From b3e671f197b9bccedfb37b85aafb2d98b8e713c1 Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Tue, 20 May 2008 02:53:03 +0000 Subject: [PATCH] Simplify some parts of assembling cell terms. git-svn-id: https://svn.dealii.org/trunk@16129 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-33/step-33.cc | 618 +++++++++++++++------------- 1 file changed, 343 insertions(+), 275 deletions(-) diff --git a/deal.II/examples/step-33/step-33.cc b/deal.II/examples/step-33/step-33.cc index 2c29da8535..dcf0ea8529 100644 --- a/deal.II/examples/step-33/step-33.cc +++ b/deal.II/examples/step-33/step-33.cc @@ -83,12 +83,16 @@ #include - // And this again is C++: + // And this again is C++, as well as a header + // file from BOOST that declares a class + // representing an array of fixed size: #include #include #include #include +#include + // To end this section, introduce everythin // in the dealii library into the current // namespace: @@ -285,20 +289,16 @@ struct EulerEquations // rectangular array of numbers // right away. // - // We templatize the numerical - // type of the flux function so - // that we may use the automatic - // differentiation type here. - // The flux functions are defined - // in terms of the conserved - // variables $\rho w_0, \dots, - // \rho w_{d-1}, \rho, E$, so - // they do not look exactly like - // the Euler equations one is - // used to seeing. - template + // We templatize the numerical type of + // the flux function so that we may use + // the automatic differentiation type + // here. Similarly, we will call the + // function with different input vector + // data types, so we templatize on it as + // well: + template static - void flux_matrix (const std::vector &W, + void flux_matrix (const InputVector &W, number (&flux)[n_components][dim]) { // First compute the pressure that @@ -356,8 +356,8 @@ struct EulerEquations Sacado::Fad::DFad iflux[n_components][dim]; Sacado::Fad::DFad oflux[n_components][dim]; - flux_matrix(Wplus, iflux); - flux_matrix(Wminus, oflux); + flux_matrix (Wplus, iflux); + flux_matrix (Wminus, oflux); for (unsigned int di=0; di::setup_system () // The actual implementation of the // assembly on these objects is done // in the following functions. + // + // At the top of the function we do the usual + // housekeeping: allocate FEValues, + // FEFaceValues, and FESubfaceValues objects + // necessary to do the integrations on cells, + // faces, and subfaces (in case of adjoining + // cells on different refinement + // levels). Note that we don't need all + // information (like values, gradients, or + // real locations of quadrature points) for + // all of these objects, so we only let the + // FEValues classes whatever is actually + // necessary by specifying the minimal set of + // UpdateFlags. For example, when using a + // FEFaceValues object for the neighboring + // cell we only need the shape values: Given + // a specific face, the quadrature points and + // JxW values are the same as + // for the current cells, and the normal + // vectors are known to be the negative of + // the normal vectors of the current cell. template void ConservationLaw::assemble_system () { const unsigned int dofs_per_cell = dof_handler.get_fe().dofs_per_cell; - // We track the dofs on this cell and (if necessary) - // the adjacent cell. - std::vector dofs (dofs_per_cell); - std::vector dofs_neighbor (dofs_per_cell); - - // First we create the - // ``UpdateFlags'' for the - // ``FEValues'' and the - // ``FEFaceValues'' objects. - const UpdateFlags update_flags = update_values - | update_gradients - | update_q_points - | update_JxW_values, - - // Note, that on faces we do not - // need gradients but we need - // normal vectors. - face_update_flags = update_values - | update_q_points - | update_JxW_values - | update_normal_vectors, - - // On the neighboring cell we only - // need the shape values. Given a - // specific face, the quadrature - // points and `JxW values' are the - // same as for the current cells, - // the normal vectors are known to - // be the negative of the normal - // vectors of the current cell. - neighbor_face_update_flags = update_values; + std::vector dof_indices (dofs_per_cell); + std::vector dof_indices_neighbor (dofs_per_cell); + + const UpdateFlags update_flags = update_values + | update_gradients + | update_q_points + | update_JxW_values, + face_update_flags = update_values + | update_q_points + | update_JxW_values + | update_normal_vectors, + neighbor_face_update_flags = update_values; - // Then we create the ``FEValues'' - // object. Note, that since version - // 3.2.0 of deal.II the constructor - // of this class takes a - // ``Mapping'' object as first - // argument. Although the - // constructor without ``Mapping'' - // argument is still supported it - // is recommended to use the new - // constructor. This reduces the - // effect of `hidden magic' (the - // old constructor implicitely - // assumes a ``MappingQ1'' mapping) - // and makes it easier to change - // the mapping object later. - FEValues fe_v (mapping, fe, quadrature, update_flags); - - // Similarly we create the - // ``FEFaceValues'' and - // ``FESubfaceValues'' objects for - // both, the current and the - // neighboring cell. Within the - // following nested loop over all - // cells and all faces of the cell - // they will be reinited to the - // current cell and the face (and - // subface) number. + FEValues fe_v (mapping, fe, quadrature, + update_flags); FEFaceValues fe_v_face (mapping, fe, face_quadrature, face_update_flags); FESubfaceValues fe_v_subface (mapping, fe, face_quadrature, @@ -1688,204 +1665,295 @@ void ConservationLaw::assemble_system () FESubfaceValues fe_v_subface_neighbor (mapping, fe, face_quadrature, neighbor_face_update_flags); - // Furthermore we need some cell - // iterators. + // Then loop over all cells, initialize the + // FEValues object for the current cell and + // call the function that assembles the + // problem on this cell. typename DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), endc = dof_handler.end(); - - // Now we start the loop over all - // active cells. for (; cell!=endc; ++cell) { - - // Now we reinit the ``FEValues'' - // object for the current cell fe_v.reinit (cell); + cell->get_dof_indices (dof_indices); + + assemble_cell_term(fe_v, dof_indices); + + // Then loop over all the faces of this + // cell. If a face is part of the + // external boundary, then assemble + // boundary conditions there (the fifth + // argument to + // assemble_face_terms + // indicates whether we are working on + // an external or internal face; if it + // is an external face, the fourth + // argument denoting the degrees of + // freedom indices of the neighbor is + // ignores, so we pass an empty + // vector): + for (unsigned int face_no=0; face_no::faces_per_cell; + ++face_no) + if (cell->at_boundary(face_no)) + { + fe_v_face.reinit (cell, face_no); + assemble_face_term (face_no, fe_v_face, + fe_v_face, + dof_indices, + std::vector(), + true, + cell->face(face_no)->boundary_indicator(), + cell->face(face_no)->diameter()); + } - // Collect the local dofs and - // asssemble the cell term. - cell->get_dof_indices (dofs); - - assemble_cell_term(fe_v, dofs); - - // We use the DG style loop through faces - // to determine if we need to apply a - // 'hanging node' flux calculation or a boundary - // computation. - for (unsigned int face_no=0; face_no::faces_per_cell; ++face_no) - { - if (cell->at_boundary(face_no)) - { - // We reinit the - // ``FEFaceValues'' - // object to the - // current face - fe_v_face.reinit (cell, face_no); - - // and assemble the - // corresponding face - // terms. We send the same - // fe_v and dofs as described - // in the assembly routine. - assemble_face_term(face_no, fe_v_face, - fe_v_face, - dofs, - dofs, - true, - cell->face(face_no)->boundary_indicator(), - cell->face(face_no)->diameter()); - } - else - { - // Now we are not on - // the boundary of the - // domain, therefore - // there must exist a - // neighboring cell. - typename DoFHandler::cell_iterator neighbor= - cell->neighbor(face_no);; - - if (cell->face(face_no)->has_children()) - { - // case I: This cell refined compared to neighbor - - const unsigned int neighbor2= - cell->neighbor_of_neighbor(face_no); - + // The alternative is that we are + // dealing with an internal face. There + // are two cases that we need to + // distinguish: that this is a normal + // face between two cells at the same + // refinement level, and that it is a + // face between two cells of the + // different refinement levels. + // + // In the first case, there is nothing + // we need to do: we are using a + // continuous finite element, and face + // terms do not appear in the bilinear + // form in this case. The second case + // usually does not lead to face terms + // either if we enforce hanging node + // constraints strongly (as in all + // previous tutorial programs so far + // whenever we used continuous finite + // elements -- this enforcement is done + // by the ConstraintMatrix class + // together with + // DoFTools::make_hanging_node_constraints). In + // the current program, however, we opt + // to enforce continuity weakly at + // faces between cells of different + // refinement level, for two reasons: + // (i) because we can, and more + // importantly (ii) because we would + // have to thread the automatic + // differentiation we use to compute + // the elements of the Newton matrix + // from the residual through the + // operations of the ConstraintMatrix + // class. This would be possible, but + // is not trivial, and so we choose + // this alternative approach. + // + // What needs to be decided is which + // side of an interface between two + // cells of different refinement level + // we are sitting on. + // + // Let's take the case where the + // neighbor is more refined first. We + // then have to loop over the children + // of the face of the current cell and + // integrate on each of them. We + // sprinkle a couple of assertions into + // the code to ensure that our + // reasoning trying to figure out which + // of the neighbor's children's faces + // coincides with a given subface of + // the current cell's faces is correct + // -- a bit of defensive programming + // never hurts. + // + // We then call the function that + // integrates over faces; since this is + // an internal face, the fifth argument + // is false, and the sixth one is + // ignored so we pass an invalid value + // again: + else + { + if (cell->neighbor(face_no)->has_children()) + { + const unsigned int neighbor2= + cell->neighbor_of_neighbor(face_no); - // We loop over - // subfaces - for (unsigned int subface_no=0; - subface_no::subfaces_per_face; - ++subface_no) - { - typename DoFHandler::active_cell_iterator - neighbor_child - = cell->neighbor_child_on_subface (face_no, subface_no); - - Assert (neighbor_child->face(neighbor2) == cell->face(face_no)->child(subface_no), - ExcInternalError()); - Assert (!neighbor_child->has_children(), ExcInternalError()); - - fe_v_subface.reinit (cell, face_no, subface_no); - fe_v_face_neighbor.reinit (neighbor_child, neighbor2); - neighbor_child->get_dof_indices (dofs_neighbor); - - // Assemble as if we are working with - // a DG element. - assemble_face_term(face_no, fe_v_subface, - fe_v_face_neighbor, - dofs, - dofs_neighbor, - false, - numbers::invalid_unsigned_int, - neighbor_child->diameter()); - } - // End of ``if - // (face->has_children())'' - } - else - { - // We have no children, but - // the neighbor cell may be refine - // compared to use - neighbor->get_dof_indices (dofs_neighbor); - if (neighbor->level() != cell->level()) - { - // case II: This is refined compared to neighbor - Assert(neighbor->level() < cell->level(), ExcInternalError()); - const std::pair faceno_subfaceno= - cell->neighbor_of_coarser_neighbor(face_no); - const unsigned int neighbor_face_no=faceno_subfaceno.first, - neighbor_subface_no=faceno_subfaceno.second; - - Assert (neighbor->neighbor_child_on_subface (neighbor_face_no, - neighbor_subface_no) - == cell, - ExcInternalError()); - - // Reinit the - // appropriate - // ``FEFaceValues'' - // and assemble - // the face - // terms. - fe_v_face.reinit (cell, face_no); - fe_v_subface_neighbor.reinit (neighbor, neighbor_face_no, - neighbor_subface_no); + for (unsigned int subface_no=0; + subface_no::subfaces_per_face; + ++subface_no) + { + const typename DoFHandler::active_cell_iterator + neighbor_child + = cell->neighbor_child_on_subface (face_no, subface_no); + + Assert (neighbor_child->face(neighbor2) == + cell->face(face_no)->child(subface_no), + ExcInternalError()); + Assert (neighbor_child->has_children() == false, + ExcInternalError()); + + fe_v_subface.reinit (cell, face_no, subface_no); + fe_v_face_neighbor.reinit (neighbor_child, neighbor2); + + neighbor_child->get_dof_indices (dof_indices_neighbor); + + assemble_face_term(face_no, fe_v_subface, + fe_v_face_neighbor, + dof_indices, + dof_indices_neighbor, + false, + numbers::invalid_unsigned_int, + neighbor_child->diameter()); + } + } + + // The other possibility we have + // to care for is if the neighbor + // is coarser than the current + // cell (in particular, because + // of the usual restriction of + // only one hanging node per + // face, the neighbor must be + // exactly one level coarser than + // the current cell, something + // that we check with an + // assertion). Again, we then + // integrate over this interface: + else if (cell->neighbor(face_no)->level() != cell->level()) + { + const typename DoFHandler::cell_iterator + neighbor = cell->neighbor(face_no); + Assert(neighbor->level() == cell->level()-1, + ExcInternalError()); + + neighbor->get_dof_indices (dof_indices_neighbor); + + const std::pair + faceno_subfaceno = cell->neighbor_of_coarser_neighbor(face_no); + const unsigned int neighbor_face_no = faceno_subfaceno.first, + neighbor_subface_no = faceno_subfaceno.second; + + Assert (neighbor->neighbor_child_on_subface (neighbor_face_no, + neighbor_subface_no) + == cell, + ExcInternalError()); + + fe_v_face.reinit (cell, face_no); + fe_v_subface_neighbor.reinit (neighbor, + neighbor_face_no, + neighbor_subface_no); - assemble_face_term(face_no, fe_v_face, - fe_v_subface_neighbor, - dofs, - dofs_neighbor, - false, - numbers::invalid_unsigned_int, - cell->face(face_no)->diameter()); - } - - } - // End of ``face not at boundary'': - } - // End of loop over all faces: - } - - // End iteration through cells. + assemble_face_term(face_no, fe_v_face, + fe_v_subface_neighbor, + dof_indices, + dof_indices_neighbor, + false, + numbers::invalid_unsigned_int, + cell->face(face_no)->diameter()); + } + } } - // Notify Epetra that the matrix is done. + // After all this assembling, notify the + // Trilinos matrix object that the matrix + // is done: Matrix->FillComplete(); } // @sect4{ConservationLaw::assemble_cell_term} // - // Assembles the cell term, adding minus the residual - // to the right hand side, and adding in the Jacobian - // contributions. + // This function assembles the cell term by + // computing the cell part of the residual, + // adding its negative to the right hand side + // vector, and adding its derivative with + // respect to the local variables to the + // Jacobian (i.e. the Newton matrix). + // + // At the top, do the usual housekeeping in + // terms of allocating some local variables + // that we will need later. In particular, we + // will allocate variables that will hold the + // values of the current solution $W_{n+1}^k$ + // after the $k$th Newton iteration (variable + // W), the previous time step's + // solution $W_{n}$ (variable + // W_old), as well as the linear + // combination $\theta W_{n+1}^k + + // (1-\theta)W_n$ that results from choosing + // different time stepping schemes (variable + // W_theta). + // + // In addition to these, we need the + // gradients of the current variables. It is + // a bit of a shame that we have to compute + // these; we almost don't. The nice thing + // about a simple conservation law is that + // the flux doesn't generally involve any + // gradients. We do need these, however, for + // the diffusion stabilization. + // + // The actual format in which we store these + // variables requires some + // explanation. First, we need values at each + // quadrature point for each of the + // EulerEquations::n_components + // components of the solution vector. This + // makes for a two-dimensional table for + // which we use deal.II's Table class (this + // is more efficient than + // std::vector@ + // @> because it only needs to + // allocate memory once, rather than once for + // each element of the outer + // vector). Similarly, the gradient is a + // three-dimensional table, which the Table + // class also supports. + // + // Secondly, we want to use automatic + // differentiation. To this end, we use the + // Sacado::Fad::DFad template for everything + // that is a computed from the variables with + // respect to which we would like to compute + // derivatives. This includes the current + // solution and gradient at the quadrature + // points (which are linear combinations of + // the degrees of freedom) as well as + // everything that is computed from them such + // as the residual, but not the previous time + // step's solution. These variables are all + // found in the first part of the function: template -void ConservationLaw::assemble_cell_term (const FEValues &fe_v, - const std::vector &dofs) +void +ConservationLaw:: +assemble_cell_term (const FEValues &fe_v, + const std::vector &dof_indices) { - unsigned int dofs_per_cell = fe_v.dofs_per_cell; - unsigned int n_q_points = fe_v.n_quadrature_points; - - // We will define the dofs on this cell in these fad variables. - std::vector > DOF(dofs_per_cell); + const unsigned int dofs_per_cell = fe_v.dofs_per_cell; + const unsigned int n_q_points = fe_v.n_quadrature_points; - // Values of the conservative variables at the quadrature points. - std::vector > > W (n_q_points, - std::vector >(EulerEquations::n_components)); + Table<2,Sacado::Fad::DFad > + W (n_q_points, EulerEquations::n_components); - // Values at the last time step of the conservative variables. - // Note that these do not use fad variables, since they do - // not depend on the 'variables to be sought'=DOFS. - std::vector > Wl (n_q_points, - std::vector(EulerEquations::n_components)); + Table<2,double> + W_old (n_q_points, EulerEquations::n_components); - // Here we will hold the averaged values of the conservative - // variables that we will linearize around (cn=Crank Nicholson). - std::vector > > Wcn (n_q_points, - std::vector >(EulerEquations::n_components)); - - // Gradients of the current variables. It is a - // bit of a shame that we have to compute these; we almost don't. - // The nice thing about a simple conservation law is that the - // the flux doesn't generally involve any gradients. We do - // need these, however, for the diffusion stabilization. - std::vector > > > Wgrads (n_q_points, - std::vector > >(EulerEquations::n_components, - std::vector >(dim))); + std::vector,EulerEquations::n_components> > + W_theta (n_q_points); + Table<3,Sacado::Fad::DFad > + grad_W (n_q_points, EulerEquations::n_components, dim); + // We will define the dofs on this cell in + // these fad variables. + std::vector > independent_local_dof_values(dofs_per_cell); + // Here is the magical point where we declare a subset // of the fad variables as degrees of freedom. All // calculations that reference these variables (either // directly or indirectly) will accumulate sensitivies // with respect to these dofs. for (unsigned int in = 0; in < dofs_per_cell; in++) { - DOF[in] = current_solution(dofs[in]); - DOF[in].diff(in, dofs_per_cell); + independent_local_dof_values[in] = current_solution(dof_indices[in]); + independent_local_dof_values[in].diff(in, dofs_per_cell); } // Here we compute the shape function values and gradients @@ -1897,23 +1965,23 @@ void ConservationLaw::assemble_cell_term (const FEValues & for (unsigned int q = 0; q < n_q_points; q++) { for (unsigned int di = 0; di < EulerEquations::n_components; di++) { W[q][di] = 0; - Wl[q][di] = 0; - Wcn[q][di] = 0; + W_old[q][di] = 0; + W_theta[q][di] = 0; for (unsigned int d = 0; d < dim; d++) { - Wgrads[q][di][d] = 0; + grad_W[q][di][d] = 0; } } for (unsigned int sf = 0; sf < dofs_per_cell; sf++) { int di = fe_v.get_fe().system_to_component_index(sf).first; W[q][di] += - DOF[sf]*fe_v.shape_value_component(sf, q, di); - Wl[q][di] += - old_solution(dofs[sf])*fe_v.shape_value_component(sf, q, di); - Wcn[q][di] += - (parameters.theta*DOF[sf]+(1-parameters.theta)*old_solution(dofs[sf]))*fe_v.shape_value_component(sf, q, di); + independent_local_dof_values[sf]*fe_v.shape_value_component(sf, q, di); + W_old[q][di] += + old_solution(dof_indices[sf])*fe_v.shape_value_component(sf, q, di); + W_theta[q][di] += + (parameters.theta*independent_local_dof_values[sf]+(1-parameters.theta)*old_solution(dof_indices[sf]))*fe_v.shape_value_component(sf, q, di); for (unsigned int d = 0; d < dim; d++) { - Wgrads[q][di][d] += DOF[sf]* + grad_W[q][di][d] += independent_local_dof_values[sf]* fe_v.shape_grad_component(sf, q, di)[d]; } // for d @@ -1931,7 +1999,7 @@ void ConservationLaw::assemble_cell_term (const FEValues & FluxMatrix *flux = new FluxMatrix[n_q_points]; for (unsigned int q=0; q < n_q_points; ++q) - EulerEquations::flux_matrix(Wcn[q], flux[q]); + EulerEquations::flux_matrix(W_theta[q], flux[q]); // We now have all of the function values/grads/fluxes, @@ -1968,7 +2036,7 @@ void ConservationLaw::assemble_cell_term (const FEValues & // The mass term (if the simulation is non-stationary). if (parameters.is_stationary == false) F_i += 1.0 / parameters.time_step * - (W[point][component_i] - Wl[point][component_i]) * + (W[point][component_i] - W_old[point][component_i]) * fe_v.shape_value_component(i, point, component_i) * fe_v.JxW(point); @@ -1976,7 +2044,7 @@ void ConservationLaw::assemble_cell_term (const FEValues & for (unsigned int d = 0; d < dim; d++) F_i += 1.0*std::pow(fe_v.get_cell()->diameter(), parameters.diffusion_power) * fe_v.shape_grad_component(i, point, component_i)[d] * - Wgrads[point][component_i][d] * + grad_W[point][component_i][d] * fe_v.JxW(point); // The gravity component only enters into the energy @@ -1984,13 +2052,13 @@ void ConservationLaw::assemble_cell_term (const FEValues & // velocity. if (component_i == dim - 1) F_i += parameters.gravity * - Wcn[point][EulerEquations::density_component] * + W_theta[point][EulerEquations::density_component] * fe_v.shape_value_component(i,point, component_i) * fe_v.JxW(point); else if (component_i == EulerEquations::energy_component) F_i += parameters.gravity * - Wcn[point][EulerEquations::density_component] * - Wcn[point][dim-1] * + W_theta[point][EulerEquations::density_component] * + W_theta[point][dim-1] * fe_v.shape_value_component(i,point, component_i) * fe_v.JxW(point); } @@ -1999,11 +2067,11 @@ void ConservationLaw::assemble_cell_term (const FEValues & // of the residual. We then sum these into the // Epetra matrix. double *values = &(F_i.fastAccessDx(0)); - Matrix->SumIntoGlobalValues(dofs[i], + Matrix->SumIntoGlobalValues(dof_indices[i], dofs_per_cell, values, - reinterpret_cast(const_cast(&dofs[0]))); - right_hand_side(dofs[i]) -= F_i.val(); + reinterpret_cast(const_cast(&dof_indices[0]))); + right_hand_side(dof_indices[i]) -= F_i.val(); } delete[] flux; @@ -2023,8 +2091,8 @@ void ConservationLaw::assemble_face_term(const unsigned int face_no, const FEFaceValuesBase &fe_v, const FEFaceValuesBase &fe_v_neighbor, - const std::vector &dofs, - const std::vector &dofs_neighbor, + const std::vector &dof_indices, + const std::vector &dof_indices_neighbor, const bool external_face, const unsigned int boundary_id, const double face_diameter) @@ -2037,7 +2105,7 @@ ConservationLaw::assemble_face_term(const unsigned int face_no, ExcDimensionMismatch(dofs_per_cell, ndofs_per_cell)); // As above, the fad degrees of freedom - std::vector > DOF(dofs_per_cell+ndofs_per_cell); + std::vector > independent_local_dof_values(dofs_per_cell+ndofs_per_cell); // The conservative variables for this cell, // and for @@ -2056,16 +2124,16 @@ ConservationLaw::assemble_face_term(const unsigned int face_no, // there is a neighbor cell, then we want // to include them. int ndofs = (external_face == false ? dofs_per_cell + ndofs_per_cell : dofs_per_cell); - // Set the local DOFS. + // Set the local independent_local_dof_valuesS. for (unsigned int in = 0; in < dofs_per_cell; in++) { - DOF[in] = current_solution(dofs[in]); - DOF[in].diff(in, ndofs); + independent_local_dof_values[in] = current_solution(dof_indices[in]); + independent_local_dof_values[in].diff(in, ndofs); } // If present, set the neighbor dofs. if (external_face == false) for (unsigned int in = 0; in < ndofs_per_cell; in++) { - DOF[in+dofs_per_cell] = current_solution(dofs_neighbor[in]); - DOF[in+dofs_per_cell].diff(in+dofs_per_cell, ndofs); + independent_local_dof_values[in+dofs_per_cell] = current_solution(dof_indices_neighbor[in]); + independent_local_dof_values[in+dofs_per_cell].diff(in+dofs_per_cell, ndofs); } // Set the values of the local conservative variables. @@ -2078,7 +2146,7 @@ ConservationLaw::assemble_face_term(const unsigned int face_no, for (unsigned int sf = 0; sf < dofs_per_cell; sf++) { int di = fe_v.get_fe().system_to_component_index(sf).first; Wplus[q][di] += - (parameters.theta*DOF[sf]+(1.0-parameters.theta)*old_solution(dofs[sf]))*fe_v.shape_value_component(sf, q, di); + (parameters.theta*independent_local_dof_values[sf]+(1.0-parameters.theta)*old_solution(dof_indices[sf]))*fe_v.shape_value_component(sf, q, di); } @@ -2089,7 +2157,7 @@ ConservationLaw::assemble_face_term(const unsigned int face_no, for (unsigned int sf = 0; sf < ndofs_per_cell; sf++) { int di = fe_v_neighbor.get_fe().system_to_component_index(sf).first; Wminus[q][di] += - (parameters.theta*DOF[sf+dofs_per_cell]+(1.0-parameters.theta)*old_solution(dofs_neighbor[sf]))* + (parameters.theta*independent_local_dof_values[sf+dofs_per_cell]+(1.0-parameters.theta)*old_solution(dof_indices_neighbor[sf]))* fe_v_neighbor.shape_value_component(sf, q, di); } } @@ -2233,20 +2301,20 @@ ConservationLaw::assemble_face_term(const unsigned int face_no, // Update the matrix. Depending on whether there // is/isn't a neighboring cell, we add more/less // entries. - Matrix->SumIntoGlobalValues(dofs[i], + Matrix->SumIntoGlobalValues(dof_indices[i], dofs_per_cell, &values[0], - reinterpret_cast(const_cast(&dofs[0]))); + reinterpret_cast(const_cast(&dof_indices[0]))); if (external_face == false) - Matrix->SumIntoGlobalValues(dofs[i], + Matrix->SumIntoGlobalValues(dof_indices[i], dofs_per_cell, &values[dofs_per_cell], - reinterpret_cast(const_cast(&dofs_neighbor[0]))); + reinterpret_cast(const_cast(&dof_indices_neighbor[0]))); // And add into the residual - right_hand_side(dofs[i]) -= F_i.val(); + right_hand_side(dof_indices[i]) -= F_i.val(); } delete[] normal_fluxes; -- 2.39.5