From c520ee10f272a9a574472f450c0c64a3b9650970 Mon Sep 17 00:00:00 2001 From: bangerth Date: Mon, 14 Apr 2008 18:02:37 +0000 Subject: [PATCH] One more. Unify style. git-svn-id: https://svn.dealii.org/trunk@15995 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/doc/publications/toc.html | 42 ++++++++++++++++++++----------- 1 file changed, 27 insertions(+), 15 deletions(-) diff --git a/deal.II/doc/publications/toc.html b/deal.II/doc/publications/toc.html index 232d7aac21..99b11f382e 100644 --- a/deal.II/doc/publications/toc.html +++ b/deal.II/doc/publications/toc.html @@ -168,11 +168,22 @@
    +
  1. + M. S. Alnæs, K.-A. Mardal, +
    + Symbolic computations and code generation for finite + element methods + +
    + ACM Transactions on Mathematical Software, submitted, + 2008. +

    +
  2. B. Carnes, G. F. Carey,
    Local boundary value problems for the error in FE - approximation of non-linear diffusion systems. + approximation of non-linear diffusion systems
    International Journal for Numerical Methods in Engineering, vol. 73, @@ -220,7 +231,7 @@ L. Heltai,
    Numerical validation of a class of mixed - discontinuous Galerkin methods for Darcy flow, + discontinuous Galerkin methods for Darcy flow
    Computer Methods in Applied Mechanics and Engineering, @@ -314,7 +325,7 @@
    The efficient implementation of a finite element, multi-resolution viscosity method for hyperbolic conservation - laws. + laws
    Journal of Computational Physics, vol. 225, pp. 1288-1313, 2007. @@ -324,7 +335,7 @@ B. Carnes, G. F. Carey,
    Estimating spatial and parameter error in - parameterized nonlinear reaction-diffusion equations. + parameterized nonlinear reaction-diffusion equations
    Communications in Numerical Methods in Engineering, vol. 23, @@ -466,7 +477,7 @@ target="_top">O. Kayser-Herold, H.G. Matthies,
    A unified least-squares formulation for fluid-structure interaction - problems. + problems
    Computers and Structures, vol. 85, pp. 998-1011, 2007. @@ -544,7 +555,7 @@
    Systematic discretization of input/output maps and other contributions to the control of distributed parameter - systems. + systems
    Ph.D. thesis, TU Berlin, Germany, 2007. @@ -583,7 +594,7 @@ M. Allmaras,
    Optimal Design of Periodic Microstructures by the - Inverse Homogenization Method. + Inverse Homogenization Method
    Diploma Thesis, Technical University Munich, Germany, 2006. @@ -592,7 +603,7 @@

  3. N. Antonic, M. Vrdoljak,
    - Sequential laminates in multiple state optimal design problems. + Sequential laminates in multiple state optimal design problems
    Mathematical Problems in Engineering, vol. 2006, pp. 1-14, 2006. @@ -602,7 +613,7 @@ E. Bängtsson, B. Lund,
    A comparison between two approaches to solve the equations of - isostasy. + isostasy
    Institute for Parallel Processing (BIS 21++) Technical Report 2006-03, @@ -613,7 +624,7 @@ E. Bängtsson, B. Lund,
    A comparison between two approaches to solve the equations of - isostasy. + isostasy
    Technical Report 2006-051, Uppsala University, Sweden, 2006. @@ -623,7 +634,7 @@ E. Bängtsson, M. Neytcheva,
    Numerical simulations of glacial rebound using - preconditioned iterative solution methods. + preconditioned iterative solution methods
    Applications of Mathematics, vol. 50, pp. 183-201, 2006. @@ -648,7 +659,8 @@ C. S. Peskin.
    On the hyper-elastic formulation of - the immersed boundary method, + the immersed boundary method +

    Computer Methods in Applied Mechanics and Engineering, in press, 2007. @@ -760,7 +772,7 @@

  4. L. Heltai
    - The Finite Element Immersed Boundary Method, + The Finite Element Immersed Boundary Method
    PhD thesis, Università di Pavia, Dipartimento di Matematica "F. Casorati", 2006.

  5. @@ -862,7 +874,7 @@ D. Oeltz,
    Ein Raum-Zeit Dünngitterverfahren zur Diskretisierung - parabolischer Differentialgleichungen. + parabolischer Differentialgleichungen
    Ph.D. thesis, University of Bonn, Germany, 2006. @@ -872,7 +884,7 @@ M. Schmidt,
    Low-dimensional I/O modeling of distributed parameter - systems. + systems
    Proc. Appl. Math. Mech., vol. 6, pp. 15-18, 2006. -- 2.39.5