From c2e195927aefb57308eb9e74fc9bf2ac71cfe981 Mon Sep 17 00:00:00 2001 From: Timo Heister Date: Wed, 20 May 2020 16:56:06 -0400 Subject: [PATCH] switch to mathtt --- examples/step-69/doc/intro.dox | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/examples/step-69/doc/intro.dox b/examples/step-69/doc/intro.dox index 556d156ca3..1fa6873e3a 100644 --- a/examples/step-69/doc/intro.dox +++ b/examples/step-69/doc/intro.dox @@ -317,9 +317,9 @@ $t_n$: @f{align*} &\textbf{for } i \in \mathcal{V} \\ &\ \ \ \ \{\mathbf{c}_{ij}\}_{j \in \mathcal{I}(i)} \leftarrow -\mathrm{gather\_cij\_vectors} (\textbf{c}, \mathcal{I}(i)) \\ +\mathtt{gather\_cij\_vectors} (\textbf{c}, \mathcal{I}(i)) \\ &\ \ \ \ \{\textbf{U}_j^n\}_{j \in \mathcal{I}(i)} \leftarrow -\mathrm{gather\_state\_vectors} (\textbf{U}^n, \mathcal{I}(i)) \\ +\mathtt{gather\_state\_vectors} (\textbf{U}^n, \mathcal{I}(i)) \\ &\ \ \ \ \ \textbf{U}_i^{n+1} \leftarrow \mathbf{U}_i^{n} \\ &\ \ \ \ \textbf{for } j \in \mathcal{I}(i)\backslash\{i\} \\ &\ \ \ \ \ \ \ \ \texttt{compute } d_{ij} \\ @@ -327,7 +327,7 @@ $t_n$: &\ \ \ \ \ \ \ \ \textbf{U}_i^{n+1} \leftarrow \textbf{U}_i^{n+1} - \frac{\tau_n}{m_i} \mathbb{f}(\mathbf{U}_j^{n})\cdot \mathbf{c}_{ij} + d_{ij} \mathbf{U}_j^{n} \\ &\ \ \ \ \textbf{end} \\ -&\ \ \ \ \mathrm{scatter\_updated\_state} (\textbf{U}_i^{n+1}) \\ +&\ \ \ \ \mathtt{scatter\_updated\_state} (\textbf{U}_i^{n+1}) \\ &\textbf{end} @f} @@ -336,8 +336,8 @@ We note here that: - Here $\textbf{c}$ and $\textbf{U}^n$ are a global matrix and a global vector containing all the vectors $\mathbf{c}_{ij}$ and all the states $\mathbf{U}_j^n$ respectively. -- $\mathrm{gather\_cij\_vectors}$, $\mathrm{gather\_state\_vectors}$, and -$\mathrm{scatter\_updated\_state}$ are hypothetical implementations that +- $\mathtt{gather\_cij\_vectors}$, $\mathtt{gather\_state\_vectors}$, and +$\mathtt{scatter\_updated\_state}$ are hypothetical implementations that either collect (from) or write (into) global matrices and vectors. - If we assume a Cartesian mesh in two space dimensions, first-order polynomial space $\mathbb{Q}^1$, and that -- 2.39.5