From adfa42a8f97edf4c23ccf44ee1a3dd8271aa2e82 Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Wed, 6 Jan 2010 14:42:54 +0000 Subject: [PATCH] Remove nonsensical std::flush. git-svn-id: https://svn.dealii.org/trunk@20316 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-22/step-22.cc | 213 ++++++++++++++-------------- 1 file changed, 106 insertions(+), 107 deletions(-) diff --git a/deal.II/examples/step-22/step-22.cc b/deal.II/examples/step-22/step-22.cc index 739adad62f..ced1d12b8b 100644 --- a/deal.II/examples/step-22/step-22.cc +++ b/deal.II/examples/step-22/step-22.cc @@ -3,7 +3,7 @@ /* $Id$ */ /* */ -/* Copyright (C) 2008, 2009 by the deal.II authors */ +/* Copyright (C) 2008, 2009, 2010 by the deal.II authors */ /* */ /* This file is subject to QPL and may not be distributed */ /* without copyright and license information. Please refer */ @@ -12,8 +12,8 @@ // @sect3{Include files} - - // As usual, we start by including + + // As usual, we start by including // some well-known files: #include #include @@ -54,8 +54,8 @@ // for the sparse direct solver UMFPACK: #include - // This includes the libary for the - // incomplete LU factorization that will + // This includes the libary for the + // incomplete LU factorization that will // be used as a preconditioner in 3D: #include @@ -68,7 +68,7 @@ using namespace dealii; // @sect3{Defining the inner preconditioner type} - + // As explained in the introduction, we are // going to use different preconditioners for // two and three space dimensions, @@ -87,7 +87,7 @@ struct InnerPreconditioner; // In 2D, we are going to use a sparse direct // solver as preconditioner: template <> -struct InnerPreconditioner<2> +struct InnerPreconditioner<2> { typedef SparseDirectUMFPACK type; }; @@ -95,14 +95,14 @@ struct InnerPreconditioner<2> // And the ILU preconditioning in 3D, called // by SparseILU: template <> -struct InnerPreconditioner<3> +struct InnerPreconditioner<3> { typedef SparseILU type; }; // @sect3{The StokesProblem class template} - + // This is an adaptation of step-20, so the // main class and the data types are the // same as used there. In this example we @@ -116,27 +116,27 @@ struct InnerPreconditioner<3> // hanging_node_constraints // into constraints. template -class StokesProblem +class StokesProblem { public: StokesProblem (const unsigned int degree); void run (); - + private: void setup_dofs (); void assemble_system (); void solve (); void output_results (const unsigned int refinement_cycle) const; void refine_mesh (); - + const unsigned int degree; - + Triangulation triangulation; FESystem fe; DoFHandler dof_handler; ConstraintMatrix constraints; - + BlockSparsityPattern sparsity_pattern; BlockSparseMatrix system_matrix; @@ -200,21 +200,21 @@ class StokesProblem // filter out the pressure component // when interpolating the boundary // values. - + // The following function object is a // representation of the boundary // values described in the // introduction: template -class BoundaryValues : public Function +class BoundaryValues : public Function { public: BoundaryValues () : Function(dim+1) {} - + virtual double value (const Point &p, const unsigned int component = 0) const; - virtual void vector_value (const Point &p, + virtual void vector_value (const Point &p, Vector &value) const; }; @@ -222,11 +222,11 @@ class BoundaryValues : public Function template double BoundaryValues::value (const Point &p, - const unsigned int component) const + const unsigned int component) const { Assert (component < this->n_components, ExcIndexRange (component, 0, this->n_components)); - + if (component == 0) return (p[0] < 0 ? -1 : (p[0] > 0 ? 1 : 0)); return 0; @@ -236,7 +236,7 @@ BoundaryValues::value (const Point &p, template void BoundaryValues::vector_value (const Point &p, - Vector &values) const + Vector &values) const { for (unsigned int c=0; cn_components; ++c) values(c) = BoundaryValues::value (p, c); @@ -248,24 +248,24 @@ BoundaryValues::vector_value (const Point &p, // the right hand side which for the // current example is simply zero: template -class RightHandSide : public Function +class RightHandSide : public Function { public: RightHandSide () : Function(dim+1) {} - + virtual double value (const Point &p, const unsigned int component = 0) const; - virtual void vector_value (const Point &p, + virtual void vector_value (const Point &p, Vector &value) const; - + }; template double RightHandSide::value (const Point &/*p*/, - const unsigned int /*component*/) const + const unsigned int /*component*/) const { return 0; } @@ -274,7 +274,7 @@ RightHandSide::value (const Point &/*p*/, template void RightHandSide::vector_value (const Point &p, - Vector &values) const + Vector &values) const { for (unsigned int c=0; cn_components; ++c) values(c) = RightHandSide::value (p, c); @@ -282,14 +282,14 @@ RightHandSide::vector_value (const Point &p, // @sect3{Linear solvers and preconditioners} - + // The linear solvers and preconditioners are // discussed extensively in the // introduction. Here, we create the // respective objects that will be used. - + // @sect4{The InverseMatrix class template} - + // The InverseMatrix // class represents the data // structure for an inverse @@ -340,9 +340,9 @@ InverseMatrix::InverseMatrix (const Matrix &m, {} - // This is the implementation of the + // This is the implementation of the // vmult function. - + // In this class we use a rather large // tolerance for the solver control. The // reason for this is that the function is @@ -398,7 +398,7 @@ class SchurComplement : public Subscriptor private: const SmartPointer > system_matrix; const SmartPointer, Preconditioner> > A_inverse; - + mutable Vector tmp1, tmp2; }; @@ -427,7 +427,7 @@ void SchurComplement::vmult (Vector &dst, // @sect3{StokesProblem class implementation} - + // @sect4{StokesProblem::StokesProblem} // The constructor of this class @@ -446,7 +446,7 @@ void SchurComplement::vmult (Vector &dst, // $Q_{degree+1}^d\times Q_{degree}$, // often referred to as the // Taylor-Hood element. - // + // // Note that we initialize the triangulation // with a MeshSmoothing argument, which // ensures that the refinement of cells is @@ -468,7 +468,7 @@ StokesProblem::StokesProblem (const unsigned int degree) // @sect4{StokesProblem::setup_dofs} - + // Given a mesh, this function // associates the degrees of freedom // with it and creates the @@ -525,11 +525,11 @@ StokesProblem::StokesProblem (const unsigned int degree) // use the traditional Cuthill-McKee // algorithm already used in some of // the previous tutorial programs. - // In the + // In the // section on improved ILU // we're going to discuss this issue // in more detail. - + // There is one more change compared // to previous tutorial programs: // There is no reason in sorting the @@ -562,8 +562,8 @@ void StokesProblem::setup_dofs () { A_preconditioner.reset (); system_matrix.clear (); - - dof_handler.distribute_dofs (fe); + + dof_handler.distribute_dofs (fe); DoFRenumbering::Cuthill_McKee (dof_handler); std::vector block_component (dim+1,0); @@ -632,7 +632,7 @@ void StokesProblem::setup_dofs () // but now grouped as velocity and pressure // block via block_component. std::vector dofs_per_block (2); - DoFTools::count_dofs_per_block (dof_handler, dofs_per_block, block_component); + DoFTools::count_dofs_per_block (dof_handler, dofs_per_block, block_component); const unsigned int n_u = dofs_per_block[0], n_p = dofs_per_block[1]; @@ -643,7 +643,7 @@ void StokesProblem::setup_dofs () << dof_handler.n_dofs() << " (" << n_u << '+' << n_p << ')' << std::endl; - + // The next task is to allocate a // sparsity pattern for the system matrix // we will create. We could do this in @@ -729,24 +729,24 @@ void StokesProblem::setup_dofs () csp.block(1,0).reinit (n_p, n_u); csp.block(0,1).reinit (n_u, n_p); csp.block(1,1).reinit (n_p, n_p); - - csp.collect_sizes(); - + + csp.collect_sizes(); + DoFTools::make_sparsity_pattern (dof_handler, csp, constraints, false); sparsity_pattern.copy_from (csp); } - + // Finally, the system matrix, - // solution and right hand side are + // solution and right hand side are // created from the block // structure as in step-20: system_matrix.reinit (sparsity_pattern); - + solution.reinit (2); solution.block(0).reinit (n_u); solution.block(1).reinit (n_p); solution.collect_sizes (); - + system_rhs.reinit (2); system_rhs.block(0).reinit (n_u); system_rhs.block(1).reinit (n_p); @@ -755,7 +755,7 @@ void StokesProblem::setup_dofs () // @sect4{StokesProblem::assemble_system} - + // The assembly process follows the // discussion in step-20 and in the // introduction. We use the well-known @@ -765,11 +765,11 @@ void StokesProblem::setup_dofs () // numbering of the degrees of freedom // for the present cell. template -void StokesProblem::assemble_system () +void StokesProblem::assemble_system () { system_matrix=0; system_rhs=0; - + QGauss quadrature_formula(degree+2); FEValues fe_values (fe, quadrature_formula, @@ -777,16 +777,16 @@ void StokesProblem::assemble_system () update_quadrature_points | update_JxW_values | update_gradients); - + const unsigned int dofs_per_cell = fe.dofs_per_cell; - + const unsigned int n_q_points = quadrature_formula.size(); FullMatrix local_matrix (dofs_per_cell, dofs_per_cell); Vector local_rhs (dofs_per_cell); std::vector local_dof_indices (dofs_per_cell); - + const RightHandSide right_hand_side; std::vector > rhs_values (n_q_points, Vector(dim+1)); @@ -820,23 +820,23 @@ void StokesProblem::assemble_system () // times, a not insignificant // difference. // - // So what we're - // going to do here is to avoid - // such repeated calculations by - // getting a vector of rank-2 + // So what we're + // going to do here is to avoid + // such repeated calculations by + // getting a vector of rank-2 // tensors (and similarly for // the divergence and the basis // function value on pressure) // at the quadrature point prior // to starting the loop over the - // dofs on the cell. First, we + // dofs on the cell. First, we // create the respective objects // that will hold these // values. Then, we start the // loop over all cells and the loop - // over the quadrature points, - // where we first extract these - // values. There is one more + // over the quadrature points, + // where we first extract these + // values. There is one more // optimization we implement here: // the local matrix (as well as // the global one) is going to @@ -851,19 +851,19 @@ void StokesProblem::assemble_system () std::vector > phi_grads_u (dofs_per_cell); std::vector div_phi_u (dofs_per_cell); std::vector phi_p (dofs_per_cell); - + typename DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), endc = dof_handler.end(); for (; cell!=endc; ++cell) - { + { fe_values.reinit (cell); local_matrix = 0; local_rhs = 0; - + right_hand_side.vector_value_list(fe_values.get_quadrature_points(), rhs_values); - + for (unsigned int q=0; q::assemble_system () - div_phi_u[i] * phi_p[j] - phi_p[i] * div_phi_u[j] + phi_p[i] * phi_p[j]) - * fe_values.JxW(q); + * fe_values.JxW(q); } const unsigned int component_i = fe.system_to_component_index(i).first; - local_rhs(i) += fe_values.shape_value(i,q) * + local_rhs(i) += fe_values.shape_value(i,q) * rhs_values[q](component_i) * fe_values.JxW(q); } @@ -940,10 +940,10 @@ void StokesProblem::assemble_system () cell->get_dof_indices (local_dof_indices); constraints.distribute_local_to_global (local_matrix, local_rhs, - local_dof_indices, + local_dof_indices, system_matrix, system_rhs); } - + // Before we're going to solve this // linear system, we generate a // preconditioner for the @@ -959,7 +959,7 @@ void StokesProblem::assemble_system () // anything different whether we want to // use a sparse direct solver or an ILU: std::cout << " Computing preconditioner..." << std::endl << std::flush; - + A_preconditioner = std_cxx1x::shared_ptr::type>(new typename InnerPreconditioner::type()); A_preconditioner->initialize (system_matrix.block(0,0), @@ -970,7 +970,7 @@ void StokesProblem::assemble_system () // @sect4{StokesProblem::solve} - + // After the discussion in the introduction // and the definition of the respective // classes above, the implementation of the @@ -985,13 +985,13 @@ void StokesProblem::assemble_system () // of type // InnerPreconditioner@::type. template -void StokesProblem::solve () +void StokesProblem::solve () { const InverseMatrix, typename InnerPreconditioner::type> A_inverse (system_matrix.block(0,0), *A_preconditioner); Vector tmp (solution.block(0).size()); - + // This is as in step-20. We generate the // right hand side $B A^{-1} F - G$ for the // Schur complement and an object that @@ -1005,16 +1005,16 @@ void StokesProblem::solve () A_inverse.vmult (tmp, system_rhs.block(0)); system_matrix.block(1,0).vmult (schur_rhs, tmp); schur_rhs -= system_rhs.block(1); - + SchurComplement::type> schur_complement (system_matrix, A_inverse); - + // The usual control structures for // the solver call are created... SolverControl solver_control (solution.block(1).size(), 1e-6*schur_rhs.l2_norm()); SolverCG<> cg (solver_control); - + // Now to the preconditioner to the // Schur complement. As explained in // the introduction, the @@ -1060,12 +1060,12 @@ void StokesProblem::solve () // of iterations, but the costs for its // generation are almost neglible. SparseILU preconditioner; - preconditioner.initialize (system_matrix.block(1,1), + preconditioner.initialize (system_matrix.block(1,1), SparseILU::AdditionalData()); - + InverseMatrix,SparseILU > m_inverse (system_matrix.block(1,1), preconditioner); - + // With the Schur complement and an // efficient preconditioner at hand, we // can solve the respective equation @@ -1074,21 +1074,20 @@ void StokesProblem::solve () // way: cg.solve (schur_complement, solution.block(1), schur_rhs, m_inverse); - + // After this first solution step, the // hanging node constraints have to be // distributed to the solution in order // to achieve a consistent pressure // field. constraints.distribute (solution); - + std::cout << " " << solver_control.last_step() << " outer CG Schur complement iterations for pressure" - << std::flush - << std::endl; + << std::endl; } - + // As in step-20, we finally need to // solve for the velocity equation where // we plug in the solution to the @@ -1104,7 +1103,7 @@ void StokesProblem::solve () system_matrix.block(0,1).vmult (tmp, solution.block(1)); tmp *= -1; tmp += system_rhs.block(0); - + A_inverse.vmult (solution.block(0), tmp); constraints.distribute (solution); @@ -1113,7 +1112,7 @@ void StokesProblem::solve () // @sect4{StokesProblem::output_results} - + // The next function generates graphical // output. In this example, we are going to // use the VTK file format. We attach @@ -1160,20 +1159,20 @@ StokesProblem::output_results (const unsigned int refinement_cycle) const { std::vector solution_names (dim, "velocity"); solution_names.push_back ("pressure"); - + std::vector data_component_interpretation (dim, DataComponentInterpretation::component_is_part_of_vector); data_component_interpretation .push_back (DataComponentInterpretation::component_is_scalar); - + DataOut data_out; - data_out.attach_dof_handler (dof_handler); + data_out.attach_dof_handler (dof_handler); data_out.add_data_vector (solution, solution_names, DataOut::type_dof_data, data_component_interpretation); data_out.build_patches (); - + std::ostringstream filename; filename << "solution-" << Utilities::int_to_string (refinement_cycle, 2) @@ -1185,7 +1184,7 @@ StokesProblem::output_results (const unsigned int refinement_cycle) const // @sect4{StokesProblem::refine_mesh} - + // This is the last interesting function of // the StokesProblem class. // As indicated by its name, it takes the @@ -1200,7 +1199,7 @@ StokesProblem::output_results (const unsigned int refinement_cycle) const // the grid again: template void -StokesProblem::refine_mesh () +StokesProblem::refine_mesh () { Vector estimated_error_per_cell (triangulation.n_active_cells()); @@ -1221,7 +1220,7 @@ StokesProblem::refine_mesh () // @sect4{StokesProblem::run} - + // The last step in the Stokes class is, as // usual, the function that generates the // initial grid and calls the other @@ -1242,7 +1241,7 @@ StokesProblem::refine_mesh () // need them, we put the entire block // between a pair of braces: template -void StokesProblem::run () +void StokesProblem::run () { { std::vector subdivisions (dim, 1); @@ -1254,13 +1253,13 @@ void StokesProblem::run () const Point top_right = (dim == 2 ? Point(2,0) : Point(2,1,0)); - + GridGenerator::subdivided_hyper_rectangle (triangulation, subdivisions, bottom_left, top_right); } - + // A boundary indicator of 1 is set to all // boundaries that are subject to Dirichlet // boundary conditions, i.e. to faces that @@ -1273,8 +1272,8 @@ void StokesProblem::run () for (unsigned int f=0; f::faces_per_cell; ++f) if (cell->face(f)->center()[dim-1] == 0) cell->face(f)->set_all_boundary_indicators(1); - - + + // We then apply an initial refinement // before solving for the first time. In // 3D, there are going to be more degrees @@ -1291,18 +1290,18 @@ void StokesProblem::run () ++refinement_cycle) { std::cout << "Refinement cycle " << refinement_cycle << std::endl; - + if (refinement_cycle > 0) refine_mesh (); - + setup_dofs (); std::cout << " Assembling..." << std::endl << std::flush; - assemble_system (); + assemble_system (); std::cout << " Solving..." << std::flush; solve (); - + output_results (refinement_cycle); std::cout << std::endl; @@ -1316,7 +1315,7 @@ void StokesProblem::run () // step-20. We pass the element degree as a // parameter and choose the space dimension // at the well-known template slot. -int main () +int main () { try { @@ -1335,10 +1334,10 @@ int main () << "Aborting!" << std::endl << "----------------------------------------------------" << std::endl; - + return 1; } - catch (...) + catch (...) { std::cerr << std::endl << std::endl << "----------------------------------------------------" -- 2.39.5