From c411af393a8e97ba39fdc847f4064c1a583f0b8a Mon Sep 17 00:00:00 2001 From: guido Date: Tue, 12 Jul 2005 22:02:43 +0000 Subject: [PATCH] fix doxygen problem git-svn-id: https://svn.dealii.org/trunk@11128 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/base/include/base/symmetric_tensor.h | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/deal.II/base/include/base/symmetric_tensor.h b/deal.II/base/include/base/symmetric_tensor.h index a6472f2d6c..09d2882e0b 100644 --- a/deal.II/base/include/base/symmetric_tensor.h +++ b/deal.II/base/include/base/symmetric_tensor.h @@ -2122,10 +2122,10 @@ unit_symmetric_tensor<3> () * representation of the linear deviator operator. * * For every tensor t, there holds the identity - * deviator(t)==deviator_tensor()*t, up to numerical + * deviator(t)==deviator_tensor<dim>()*t, up to numerical * round-off. The reason this operator representation is provided since one - * sometimes needs to invert operators like identity_tensor() + - * delta_t*deviator_tensor() or similar. + * sometimes needs to invert operators like identity_tensor<dim>() + + * delta_t*deviator_tensor<dim>() or similar. * * @relates SymmetricTensor * @author Wolfgang Bangerth, 2005 @@ -2163,10 +2163,10 @@ deviator_tensor () * representation of the linear deviator operator. * * For every tensor t, there holds the identity - * deviator(t)==deviator_tensor()*t, up to numerical + * deviator(t)==deviator_tensor<dim>()*t, up to numerical * round-off. The reason this operator representation is provided since one - * sometimes needs to invert operators like identity_tensor() + - * delta_t*deviator_tensor() or similar. + * sometimes needs to invert operators like identity_tensor<dim>() + + * delta_t*deviator_tensor<dim>() or similar. * * @relates SymmetricTensor * @author Wolfgang Bangerth, 2005 @@ -2199,7 +2199,7 @@ identity_tensor () /** * Return the tensor of rank 4 that is the outer product of the two tensors - * given as arguments, i.e. the result T=t1 \otimes t2 satisfies + * given as arguments, i.e. the result $T=t1 \otimes t2$ satisfies * T phi = t1 (t2 : phi) for all symmetric tensors phi. * * For example, the deviator tensor can be computed as -- 2.39.5