From affe7b7795b4a9bd48d5c286803de428514360db Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Thu, 12 Apr 2001 14:47:16 +0000 Subject: [PATCH] Add algorithm for 3d eigenvalues. git-svn-id: https://svn.dealii.org/trunk@4452 0785d39b-7218-0410-832d-ea1e28bc413d --- .../numerics/derivative_approximation.cc | 158 +++++++++++++++++- 1 file changed, 150 insertions(+), 8 deletions(-) diff --git a/deal.II/deal.II/source/numerics/derivative_approximation.cc b/deal.II/deal.II/source/numerics/derivative_approximation.cc index c8137f8a9e..c079bb176c 100644 --- a/deal.II/deal.II/source/numerics/derivative_approximation.cc +++ b/deal.II/deal.II/source/numerics/derivative_approximation.cc @@ -164,7 +164,7 @@ template <> inline double DerivativeApproximation::SecondDerivative<3>:: -derivative_norm (const Derivative &) +derivative_norm (const Derivative &d) { /* compute the three eigenvalues of the tensor @p{d} and take the @@ -179,19 +179,161 @@ derivative_norm (const Derivative &) C(EE); Unfortunately, with both optimized and non-optimized output, at some - places cthe code `sqrt(-1.0)' is emitted, and I don't know what + places the code `sqrt(-1.0)' is emitted, and I don't know what Maple intends to do with it. This happens both with Maple4 and Maple5. - So, if someone has a handy way to compute the three eigenvalues of a - 3x3 matrix, send it to us. The trick is probably to tell Maple or - some other code generator that the matrix is symmetric and the - eigenvalues thus real, but how to do that? + Fortunately, Roger Young provided the following Fortran code, which + is transcribed below to C. The code uses an algorithm that uses the + invariants of a symmetric matrix. (The translated algorithm is + augmented by a test for R>0, since R==0 indicates that all three + eigenvalues are equal.) + + + PROGRAM MAIN + +C FIND EIGENVALUES OF REAL SYMMETRIC MATRIX +C (ROGER YOUNG, 2001) + + IMPLICIT NONE + + REAL*8 A11, A12, A13, A22, A23, A33 + REAL*8 I1, J2, J3, AM + REAL*8 S11, S12, S13, S22, S23, S33 + REAL*8 SS12, SS23, SS13 + REAL*8 R,R3, XX,YY, THETA + REAL*8 A1,A2,A3 + REAL*8 PI + PARAMETER (PI=3.141592653587932384D0) + REAL*8 A,B,C, TOL + PARAMETER (TOL=1.D-14) + +C DEFINE A TEST MATRIX + + A11 = -1.D0 + A12 = 5.D0 + A13 = 3.D0 + A22 = -2.D0 + A23 = 0.5D0 + A33 = 4.D0 + + + I1 = A11 + A22 + A33 + AM = I1/3.D0 + + S11 = A11 - AM + S22 = A22 - AM + S33 = A33 - AM + S12 = A12 + S13 = A13 + S23 = A23 + + SS12 = S12*S12 + SS23 = S23*S23 + SS13 = S13*S13 + + J2 = S11*S11 + S22*S22 + S33*S33 + J2 = J2 + 2.D0*(SS12 + SS23 + SS13) + J2 = J2/2.D0 + + J3 = S11**3 + S22**3 + S33**3 + J3 = J3 + 3.D0*S11*(SS12 + SS13) + J3 = J3 + 3.D0*S22*(SS12 + SS23) + J3 = J3 + 3.D0*S33*(SS13 + SS23) + J3 = J3 + 6.D0*S12*S23*S13 + J3 = J3/3.D0 + + R = SQRT(4.D0*J2/3.D0) + R3 = R*R*R + XX = 4.D0*J3/R3 + + YY = 1.D0 - DABS(XX) + IF(YY.LE.0.D0)THEN + IF(YY.GT.(-TOL))THEN + WRITE(6,*)'Equal roots: XX= ',XX + A = -(XX/DABS(XX))*SQRT(J2/3.D0) + B = AM + A + C = AM - 2.D0*A + WRITE(6,*)B,' (twice) ',C + STOP + ELSE + WRITE(6,*)'Error: XX= ',XX + STOP + ENDIF + ENDIF + + THETA = (ACOS(XX))/3.D0 + + A1 = AM + R*COS(THETA) + A2 = AM + R*COS(THETA + 2.D0*PI/3.D0) + A3 = AM + R*COS(THETA + 4.D0*PI/3.D0) + + WRITE(6,*)A1,A2,A3 + + STOP + END + */ + + const double pi = 3.141592653587932384; + const double am = trace(d) / 3.; + + // s := d - trace(d) I + Tensor<2,3> s = d; + for (unsigned int i=0; i<3; ++i) + s[i][i] -= am; - Assert (false, ExcNotImplemented()); + const double ss01 = s[0][1] * s[0][1], + ss12 = s[1][2] * s[1][2], + ss02 = s[0][2] * s[0][2]; + + const double J2 = (s[0][0]*s[0][0] + s[1][1]*s[1][1] + s[2][2]*s[2][2] + + 2 * (ss01 + ss02 + ss12)) / 2.; + const double J3 = (std::pow(s[0][0],3) + std::pow(s[1][1],3) + std::pow(s[2][2],3) + + 3. * s[0][0] * (ss01 + ss02) + + 3. * s[1][1] * (ss01 + ss12) + + 3. * s[2][2] * (ss02 + ss12) + + 6. * s[0][1] * s[0][2] * s[1][2]) / 3.; + + const double R = std::sqrt (4. * J2 / 3.); + + double EE[3] = { 0, 0, 0 }; + // the eigenvalues are away from + // @p{am} in the order of R. thus, + // if R< -1e-14, ExcInternalError()); + + if (YY < 0) + { + // two roots are equal + const double a = (XX>0 ? -1. : 1.) * R / 2; + EE[0] = EE[1] = am + a; + EE[2] = am - 2.*a; + } + else + { + const double theta = std::acos(XX) / 3.; + EE[0] = am + R*std::cos(theta); + EE[1] = am + R*std::cos(theta + 2./3.*pi); + EE[2] = am + R*std::cos(theta + 4./3.*pi); + }; + }; - const double EE[3] = { 0, 0, 0 }; + cout << "EE=" << EE[0] << ' ' << EE[1] << ' ' << EE[2] << endl; + return std::max (std::fabs (EE[0]), std::max (std::fabs (EE[1]), std::fabs (EE[2]))); -- 2.39.5