 sg 81.86298 61.44737 m 93.75000 73.07902 l 100.61298 70.50366 l 88.72595 72.98801 lx -0.00000 0.56052 0.43948 s 192.52405 71.81054 m 204.41107 64.25033 l 211.27405 70.36000 l 199.38702 75.78754 lf -0 sg 192.52405 71.81054 m 204.41107 64.25033 l 211.27405 70.36000 l 199.38702 75.78754 lx -0.00000 0.45822 0.54178 s 223.16107 65.28471 m 235.04809 65.32815 l 241.91107 72.00342 l 230.02405 74.54900 lf -0 sg 223.16107 65.28471 m 235.04809 65.32815 l 241.91107 72.00342 l 230.02405 74.54900 lx -1.00000 0.41711 0.41711 s 51.22595 68.52406 m 63.11298 77.88509 l 69.97595 80.86909 l 58.08893 84.36954 lf -0 sg 51.22595 68.52406 m 63.11298 77.88509 l 69.97595 80.86909 l 58.08893 84.36954 lx -0.14401 0.85599 0.00000 s 112.50000 67.37510 m 124.38702 70.91566 l 131.25000 65.71813 l 119.36298 83.29377 lf -0 sg 112.50000 67.37510 m 124.38702 70.91566 l 131.25000 65.71813 l 119.36298 83.29377 lx -0.00000 0.68070 0.31930 s 32.47595 70.31383 m 44.36298 64.51283 l 51.22595 68.52406 l 39.33893 75.07661 lf -0 sg 32.47595 70.31383 m 44.36298 64.51283 l 51.22595 68.52406 l 39.33893 75.07661 lx -0.00000 0.00000 0.30666 s 204.41107 64.25033 m 216.29809 51.85463 l 223.16107 65.28471 l 211.27405 70.36000 lf -0 sg 204.41107 64.25033 m 216.29809 51.85463 l 223.16107 65.28471 l 211.27405 70.36000 lx -0.06389 0.93611 0.00000 s 143.13702 73.84467 m 155.02405 58.85515 l 161.88702 63.27835 l 150.00000 86.57742 lf -0 sg 143.13702 73.84467 m 155.02405 58.85515 l 161.88702 63.27835 l 150.00000 86.57742 lx -0.00000 0.40271 0.59729 s 173.77405 78.35298 m 185.66107 56.37562 l 192.52405 71.81054 l 180.63702 63.51509 lf -0 sg 173.77405 78.35298 m 185.66107 56.37562 l 192.52405 71.81054 l 180.63702 63.51509 lx -0.07505 0.92495 0.00000 s 253.79809 68.62250 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 76.39570 lf -0 sg 253.79809 68.62250 m 265.68512 65.37863 l 272.54809 71.32214 l 260.66107 76.39570 lx -0.00000 0.47943 0.52057 s 93.75000 73.07902 m 105.63702 57.42793 l 112.50000 67.37510 l 100.61298 70.50366 lf -0 sg 93.75000 73.07902 m 105.63702 57.42793 l 112.50000 67.37510 l 100.61298 70.50366 lx -0.52958 0.47042 0.00000 s 63.11298 77.88509 m 75.00000 65.87617 l 81.86298 61.44737 l 69.97595 80.86909 lf -0 sg 63.11298 77.88509 m 75.00000 65.87617 l 81.86298 61.44737 l 69.97595 80.86909 lx -0.01998 0.98002 0.00000 s 13.72595 66.79083 m 25.61298 63.06800 l 32.47595 70.31383 l 20.58893 72.73435 lf -0 sg 13.72595 66.79083 m 25.61298 63.06800 l 32.47595 70.31383 l 20.58893 72.73435 lx -0.00985 0.99015 0.00000 s 124.38702 70.91566 m 136.27405 61.30785 l 143.13702 73.84467 l 131.25000 65.71813 lf -0 sg 124.38702 70.91566 m 136.27405 61.30785 l 143.13702 73.84467 l 131.25000 65.71813 lx -0.00000 0.92420 0.07580 s 235.04809 65.32815 m 246.93512 63.70375 l 253.79809 68.62250 l 241.91107 72.00342 lf -0 sg 235.04809 65.32815 m 246.93512 63.70375 l 253.79809 68.62250 l 241.91107 72.00342 lx -0.00000 0.04636 0.95364 s 75.00000 65.87617 m 86.88702 52.15581 l 93.75000 73.07902 l 81.86298 61.44737 lf -0 sg 75.00000 65.87617 m 86.88702 52.15581 l 93.75000 73.07902 l 81.86298 61.44737 lx -0.17549 0.82451 0.00000 s 44.36298 64.51283 m 56.25000 60.38234 l 63.11298 77.88509 l 51.22595 68.52406 lf -0 sg 44.36298 64.51283 m 56.25000 60.38234 l 63.11298 77.88509 l 51.22595 68.52406 lx -0.15566 0.84434 0.00000 s 155.02405 58.85515 m 166.91107 69.56782 l 173.77405 78.35298 l 161.88702 63.27835 lf -0 sg 155.02405 58.85515 m 166.91107 69.56782 l 173.77405 78.35298 l 161.88702 63.27835 lx -0.00000 0.43592 0.56408 s 185.66107 56.37562 m 197.54809 64.33508 l 204.41107 64.25033 l 192.52405 71.81054 lf -0 sg 185.66107 56.37562 m 197.54809 64.33508 l 204.41107 64.25033 l 192.52405 71.81054 lx -0.00000 0.07310 0.92690 s 216.29809 51.85463 m 228.18512 65.78436 l 235.04809 65.32815 l 223.16107 65.28471 lf -0 sg 216.29809 51.85463 m 228.18512 65.78436 l 235.04809 65.32815 l 223.16107 65.28471 lx -0.00000 0.77966 0.22034 s 105.63702 57.42793 m 117.52405 62.94761 l 124.38702 70.91566 l 112.50000 67.37510 lf -0 sg 105.63702 57.42793 m 117.52405 62.94761 l 124.38702 70.91566 l 112.50000 67.37510 lx -0.00000 0.99739 0.00261 s 25.61298 63.06800 m 37.50000 60.98494 l 44.36298 64.51283 l 32.47595 70.31383 lf -0 sg 25.61298 63.06800 m 37.50000 60.98494 l 44.36298 64.51283 l 32.47595 70.31383 lx -0.00985 0.99015 0.00000 s 136.27405 61.30785 m 148.16107 64.05269 l 155.02405 58.85515 l 143.13702 73.84467 lf -0 sg 136.27405 61.30785 m 148.16107 64.05269 l 155.02405 58.85515 l 143.13702 73.84467 lx -0.01473 0.98527 0.00000 s 246.93512 63.70375 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.62250 lf -0 sg 246.93512 63.70375 m 258.82214 59.43512 l 265.68512 65.37863 l 253.79809 68.62250 lx -0.00000 0.27002 0.72998 s 86.88702 52.15581 m 98.77405 59.15437 l 105.63702 57.42793 l 93.75000 73.07902 lf -0 sg 86.88702 52.15581 m 98.77405 59.15437 l 105.63702 57.42793 l 93.75000 73.07902 lx -0.22985 0.77015 0.00000 s 166.91107 69.56782 m 178.79809 53.02192 l 185.66107 56.37562 l 173.77405 78.35298 lf -0 sg 166.91107 69.56782 m 178.79809 53.02192 l 185.66107 56.37562 l 173.77405 78.35298 lx -0.00000 0.54541 0.45459 s 197.54809 64.33508 m 209.43512 64.06665 l 216.29809 51.85463 l 204.41107 64.25033 lf -0 sg 197.54809 64.33508 m 209.43512 64.06665 l 216.29809 51.85463 l 204.41107 64.25033 lx -1.00000 0.36982 0.36982 s 56.25000 60.38234 m 68.13702 69.37304 l 75.00000 65.87617 l 63.11298 77.88509 lf -0 sg 56.25000 60.38234 m 68.13702 69.37304 l 75.00000 65.87617 l 63.11298 77.88509 lx -0.00000 0.94365 0.05635 s 6.86298 60.84732 m 18.75000 57.40812 l 25.61298 63.06800 l 13.72595 66.79083 lf -0 sg 6.86298 60.84732 m 18.75000 57.40812 l 25.61298 63.06800 l 13.72595 66.79083 lx -0.00000 0.83348 0.16652 s 117.52405 62.94761 m 129.41107 50.48747 l 136.27405 61.30785 l 124.38702 70.91566 lf -0 sg 117.52405 62.94761 m 129.41107 50.48747 l 136.27405 61.30785 l 124.38702 70.91566 lx -0.00000 0.66761 0.33239 s 37.50000 60.98494 m 49.38702 54.87254 l 56.25000 60.38234 l 44.36298 64.51283 lf -0 sg 37.50000 60.98494 m 49.38702 54.87254 l 56.25000 60.38234 l 44.36298 64.51283 lx -0.67823 0.32177 0.00000 s 228.18512 65.78436 m 240.07214 61.12993 l 246.93512 63.70375 l 235.04809 65.32815 lf -0 sg 228.18512 65.78436 m 240.07214 61.12993 l 246.93512 63.70375 l 235.04809 65.32815 lx -0.14401 0.85599 0.00000 s 148.16107 64.05269 m 160.04809 53.64915 l 166.91107 69.56782 l 155.02405 58.85515 lf -0 sg 148.16107 64.05269 m 160.04809 53.64915 l 166.91107 69.56782 l 155.02405 58.85515 lx -0.00000 0.00000 0.91269 s 209.43512 64.06665 m 221.32214 40.63156 l 228.18512 65.78436 l 216.29809 51.85463 lf -0 sg 209.43512 64.06665 m 221.32214 40.63156 l 228.18512 65.78436 l 216.29809 51.85463 lx -0.00000 0.93302 0.06698 s 178.79809 53.02192 m 190.68512 65.89866 l 197.54809 64.33508 l 185.66107 56.37562 lf -0 sg 178.79809 53.02192 m 190.68512 65.89866 l 197.54809 64.33508 l 185.66107 56.37562 lx -0.00000 0.43536 0.56464 s 98.77405 59.15437 m 110.66107 50.76776 l 117.52405 62.94761 l 105.63702 57.42793 lf -0 sg 98.77405 59.15437 m 110.66107 50.76776 l 117.52405 62.94761 l 105.63702 57.42793 lx -0.34713 0.65287 0.00000 s 68.13702 69.37304 m 80.02405 58.73792 l 86.88702 52.15581 l 75.00000 65.87617 lf -0 sg 68.13702 69.37304 m 80.02405 58.73792 l 86.88702 52.15581 l 75.00000 65.87617 lx -0.00323 0.99677 0.00000 s 18.75000 57.40812 m 30.63702 53.72241 l 37.50000 60.98494 l 25.61298 63.06800 lf -0 sg 18.75000 57.40812 m 30.63702 53.72241 l 37.50000 60.98494 l 25.61298 63.06800 lx -0.00000 0.83348 0.16652 s 129.41107 50.48747 m 141.29809 56.08463 l 148.16107 64.05269 l 136.27405 61.30785 lf -0 sg 129.41107 50.48747 m 141.29809 56.08463 l 148.16107 64.05269 l 136.27405 61.30785 lx -0.00000 0.67603 0.32397 s 160.04809 53.64915 m 171.93512 49.91473 l 178.79809 53.02192 l 166.91107 69.56782 lf -0 sg 160.04809 53.64915 m 171.93512 49.91473 l 178.79809 53.02192 l 166.91107 69.56782 lx -0.34403 0.65597 0.00000 s 240.07214 61.12993 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 63.70375 lf -0 sg 240.07214 61.12993 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 63.70375 lx -0.00000 0.19338 0.80662 s 80.02405 58.73792 m 91.91107 46.97230 l 98.77405 59.15437 l 86.88702 52.15581 lf -0 sg 80.02405 58.73792 m 91.91107 46.97230 l 98.77405 59.15437 l 86.88702 52.15581 lx -0.25750 0.74250 0.00000 s 49.38702 54.87254 m 61.27405 50.27083 l 68.13702 69.37304 l 56.25000 60.38234 lf -0 sg 49.38702 54.87254 m 61.27405 50.27083 l 68.13702 69.37304 l 56.25000 60.38234 lx -0.03741 0.96259 0.00000 s 190.68512 65.89866 m 202.57214 32.99804 l 209.43512 64.06665 l 197.54809 64.33508 lf -0 sg 190.68512 65.89866 m 202.57214 32.99804 l 209.43512 64.06665 l 197.54809 64.33508 lx -0.00000 0.66846 0.33154 s 110.66107 50.76776 m 122.54809 55.47952 l 129.41107 50.48747 l 117.52405 62.94761 lf -0 sg 110.66107 50.76776 m 122.54809 55.47952 l 129.41107 50.48747 l 117.52405 62.94761 lx -0.00000 0.96548 0.03452 s 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.40812 l 6.86298 60.84732 lf -0 sg 0.00000 54.90381 m 11.88702 51.47232 l 18.75000 57.40812 l 6.86298 60.84732 lx -0.00000 0.87830 0.12170 s 221.32214 40.63156 m 233.20917 53.95134 l 240.07214 61.12993 l 228.18512 65.78436 lf -0 sg 221.32214 40.63156 m 233.20917 53.95134 l 240.07214 61.12993 l 228.18512 65.78436 lx -0.00000 sg 202.57214 32.99804 m 214.45917 48.68707 l 221.32214 40.63156 l 209.43512 64.06665 lf -0 sg 202.57214 32.99804 m 214.45917 48.68707 l 221.32214 40.63156 l 209.43512 64.06665 lx -0.00000 0.98458 0.01542 s 30.63702 53.72241 m 42.52405 51.62863 l 49.38702 54.87254 l 37.50000 60.98494 lf -0 sg 30.63702 53.72241 m 42.52405 51.62863 l 49.38702 54.87254 l 37.50000 60.98494 lx -0.00000 0.77966 0.22034 s 141.29809 56.08463 m 153.18512 43.70198 l 160.04809 53.64915 l 148.16107 64.05269 lf -0 sg 141.29809 56.08463 m 153.18512 43.70198 l 160.04809 53.64915 l 148.16107 64.05269 lx -0.00000 0.00000 0.93358 s 91.91107 46.97230 m 103.79809 42.93293 l 110.66107 50.76776 l 98.77405 59.15437 lf -0 sg 91.91107 46.97230 m 103.79809 42.93293 l 110.66107 50.76776 l 98.77405 59.15437 lx -0.00000 0.82168 0.17832 s 171.93512 49.91473 m 183.82214 45.53610 l 190.68512 65.89866 l 178.79809 53.02192 lf -0 sg 171.93512 49.91473 m 183.82214 45.53610 l 190.68512 65.89866 l 178.79809 53.02192 lx -0.00000 0.66846 0.33154 s 122.54809 55.47952 m 134.43512 43.90478 l 141.29809 56.08463 l 129.41107 50.48747 lf -0 sg 122.54809 55.47952 m 134.43512 43.90478 l 141.29809 56.08463 l 129.41107 50.48747 lx -1.00000 0.37522 0.37522 s 61.27405 50.27083 m 73.16107 57.70700 l 80.02405 58.73792 l 68.13702 69.37304 lf -0 sg 61.27405 50.27083 m 73.16107 57.70700 l 80.02405 58.73792 l 68.13702 69.37304 lx -0.00000 0.94585 0.05415 s 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.72241 l 18.75000 57.40812 lf -0 sg 11.88702 51.47232 m 23.77405 48.04083 l 30.63702 53.72241 l 18.75000 57.40812 lx -0.00000 0.00000 0.44665 s 183.82214 45.53610 m 195.70917 37.86291 l 202.57214 32.99804 l 190.68512 65.89866 lf -0 sg 183.82214 45.53610 m 195.70917 37.86291 l 202.57214 32.99804 l 190.68512 65.89866 lx -0.00000 0.66045 0.33955 s 42.52405 51.62863 m 54.41107 46.38518 l 61.27405 50.27083 l 49.38702 54.87254 lf -0 sg 42.52405 51.62863 m 54.41107 46.38518 l 61.27405 50.27083 l 49.38702 54.87254 lx -0.00000 0.47943 0.52057 s 153.18512 43.70198 m 165.07214 52.49009 l 171.93512 49.91473 l 160.04809 53.64915 lf -0 sg 153.18512 43.70198 m 165.07214 52.49009 l 171.93512 49.91473 l 160.04809 53.64915 lx -0.50399 0.49601 0.00000 s 233.20917 53.95134 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 61.12993 lf -0 sg 233.20917 53.95134 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 61.12993 lx -0.00000 0.00000 0.97197 s 103.79809 42.93293 m 115.68512 37.43349 l 122.54809 55.47952 l 110.66107 50.76776 lf -0 sg 103.79809 42.93293 m 115.68512 37.43349 l 122.54809 55.47952 l 110.66107 50.76776 lx -1.00000 0.04594 0.04594 s 73.16107 57.70700 m 85.04809 54.55137 l 91.91107 46.97230 l 80.02405 58.73792 lf -0 sg 73.16107 57.70700 m 85.04809 54.55137 l 91.91107 46.97230 l 80.02405 58.73792 lx -0.03730 0.96270 0.00000 s 214.45917 48.68707 m 226.34619 56.57497 l 233.20917 53.95134 l 221.32214 40.63156 lf -0 sg 214.45917 48.68707 m 226.34619 56.57497 l 233.20917 53.95134 l 221.32214 40.63156 lx -0.00000 0.43536 0.56464 s 134.43512 43.90478 m 146.32214 45.42841 l 153.18512 43.70198 l 141.29809 56.08463 lf -0 sg 134.43512 43.90478 m 146.32214 45.42841 l 153.18512 43.70198 l 141.29809 56.08463 lx -0.02704 0.97296 0.00000 s 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 51.62863 l 30.63702 53.72241 lf -0 sg 23.77405 48.04083 m 35.66107 44.60935 l 42.52405 51.62863 l 30.63702 53.72241 lx -0.00000 0.17267 0.82733 s 165.07214 52.49009 m 176.95917 33.99547 l 183.82214 45.53610 l 171.93512 49.91473 lf -0 sg 165.07214 52.49009 m 176.95917 33.99547 l 183.82214 45.53610 l 171.93512 49.91473 lx -0.00000 0.96569 0.03431 s 54.41107 46.38518 m 66.29809 39.14156 l 73.16107 57.70700 l 61.27405 50.27083 lf -0 sg 54.41107 46.38518 m 66.29809 39.14156 l 73.16107 57.70700 l 61.27405 50.27083 lx -0.00000 0.14593 0.85407 s 195.70917 37.86291 m 207.59619 58.35361 l 214.45917 48.68707 l 202.57214 32.99804 lf -0 sg 195.70917 37.86291 m 207.59619 58.35361 l 214.45917 48.68707 l 202.57214 32.99804 lx -0.00000 0.00000 0.97197 s 115.68512 37.43349 m 127.57214 36.06995 l 134.43512 43.90478 l 122.54809 55.47952 lf -0 sg 115.68512 37.43349 m 127.57214 36.06995 l 134.43512 43.90478 l 122.54809 55.47952 lx -0.22858 0.77142 0.00000 s 85.04809 54.55137 m 96.93512 48.87835 l 103.79809 42.93293 l 91.91107 46.97230 lf -0 sg 85.04809 54.55137 m 96.93512 48.87835 l 103.79809 42.93293 l 91.91107 46.97230 lx -0.00000 0.27002 0.72998 s 146.32214 45.42841 m 158.20917 31.56688 l 165.07214 52.49009 l 153.18512 43.70198 lf -0 sg 146.32214 45.42841 m 158.20917 31.56688 l 165.07214 52.49009 l 153.18512 43.70198 lx -0.00000 0.00000 0.85332 s 176.95917 33.99547 m 188.84619 46.55421 l 195.70917 37.86291 l 183.82214 45.53610 lf -0 sg 176.95917 33.99547 m 188.84619 46.55421 l 195.70917 37.86291 l 183.82214 45.53610 lx -0.00000 0.99151 0.00849 s 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 46.38518 l 42.52405 51.62863 lf -0 sg 35.66107 44.60935 m 47.54809 41.17786 l 54.41107 46.38518 l 42.52405 51.62863 lx -1.00000 0.05341 0.05341 s 226.34619 56.57497 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 53.95134 lf -0 sg 226.34619 56.57497 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 53.95134 lx -0.00000 0.69278 0.30722 s 96.93512 48.87835 m 108.82214 43.21409 l 115.68512 37.43349 l 103.79809 42.93293 lf -0 sg 96.93512 48.87835 m 108.82214 43.21409 l 115.68512 37.43349 l 103.79809 42.93293 lx -0.00000 0.00000 0.93358 s 127.57214 36.06995 m 139.45917 33.24634 l 146.32214 45.42841 l 134.43512 43.90478 lf -0 sg 127.57214 36.06995 m 139.45917 33.24634 l 146.32214 45.42841 l 134.43512 43.90478 lx -0.82860 0.17140 0.00000 s 66.29809 39.14156 m 78.18512 39.89426 l 85.04809 54.55137 l 73.16107 57.70700 lf -0 sg 66.29809 39.14156 m 78.18512 39.89426 l 85.04809 54.55137 l 73.16107 57.70700 lx -0.00000 0.04636 0.95364 s 158.20917 31.56688 m 170.09619 38.42427 l 176.95917 33.99547 l 165.07214 52.49009 lf -0 sg 158.20917 31.56688 m 170.09619 38.42427 l 176.95917 33.99547 l 165.07214 52.49009 lx -0.00000 0.57007 0.42993 s 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 39.14156 l 54.41107 46.38518 lf -0 sg 47.54809 41.17786 m 59.43512 37.74637 l 66.29809 39.14156 l 54.41107 46.38518 lx -1.00000 sg 207.59619 58.35361 m 219.48321 38.64739 l 226.34619 56.57497 l 214.45917 48.68707 lf -0 sg 207.59619 58.35361 m 219.48321 38.64739 l 226.34619 56.57497 l 214.45917 48.68707 lx -0.00000 0.69278 0.30722 s 108.82214 43.21409 m 120.70917 42.01538 l 127.57214 36.06995 l 115.68512 37.43349 lf -0 sg 108.82214 43.21409 m 120.70917 42.01538 l 127.57214 36.06995 l 115.68512 37.43349 lx -0.00000 0.19338 0.80662 s 139.45917 33.24634 m 151.34619 38.14899 l 158.20917 31.56688 l 146.32214 45.42841 lf -0 sg 139.45917 33.24634 m 151.34619 38.14899 l 158.20917 31.56688 l 146.32214 45.42841 lx -1.00000 0.25610 0.25610 s 78.18512 39.89426 m 90.07214 39.94921 l 96.93512 48.87835 l 85.04809 54.55137 lf -0 sg 78.18512 39.89426 m 90.07214 39.94921 l 96.93512 48.87835 l 85.04809 54.55137 lx -1.00000 0.53147 0.53147 s 188.84619 46.55421 m 200.73321 43.19168 l 207.59619 58.35361 l 195.70917 37.86291 lf -0 sg 188.84619 46.55421 m 200.73321 43.19168 l 207.59619 58.35361 l 195.70917 37.86291 lx -0.79737 0.20263 0.00000 s 219.48321 38.64739 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 56.57497 lf -0 sg 219.48321 38.64739 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 56.57497 lx -0.00000 0.59794 0.40206 s 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 39.89426 l 66.29809 39.14156 lf -0 sg 59.43512 37.74637 m 71.32214 34.31488 l 78.18512 39.89426 l 66.29809 39.14156 lx -0.52958 0.47042 0.00000 s 170.09619 38.42427 m 181.98321 43.57021 l 188.84619 46.55421 l 176.95917 33.99547 lf -0 sg 170.09619 38.42427 m 181.98321 43.57021 l 188.84619 46.55421 l 176.95917 33.99547 lx -0.22858 0.77142 0.00000 s 120.70917 42.01538 m 132.59619 40.82542 l 139.45917 33.24634 l 127.57214 36.06995 lf -0 sg 120.70917 42.01538 m 132.59619 40.82542 l 139.45917 33.24634 l 127.57214 36.06995 lx -1.00000 0.35670 0.35670 s 90.07214 39.94921 m 101.95917 38.84805 l 108.82214 43.21409 l 96.93512 48.87835 lf -0 sg 90.07214 39.94921 m 101.95917 38.84805 l 108.82214 43.21409 l 96.93512 48.87835 lx -1.00000 0.18511 0.18511 s 200.73321 43.19168 m 212.62024 27.42160 l 219.48321 38.64739 l 207.59619 58.35361 lf -0 sg 200.73321 43.19168 m 212.62024 27.42160 l 219.48321 38.64739 l 207.59619 58.35361 lx -0.34713 0.65287 0.00000 s 151.34619 38.14899 m 163.23321 41.92113 l 170.09619 38.42427 l 158.20917 31.56688 lf -0 sg 151.34619 38.14899 m 163.23321 41.92113 l 170.09619 38.42427 l 158.20917 31.56688 lx -0.17274 0.82726 0.00000 s 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 39.94921 l 78.18512 39.89426 lf -0 sg 71.32214 34.31488 m 83.20917 30.88339 l 90.07214 39.94921 l 78.18512 39.89426 lx -0.00000 0.50352 0.49648 s 212.62024 27.42160 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.64739 lf -0 sg 212.62024 27.42160 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.64739 lx -1.00000 0.41711 0.41711 s 181.98321 43.57021 m 193.87024 27.34620 l 200.73321 43.19168 l 188.84619 46.55421 lf -0 sg 181.98321 43.57021 m 193.87024 27.34620 l 200.73321 43.19168 l 188.84619 46.55421 lx -1.00000 0.35670 0.35670 s 101.95917 38.84805 m 113.84619 33.08623 l 120.70917 42.01538 l 108.82214 43.21409 lf -0 sg 101.95917 38.84805 m 113.84619 33.08623 l 120.70917 42.01538 l 108.82214 43.21409 lx -1.00000 0.04594 0.04594 s 132.59619 40.82542 m 144.48321 37.11807 l 151.34619 38.14899 l 139.45917 33.24634 lf -0 sg 132.59619 40.82542 m 144.48321 37.11807 l 151.34619 38.14899 l 139.45917 33.24634 lx -0.00000 0.77296 0.22704 s 193.87024 27.34620 m 205.75726 27.03577 l 212.62024 27.42160 l 200.73321 43.19168 lf -0 sg 193.87024 27.34620 m 205.75726 27.03577 l 212.62024 27.42160 l 200.73321 43.19168 lx -0.60862 0.39138 0.00000 s 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 38.84805 l 90.07214 39.94921 lf -0 sg 83.20917 30.88339 m 95.09619 27.45191 l 101.95917 38.84805 l 90.07214 39.94921 lx -1.00000 0.36982 0.36982 s 163.23321 41.92113 m 175.12024 26.06746 l 181.98321 43.57021 l 170.09619 38.42427 lf -0 sg 163.23321 41.92113 m 175.12024 26.06746 l 181.98321 43.57021 l 170.09619 38.42427 lx -1.00000 0.25610 0.25610 s 113.84619 33.08623 m 125.73321 26.16830 l 132.59619 40.82542 l 120.70917 42.01538 lf -0 sg 113.84619 33.08623 m 125.73321 26.16830 l 132.59619 40.82542 l 120.70917 42.01538 lx -0.17549 0.82451 0.00000 s 175.12024 26.06746 m 187.00726 23.33497 l 193.87024 27.34620 l 181.98321 43.57021 lf -0 sg 175.12024 26.06746 m 187.00726 23.33497 l 193.87024 27.34620 l 181.98321 43.57021 lx -0.00000 0.52415 0.47585 s 205.75726 27.03577 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 27.42160 lf -0 sg 205.75726 27.03577 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 27.42160 lx -1.00000 0.37522 0.37522 s 144.48321 37.11807 m 156.37024 22.81892 l 163.23321 41.92113 l 151.34619 38.14899 lf -0 sg 144.48321 37.11807 m 156.37024 22.81892 l 163.23321 41.92113 l 151.34619 38.14899 lx -0.60862 0.39138 0.00000 s 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 33.08623 l 101.95917 38.84805 lf -0 sg 95.09619 27.45191 m 106.98321 24.02042 l 113.84619 33.08623 l 101.95917 38.84805 lx -0.82860 0.17140 0.00000 s 125.73321 26.16830 m 137.62024 18.55263 l 144.48321 37.11807 l 132.59619 40.82542 lf -0 sg 125.73321 26.16830 m 137.62024 18.55263 l 144.48321 37.11807 l 132.59619 40.82542 lx -0.25750 0.74250 0.00000 s 156.37024 22.81892 m 168.25726 20.55766 l 175.12024 26.06746 l 163.23321 41.92113 lf -0 sg 156.37024 22.81892 m 168.25726 20.55766 l 175.12024 26.06746 l 163.23321 41.92113 lx -0.00000 0.68070 0.31930 s 187.00726 23.33497 m 198.89428 22.27300 l 205.75726 27.03577 l 193.87024 27.34620 lf -0 sg 187.00726 23.33497 m 198.89428 22.27300 l 205.75726 27.03577 l 193.87024 27.34620 lx -0.17274 0.82726 0.00000 s 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.16830 l 113.84619 33.08623 lf -0 sg 106.98321 24.02042 m 118.87024 20.58893 l 125.73321 26.16830 l 113.84619 33.08623 lx -0.00000 0.96569 0.03431 s 137.62024 18.55263 m 149.50726 18.93328 l 156.37024 22.81892 l 144.48321 37.11807 lf -0 sg 137.62024 18.55263 m 149.50726 18.93328 l 156.37024 22.81892 l 144.48321 37.11807 lx -0.00000 0.66761 0.33239 s 168.25726 20.55766 m 180.14428 19.80708 l 187.00726 23.33497 l 175.12024 26.06746 lf -0 sg 168.25726 20.55766 m 180.14428 19.80708 l 187.00726 23.33497 l 175.12024 26.06746 lx -0.02910 0.97090 0.00000 s 198.89428 22.27300 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.03577 lf -0 sg 198.89428 22.27300 m 210.78131 17.83054 l 217.64428 23.77405 l 205.75726 27.03577 lx -0.00000 0.59794 0.40206 s 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 18.55263 l 125.73321 26.16830 lf -0 sg 118.87024 20.58893 m 130.75726 17.15744 l 137.62024 18.55263 l 125.73321 26.16830 lx -0.00000 0.66045 0.33955 s 149.50726 18.93328 m 161.39428 17.31375 l 168.25726 20.55766 l 156.37024 22.81892 lf -0 sg 149.50726 18.93328 m 161.39428 17.31375 l 168.25726 20.55766 l 156.37024 22.81892 lx -0.00000 0.99739 0.00261 s 180.14428 19.80708 m 192.03131 15.02716 l 198.89428 22.27300 l 187.00726 23.33497 lf -0 sg 180.14428 19.80708 m 192.03131 15.02716 l 198.89428 22.27300 l 187.00726 23.33497 lx -0.00000 0.57007 0.42993 s 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 18.93328 l 137.62024 18.55263 lf -0 sg 130.75726 17.15744 m 142.64428 13.72595 l 149.50726 18.93328 l 137.62024 18.55263 lx -0.00000 0.98458 0.01542 s 161.39428 17.31375 m 173.28131 12.54455 l 180.14428 19.80708 l 168.25726 20.55766 lf -0 sg 161.39428 17.31375 m 173.28131 12.54455 l 180.14428 19.80708 l 168.25726 20.55766 lx -0.01998 0.98002 0.00000 s 192.03131 15.02716 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 22.27300 lf -0 sg 192.03131 15.02716 m 203.91833 11.88702 l 210.78131 17.83054 l 198.89428 22.27300 lx -0.00000 0.99151 0.00849 s 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 17.31375 l 149.50726 18.93328 lf -0 sg 142.64428 13.72595 m 154.53131 10.29446 l 161.39428 17.31375 l 149.50726 18.93328 lx -0.00323 0.99677 0.00000 s 173.28131 12.54455 m 185.16833 9.36729 l 192.03131 15.02716 l 180.14428 19.80708 lf -0 sg 173.28131 12.54455 m 185.16833 9.36729 l 192.03131 15.02716 l 180.14428 19.80708 lx -0.02704 0.97296 0.00000 s 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.54455 l 161.39428 17.31375 lf -0 sg 154.53131 10.29446 m 166.41833 6.86298 l 173.28131 12.54455 l 161.39428 17.31375 lx -0.00000 0.94365 0.05635 s 185.16833 9.36729 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.02716 lf -0 sg 185.16833 9.36729 m 197.05536 5.94351 l 203.91833 11.88702 l 192.03131 15.02716 lx -0.00000 0.94585 0.05415 s 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.36729 l 173.28131 12.54455 lf -0 sg 166.41833 6.86298 m 178.30536 3.43149 l 185.16833 9.36729 l 173.28131 12.54455 lx -0.00000 0.96548 0.03452 s 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.36729 lf -0 sg 178.30536 3.43149 m 190.19238 0.00000 l 197.05536 5.94351 l 185.16833 9.36729 lx -showpage -. -DEAL:: -DEAL:: Collecting refinement data: -DEAL:: Refining each time step separately. -DEAL:: Got 6656 presently, expecting 6203 for next sweep. -DEAL:: Writing statistics for whole sweep.# Description of fields -DEAL::# ===================== -DEAL::# General: -DEAL::# time -# Primal problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Dual problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Error estimation: -# total estimated error in this timestep -# Postprocessing: -# Huyghens wave -DEAL:: -DEAL:: -DEAL::0.00000 256 289 0 0 0.00000 0.00000 0.00000 256 1089 7 10 0.00010 0.00010 0.00021 0.00000 22.14916 -DEAL::0.02800 256 289 9 13 1.22984 1.12015 2.34999 256 1089 7 10 0.00010 0.00010 0.00021 0.91038 -6.02206 -DEAL::0.05600 256 289 10 13 0.33854 2.01145 2.34999 256 1089 7 10 0.00010 0.00010 0.00021 0.04523 -40.60391 -DEAL::0.08400 256 289 10 12 1.04534 1.30465 2.34999 256 1089 7 10 0.00010 0.00010 0.00021 0.94601 -2.17918 -DEAL::0.11200 256 289 10 12 1.57880 0.77119 2.34999 256 1089 7 10 0.00010 0.00010 0.00021 0.59747 95.00077 -DEAL::0.14000 256 289 9 13 1.21547 1.13452 2.34999 256 1089 7 10 0.00010 0.00010 0.00021 -0.10084 123.42580 -DEAL::0.16800 256 289 10 13 1.00485 1.34514 2.34999 256 1089 7 10 0.00010 0.00010 0.00021 1.46178 -26.86140 -DEAL::0.19600 256 289 10 12 1.10991 1.24008 2.34999 256 1089 7 10 0.00011 0.00010 0.00021 1.26298 -294.73542 -DEAL::0.22400 256 289 10 13 1.28630 1.06369 2.34999 256 1089 7 10 0.00010 0.00011 0.00021 -0.57965 -448.29407 -DEAL::0.25200 256 289 10 12 1.30402 1.04597 2.34999 256 1089 7 10 0.00010 0.00010 0.00021 0.52411 -243.66439 -DEAL::0.28000 256 289 10 12 1.04306 1.30693 2.34999 256 1089 7 10 0.00008 0.00012 0.00021 1.62081 388.73165 -DEAL::0.30800 256 289 9 13 1.05373 1.29626 2.34999 256 1089 7 10 0.00010 0.00011 0.00021 0.50250 1192.76663 -DEAL::0.33600 256 289 10 13 1.35280 0.99719 2.34999 256 1089 7 10 0.00010 0.00011 0.00021 -0.69116 1568.28248 -DEAL::0.36400 256 289 10 12 1.22668 1.12331 2.34999 256 1089 7 10 0.00011 0.00009 0.00021 -2.18610 884.32723 -DEAL::0.39200 256 289 9 13 1.01110 1.33889 2.34999 256 1089 7 10 0.00012 0.00008 0.00021 -1.64846 -974.07778 -DEAL::0.42000 256 289 9 13 1.19293 1.15706 2.34999 256 1089 7 10 0.00011 0.00010 0.00021 -0.92024 -3288.23879 -DEAL::0.44800 256 289 9 12 1.24125 1.10874 2.34999 256 1089 6 10 0.00013 0.00008 0.00021 -1.83834 -4676.93596 -DEAL::0.47600 256 289 9 13 1.17360 1.17639 2.34999 256 1089 6 10 0.00010 0.00011 0.00021 2.20886 -3655.94142 -DEAL::0.50400 256 289 10 12 1.16038 1.18961 2.34999 256 1089 6 10 0.00014 0.00006 0.00021 4.69460 502.27981 -DEAL::0.53200 256 289 10 12 1.10923 1.24076 2.34999 256 1089 6 10 0.00014 0.00006 0.00021 0.52889 6813.82708 -DEAL::0.56000 256 289 10 12 1.20016 1.14983 2.34999 256 1089 6 10 0.00010 0.00007 0.00016 0.69220 12313.32686 -DEAL::0.58800 256 289 10 12 1.29880 1.05119 2.34999 256 1089 6 10 0.00010 0.00006 0.00016 1.74319 13352.69805 -DEAL::0.61600 256 289 9 13 1.12050 1.22949 2.34999 256 1089 6 10 0.00016 0.00006 0.00022 -1.97846 8120.27171 -DEAL::0.64400 256 289 9 13 1.08109 1.26890 2.34999 256 1089 6 10 0.00018 0.00004 0.00022 -2.20488 -1528.88976 -DEAL::0.67200 256 289 10 12 1.22174 1.12825 2.34999 256 1089 5 10 0.00004 0.00006 0.00009 0.77743 -10713.04136 -DEAL::0.70000 256 289 10 13 1.20921 1.14078 2.34999 256 1089 0 0 0.00000 0.00000 0.00000 0.98961 -14490.07607 -DEAL:: -DEAL:: Writing summary.Summary of this sweep: -====================== - - Accumulated number of cells: 6656 - Acc. number of primal dofs : 15028 - Acc. number of dual dofs : 56628 - Accumulated error : 0.00007 - - Evaluations: - ------------ - Hughens wave -- weighted time: 0.53510 - average : 0.00808 - - -DEAL:: -DEAL:: -DEAL::Sweep 1 : -DEAL::--------- -DEAL:: Primal problem: time=0.00000, step=0, sweep=1. 163 cells, 201 dofsStarting value 0.00000 -DEAL:cg::Convergence step 0 value 0.00000 -DEAL:cg::Starting value 0.00438 -DEAL:cg::Convergence step 15 value 0.00000 -DEAL:cg::Starting value 0.00000 -DEAL:cg::Convergence step 0 value 0.00000 -DEAL:cg::Starting value 0.00000 -DEAL:cg::Convergence step 0 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.02800, step=1, sweep=1. 169 cells, 208 dofsStarting value 0.00397 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.07116 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.05600, step=2, sweep=1. 202 cells, 242 dofsStarting value 0.00292 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.08718 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.08400, step=3, sweep=1. 205 cells, 245 dofsStarting value 0.00311 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.07017 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.11200, step=4, sweep=1. 202 cells, 243 dofsStarting value 0.00327 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.06958 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.14000, step=5, sweep=1. 220 cells, 262 dofsStarting value 0.00333 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.07114 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.16800, step=6, sweep=1. 238 cells, 282 dofsStarting value 0.00346 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.07888 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.19600, step=7, sweep=1. 250 cells, 296 dofsStarting value 0.00434 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.09196 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.22400, step=8, sweep=1. 226 cells, 270 dofsStarting value 0.00566 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.08162 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.25200, step=9, sweep=1. 268 cells, 317 dofsStarting value 0.00529 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.08030 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.28000, step=10, sweep=1. 265 cells, 313 dofsStarting value 0.00550 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.09491 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.30800, step=11, sweep=1. 241 cells, 283 dofsStarting value 0.00555 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.11198 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.33600, step=12, sweep=1. 226 cells, 266 dofsStarting value 0.00594 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.10136 -DEAL:cg::Convergence step 14 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.36400, step=13, sweep=1. 202 cells, 241 dofsStarting value 0.00623 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.09325 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.39200, step=14, sweep=1. 193 cells, 231 dofsStarting value 0.00618 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.10098 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.42000, step=15, sweep=1. 190 cells, 228 dofsStarting value 0.00621 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.10486 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.44800, step=16, sweep=1. 166 cells, 201 dofsStarting value 0.00667 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL:cg::Starting value 0.09022 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.47600, step=17, sweep=1. 154 cells, 189 dofsStarting value 0.00681 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.09271 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.50400, step=18, sweep=1. 148 cells, 181 dofsStarting value 0.00660 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.10649 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.53200, step=19, sweep=1. 145 cells, 178 dofsStarting value 0.00675 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.10320 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.56000, step=20, sweep=1. 130 cells, 163 dofsStarting value 0.00722 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.09043 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.58800, step=21, sweep=1. 124 cells, 155 dofsStarting value 0.00726 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.09410 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.61600, step=22, sweep=1. 112 cells, 141 dofsStarting value 0.00705 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.10579 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.64400, step=23, sweep=1. 106 cells, 137 dofsStarting value 0.00711 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL:cg::Starting value 0.09810 -DEAL:cg::Convergence step 11 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.67200, step=24, sweep=1. 112 cells, 143 dofsStarting value 0.00708 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL:cg::Starting value 0.08959 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.70000, step=25, sweep=1. 109 cells, 138 dofsStarting value 0.00677 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL:cg::Starting value 0.10018 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: -DEAL:: Dual problem: time=0.70000, step=25, sweep=1. 109 cells, 514 dofs. -DEAL:: Dual problem: time=0.67200, step=24, sweep=1. 112 cells, 534 dofsStarting value 0.00001 -DEAL:cg::Convergence step 6 value 0.00000 -DEAL:cg::Starting value 0.00024 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.64400, step=23, sweep=1. 106 cells, 510 dofsStarting value 0.00001 -DEAL:cg::Convergence step 6 value 0.00000 -DEAL:cg::Starting value 0.00033 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.61600, step=22, sweep=1. 112 cells, 526 dofsStarting value 0.00002 -DEAL:cg::Convergence step 5 value 0.00000 -DEAL:cg::Starting value 0.00033 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.58800, step=21, sweep=1. 124 cells, 579 dofsStarting value 0.00002 -DEAL:cg::Convergence step 5 value 0.00000 -DEAL:cg::Starting value 0.00033 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.56000, step=20, sweep=1. 130 cells, 611 dofsStarting value 0.00003 -DEAL:cg::Convergence step 6 value 0.00000 -DEAL:cg::Starting value 0.00037 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.53200, step=19, sweep=1. 145 cells, 669 dofsStarting value 0.00003 -DEAL:cg::Convergence step 7 value 0.00000 -DEAL:cg::Starting value 0.00034 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.50400, step=18, sweep=1. 148 cells, 681 dofsStarting value 0.00004 -DEAL:cg::Convergence step 7 value 0.00000 -DEAL:cg::Starting value 0.00036 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.47600, step=17, sweep=1. 154 cells, 713 dofsStarting value 0.00004 -DEAL:cg::Convergence step 8 value 0.00000 -DEAL:cg::Starting value 0.00039 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.44800, step=16, sweep=1. 166 cells, 761 dofsStarting value 0.00005 -DEAL:cg::Convergence step 8 value 0.00000 -DEAL:cg::Starting value 0.00040 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.42000, step=15, sweep=1. 190 cells, 867 dofsStarting value 0.00005 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.00044 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.39200, step=14, sweep=1. 193 cells, 879 dofsStarting value 0.00005 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.00042 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.36400, step=13, sweep=1. 202 cells, 920 dofsStarting value 0.00005 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL:cg::Starting value 0.00048 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.33600, step=12, sweep=1. 226 cells, 1019 dofsStarting value 0.00004 -DEAL:cg::Convergence step 11 value 0.00000 -DEAL:cg::Starting value 0.00053 -DEAL:cg::Convergence step 11 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.30800, step=11, sweep=1. 241 cells, 1087 dofsStarting value 0.00004 -DEAL:cg::Convergence step 11 value 0.00000 -DEAL:cg::Starting value 0.00053 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.28000, step=10, sweep=1. 265 cells, 1207 dofsStarting value 0.00005 -DEAL:cg::Convergence step 11 value 0.00000 -DEAL:cg::Starting value 0.00054 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.25200, step=9, sweep=1. 268 cells, 1224 dofsStarting value 0.00005 -DEAL:cg::Convergence step 11 value 0.00000 -DEAL:cg::Starting value 0.00057 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.22400, step=8, sweep=1. 226 cells, 1041 dofsStarting value 0.00007 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL:cg::Starting value 0.00066 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.19600, step=7, sweep=1. 250 cells, 1143 dofsStarting value 0.00007 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL:cg::Starting value 0.00074 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.16800, step=6, sweep=1. 238 cells, 1091 dofsStarting value 0.00008 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL:cg::Starting value 0.00079 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.14000, step=5, sweep=1. 220 cells, 1011 dofsStarting value 0.00010 -DEAL:cg::Convergence step 11 value 0.00000 -DEAL:cg::Starting value 0.00087 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.11200, step=4, sweep=1. 202 cells, 935 dofsStarting value 0.00009 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL:cg::Starting value 0.00091 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.08400, step=3, sweep=1. 205 cells, 945 dofsStarting value 0.00010 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL:cg::Starting value 0.00101 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.05600, step=2, sweep=1. 202 cells, 933 dofsStarting value 0.00010 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.00099 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.02800, step=1, sweep=1. 169 cells, 797 dofsStarting value 0.00010 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.00100 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.00000, step=0, sweep=1. 163 cells, 769 dofsStarting value 0.00011 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.00100 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL::. -DEAL:: -DEAL:: Postprocessing: time=0.00000, step=0, sweep=1. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library - -%%BoundingBox: 0 0 300 198 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50000 setlinewidth -0.00000 0.00000 0.10499 s 96.08167 138.11298 m 119.85572 131.24995 l 133.58167 143.13702 l 109.80762 150.00000 lf -0 sg 96.08167 138.11298 m 119.85572 131.24995 l 133.58167 143.13702 l 109.80762 150.00000 lx -0.00000 0.00000 0.10500 s 119.85572 131.24995 m 143.62976 124.38723 l 157.35572 136.27405 l 133.58167 143.13702 lf -0 sg 119.85572 131.24995 m 143.62976 124.38723 l 157.35572 136.27405 l 133.58167 143.13702 lx -0.00000 0.00000 0.10500 s 82.35572 126.22595 m 106.12976 119.36318 l 119.85572 131.24995 l 96.08167 138.11298 lf -0 sg 82.35572 126.22595 m 106.12976 119.36318 l 119.85572 131.24995 l 96.08167 138.11298 lx -0.00000 0.00000 0.10499 s 143.62976 124.38723 m 167.40381 117.52378 l 181.12976 129.41107 l 157.35572 136.27405 lf -0 sg 143.62976 124.38723 m 167.40381 117.52378 l 181.12976 129.41107 l 157.35572 136.27405 lx -0.00000 0.00000 0.10499 s 106.12976 119.36318 m 129.90381 112.49919 l 143.62976 124.38723 l 119.85572 131.24995 lf -0 sg 106.12976 119.36318 m 129.90381 112.49919 l 143.62976 124.38723 l 119.85572 131.24995 lx -0.00000 0.00000 0.10503 s 167.40381 117.52378 m 191.17786 110.66297 l 204.90381 122.54809 l 181.12976 129.41107 lf -0 sg 167.40381 117.52378 m 191.17786 110.66297 l 204.90381 122.54809 l 181.12976 129.41107 lx -0.00000 0.00000 0.10499 s 68.62976 114.33893 m 92.40381 107.47543 l 106.12976 119.36318 l 82.35572 126.22595 lf -0 sg 68.62976 114.33893 m 92.40381 107.47543 l 106.12976 119.36318 l 82.35572 126.22595 lx -0.00000 0.00000 0.10500 s 129.90381 112.49919 m 153.67786 105.63809 l 167.40381 117.52378 l 143.62976 124.38723 lf -0 sg 129.90381 112.49919 m 153.67786 105.63809 l 167.40381 117.52378 l 143.62976 124.38723 lx -0.00000 0.00000 0.10502 s 191.17786 110.66297 m 214.95191 103.79754 l 228.67786 115.68512 l 204.90381 122.54809 lf -0 sg 191.17786 110.66297 m 214.95191 103.79754 l 228.67786 115.68512 l 204.90381 122.54809 lx -0.00000 0.00000 0.10501 s 92.40381 107.47543 m 116.17786 100.61505 l 129.90381 112.49919 l 106.12976 119.36318 lf -0 sg 92.40381 107.47543 m 116.17786 100.61505 l 129.90381 112.49919 l 106.12976 119.36318 lx -0.00000 0.00000 0.10491 s 153.67786 105.63809 m 177.45191 98.76645 l 191.17786 110.66297 l 167.40381 117.52378 lf -0 sg 153.67786 105.63809 m 177.45191 98.76645 l 191.17786 110.66297 l 167.40381 117.52378 lx -0.00000 0.00000 0.10499 s 214.95191 103.79754 m 238.72595 96.93526 l 252.45191 108.82214 l 228.67786 115.68512 lf -0 sg 214.95191 103.79754 m 238.72595 96.93526 l 252.45191 108.82214 l 228.67786 115.68512 lx -0.00000 0.00000 0.10501 s 54.90381 102.45191 m 78.67786 95.59049 l 92.40381 107.47543 l 68.62976 114.33893 lf -0 sg 54.90381 102.45191 m 78.67786 95.59049 l 92.40381 107.47543 l 68.62976 114.33893 lx -0.00000 0.00000 0.10503 s 116.17786 100.61505 m 139.95191 93.74955 l 153.67786 105.63809 l 129.90381 112.49919 lf -0 sg 116.17786 100.61505 m 139.95191 93.74955 l 153.67786 105.63809 l 129.90381 112.49919 lx -0.00000 0.00000 0.10492 s 177.45191 98.76645 m 201.22595 91.91327 l 214.95191 103.79754 l 191.17786 110.66297 lf -0 sg 177.45191 98.76645 m 201.22595 91.91327 l 214.95191 103.79754 l 191.17786 110.66297 lx -0.00000 0.00000 0.10497 s 146.81488 99.69382 m 158.70191 96.26246 l 165.56488 102.20227 l 153.67786 105.63809 lf -0 sg 146.81488 99.69382 m 158.70191 96.26246 l 165.56488 102.20227 l 153.67786 105.63809 lx -0.00000 0.00000 0.10500 s 238.72595 96.93526 m 262.50000 90.07211 l 276.22595 101.95917 l 252.45191 108.82214 lf -0 sg 238.72595 96.93526 m 262.50000 90.07211 l 276.22595 101.95917 l 252.45191 108.82214 lx -0.00000 0.00000 0.10494 s 78.67786 95.59049 m 102.45191 88.71970 l 116.17786 100.61505 l 92.40381 107.47543 lf -0 sg 78.67786 95.59049 m 102.45191 88.71970 l 116.17786 100.61505 l 92.40381 107.47543 lx -0.00000 0.00000 0.10596 s 158.70191 96.26246 m 170.58893 92.89374 l 177.45191 98.76645 l 165.56488 102.20227 lf -0 sg 158.70191 96.26246 m 170.58893 92.89374 l 177.45191 98.76645 l 165.56488 102.20227 lx -0.00000 0.00000 0.10483 s 109.31488 94.66737 m 121.20191 91.22795 l 128.06488 97.18230 l 116.17786 100.61505 lf -0 sg 109.31488 94.66737 m 121.20191 91.22795 l 128.06488 97.18230 l 116.17786 100.61505 lx -0.00000 0.00000 0.10502 s 139.95191 93.74955 m 151.83893 90.31964 l 158.70191 96.26246 l 146.81488 99.69382 lf -0 sg 139.95191 93.74955 m 151.83893 90.31964 l 158.70191 96.26246 l 146.81488 99.69382 lx -0.00000 0.00000 0.10502 s 201.22595 91.91327 m 225.00000 85.04752 l 238.72595 96.93526 l 214.95191 103.79754 lf -0 sg 201.22595 91.91327 m 225.00000 85.04752 l 238.72595 96.93526 l 214.95191 103.79754 lx -0.00000 0.00000 0.10585 s 170.58893 92.89374 m 182.47595 89.39285 l 189.33893 95.33986 l 177.45191 98.76645 lf -0 sg 170.58893 92.89374 m 182.47595 89.39285 l 189.33893 95.33986 l 177.45191 98.76645 lx -0.00000 0.00000 0.10502 s 41.17786 90.56488 m 64.95191 83.70152 l 78.67786 95.59049 l 54.90381 102.45191 lf -0 sg 41.17786 90.56488 m 64.95191 83.70152 l 78.67786 95.59049 l 54.90381 102.45191 lx -0.00000 0.00000 0.10499 s 262.50000 90.07211 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lf -0 sg 262.50000 90.07211 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lx -0.00000 0.00000 0.10450 s 121.20191 91.22795 m 133.08893 87.78913 l 139.95191 93.74955 l 128.06488 97.18230 lf -0 sg 121.20191 91.22795 m 133.08893 87.78913 l 139.95191 93.74955 l 128.06488 97.18230 lx -0.00000 0.00000 0.10170 s 151.83893 90.31964 m 163.72595 86.64157 l 170.58893 92.89374 l 158.70191 96.26246 lf -0 sg 151.83893 90.31964 m 163.72595 86.64157 l 170.58893 92.89374 l 158.70191 96.26246 lx -0.00000 0.00000 0.10486 s 182.47595 89.39285 m 194.36298 85.96665 l 201.22595 91.91327 l 189.33893 95.33986 lf -0 sg 182.47595 89.39285 m 194.36298 85.96665 l 201.22595 91.91327 l 189.33893 95.33986 lx -0.00000 0.00000 0.10559 s 102.45191 88.71970 m 114.33893 85.34541 l 121.20191 91.22795 l 109.31488 94.66737 lf -0 sg 102.45191 88.71970 m 114.33893 85.34541 l 121.20191 91.22795 l 109.31488 94.66737 lx -0.00000 0.00000 0.10626 s 133.08893 87.78913 m 144.97595 84.46132 l 151.83893 90.31964 l 139.95191 93.74955 lf -0 sg 133.08893 87.78913 m 144.97595 84.46132 l 151.83893 90.31964 l 139.95191 93.74955 lx -0.00000 0.00000 0.10620 s 117.77042 88.28668 m 123.71393 86.61980 l 127.14542 89.50854 l 121.20191 91.22795 lf -0 sg 117.77042 88.28668 m 123.71393 86.61980 l 127.14542 89.50854 l 121.20191 91.22795 lx -0.00000 0.00000 0.10209 s 163.72595 86.64157 m 175.61298 83.48447 l 182.47595 89.39285 l 170.58893 92.89374 lf -0 sg 163.72595 86.64157 m 175.61298 83.48447 l 182.47595 89.39285 l 170.58893 92.89374 lx -0.00000 0.00000 0.10839 s 148.40744 87.39048 m 154.35095 85.89476 l 157.78244 88.48060 l 151.83893 90.31964 lf -0 sg 148.40744 87.39048 m 154.35095 85.89476 l 157.78244 88.48060 l 151.83893 90.31964 lx -0.00000 0.00000 0.10499 s 225.00000 85.04752 m 248.77405 78.18524 l 262.50000 90.07211 l 238.72595 96.93526 lf -0 sg 225.00000 85.04752 m 248.77405 78.18524 l 262.50000 90.07211 l 238.72595 96.93526 lx -0.00000 0.00000 0.10352 s 123.71393 86.61980 m 129.65744 84.71559 l 133.08893 87.78913 l 127.14542 89.50854 lf -0 sg 123.71393 86.61980 m 129.65744 84.71559 l 133.08893 87.78913 l 127.14542 89.50854 lx -0.00000 0.00000 0.10493 s 64.95191 83.70152 m 88.72595 76.84046 l 102.45191 88.71970 l 78.67786 95.59049 lf -0 sg 64.95191 83.70152 m 88.72595 76.84046 l 102.45191 88.71970 l 78.67786 95.59049 lx -0.00000 0.00000 0.13515 s 154.35095 85.89476 m 160.29446 85.67473 l 163.72595 86.64157 l 157.78244 88.48060 lf -0 sg 154.35095 85.89476 m 160.29446 85.67473 l 163.72595 86.64157 l 157.78244 88.48060 lx -0.00000 0.00000 0.10564 s 114.33893 85.34541 m 120.28244 83.47334 l 123.71393 86.61980 l 117.77042 88.28668 lf -0 sg 114.33893 85.34541 m 120.28244 83.47334 l 123.71393 86.61980 l 117.77042 88.28668 lx -0.00000 0.00000 0.10796 s 129.65744 84.71559 m 135.60095 83.38399 l 139.03244 86.12523 l 133.08893 87.78913 lf -0 sg 129.65744 84.71559 m 135.60095 83.38399 l 139.03244 86.12523 l 133.08893 87.78913 lx -0.00000 0.00000 0.09390 s 144.97595 84.46132 m 150.91946 81.65610 l 154.35095 85.89476 l 148.40744 87.39048 lf -0 sg 144.97595 84.46132 m 150.91946 81.65610 l 154.35095 85.89476 l 148.40744 87.39048 lx -0.00000 0.00000 0.10532 s 175.61298 83.48447 m 187.50000 80.02002 l 194.36298 85.96665 l 182.47595 89.39285 lf -0 sg 175.61298 83.48447 m 187.50000 80.02002 l 194.36298 85.96665 l 182.47595 89.39285 lx -0.00000 0.00000 0.13578 s 160.29446 85.67473 m 166.23798 82.48406 l 169.66946 85.06302 l 163.72595 86.64157 lf -0 sg 160.29446 85.67473 m 166.23798 82.48406 l 169.66946 85.06302 l 163.72595 86.64157 lx -0.00000 0.00000 0.09740 s 120.28244 83.47334 m 126.22595 81.60127 l 129.65744 84.71559 l 123.71393 86.61980 lf -0 sg 120.28244 83.47334 m 126.22595 81.60127 l 129.65744 84.71559 l 123.71393 86.61980 lx -0.00000 0.00000 0.10584 s 95.58893 82.78008 m 107.47595 79.35475 l 114.33893 85.34541 l 102.45191 88.71970 lf -0 sg 95.58893 82.78008 m 107.47595 79.35475 l 114.33893 85.34541 l 102.45191 88.71970 lx -0.00000 0.00000 0.09380 s 135.60095 83.38399 m 141.54446 80.40250 l 144.97595 84.46132 l 139.03244 86.12523 lf -0 sg 135.60095 83.38399 m 141.54446 80.40250 l 144.97595 84.46132 l 139.03244 86.12523 lx -0.00000 0.00000 0.00020 s 150.91946 81.65610 m 156.86298 74.17000 l 160.29446 85.67473 l 154.35095 85.89476 lf -0 sg 150.91946 81.65610 m 156.86298 74.17000 l 160.29446 85.67473 l 154.35095 85.89476 lx -0.00000 0.00000 0.10761 s 166.23798 82.48406 m 172.18149 80.42202 l 175.61298 83.48447 l 169.66946 85.06302 lf -0 sg 166.23798 82.48406 m 172.18149 80.42202 l 175.61298 83.48447 l 169.66946 85.06302 lx -0.00000 0.00000 0.10497 s 187.50000 80.02002 m 211.27405 73.16212 l 225.00000 85.04752 l 201.22595 91.91327 lf -0 sg 187.50000 80.02002 m 211.27405 73.16212 l 225.00000 85.04752 l 201.22595 91.91327 lx -0.00000 0.00000 0.13512 s 126.22595 81.60127 m 132.16946 81.91699 l 135.60095 83.38399 l 129.65744 84.71559 lf -0 sg 126.22595 81.60127 m 132.16946 81.91699 l 135.60095 83.38399 l 129.65744 84.71559 lx -0.00000 sg 156.86298 74.17000 m 162.80649 78.19264 l 166.23798 82.48406 l 160.29446 85.67473 lf -0 sg 156.86298 74.17000 m 162.80649 78.19264 l 166.23798 82.48406 l 160.29446 85.67473 lx -0.00000 0.00000 0.15460 s 141.54446 80.40250 m 147.48798 84.32835 l 150.91946 81.65610 l 144.97595 84.46132 lf -0 sg 141.54446 80.40250 m 147.48798 84.32835 l 150.91946 81.65610 l 144.97595 84.46132 lx -0.00000 0.00000 0.00025 s 132.16946 81.91699 m 138.11298 71.64670 l 141.54446 80.40250 l 135.60095 83.38399 lf -0 sg 132.16946 81.91699 m 138.11298 71.64670 l 141.54446 80.40250 l 135.60095 83.38399 lx -0.00000 0.00000 0.10499 s 27.45191 78.67786 m 51.22595 71.81499 l 64.95191 83.70152 l 41.17786 90.56488 lf -0 sg 27.45191 78.67786 m 51.22595 71.81499 l 64.95191 83.70152 l 41.17786 90.56488 lx -0.00000 0.00000 0.10480 s 172.18149 80.42202 m 178.12500 78.77795 l 181.55649 81.75224 l 175.61298 83.48447 lf -0 sg 172.18149 80.42202 m 178.12500 78.77795 l 181.55649 81.75224 l 175.61298 83.48447 lx -0.00000 0.00000 0.10500 s 248.77405 78.18524 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 90.07211 lf -0 sg 248.77405 78.18524 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 90.07211 lx -0.00000 0.00000 0.10133 s 107.47595 79.35475 m 119.36298 75.92539 l 126.22595 81.60127 l 114.33893 85.34541 lf -0 sg 107.47595 79.35475 m 119.36298 75.92539 l 126.22595 81.60127 l 114.33893 85.34541 lx -0.00000 0.00000 0.09421 s 162.80649 78.19264 m 168.75000 77.73225 l 172.18149 80.42202 l 166.23798 82.48406 lf -0 sg 162.80649 78.19264 m 168.75000 77.73225 l 172.18149 80.42202 l 166.23798 82.48406 lx -0.00000 0.00000 0.10536 s 178.12500 78.77795 m 184.06851 77.05412 l 187.50000 80.02002 l 181.55649 81.75224 lf -0 sg 178.12500 78.77795 m 184.06851 77.05412 l 187.50000 80.02002 l 181.55649 81.75224 lx -0.00000 0.00000 0.13494 s 122.79446 78.76333 m 128.73798 77.43953 l 132.16946 81.91699 l 126.22595 81.60127 lf -0 sg 122.79446 78.76333 m 128.73798 77.43953 l 132.16946 81.91699 l 126.22595 81.60127 lx -0.00000 0.00000 0.00027 s 128.73798 77.43953 m 134.68149 74.46112 l 138.11298 71.64670 l 132.16946 81.91699 lf -0 sg 128.73798 77.43953 m 134.68149 74.46112 l 138.11298 71.64670 l 132.16946 81.91699 lx -0.00000 0.00000 0.10705 s 168.75000 77.73225 m 174.69351 75.74091 l 178.12500 78.77795 l 172.18149 80.42202 lf -0 sg 168.75000 77.73225 m 174.69351 75.74091 l 178.12500 78.77795 l 172.18149 80.42202 lx -0.00000 0.00000 0.10502 s 88.72595 76.84046 m 100.61298 73.40563 l 107.47595 79.35475 l 95.58893 82.78008 lf -0 sg 88.72595 76.84046 m 100.61298 73.40563 l 107.47595 79.35475 l 95.58893 82.78008 lx -0.00000 0.00000 0.82456 s 147.48798 84.32835 m 153.43149 120.61434 l 156.86298 74.17000 l 150.91946 81.65610 lf -0 sg 147.48798 84.32835 m 153.43149 120.61434 l 156.86298 74.17000 l 150.91946 81.65610 lx -0.00000 0.00000 0.15600 s 159.37500 80.90454 m 165.31851 73.50718 l 168.75000 77.73225 l 162.80649 78.19264 lf -0 sg 159.37500 80.90454 m 165.31851 73.50718 l 168.75000 77.73225 l 162.80649 78.19264 lx -0.00000 0.00000 0.10834 s 119.36298 75.92539 m 125.30649 74.24516 l 128.73798 77.43953 l 122.79446 78.76333 lf -0 sg 119.36298 75.92539 m 125.30649 74.24516 l 128.73798 77.43953 l 122.79446 78.76333 lx -0.00000 0.00000 0.10434 s 174.69351 75.74091 m 180.63702 74.08822 l 184.06851 77.05412 l 178.12500 78.77795 lf -0 sg 174.69351 75.74091 m 180.63702 74.08822 l 184.06851 77.05412 l 178.12500 78.77795 lx -0.00000 0.00000 0.82445 s 138.11298 71.64670 m 144.05649 119.36118 l 147.48798 84.32835 l 141.54446 80.40250 lf -0 sg 138.11298 71.64670 m 144.05649 119.36118 l 147.48798 84.32835 l 141.54446 80.40250 lx -0.00000 0.00000 0.10500 s 211.27405 73.16212 m 235.04809 66.29790 l 248.77405 78.18524 l 225.00000 85.04752 lf -0 sg 211.27405 73.16212 m 235.04809 66.29790 l 248.77405 78.18524 l 225.00000 85.04752 lx -0.00000 0.00000 0.10501 s 180.63702 74.08822 m 192.52405 70.64788 l 199.38702 76.59107 l 187.50000 80.02002 lf -0 sg 180.63702 74.08822 m 192.52405 70.64788 l 199.38702 76.59107 l 187.50000 80.02002 lx -0.00000 0.00000 0.82412 s 153.43149 120.61434 m 159.37500 80.90454 l 162.80649 78.19264 l 156.86298 74.17000 lf -0 sg 153.43149 120.61434 m 159.37500 80.90454 l 162.80649 78.19264 l 156.86298 74.17000 lx -0.00000 0.00000 0.09419 s 165.31851 73.50718 m 171.26202 73.09928 l 174.69351 75.74091 l 168.75000 77.73225 lf -0 sg 165.31851 73.50718 m 171.26202 73.09928 l 174.69351 75.74091 l 168.75000 77.73225 lx -0.00000 0.00000 0.09377 s 125.30649 74.24516 m 131.25000 72.56493 l 134.68149 74.46112 l 128.73798 77.43953 lf -0 sg 125.30649 74.24516 m 131.25000 72.56493 l 134.68149 74.46112 l 128.73798 77.43953 lx -0.00000 0.00000 0.10505 s 100.61298 73.40563 m 112.50000 69.97080 l 119.36298 75.92539 l 107.47595 79.35475 lf -0 sg 100.61298 73.40563 m 112.50000 69.97080 l 119.36298 75.92539 l 107.47595 79.35475 lx -0.00000 0.00000 0.10501 s 51.22595 71.81499 m 75.00000 64.95146 l 88.72595 76.84046 l 64.95191 83.70152 lf -0 sg 51.22595 71.81499 m 75.00000 64.95146 l 88.72595 76.84046 l 64.95191 83.70152 lx -0.00000 0.00000 0.10783 s 171.26202 73.09928 m 177.20554 71.03735 l 180.63702 74.08822 l 174.69351 75.74091 lf -0 sg 171.26202 73.09928 m 177.20554 71.03735 l 180.63702 74.08822 l 174.69351 75.74091 lx -0.00000 0.00000 0.15453 s 131.25000 72.56493 m 137.19351 69.77344 l 140.62500 78.38380 l 134.68149 74.46112 lf -0 sg 131.25000 72.56493 m 137.19351 69.77344 l 140.62500 78.38380 l 134.68149 74.46112 lx -0.00000 0.00000 0.82447 s 134.68149 74.46112 m 140.62500 78.38380 l 144.05649 119.36118 l 138.11298 71.64670 lf -0 sg 134.68149 74.46112 m 140.62500 78.38380 l 144.05649 119.36118 l 138.11298 71.64670 lx -0.00000 0.00000 0.00073 s 161.88702 64.77831 m 167.83054 71.67680 l 171.26202 73.09928 l 165.31851 73.50718 lf -0 sg 161.88702 64.77831 m 167.83054 71.67680 l 171.26202 73.09928 l 165.31851 73.50718 lx -0.00000 0.00000 0.10497 s 192.52405 70.64788 m 204.41107 67.21766 l 211.27405 73.16212 l 199.38702 76.59107 lf -0 sg 192.52405 70.64788 m 204.41107 67.21766 l 211.27405 73.16212 l 199.38702 76.59107 lx -0.00000 0.00000 0.10422 s 177.20554 71.03735 m 183.14905 69.41104 l 186.58054 72.36805 l 180.63702 74.08822 lf -0 sg 177.20554 71.03735 m 183.14905 69.41104 l 186.58054 72.36805 l 180.63702 74.08822 lx -0.00000 0.00000 0.10652 s 112.50000 69.97080 m 124.38702 66.55042 l 131.25000 72.56493 l 119.36298 75.92539 lf -0 sg 112.50000 69.97080 m 124.38702 66.55042 l 131.25000 72.56493 l 119.36298 75.92539 lx -0.00000 0.00000 0.82393 s 155.94351 115.93117 m 161.88702 64.77831 l 165.31851 73.50718 l 159.37500 80.90454 lf -0 sg 155.94351 115.93117 m 161.88702 64.77831 l 165.31851 73.50718 l 159.37500 80.90454 lx -0.00000 0.00000 0.13299 s 167.83054 71.67680 m 173.77405 67.64667 l 177.20554 71.03735 l 171.26202 73.09928 lf -0 sg 167.83054 71.67680 m 173.77405 67.64667 l 177.20554 71.03735 l 171.26202 73.09928 lx -0.00000 0.00000 0.09377 s 127.81851 69.55767 m 133.76202 68.06447 l 137.19351 69.77344 l 131.25000 72.56493 lf -0 sg 127.81851 69.55767 m 133.76202 68.06447 l 137.19351 69.77344 l 131.25000 72.56493 lx -0.00000 0.00000 0.10527 s 183.14905 69.41104 m 189.09256 67.67248 l 192.52405 70.64788 l 186.58054 72.36805 lf -0 sg 183.14905 69.41104 m 189.09256 67.67248 l 192.52405 70.64788 l 186.58054 72.36805 lx -0.00000 0.00000 0.00089 s 158.45554 67.59486 m 164.39905 67.13311 l 167.83054 71.67680 l 161.88702 64.77831 lf -0 sg 158.45554 67.59486 m 164.39905 67.13311 l 167.83054 71.67680 l 161.88702 64.77831 lx -0.00000 0.00000 0.10500 s 13.72595 66.79083 m 37.50000 59.92783 l 51.22595 71.81499 l 27.45191 78.67786 lf -0 sg 13.72595 66.79083 m 37.50000 59.92783 l 51.22595 71.81499 l 27.45191 78.67786 lx -0.00000 0.00000 0.00029 s 133.76202 68.06447 m 139.70554 67.85474 l 143.13702 62.27244 l 137.19351 69.77344 lf -0 sg 133.76202 68.06447 m 139.70554 67.85474 l 143.13702 62.27244 l 137.19351 69.77344 lx -0.00000 0.00000 0.10499 s 235.04809 66.29790 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18524 lf -0 sg 235.04809 66.29790 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18524 lx -0.00000 0.00000 0.09747 s 173.77405 67.64667 m 179.71756 66.55187 l 183.14905 69.41104 l 177.20554 71.03735 lf -0 sg 173.77405 67.64667 m 179.71756 66.55187 l 183.14905 69.41104 l 177.20554 71.03735 lx -0.00000 0.00000 0.10502 s 204.41107 67.21766 m 216.29809 63.78591 l 223.16107 69.73001 l 211.27405 73.16212 lf -0 sg 204.41107 67.21766 m 216.29809 63.78591 l 223.16107 69.73001 l 211.27405 73.16212 lx -0.00000 0.00000 0.10490 s 189.09256 67.67248 m 195.03607 65.96301 l 198.46756 68.93277 l 192.52405 70.64788 lf -0 sg 189.09256 67.67248 m 195.03607 65.96301 l 198.46756 68.93277 l 192.52405 70.64788 lx -0.00000 0.00000 0.82448 s 137.19351 69.77344 m 143.13702 62.27244 l 146.56851 114.67345 l 140.62500 78.38380 lf -0 sg 137.19351 69.77344 m 143.13702 62.27244 l 146.56851 114.67345 l 140.62500 78.38380 lx -0.00000 0.00000 0.15474 s 149.08054 66.33755 m 155.02405 65.72042 l 158.45554 67.59486 l 152.51202 74.95305 lf -0 sg 149.08054 66.33755 m 155.02405 65.72042 l 158.45554 67.59486 l 152.51202 74.95305 lx -0.00000 0.00000 0.82435 s 152.51202 74.95305 m 158.45554 67.59486 l 161.88702 64.77831 l 155.94351 115.93117 lf -0 sg 152.51202 74.95305 m 158.45554 67.59486 l 161.88702 64.77831 l 155.94351 115.93117 lx -0.00000 0.00000 0.10495 s 75.00000 64.95146 m 98.77405 58.09042 l 112.50000 69.97080 l 88.72595 76.84046 lf -0 sg 75.00000 64.95146 m 98.77405 58.09042 l 112.50000 69.97080 l 88.72595 76.84046 lx -0.00000 0.00000 0.13273 s 164.39905 67.13311 m 170.34256 65.10197 l 173.77405 67.64667 l 167.83054 71.67680 lf -0 sg 164.39905 67.13311 m 170.34256 65.10197 l 173.77405 67.64667 l 167.83054 71.67680 lx -0.00000 0.00000 0.00021 s 139.70554 67.85474 m 145.64905 64.63296 l 149.08054 66.33755 l 143.13702 62.27244 lf -0 sg 139.70554 67.85474 m 145.64905 64.63296 l 149.08054 66.33755 l 143.13702 62.27244 lx -0.00000 0.00000 0.10834 s 124.38702 66.55042 m 130.33054 64.70081 l 133.76202 68.06447 l 127.81851 69.55767 lf -0 sg 124.38702 66.55042 m 130.33054 64.70081 l 133.76202 68.06447 l 127.81851 69.55767 lx -0.00000 0.00000 0.10698 s 179.71756 66.55187 m 185.66107 64.67087 l 189.09256 67.67248 l 183.14905 69.41104 lf -0 sg 179.71756 66.55187 m 185.66107 64.67087 l 189.09256 67.67248 l 183.14905 69.41104 lx -0.00000 0.00000 0.10501 s 195.03607 65.96301 m 200.97958 64.24536 l 204.41107 67.21766 l 198.46756 68.93277 lf -0 sg 195.03607 65.96301 m 200.97958 64.24536 l 204.41107 67.21766 l 198.46756 68.93277 lx -0.00000 0.00000 0.82441 s 143.13702 62.27244 m 149.08054 66.33755 l 152.51202 74.95305 l 146.56851 114.67345 lf -0 sg 143.13702 62.27244 m 149.08054 66.33755 l 152.51202 74.95305 l 146.56851 114.67345 lx -0.00000 0.00000 0.09372 s 155.02405 65.72042 m 160.96756 63.94453 l 164.39905 67.13311 l 158.45554 67.59486 lf -0 sg 155.02405 65.72042 m 160.96756 63.94453 l 164.39905 67.13311 l 158.45554 67.59486 lx -0.00000 0.00000 0.09768 s 170.34256 65.10197 m 176.28607 63.47073 l 179.71756 66.55187 l 173.77405 67.64667 lf -0 sg 170.34256 65.10197 m 176.28607 63.47073 l 179.71756 66.55187 l 173.77405 67.64667 lx -0.00000 0.00000 0.10447 s 185.66107 64.67087 m 191.60458 62.99891 l 195.03607 65.96301 l 189.09256 67.67248 lf -0 sg 185.66107 64.67087 m 191.60458 62.99891 l 195.03607 65.96301 l 189.09256 67.67248 lx -0.00000 0.00000 0.13494 s 130.33054 64.70081 m 136.27405 62.85120 l 139.70554 67.85474 l 133.76202 68.06447 lf -0 sg 130.33054 64.70081 m 136.27405 62.85120 l 139.70554 67.85474 l 133.76202 68.06447 lx -0.00000 0.00000 0.10505 s 105.63702 64.03061 m 117.52405 60.60472 l 124.38702 66.55042 l 112.50000 69.97080 lf -0 sg 105.63702 64.03061 m 117.52405 60.60472 l 124.38702 66.55042 l 112.50000 69.97080 lx -0.00000 0.00000 0.09397 s 145.64905 64.63296 m 151.59256 62.69163 l 155.02405 65.72042 l 149.08054 66.33755 lf -0 sg 145.64905 64.63296 m 151.59256 62.69163 l 155.02405 65.72042 l 149.08054 66.33755 lx -0.00000 0.00000 0.10499 s 216.29809 63.78591 m 228.18512 60.35447 l 235.04809 66.29790 l 223.16107 69.73001 lf -0 sg 216.29809 63.78591 m 228.18512 60.35447 l 235.04809 66.29790 l 223.16107 69.73001 lx -0.00000 0.00000 0.10862 s 160.96756 63.94453 m 166.91107 62.16863 l 170.34256 65.10197 l 164.39905 67.13311 lf -0 sg 160.96756 63.94453 m 166.91107 62.16863 l 170.34256 65.10197 l 164.39905 67.13311 lx -0.00000 0.00000 0.10701 s 176.28607 63.47073 m 182.22958 61.72714 l 185.66107 64.67087 l 179.71756 66.55187 lf -0 sg 176.28607 63.47073 m 182.22958 61.72714 l 185.66107 64.67087 l 179.71756 66.55187 lx -0.00000 0.00000 0.10516 s 191.60458 62.99891 m 197.54809 61.27306 l 200.97958 64.24536 l 195.03607 65.96301 lf -0 sg 191.60458 62.99891 m 197.54809 61.27306 l 200.97958 64.24536 l 195.03607 65.96301 lx -0.00000 0.00000 0.13511 s 136.27405 62.85120 m 142.21756 61.27842 l 145.64905 64.63296 l 139.70554 67.85474 lf -0 sg 136.27405 62.85120 m 142.21756 61.27842 l 145.64905 64.63296 l 139.70554 67.85474 lx -0.00000 0.00000 0.10360 s 166.91107 62.16863 m 172.85458 60.46827 l 176.28607 63.47073 l 170.34256 65.10197 lf -0 sg 166.91107 62.16863 m 172.85458 60.46827 l 176.28607 63.47073 l 170.34256 65.10197 lx -0.00000 0.00000 0.10498 s 197.54809 61.27306 m 209.43512 57.84282 l 216.29809 63.78591 l 204.41107 67.21766 lf -0 sg 197.54809 61.27306 m 209.43512 57.84282 l 216.29809 63.78591 l 204.41107 67.21766 lx -0.00000 0.00000 0.10499 s 37.50000 59.92783 m 61.27405 53.06499 l 75.00000 64.95146 l 51.22595 71.81499 lf -0 sg 37.50000 59.92783 m 61.27405 53.06499 l 75.00000 64.95146 l 51.22595 71.81499 lx -0.00000 0.00000 0.10443 s 182.22958 61.72714 m 188.17309 60.01899 l 191.60458 62.99891 l 185.66107 64.67087 lf -0 sg 182.22958 61.72714 m 188.17309 60.01899 l 191.60458 62.99891 l 185.66107 64.67087 lx -0.00000 0.00000 0.10800 s 142.21756 61.27842 m 148.16107 59.66283 l 151.59256 62.69163 l 145.64905 64.63296 lf -0 sg 142.21756 61.27842 m 148.16107 59.66283 l 151.59256 62.69163 l 145.64905 64.63296 lx -0.00000 0.00000 0.10133 s 117.52405 60.60472 m 129.41107 57.22042 l 136.27405 62.85120 l 124.38702 66.55042 lf -0 sg 117.52405 60.60472 m 129.41107 57.22042 l 136.27405 62.85120 l 124.38702 66.55042 lx -0.00000 0.00000 0.10520 s 172.85458 60.46827 m 178.79809 58.76792 l 182.22958 61.72714 l 176.28607 63.47073 lf -0 sg 172.85458 60.46827 m 178.79809 58.76792 l 182.22958 61.72714 l 176.28607 63.47073 lx -0.00000 0.00000 0.10600 s 148.16107 59.66283 m 160.04809 56.25308 l 166.91107 62.16863 l 155.02405 65.72042 lf -0 sg 148.16107 59.66283 m 160.04809 56.25308 l 166.91107 62.16863 l 155.02405 65.72042 lx -0.00000 0.00000 0.09741 s 132.84256 60.03581 m 138.78607 58.49505 l 142.21756 61.27842 l 136.27405 62.85120 lf -0 sg 132.84256 60.03581 m 138.78607 58.49505 l 142.21756 61.27842 l 136.27405 62.85120 lx -0.00000 0.00000 0.10514 s 188.17309 60.01899 m 194.11661 58.30128 l 197.54809 61.27306 l 191.60458 62.99891 lf -0 sg 188.17309 60.01899 m 194.11661 58.30128 l 197.54809 61.27306 l 191.60458 62.99891 lx -1.00000 0.99983 0.99983 s 144.05649 119.36118 m 150.00000 198.91227 l 153.43149 120.61434 l 147.48798 84.32835 lf -0 sg 144.05649 119.36118 m 150.00000 198.91227 l 153.43149 120.61434 l 147.48798 84.32835 lx -0.00000 0.00000 0.10504 s 178.79809 58.76792 m 184.74161 57.04871 l 188.17309 60.01899 l 182.22958 61.72714 lf -0 sg 178.79809 58.76792 m 184.74161 57.04871 l 188.17309 60.01899 l 182.22958 61.72714 lx -0.00000 0.00000 0.10502 s 98.77405 58.09042 m 110.66107 54.65516 l 117.52405 60.60472 l 105.63702 64.03061 lf -0 sg 98.77405 58.09042 m 110.66107 54.65516 l 117.52405 60.60472 l 105.63702 64.03061 lx -0.00000 0.00000 0.10499 s 209.43512 57.84282 m 221.32214 54.41104 l 228.18512 60.35447 l 216.29809 63.78591 lf -0 sg 209.43512 57.84282 m 221.32214 54.41104 l 228.18512 60.35447 l 216.29809 63.78591 lx -0.00000 0.00000 0.10350 s 138.78607 58.49505 m 144.72958 56.69526 l 148.16107 59.66283 l 142.21756 61.27842 lf -0 sg 138.78607 58.49505 m 144.72958 56.69526 l 148.16107 59.66283 l 142.21756 61.27842 lx -1.00000 sg 150.00000 198.91227 m 155.94351 115.93117 l 159.37500 80.90454 l 153.43149 120.61434 lf -0 sg 150.00000 198.91227 m 155.94351 115.93117 l 159.37500 80.90454 l 153.43149 120.61434 lx -0.00000 0.00000 0.10564 s 129.41107 57.22042 m 135.35458 55.47406 l 138.78607 58.49505 l 132.84256 60.03581 lf -0 sg 129.41107 57.22042 m 135.35458 55.47406 l 138.78607 58.49505 l 132.84256 60.03581 lx -0.00000 0.00000 0.10502 s 184.74161 57.04871 m 190.68512 55.32950 l 194.11661 58.30128 l 188.17309 60.01899 lf -0 sg 184.74161 57.04871 m 190.68512 55.32950 l 194.11661 58.30128 l 188.17309 60.01899 lx -0.00000 0.00000 0.10473 s 160.04809 56.25308 m 171.93512 52.81964 l 178.79809 58.76792 l 166.91107 62.16863 lf -0 sg 160.04809 56.25308 m 171.93512 52.81964 l 178.79809 58.76792 l 166.91107 62.16863 lx -0.00000 0.00000 0.10499 s 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 59.92783 l 13.72595 66.79083 lf -0 sg 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 59.92783 l 13.72595 66.79083 lx -0.00000 0.00000 0.10499 s 221.32214 54.41104 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29790 lf -0 sg 221.32214 54.41104 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29790 lx -0.00000 0.00000 0.10497 s 190.68512 55.32950 m 202.57214 51.89942 l 209.43512 57.84282 l 197.54809 61.27306 lf -0 sg 190.68512 55.32950 m 202.57214 51.89942 l 209.43512 57.84282 l 197.54809 61.27306 lx -1.00000 0.99986 0.99986 s 140.62500 78.38380 m 146.56851 114.67345 l 150.00000 198.91227 l 144.05649 119.36118 lf -0 sg 140.62500 78.38380 m 146.56851 114.67345 l 150.00000 198.91227 l 144.05649 119.36118 lx -0.00000 0.00000 0.10618 s 135.35458 55.47406 m 141.29809 53.72769 l 144.72958 56.69526 l 138.78607 58.49505 lf -0 sg 135.35458 55.47406 m 141.29809 53.72769 l 144.72958 56.69526 l 138.78607 58.49505 lx -0.00000 0.00000 0.10584 s 110.66107 54.65516 m 122.54809 51.21990 l 129.41107 57.22042 l 117.52405 60.60472 lf -0 sg 110.66107 54.65516 m 122.54809 51.21990 l 129.41107 57.22042 l 117.52405 60.60472 lx -0.00000 0.00000 0.10501 s 61.27405 53.06499 m 85.04809 46.20153 l 98.77405 58.09042 l 75.00000 64.95146 lf -0 sg 61.27405 53.06499 m 85.04809 46.20153 l 98.77405 58.09042 l 75.00000 64.95146 lx -0.00000 0.00000 0.10456 s 141.29809 53.72769 m 153.18512 50.30869 l 160.04809 56.25308 l 148.16107 59.66283 lf -0 sg 141.29809 53.72769 m 153.18512 50.30869 l 160.04809 56.25308 l 148.16107 59.66283 lx -1.00000 0.99990 0.99990 s 146.56851 114.67345 m 152.51202 74.95305 l 155.94351 115.93117 l 150.00000 198.91227 lf -0 sg 146.56851 114.67345 m 152.51202 74.95305 l 155.94351 115.93117 l 150.00000 198.91227 lx -0.00000 0.00000 0.10509 s 171.93512 52.81964 m 183.82214 49.38619 l 190.68512 55.32950 l 178.79809 58.76792 lf -0 sg 171.93512 52.81964 m 183.82214 49.38619 l 190.68512 55.32950 l 178.79809 58.76792 lx -0.00000 0.00000 0.10501 s 202.57214 51.89942 m 214.45917 48.46762 l 221.32214 54.41104 l 209.43512 57.84282 lf -0 sg 202.57214 51.89942 m 214.45917 48.46762 l 221.32214 54.41104 l 209.43512 57.84282 lx -0.00000 0.00000 0.10558 s 122.54809 51.21990 m 134.43512 47.79209 l 141.29809 53.72769 l 129.41107 57.22042 lf -0 sg 122.54809 51.21990 m 134.43512 47.79209 l 141.29809 53.72769 l 129.41107 57.22042 lx -0.00000 0.00000 0.10496 s 183.82214 49.38619 m 195.70917 45.95519 l 202.57214 51.89942 l 190.68512 55.32950 lf -0 sg 183.82214 49.38619 m 195.70917 45.95519 l 202.57214 51.89942 l 190.68512 55.32950 lx -0.00000 0.00000 0.10500 s 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 53.06499 l 37.50000 59.92783 lf -0 sg 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 53.06499 l 37.50000 59.92783 lx -0.00000 0.00000 0.10483 s 134.43512 47.79209 m 146.32214 44.36429 l 153.18512 50.30869 l 141.29809 53.72769 lf -0 sg 134.43512 47.79209 m 146.32214 44.36429 l 153.18512 50.30869 l 141.29809 53.72769 lx -0.00000 0.00000 0.10493 s 85.04809 46.20153 m 108.82214 39.34044 l 122.54809 51.21990 l 98.77405 58.09042 lf -0 sg 85.04809 46.20153 m 108.82214 39.34044 l 122.54809 51.21990 l 98.77405 58.09042 lx -0.00000 0.00000 0.10500 s 195.70917 45.95519 m 207.59619 42.52419 l 214.45917 48.46762 l 202.57214 51.89942 lf -0 sg 195.70917 45.95519 m 207.59619 42.52419 l 214.45917 48.46762 l 202.57214 51.89942 lx -0.00000 0.00000 0.10505 s 146.32214 44.36429 m 170.09619 37.49965 l 183.82214 49.38619 l 160.04809 56.25308 lf -0 sg 146.32214 44.36429 m 170.09619 37.49965 l 183.82214 49.38619 l 160.04809 56.25308 lx -0.00000 0.00000 0.10500 s 207.59619 42.52419 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41104 lf -0 sg 207.59619 42.52419 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41104 lx -0.00000 0.00000 0.10499 s 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20153 l 61.27405 53.06499 lf -0 sg 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20153 l 61.27405 53.06499 lx -0.00000 0.00000 0.10493 s 108.82214 39.34044 m 132.59619 32.47562 l 146.32214 44.36429 l 122.54809 51.21990 lf -0 sg 108.82214 39.34044 m 132.59619 32.47562 l 146.32214 44.36429 l 122.54809 51.21990 lx -0.00000 0.00000 0.10498 s 170.09619 37.49965 m 193.87024 30.63713 l 207.59619 42.52419 l 183.82214 49.38619 lf -0 sg 170.09619 37.49965 m 193.87024 30.63713 l 207.59619 42.52419 l 183.82214 49.38619 lx -0.00000 0.00000 0.10502 s 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.34044 l 85.04809 46.20153 lf -0 sg 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.34044 l 85.04809 46.20153 lx -0.00000 0.00000 0.10501 s 132.59619 32.47562 m 156.37024 25.61306 l 170.09619 37.49965 l 146.32214 44.36429 lf -0 sg 132.59619 32.47562 m 156.37024 25.61306 l 170.09619 37.49965 l 146.32214 44.36429 lx -0.00000 0.00000 0.10500 s 193.87024 30.63713 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52419 lf -0 sg 193.87024 30.63713 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52419 lx -0.00000 0.00000 0.10502 s 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47562 l 108.82214 39.34044 lf -0 sg 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47562 l 108.82214 39.34044 lx -0.00000 0.00000 0.10499 s 156.37024 25.61306 m 180.14428 18.74997 l 193.87024 30.63713 l 170.09619 37.49965 lf -0 sg 156.37024 25.61306 m 180.14428 18.74997 l 193.87024 30.63713 l 170.09619 37.49965 lx -0.00000 0.00000 0.10499 s 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61306 l 132.59619 32.47562 lf -0 sg 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61306 l 132.59619 32.47562 lx -0.00000 0.00000 0.10500 s 180.14428 18.74997 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.63713 lf -0 sg 180.14428 18.74997 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.63713 lx -0.00000 0.00000 0.10500 s 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 18.74997 l 156.37024 25.61306 lf -0 sg 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 18.74997 l 156.37024 25.61306 lx -0.00000 0.00000 0.10500 s 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 18.74997 lf -0 sg 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 18.74997 lx -showpage -. -DEAL:: Postprocessing: time=0.02800, step=1, sweep=1. [ee] -DEAL:: Postprocessing: time=0.05600, step=2, sweep=1. [ee] -DEAL:: Postprocessing: time=0.08400, step=3, sweep=1. [ee] -DEAL:: Postprocessing: time=0.11200, step=4, sweep=1. [ee] -DEAL:: Postprocessing: time=0.14000, step=5, sweep=1. [ee] -DEAL:: Postprocessing: time=0.16800, step=6, sweep=1. [ee] -DEAL:: Postprocessing: time=0.19600, step=7, sweep=1. [ee] -DEAL:: Postprocessing: time=0.22400, step=8, sweep=1. [ee] -DEAL:: Postprocessing: time=0.25200, step=9, sweep=1. [ee] -DEAL:: Postprocessing: time=0.28000, step=10, sweep=1. [ee] -DEAL:: Postprocessing: time=0.30800, step=11, sweep=1. [ee] -DEAL:: Postprocessing: time=0.33600, step=12, sweep=1. [ee] -DEAL:: Postprocessing: time=0.36400, step=13, sweep=1. [ee] -DEAL:: Postprocessing: time=0.39200, step=14, sweep=1. [ee] -DEAL:: Postprocessing: time=0.42000, step=15, sweep=1. [ee] -DEAL:: Postprocessing: time=0.44800, step=16, sweep=1. [ee] -DEAL:: Postprocessing: time=0.47600, step=17, sweep=1. [ee] -DEAL:: Postprocessing: time=0.50400, step=18, sweep=1. [ee] -DEAL:: Postprocessing: time=0.53200, step=19, sweep=1. [ee] -DEAL:: Postprocessing: time=0.56000, step=20, sweep=1. [ee] -DEAL:: Postprocessing: time=0.58800, step=21, sweep=1. [ee] -DEAL:: Postprocessing: time=0.61600, step=22, sweep=1. [ee] -DEAL:: Postprocessing: time=0.64400, step=23, sweep=1. [ee] -DEAL:: Postprocessing: time=0.67200, step=24, sweep=1. [ee] -DEAL:: Postprocessing: time=0.70000, step=25, sweep=1. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library - -%%BoundingBox: 0 0 300 150 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50000 setlinewidth -0.06973 0.93027 0.00000 s 96.08167 138.11298 m 119.85572 133.36281 l 133.58167 143.13702 l 109.80762 150.00000 lf -0 sg 96.08167 138.11298 m 119.85572 133.36281 l 133.58167 143.13702 l 109.80762 150.00000 lx -0.00000 0.98814 0.01186 s 119.85572 133.36281 m 143.62976 122.91371 l 157.35572 136.27405 l 133.58167 143.13702 lf -0 sg 119.85572 133.36281 m 143.62976 122.91371 l 157.35572 136.27405 l 133.58167 143.13702 lx -0.15622 0.84378 0.00000 s 82.35572 126.22595 m 106.12976 120.92497 l 119.85572 133.36281 l 96.08167 138.11298 lf -0 sg 82.35572 126.22595 m 106.12976 120.92497 l 119.85572 133.36281 l 96.08167 138.11298 lx -0.00000 0.76841 0.23159 s 143.62976 122.91371 m 167.40381 115.66861 l 181.12976 129.41107 l 157.35572 136.27405 lf -0 sg 143.62976 122.91371 m 167.40381 115.66861 l 181.12976 129.41107 l 157.35572 136.27405 lx -0.11295 0.88705 0.00000 s 106.12976 120.92497 m 129.90381 113.19188 l 143.62976 122.91371 l 119.85572 133.36281 lf -0 sg 106.12976 120.92497 m 129.90381 113.19188 l 143.62976 122.91371 l 119.85572 133.36281 lx -0.00000 0.87257 0.12743 s 167.40381 115.66861 m 191.17786 111.06880 l 204.90381 122.54809 l 181.12976 129.41107 lf -0 sg 167.40381 115.66861 m 191.17786 111.06880 l 204.90381 122.54809 l 181.12976 129.41107 lx -0.00000 0.91059 0.08941 s 68.62976 114.33893 m 92.40381 105.15295 l 106.12976 120.92497 l 82.35572 126.22595 lf -0 sg 68.62976 114.33893 m 92.40381 105.15295 l 106.12976 120.92497 l 82.35572 126.22595 lx -0.00000 0.75325 0.24675 s 129.90381 113.19188 m 153.67786 104.67140 l 167.40381 115.66861 l 143.62976 122.91371 lf -0 sg 129.90381 113.19188 m 153.67786 104.67140 l 167.40381 115.66861 l 143.62976 122.91371 lx -0.00000 0.89380 0.10620 s 191.17786 111.06880 m 214.95191 102.32618 l 228.67786 115.68512 l 204.90381 122.54809 lf -0 sg 191.17786 111.06880 m 214.95191 102.32618 l 228.67786 115.68512 l 204.90381 122.54809 lx -0.00000 0.75078 0.24922 s 92.40381 105.15295 m 116.17786 97.03509 l 129.90381 113.19188 l 106.12976 120.92497 lf -0 sg 92.40381 105.15295 m 116.17786 97.03509 l 129.90381 113.19188 l 106.12976 120.92497 lx -0.00000 0.90429 0.09571 s 153.67786 104.67140 m 177.45191 100.31252 l 191.17786 111.06880 l 167.40381 115.66861 lf -0 sg 153.67786 104.67140 m 177.45191 100.31252 l 191.17786 111.06880 l 167.40381 115.66861 lx -0.00000 0.83894 0.16106 s 214.95191 102.32618 m 238.72595 96.35202 l 252.45191 108.82214 l 228.67786 115.68512 lf -0 sg 214.95191 102.32618 m 238.72595 96.35202 l 252.45191 108.82214 l 228.67786 115.68512 lx -0.00000 0.87496 0.12504 s 54.90381 102.45191 m 78.67786 96.50748 l 92.40381 105.15295 l 68.62976 114.33893 lf -0 sg 54.90381 102.45191 m 78.67786 96.50748 l 92.40381 105.15295 l 68.62976 114.33893 lx -0.00000 0.52251 0.47749 s 116.17786 97.03509 m 139.95191 89.83217 l 153.67786 104.67140 l 129.90381 113.19188 lf -0 sg 116.17786 97.03509 m 139.95191 89.83217 l 153.67786 104.67140 l 129.90381 113.19188 lx -0.00000 0.96495 0.03505 s 177.45191 100.31252 m 201.22595 91.65741 l 214.95191 102.32618 l 191.17786 111.06880 lf -0 sg 177.45191 100.31252 m 201.22595 91.65741 l 214.95191 102.32618 l 191.17786 111.06880 lx -0.09090 0.90910 0.00000 s 238.72595 96.35202 m 262.50000 93.15046 l 276.22595 101.95917 l 252.45191 108.82214 lf -0 sg 238.72595 96.35202 m 262.50000 93.15046 l 276.22595 101.95917 l 252.45191 108.82214 lx -0.00000 0.42571 0.57429 s 78.67786 96.50748 m 102.45191 84.19082 l 116.17786 97.03509 l 92.40381 105.15295 lf -0 sg 78.67786 96.50748 m 102.45191 84.19082 l 116.17786 97.03509 l 92.40381 105.15295 lx -0.00000 0.78765 0.21235 s 139.95191 89.83217 m 163.72595 87.25071 l 177.45191 100.31252 l 153.67786 104.67140 lf -0 sg 139.95191 89.83217 m 163.72595 87.25071 l 177.45191 100.31252 l 153.67786 104.67140 lx -0.00000 0.90703 0.09297 s 201.22595 91.65741 m 225.00000 86.53138 l 238.72595 96.35202 l 214.95191 102.32618 lf -0 sg 201.22595 91.65741 m 225.00000 86.53138 l 238.72595 96.35202 l 214.95191 102.32618 lx -0.43510 0.56490 0.00000 s 41.17786 90.56488 m 64.95191 91.49452 l 78.67786 96.50748 l 54.90381 102.45191 lf -0 sg 41.17786 90.56488 m 64.95191 91.49452 l 78.67786 96.50748 l 54.90381 102.45191 lx -0.12319 0.87681 0.00000 s 262.50000 93.15046 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lf -0 sg 262.50000 93.15046 m 286.27405 83.20917 l 300.00000 95.09619 l 276.22595 101.95917 lx -0.00000 0.51399 0.48601 s 102.45191 84.19082 m 126.22595 85.97054 l 139.95191 89.83217 l 116.17786 97.03509 lf -0 sg 102.45191 84.19082 m 126.22595 85.97054 l 139.95191 89.83217 l 116.17786 97.03509 lx -0.00000 0.83971 0.16029 s 163.72595 87.25071 m 187.50000 76.33444 l 201.22595 91.65741 l 177.45191 100.31252 lf -0 sg 163.72595 87.25071 m 187.50000 76.33444 l 201.22595 91.65741 l 177.45191 100.31252 lx -0.21659 0.78341 0.00000 s 225.00000 86.53138 m 248.77405 78.97162 l 262.50000 93.15046 l 238.72595 96.35202 lf -0 sg 225.00000 86.53138 m 248.77405 78.97162 l 262.50000 93.15046 l 238.72595 96.35202 lx -0.00000 0.69038 0.30962 s 64.95191 91.49452 m 88.72595 67.92514 l 102.45191 84.19082 l 78.67786 96.50748 lf -0 sg 64.95191 91.49452 m 88.72595 67.92514 l 102.45191 84.19082 l 78.67786 96.50748 lx -0.00000 0.80433 0.19567 s 126.22595 85.97054 m 150.00000 71.76656 l 163.72595 87.25071 l 139.95191 89.83217 lf -0 sg 126.22595 85.97054 m 150.00000 71.76656 l 163.72595 87.25071 l 139.95191 89.83217 lx -0.00000 0.71833 0.28167 s 187.50000 76.33444 m 211.27405 71.38800 l 225.00000 86.53138 l 201.22595 91.65741 lf -0 sg 187.50000 76.33444 m 211.27405 71.38800 l 225.00000 86.53138 l 201.22595 91.65741 lx -0.44099 0.55901 0.00000 s 27.45191 78.67786 m 51.22595 72.83983 l 64.95191 91.49452 l 41.17786 90.56488 lf -0 sg 27.45191 78.67786 m 51.22595 72.83983 l 64.95191 91.49452 l 41.17786 90.56488 lx -0.16674 0.83326 0.00000 s 248.77405 78.97162 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 93.15046 lf -0 sg 248.77405 78.97162 m 272.54809 71.32214 l 286.27405 83.20917 l 262.50000 93.15046 lx -0.00000 0.51547 0.48453 s 88.72595 67.92514 m 112.50000 71.42073 l 126.22595 85.97054 l 102.45191 84.19082 lf -0 sg 88.72595 67.92514 m 112.50000 71.42073 l 126.22595 85.97054 l 102.45191 84.19082 lx -0.00000 0.52294 0.47706 s 150.00000 71.76656 m 173.77405 66.93477 l 187.50000 76.33444 l 163.72595 87.25071 lf -0 sg 150.00000 71.76656 m 173.77405 66.93477 l 187.50000 76.33444 l 163.72595 87.25071 lx -0.00000 0.38705 0.61295 s 180.63702 71.63460 m 192.52405 69.30019 l 199.38702 73.86122 l 187.50000 76.33444 lf -0 sg 180.63702 71.63460 m 192.52405 69.30019 l 199.38702 73.86122 l 187.50000 76.33444 lx -0.00000 0.84504 0.15496 s 211.27405 71.38800 m 235.04809 63.85661 l 248.77405 78.97162 l 225.00000 86.53138 lf -0 sg 211.27405 71.38800 m 235.04809 63.85661 l 248.77405 78.97162 l 225.00000 86.53138 lx -0.20212 0.79788 0.00000 s 51.22595 72.83983 m 75.00000 69.55180 l 88.72595 67.92514 l 64.95191 91.49452 lf -0 sg 51.22595 72.83983 m 75.00000 69.55180 l 88.72595 67.92514 l 64.95191 91.49452 lx -0.00000 0.36540 0.63460 s 192.52405 69.30019 m 204.41107 62.46411 l 211.27405 71.38800 l 199.38702 73.86122 lf -0 sg 192.52405 69.30019 m 204.41107 62.46411 l 211.27405 71.38800 l 199.38702 73.86122 lx -0.00000 0.99090 0.00910 s 112.50000 71.42073 m 136.27405 61.48341 l 150.00000 71.76656 l 126.22595 85.97054 lf -0 sg 112.50000 71.42073 m 136.27405 61.48341 l 150.00000 71.76656 l 126.22595 85.97054 lx -0.00000 0.91112 0.08888 s 173.77405 66.93477 m 185.66107 68.95120 l 192.52405 69.30019 l 180.63702 71.63460 lf -0 sg 173.77405 66.93477 m 185.66107 68.95120 l 192.52405 69.30019 l 180.63702 71.63460 lx -0.00000 0.31537 0.68463 s 204.41107 62.46411 m 216.29809 60.90963 l 223.16107 67.62230 l 211.27405 71.38800 lf -0 sg 204.41107 62.46411 m 216.29809 60.90963 l 223.16107 67.62230 l 211.27405 71.38800 lx -0.00000 0.94649 0.05351 s 13.72595 66.79083 m 37.50000 58.79015 l 51.22595 72.83983 l 27.45191 78.67786 lf -0 sg 13.72595 66.79083 m 37.50000 58.79015 l 51.22595 72.83983 l 27.45191 78.67786 lx -0.00000 0.86109 0.13891 s 235.04809 63.85661 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.97162 lf -0 sg 235.04809 63.85661 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.97162 lx -0.00000 0.40019 0.59981 s 75.00000 69.55180 m 98.77405 50.97970 l 112.50000 71.42073 l 88.72595 67.92514 lf -0 sg 75.00000 69.55180 m 98.77405 50.97970 l 112.50000 71.42073 l 88.72595 67.92514 lx -0.00000 0.71823 0.28177 s 136.27405 61.48341 m 160.04809 58.08041 l 173.77405 66.93477 l 150.00000 71.76656 lf -0 sg 136.27405 61.48341 m 160.04809 58.08041 l 173.77405 66.93477 l 150.00000 71.76656 lx -0.04100 0.95900 0.00000 s 185.66107 68.95120 m 197.54809 64.72480 l 204.41107 62.46411 l 192.52405 69.30019 lf -0 sg 185.66107 68.95120 m 197.54809 64.72480 l 204.41107 62.46411 l 192.52405 69.30019 lx -0.00000 0.38349 0.61651 s 200.97958 63.59446 m 206.92309 61.46981 l 210.35458 61.68687 l 204.41107 62.46411 lf -0 sg 200.97958 63.59446 m 206.92309 61.46981 l 210.35458 61.68687 l 204.41107 62.46411 lx -0.00000 0.56300 0.43700 s 216.29809 60.90963 m 228.18512 60.74160 l 235.04809 63.85661 l 223.16107 67.62230 lf -0 sg 216.29809 60.90963 m 228.18512 60.74160 l 235.04809 63.85661 l 223.16107 67.62230 lx -0.00000 0.25110 0.74890 s 206.92309 61.46981 m 212.86661 55.89519 l 216.29809 60.90963 l 210.35458 61.68687 lf -0 sg 206.92309 61.46981 m 212.86661 55.89519 l 216.29809 60.90963 l 210.35458 61.68687 lx -0.13716 0.86284 0.00000 s 166.91107 62.50759 m 178.79809 58.73506 l 185.66107 68.95120 l 173.77405 66.93477 lf -0 sg 166.91107 62.50759 m 178.79809 58.73506 l 185.66107 68.95120 l 173.77405 66.93477 lx -0.00000 0.00000 0.84066 s 212.86661 55.89519 m 218.81012 48.05588 l 222.24161 60.82561 l 216.29809 60.90963 lf -0 sg 212.86661 55.89519 m 218.81012 48.05588 l 222.24161 60.82561 l 216.29809 60.90963 lx -0.00000 0.85321 0.14679 s 197.54809 64.72480 m 203.49161 56.02181 l 206.92309 61.46981 l 200.97958 63.59446 lf -0 sg 197.54809 64.72480 m 203.49161 56.02181 l 206.92309 61.46981 l 200.97958 63.59446 lx -0.28035 0.71965 0.00000 s 37.50000 58.79015 m 61.27405 54.49418 l 75.00000 69.55180 l 51.22595 72.83983 lf -0 sg 37.50000 58.79015 m 61.27405 54.49418 l 75.00000 69.55180 l 51.22595 72.83983 lx -0.00000 0.81411 0.18589 s 228.18512 60.74160 m 240.07214 57.69495 l 246.93512 61.64587 l 235.04809 63.85661 lf -0 sg 228.18512 60.74160 m 240.07214 57.69495 l 246.93512 61.64587 l 235.04809 63.85661 lx -0.00000 0.37126 0.62874 s 98.77405 50.97970 m 122.54809 48.01919 l 136.27405 61.48341 l 112.50000 71.42073 lf -0 sg 98.77405 50.97970 m 122.54809 48.01919 l 136.27405 61.48341 l 112.50000 71.42073 lx -0.00000 0.13851 0.86149 s 203.49161 56.02181 m 209.43512 52.65434 l 212.86661 55.89519 l 206.92309 61.46981 lf -0 sg 203.49161 56.02181 m 209.43512 52.65434 l 212.86661 55.89519 l 206.92309 61.46981 lx -0.00000 sg 209.43512 52.65434 m 215.37863 42.01234 l 218.81012 48.05588 l 212.86661 55.89519 lf -0 sg 209.43512 52.65434 m 215.37863 42.01234 l 218.81012 48.05588 l 212.86661 55.89519 lx -0.00000 0.51166 0.48834 s 218.81012 48.05588 m 224.75363 61.31783 l 228.18512 60.74160 l 222.24161 60.82561 lf -0 sg 218.81012 48.05588 m 224.75363 61.31783 l 228.18512 60.74160 l 222.24161 60.82561 lx -0.26462 0.73538 0.00000 s 178.79809 58.73506 m 190.68512 53.29355 l 197.54809 64.72480 l 185.66107 68.95120 lf -0 sg 178.79809 58.73506 m 190.68512 53.29355 l 197.54809 64.72480 l 185.66107 68.95120 lx -0.00000 0.57326 0.42674 s 194.11661 59.00917 m 200.06012 49.11244 l 203.49161 56.02181 l 197.54809 64.72480 lf -0 sg 194.11661 59.00917 m 200.06012 49.11244 l 203.49161 56.02181 l 197.54809 64.72480 lx -0.00000 0.00000 0.70987 s 200.06012 49.11244 m 206.00363 48.62470 l 209.43512 52.65434 l 203.49161 56.02181 lf -0 sg 200.06012 49.11244 m 206.00363 48.62470 l 209.43512 52.65434 l 203.49161 56.02181 lx -0.00000 0.92787 0.07212 s 240.07214 57.69495 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 61.64587 lf -0 sg 240.07214 57.69495 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 61.64587 lx -0.00000 0.00000 0.20117 s 206.00363 48.62470 m 211.94714 47.07224 l 215.37863 42.01234 l 209.43512 52.65434 lf -0 sg 206.00363 48.62470 m 211.94714 47.07224 l 215.37863 42.01234 l 209.43512 52.65434 lx -0.00000 0.27628 0.72372 s 215.37863 42.01234 m 221.32214 63.41708 l 224.75363 61.31783 l 218.81012 48.05588 lf -0 sg 215.37863 42.01234 m 221.32214 63.41708 l 224.75363 61.31783 l 218.81012 48.05588 lx -0.00000 0.93306 0.06694 s 160.04809 58.08041 m 171.93512 50.34564 l 178.79809 58.73506 l 166.91107 62.50759 lf -0 sg 160.04809 58.08041 m 171.93512 50.34564 l 178.79809 58.73506 l 166.91107 62.50759 lx -0.00000 0.88973 0.11027 s 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 58.79015 l 13.72595 66.79083 lf -0 sg 0.00000 54.90381 m 23.77405 48.04083 l 37.50000 58.79015 l 13.72595 66.79083 lx -0.59711 0.40289 0.00000 s 224.75363 61.31783 m 230.69714 62.40257 l 234.12863 59.21827 l 228.18512 60.74160 lf -0 sg 224.75363 61.31783 m 230.69714 62.40257 l 234.12863 59.21827 l 228.18512 60.74160 lx -0.00000 0.25363 0.74637 s 190.68512 53.29355 m 196.62863 49.79387 l 200.06012 49.11244 l 194.11661 59.00917 lf -0 sg 190.68512 53.29355 m 196.62863 49.79387 l 200.06012 49.11244 l 194.11661 59.00917 lx -0.00000 0.00000 0.67105 s 196.62863 49.79387 m 202.57214 46.29419 l 206.00363 48.62470 l 200.06012 49.11244 lf -0 sg 196.62863 49.79387 m 202.57214 46.29419 l 206.00363 48.62470 l 200.06012 49.11244 lx -0.29432 0.70568 0.00000 s 230.69714 62.40257 m 236.64065 52.03331 l 240.07214 57.69495 l 234.12863 59.21827 lf -0 sg 230.69714 62.40257 m 236.64065 52.03331 l 240.07214 57.69495 l 234.12863 59.21827 lx -0.20050 0.79950 0.00000 s 61.27405 54.49418 m 85.04809 51.75642 l 98.77405 50.97970 l 75.00000 69.55180 lf -0 sg 61.27405 54.49418 m 85.04809 51.75642 l 98.77405 50.97970 l 75.00000 69.55180 lx -0.00000 0.32629 0.67371 s 171.93512 50.34564 m 183.82214 42.61086 l 190.68512 53.29355 l 178.79809 58.73506 lf -0 sg 171.93512 50.34564 m 183.82214 42.61086 l 190.68512 53.29355 l 178.79809 58.73506 lx -0.00000 0.45969 0.54031 s 122.54809 48.01919 m 146.32214 38.46500 l 160.04809 58.08041 l 136.27405 61.48341 lf -0 sg 122.54809 48.01919 m 146.32214 38.46500 l 160.04809 58.08041 l 136.27405 61.48341 lx -0.00000 0.14962 0.85038 s 202.57214 46.29419 m 208.51565 53.61358 l 211.94714 47.07224 l 206.00363 48.62470 lf -0 sg 202.57214 46.29419 m 208.51565 53.61358 l 211.94714 47.07224 l 206.00363 48.62470 lx -0.03828 0.96172 0.00000 s 211.94714 47.07224 m 217.89065 64.17547 l 221.32214 63.41708 l 215.37863 42.01234 lf -0 sg 211.94714 47.07224 m 217.89065 64.17547 l 221.32214 63.41708 l 215.37863 42.01234 lx -1.00000 0.27957 0.27957 s 221.32214 63.41708 m 227.26565 56.98021 l 230.69714 62.40257 l 224.75363 61.31783 lf -0 sg 221.32214 63.41708 m 227.26565 56.98021 l 230.69714 62.40257 l 224.75363 61.31783 lx -0.20161 0.79839 0.00000 s 227.26565 56.98021 m 233.20917 46.37167 l 236.64065 52.03331 l 230.69714 62.40257 lf -0 sg 227.26565 56.98021 m 233.20917 46.37167 l 236.64065 52.03331 l 230.69714 62.40257 lx -0.00000 0.74031 0.25969 s 233.20917 46.37167 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 57.69495 lf -0 sg 233.20917 46.37167 m 245.09619 47.54809 l 251.95917 53.49161 l 240.07214 57.69495 lx -0.00000 0.14533 0.85467 s 183.82214 42.61086 m 195.70917 45.79261 l 202.57214 46.29419 l 190.68512 53.29355 lf -0 sg 183.82214 42.61086 m 195.70917 45.79261 l 202.57214 46.29419 l 190.68512 53.29355 lx -0.00000 0.96888 0.03112 s 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 54.49418 l 37.50000 58.79015 lf -0 sg 23.77405 48.04083 m 47.54809 41.17786 l 61.27405 54.49418 l 37.50000 58.79015 lx -0.01859 0.98141 0.00000 s 223.83417 54.54476 m 229.77768 44.69896 l 233.20917 46.37167 l 227.26565 56.98021 lf -0 sg 223.83417 54.54476 m 229.77768 44.69896 l 233.20917 46.37167 l 227.26565 56.98021 lx -1.00000 0.66092 0.66092 s 217.89065 64.17547 m 223.83417 54.54476 l 227.26565 56.98021 l 221.32214 63.41708 lf -0 sg 217.89065 64.17547 m 223.83417 54.54476 l 227.26565 56.98021 l 221.32214 63.41708 lx -1.00000 0.20136 0.20136 s 208.51565 53.61358 m 214.45917 60.93296 l 217.89065 64.17547 l 211.94714 47.07224 lf -0 sg 208.51565 53.61358 m 214.45917 60.93296 l 217.89065 64.17547 l 211.94714 47.07224 lx -0.00000 0.87937 0.12063 s 85.04809 51.75642 m 108.82214 42.77561 l 122.54809 48.01919 l 98.77405 50.97970 lf -0 sg 85.04809 51.75642 m 108.82214 42.77561 l 122.54809 48.01919 l 98.77405 50.97970 lx -0.00000 0.60300 0.39700 s 146.32214 38.46500 m 170.09619 42.02795 l 183.82214 42.61086 l 160.04809 58.08041 lf -0 sg 146.32214 38.46500 m 170.09619 42.02795 l 183.82214 42.61086 l 160.04809 58.08041 lx -0.00000 0.58628 0.41372 s 226.34619 43.02624 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 46.37167 lf -0 sg 226.34619 43.02624 m 238.23321 41.60458 l 245.09619 47.54809 l 233.20917 46.37167 lx -0.30998 0.69002 0.00000 s 220.40268 53.70082 m 226.34619 43.02624 l 229.77768 44.69896 l 223.83417 54.54476 lf -0 sg 220.40268 53.70082 m 226.34619 43.02624 l 229.77768 44.69896 l 223.83417 54.54476 lx -0.65737 0.34263 0.00000 s 195.70917 45.79261 m 207.59619 48.55154 l 214.45917 60.93296 l 202.57214 46.29419 lf -0 sg 195.70917 45.79261 m 207.59619 48.55154 l 214.45917 60.93296 l 202.57214 46.29419 lx -1.00000 sg 214.45917 60.93296 m 220.40268 53.70082 l 223.83417 54.54476 l 217.89065 64.17547 lf -0 sg 214.45917 60.93296 m 220.40268 53.70082 l 223.83417 54.54476 l 217.89065 64.17547 lx -0.00000 0.57362 0.42638 s 176.95917 42.31941 m 188.84619 41.22876 l 195.70917 45.79261 l 183.82214 42.61086 lf -0 sg 176.95917 42.31941 m 188.84619 41.22876 l 195.70917 45.79261 l 183.82214 42.61086 lx -0.47192 0.52808 0.00000 s 216.97119 50.04001 m 222.91470 40.24131 l 226.34619 43.02624 l 220.40268 53.70082 lf -0 sg 216.97119 50.04001 m 222.91470 40.24131 l 226.34619 43.02624 l 220.40268 53.70082 lx -1.00000 0.88643 0.88643 s 211.02768 54.74225 m 216.97119 50.04001 l 220.40268 53.70082 l 214.45917 60.93296 lf -0 sg 211.02768 54.74225 m 216.97119 50.04001 l 220.40268 53.70082 l 214.45917 60.93296 lx -0.33945 0.66055 0.00000 s 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 51.75642 l 61.27405 54.49418 lf -0 sg 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 51.75642 l 61.27405 54.49418 lx -0.00000 0.90859 0.09141 s 108.82214 42.77561 m 132.59619 37.34682 l 146.32214 38.46500 l 122.54809 48.01919 lf -0 sg 108.82214 42.77561 m 132.59619 37.34682 l 146.32214 38.46500 l 122.54809 48.01919 lx -1.00000 0.26673 0.26673 s 207.59619 48.55154 m 213.53970 43.00395 l 216.97119 50.04001 l 211.02768 54.74225 lf -0 sg 207.59619 48.55154 m 213.53970 43.00395 l 216.97119 50.04001 l 211.02768 54.74225 lx -0.22940 0.77060 0.00000 s 213.53970 43.00395 m 219.48321 37.45637 l 222.91470 40.24131 l 216.97119 50.04001 lf -0 sg 213.53970 43.00395 m 219.48321 37.45637 l 222.91470 40.24131 l 216.97119 50.04001 lx -0.00000 0.75084 0.24916 s 219.48321 37.45637 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 43.02624 lf -0 sg 219.48321 37.45637 m 231.37024 35.66107 l 238.23321 41.60458 l 226.34619 43.02624 lx -0.51661 0.48339 0.00000 s 188.84619 41.22876 m 200.73321 39.68235 l 207.59619 48.55154 l 195.70917 45.79261 lf -0 sg 188.84619 41.22876 m 200.73321 39.68235 l 207.59619 48.55154 l 195.70917 45.79261 lx -0.34935 0.65065 0.00000 s 170.09619 42.02795 m 181.98321 36.61056 l 188.84619 41.22876 l 176.95917 42.31941 lf -0 sg 170.09619 42.02795 m 181.98321 36.61056 l 188.84619 41.22876 l 176.95917 42.31941 lx -0.28492 0.71508 0.00000 s 200.73321 39.68235 m 212.62024 31.65494 l 219.48321 37.45637 l 207.59619 48.55154 lf -0 sg 200.73321 39.68235 m 212.62024 31.65494 l 219.48321 37.45637 l 207.59619 48.55154 lx -0.45061 0.54939 0.00000 s 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 42.77561 l 85.04809 51.75642 lf -0 sg 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 42.77561 l 85.04809 51.75642 lx -0.36343 0.63657 0.00000 s 181.98321 36.61056 m 193.87024 31.19317 l 200.73321 39.68235 l 188.84619 41.22876 lf -0 sg 181.98321 36.61056 m 193.87024 31.19317 l 200.73321 39.68235 l 188.84619 41.22876 lx -0.00000 0.77940 0.22060 s 212.62024 31.65494 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 37.45637 lf -0 sg 212.62024 31.65494 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 37.45637 lx -0.20852 0.79148 0.00000 s 132.59619 37.34682 m 156.37024 26.73140 l 170.09619 42.02795 l 146.32214 38.46500 lf -0 sg 132.59619 37.34682 m 156.37024 26.73140 l 170.09619 42.02795 l 146.32214 38.46500 lx -0.08795 0.91205 0.00000 s 193.87024 31.19317 m 205.75726 27.48361 l 212.62024 31.65494 l 200.73321 39.68235 lf -0 sg 193.87024 31.19317 m 205.75726 27.48361 l 212.62024 31.65494 l 200.73321 39.68235 lx -0.41275 0.58725 0.00000 s 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 37.34682 l 108.82214 42.77561 lf -0 sg 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 37.34682 l 108.82214 42.77561 lx -0.00000 0.88540 0.11460 s 205.75726 27.48361 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.65494 lf -0 sg 205.75726 27.48361 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.65494 lx -0.25354 0.74646 0.00000 s 156.37024 26.73140 m 180.14428 17.97980 l 193.87024 31.19317 l 170.09619 42.02795 lf -0 sg 156.37024 26.73140 m 180.14428 17.97980 l 193.87024 31.19317 l 170.09619 42.02795 lx -0.28438 0.71562 0.00000 s 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 26.73140 l 132.59619 37.34682 lf -0 sg 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 26.73140 l 132.59619 37.34682 lx -0.00000 0.94088 0.05912 s 180.14428 17.97980 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 31.19317 lf -0 sg 180.14428 17.97980 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 31.19317 lx -0.00000 0.97201 0.02799 s 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.97980 l 156.37024 26.73140 lf -0 sg 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.97980 l 156.37024 26.73140 lx -0.00000 0.91008 0.08992 s 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.97980 lf -0 sg 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.97980 lx -showpage -. -DEAL:: -DEAL:: Collecting refinement data: -DEAL:: Refining each time step separately. -DEAL:: Got 4766 presently, expecting 7151 for next sweep. -DEAL:: Writing statistics for whole sweep.# Description of fields -DEAL::# ===================== -DEAL::# General: -DEAL::# time -# Primal problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Dual problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Error estimation: -# total estimated error in this timestep -# Postprocessing: -# Huyghens wave -DEAL:: -DEAL:: -DEAL::0.00000 163 201 0 0 0.00000 0.00000 0.00000 163 769 9 9 0.00006 0.00006 0.00013 0.00000 -0.03224 -DEAL::0.02800 169 208 9 12 0.92458 1.33335 2.25793 169 797 9 10 0.00006 0.00007 0.00013 0.05391 -0.07257 -DEAL::0.05600 202 242 9 12 0.59737 1.66053 2.25790 202 933 9 10 0.00007 0.00007 0.00013 0.00092 0.01527 -DEAL::0.08400 205 245 9 13 1.29413 0.96378 2.25790 205 945 10 10 0.00007 0.00007 0.00013 0.16502 0.24656 -DEAL::0.11200 202 243 9 12 1.11969 1.13983 2.25952 202 935 10 10 0.00007 0.00007 0.00014 0.07252 1.02430 -DEAL::0.14000 220 262 9 12 1.18773 1.07179 2.25952 220 1011 11 10 0.00008 0.00008 0.00016 0.11753 2.18394 -DEAL::0.16800 238 282 9 12 1.06388 1.19664 2.26051 238 1091 12 10 0.00009 0.00008 0.00017 -0.02131 1.81344 -DEAL::0.19600 250 296 9 12 0.93418 1.11440 2.04858 250 1143 12 10 0.00011 0.00010 0.00022 0.13103 -0.63262 -DEAL::0.22400 226 270 9 12 0.89621 0.76374 1.65995 226 1041 10 10 0.00010 0.00011 0.00022 0.09404 -4.72144 -DEAL::0.25200 268 317 9 12 0.89940 0.76979 1.66919 268 1224 11 10 0.00011 0.00012 0.00024 -0.08074 -9.03290 -DEAL::0.28000 265 313 9 12 0.80109 0.74786 1.54895 265 1207 11 10 0.00011 0.00013 0.00024 0.12728 -3.39036 -DEAL::0.30800 241 283 9 13 0.62420 0.78082 1.40502 241 1087 11 10 0.00010 0.00013 0.00024 0.00503 20.87482 -DEAL::0.33600 226 266 9 14 0.62657 0.59963 1.22620 226 1019 11 11 0.00012 0.00012 0.00024 0.24444 38.14952 -DEAL::0.36400 202 241 9 13 0.54195 0.49977 1.04172 202 920 10 10 0.00012 0.00012 0.00024 0.06702 -10.96631 -DEAL::0.39200 193 231 9 13 0.46651 0.49917 0.96568 193 879 9 10 0.00014 0.00010 0.00024 0.10765 -124.93275 -DEAL::0.42000 190 228 9 13 0.46215 0.50230 0.96445 190 867 9 10 0.00014 0.00010 0.00024 0.00164 -153.19391 -DEAL::0.44800 166 201 10 12 0.51612 0.38528 0.90140 166 761 8 10 0.00013 0.00011 0.00024 -0.33323 87.54319 -DEAL::0.47600 154 189 9 13 0.38463 0.41062 0.79525 154 713 8 10 0.00011 0.00013 0.00024 0.07494 511.58583 -DEAL::0.50400 148 181 9 13 0.35074 0.41000 0.76073 148 681 7 10 0.00017 0.00007 0.00024 -0.21817 701.67928 -DEAL::0.53200 145 178 9 13 0.38060 0.37380 0.75440 145 669 7 10 0.00013 0.00007 0.00020 0.47203 225.99490 -DEAL::0.56000 130 163 9 12 0.38988 0.34268 0.73256 130 611 6 10 0.00017 0.00008 0.00025 0.23587 -684.76317 -DEAL::0.58800 124 155 9 12 0.36655 0.35446 0.72101 124 579 5 10 0.00017 0.00007 0.00024 0.36707 -928.50215 -DEAL::0.61600 112 141 9 12 0.31667 0.38417 0.70084 112 526 5 9 0.00010 0.00006 0.00016 0.39034 1329.46068 -DEAL::0.64400 106 137 10 11 0.34924 0.31232 0.66156 106 510 6 10 0.00020 0.00007 0.00027 -0.43174 6838.40436 -DEAL::0.67200 112 143 10 12 0.35576 0.30580 0.66156 112 534 6 10 0.00012 0.00007 0.00019 -1.23959 12351.01650 -DEAL::0.70000 109 138 10 12 0.30569 0.35398 0.65967 109 514 0 0 0.00000 0.00000 0.00000 -0.60693 9470.42176 -DEAL:: -DEAL:: Writing summary.Summary of this sweep: -====================== - - Accumulated number of cells: 4766 - Acc. number of primal dofs : 11508 - Acc. number of dual dofs : 43932 - Accumulated error : 0.00000 - - Evaluations: - ------------ - Hughens wave -- weighted time: 0.65885 - average : 0.00555 - - -DEAL:: -DEAL:: -DEAL::Sweep 2 : -DEAL::--------- -DEAL:: Primal problem: time=0.00000, step=0, sweep=2. 169 cells, 211 dofsStarting value 0.00000 -DEAL:cg::Convergence step 0 value 0.00000 -DEAL:cg::Starting value 0.00267 -DEAL:cg::Convergence step 16 value 0.00000 -DEAL:cg::Starting value 0.00000 -DEAL:cg::Convergence step 0 value 0.00000 -DEAL:cg::Starting value 0.00000 -DEAL:cg::Convergence step 0 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.02800, step=1, sweep=2. 211 cells, 257 dofsStarting value 0.00239 -DEAL:cg::Convergence step 8 value 0.00000 -DEAL:cg::Starting value 0.04585 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.05600, step=2, sweep=2. 310 cells, 366 dofsStarting value 0.00165 -DEAL:cg::Convergence step 8 value 0.00000 -DEAL:cg::Starting value 0.05357 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.08400, step=3, sweep=2. 367 cells, 429 dofsStarting value 0.00196 -DEAL:cg::Convergence step 8 value 0.00000 -DEAL:cg::Starting value 0.04368 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.11200, step=4, sweep=2. 439 cells, 504 dofsStarting value 0.00227 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.04394 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.14000, step=5, sweep=2. 487 cells, 554 dofsStarting value 0.00241 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL:cg::Starting value 0.05207 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.16800, step=6, sweep=2. 502 cells, 573 dofsStarting value 0.00278 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL:cg::Starting value 0.05793 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.19600, step=7, sweep=2. 484 cells, 552 dofsStarting value 0.00327 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL:cg::Starting value 0.06366 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.22400, step=8, sweep=2. 508 cells, 576 dofsStarting value 0.00375 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.05965 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.25200, step=9, sweep=2. 550 cells, 624 dofsStarting value 0.00440 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.05981 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.28000, step=10, sweep=2. 550 cells, 625 dofsStarting value 0.00443 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL:cg::Starting value 0.07208 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.30800, step=11, sweep=2. 517 cells, 585 dofsStarting value 0.00500 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL:cg::Starting value 0.10491 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.33600, step=12, sweep=2. 493 cells, 560 dofsStarting value 0.00583 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL:cg::Starting value 0.11076 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.36400, step=13, sweep=2. 487 cells, 552 dofsStarting value 0.00702 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.08495 -DEAL:cg::Convergence step 15 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.39200, step=14, sweep=2. 457 cells, 518 dofsStarting value 0.00730 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.08145 -DEAL:cg::Convergence step 14 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.42000, step=15, sweep=2. 400 cells, 460 dofsStarting value 0.00731 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.09136 -DEAL:cg::Convergence step 14 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.44800, step=16, sweep=2. 337 cells, 393 dofsStarting value 0.00728 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.09413 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.47600, step=17, sweep=2. 301 cells, 352 dofsStarting value 0.00750 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.08589 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.50400, step=18, sweep=2. 286 cells, 335 dofsStarting value 0.00621 -DEAL:cg::Convergence step 8 value 0.00000 -DEAL:cg::Starting value 0.07581 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.53200, step=19, sweep=2. 223 cells, 267 dofsStarting value 0.00624 -DEAL:cg::Convergence step 8 value 0.00000 -DEAL:cg::Starting value 0.07516 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.56000, step=20, sweep=2. 199 cells, 242 dofsStarting value 0.00640 -DEAL:cg::Convergence step 8 value 0.00000 -DEAL:cg::Starting value 0.07224 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.58800, step=21, sweep=2. 181 cells, 221 dofsStarting value 0.00669 -DEAL:cg::Convergence step 8 value 0.00000 -DEAL:cg::Starting value 0.06671 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.61600, step=22, sweep=2. 154 cells, 192 dofsStarting value 0.00687 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.05932 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.64400, step=23, sweep=2. 121 cells, 157 dofsStarting value 0.00669 -DEAL:cg::Convergence step 8 value 0.00000 -DEAL:cg::Starting value 0.06579 -DEAL:cg::Convergence step 11 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.67200, step=24, sweep=2. 124 cells, 160 dofsStarting value 0.00661 -DEAL:cg::Convergence step 8 value 0.00000 -DEAL:cg::Starting value 0.06516 -DEAL:cg::Convergence step 11 value 0.00000 -DEAL::. -DEAL:: Primal problem: time=0.70000, step=25, sweep=2. 115 cells, 149 dofsStarting value 0.00648 -DEAL:cg::Convergence step 8 value 0.00000 -DEAL:cg::Starting value 0.05104 -DEAL:cg::Convergence step 11 value 0.00000 -DEAL::. -DEAL:: -DEAL:: Dual problem: time=0.70000, step=25, sweep=2. 115 cells, 567 dofs. -DEAL:: Dual problem: time=0.67200, step=24, sweep=2. 124 cells, 608 dofsStarting value 0.00001 -DEAL:cg::Convergence step 8 value 0.00000 -DEAL:cg::Starting value 0.00015 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.64400, step=23, sweep=2. 121 cells, 599 dofsStarting value 0.00001 -DEAL:cg::Convergence step 8 value 0.00000 -DEAL:cg::Starting value 0.00018 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.61600, step=22, sweep=2. 154 cells, 734 dofsStarting value 0.00001 -DEAL:cg::Convergence step 8 value 0.00000 -DEAL:cg::Starting value 0.00018 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.58800, step=21, sweep=2. 181 cells, 850 dofsStarting value 0.00001 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.00019 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.56000, step=20, sweep=2. 199 cells, 934 dofsStarting value 0.00002 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.00020 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.53200, step=19, sweep=2. 223 cells, 1034 dofsStarting value 0.00002 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.00021 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.50400, step=18, sweep=2. 286 cells, 1303 dofsStarting value 0.00002 -DEAL:cg::Convergence step 13 value 0.00000 -DEAL:cg::Starting value 0.00023 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.47600, step=17, sweep=2. 301 cells, 1371 dofsStarting value 0.00003 -DEAL:cg::Convergence step 14 value 0.00000 -DEAL:cg::Starting value 0.00028 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.44800, step=16, sweep=2. 337 cells, 1535 dofsStarting value 0.00003 -DEAL:cg::Convergence step 16 value 0.00000 -DEAL:cg::Starting value 0.00033 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.42000, step=15, sweep=2. 400 cells, 1801 dofsStarting value 0.00003 -DEAL:cg::Convergence step 17 value 0.00000 -DEAL:cg::Starting value 0.00027 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.39200, step=14, sweep=2. 457 cells, 2032 dofsStarting value 0.00003 -DEAL:cg::Convergence step 18 value 0.00000 -DEAL:cg::Starting value 0.00027 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.36400, step=13, sweep=2. 487 cells, 2162 dofsStarting value 0.00004 -DEAL:cg::Convergence step 18 value 0.00000 -DEAL:cg::Starting value 0.00033 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.33600, step=12, sweep=2. 493 cells, 2196 dofsStarting value 0.00004 -DEAL:cg::Convergence step 20 value 0.00000 -DEAL:cg::Starting value 0.00046 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.30800, step=11, sweep=2. 517 cells, 2298 dofsStarting value 0.00004 -DEAL:cg::Convergence step 20 value 0.00000 -DEAL:cg::Starting value 0.00058 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.28000, step=10, sweep=2. 550 cells, 2455 dofsStarting value 0.00004 -DEAL:cg::Convergence step 19 value 0.00000 -DEAL:cg::Starting value 0.00056 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.25200, step=9, sweep=2. 550 cells, 2450 dofsStarting value 0.00004 -DEAL:cg::Convergence step 19 value 0.00000 -DEAL:cg::Starting value 0.00056 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.22400, step=8, sweep=2. 508 cells, 2258 dofsStarting value 0.00006 -DEAL:cg::Convergence step 19 value 0.00000 -DEAL:cg::Starting value 0.00062 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.19600, step=7, sweep=2. 484 cells, 2166 dofsStarting value 0.00006 -DEAL:cg::Convergence step 19 value 0.00000 -DEAL:cg::Starting value 0.00063 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.16800, step=6, sweep=2. 502 cells, 2250 dofsStarting value 0.00006 -DEAL:cg::Convergence step 20 value 0.00000 -DEAL:cg::Starting value 0.00064 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.14000, step=5, sweep=2. 487 cells, 2175 dofsStarting value 0.00006 -DEAL:cg::Convergence step 20 value 0.00000 -DEAL:cg::Starting value 0.00072 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.11200, step=4, sweep=2. 439 cells, 1978 dofsStarting value 0.00006 -DEAL:cg::Convergence step 19 value 0.00000 -DEAL:cg::Starting value 0.00074 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.08400, step=3, sweep=2. 367 cells, 1682 dofsStarting value 0.00009 -DEAL:cg::Convergence step 15 value 0.00000 -DEAL:cg::Starting value 0.00091 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.05600, step=2, sweep=2. 310 cells, 1433 dofsStarting value 0.00010 -DEAL:cg::Convergence step 12 value 0.00000 -DEAL:cg::Starting value 0.00098 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.02800, step=1, sweep=2. 211 cells, 1001 dofsStarting value 0.00012 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL:cg::Starting value 0.00099 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: Dual problem: time=0.00000, step=0, sweep=2. 169 cells, 817 dofsStarting value 0.00012 -DEAL:cg::Convergence step 9 value 0.00000 -DEAL:cg::Starting value 0.00106 -DEAL:cg::Convergence step 10 value 0.00000 -DEAL::. -DEAL:: -DEAL:: Postprocessing: time=0.00000, step=0, sweep=2. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library - -%%BoundingBox: 0 0 300 175 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50000 setlinewidth -0.00000 0.00000 0.05751 s 82.35572 126.22595 m 129.90381 112.50033 l 157.35572 136.27405 l 109.80762 150.00000 lf -0 sg 82.35572 126.22595 m 129.90381 112.50033 l 157.35572 136.27405 l 109.80762 150.00000 lx -0.00000 0.00000 0.05752 s 143.62976 124.38719 m 167.40381 117.52483 l 181.12976 129.41107 l 157.35572 136.27405 lf -0 sg 143.62976 124.38719 m 167.40381 117.52483 l 181.12976 129.41107 l 157.35572 136.27405 lx -0.00000 0.00000 0.05747 s 167.40381 117.52483 m 191.17786 110.65693 l 204.90381 122.54809 l 181.12976 129.41107 lf -0 sg 167.40381 117.52483 m 191.17786 110.65693 l 204.90381 122.54809 l 181.12976 129.41107 lx -0.00000 0.00000 0.05751 s 68.62976 114.33893 m 92.40381 107.47607 l 106.12976 119.36314 l 82.35572 126.22595 lf -0 sg 68.62976 114.33893 m 92.40381 107.47607 l 106.12976 119.36314 l 82.35572 126.22595 lx -0.00000 0.00000 0.05748 s 129.90381 112.50033 m 153.67786 105.63364 l 167.40381 117.52483 l 143.62976 124.38719 lf -0 sg 129.90381 112.50033 m 153.67786 105.63364 l 167.40381 117.52483 l 143.62976 124.38719 lx -0.00000 0.00000 0.05747 s 191.17786 110.65693 m 214.95191 103.79924 l 228.67786 115.68512 l 204.90381 122.54809 lf -0 sg 191.17786 110.65693 m 214.95191 103.79924 l 228.67786 115.68512 l 204.90381 122.54809 lx -0.00000 0.00000 0.05751 s 92.40381 107.47607 m 116.17786 100.61223 l 129.90381 112.50033 l 106.12976 119.36314 lf -0 sg 92.40381 107.47607 m 116.17786 100.61223 l 129.90381 112.50033 l 106.12976 119.36314 lx -0.00000 0.00000 0.05762 s 153.67786 105.63364 m 177.45191 98.79071 l 191.17786 110.65693 l 167.40381 117.52483 lf -0 sg 153.67786 105.63364 m 177.45191 98.79071 l 191.17786 110.65693 l 167.40381 117.52483 lx -0.00000 0.00000 0.05752 s 214.95191 103.79924 m 238.72595 96.93523 l 252.45191 108.82214 l 228.67786 115.68512 lf -0 sg 214.95191 103.79924 m 238.72595 96.93523 l 252.45191 108.82214 l 228.67786 115.68512 lx -0.00000 0.00000 0.05753 s 54.90381 102.45191 m 78.67786 95.59070 l 92.40381 107.47607 l 68.62976 114.33893 lf -0 sg 54.90381 102.45191 m 78.67786 95.59070 l 92.40381 107.47607 l 68.62976 114.33893 lx -0.00000 0.00000 0.05751 s 116.17786 100.61223 m 139.95191 93.75410 l 153.67786 105.63364 l 129.90381 112.50033 lf -0 sg 116.17786 100.61223 m 139.95191 93.75410 l 153.67786 105.63364 l 129.90381 112.50033 lx -0.00000 0.00000 0.05761 s 177.45191 98.79071 m 201.22595 91.90628 l 214.95191 103.79924 l 191.17786 110.65693 lf -0 sg 177.45191 98.79071 m 201.22595 91.90628 l 214.95191 103.79924 l 191.17786 110.65693 lx -0.00000 0.00000 0.05770 s 146.81488 99.69387 m 158.70191 96.27520 l 165.56488 102.21217 l 153.67786 105.63364 lf -0 sg 146.81488 99.69387 m 158.70191 96.27520 l 165.56488 102.21217 l 153.67786 105.63364 lx -0.00000 0.00000 0.05744 s 78.67786 95.59070 m 102.45191 88.71898 l 116.17786 100.61223 l 92.40381 107.47607 lf -0 sg 78.67786 95.59070 m 102.45191 88.71898 l 116.17786 100.61223 l 92.40381 107.47607 lx -0.00000 0.00000 0.05597 s 158.70191 96.27520 m 170.58893 92.66235 l 177.45191 98.79071 l 165.56488 102.21217 lf -0 sg 158.70191 96.27520 m 170.58893 92.66235 l 177.45191 98.79071 l 165.56488 102.21217 lx -0.00000 0.00000 0.05769 s 109.31488 94.66561 m 121.20191 91.25681 l 128.06488 97.18316 l 116.17786 100.61223 lf -0 sg 109.31488 94.66561 m 121.20191 91.25681 l 128.06488 97.18316 l 116.17786 100.61223 lx -0.00000 0.00000 0.05701 s 139.95191 93.75410 m 151.83893 90.25859 l 158.70191 96.27520 l 146.81488 99.69387 lf -0 sg 139.95191 93.75410 m 151.83893 90.25859 l 158.70191 96.27520 l 146.81488 99.69387 lx -0.00000 0.00000 0.05747 s 201.22595 91.90628 m 225.00000 85.04832 l 238.72595 96.93523 l 214.95191 103.79924 lf -0 sg 201.22595 91.90628 m 225.00000 85.04832 l 238.72595 96.93523 l 214.95191 103.79924 lx -0.00000 0.00000 0.05645 s 170.58893 92.66235 m 182.47595 89.45398 l 189.33893 95.34849 l 177.45191 98.79071 lf -0 sg 170.58893 92.66235 m 182.47595 89.45398 l 189.33893 95.34849 l 177.45191 98.79071 lx -0.00000 0.00000 0.05753 s 41.17786 90.56488 m 64.95191 83.70187 l 78.67786 95.59070 l 54.90381 102.45191 lf -0 sg 41.17786 90.56488 m 64.95191 83.70187 l 78.67786 95.59070 l 54.90381 102.45191 lx -0.00000 0.00000 0.05693 s 121.20191 91.25681 m 133.08893 87.73220 l 139.95191 93.75410 l 128.06488 97.18316 lf -0 sg 121.20191 91.25681 m 133.08893 87.73220 l 139.95191 93.75410 l 128.06488 97.18316 lx -0.00000 0.00000 0.06266 s 151.83893 90.25859 m 163.72595 87.54329 l 170.58893 92.66235 l 158.70191 96.27520 lf -0 sg 151.83893 90.25859 m 163.72595 87.54329 l 170.58893 92.66235 l 158.70191 96.27520 lx -0.00000 0.00000 0.05800 s 182.47595 89.45398 m 194.36298 85.95402 l 201.22595 91.90628 l 189.33893 95.34849 lf -0 sg 182.47595 89.45398 m 194.36298 85.95402 l 201.22595 91.90628 l 189.33893 95.34849 lx -0.00000 0.00000 0.05751 s 225.00000 85.04832 m 272.54809 71.32214 l 300.00000 95.09619 l 252.45191 108.82214 lf -0 sg 225.00000 85.04832 m 272.54809 71.32214 l 300.00000 95.09619 l 252.45191 108.82214 lx -0.00000 0.00000 0.05812 s 102.45191 88.71898 m 114.33893 85.33853 l 121.20191 91.25681 l 109.31488 94.66561 lf -0 sg 102.45191 88.71898 m 114.33893 85.33853 l 121.20191 91.25681 l 109.31488 94.66561 lx -0.00000 0.00000 0.06074 s 133.08893 87.73220 m 144.97595 84.78224 l 151.83893 90.25859 l 139.95191 93.75410 lf -0 sg 133.08893 87.73220 m 144.97595 84.78224 l 151.83893 90.25859 l 139.95191 93.75410 lx -0.00000 0.00000 0.06121 s 163.72595 87.54329 m 175.61298 83.22972 l 182.47595 89.45398 l 170.58893 92.66235 lf -0 sg 163.72595 87.54329 m 175.61298 83.22972 l 182.47595 89.45398 l 170.58893 92.66235 lx -0.00000 0.00000 0.05731 s 194.36298 85.95402 m 206.25000 82.53998 l 213.11298 88.47730 l 201.22595 91.90628 lf -0 sg 194.36298 85.95402 m 206.25000 82.53998 l 213.11298 88.47730 l 201.22595 91.90628 lx -0.00000 0.00000 0.05541 s 114.33893 85.33853 m 126.22595 81.69489 l 133.08893 87.73220 l 121.20191 91.25681 lf -0 sg 114.33893 85.33853 m 126.22595 81.69489 l 133.08893 87.73220 l 121.20191 91.25681 lx -0.00000 0.00000 0.05745 s 64.95191 83.70187 m 88.72595 76.83888 l 102.45191 88.71898 l 78.67786 95.59070 lf -0 sg 64.95191 83.70187 m 88.72595 76.83888 l 102.45191 88.71898 l 78.67786 95.59070 lx -0.00000 0.00000 0.03277 s 144.97595 84.78224 m 156.86298 77.82125 l 163.72595 87.54329 l 151.83893 90.25859 lf -0 sg 144.97595 84.78224 m 156.86298 77.82125 l 163.72595 87.54329 l 151.83893 90.25859 lx -0.00000 0.00000 0.05954 s 129.65744 84.71355 m 135.60095 83.32184 l 139.03244 86.25722 l 133.08893 87.73220 lf -0 sg 129.65744 84.71355 m 135.60095 83.32184 l 139.03244 86.25722 l 133.08893 87.73220 lx -0.00000 0.00000 0.05605 s 175.61298 83.22972 m 187.50000 80.08338 l 194.36298 85.95402 l 182.47595 89.45398 lf -0 sg 175.61298 83.22972 m 187.50000 80.08338 l 194.36298 85.95402 l 182.47595 89.45398 lx -0.00000 0.00000 0.06199 s 160.29446 82.68227 m 166.23798 82.94487 l 169.66946 85.38650 l 163.72595 87.54329 lf -0 sg 160.29446 82.68227 m 166.23798 82.94487 l 169.66946 85.38650 l 163.72595 87.54329 lx -0.00000 0.00000 0.05804 s 95.58893 82.77893 m 107.47595 79.36336 l 114.33893 85.33853 l 102.45191 88.71898 lf -0 sg 95.58893 82.77893 m 107.47595 79.36336 l 114.33893 85.33853 l 102.45191 88.71898 lx -0.00000 0.00000 0.05754 s 206.25000 82.53998 m 218.13702 79.10547 l 225.00000 85.04832 l 213.11298 88.47730 lf -0 sg 206.25000 82.53998 m 218.13702 79.10547 l 225.00000 85.04832 l 213.11298 88.47730 lx -0.00000 0.00000 0.05525 s 135.60095 83.32184 m 141.54446 80.43356 l 144.97595 84.78224 l 139.03244 86.25722 lf -0 sg 135.60095 83.32184 m 141.54446 80.43356 l 144.97595 84.78224 l 139.03244 86.25722 lx -0.00000 0.00000 0.06584 s 166.23798 82.94487 m 172.18149 80.46288 l 175.61298 83.22972 l 169.66946 85.38650 lf -0 sg 166.23798 82.94487 m 172.18149 80.46288 l 175.61298 83.22972 l 169.66946 85.38650 lx -0.00000 0.00000 0.07343 s 126.22595 81.69489 m 132.16946 81.59724 l 135.60095 83.32184 l 129.65744 84.71355 lf -0 sg 126.22595 81.69489 m 132.16946 81.59724 l 135.60095 83.32184 l 129.65744 84.71355 lx -0.00000 sg 156.86298 77.82125 m 162.80649 77.91200 l 166.23798 82.94487 l 160.29446 82.68227 lf -0 sg 156.86298 77.82125 m 162.80649 77.91200 l 166.23798 82.94487 l 160.29446 82.68227 lx -0.00000 0.00000 0.08509 s 141.54446 80.43356 m 147.48798 83.96970 l 150.91946 81.30175 l 144.97595 84.78224 lf -0 sg 141.54446 80.43356 m 147.48798 83.96970 l 150.91946 81.30175 l 144.97595 84.78224 lx -0.00000 0.00000 0.05792 s 187.50000 80.08338 m 199.38702 76.57779 l 206.25000 82.53998 l 194.36298 85.95402 lf -0 sg 187.50000 80.08338 m 199.38702 76.57779 l 206.25000 82.53998 l 194.36298 85.95402 lx -0.00000 0.00000 0.05751 s 27.45191 78.67786 m 51.22595 71.81499 l 64.95191 83.70187 l 41.17786 90.56488 lf -0 sg 27.45191 78.67786 m 51.22595 71.81499 l 64.95191 83.70187 l 41.17786 90.56488 lx -0.00000 0.00000 0.00112 s 132.16946 81.59724 m 138.11298 72.91852 l 141.54446 80.43356 l 135.60095 83.32184 lf -0 sg 132.16946 81.59724 m 138.11298 72.91852 l 141.54446 80.43356 l 135.60095 83.32184 lx -0.00000 0.00000 0.05564 s 107.47595 79.36336 m 119.36298 75.87136 l 126.22595 81.69489 l 114.33893 85.33853 lf -0 sg 107.47595 79.36336 m 119.36298 75.87136 l 126.22595 81.69489 l 114.33893 85.33853 lx -0.00000 0.00000 0.05275 s 162.80649 77.91200 m 168.75000 77.69604 l 172.18149 80.46288 l 166.23798 82.94487 lf -0 sg 162.80649 77.91200 m 168.75000 77.69604 l 172.18149 80.46288 l 166.23798 82.94487 lx -0.00000 0.00000 0.07397 s 122.79446 78.78313 m 128.73798 77.41198 l 132.16946 81.59724 l 126.22595 81.69489 lf -0 sg 122.79446 78.78313 m 128.73798 77.41198 l 132.16946 81.59724 l 126.22595 81.69489 lx -0.00000 0.00000 0.05717 s 168.75000 77.69604 m 180.63702 74.03422 l 187.50000 80.08338 l 175.61298 83.22972 lf -0 sg 168.75000 77.69604 m 180.63702 74.03422 l 187.50000 80.08338 l 175.61298 83.22972 lx -0.00000 0.00000 0.00076 s 128.73798 77.41198 m 134.68149 74.42544 l 138.11298 72.91852 l 132.16946 81.59724 lf -0 sg 128.73798 77.41198 m 134.68149 74.42544 l 138.11298 72.91852 l 132.16946 81.59724 lx -0.00000 0.00000 0.05762 s 88.72595 76.83888 m 100.61298 73.40857 l 107.47595 79.36336 l 95.58893 82.77893 lf -0 sg 88.72595 76.83888 m 100.61298 73.40857 l 107.47595 79.36336 l 95.58893 82.77893 lx -0.00000 0.00000 0.05741 s 199.38702 76.57779 m 211.27405 73.16262 l 218.13702 79.10547 l 206.25000 82.53998 lf -0 sg 199.38702 76.57779 m 211.27405 73.16262 l 218.13702 79.10547 l 206.25000 82.53998 lx -0.00000 0.00000 0.49218 s 147.48798 83.96970 m 153.43149 115.40044 l 156.86298 77.82125 l 150.91946 81.30175 lf -0 sg 147.48798 83.96970 m 153.43149 115.40044 l 156.86298 77.82125 l 150.91946 81.30175 lx -0.00000 0.00000 0.07665 s 159.37500 79.97003 m 165.31851 73.59741 l 168.75000 77.69604 l 162.80649 77.91200 lf -0 sg 159.37500 79.97003 m 165.31851 73.59741 l 168.75000 77.69604 l 162.80649 77.91200 lx -0.00000 0.00000 0.05974 s 119.36298 75.87136 m 125.30649 74.31482 l 128.73798 77.41198 l 122.79446 78.78313 lf -0 sg 119.36298 75.87136 m 125.30649 74.31482 l 128.73798 77.41198 l 122.79446 78.78313 lx -0.00000 0.00000 0.47550 s 138.11298 72.91852 m 144.05649 114.71860 l 147.48798 83.96970 l 141.54446 80.43356 lf -0 sg 138.11298 72.91852 m 144.05649 114.71860 l 147.48798 83.96970 l 141.54446 80.43356 lx -0.00000 0.00000 0.05752 s 211.27405 73.16262 m 235.04809 66.29770 l 248.77405 78.18523 l 225.00000 85.04832 lf -0 sg 211.27405 73.16262 m 235.04809 66.29770 l 248.77405 78.18523 l 225.00000 85.04832 lx -0.00000 0.00000 0.48603 s 153.43149 115.40044 m 159.37500 79.97003 l 162.80649 77.91200 l 156.86298 77.82125 lf -0 sg 153.43149 115.40044 m 159.37500 79.97003 l 162.80649 77.91200 l 156.86298 77.82125 lx -0.00000 0.00000 0.05760 s 180.63702 74.03422 m 192.52405 70.65854 l 199.38702 76.57779 l 187.50000 80.08338 lf -0 sg 180.63702 74.03422 m 192.52405 70.65854 l 199.38702 76.57779 l 187.50000 80.08338 lx -0.00000 0.00000 0.05151 s 165.31851 73.59741 m 171.26202 73.00096 l 174.69351 75.86513 l 168.75000 77.69604 lf -0 sg 165.31851 73.59741 m 171.26202 73.00096 l 174.69351 75.86513 l 168.75000 77.69604 lx -0.00000 0.00000 0.05265 s 125.30649 74.31482 m 131.25000 72.75828 l 134.68149 74.42544 l 128.73798 77.41198 lf -0 sg 125.30649 74.31482 m 131.25000 72.75828 l 134.68149 74.42544 l 128.73798 77.41198 lx -0.00000 0.00000 0.05713 s 100.61298 73.40857 m 112.50000 69.97825 l 119.36298 75.87136 l 107.47595 79.36336 lf -0 sg 100.61298 73.40857 m 112.50000 69.97825 l 119.36298 75.87136 l 107.47595 79.36336 lx -0.00000 0.00000 0.05751 s 51.22595 71.81499 m 75.00000 64.95213 l 88.72595 76.83888 l 64.95191 83.70187 lf -0 sg 51.22595 71.81499 m 75.00000 64.95213 l 88.72595 76.83888 l 64.95191 83.70187 lx -0.00000 0.00000 0.05226 s 160.63101 72.47303 m 163.60277 73.60155 l 165.31851 73.59741 l 162.34676 76.78372 lf -0 sg 160.63101 72.47303 m 163.60277 73.60155 l 165.31851 73.59741 l 162.34676 76.78372 lx -0.00000 0.00000 0.05937 s 171.26202 73.00096 m 177.20554 71.06968 l 180.63702 74.03422 l 174.69351 75.86513 lf -0 sg 171.26202 73.00096 m 177.20554 71.06968 l 180.63702 74.03422 l 174.69351 75.86513 lx -0.00000 0.00000 0.04839 s 163.60277 73.60155 m 166.57452 72.19415 l 168.29027 73.29919 l 165.31851 73.59741 lf -0 sg 163.60277 73.60155 m 166.57452 72.19415 l 168.29027 73.29919 l 165.31851 73.59741 lx -0.00000 0.00000 0.47854 s 134.68149 74.42544 m 140.62500 78.35095 l 144.05649 114.71860 l 138.11298 72.91852 lf -0 sg 134.68149 74.42544 m 140.62500 78.35095 l 144.05649 114.71860 l 138.11298 72.91852 lx -0.00000 0.00000 0.08890 s 131.25000 72.75828 m 137.19351 69.61804 l 140.62500 78.35095 l 134.68149 74.42544 lf -0 sg 131.25000 72.75828 m 137.19351 69.61804 l 140.62500 78.35095 l 134.68149 74.42544 lx -0.00000 0.00000 0.06679 s 158.91527 74.79962 m 161.88702 70.88230 l 163.60277 73.60155 l 160.63101 72.47303 lf -0 sg 158.91527 74.79962 m 161.88702 70.88230 l 163.60277 73.60155 l 160.63101 72.47303 lx -0.00000 0.00000 0.05585 s 166.57452 72.19415 m 169.54628 71.40549 l 171.26202 73.00096 l 168.29027 73.29919 lf -0 sg 166.57452 72.19415 m 169.54628 71.40549 l 171.26202 73.00096 l 168.29027 73.29919 lx -0.00000 0.00000 0.46629 s 157.65926 106.12349 m 160.63101 72.47303 l 162.34676 76.78372 l 159.37500 79.97003 lf -0 sg 157.65926 106.12349 m 160.63101 72.47303 l 162.34676 76.78372 l 159.37500 79.97003 lx -0.00000 0.00000 0.05744 s 192.52405 70.65854 m 204.41107 67.21568 l 211.27405 73.16262 l 199.38702 76.57779 lf -0 sg 192.52405 70.65854 m 204.41107 67.21568 l 211.27405 73.16262 l 199.38702 76.57779 lx -0.00000 0.00000 0.05764 s 161.88702 70.88230 m 164.85878 70.86317 l 166.57452 72.19415 l 163.60277 73.60155 lf -0 sg 161.88702 70.88230 m 164.85878 70.86317 l 166.57452 72.19415 l 163.60277 73.60155 lx -0.00000 0.00000 0.05649 s 177.20554 71.06968 m 183.14905 69.40972 l 186.58054 72.34638 l 180.63702 74.03422 lf -0 sg 177.20554 71.06968 m 183.14905 69.40972 l 186.58054 72.34638 l 180.63702 74.03422 lx -0.00000 0.00000 0.05970 s 112.50000 69.97825 m 124.38702 66.50735 l 131.25000 72.75828 l 119.36298 75.87136 lf -0 sg 112.50000 69.97825 m 124.38702 66.50735 l 131.25000 72.75828 l 119.36298 75.87136 lx -0.00000 0.00000 0.07136 s 157.19952 70.20243 m 160.17128 70.31982 l 161.88702 70.88230 l 158.91527 74.79962 lf -0 sg 157.19952 70.20243 m 160.17128 70.31982 l 161.88702 70.88230 l 158.91527 74.79962 lx -0.00000 0.00000 0.05954 s 164.85878 70.86317 m 167.83054 69.81001 l 169.54628 71.40549 l 166.57452 72.19415 lf -0 sg 164.85878 70.86317 m 167.83054 69.81001 l 169.54628 71.40549 l 166.57452 72.19415 lx -0.00000 0.00000 0.05871 s 167.83054 69.81001 m 173.77405 68.14566 l 177.20554 71.06968 l 171.26202 73.00096 lf -0 sg 167.83054 69.81001 m 173.77405 68.14566 l 177.20554 71.06968 l 171.26202 73.00096 lx -0.00000 0.00000 0.05310 s 160.17128 70.31982 m 163.14304 69.14344 l 164.85878 70.86317 l 161.88702 70.88230 lf -0 sg 160.17128 70.31982 m 163.14304 69.14344 l 164.85878 70.86317 l 161.88702 70.88230 lx -0.00000 0.00000 0.05763 s 183.14905 69.40972 m 189.09256 67.68002 l 192.52405 70.65854 l 186.58054 72.34638 lf -0 sg 183.14905 69.40972 m 189.09256 67.68002 l 192.52405 70.65854 l 186.58054 72.34638 lx -0.00000 0.00000 0.03815 s 155.48378 68.04671 m 158.45554 68.84771 l 160.17128 70.31982 l 157.19952 70.20243 lf -0 sg 155.48378 68.04671 m 158.45554 68.84771 l 160.17128 70.31982 l 157.19952 70.20243 lx -0.00000 0.00000 0.05736 s 163.14304 69.14344 m 166.11479 68.32591 l 167.83054 69.81001 l 164.85878 70.86317 lf -0 sg 163.14304 69.14344 m 166.11479 68.32591 l 167.83054 69.81001 l 164.85878 70.86317 lx -0.00000 0.00000 0.00247 s 146.10878 67.35927 m 149.08054 68.24074 l 150.79628 68.10041 l 147.82452 65.63592 lf -0 sg 146.10878 67.35927 m 149.08054 68.24074 l 150.79628 68.10041 l 147.82452 65.63592 lx -0.00000 0.00000 0.06349 s 158.45554 68.84771 m 161.42729 67.84476 l 163.14304 69.14344 l 160.17128 70.31982 lf -0 sg 158.45554 68.84771 m 161.42729 67.84476 l 163.14304 69.14344 l 160.17128 70.31982 lx -0.00000 0.00000 0.10151 s 150.79628 68.10041 m 153.76804 68.03800 l 155.48378 68.04671 l 152.51202 76.14655 lf -0 sg 150.79628 68.10041 m 153.76804 68.03800 l 155.48378 68.04671 l 152.51202 76.14655 lx -0.00000 0.00000 0.05750 s 235.04809 66.29770 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18523 lf -0 sg 235.04809 66.29770 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 78.18523 lx -0.00000 0.00000 0.05730 s 173.77405 68.14566 m 179.71756 66.41736 l 183.14905 69.40972 l 177.20554 71.06968 lf -0 sg 173.77405 68.14566 m 179.71756 66.41736 l 183.14905 69.40972 l 177.20554 71.06968 lx -0.00000 0.43634 0.56366 s 145.77223 99.34415 m 148.74399 149.16505 l 150.45973 99.68507 l 147.48798 83.96970 lf -0 sg 145.77223 99.34415 m 148.74399 149.16505 l 150.45973 99.68507 l 147.48798 83.96970 lx -0.00000 0.00000 0.16211 s 143.13702 66.47779 m 146.10878 67.35927 l 147.82452 65.63592 l 144.85277 86.96853 lf -0 sg 143.13702 66.47779 m 146.10878 67.35927 l 147.82452 65.63592 l 144.85277 86.96853 lx -0.00000 0.00000 0.05751 s 204.41107 67.21568 m 216.29809 63.78633 l 223.16107 69.73016 l 211.27405 73.16262 lf -0 sg 204.41107 67.21568 m 216.29809 63.78633 l 223.16107 69.73016 l 211.27405 73.16262 lx -0.00000 0.00000 0.48137 s 137.19351 69.61804 m 143.13702 66.47779 l 146.56851 107.45927 l 140.62500 78.35095 lf -0 sg 137.19351 69.61804 m 143.13702 66.47779 l 146.56851 107.45927 l 140.62500 78.35095 lx -0.00000 0.00000 0.04487 s 153.76804 68.03800 m 156.73979 67.11660 l 158.45554 68.84771 l 155.48378 68.04671 lf -0 sg 153.76804 68.03800 m 156.73979 67.11660 l 158.45554 68.84771 l 155.48378 68.04671 lx -0.00000 0.00000 0.05686 s 161.42729 67.84476 m 164.39905 66.84181 l 166.11479 68.32591 l 163.14304 69.14344 lf -0 sg 161.42729 67.84476 m 164.39905 66.84181 l 166.11479 68.32591 l 163.14304 69.14344 lx -0.00000 0.00000 0.03667 s 124.38702 66.50735 m 136.27405 63.67380 l 143.13702 66.47779 l 131.25000 72.75828 lf -0 sg 124.38702 66.50735 m 136.27405 63.67380 l 143.13702 66.47779 l 131.25000 72.75828 lx -0.00000 0.00000 0.46043 s 152.51202 76.14655 m 155.48378 68.04671 l 157.19952 70.20243 l 154.22777 102.62215 lf -0 sg 152.51202 76.14655 m 155.48378 68.04671 l 157.19952 70.20243 l 154.22777 102.62215 lx -0.00000 0.00000 0.06420 s 149.08054 68.24074 m 152.05229 66.81311 l 153.76804 68.03800 l 150.79628 68.10041 lf -0 sg 149.08054 68.24074 m 152.05229 66.81311 l 153.76804 68.03800 l 150.79628 68.10041 lx -0.00000 0.00000 0.90778 s 155.94351 113.82526 m 158.91527 74.79962 l 160.63101 72.47303 l 157.65926 106.12349 lf -0 sg 155.94351 113.82526 m 158.91527 74.79962 l 160.63101 72.47303 l 157.65926 106.12349 lx -0.00000 0.00000 0.05680 s 164.39905 66.84181 m 170.34256 65.17795 l 173.77405 68.14566 l 167.83054 69.81001 lf -0 sg 164.39905 66.84181 m 170.34256 65.17795 l 173.77405 68.14566 l 167.83054 69.81001 lx -0.00000 0.00000 0.05751 s 75.00000 64.95213 m 98.77405 58.08626 l 112.50000 69.97825 l 88.72595 76.83888 lf -0 sg 75.00000 64.95213 m 98.77405 58.08626 l 112.50000 69.97825 l 88.72595 76.83888 lx -0.00000 0.00000 0.44343 s 147.82452 65.63592 m 150.79628 68.10041 l 152.51202 76.14655 l 149.54027 103.16639 lf -0 sg 147.82452 65.63592 m 150.79628 68.10041 l 152.51202 76.14655 l 149.54027 103.16639 lx -0.00000 0.00000 0.05764 s 179.71756 66.41736 m 185.66107 64.70150 l 189.09256 67.68002 l 183.14905 69.40972 lf -0 sg 179.71756 66.41736 m 185.66107 64.70150 l 189.09256 67.68002 l 183.14905 69.40972 lx -0.00000 0.00000 0.02763 s 139.70554 65.07580 m 145.64905 64.49726 l 149.08054 68.24074 l 143.13702 66.47779 lf -0 sg 139.70554 65.07580 m 145.64905 64.49726 l 149.08054 68.24074 l 143.13702 66.47779 lx -0.00000 0.00000 0.05944 s 152.05229 66.81311 m 155.02405 65.38548 l 156.73979 67.11660 l 153.76804 68.03800 lf -0 sg 152.05229 66.81311 m 155.02405 65.38548 l 156.73979 67.11660 l 153.76804 68.03800 lx -0.00000 0.00000 0.05779 s 155.02405 65.38548 m 160.96756 63.96133 l 164.39905 66.84181 l 158.45554 68.84771 lf -0 sg 155.02405 65.38548 m 160.96756 63.96133 l 164.39905 66.84181 l 158.45554 68.84771 lx -0.00000 0.00000 0.90978 s 154.22777 102.62215 m 157.19952 70.20243 l 158.91527 74.79962 l 155.94351 113.82526 lf -0 sg 154.22777 102.62215 m 157.19952 70.20243 l 158.91527 74.79962 l 155.94351 113.82526 lx -0.00000 0.00000 0.05756 s 185.66107 64.70150 m 197.54809 61.27486 l 204.41107 67.21568 l 192.52405 70.65854 lf -0 sg 185.66107 64.70150 m 197.54809 61.27486 l 204.41107 67.21568 l 192.52405 70.65854 lx -0.00000 0.00000 0.05771 s 170.34256 65.17795 m 176.28607 63.44972 l 179.71756 66.41736 l 173.77405 68.14566 lf -0 sg 170.34256 65.17795 m 176.28607 63.44972 l 179.71756 66.41736 l 173.77405 68.14566 lx -0.00000 0.51457 0.48543 s 154.68750 144.79140 m 157.65926 106.12349 l 159.37500 79.97003 l 156.40324 97.68524 lf -0 sg 154.68750 144.79140 m 157.65926 106.12349 l 159.37500 79.97003 l 156.40324 97.68524 lx -0.00000 0.00000 0.05719 s 105.63702 64.03226 m 117.52405 60.60874 l 124.38702 66.50735 l 112.50000 69.97825 lf -0 sg 105.63702 64.03226 m 117.52405 60.60874 l 124.38702 66.50735 l 112.50000 69.97825 lx -0.00000 0.00000 0.05751 s 216.29809 63.78633 m 228.18512 60.35446 l 235.04809 66.29770 l 223.16107 69.73016 lf -0 sg 216.29809 63.78633 m 228.18512 60.35446 l 235.04809 66.29770 l 223.16107 69.73016 lx -0.00000 0.00000 0.06658 s 145.64905 64.49726 m 151.59256 62.64202 l 155.02405 65.38548 l 149.08054 68.24074 lf -0 sg 145.64905 64.49726 m 151.59256 62.64202 l 155.02405 65.38548 l 149.08054 68.24074 lx -0.00000 0.00000 0.05757 s 160.96756 63.96133 m 166.91107 62.17365 l 170.34256 65.17795 l 164.39905 66.84181 lf -0 sg 160.96756 63.96133 m 166.91107 62.17365 l 170.34256 65.17795 l 164.39905 66.84181 lx -0.00000 0.43395 0.56605 s 140.62500 78.35095 m 143.59676 92.90511 l 145.31250 146.33716 l 142.34074 96.53478 lf -0 sg 140.62500 78.35095 m 143.59676 92.90511 l 145.31250 146.33716 l 142.34074 96.53478 lx -0.00000 0.00000 0.98923 s 144.85277 86.96853 m 147.82452 65.63592 l 149.54027 103.16639 l 146.56851 107.45927 lf -0 sg 144.85277 86.96853 m 147.82452 65.63592 l 149.54027 103.16639 l 146.56851 107.45927 lx -0.00000 0.00000 0.05742 s 176.28607 63.44972 m 182.22958 61.73425 l 185.66107 64.70150 l 179.71756 66.41736 lf -0 sg 176.28607 63.44972 m 182.22958 61.73425 l 185.66107 64.70150 l 179.71756 66.41736 lx -0.00000 0.00000 0.05620 s 136.27405 63.67380 m 142.21756 61.60498 l 145.64905 64.49726 l 139.70554 65.07580 lf -0 sg 136.27405 63.67380 m 142.21756 61.60498 l 145.64905 64.49726 l 139.70554 65.07580 lx -0.00000 0.00000 0.05549 s 151.59256 62.64202 m 157.53607 60.96315 l 160.96756 63.96133 l 155.02405 65.38548 lf -0 sg 151.59256 62.64202 m 157.53607 60.96315 l 160.96756 63.96133 l 155.02405 65.38548 lx -0.00000 0.00000 0.05734 s 166.91107 62.17365 m 172.85458 60.47032 l 176.28607 63.44972 l 170.34256 65.17795 lf -0 sg 166.91107 62.17365 m 172.85458 60.47032 l 176.28607 63.44972 l 170.34256 65.17795 lx -0.00000 0.00000 0.05750 s 197.54809 61.27486 m 209.43512 57.84241 l 216.29809 63.78633 l 204.41107 67.21568 lf -0 sg 197.54809 61.27486 m 209.43512 57.84241 l 216.29809 63.78633 l 204.41107 67.21568 lx -0.00000 0.00000 0.05960 s 142.21756 61.60498 m 148.16107 59.53615 l 151.59256 62.64202 l 145.64905 64.49726 lf -0 sg 142.21756 61.60498 m 148.16107 59.53615 l 151.59256 62.64202 l 145.64905 64.49726 lx -0.00000 0.00000 0.06203 s 117.52405 60.60874 m 129.41107 57.02544 l 136.27405 63.67380 l 124.38702 66.50735 lf -0 sg 117.52405 60.60874 m 129.41107 57.02544 l 136.27405 63.67380 l 124.38702 66.50735 lx -0.00000 0.00000 0.05826 s 157.53607 60.96315 m 163.47958 59.22796 l 166.91107 62.17365 l 160.96756 63.96133 lf -0 sg 157.53607 60.96315 m 163.47958 59.22796 l 166.91107 62.17365 l 160.96756 63.96133 lx -0.00000 0.00000 0.05749 s 172.85458 60.47032 m 178.79809 58.76700 l 182.22958 61.73425 l 176.28607 63.44972 lf -0 sg 172.85458 60.47032 m 178.79809 58.76700 l 182.22958 61.73425 l 176.28607 63.44972 lx -0.00000 0.00000 0.05532 s 148.16107 59.53615 m 154.10458 57.90922 l 157.53607 60.96315 l 151.59256 62.64202 lf -0 sg 148.16107 59.53615 m 154.10458 57.90922 l 157.53607 60.96315 l 151.59256 62.64202 lx -0.00000 0.63313 0.36687 s 149.54027 103.16639 m 152.51202 76.14655 l 154.22777 102.62215 l 151.25601 138.95901 lf -0 sg 149.54027 103.16639 m 152.51202 76.14655 l 154.22777 102.62215 l 151.25601 138.95901 lx -0.00000 0.00000 0.05752 s 178.79809 58.76700 m 190.68512 55.32962 l 197.54809 61.27486 l 185.66107 64.70150 lf -0 sg 178.79809 58.76700 m 190.68512 55.32962 l 197.54809 61.27486 l 185.66107 64.70150 lx -0.00000 0.00000 0.05751 s 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 64.95213 l 27.45191 78.67786 lf -0 sg 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 64.95213 l 27.45191 78.67786 lx -0.54174 0.45826 0.00000 s 148.74399 149.16505 m 151.71574 159.16283 l 153.43149 115.40044 l 150.45973 99.68507 lf -0 sg 148.74399 149.16505 m 151.71574 159.16283 l 153.43149 115.40044 l 150.45973 99.68507 lx -0.00000 0.00000 0.05764 s 98.77405 58.08626 m 110.66107 54.66370 l 117.52405 60.60874 l 105.63702 64.03226 lf -0 sg 98.77405 58.08626 m 110.66107 54.66370 l 117.52405 60.60874 l 105.63702 64.03226 lx -0.53943 0.46057 0.00000 s 144.05649 114.71860 m 147.02824 157.47562 l 148.74399 149.16505 l 145.77223 99.34415 lf -0 sg 144.05649 114.71860 m 147.02824 157.47562 l 148.74399 149.16505 l 145.77223 99.34415 lx -0.50740 0.49260 0.00000 s 151.71574 159.16283 m 154.68750 144.79140 l 156.40324 97.68524 l 153.43149 115.40044 lf -0 sg 151.71574 159.16283 m 154.68750 144.79140 l 156.40324 97.68524 l 153.43149 115.40044 lx -0.00000 0.00000 0.05751 s 209.43512 57.84241 m 221.32214 54.41121 l 228.18512 60.35446 l 216.29809 63.78633 lf -0 sg 209.43512 57.84241 m 221.32214 54.41121 l 228.18512 60.35446 l 216.29809 63.78633 lx -0.00000 0.00000 0.05760 s 154.10458 57.90922 m 160.04809 56.28228 l 163.47958 59.22796 l 157.53607 60.96315 lf -0 sg 154.10458 57.90922 m 160.04809 56.28228 l 163.47958 59.22796 l 157.53607 60.96315 lx -0.00000 0.00000 0.06108 s 129.41107 57.02544 m 141.29809 53.77290 l 148.16107 59.53615 l 136.27405 63.67380 lf -0 sg 129.41107 57.02544 m 141.29809 53.77290 l 148.16107 59.53615 l 136.27405 63.67380 lx -0.54301 0.45699 0.00000 s 142.34074 96.53478 m 145.31250 146.33716 l 147.02824 157.47562 l 144.05649 114.71860 lf -0 sg 142.34074 96.53478 m 145.31250 146.33716 l 147.02824 157.47562 l 144.05649 114.71860 lx -0.00000 0.00000 0.05761 s 160.04809 56.28228 m 171.93512 52.81010 l 178.79809 58.76700 l 166.91107 62.17365 lf -0 sg 160.04809 56.28228 m 171.93512 52.81010 l 178.79809 58.76700 l 166.91107 62.17365 lx -0.00000 0.00000 0.05750 s 221.32214 54.41121 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29770 lf -0 sg 221.32214 54.41121 m 245.09619 47.54809 l 258.82214 59.43512 l 235.04809 66.29770 lx -0.00000 0.00000 0.05751 s 190.68512 55.32962 m 202.57214 51.89915 l 209.43512 57.84241 l 197.54809 61.27486 lf -0 sg 190.68512 55.32962 m 202.57214 51.89915 l 209.43512 57.84241 l 197.54809 61.27486 lx -0.00000 0.00000 0.05617 s 110.66107 54.66370 m 122.54809 51.24115 l 129.41107 57.02544 l 117.52405 60.60874 lf -0 sg 110.66107 54.66370 m 122.54809 51.24115 l 129.41107 57.02544 l 117.52405 60.60874 lx -0.65973 0.34027 0.00000 s 152.97176 155.97231 m 155.94351 113.82526 l 157.65926 106.12349 l 154.68750 144.79140 lf -0 sg 152.97176 155.97231 m 155.94351 113.82526 l 157.65926 106.12349 l 154.68750 144.79140 lx -0.51637 0.48363 0.00000 s 143.59676 92.90511 m 146.56851 107.45927 l 148.28426 156.70792 l 145.31250 146.33716 lf -0 sg 143.59676 92.90511 m 146.56851 107.45927 l 148.28426 156.70792 l 145.31250 146.33716 lx -0.00000 0.00000 0.05749 s 61.27405 53.06499 m 85.04809 46.20252 l 98.77405 58.08626 l 75.00000 64.95213 lf -0 sg 61.27405 53.06499 m 85.04809 46.20252 l 98.77405 58.08626 l 75.00000 64.95213 lx -0.00000 0.00000 0.05651 s 141.29809 53.77290 m 153.18512 50.29947 l 160.04809 56.28228 l 148.16107 59.53615 lf -0 sg 141.29809 53.77290 m 153.18512 50.29947 l 160.04809 56.28228 l 148.16107 59.53615 lx -0.62015 0.37985 0.00000 s 151.25601 138.95901 m 154.22777 102.62215 l 155.94351 113.82526 l 152.97176 155.97231 lf -0 sg 151.25601 138.95901 m 154.22777 102.62215 l 155.94351 113.82526 l 152.97176 155.97231 lx -0.59009 0.40991 0.00000 s 146.56851 107.45927 m 149.54027 103.16639 l 151.25601 138.95901 l 148.28426 156.70792 lf -0 sg 146.56851 107.45927 m 149.54027 103.16639 l 151.25601 138.95901 l 148.28426 156.70792 lx -0.00000 0.00000 0.05747 s 171.93512 52.81010 m 183.82214 49.38787 l 190.68512 55.32962 l 178.79809 58.76700 lf -0 sg 171.93512 52.81010 m 183.82214 49.38787 l 190.68512 55.32962 l 178.79809 58.76700 lx -0.00000 0.00000 0.05751 s 202.57214 51.89915 m 214.45917 48.46751 l 221.32214 54.41121 l 209.43512 57.84241 lf -0 sg 202.57214 51.89915 m 214.45917 48.46751 l 221.32214 54.41121 l 209.43512 57.84241 lx -0.00000 0.00000 0.05648 s 122.54809 51.24115 m 134.43512 47.80008 l 141.29809 53.77290 l 129.41107 57.02544 lf -0 sg 122.54809 51.24115 m 134.43512 47.80008 l 141.29809 53.77290 l 129.41107 57.02544 lx -0.00000 0.00000 0.05773 s 153.18512 50.29947 m 165.07214 46.87735 l 171.93512 52.81010 l 160.04809 56.28228 lf -0 sg 153.18512 50.29947 m 165.07214 46.87735 l 171.93512 52.81010 l 160.04809 56.28228 lx -0.00000 0.00000 0.05751 s 183.82214 49.38787 m 195.70917 45.95583 l 202.57214 51.89915 l 190.68512 55.32962 lf -0 sg 183.82214 49.38787 m 195.70917 45.95583 l 202.57214 51.89915 l 190.68512 55.32962 lx -0.00000 0.00000 0.05785 s 134.43512 47.80008 m 146.32214 44.35901 l 153.18512 50.29947 l 141.29809 53.77290 lf -0 sg 134.43512 47.80008 m 146.32214 44.35901 l 153.18512 50.29947 l 141.29809 53.77290 lx -0.00000 0.00000 0.05762 s 85.04809 46.20252 m 108.82214 39.33515 l 122.54809 51.24115 l 98.77405 58.08626 lf -0 sg 85.04809 46.20252 m 108.82214 39.33515 l 122.54809 51.24115 l 98.77405 58.08626 lx -0.00000 0.00000 0.05745 s 165.07214 46.87735 m 176.95917 43.44405 l 183.82214 49.38787 l 171.93512 52.81010 lf -0 sg 165.07214 46.87735 m 176.95917 43.44405 l 183.82214 49.38787 l 171.93512 52.81010 lx -1.00000 0.99229 0.99229 s 147.02824 157.47562 m 150.00000 175.90963 l 151.71574 159.16283 l 148.74399 149.16505 lf -0 sg 147.02824 157.47562 m 150.00000 175.90963 l 151.71574 159.16283 l 148.74399 149.16505 lx -1.00000 0.96374 0.96374 s 150.00000 175.90963 m 152.97176 155.97231 l 154.68750 144.79140 l 151.71574 159.16283 lf -0 sg 150.00000 175.90963 m 152.97176 155.97231 l 154.68750 144.79140 l 151.71574 159.16283 lx -0.00000 0.00000 0.05751 s 195.70917 45.95583 m 207.59619 42.52380 l 214.45917 48.46751 l 202.57214 51.89915 lf -0 sg 195.70917 45.95583 m 207.59619 42.52380 l 214.45917 48.46751 l 202.57214 51.89915 lx -1.00000 sg 145.31250 146.33716 m 148.28426 156.70792 l 150.00000 175.90963 l 147.02824 157.47562 lf -0 sg 145.31250 146.33716 m 148.28426 156.70792 l 150.00000 175.90963 l 147.02824 157.47562 lx -1.00000 0.93637 0.93637 s 148.28426 156.70792 m 151.25601 138.95901 l 152.97176 155.97231 l 150.00000 175.90963 lf -0 sg 148.28426 156.70792 m 151.25601 138.95901 l 152.97176 155.97231 l 150.00000 175.90963 lx -0.00000 0.00000 0.05738 s 146.32214 44.35901 m 158.20917 40.92962 l 165.07214 46.87735 l 153.18512 50.29947 lf -0 sg 146.32214 44.35901 m 158.20917 40.92962 l 165.07214 46.87735 l 153.18512 50.29947 lx -0.00000 0.00000 0.05751 s 207.59619 42.52380 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41121 lf -0 sg 207.59619 42.52380 m 231.37024 35.66107 l 245.09619 47.54809 l 221.32214 54.41121 lx -0.00000 0.00000 0.05752 s 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20252 l 61.27405 53.06499 lf -0 sg 47.54809 41.17786 m 71.32214 34.31488 l 85.04809 46.20252 l 61.27405 53.06499 lx -0.00000 0.00000 0.05752 s 158.20917 40.92962 m 170.09619 37.50023 l 176.95917 43.44405 l 165.07214 46.87735 lf -0 sg 158.20917 40.92962 m 170.09619 37.50023 l 176.95917 43.44405 l 165.07214 46.87735 lx -0.00000 0.00000 0.05761 s 108.82214 39.33515 m 132.59619 32.47690 l 146.32214 44.35901 l 122.54809 51.24115 lf -0 sg 108.82214 39.33515 m 132.59619 32.47690 l 146.32214 44.35901 l 122.54809 51.24115 lx -0.00000 0.00000 0.05752 s 170.09619 37.50023 m 193.87024 30.63714 l 207.59619 42.52380 l 183.82214 49.38787 lf -0 sg 170.09619 37.50023 m 193.87024 30.63714 l 207.59619 42.52380 l 183.82214 49.38787 lx -0.00000 0.00000 0.05747 s 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.33515 l 85.04809 46.20252 lf -0 sg 71.32214 34.31488 m 95.09619 27.45191 l 108.82214 39.33515 l 85.04809 46.20252 lx -0.00000 0.00000 0.05748 s 132.59619 32.47690 m 156.37024 25.61309 l 170.09619 37.50023 l 146.32214 44.35901 lf -0 sg 132.59619 32.47690 m 156.37024 25.61309 l 170.09619 37.50023 l 146.32214 44.35901 lx -0.00000 0.00000 0.05751 s 193.87024 30.63714 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52380 lf -0 sg 193.87024 30.63714 m 217.64428 23.77405 l 231.37024 35.66107 l 207.59619 42.52380 lx -0.00000 0.00000 0.05747 s 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47690 l 108.82214 39.33515 lf -0 sg 95.09619 27.45191 m 118.87024 20.58893 l 132.59619 32.47690 l 108.82214 39.33515 lx -0.00000 0.00000 0.05752 s 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61309 l 132.59619 32.47690 lf -0 sg 118.87024 20.58893 m 142.64428 13.72595 l 156.37024 25.61309 l 132.59619 32.47690 lx -0.00000 0.00000 0.05751 s 142.64428 13.72595 m 190.19238 0.00000 l 217.64428 23.77405 l 170.09619 37.50023 lf -0 sg 142.64428 13.72595 m 190.19238 0.00000 l 217.64428 23.77405 l 170.09619 37.50023 lx -showpage -. -DEAL:: Postprocessing: time=0.02800, step=1, sweep=2. [ee] -DEAL:: Postprocessing: time=0.05600, step=2, sweep=2. [ee] -DEAL:: Postprocessing: time=0.08400, step=3, sweep=2. [ee] -DEAL:: Postprocessing: time=0.11200, step=4, sweep=2. [ee] -DEAL:: Postprocessing: time=0.14000, step=5, sweep=2. [ee] -DEAL:: Postprocessing: time=0.16800, step=6, sweep=2. [ee] -DEAL:: Postprocessing: time=0.19600, step=7, sweep=2. [ee] -DEAL:: Postprocessing: time=0.22400, step=8, sweep=2. [ee] -DEAL:: Postprocessing: time=0.25200, step=9, sweep=2. [ee] -DEAL:: Postprocessing: time=0.28000, step=10, sweep=2. [ee] -DEAL:: Postprocessing: time=0.30800, step=11, sweep=2. [ee] -DEAL:: Postprocessing: time=0.33600, step=12, sweep=2. [ee] -DEAL:: Postprocessing: time=0.36400, step=13, sweep=2. [ee] -DEAL:: Postprocessing: time=0.39200, step=14, sweep=2. [ee] -DEAL:: Postprocessing: time=0.42000, step=15, sweep=2. [ee] -DEAL:: Postprocessing: time=0.44800, step=16, sweep=2. [ee] -DEAL:: Postprocessing: time=0.47600, step=17, sweep=2. [ee] -DEAL:: Postprocessing: time=0.50400, step=18, sweep=2. [ee] -DEAL:: Postprocessing: time=0.53200, step=19, sweep=2. [ee] -DEAL:: Postprocessing: time=0.56000, step=20, sweep=2. [ee] -DEAL:: Postprocessing: time=0.58800, step=21, sweep=2. [ee] -DEAL:: Postprocessing: time=0.61600, step=22, sweep=2. [ee] -DEAL:: Postprocessing: time=0.64400, step=23, sweep=2. [ee] -DEAL:: Postprocessing: time=0.67200, step=24, sweep=2. [ee] -DEAL:: Postprocessing: time=0.70000, step=25, sweep=2. [ee][o]%!PS-Adobe-2.0 EPSF-1.2 -%%Title: deal.II Output -%%Creator: the deal.II library - -%%BoundingBox: 0 0 300 150 -/m {moveto} bind def -/l {lineto} bind def -/s {setrgbcolor} bind def -/sg {setgray} bind def -/lx {lineto closepath stroke} bind def -/lf {lineto closepath fill} bind def -%%EndProlog - -0.50000 setlinewidth -0.25040 0.74960 0.00000 s 82.35572 126.22595 m 129.90381 112.85010 l 157.35572 136.27405 l 109.80762 150.00000 lf -0 sg 82.35572 126.22595 m 129.90381 112.85010 l 157.35572 136.27405 l 109.80762 150.00000 lx -0.18448 0.81552 0.00000 s 129.90381 112.85010 m 177.45191 97.39558 l 204.90381 122.54809 l 157.35572 136.27405 lf -0 sg 129.90381 112.85010 m 177.45191 97.39558 l 204.90381 122.54809 l 157.35572 136.27405 lx -0.00000 0.98776 0.01224 s 54.90381 102.45191 m 102.45191 83.23389 l 129.90381 112.85010 l 82.35572 126.22595 lf -0 sg 54.90381 102.45191 m 102.45191 83.23389 l 129.90381 112.85010 l 82.35572 126.22595 lx -0.13933 0.86067 0.00000 s 177.45191 97.39558 m 225.00000 84.45422 l 252.45191 108.82214 l 204.90381 122.54809 lf -0 sg 177.45191 97.39558 m 225.00000 84.45422 l 252.45191 108.82214 l 204.90381 122.54809 lx -0.04314 0.95686 0.00000 s 102.45191 83.23389 m 150.00000 77.53669 l 177.45191 97.39558 l 129.90381 112.85010 lf -0 sg 102.45191 83.23389 m 150.00000 77.53669 l 177.45191 97.39558 l 129.90381 112.85010 lx -0.20526 0.79474 0.00000 s 225.00000 84.45422 m 272.54809 71.32214 l 300.00000 95.09619 l 252.45191 108.82214 lf -0 sg 225.00000 84.45422 m 272.54809 71.32214 l 300.00000 95.09619 l 252.45191 108.82214 lx -0.01977 0.98023 0.00000 s 163.72595 87.46613 m 187.50000 77.33707 l 201.22595 90.92490 l 177.45191 97.39558 lf -0 sg 163.72595 87.46613 m 187.50000 77.33707 l 201.22595 90.92490 l 177.45191 97.39558 lx -0.11078 0.88922 0.00000 s 27.45191 78.67786 m 75.00000 67.87454 l 102.45191 83.23389 l 54.90381 102.45191 lf -0 sg 27.45191 78.67786 m 75.00000 67.87454 l 102.45191 83.23389 l 54.90381 102.45191 lx -0.00000 0.96090 0.03910 s 187.50000 77.33707 m 211.27405 71.72455 l 225.00000 84.45422 l 201.22595 90.92490 lf -0 sg 187.50000 77.33707 m 211.27405 71.72455 l 225.00000 84.45422 l 201.22595 90.92490 lx -0.14407 0.85593 0.00000 s 150.00000 77.53669 m 173.77405 65.83484 l 187.50000 77.33707 l 163.72595 87.46613 lf -0 sg 150.00000 77.53669 m 173.77405 65.83484 l 187.50000 77.33707 l 163.72595 87.46613 lx -0.03618 0.96382 0.00000 s 211.27405 71.72455 m 235.04809 64.49614 l 248.77405 77.88818 l 225.00000 84.45422 lf -0 sg 211.27405 71.72455 m 235.04809 64.49614 l 248.77405 77.88818 l 225.00000 84.45422 lx -0.00000 0.96636 0.03364 s 180.63702 71.58596 m 192.52405 72.30296 l 199.38702 74.53081 l 187.50000 77.33707 lf -0 sg 180.63702 71.58596 m 192.52405 72.30296 l 199.38702 74.53081 l 187.50000 77.33707 lx -0.00000 0.88063 0.11938 s 192.52405 72.30296 m 204.41107 61.67980 l 211.27405 71.72455 l 199.38702 74.53081 lf -0 sg 192.52405 72.30296 m 204.41107 61.67980 l 211.27405 71.72455 l 199.38702 74.53081 lx -0.10780 0.89220 0.00000 s 75.00000 67.87454 m 122.54809 48.62703 l 150.00000 77.53669 l 102.45191 83.23389 lf -0 sg 75.00000 67.87454 m 122.54809 48.62703 l 150.00000 77.53669 l 102.45191 83.23389 lx -0.00000 0.91722 0.08278 s 173.77405 65.83484 m 185.66107 61.23150 l 192.52405 72.30296 l 180.63702 71.58596 lf -0 sg 173.77405 65.83484 m 185.66107 61.23150 l 192.52405 72.30296 l 180.63702 71.58596 lx -0.00000 0.60676 0.39324 s 204.41107 61.67980 m 216.29809 59.27086 l 223.16107 68.11034 l 211.27405 71.72455 lf -0 sg 204.41107 61.67980 m 216.29809 59.27086 l 223.16107 68.11034 l 211.27405 71.72455 lx -0.13328 0.86672 0.00000 s 235.04809 64.49614 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 77.88818 lf -0 sg 235.04809 64.49614 m 258.82214 59.43512 l 272.54809 71.32214 l 248.77405 77.88818 lx -0.20374 0.79626 0.00000 s 185.66107 61.23150 m 197.54809 68.00644 l 204.41107 61.67980 l 192.52405 72.30296 lf -0 sg 185.66107 61.23150 m 197.54809 68.00644 l 204.41107 61.67980 l 192.52405 72.30296 lx -0.00000 0.81719 0.18281 s 216.29809 59.27086 m 228.18512 59.58246 l 235.04809 64.49614 l 223.16107 68.11034 lf -0 sg 216.29809 59.27086 m 228.18512 59.58246 l 235.04809 64.49614 l 223.16107 68.11034 lx -0.00000 0.75176 0.24824 s 200.97958 64.84312 m 206.92309 62.42012 l 210.35458 60.47533 l 204.41107 61.67980 lf -0 sg 200.97958 64.84312 m 206.92309 62.42012 l 210.35458 60.47533 l 204.41107 61.67980 lx -0.24830 0.75170 0.00000 s 136.27405 63.08186 m 160.04809 56.35277 l 173.77405 65.83484 l 150.00000 77.53669 lf -0 sg 136.27405 63.08186 m 160.04809 56.35277 l 173.77405 65.83484 l 150.00000 77.53669 lx -0.00000 0.29297 0.70703 s 206.92309 62.42012 m 212.86661 50.79559 l 216.29809 59.27086 l 210.35458 60.47533 lf -0 sg 206.92309 62.42012 m 212.86661 50.79559 l 216.29809 59.27086 l 210.35458 60.47533 lx -0.00000 0.93136 0.06864 s 166.91107 61.09380 m 178.79809 59.31666 l 185.66107 61.23150 l 173.77405 65.83484 lf -0 sg 166.91107 61.09380 m 178.79809 59.31666 l 185.66107 61.23150 l 173.77405 65.83484 lx -0.00000 0.37179 0.62821 s 212.86661 50.79559 m 218.81012 58.25395 l 222.24161 59.42666 l 216.29809 59.27086 lf -0 sg 212.86661 50.79559 m 218.81012 58.25395 l 222.24161 59.42666 l 216.29809 59.27086 lx -0.00000 0.00000 0.43456 s 211.15086 46.76377 m 214.12262 48.86526 l 215.83836 54.52477 l 212.86661 50.79559 lf -0 sg 211.15086 46.76377 m 214.12262 48.86526 l 215.83836 54.52477 l 212.86661 50.79559 lx -0.00000 0.00000 0.90680 s 203.49161 57.05205 m 209.43512 42.73195 l 212.86661 50.79559 l 206.92309 62.42012 lf -0 sg 203.49161 57.05205 m 209.43512 42.73195 l 212.86661 50.79559 l 206.92309 62.42012 lx -0.00000 sg 209.43512 42.73195 m 212.40687 47.55804 l 214.12262 48.86526 l 211.15086 46.76377 lf -0 sg 209.43512 42.73195 m 212.40687 47.55804 l 214.12262 48.86526 l 211.15086 46.76377 lx -0.16163 0.83837 0.00000 s 228.18512 59.58246 m 240.07214 58.89196 l 246.93512 61.96563 l 235.04809 64.49614 lf -0 sg 228.18512 59.58246 m 240.07214 58.89196 l 246.93512 61.96563 l 235.04809 64.49614 lx -0.45907 0.54093 0.00000 s 197.54809 68.00644 m 203.49161 57.05205 l 206.92309 62.42012 l 200.97958 64.84312 lf -0 sg 197.54809 68.00644 m 203.49161 57.05205 l 206.92309 62.42012 l 200.97958 64.84312 lx -0.00000 0.00000 0.13571 s 207.71937 43.74569 m 210.69113 48.77761 l 212.40687 47.55804 l 209.43512 42.73195 lf -0 sg 207.71937 43.74569 m 210.69113 48.77761 l 212.40687 47.55804 l 209.43512 42.73195 lx -0.05683 0.94317 0.00000 s 178.79809 59.31666 m 190.68512 47.81994 l 197.54809 68.00644 l 185.66107 61.23150 lf -0 sg 178.79809 59.31666 m 190.68512 47.81994 l 197.54809 68.00644 l 185.66107 61.23150 lx -0.00000 0.00000 0.54777 s 200.06012 49.06175 m 206.00363 44.75944 l 209.43512 42.73195 l 203.49161 57.05205 lf -0 sg 200.06012 49.06175 m 206.00363 44.75944 l 209.43512 42.73195 l 203.49161 57.05205 lx -0.00000 0.60431 0.39569 s 214.12262 48.86526 m 217.09437 60.33433 l 218.81012 58.25395 l 215.83836 54.52477 lf -0 sg 214.12262 48.86526 m 217.09437 60.33433 l 218.81012 58.25395 l 215.83836 54.52477 lx -0.24648 0.75352 0.00000 s 218.81012 58.25395 m 224.75363 61.91130 l 228.18512 59.58246 l 222.24161 59.42666 lf -0 sg 218.81012 58.25395 m 224.75363 61.91130 l 228.18512 59.58246 l 222.24161 59.42666 lx -0.37342 0.62658 0.00000 s 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 67.87454 l 27.45191 78.67786 lf -0 sg 0.00000 54.90381 m 47.54809 41.17786 l 75.00000 67.87454 l 27.45191 78.67786 lx -0.05730 0.94270 0.00000 s 194.11661 57.91319 m 200.06012 49.06175 l 203.49161 57.05205 l 197.54809 68.00644 lf -0 sg 194.11661 57.91319 m 200.06012 49.06175 l 203.49161 57.05205 l 197.54809 68.00644 lx -0.00000 0.64923 0.35077 s 212.40687 47.55804 m 215.37863 60.21634 l 217.09437 60.33433 l 214.12262 48.86526 lf -0 sg 212.40687 47.55804 m 215.37863 60.21634 l 217.09437 60.33433 l 214.12262 48.86526 lx -0.28473 0.71527 0.00000 s 240.07214 58.89196 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 61.96563 lf -0 sg 240.07214 58.89196 m 251.95917 53.49161 l 258.82214 59.43512 l 246.93512 61.96563 lx -0.05929 0.94071 0.00000 s 160.04809 56.35277 m 171.93512 49.61465 l 178.79809 59.31666 l 166.91107 61.09380 lf -0 sg 160.04809 56.35277 m 171.93512 49.61465 l 178.79809 59.31666 l 166.91107 61.09380 lx -0.34935 0.65065 0.00000 s 224.75363 61.91130 m 230.69714 53.73156 l 234.12863 59.23721 l 228.18512 59.58246 lf -0 sg 224.75363 61.91130 m 230.69714 53.73156 l 234.12863 59.23721 l 228.18512 59.58246 lx -0.00000 0.00000 0.73754 s 206.00363 44.75944 m 208.97539 52.17178 l 210.69113 48.77761 l 207.71937 43.74569 lf -0 sg 206.00363 44.75944 m 208.97539 52.17178 l 210.69113 48.77761 l 207.71937 43.74569 lx -0.00000 0.27306 0.72694 s 190.68512 47.81994 m 196.62863 48.95266 l 200.06012 49.06175 l 194.11661 57.91319 lf -0 sg 190.68512 47.81994 m 196.62863 48.95266 l 200.06012 49.06175 l 194.11661 57.91319 lx -0.71758 0.28242 0.00000 s 217.09437 60.33433 m 220.06613 63.15496 l 221.78187 60.08262 l 218.81012 58.25395 lf -0 sg 217.09437 60.33433 m 220.06613 63.15496 l 221.78187 60.08262 l 218.81012 58.25395 lx -0.00000 0.92931 0.07069 s 210.69113 48.77761 m 213.66289 60.33514 l 215.37863 60.21634 l 212.40687 47.55804 lf -0 sg 210.69113 48.77761 m 213.66289 60.33514 l 215.37863 60.21634 l 212.40687 47.55804 lx -0.21404 0.78596 0.00000 s 230.69714 53.73156 m 236.64065 52.90936 l 240.07214 58.89196 l 234.12863 59.23721 lf -0 sg 230.69714 53.73156 m 236.64065 52.90936 l 240.07214 58.89196 l 234.12863 59.23721 lx -0.00000 0.08056 0.91944 s 196.62863 48.95266 m 202.57214 50.08538 l 206.00363 44.75944 l 200.06012 49.06175 lf -0 sg 196.62863 48.95266 m 202.57214 50.08538 l 206.00363 44.75944 l 200.06012 49.06175 lx -0.99727 0.00273 0.00000 s 220.06613 63.15496 m 223.03789 59.09400 l 224.75363 61.91130 l 221.78187 60.08262 lf -0 sg 220.06613 63.15496 m 223.03789 59.09400 l 224.75363 61.91130 l 221.78187 60.08262 lx -0.15836 0.84164 0.00000 s 226.00964 55.13426 m 228.98140 53.15066 l 230.69714 53.73156 l 227.72539 57.82143 lf -0 sg 226.00964 55.13426 m 228.98140 53.15066 l 230.69714 53.73156 l 227.72539 57.82143 lx -0.00000 0.43644 0.56356 s 171.93512 49.61465 m 183.82214 42.87654 l 190.68512 47.81994 l 178.79809 59.31666 lf -0 sg 171.93512 49.61465 m 183.82214 42.87654 l 190.68512 47.81994 l 178.79809 59.31666 lx -0.66966 0.33034 0.00000 s 223.03789 59.09400 m 226.00964 55.13426 l 227.72539 57.82143 l 224.75363 61.91130 lf -0 sg 223.03789 59.09400 m 226.00964 55.13426 l 227.72539 57.82143 l 224.75363 61.91130 lx -0.00000 0.97676 0.02324 s 228.98140 53.15066 m 231.95315 52.40633 l 233.66890 53.32046 l 230.69714 53.73156 lf -0 sg 228.98140 53.15066 m 231.95315 52.40633 l 233.66890 53.32046 l 230.69714 53.73156 lx -1.00000 0.23258 0.23258 s 215.37863 60.21634 m 218.35039 62.94576 l 220.06613 63.15496 l 217.09437 60.33433 lf -0 sg 215.37863 60.21634 m 218.35039 62.94576 l 220.06613 63.15496 l 217.09437 60.33433 lx -0.31881 0.68119 0.00000 s 236.64065 52.90936 m 242.58417 52.10484 l 246.01565 56.19178 l 240.07214 58.89196 lf -0 sg 236.64065 52.90936 m 242.58417 52.10484 l 246.01565 56.19178 l 240.07214 58.89196 lx -0.40395 0.59605 0.00000 s 208.97539 52.17178 m 211.94714 59.58413 l 213.66289 60.33514 l 210.69113 48.77761 lf -0 sg 208.97539 52.17178 m 211.94714 59.58413 l 213.66289 60.33514 l 210.69113 48.77761 lx -0.04958 0.95042 0.00000 s 231.95315 52.40633 m 234.92491 52.06412 l 236.64065 52.90936 l 233.66890 53.32046 lf -0 sg 231.95315 52.40633 m 234.92491 52.06412 l 236.64065 52.90936 l 233.66890 53.32046 lx -0.11839 0.88161 0.00000 s 122.54809 48.62703 m 146.32214 44.47990 l 160.04809 56.35277 l 136.27405 63.08186 lf -0 sg 122.54809 48.62703 m 146.32214 44.47990 l 160.04809 56.35277 l 136.27405 63.08186 lx -0.71493 0.28507 0.00000 s 221.32214 59.05807 m 224.29390 55.67772 l 226.00964 55.13426 l 223.03789 59.09400 lf -0 sg 221.32214 59.05807 m 224.29390 55.67772 l 226.00964 55.13426 l 223.03789 59.09400 lx -1.00000 0.28197 0.28197 s 218.35039 62.94576 m 221.32214 59.05807 l 223.03789 59.09400 l 220.06613 63.15496 lf -0 sg 218.35039 62.94576 m 221.32214 59.05807 l 223.03789 59.09400 l 220.06613 63.15496 lx -0.32878 0.67122 0.00000 s 224.29390 55.67772 m 227.26565 53.49532 l 228.98140 53.15066 l 226.00964 55.13426 lf -0 sg 224.29390 55.67772 m 227.26565 53.49532 l 228.98140 53.15066 l 226.00964 55.13426 lx -0.19607 0.80393 0.00000 s 227.26565 53.49532 m 230.23741 52.19912 l 231.95315 52.40633 l 228.98140 53.15066 lf -0 sg 227.26565 53.49532 m 230.23741 52.19912 l 231.95315 52.40633 l 228.98140 53.15066 lx -0.27448 0.72552 0.00000 s 242.58417 52.10484 m 248.52768 50.51985 l 251.95917 53.49161 l 246.01565 56.19178 lf -0 sg 242.58417 52.10484 m 248.52768 50.51985 l 251.95917 53.49161 l 246.01565 56.19178 lx -1.00000 0.53783 0.53783 s 213.66289 60.33514 m 216.63464 63.59371 l 218.35039 62.94576 l 215.37863 60.21634 lf -0 sg 213.66289 60.33514 m 216.63464 63.59371 l 218.35039 62.94576 l 215.37863 60.21634 lx -0.36101 0.63899 0.00000 s 202.57214 50.08538 m 208.51565 58.34238 l 211.94714 59.58413 l 206.00363 44.75944 lf -0 sg 202.57214 50.08538 m 208.51565 58.34238 l 211.94714 59.58413 l 206.00363 44.75944 lx -0.19935 0.80065 0.00000 s 230.23741 52.19912 m 233.20917 51.21888 l 234.92491 52.06412 l 231.95315 52.40633 lf -0 sg 230.23741 52.19912 m 233.20917 51.21888 l 234.92491 52.06412 l 231.95315 52.40633 lx -1.00000 0.06518 0.06518 s 219.60640 59.64224 m 222.57815 55.96656 l 224.29390 55.67772 l 221.32214 59.05807 lf -0 sg 219.60640 59.64224 m 222.57815 55.96656 l 224.29390 55.67772 l 221.32214 59.05807 lx -1.00000 0.61341 0.61341 s 216.63464 63.59371 m 219.60640 59.64224 l 221.32214 59.05807 l 218.35039 62.94576 lf -0 sg 216.63464 63.59371 m 219.60640 59.64224 l 221.32214 59.05807 l 218.35039 62.94576 lx -0.00000 0.63443 0.36557 s 183.82214 42.87654 m 195.70917 49.26013 l 202.57214 50.08538 l 190.68512 47.81994 lf -0 sg 183.82214 42.87654 m 195.70917 49.26013 l 202.57214 50.08538 l 190.68512 47.81994 lx -0.19224 0.80776 0.00000 s 233.20917 51.21888 m 239.15268 49.33123 l 242.58417 52.10484 l 236.64065 52.90936 lf -0 sg 233.20917 51.21888 m 239.15268 49.33123 l 242.58417 52.10484 l 236.64065 52.90936 lx -0.67938 0.32062 0.00000 s 222.57815 55.96656 m 225.54991 53.70606 l 227.26565 53.49532 l 224.29390 55.67772 lf -0 sg 222.57815 55.96656 m 225.54991 53.70606 l 227.26565 53.49532 l 224.29390 55.67772 lx -0.48225 0.51775 0.00000 s 225.54991 53.70606 m 228.52167 51.89149 l 230.23741 52.19912 l 227.26565 53.49532 lf -0 sg 225.54991 53.70606 m 228.52167 51.89149 l 230.23741 52.19912 l 227.26565 53.49532 lx -1.00000 0.80975 0.80975 s 211.94714 59.58413 m 214.91890 63.32037 l 216.63464 63.59371 l 213.66289 60.33514 lf -0 sg 211.94714 59.58413 m 214.91890 63.32037 l 216.63464 63.59371 l 213.66289 60.33514 lx -0.36792 0.63208 0.00000 s 228.52167 51.89149 m 231.49342 50.16029 l 233.20917 51.21888 l 230.23741 52.19912 lf -0 sg 228.52167 51.89149 m 231.49342 50.16029 l 233.20917 51.21888 l 230.23741 52.19912 lx -0.23063 0.76937 0.00000 s 239.15268 49.33123 m 245.09619 47.54809 l 248.52768 50.51985 l 242.58417 52.10484 lf -0 sg 239.15268 49.33123 m 245.09619 47.54809 l 248.52768 50.51985 l 242.58417 52.10484 lx -1.00000 0.34478 0.34478 s 217.89065 59.05645 m 220.86241 55.58240 l 222.57815 55.96656 l 219.60640 59.64224 lf -0 sg 217.89065 59.05645 m 220.86241 55.58240 l 222.57815 55.96656 l 219.60640 59.64224 lx -0.89273 0.10727 0.00000 s 220.86241 55.58240 m 223.83417 52.10836 l 225.54991 53.70606 l 222.57815 55.96656 lf -0 sg 220.86241 55.58240 m 223.83417 52.10836 l 225.54991 53.70606 l 222.57815 55.96656 lx -1.00000 0.91548 0.91548 s 214.91890 63.32037 m 217.89065 59.05645 l 219.60640 59.64224 l 216.63464 63.59371 lf -0 sg 214.91890 63.32037 m 217.89065 59.05645 l 219.60640 59.64224 l 216.63464 63.59371 lx -0.62392 0.37608 0.00000 s 223.83417 52.10836 m 226.80592 50.60503 l 228.52167 51.89149 l 225.54991 53.70606 lf -0 sg 223.83417 52.10836 m 226.80592 50.60503 l 228.52167 51.89149 l 225.54991 53.70606 lx -1.00000 0.93062 0.93062 s 210.23140 58.96326 m 213.20315 61.54963 l 214.91890 63.32037 l 211.94714 59.58413 lf -0 sg 210.23140 58.96326 m 213.20315 61.54963 l 214.91890 63.32037 l 211.94714 59.58413 lx -0.47467 0.52533 0.00000 s 226.80592 50.60503 m 229.77768 49.10169 l 231.49342 50.16029 l 228.52167 51.89149 lf -0 sg 226.80592 50.60503 m 229.77768 49.10169 l 231.49342 50.16029 l 228.52167 51.89149 lx -0.32517 0.67483 0.00000 s 229.77768 49.10169 m 235.72119 46.80508 l 239.15268 49.33123 l 233.20917 51.21888 lf -0 sg 229.77768 49.10169 m 235.72119 46.80508 l 239.15268 49.33123 l 233.20917 51.21888 lx -0.86220 0.13780 0.00000 s 199.14065 49.67276 m 205.08417 53.26402 l 208.51565 58.34238 l 202.57214 50.08538 lf -0 sg 199.14065 49.67276 m 205.08417 53.26402 l 208.51565 58.34238 l 202.57214 50.08538 lx -1.00000 sg 213.20315 61.54963 m 216.17491 57.51020 l 217.89065 59.05645 l 214.91890 63.32037 lf -0 sg 213.20315 61.54963 m 216.17491 57.51020 l 217.89065 59.05645 l 214.91890 63.32037 lx -1.00000 0.86054 0.86054 s 208.51565 58.34238 m 211.48741 57.15317 l 213.20315 61.54963 l 210.23140 58.96326 lf -0 sg 208.51565 58.34238 m 211.48741 57.15317 l 213.20315 61.54963 l 210.23140 58.96326 lx -1.00000 0.09730 0.09730 s 214.45917 55.96395 m 220.40268 47.31294 l 223.83417 52.10836 l 217.89065 59.05645 lf -0 sg 214.45917 55.96395 m 220.40268 47.31294 l 223.83417 52.10836 l 217.89065 59.05645 lx -0.06828 0.93172 0.00000 s 146.32214 44.47990 m 170.09619 40.33277 l 183.82214 42.87654 l 160.04809 56.35277 lf -0 sg 146.32214 44.47990 m 170.09619 40.33277 l 183.82214 42.87654 l 160.04809 56.35277 lx -0.45304 0.54696 0.00000 s 220.40268 47.31294 m 226.34619 45.58368 l 229.77768 49.10169 l 223.83417 52.10836 lf -0 sg 220.40268 47.31294 m 226.34619 45.58368 l 229.77768 49.10169 l 223.83417 52.10836 lx -0.26141 0.73859 0.00000 s 235.72119 46.80508 m 241.66470 44.57634 l 245.09619 47.54809 l 239.15268 49.33123 lf -0 sg 235.72119 46.80508 m 241.66470 44.57634 l 245.09619 47.54809 l 239.15268 49.33123 lx -1.00000 0.84141 0.84141 s 211.48741 57.15317 m 214.45917 55.96395 l 216.17491 57.51020 l 213.20315 61.54963 lf -0 sg 211.48741 57.15317 m 214.45917 55.96395 l 216.17491 57.51020 l 213.20315 61.54963 lx -0.24914 0.75086 0.00000 s 47.54809 41.17786 m 95.09619 27.45191 l 122.54809 48.62703 l 75.00000 67.87454 lf -0 sg 47.54809 41.17786 m 95.09619 27.45191 l 122.54809 48.62703 l 75.00000 67.87454 lx -1.00000 0.54104 0.54104 s 205.08417 53.26402 m 211.02768 51.12613 l 214.45917 55.96395 l 208.51565 58.34238 lf -0 sg 205.08417 53.26402 m 211.02768 51.12613 l 214.45917 55.96395 l 208.51565 58.34238 lx -0.88585 0.11415 0.00000 s 195.70917 49.26013 m 201.65268 47.77513 l 205.08417 53.26402 l 199.14065 49.67276 lf -0 sg 195.70917 49.26013 m 201.65268 47.77513 l 205.08417 53.26402 l 199.14065 49.67276 lx -0.36069 0.63931 0.00000 s 226.34619 45.58368 m 232.28970 43.82217 l 235.72119 46.80508 l 229.77768 49.10169 lf -0 sg 226.34619 45.58368 m 232.28970 43.82217 l 235.72119 46.80508 l 229.77768 49.10169 lx -0.90003 0.09997 0.00000 s 211.02768 51.12613 m 216.97119 44.02655 l 220.40268 47.31294 l 214.45917 55.96395 lf -0 sg 211.02768 51.12613 m 216.97119 44.02655 l 220.40268 47.31294 l 214.45917 55.96395 lx -0.28561 0.71439 0.00000 s 176.95917 41.60465 m 188.84619 46.14307 l 195.70917 49.26013 l 183.82214 42.87654 lf -0 sg 176.95917 41.60465 m 188.84619 46.14307 l 195.70917 49.26013 l 183.82214 42.87654 lx -0.28645 0.71355 0.00000 s 216.97119 44.02655 m 222.91470 41.81313 l 226.34619 45.58368 l 220.40268 47.31294 lf -0 sg 216.97119 44.02655 m 222.91470 41.81313 l 226.34619 45.58368 l 220.40268 47.31294 lx -0.28219 0.71781 0.00000 s 232.28970 43.82217 m 238.23321 41.60458 l 241.66470 44.57634 l 235.72119 46.80508 lf -0 sg 232.28970 43.82217 m 238.23321 41.60458 l 241.66470 44.57634 l 235.72119 46.80508 lx -1.00000 0.14153 0.14153 s 201.65268 47.77513 m 207.59619 46.29014 l 211.02768 51.12613 l 205.08417 53.26402 lf -0 sg 201.65268 47.77513 m 207.59619 46.29014 l 211.02768 51.12613 l 205.08417 53.26402 lx -0.27165 0.72835 0.00000 s 222.91470 41.81313 m 228.85821 40.34487 l 232.28970 43.82217 l 226.34619 45.58368 lf -0 sg 222.91470 41.81313 m 228.85821 40.34487 l 232.28970 43.82217 l 226.34619 45.58368 lx -0.75959 0.24041 0.00000 s 207.59619 46.29014 m 213.53970 42.16302 l 216.97119 44.02655 l 211.02768 51.12613 lf -0 sg 207.59619 46.29014 m 213.53970 42.16302 l 216.97119 44.02655 l 211.02768 51.12613 lx -0.24769 0.75231 0.00000 s 213.53970 42.16302 m 219.48321 38.03590 l 222.91470 41.81313 l 216.97119 44.02655 lf -0 sg 213.53970 42.16302 m 219.48321 38.03590 l 222.91470 41.81313 l 216.97119 44.02655 lx -0.25748 0.74252 0.00000 s 228.85821 40.34487 m 234.80172 38.63283 l 238.23321 41.60458 l 232.28970 43.82217 lf -0 sg 228.85821 40.34487 m 234.80172 38.63283 l 238.23321 41.60458 l 232.28970 43.82217 lx -0.93810 0.06190 0.00000 s 188.84619 46.14307 m 200.73321 38.10923 l 207.59619 46.29014 l 195.70917 49.26013 lf -0 sg 188.84619 46.14307 m 200.73321 38.10923 l 207.59619 46.29014 l 195.70917 49.26013 lx -0.14567 0.85433 0.00000 s 219.48321 38.03590 m 225.42672 36.84848 l 228.85821 40.34487 l 222.91470 41.81313 lf -0 sg 219.48321 38.03590 m 225.42672 36.84848 l 228.85821 40.34487 l 222.91470 41.81313 lx -0.20821 0.79179 0.00000 s 225.42672 36.84848 m 231.37024 35.66107 l 234.80172 38.63283 l 228.85821 40.34487 lf -0 sg 225.42672 36.84848 m 231.37024 35.66107 l 234.80172 38.63283 l 228.85821 40.34487 lx -0.65047 0.34953 0.00000 s 170.09619 40.33277 m 181.98321 35.65933 l 188.84619 46.14307 l 176.95917 41.60465 lf -0 sg 170.09619 40.33277 m 181.98321 35.65933 l 188.84619 46.14307 l 176.95917 41.60465 lx -0.35094 0.64906 0.00000 s 200.73321 38.10923 m 212.62024 31.36343 l 219.48321 38.03590 l 207.59619 46.29014 lf -0 sg 200.73321 38.10923 m 212.62024 31.36343 l 219.48321 38.03590 l 207.59619 46.29014 lx -0.09773 0.90227 0.00000 s 212.62024 31.36343 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.03590 lf -0 sg 212.62024 31.36343 m 224.50726 29.71756 l 231.37024 35.66107 l 219.48321 38.03590 lx -0.69273 0.30727 0.00000 s 181.98321 35.65933 m 193.87024 30.98590 l 200.73321 38.10923 l 188.84619 46.14307 lf -0 sg 181.98321 35.65933 m 193.87024 30.98590 l 200.73321 38.10923 l 188.84619 46.14307 lx -0.24484 0.75516 0.00000 s 95.09619 27.45191 m 142.64428 13.72595 l 170.09619 40.33277 l 122.54809 48.62703 lf -0 sg 95.09619 27.45191 m 142.64428 13.72595 l 170.09619 40.33277 l 122.54809 48.62703 lx -0.24640 0.75360 0.00000 s 193.87024 30.98590 m 205.75726 27.37997 l 212.62024 31.36343 l 200.73321 38.10923 lf -0 sg 193.87024 30.98590 m 205.75726 27.37997 l 212.62024 31.36343 l 200.73321 38.10923 lx -0.15661 0.84339 0.00000 s 205.75726 27.37997 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.36343 lf -0 sg 205.75726 27.37997 m 217.64428 23.77405 l 224.50726 29.71756 l 212.62024 31.36343 lx -0.41465 0.58535 0.00000 s 156.37024 27.02936 m 180.14428 17.93671 l 193.87024 30.98590 l 170.09619 40.33277 lf -0 sg 156.37024 27.02936 m 180.14428 17.93671 l 193.87024 30.98590 l 170.09619 40.33277 lx -0.21145 0.78855 0.00000 s 180.14428 17.93671 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.98590 lf -0 sg 180.14428 17.93671 m 203.91833 11.88702 l 217.64428 23.77405 l 193.87024 30.98590 lx -0.26250 0.73750 0.00000 s 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.93671 l 156.37024 27.02936 lf -0 sg 142.64428 13.72595 m 166.41833 6.86298 l 180.14428 17.93671 l 156.37024 27.02936 lx -0.19476 0.80524 0.00000 s 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.93671 lf -0 sg 166.41833 6.86298 m 190.19238 0.00000 l 203.91833 11.88702 l 180.14428 17.93671 lx -showpage -. -DEAL:: -DEAL:: Writing statistics for whole sweep.# Description of fields -DEAL::# ===================== -DEAL::# General: -DEAL::# time -# Primal problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Dual problem: -# number of active cells -# number of degrees of freedom -# iterations for the helmholtz equation -# iterations for the projection equation -# elastic energy -# kinetic energy -# total energy -# Error estimation: -# total estimated error in this timestep -# Postprocessing: -# Huyghens wave -DEAL:: -DEAL:: -DEAL::0.00000 169 211 0 0 0.00000 0.00000 0.00000 169 817 9 10 0.00006 0.00005 0.00011 0.00000 0.14945 -DEAL::0.02800 211 257 8 12 0.94011 1.24534 2.18545 211 1001 10 10 0.00006 0.00005 0.00011 -0.04207 -0.08657 -DEAL::0.05600 310 366 8 13 0.54382 1.64155 2.18537 310 1433 12 10 0.00006 0.00006 0.00012 -0.01172 -0.41454 -DEAL::0.08400 367 429 8 13 1.19282 0.99251 2.18533 367 1682 15 10 0.00007 0.00007 0.00013 -0.02225 -0.53217 -DEAL::0.11200 439 504 9 13 1.14557 1.03261 2.17818 439 1978 19 10 0.00007 0.00007 0.00013 -0.02875 -0.22031 -DEAL::0.14000 487 554 10 13 1.11093 1.04485 2.15578 487 2175 20 10 0.00007 0.00007 0.00014 -0.01509 0.17460 -DEAL::0.16800 502 573 10 13 0.99758 1.07509 2.07267 502 2250 20 10 0.00007 0.00007 0.00014 -0.01727 -0.16320 -DEAL::0.19600 484 552 10 13 0.83563 0.95615 1.79178 484 2166 19 10 0.00007 0.00007 0.00014 0.00285 -0.11812 -DEAL::0.22400 508 576 9 13 0.92851 0.81114 1.73965 508 2258 19 10 0.00007 0.00007 0.00014 0.00066 0.72727 -DEAL::0.25200 550 624 9 13 0.90198 0.70701 1.60899 550 2450 19 10 0.00007 0.00009 0.00015 -0.04822 1.11785 -DEAL::0.28000 550 625 10 13 0.74954 0.75519 1.50473 550 2455 19 10 0.00007 0.00009 0.00016 -0.06196 -0.03907 -DEAL::0.30800 517 585 10 13 0.61174 0.74223 1.35397 517 2298 20 10 0.00009 0.00011 0.00020 -0.01604 -1.84811 -DEAL::0.33600 493 560 10 13 0.50491 0.67542 1.18034 493 2196 20 10 0.00010 0.00012 0.00022 -0.02144 -0.79463 -DEAL::0.36400 487 552 9 15 0.54634 0.48130 1.02765 487 2162 18 10 0.00012 0.00011 0.00023 0.00843 3.93920 -DEAL::0.39200 457 518 9 14 0.51102 0.45505 0.96607 457 2032 18 10 0.00013 0.00010 0.00023 -0.02680 9.65776 -DEAL::0.42000 400 460 9 14 0.40294 0.43286 0.83580 400 1801 17 10 0.00013 0.00010 0.00023 0.00734 14.08481 -DEAL::0.44800 337 393 9 13 0.37743 0.39830 0.77573 337 1535 16 10 0.00013 0.00011 0.00023 -0.02038 18.02986 -DEAL::0.47600 301 352 9 13 0.38030 0.32294 0.70324 301 1371 14 10 0.00013 0.00010 0.00023 -0.01618 35.82564 -DEAL::0.50400 286 335 8 13 0.26843 0.27812 0.54655 286 1303 13 10 0.00015 0.00008 0.00023 -0.07997 115.10763 -DEAL::0.53200 223 267 8 13 0.27503 0.25530 0.53033 223 1034 9 10 0.00022 0.00007 0.00030 0.03016 346.08217 -DEAL::0.56000 199 242 8 13 0.24928 0.24894 0.49822 199 934 9 10 0.00013 0.00008 0.00020 0.05559 820.08260 -DEAL::0.58800 181 221 8 13 0.22444 0.24672 0.47116 181 850 9 10 0.00024 0.00008 0.00032 0.04979 1531.51621 -DEAL::0.61600 154 192 9 12 0.21009 0.18893 0.39902 154 734 8 10 0.00013 0.00009 0.00022 0.06317 2334.23472 -DEAL::0.64400 121 157 8 11 0.18576 0.18985 0.37561 121 599 8 9 0.00015 0.00009 0.00024 -0.02409 3076.89837 -DEAL::0.67200 124 160 8 11 0.17392 0.20155 0.37547 124 608 8 9 0.00022 0.00006 0.00028 -0.38595 3885.80722 -DEAL::0.70000 115 149 8 11 0.16720 0.15213 0.31933 115 567 0 0 0.00000 0.00000 0.00000 -0.54712 4886.62591 -DEAL:: -DEAL:: Writing summary.Summary of this sweep: -====================== - - Accumulated number of cells: 8972 - Acc. number of primal dofs : 20828 - Acc. number of dual dofs : 81378 - Accumulated error : 0.00001 - - Evaluations: - ------------ - Hughens wave -- weighted time: 0.63029 - average : 0.00339 - - -DEAL:: -DEAL:: diff --git a/tests/fail/Makefile b/tests/fail/Makefile new file mode 100644 index 0000000000..8dd268e523 --- /dev/null +++ b/tests/fail/Makefile @@ -0,0 +1,34 @@ +############################################################ +# Makefile,v 1.15 2002/06/13 12:51:13 hartmann Exp +# Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006 by the deal.II authors +############################################################ + +############################################################ +# Include general settings for including DEAL libraries +############################################################ + +include ../Makefile.paths +include $D/common/Make.global_options +debug-mode = on + +libraries = $(lib-deal2-1d.g) \ + $(lib-deal2-2d.g) \ + $(lib-deal2-3d.g) \ + $(lib-lac.g) \ + $(lib-base.g) + +default: run-tests + +############################################################ + +# all .cc-files are tests by default. + +tests = $(basename $(wildcard *.cc)) + +############################################################ + +T: + @echo $(tests) +include ../Makefile.rules +include Makefile.depend +include Makefile.tests diff --git a/tests/fe/abf_approximation_01.cc b/tests/fail/abf_approximation_01.cc similarity index 100% rename from tests/fe/abf_approximation_01.cc rename to tests/fail/abf_approximation_01.cc diff --git a/tests/fe/abf_approximation_01/cmp/generic b/tests/fail/abf_approximation_01/cmp/generic similarity index 100% rename from tests/fe/abf_approximation_01/cmp/generic rename to tests/fail/abf_approximation_01/cmp/generic diff --git a/tests/fe/abf_approximation_01/rt.gpl b/tests/fail/abf_approximation_01/rt.gpl similarity index 100% rename from tests/fe/abf_approximation_01/rt.gpl rename to tests/fail/abf_approximation_01/rt.gpl diff --git a/tests/deal.II/project_abf_01.cc b/tests/fail/project_abf_01.cc similarity index 95% rename from tests/deal.II/project_abf_01.cc rename to tests/fail/project_abf_01.cc index abc6820dbd..86165bdbec 100644 --- a/tests/deal.II/project_abf_01.cc +++ b/tests/fail/project_abf_01.cc @@ -17,7 +17,7 @@ char logname[] = "project_abf_01/output"; -#include "project_common.cc" +#include "../deal.II/project_common.cc" template diff --git a/tests/deal.II/project_abf_02.cc b/tests/fail/project_abf_02.cc similarity index 95% rename from tests/deal.II/project_abf_02.cc rename to tests/fail/project_abf_02.cc index 06b7ae2fd8..47da0283cb 100644 --- a/tests/deal.II/project_abf_02.cc +++ b/tests/fail/project_abf_02.cc @@ -17,7 +17,7 @@ char logname[] = "project_abf_02/output"; -#include "project_common.cc" +#include "../deal.II/project_common.cc" template diff --git a/tests/deal.II/project_abf_03.cc b/tests/fail/project_abf_03.cc similarity index 95% rename from tests/deal.II/project_abf_03.cc rename to tests/fail/project_abf_03.cc index 6b87532abb..ff11d889b4 100644 --- a/tests/deal.II/project_abf_03.cc +++ b/tests/fail/project_abf_03.cc @@ -17,7 +17,7 @@ char logname[] = "project_abf_03/output"; -#include "project_common.cc" +#include "../deal.II/project_common.cc" template diff --git a/tests/deal.II/project_abf_04.cc b/tests/fail/project_abf_04.cc similarity index 95% rename from tests/deal.II/project_abf_04.cc rename to tests/fail/project_abf_04.cc index d014d0d20d..603fe8f24c 100644 --- a/tests/deal.II/project_abf_04.cc +++ b/tests/fail/project_abf_04.cc @@ -17,7 +17,7 @@ char logname[] = "project_abf_04/output"; -#include "project_common.cc" +#include "../deal.II/project_common.cc" template diff --git a/tests/deal.II/project_abf_05.cc b/tests/fail/project_abf_05.cc similarity index 95% rename from tests/deal.II/project_abf_05.cc rename to tests/fail/project_abf_05.cc index c0f87091aa..35cda4fca6 100644 --- a/tests/deal.II/project_abf_05.cc +++ b/tests/fail/project_abf_05.cc @@ -17,7 +17,7 @@ char logname[] = "project_abf_05/output"; -#include "project_common.cc" +#include "../deal.II/project_common.cc" template diff --git a/tests/deal.II/project_dgp_nonparametric_01.cc b/tests/fail/project_dgp_nonparametric_01.cc similarity index 95% rename from tests/deal.II/project_dgp_nonparametric_01.cc rename to tests/fail/project_dgp_nonparametric_01.cc index f1d0d4b3a8..24ad12da2c 100644 --- a/tests/deal.II/project_dgp_nonparametric_01.cc +++ b/tests/fail/project_dgp_nonparametric_01.cc @@ -18,7 +18,7 @@ char logname[] = "project_dgp_nonparametric_01/output"; -#include "project_common.cc" +#include "../deal.II/project_common.cc" template diff --git a/tests/deal.II/project_dgp_nonparametric_02.cc b/tests/fail/project_dgp_nonparametric_02.cc similarity index 95% rename from tests/deal.II/project_dgp_nonparametric_02.cc rename to tests/fail/project_dgp_nonparametric_02.cc index f32cb616f6..a8ac74ad91 100644 --- a/tests/deal.II/project_dgp_nonparametric_02.cc +++ b/tests/fail/project_dgp_nonparametric_02.cc @@ -18,7 +18,7 @@ char logname[] = "project_dgp_nonparametric_02/output"; -#include "project_common.cc" +#include "../deal.II/project_common.cc" template diff --git a/tests/deal.II/project_dgp_nonparametric_03.cc b/tests/fail/project_dgp_nonparametric_03.cc similarity index 95% rename from tests/deal.II/project_dgp_nonparametric_03.cc rename to tests/fail/project_dgp_nonparametric_03.cc index bddae02e62..c0aeb13412 100644 --- a/tests/deal.II/project_dgp_nonparametric_03.cc +++ b/tests/fail/project_dgp_nonparametric_03.cc @@ -18,7 +18,7 @@ char logname[] = "project_dgp_nonparametric_03/output"; -#include "project_common.cc" +#include "../deal.II/project_common.cc" template diff --git a/tests/deal.II/project_dgp_nonparametric_04.cc b/tests/fail/project_dgp_nonparametric_04.cc similarity index 95% rename from tests/deal.II/project_dgp_nonparametric_04.cc rename to tests/fail/project_dgp_nonparametric_04.cc index c471ccd3eb..e6aa32745f 100644 --- a/tests/deal.II/project_dgp_nonparametric_04.cc +++ b/tests/fail/project_dgp_nonparametric_04.cc @@ -18,7 +18,7 @@ char logname[] = "project_dgp_nonparametric_04/output"; -#include "project_common.cc" +#include "../deal.II/project_common.cc" template diff --git a/tests/deal.II/project_dgp_nonparametric_05.cc b/tests/fail/project_dgp_nonparametric_05.cc similarity index 95% rename from tests/deal.II/project_dgp_nonparametric_05.cc rename to tests/fail/project_dgp_nonparametric_05.cc index 3cdb044b8e..fe380f1e10 100644 --- a/tests/deal.II/project_dgp_nonparametric_05.cc +++ b/tests/fail/project_dgp_nonparametric_05.cc @@ -18,7 +18,7 @@ char logname[] = "project_dgp_nonparametric_05/output"; -#include "project_common.cc" +#include "../deal.II/project_common.cc" template diff --git a/tests/deal.II/project_rt_03.cc b/tests/fail/project_rt_03.cc similarity index 96% rename from tests/deal.II/project_rt_03.cc rename to tests/fail/project_rt_03.cc index 911a5dd59a..fcc074d50a 100644 --- a/tests/deal.II/project_rt_03.cc +++ b/tests/fail/project_rt_03.cc @@ -17,7 +17,7 @@ char logname[] = "project_rt_03/output"; -#include "project_common.cc" +#include "../deal.II/project_common.cc" template diff --git a/tests/deal.II/project_rt_03/cmp/generic b/tests/fail/project_rt_03/cmp/generic similarity index 100% rename from tests/deal.II/project_rt_03/cmp/generic rename to tests/fail/project_rt_03/cmp/generic diff --git a/tests/fe/rt_4.cc b/tests/fail/rt_4.cc similarity index 100% rename from tests/fe/rt_4.cc rename to tests/fail/rt_4.cc diff --git a/tests/fe/rt_4/cmp/generic b/tests/fail/rt_4/cmp/generic similarity index 100% rename from tests/fe/rt_4/cmp/generic rename to tests/fail/rt_4/cmp/generic diff --git a/tests/fe/rt_4/cmp/mips-sgi-irix6.5+MIPSpro7.4 b/tests/fail/rt_4/cmp/mips-sgi-irix6.5+MIPSpro7.4 similarity index 100% rename from tests/fe/rt_4/cmp/mips-sgi-irix6.5+MIPSpro7.4 rename to tests/fail/rt_4/cmp/mips-sgi-irix6.5+MIPSpro7.4 diff --git a/tests/fe/rt_4/cmp/x86_64-unknown-linux-gnu+gcc3.3 b/tests/fail/rt_4/cmp/x86_64-unknown-linux-gnu+gcc3.3 similarity index 100% rename from tests/fe/rt_4/cmp/x86_64-unknown-linux-gnu+gcc3.3 rename to tests/fail/rt_4/cmp/x86_64-unknown-linux-gnu+gcc3.3 diff --git a/tests/fe/rt_6.cc b/tests/fail/rt_6.cc similarity index 100% rename from tests/fe/rt_6.cc rename to tests/fail/rt_6.cc diff --git a/tests/fe/rt_6/cmp/generic b/tests/fail/rt_6/cmp/generic similarity index 100% rename from tests/fe/rt_6/cmp/generic rename to tests/fail/rt_6/cmp/generic diff --git a/tests/bits/rt_crash_01.cc b/tests/fail/rt_crash_01.cc similarity index 98% rename from tests/bits/rt_crash_01.cc rename to tests/fail/rt_crash_01.cc index 1d4d5cb075..d59aeb8f0b 100644 --- a/tests/bits/rt_crash_01.cc +++ b/tests/fail/rt_crash_01.cc @@ -12,7 +12,7 @@ //---------------------------- rt_crash_01.cc --------------------------- #include "../tests.h" -#include "dof_tools_common.cc" +#include "../bits/dof_tools_common.cc" #include #include #include diff --git a/tests/bits/rt_crash_01/cmp/generic b/tests/fail/rt_crash_01/cmp/generic similarity index 100% rename from tests/bits/rt_crash_01/cmp/generic rename to tests/fail/rt_crash_01/cmp/generic diff --git a/tests/fe/rt_distorted_01.cc b/tests/fail/rt_distorted_01.cc similarity index 100% rename from tests/fe/rt_distorted_01.cc rename to tests/fail/rt_distorted_01.cc diff --git a/tests/fe/rt_distorted_01/cmp/generic b/tests/fail/rt_distorted_01/cmp/generic similarity index 100% rename from tests/fe/rt_distorted_01/cmp/generic rename to tests/fail/rt_distorted_01/cmp/generic diff --git a/tests/fe/rt_distorted_01/rt.gpl b/tests/fail/rt_distorted_01/rt.gpl similarity index 100% rename from tests/fe/rt_distorted_01/rt.gpl rename to tests/fail/rt_distorted_01/rt.gpl diff --git a/tests/fe/rt_distorted_02.cc b/tests/fail/rt_distorted_02.cc similarity index 100% rename from tests/fe/rt_distorted_02.cc rename to tests/fail/rt_distorted_02.cc diff --git a/tests/fe/rt_distorted_02/cmp/generic b/tests/fail/rt_distorted_02/cmp/generic similarity index 100% rename from tests/fe/rt_distorted_02/cmp/generic rename to tests/fail/rt_distorted_02/cmp/generic diff --git a/tests/fe/rt_distorted_02/rt.gpl b/tests/fail/rt_distorted_02/rt.gpl similarity index 100% rename from tests/fe/rt_distorted_02/rt.gpl rename to tests/fail/rt_distorted_02/rt.gpl -- 2.39.5