From b44198d02d713eb9c0349bd3819b14523fc5255e Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Wed, 12 Sep 2001 14:29:54 +0000 Subject: [PATCH] First part of comments. git-svn-id: https://svn.dealii.org/trunk@4980 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-10/step-10.cc | 222 +++++++++++++++++++++++++--- 1 file changed, 198 insertions(+), 24 deletions(-) diff --git a/deal.II/examples/step-10/step-10.cc b/deal.II/examples/step-10/step-10.cc index d16562fa81..3b067f4e4b 100644 --- a/deal.II/examples/step-10/step-10.cc +++ b/deal.II/examples/step-10/step-10.cc @@ -1,6 +1,10 @@ /* $Id$ */ /* Author: Wolfgang Bangerth, Ralf Hartmann, University of Heidelberg, 2001 */ + // The first of the following include + // files are probably well-known by + // now and need no further + // explanation. #include #include #include @@ -13,55 +17,225 @@ #include #include #include + + // This is the only new one: in it, + // we declare the ``MappingQ'' class + // which we will use for polynomial + // mappings of arbitrary order: #include + // And this again is C++: #include -static const long double pi=3.141592653589793238462643; - - - + // Now, as we want to compute the + // value of pi, we have to compare to + // somewhat. These are the first few + // digits of pi, which we define + // beforehand for later use. Since we + // would like to compute the + // difference between two numbers + // which are quite accurate, with the + // accuracy of the computed + // approximation to pi being in the + // range of the number of digits + // which a double variable can hold, + // we rather declare the reference + // value as a ``long double'' and + // give it a number of extra digits: +const long double pi = 3.141592653589793238462643; + + + + // Then, the first task will be to + // generate some output. Since this + // program is so small, we do not + // employ object oriented techniques + // in it and do not declare classes + // (although, of course, we use the + // object oriented features of the + // library). Rather, we just pack the + // functionality into separate + // functions. We make these functions + // templates on the number of space + // dimensions to conform to usual + // practice when using deal.II, + // although we will only use them for + // two space dimensions. + // + // The first of these functions just + // generates a triangulation of a + // circle (hyperball) and outputs the + // Qp mapping of its cells for + // different values of ``p''. Then, + // we refine the grid once and do so + // again. template void gnuplot_output() { std::cout << "Output of grids into gnuplot files:" << std::endl << "===================================" << std::endl; - + + // So first generate a coarse + // triangulation of the circle and + // associate a suitable boundary + // description to it: Triangulation triangulation; GridGenerator::hyper_ball (triangulation); static const HyperBallBoundary boundary; triangulation.set_boundary (0, boundary); - - GridOut grid_out; - // on boundary faces plot 30 - // additional points per face. - GridOutFlags::Gnuplot gnuplot_flags(false, 30); - grid_out.set_flags(gnuplot_flags); - + // Next generate output for this + // grid and for a once refined + // grid. Note that we have hidden + // the mesh refinement in the loop + // header, which might be uncommon + // but nevertheless works. Also it + // is strangly consistent with + // incrementing the loop index + // denoting the refinement level. for (unsigned int refinement=0; refinement<2; ++refinement, triangulation.refine_global(1)) { std::cout << "Refinement level: " << refinement << std::endl; - std::string filename_base="ball"; - filename_base += ('0'+refinement); - + + // Then have a string which + // denotes the base part of the + // names of the files into + // which we write the + // output. Note that in the + // parentheses in the + // initializer we do arithmetic + // on characters, which assumes + // that first the characters + // denoting numbers are placed + // consecutively (which is + // probably true for all + // reasonable character sets + // nowadays), but also assumes + // that the increment + // ``refinement'' is less than + // ten. This is therefore more + // a quick hack if we know + // exactly the values which the + // increment can assume. A + // better implementation would + // use the + // ``std::istringstream'' + // class to generate a name. + std::string filename_base = std::string("ball"); + filename_base += '0'+refinement; + + // Then output the present grid + // for Q1, Q2, and Q3 mappings: for (unsigned int order=1; order<4; ++order) { - std::cout << "Order = " << order; - + std::cout << "Order = " << order << std::endl; + + // For this, first set up + // an object describing the + // mapping. This is done + // using the ``MappingQ'' + // class, which takes as + // argument to the + // constructor the + // polynomial order which + // it shall use. const MappingQ mapping (order); - std::string filename=filename_base+"_mapping_q"; + // We note one interesting + // fact: if you want a + // piecewise linear + // mapping, then you could + // give a value of ``1'' to + // the + // constructor. However, + // for linear mappings, so + // many things can be + // generated simpler that + // there is another class, + // called ``MappingQ1'' + // which does exactly the + // same is if you gave an + // order of ``1'' to the + // ``MappingQ'' class, but + // does so significantly + // faster. ``MappingQ1'' is + // also the class that is + // implicitely used + // throughout the library + // in many functions and + // classes if you do not + // specify another mapping + // explicitly. + + + // In order to actually + // write out the present + // grid with this mapping, + // we set up an object + // which we will use for + // output. We will generate + // Gnuplot output, which + // consists of a set of + // lines describing the + // mapped triangulation. By + // default, only one line + // is drawn for each face + // of the triangulation, + // but since we want to + // explicitely see the + // effect of the mapping, + // we want to have teh + // faces in more + // detail. This can be done + // by passing the output + // object a structure which + // contains some flags. In + // the present case, since + // Gnuplot can only draw + // straight lines, we + // output a number of + // additional points on the + // faces so that each face + // is drawn by 30 small + // lines instead of only + // one. This is sufficient + // to give us the + // impression of seeing a + // curved line, rather than + // a set of straight lines. + GridOut grid_out; + GridOutFlags::Gnuplot gnuplot_flags(false, 30); + grid_out.set_flags(gnuplot_flags); + + // Finally, generate a + // filename and a file for + // output using the same + // evil hack as above: + std::string filename = filename_base+"_mapping_q"; filename += ('0'+order); filename += ".dat"; - std::ofstream gnuplot_file(filename.c_str()); - - std::cout << ". Writing gnuplot file <" - << filename << ">..." << std::endl; - - grid_out.write_gnuplot(triangulation, gnuplot_file, &mapping); + std::ofstream gnuplot_file (filename.c_str()); + + // Then write out the + // triangulation to this + // file. The last argument + // of the function is a + // pointer to a mapping + // object. This argument + // has a default value, and + // if no value is given a + // simple ``MappingQ1'' + // object is taken, which + // we briefly described + // above. This would then + // result in a piecewise + // linear approximation of + // the true boundary in the + // output. + grid_out.write_gnuplot (triangulation, gnuplot_file, &mapping); } + std::cout << std::endl; } } -- 2.39.5